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Abstract

The problem of demarcating between what is scientific and what is
pseudoscientific or merely unscientific – in other words, the problem
of defining scientificity – remains open. The modern debate was firstly
structured around Karl Popper’s falsificationist epistemology from the
1930’s, before diversifying a few decades later. His central idea is that
what makes something scientific is not so much how adequate it is with
data, but rather to what extent it might not have been so. Since the
second half of the century, and in the wake of criticisms, such as the
Duhem-Quine thesis, that were raised against falsificationism(s), most
approaches to the problem of scientific demarcation are now multicri-
teria and holistic. However, the approach presented in this paper does
not follow the same guideline. The present work can be seen as an
attempt to adapt Popper’s (sophisticated) falsificationism to a model-
based view of scientific knowledge. Using formalization and focusing
on a particular epistemic unit of analysis (namely, empirical models)
allows to properly define the popperian corroboration degree and to
view scientificity as the maximization of this degree of corroboration
over all available models and data. We eventually recover, in a natu-
ral way, well-accepted scientificity criteria: empirical adequacy, Lakatos’
progressive problemshifts, balance between strength and simplicity, par-
simony, and coherence as special cases of this general scientificity
principle. From this viewpoint, the language dependency of our empir-
ical knowledge no longer appears as a limitation of falsificationism but
as one more reason to take it as a good epistemological framework.
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1 Introduction

1.1 A short history of the demarcation problem

The scientific demarcation problem (SDP) can be broadly presented as the
problem of finding a clear demarcation between science and non-science or
between science and pseudo-science – for instance, a set of criteria that would
be jointly sufficient and individually necessary to define scientificity. Generally,
scientists are quite able to distinguish between scientific and non-scientific
statements, models, or theoretical constructs1 without being able to clearly
explain why this distinction holds. In other words, we seem to have a definition
of scientificity in extension but lack such a definition in intension. From an
epistemological viewpoint, the SDP is about finding such a definition.

The modern debate about the SDP has been firstly structured around
Karl Popper’s falsificationist epistemology since his 1934’s Logik der Forschung
(Popper, 1934, 1959). Popper’s proposal has the advantage of resting on a
simple criterion for scientificity: falsifiability.2 According to this view, a system
of statements can be qualified as scientific if it may potentially be falsified
experimentally, that is, if it is possible, at least in principle, to imagine an
experimental or observational outcome that could falsify it.

His first rationale supporting falsifiability is that it is claimed to solve the
problem of induction, as posed e.g. by David Hume (Hume, 1748). Indeed, sci-
entific reasoning seems to be ultimately based on inductive reasoning, because
general empirical claims can never be fully empirically justified; science would
then be founded on a not totally logical basis. Popper then exploits the logical
asymmetry between the verification and the falsification of a given empirical
claim. Indeed, such a claim cannot be fully empirically justified, but a single
counterexample suffices to refute it. The confirmation procedure is an induc-
tive process whereas the falsification procedure is a deductive process via the
modus tollens. The guiding idea of Popper is then to make our knowledge rest
on a logically robust basis again: scientific progress would finally be based
on deductive reasoning, getting closer and closer to the truth by deductively
eliminating theories and hypotheses.

1At least in their own field.
2Actually, Popper’s proposal is not precisely monocriterial as it also includes avoiding ad

hoc procedures and more generally “conventionalist stratagems” to save a theory facing a
contradiction.

https://creativecommons.org/licenses/by/4.0/
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In contrast, empirical systems that are not falsifiable seem to have extraor-
dinary explanatory power, but this power is illusionary: they are empirically
right without having possibly been wrong anyway. The central question,
regarding scientificity,3 is then, from this viewpoint, not “is this theory ade-
quate with data?” but “could this theory not to be adequate with data?” As
long as the theory being tested is not refuted but could have been so, it is cor-
roborated. The more audacious the claims the theory has made and the more
severe the tests it has passed, the more audacious is the theory.

Popperian falsificationism has been criticized for decades, and Popper
improved his view from these criticisms, especially after the release of his first
book in English in 1959. One important criticism is that it seems impossible
to definitively refute a given claim. Indeed, facing a contradiction with experi-
ence, it is always possible to adjust our logical system (e.g., adding an ad hoc
hypothesis to our theory) to neutralize the discrepancy. As the Duhem-Quine
thesis claims (Harding, 1975), a single empirical statement S never faces expe-
rience alone but is always embedded in an entire system of statements that are
tested together with S. This observation is related to the fact that observa-
tions are always theory-laden: there is no pure empirical fact; we always need
some hypothesis in order to generate empirical data that will serve to test
other hypotheses.

However, Popper is aware of this fact, which is a reason among others why
in his further books (Popper, 1962, 1972), he developed a sophisticated version
of falsificationism, as explained by Imre Lakatos in (Lakatos, 1978):

[Popper] agrees that the problem is how to demarcate between scientific and
pseudoscientific adjustments, between rational and irrational changes of theory.
According to Popper, saving a theory with the help of auxiliary hypotheses which
satisfy certain well-defined conditions represents scientific progress; but saving a
theory with the help of auxiliary hypotheses which do not, represents degeneration.

Popperian falsificationism should not be caricatured as claiming that we
must abandon a theory each time it is falsified: it is quite obvious that a
theory is a structure with some complex logical interdependency, and that
empirical falsification only indicates that there is something wrong in the whole
structure. As Quine noticed, however, logic alone cannot tell us which part of
our knowledge is to be revised when it faces a contradiction with experience
(Quine, 1951). Theory is indeed always underdetermined by experience.

This observation, as well as the fact that the distinction between ana-
lytic and synthetic statements is actually dependent on the language used4

deeply weakened the original ambitions of logical empiricism. The latter used
to consider scientific theories as axiomatic systems, that is, non-interpreted
syntaxic structures, and its aim was to base our knowledge on the purely log-
ical relationships within this structure, the whole resting in the last instance
on unquestionnable and purely empirical facts related to direct observations.

3Let us precise that in the whole paper we talk about empirical sciences and not formal ones.
4It is always possible, from a logical point of view, to change some basic definitions and turns

any empirically falsified synthetic statement into a (trivially true) analytic statement.
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Despite their fundamental differences, falsificationism might somehow be con-
nected to this “received” or “orthodox” view of theories, for at least two
reasons. First, it also rests on the idea of basing scientific knowledge (and
science progress) on logical rules. Second, falsificationism is easier to define
within a framework in which theories are viewed as axiomatic structures or
logical networks of statements. The conclusion is that the usual criticisms of
these two points usually also reach falsificationism.

Moreover, the history of science and, more precisely, Thomas Kuhn’s work
(Kuhn, 1962) shows that not only is it logically possible to save a theory fac-
ing a refutation, but that it often turns out to be very fruitful, sometimes
even the most rational thing to do. Lakatos, from Popper’s sophisticated fal-
sificationism, synthetized both Popper’s and Kuhn’s views on scientific theory
development (Lakatos, 1978). A great observation from Lakatos has been to
notice that the relevant unit of analysis was not a single theory, but rather a
series of theories T1, T2, ...Tn which is such that for any i, Ti+1 results from the
modification of an auxiliary hypothesis to Ti in order to explain an anomaly
that Ti faces. From this viewpoint, Lakatos then distinguished progressive and
degenerating problemshifts (Lakatos, 1978, p. 33-34):

(...) a series of theories is theoretically progressive (or ‘constitutes a theoretically
progressive problemshift ’) if each new theory has some excess empirical content
over its predecessor, that is, if it predicts some novel, hitherto unexpected fact.
Let us say that a theoretically progressive series of theories is also empirically
progressive (or ‘constitutes an empirically progressive problemshift’) if some of
this excess empirical content is also corroborated, that is, if each new theory leads
us to the actual discovery of some new fact. Finally, let us call a problemshift
progressive if it is both theoretically and empirically progressive, and degenerating
if it is not . We ‘accept’ problemshifts as ‘scientific’ only if they are at least
theoretically progressive; if they are not, we ‘reject’ them as ‘pseudoscientific’.
Progress is measured by the degree to which a problemshift is progressive, by the
degree to which the series of theories leads us to the discovery of novel facts. We
regard a theory in the series ‘falsified’ when it is superseded by a theory with
higher corroborated content.

Thus, the condition to accept an adjustment is that it not only explains
the anomaly but also leads to the discovery of novel facts. In contrast, a prob-
lemshift that does not fit this condition is said to be degenerating.5 From
this viewpoint, “scientific” then would refer to progressive problemshifts, while
“pseudo-scientific” would refer to degenerating problemshifts.

A well-known critical work on falsificationism in particular and the SDP
in general is that of Larry Laudan. In his famous article “The demise of the
demarcation problem” (Laudan, 1983), his point is as follows: we have not
yet found any satisfying set of collectively sufficient and individually necessary

5From these reflections, Lakatos then coined the concept of research program. According to him,
a research program always comprises two main features: an irrefutable hard core and a protecting
belt of auxiliary hypotheses. The hard core contains fundamental principles, definitions, etc.. The
auxiliary hypotheses protect the hard core from refutation because potential modus tollens are
directed in their direction. The hard core is made irrefutable by methodological decision, defining
the very theoretical frame within which explanations take place.
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criteria that would demarcate between science and pseudo-science and allow us
to reconstruct our primary intuition; this question is not interesting, because
“science” is so heterogeneous that it is doom to fail. What is more interesting
is knowing what makes a belief well-founded, reliable, or fruiful, and not what
makes it scientific.

However, it seems that interest in this question has revived in the last
twenty years. In the context of the 2005 trial against creationism in the US,
philosophers of science were asked why creationism is not scientific whereas
evolution theory is. The first part of the handbook on the philosophy of pseu-
doscience (Pigliucci & Boudry, 2013) mentions this episode and provides a set
of good rationales to consider this problem as an important one.

By the way, (Fernandez-Beanato, 2020, 2022) provides a much more com-
prehensive outline of the different sets of criteria which has been proposed over
the last century. Damian Fernandez-Beanato’s work, a multi-criteria approach
to the problem of scientific demarcation, is in line with Martin Mahner’s pro-
posal (Mahner, 2007) in the wake of Mario Bunge’s approach to adress this
problem (Bunge, 1983a, 1991). The idea is threefold: first, capturing the whole
definition of “scientific” within a single criterion (like “being falsifiable”) seems
to be impossible, given the heterogeneity of science and scientific practices;
second, scientificity is seen as a question of degree: there is no clear demar-
cation scientific/not scientific but rather a continuous line of scientificity; and
third, science sometimes shares some features which what is used to be called
“pseudoscience”. Under a given list of criteria, a given epistemic unit will
then be qualified as scientific if it satisfies a certain number of criteria, and
not (or pseudo) scientific if it does not satisfy enough of them. For example,
(Fernandez-Beanato, 2021) used a list of 36 criteria to assess the scientificity
of Feng Shui.

However, the formal approach developed in this paper does not follow this
guideline, as will be explained in the following section.

1.2 Our approach

From the previous considerations, it appears that several important observa-
tions must be taken into account when it comes to work on the notion of
scientificity:

• Scientific knowledge has a complex and interdependent logical structure.
• The distinction between synthetic and analytic statements, and thus
between falsifiable and not falsifiable statements, is dependent on the basic
empirical language in which these statements are written.

• This very empirical language is also a part of what is tested.
• Logical rules are not enough to distinguish between different possible
adjustments of theories facing an empirical contradiction.

• Scientificity of a given theory is dependent on historical and social contin-
gencies.
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Concerning the last point, there are several types of historical contingencies.
For example, it may happen that with respect to the empirical data and the
different hypotheses available at a given time, scientists at that time have very
good reasons to consider a certain hypothesis or theory as the best one. In
addition, it may happen that even if a new hypothesis is known and objectively
the best one, it takes time for this new idea to impose itself within a scientific
community. This may occur for many different reasons, including structural
or inter-individual power relationships in the community, social stereotypes
and norms, or even industrial conflicts of interest. However, we consider that
the study of these important features is the work of history and sociology of
science and that the role of epistemology (at least as we view it) is to define
scientificity criteria (whether they apply to theoretical constructs like models
or to social groups like epistemic communities) such that their validity does not
depend on the historical or social context. We do not enter into details here,
but as we shall explain later, our methodological postulates do not prevent
us from considering that scientificity does depend on socio-historical contexts
while epistemological criteria do not.

We now introduce the approach followed in this paper and how it incor-
porates the observations listed above. Our strategy is threefold: a reductionist
wager, the use of formalization, and the statement of a scientificity principle.

In contrast to the holistic way of tackling the problem, i.e. starting from the
largest possible scale of analysis (e.g. Bunge’s epistemic fields), we start from
a smaller one, namely that of empirical models. The term model is adopted
for a large range of quite different objects, and we define this unit of analysis
in detail in section 2, both concretely in 2.1 (with illustrative examples taken
from actual science) and formally in 2.2 (in a language inspired from proba-
bility theory). This is a reductionist move because we voluntarily restrict our
analysis to a strictly circumscribed conceptual object; thus, from the start, we
discard some features as not essential regarding scientificity, and we may be
wrong. Moreover, it is not clear whether the connection between our small-
scale analysis and a larger-scale analysis (considering the complex structures
of scientific theories in more detail) will be easy or even possible to establish.
Despite these important observations, this reductionist wager and the use of
formalization appear to be worth adopting because of the higher degree of
clarity and (cognitive) manipulability it allows, doing exactly the same kind
of job modelization itself does in scientific inquiry.

The second step is to formalize the popperian notion of degree of corrobo-
ration of models, thanks to the clear and precise framework presented in the
previous section. From our viewpoint, the most important lesson of falsifica-
tionism is that the fundamental question, regarding scientificity, is not: are our
models adequate with data? but rather: how much information do we get know-
ing that our models are at this point adequate with data? The corroboration
degree is precisely defined as this amount of information, and section 3 is dedi-
cated to its formalization. Therefore, our strategy does not consist of searching
for a set of criteria defining scientificity, but rather in characterizing scientific
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models as models maximizing a certain quantity, namely, the degree of cor-
roboration. Indeed, given that our empirical knowledge cannot be absolutely
justified from logical considerations only, we need to add “by hand” a funda-
mental principle to be satisfied in order to explain how it is possible to select
between different rival models or theories. Moreover, language-dependency
issues can also be tackled with this approach: it suffices to treat the empiri-
cal language as a variable of the maximization problem, that is, as something
that can also vary and influence the degree of corroboration. Then, demanding
a maximized degree of corroboration constrains the language used, avoiding
naive relativism. It is also possible to think as if a clear distinction between
analytical and synthetic, or falsifiable and unfalsifiable statements, existed,
while taking into account the fact that this distinction depends on the language
used.

Finally, this approach allows us not to get stuck with historicity issues in
defining scientificity – this is where we come back to our previous discussion
about the socio-historical context dependency in epistemology. Indeed, scien-
tificity is seen here as the result of an algorithm that takes (empirical) models
and a set of data as inputs and gives their respective corroboration degrees as
outputs. The scientificity of a given model (the output of the algorithm) then
depends, indeed, on historical and social contingencies, for instance how much
data are available at a given time, or what are the other models in competi-
tion at that time (the inputs of the algorithm). However, the intrinsic rules
of the algorithm remain, by definition, anhistorical. It is precisely these rules
that are under study in this paper. In other words, our way of escaping from
the historicity issue is to see scientificity not as an intrinsic quality of a given
theoretical entity (such as a model, or theory) but more as a feature of the
relationship between some data and models aiming to recover them.

The loss of logical justification following from adding “by hand” a scien-
tificity principle is hoped to be compensated by recovering a certain number
of well accepted scientificity criteria on a unified way. In section 4, we show
that from this principle, it is possible to naturally derive some well-known
criteria: empirical adequacy (4.1), clarity of basic variables (4.2), Lakatos’
progressive problemshifts (4.3), Lewis’ balance between strength and sim-
plicity (4.4), and also (partly) parsimony and coherence (4.5). In 4.6, we
also discuss the difference between Karl Popper’s definition of the degree of
falsifiability/corroboration and ours.

In section 5 we finally point to some limitations and perspectives of our
approach, in connection with the already mentioned drawbacks related to the
restriction to a given scale of analysis and the use of formalization.

Nota bene: the general purpose of this paper and most of its content
can be understood even without any deep mathematical knowledge. However,
sections 2.2 and 3.3 extensively use some mathematical formalism and implies a
minimal mathematical knowledge. Nevertheless, an effort was made to explain
everything qualitatively as well.
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2 Empirical models as elementary epistemic
units

A first important question to be adressed, working on the SDP, is that of
the epistemic unit (the “object of demarcation” (Hansson, 2021)) which the
analysis bears on. Indeed, discussions on scientific demarcation can go really
confusing if we do not precise what is going to be qualified as scientific (or
non-/pseudo-scientific). For instance, as Lakatos noticed, fundamental prin-
ciples and some other statements of a theory are not aimed to be directly
confronted with experience, but rather are thought as a framework in which
experience can be rendered intelligible. Thus, their epistemological value is not
given the way as, say, empirical predictions which have a more direct empirical
meaning. Therefore, depending on what precisely we are talking about - empir-
ical claims? fundamental principles? whole theories? epistemic communities?
- scientificity cannot be defined the same way.

In a quite consensual quinean viewpoint, we picture our knowledge as a
giant logical and interconnected web of statements which “impinges on experi-
ence only along the edges” (Quine, 1951). Its structure is way too complex to
be analytically described and studied as a whole. Defining a unit of analysis,
from this viewpoint, means choosing a scale at which we look at this logical
web. The discussion shares some analogy with that in biology about the most
relevant scale for analyzing life evolution: genes? individuals? species? The
choice of a certain scale necessarily erases some details which could be inter-
esting to study in spite of this. Yet, it allows, as models in science exactly do,
a conceptual clarification and a clear basis for further discussions.

We choose to take empirical models as the epistemic units of our analysis.
They constitute parts of the quinean web which are the closest of its edges,
that is to say which are in the most direct connection with empirical data.
In the first part 2.1 of this section, we define it more precisely on a qualita-
tive way, based on concrete examples. Then, in 2.2, we make a proposal for
a formal definition using a mathematical language inspired from probability
theory. Finally, in 2.3, we stress the importance of the empirical language,
which is essential to overcome the drawbacks of falsificationism mentioned in
the introduction.

2.1 Qualitative definition

2.1.1 Examples

Empirical models under consideration in this paper are of two possible kinds:
nomological or causal.

Nomological empirical models

In classical physics, an example of a nomological empirical model is the ideal
gas law:

PV = nRT (1)
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where P is the pressure in Pa, V is the volume in m3, n is the amount of
substance in mole, T is the temperature in K and R is a constant equal
to 8, 314 J mole−1 K−1. The variables (P, V, n, T ) can be measured on some
concrete gases and an empirical model is a hypothetical relationship between
these variables. Another possible empirical model for this set of variables is
the van der Waals state equation:

(P +
an2

V 2
)(V − nb) = nRT (2)

where P , V , T and n are as in (1) and a and b are some parameters. (1) is
a special case of (2) for which b = 0 and n/V −→ 0.

Another example of a nomological empirical model is that of fall with
friction. The typical experiment associated to it is the fall of a spherical marble
into a given fluid. The basic variables that we can measure are, for example,
the mass m of the marble, the speed v and the time t. A possible empirical
model is the following hypothetical relationship between these variables:

|v(t)| = v∞(1− e−t/τ ) (3)

where v∞ and τ are a priori free parameters and m does not appear
explicitely. Another possible empirical model is:

|v(t)| = v∞(1− e−t/τ ), v∞ = gτ, τ =
m

α
, g = 10 m.s−2. (4)

In (4), the mass appears explicitely and the remaining free parameter is
α. (4) is a special case of (3) for which v∞ and τ are assumed to be linearly
related.

Such empirical models are thus, somehow, directly comparable to empirical
data for they are relationships between variables which have a direct empirical
meaning. A variable (like P , T , or v) is said to have a direct empirical meaning
if it is given with a set of concrete operations which are sufficient to give it a
value.

In these examples, empirical data look like a set of points taking value in
the space defined by the basic variables. For example, typical empirical data
D for a single experiment of fall with friction look like figure 1.

It is assumed that there is always a way of assessing the adequacy of a
given empirical model with a set of data, whether the data are produced from
a single experiment or from a set of different and independent experiments.

Causal empirical models

A causal empirical model is merely a hypothetical causal relationship between
two variables measured on a given statistical population. In this case, the basic
variables can be of four different types: quantitative and continuous (their
value is a real number, like height or IQ), quantitative and discrete (their value
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Fig. 1 Typical fall with friction data points.

is an integer, like the number of inhabitants in a city), categorical and ordinal
(their value is an ordered category, like the level of pain in a visual analogue
scale), or categorical and nominal (their value is an unordered category, like
cities or countries).

Here we do not talk about the theoretical mechanisms that could explain
the causal relationship: our analysis takes place at the statistical (i.e. empirical
and not theoretical) level only. It corresponds to the macro-macro relationship
in the Boudon-Coleman’s diagram (Coleman, 1990) in sociology, or to observed
statistical associations in terms of Bradford Hill’s criteria (Bradford Hill, 1965)
in epidemiology. More precisely, assuming a causal relationship between two
variables A and B, denoted as A −→ B, means here that there is a statistical
association between A and B and that this association remains ceteris paribus,
i.e. everything else being equal.

For example, let A be the average cigarettes consumption per inhabitant
and B the life expectancy at birth, both quantitative and continuous variables
measured on the same set of countries. The Pearson correlation coefficient r or
the determination coefficient r2 are classical ways of assessing the strength of
the association in this case. We would probably observe a positive correlation
between A and B, that is to say: the more the cigarettes consumption in
a country, the more the life expectancy at birth in this country. A possible
empirical model is: “Smoking increases life expectancy” or:

A −→ B. (5)

Another empirical model would include a third variable C as a possible con-
founder, C being the economical development of the country, measured e.g. as
the GDP (but there are other possibilities). This alternative model is:

A←− C −→ B. (6)
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That is to say, the association between A and B is predicted to disappear if we
look at countries with similar GDPs. In this model, the economical develop-
ment of the country is the cause of both the cigarettes consumption and that
of the life expectancy.

Another example, classical in sociology (see e.g. (Boudon & Lipset, 1974)),
is the relationship between the academic success of students (variable B) and
the socioprofessional status of their parents (variable A). Both A and B are
categorical and ordered variables, if we measure the academic success e.g. with
the highest diploma obtained by the student (again, the operationalization
of such a variable is not unique). The strength of the relationship between
such variables can be assessed e.g. by the odd-ratio. A well known observed
association is that the higher the socioprofessional status of their parents, the
higher the academic success of their children.6 A possible causal model is:
A −→ B, i.e. the higher socioprofessional status causes somehow the academic
success. This model implies that the association between A and B remains
even if we control other potential confounders, like e.g. the school level as
undergraduate, i.e. just before going to university (variable C). That is to
say, for a group of students with the same school level in the last year before
university, we would still observe that the higher the parents socioprofessional
level, the higher the highest diploma obtained.

A causal empirical model is then a hypothetical causal relationship between
two variables A and B, i.e. the prediction of a statistical association (assessed
by a given statistical index like the Pearson coefficient or the odd-ratio)7

between A and B which remains even if we fix the value of other possible
variables. However, it is always possible to compute the Pearson coefficient,
say, of two given quantitative and continuous variables. Assuming a positive
correlation between such variables implies assuming a “high score” (i.e. close
to 1) for their Pearson coefficient. Thus, it is a question of degree: every vari-
ables are trivially correlated (or more generally, associated) to each other, but
assuming a causal relationship means predicting a certain level of correlation.

We assume, as in the case of nomological models, that it is always possible
to associate to a causal empirical model a certain degree of adequacy with
some empirical data D, taking into account the quite complicated structure of
data and variables.

2.1.2 Components of an empirical model

From a more general viewpoint, an empirical model is the utterance of a rela-
tionship between a given finite set of variables measured on some empirical
situations, such that it can be compared with empirical data.

An empirical model generally consists in several basic components:

6Let us stress again that this association is assumed to hold at the statistical (i.e. macrosocial)
level and do not imply anything about what happens at the micro level, because this is not what
we are interested in in this paper.

7A general overview of these different ways of assessing the prominence (usually called “size
effect” in the literature) of statistical associations is given for instance in (Sullivan & Feinn, 2012).
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• A finite set of variables with their operational definition. An operational
definition of a variable is a set of concrete operations sufficient to give it a
precise value. This is called the empirical frame and denoted as E.

• E can be seen as a space such that a piece of empirical data D can be
represented as a set of elements of that space E.

• The proper empirical model is a relationship which is assumed to hold
between these variables. It claims that given the empirical situations under
consideration, the variables cannot take any possible value but are confined
in some regions of E. Such empirical models can also be defined up to some
parameters which are not variables in E and do not necessarily have a direct
empirical meaning.

• It is assumed that there is always a way to assess the adequacy of the empir-
ical model with the available data D, whether in the case of nomological
models or in the case of causal models, although this way is usually not
unique.

The set consisting in the four items above: an empirical frame, some data,
an empirical model and a way of comparing the latter with data, constitutes
the epistemic unit of our analysis.8 This is also referred to as an empirical
model by misuse of language.

2.2 Formal definition

2.2.1 Definition

We formally define an empirical model M as a set:

M = (E,P, D, (mθ)θ∈Θ, d), (7)

where:

• E is a probability space, i.e. a set equipped with a σ−algebra B9 and a
probability measure P, which is a σ−additive map P : E −→ [0, 1] such that
P(E) = 1.10

• D is an element of E × E × . . . E = En with n ∈ N∗. Since D can be seen
as a finite set, we denote n =| D | to remind that the integer n is associated
to D.

• (mθ)θ∈Θ is a parametrized family of (measurable) subsets of E. Θ denotes
a certain set on which the family of models is indexed.

8This is important to stress again that we are not focusing on models in general but on empirical
models in particular. That is to say, we do not study in this paper the epistemological criteria
bearing on what is a good theoretical explanation, but only on empirical relationships between
measurable variables.

9As the σ−algebra does not intervenes explicitely in our work, we do not write it explicitely
from now on. By misuse of language, (E, P) refers to the probability space.

10We do not mean here the base probability space of probability theory usually denoted as
(Ω,F, P) the interpretation of which is not easy in general, and in our approach in particular. We
may somehow consider the probability space (E,B, P) used in this work as the target space of a
certain random variable X : Ω −→ E and the probability measure on E as that associated to X
and implied from the probability measure on Ω. However, we do not explicitely use neither Ω nor
X in the present work, and only talk about the space (E, P).
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• E is also equipped with a distance such that for any subset B ⊂ E, n ∈ N
and D ∈ En, we can define a distance between B and D, denoted d(B,D).
The distance d can then be used to compare a model mθ (with θ ∈ Θ) with
data D as d(mθ, D).

In what follows we explain in more details our choices of modelization.

2.2.2 Interpretation and justification of the terms

The empirical frame E

The space E and the associated probability measure P represent the empirical
frame as we defined it above. The probability measure on E encodes somehow
the background knowledge we have on the basic variables defining the empirical
frame. For example, in the case of fall with friction, the empirical frame is
defined from the basic variables (m, v, t). Thus, E could be represented, in this
case, as E = R3. P, defined on E, would represent what we know about m, v
and t and their way of being measured, such that e.g. v/c≪ 1, c being the light
celerity. In political science, poverty threshold in a given country is sometimes
defined as a certain proportion of the median income. The poverty rate of any
country, such defined, is then necessarily less than 0.5, by construction. This
feature would be encoded by the corresponding probability measure on the
space representing the empirical frame.

Models as subsets of E

This viewpoint obviously reminds the phase space approach of Frederick Suppe
(Suppe, 1974) and Bas van Frassen (van Fraassen, 1980) in the context of
semantic conception of theories. In this paper, E will sometimes be called
“phase space”11 for this reason. Notice that in our case, we define it for a
particular epistemic unit and not for the whole theory, for we do not place our
analysis at this scale. Let us now see some concrete examples.

The ideal gas law:
PV = nRT (8)

is an example of a parametrized family of models. Here, the only free param-
eter is θ = R ∈ Θ = R (if we assume that we are in a case where its value
is unknown). The case of fall with friction exhibits another example of a
parametrized family of models:

|v(t)| = v∞(1− e−t/τ ), (9)

with θ = (v∞, τ) ∈ Θ = R+2.
For each R ∈ R, equation (8) defines a 3-dimensional topological subspace

of E = R4 (defined from variables (P, V, n, T )), while for each (v∞, τ) ∈ R+2,
equation (9) defines a curve in E = R2 (defined from variables (t, v)). This is
why such models can always be seen as families of subsets of E.

11In physics, the phase space of a system usually consists in the whole set of states which the
system can be in.
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The same thing occurs in the case of causal models. A causal model
A −→ B between quantitative and continuous variables consists e.g. in the
asumption of a set of linear correlations between A and B – the association
of A and B being measured the other variables being fixed. For instance, let
us consider three such variables A, B and C such that C can only take three
values C1, C2 and C3 (for instance, C is a categorical and nominal variable).
In this case, E = E1×E2×E3, where Ei = R2 for i = 1, 2, 3. Then, the corre-
lation between A and B will be measured on three statistical subpopulations
such that C is fixed on each of them and equal respectively to C1, C2 and
C3. For each subpopulation, a correlation is e.g. defined by two real param-
eters a and b of the affine relationship assumed to hold between A and B:
B = aA+ b. A causal relationship between A and B is then characterized by a
set θ = {(ai, bi)}i=1,2,3. For such a θ, the causal model A −→ B is represented
by mθ which can be seen as the union of a straightline defined by (a1, b1) ∈ R2

in E1, a straightline defined by (a2, b2) ∈ R2 in E2 and a straightline defined
by (a3, b3) ∈ R2 in E3. In short, such a causal model can also be seen as a
family of subsets of E.

We thus make the assumption that any empirical model, however com-
plicated it may be, can be seen as a parametrized family of subsets of
E.

2.3 Importance of the empirical frame

A naive realism would make us think that the basic variables, for instance in
physics, are nothing more than something which is directly given by Nature.
However, a classical result in history of science (Hanson, 1958; Kuhn, 1962) is
that the situation is not so linear. Consider temperature: in (Chang, 2004), we
realize that the construction of a robust measure for temperature is something
which took a certain time, and that nothing was directly given by Nature itself.
At the beginning, its measure was mostly based on the observation of some
empirical regularities like the relationship between the heating of a metal rod
and its length variation. Hasok Chang shows that such a procedure can rapidly
fall into circular reasonings, and that only some particular stable experimental
conditions and a robust theoretical definition (that is to say, seing temperature
as the mean kinetic energy of particles) allowed to go out of this circularity,
ending up with a robust operational definition.

Some variables as temperature are now well-defined and do not cause any
more problems, except when we try to define it in extreme conditions. However,
this is not the case for all variables in physics. For example, in modern cosmol-
ogy, measuring large scale distance is nothing but straightforward. Different
methods are used depending on the distance scale which is probed: parallax
measure (up to 10kpc),12 Cepeid’s measure of luminosity (up to 10Mpc) or

12A parsec (pc) is a usual astronomical unit which corresponds to the distance at which the
distance Earth-Sun is seen under an angle of one arcsecond, and is approximatively equal to
3.26 light-years.
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supernovae Ia for “distances” up to redshifts13 around 2 (Czerny, Beaton, &
Bejger, 2018). The use of these standard candles is resting on quite strong theo-
retical assumptions and the different methods have to be calibrated in order to
give a coherent notion of distance along scales of several order of magnitudes.
Therefore, given that the very basic variables in cosmology are thus theory-
laden, the interpretations of the empirical data produced from these variables
is far from obvious. An example is the acceleration of the expansion of the uni-
verse which comes from the observation of the relationship between redshift
and distance of distant galaxies. However, as David Merritt noticed (Merritt,
2017), there exist alternative ways to explain this observation without appeal-
ing for an accelerating expansion, for instance “relinquish[ing] the assumption
of homogeneity”. Our purpose here is not to enter into this technical discus-
sion, but only to stress that choosing to focus on the acceleration hypothesis
is a choice, which may be defended with good arguments, but which is not an
obvious conclusion that we could directly read in the empirical data.

In the social sciences and humanities, a fundamental question is that of
defining the basic measured variables as intelligence, poverty, country’s level of
development, criminality, personnality’s traits, etc. As in any other science, a
change in the basic definitions of what is observed directly results in a different
observation. For example, it has been recently shown (Stoet & Geary, 2018)
that there were a negative correlation between the gender equality degree in a
country (measured with the Global Gender Gap Index (GGGI) as defined in
(WEF, 2022)) and its proportion of women graduates in science, technology,
engineering and mathematics (STEM), while there is generally no difference
in scientific skills between female and male students in school. In other words,
the more equal women and men in a country, and thus the more the women
are free to choose their academic career, the less they choose to graduate in
STEM. This is called the “gender-equality paradox in STEM” for we would
have a priori expected the contrary. Both this empirical result and its inter-
pretation has been criticized and the controversy was in part focusing on the
way of measuring the gender gap of a country. In particular, (Richardson et
al., 2020) showed that if another index is used (namely, the Basic Index of
Gender Inequality (BIGI)), the correlation just vanishes. This is, again, not
our purpose here to enter into this controversy. The only aim of this interest-
ing example is to illustrate the dependance of the empirical data, i.e. the way
the world appears to us, on the basic variables used.

The empirical frame represents the basic language we need in order to say
something about a particular part of the world. Its importance is capital: a
change in the empirical frame results in a change in how we see the world,
and thus conditionates the whole scientific inquiry. However, it takes time for
a discipline to get robust and stabilized basic variables. It turns out that the
detection of regularities in the empirical world and the construction of an
empirical frame in which these regularities are detected are two historically

13The electromagnetic signals coming from distant galaxies appeared as redshifted, which gives
information about their relative speed and motion.
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concomitent and co-dependent processes. In our formalization, the empirical
frame (E,P) is made explicit to take into account the theoryladeness of obser-
vation and the fact that the very definition of basic variables and the way they
are measured can vary through scientific inquiry – i.e. that these elements are
also part of what is tested.

3 Maximized corroboration principle for
empirical models

3.1 Outline of our approach

3.1.1 Karl Popper’s legacy

According to Karl Popper, the adequacy of a theory with empirical data is not a
sufficient condition for this theory to be scientific. Indeed, its scientificity is not
only measured in the light of its empirical adequacy but also and above all in
the light of its degree of falsifiability. As already mentioned in the introduction,
the relevant question to be asked is thus not only “is this theory adequate with
data?” but “would have been possible for this theory not to be adequate with
data?” “Theories are not verifiable, but they can be ‘corroborated’” (Popper,
1959, p. 248). According to Karl Popper and its followers, empirical data can
never fully justify a theory, but it can corroborate it: the theory has to be right
(with respect to empirical data) whereas it could have been wrong. In other
words, a “prediction” which is true independently of the available data does not
say anything about the relevance of the underlying theory. More precisely, any
empirical language will exhibit some endogeneous empirical regularities, i.e.
analytic a priori truths, or, in the language of Popper, unfalsifiable statements.
This is not a bad thing per se, this is just a fact. The lesson from falsificationism
is just that this kind of regularities is not of any strong epistemological support.
As a scientific theory aims at saying something substantial about the world, the
truth of its statements should, in the last instance, come from the world – that
is, from the empirical data. Given a statement which is empirically adequate
at a certain degree, the more the statement could have been refuted, the more
information we get about the relevance of our theory in saying something about
the world.

3.1.2 Corroboration degree as an amount of information

We start from the already mentioned idea that what really matters, regard-
ing scientificity, is not how much our theories are empirically confirmed, but
rather how much information do we get when our theories are empirically con-
firmed. This is precisely this amount of information that is called degree of
corroboration. We formalize it in section 3.3, but let us give here a qualitative
formalism-free description. Given our epistemic unit constiting in (see section
2.1.2): an empirical frame E, some empirical data D, a proper empirical model
m and a way of comparing the data and the model, we define the following set:
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the set of all data which are at least as much adequate with m as D is. This
set, compared to the whole set of possible data that can be generated by E,
measures at which point it is surprizing that m and D are at this point ade-
quate. If this set identifies with the whole set of possible data, we are in the
case where any possible data could have been at least as much adequate with
the model as D. These are unfalsifiable models, true by construction and for
which the gain of information is thus zero. On the contrary, the “smaller” this
set, the more falsifiable and the more the information we get from empirical
adequacy. Thus, we need a well defined way of measuring “how big” is this set
compared to the whole set of possible data, which is rendered possible with
the probability measure P defined on E, as we shall see below. We will even-
tually compare this approach with Popper’s formal definition of corroboration
degree in section 4.6.

3.1.3 Maximized corroboration principle

Once corroboration degree is defined on the epistemic units under study, it
allows to compare them to each other on clear epistemological basis. We then
state a general scientificity principle in section 3.4: given a set of comparable
empirical models M = {M1,M2, ...,MN}, the most scientific is merely M ∈
M with the maximum corroboration degree. This simple principle allows to
recover well-known epistemological criteria, as we shall see in section 4.

3.1.4 Theoryladeness and language dependency

Again, the fact that a given statement be falsifiable or unfalsifiable, and more
generally the corroboration degree of a given empirical model M , does depend
also on the language used.14 Yet, this is not a dramatic limitation of our
approach, on the contrary: the language being itself a variable of our prob-
lem, the maximized corroboration principle (see below) takes, by construction,
this feature into account. The fact that genuine regularities and the language
in which they are expressed are co-selected in the procedure of corroboration
maximization makes it possible to define empirical languages which are, ceteris
paribus, better than others. According to us, this is why language dependency
is not, per se, a dramatic issue for a falsifiability-based definition of scientificity.
Actually, from our viewpoint, this is even the other way around: theoryladeness
of empirical data is actually one more reason to consider falsifiability as a rel-
evant criterion for scientificity, for it allows to distinguish genuine regularities
from regularities which are endogeneous to the empirical language.

3.2 Detecting regularities: endogeneous and genuine
regularities

Detecting regularities in “Nature” is quite consensually viewed as being a basic
aim of scientific inquiry. These regularities take different forms depending on

14Exactly like the distinction between analytic and synthetic statements.
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the situation under consideration, yet the fundamental intuition - that we want
to formalize - is the same: a regularity is something intringuing, interesting,
which calls for an explanation.

As already mentioned, we are forced to express these regularities within
a language represented by the empirical frame E. It turns out that this can
generate spurious regularities, i.e. regularities which are mere artifacts of this
language. These endogeneous regularities are of two possible forms: either they
are just true by virtue of the definitions composing E, that is to say they are
E–analytic,15 or they are artifacts of our modelization hypotheses. We now
take some concrete examples.

3.2.1 E−analytic statements.

Let us see two examples of empirical observed relations that are true directly
because of the operational definitions of the terms they relate.

Basic analytical statements.

First, a quite artificial example to fix the idea: “All swans are birds” is an
empirically meaningful statement which is true by the virtue of the operational
definitions of this terms: the fact to be a bird is a necessary condition (by
definition) in order to be a swan. Another such example is the one already
mentioned in section 2.2.2: “poverty rate of a country cannot be greater than
0.5”.16 This does not tell us something deep about economical or social reality
but is a mere artifact of the definitions.

Cobb-Douglas production function.

A more subtle example is the following. In neoclassical economic theories, an
important concept is that of the aggregated production function, which relates
the quantity of economic output (like the global production of a country) with
a certain set of economic inputs (like labor, capital, ...) In particular, Charles
Cobb and Paul Douglas proposed in 1928 such a function (Cobb & Douglas,
1928), relating the total production Q in a year with total amount of labor L
and capital K measured in homogeneous units:

Q = ALαKβ , (10)

where A is a parameter. They tested this function econometrically and
found a very strong empirical adequacy with data. In particular, they empiri-
cally found that the parameters of this model are related by α+ β = 1, which
constitutes an argument supporting some basic hypotheses of neoclassical eco-
nomics. However, some criticism araised over time, and it has been recently
claimed (Felipe & McCombie, 2013) that actually, this relation reduces to an
accounting identity. In other words, the relation (10) together with α+ β = 1

15This notation is used to remind that the distinction between analytic and synthetic statements
is dependent on the language used.

16Poverty threshold being defined as a proportion of the median income in a country.
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can actually be mathematically deduced from an identity which is true by def-
inition. This is a quite clear example of a regularity which is endogeneous to
the language used - and still not trivial to detect.

3.2.2 Modelization artifacts.

Let us now see two examples where the tautology does not come directly from
the definition of the basic variables but from the framework used to modelize
the data.

Lagrange method of fitting.

A simple example of this is the following result: for any n data points
{(xi, yi)}i=1..n, there always exists a polynomial function Pn of degree at most
n− 1 (thus, with n parameters) which perfectly fits the data, i.e. such that:

for any i ∈ [1, n], yi = Pn(xi). (11)

We could hardly imagine a better fit. However, for a given n-points piece
of data D, the statement “there exists n parameters {ai}i=1..n such that the
polynomial fonction:

Pn(x) = a0 + a1x+ a2x
2 + ...+ an−1x

n−1 (12)

perfectly fits D” is not a genuine empirical prediction for it is always possible
to find such parameters, independently of any particular data. It seems to have
great empirical success, but actually it is nothing but a mere reformulation of
data D. The procedure to find the good polynomial from a given set of data is
called the Lagrange method and an example of this is represented figure 2.17

Fig. 2 Lagrange method applied to a set of n=10 randomly generated points.

More precisely, in the language of our formalization, we have a fam-
ily of models (mθ)θ∈Θ where Θ = Rn, i.e. θ ∈ Θ is under the form:
θ = (a0, a1, ..., an−1), and thus for θ ∈ Θ, mθ = Pn as defined in (12). For any

17In this example we generated randomly ten points in a two-dimensional graph and then
compute the unique 10-parameters polynome which perfectly fits them.
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D = {(xi, yi)}i=1..n, the statement “∃θ ∈ Θ such that mθ and D are perfectly
adequate” is thus true for all possible data D ∈ R2n. We gain no information
from such an empirical adequacy, no matter it be a perfect adequacy.

Ptolemy’s epicycloids.

Another more subtle example is that of Ptolemy’s geocentric planetary model,
which was predominant for centuries until the late XVI’s. In this model, the
Earth is at the center of the universe and the other planets together with the
sun are rotating around it. Some of these planets, however, are not following
strict circles around the Earth, but more complicated trajectories called epicy-
cloids. An epicycloid is generated by the rotation of a point along a circle the
center of which is also rotating along another circle, and so on. It turns out
that this model had very great empirical adequacy with observational data
available at this time. Moreover, each time a discrepancy appeared, it was
fixed by adding another epicycle, i.e. a new circle the center of which is rotat-
ing along the previous one. This model seems to be quite robust, since it can
accomodate any anomaly without modifying its basic hypotheses.

However, the empirical adequacy of this model is actually a mathematical
artifact. Any closed trajectory in the Earth’s frame can actually be described
by an epicycloid with a finite number of circles, given that the observational
precision is itself finite - which is the case. This is because any such closed tra-
jectory in two dimensions can be decomposed as the addition of two periodic
functions, and that any periodic function can be approximated by its Fourier’s
decomposition,18 i.e. a finite sum of cosinus and sinus functions. In two dimen-
sions, this decomposition (which only rests on the mathematical modelization
of trajectories as closed, continuous and derivable curves) exactly gives finite
epicycloids.

It does not mean that this model cannot be used to make accurate predic-
tions, but just that the epicycloidal form is not something deep to be explained:
it reduces to a mathematical artifact due to the way these trajectories are
modelized. On the contrary, Kepler’s elliptical trajectories in the Sun’s frame
does say something deeper which appeals for a genuine explanation, for not
any set of data can be described by such a model.

3.3 Adequacy and corroboration degree

In this section we define the adequacy and the corroboration degrees formally
within the framework presented in section 2.2. Let M = (E,P, D, (mθ)θ∈Θ, d)
be an epistemic unit under study. Remind that d allows to compare a given
model mθ, for θ ∈ Θ, with data D as d(mθ, D) ≥ 0. The adequacy degree of
M can then be defined as:

α(M) = inf
θ∈Θ

d(mθ, D). (13)

18More precisely, for any closed, continuous and derivable function f , its Fourier series unifor-
mally converges to f . That means that if a non null precision interval ϵ is given, the Fourier series
of f will get at a distance less than ϵ from f with a finite number of terms.
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The adequacy degree is a positive real number, and the more α(M), the
less adequate M . On the contrary, α(M) = 0 means that the model is perfectly
adequate, such as in the examples in section 3.2.2.

Once we have an empirical model M with a certain empirical adequacy
degree α(M), we can define the set of all empirical data which are at least as
much adequate with the empirical model (mθ)θ∈Θ as D is. That is to say,

D[M ] = {D′ ∈ E|D| | ∃θ ∈ Θ, d(mθ, D
′) ≤ α(M)} (14)

E|D| = En is equipped with the product measure derived from P on E,
that we also denote as P by misuse of language. D[M ] is then a measurable
subset of E|D| and its “volume” P(D[M ]) ∈ [0, 1] represents how M might not
have been as adequate with its data D as it is, which is exactly what the notion
of falsifiability aims at covering. More precisely, the more P(D[M ]), the less
falsifiable M . The degree of corroboration of an empirical model M , i.e. the
amount of information that we get knowing that M is at this point empirically
adequate, is then defined as:

C[M ] = −log(P(D[M ])). (15)

By construction, C[M ] ≥ 0 for all M . Moreover, C[M ] = 0 for M such that
their empirical models (mθ)θ∈Θ correspond to empirical regularities which are
mere artifacts of their empirical frame E, namely endogeneous regularities (see
section 3.2). Indeed, a claim as “poverty rate of a country cannot be greater
than 0.5” is true by virtue of the choosen definition of the poverty threshold.
Therefore, any data produced thanks to this definition will empirically confirm
that claim. Thus, for any such D, D[M ] = E|D| and thus P(D[M ]) = 1, i.e.
C[M ] = 0. In the case of the Lagrange polynomial regression method, the result
is the same. Let (mθ)θ∈Θ be the polynomial defined from Lagrange method
from data D = {(xi, yi)}i=1..n, n ∈ N∗. By construction, for any D′ ∈ En,
there exists θ = (a0, ..., an) ∈ Rn such that d(mθ, D

′) = 0. Therefore, in this
case we also get D[M ] = E|D| from definition (14) and thus C[M ] = 0.

From this definition of corroboration degree we can now see scientificity
as its maximization over available empirical models, as presented in the next
section.

3.4 General scientificity principle for empirical models

In order to be comparable, two epistemic units like empirical models have to
share at least some minimal features:

• They have to aim at covering the same set of phenomena – or at least, their
respective set of phenomena must have a non null intersection.

• They have to be written in the same empirical language – that is to say,
they have to share some common basic variables, even if their operational
definitions are not exactly the same.

• Their respective data D must have a non null intersection.
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Then we can state the following scientificity principle for empirical models:

Maximized corroboration principle: Given a finite set of comparable
empirical modelsM = {M1,M2, ...,MN}, the most scientific is the one which
maximizes the corroboration degree C[M ] over M ∈M.

In the next section, we explore some direct entailments of this general
principle and discuss how some well-known epistemological criteria turn out
to be particular instanciations of it.

4 Epistemological criteria derived from the
general principle

4.1 Empirical adequacy

Even if empirical adequacy is not a sufficient condition for scientificity, as fal-
sificationism teaches us, it is still a necessary condition. It may seem strange
at first glance that our general scientificity principle bears only on the cor-
roboration degree C: the latter does depend on the adequacy degree but does
not reduce to it. Actually, the corroboration degree C as defined in section 3.3
turns out to be such that the general scientificity principle does encompass
empirical adequacy as a necessary criterion.

The reasoning is as follows. Let M and M ′ be two comparable models
such that M ′ is less adequate than M , i.e. α(M) < α(M ′). What about C[M ]
and C[M ′]? A greater α means, ceteris paribus, that a larger region of data
is automatically adequate with the corresponding model. Thus, if α increases
between M and M ′, it follows that D[M ] ⊂ D[M ′], and then C[M ] > C[M ′].

An increasing α (i.e. a less good adequacy) thus entails a decreasing cor-
roboration degree. Therefore, an increasing corroboration degree necessarily
entails an decreasing α, i.e. a better adequacy. A good empirical adequacy is
then already encoded in the demand for a maximized corroboration degree.

4.2 Clear basic variables

Another criterion often mentioned as a good measure of scientificity is the
clarity of the definitions of the basic variables used. This is directly related to
the maximization of corroboration. Indeed, claims made out of fuzzily defined
basic variables will do have an empiral meaning, but their adequacy conditions
will be so loose that they will hardly be false. From this kind of basic variables
it then seems to be hard to make any substantial empirical claim. In the
field of psychology, a recent work (Scheel, 2022) even suggests that its current
replication crisis is mostly due to the fact that most psychological claims are
“not even wrong”, being made out of fuzzy and not well defined basic variables.

A maximized corroboration principle then automatically demands for a
sharply defined empirical frame E.
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4.3 Lakatos’ progressive and degenerating problemshifts

Hungarian philosopher and Popper’s disciple Imre Lakatos developed his epis-
temology from a sophisticated version of falsificationism. According to Popper
and Lakatos, it is fine to add a hypothesis to save a theory from refutation
if and only if it increases the falsifiability of the given theory and eventually
leads to new discoveries (Lakatos, 1978).

From our viewpoint restricted to empirical models, an empirical anomaly
(or a “refutation”) happens to an empirical modelM when its adequacy degree
α(M) is above a given threshold αcrit.

19 Then, an ajustment is a modification
of M into a comparable empirical model M ′ aiming at resolving the anomaly,
i.e. such that: α(M ′) < αcrit < α(M).

However, following sophisticated falsificationism and the general principle
stated in section 3.4, a good adjustment is actually such that:

C(M ′) > C(M). (16)

Indeed, in the Lakatos terms, the problemshift M −→M ′ such that:

α(M ′) < α(M) and C(M ′) ≤ C(M) (17)

is a degenerating problemshift. The adequacy is higher, but somehow trivially.
For instance, it is the same kind of adjustment consisting in changing the basic
definitions to turn a false synthetic statement into a trivially true analytic
one.20 This way to go from M to M ′ is usually called an ad hoc procedure.

On the contrary, the problemshift M −→M ′ such that:

α(M ′) < α(M) and C(M ′) > C(M) (18)

is a progressive one, for solving the anomaly increases its corroboration
degree.

Our formal constructions allow to make a graphic representations in a
(α, C)−diagram. A diagramatic representation of a typical progressive and
degenerating problemshifts is given on the left hand side of figure 3.

This is obviously way too simple, for a problemshift is actually not only
made out of two models, but a whole series of models. That is to say, a model,
facing a discrepancy, can be modified by a hypothesis which could at first be
seen as ad hoc, but which turns out to be eventually fruitful. For instance,
imagine that M ′ in the degenerating case makes a prediction which is then
empirically confirmed by new data such that the corroboration degree increases

19Remind from section 3.3 that α(M) = 0 means that M is perfectly adequate with its data,
and that the more α(M), the less empirically adequate M .

20As mentioned before, the empirical language used is itself a variable of our problem, so
the modification of an auxiliary hypothesis can bear on the most basic observational definitions
appearing in E. The only constraint is that the global degree of corroboration increases.
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α

C

αcritO

M ′

M ′

M

Progressive problemshift

Degenerating problemshift

α

C

αcritO

M ′′

M ′

M

Fig. 3 A diagramatic representation of Lakatos’ progressive and degenerating prob-
lemshifts. The origin O of the diagram represents endogeneous regularities: α = 0
(they are perfectly empirically adequate) but independently of any data, i.e. their
empirical adequacy carries no information (C = 0). Left: difference between both.
Right: a problemshift which seems to be degenerating at first but which is finally
progressive.

even more. Then, we would have something like:

M
α↘C↘−→ M ′ C↗−→M ′′ (19)

with M = (m,D), M ′ = (m′, D) and M ′′ = (m′, D′).21 This adjustment is
diagramatically represented in the right hand side of figure 3. This representa-
tion is still quite simplistic. However, it allows to see progressive problemshifts
(i.e. with increasing scientificity) as particular trajectories in such a diagram:
those for which the total corroboration degree globally increases. This is also
why it can be difficult, at a given historical time, to easily distinguish between
scientific and less scientific epistemic units: their trajectories in the diagram
can be quite bumpy and locally (that is, temporarily) hard to distinguish.

We presented here the case of a change in the available set of data and the
case of a modification of the model m. However, a problemshift may also be
due to a change in a basic empirical definition (that is, a change of (E,P)) or
in the distance d. The latter may correspond, for instance, in a new statistical
method for assessing the quality of a fit or any statistical association. Again, no
element of M is definitely given: they all are a priori variables of the problem.
The demand for a maximized corroboration degree then allows a co-selection
bearing on the whole set (E,P, (mθ)θ∈Θ, D, d).

To summarize and conclude this section, we can schematically repre-
sents three important cases. Let M −→ M ′ be a problemshift between two
comparable models. From the same reasoning as in section ??, we have:22

∆α > 0 entails ∆C ≤ 0. (20)

21Here we denote M = (m,D) as a practical shortcut for: M = (E, P, (mθ)θ∈Θ, D, d), where m
stands for (mθ)θ∈Θ.

22Denoting ∆α = α(M ′) − α(M) and ∆C = C[M ′] − C[M ].
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This is due to the fact already mentioned that corroboration and adequacy
are not entirely independent. More precisely, if α increases then, ceteris paribus,
C necessarily decreases. Thus, it logically follows that:

∆C > 0 entails ∆α ≤ 0. (21)

That is to say, and still ceteris paribus, an increasing corroboration neces-
sarily entails a better adequacy, as mentioned in section ??. However, we could
perfectly get:

∆α ≤ 0 and ∆C ≤ 0. (22)

This case corresponds to a degenerating problemshift situation. The three
corresponding trajectories in the (α, C)–diagram: refutation (20), progression
(21) and degeneration (22) are represented in figure 4. Notice that they are
more to be taken as general tendencies than actual trajectories.

α

C

O

progression

degeneration

refutation

Fig. 4 Sketching three families of possible trajectories for empirical models.

4.4 Lewis’ balance between strength and simplicity

In the continuity of our observation above, it seems to be relevant to make a
connection with David Lewis’ best system account (BSA) of laws (Lewis, 1983,
1994) even if Lewis’ aim is not to solve the SDP, but rather to demarcate
between genuine laws of nature and contingent truths. His idea is to consider
theories as axiomatic systems with two main features: strength and simplicity.
The strength of a theory is its empirical success, and this feature is in tension
with simplicity. Indeed, a theory can be very simple, for instance if its rests
on a single axiom, but for sure its strength will be quite low in this case. On
the contrary, adding more and more axioms, the theory will explain a lot of
different empirical cases, but at the price to become less and less simple.

Lewis then claims that there is a balance to be found between simplicity
and strength, and that genuine natural laws are those axioms which allow to
reach the best balance. The greatest difficulty in this approach, extensively
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discussed since, is to precisely define the strength, the simplicity and thus the
balance between them.

It is quite inspiring to transpose this viewpoint into the SDP context, and
to see the notion of scientificity as a (best) balance between simplicity and
strength of the corresponding epistemic units. In our approach, however, we
see that the balance is directly given by the maximization of the corroboration
degree. On the one hand, a “wrong” model (low strength) is a model for which
the adequacy (and thus the corroboration degree C, see above) is low. On the
other hand, a “too complex” model is a model which is trivially true. For
instance, it contains so many free parameters that any data could actually
be described by it.23 This case also corresponds, by construction, to a low
corroboration degree C. Thus, asking for a maximization of the corroboration
degree seems to encompass both extreme cases and recover the intuition behind
David Lewis’ BSA.

4.5 Parsimony and coherence

The previous discussion about simplicity of theories regarding Lewis’ BSA
obviously remind the well-known and more general parsimony principle, or
Ockham’s razor. As noticed in (Sober, 2015), it is quite consensual in philoso-
phy of science that parsimony is an epistemological virtue, but it is still quite
hard to justify this principle a priori and to give parsimony a precise definition
(as in the case of BSA’s notion of simplicity).

We agree with Popper that parsimony is actually a particular case of falsi-
fiability.24 In other words, the most parsimonious theories are better because
they are the most falsifiable too. In our words, the most parsimonious mod-
els are those which put more constraints on the phase space E, i.e. which are,
given a compatibility degree α > 0, compatible with less data. Parsimony can
be directly connected with the number of free parameters, but not necessarily.
What matters above all is to maximize the degree of corroboration C.

Coherence is sometimes invoked to justify parsimony: a parsimonious the-
ory can be seen as a theory which rests on as least unexplained features as
possible, thus which is the most coherent with our current knowledge. Yet,
coherence itself is a particular case of the general maximized corroboration
principle. Indeed, asking for coherence put just more constraints on the phase
space of data E (as parsimony does) and thus, ceteris paribus, such a model
has a greater degree of corroboration that a model which allows, e.g., some
parameters to have a value not coherent with what is already established,
or considered so. Asking for a maximized global degree of corroboration as
defined in our work will then probably entails a certain degree of coherence to
be maximum too.25

23This has also an obvious connection with what is called “overfitting” in data science.
24(Falk & Muthukrishna, 2021) also makes a connection between parsimony and degree of

falsifiability in the context of fit propensity in structural equation modelling.
25This is a conjecture that we should underpin in a future work. The main difficulty being to

get a precise definition of coherence.
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To illustrate our point, let us examinate the reflections of Henri Poincaré
in the chapter IX of “Science and hypothesis” (Poincaré, 1902, 2017, p. 146)
about the criterion to choose between different possible generalizations:

The choice can only be guided by considerations of simplicity. Let us take the
most ordinary case, that of interpolation. We draw a continuous line as regularly
as possible between the points given by observation. Why do we avoid angular
points and inflexions that are too sharp? Why do we not make our curve describe
the most capricious zigzags? It is because we know beforehand, or think we know,
that the law we have to express cannot be so complicated as all that. The mass
of Jupiter may be deduced either from the movements of his satellites, of from
the perturbations of the major planets, or from those of the minor planets. If we
take the mean of the determinations obtained by these three methods, we find
three numbers very close together, but not quite identical. This result might be
interpreted by supposing that the gravitation constant is not the same in the three
cases; the observations would be certainly much better represented. Why do we
reject this interpretation? Not because it is absurd, but because it is uselessly
complicated. (...) To sum up, in most cases every law is held simple until the
contrary is proved.

Here, simplicity is seen as a guiding convention of scientific inquiry, with-
out any other justification. Among different functions to fit (interpolate) some
given data, we choose the “simplest”, e.g. a linear one rather that one mak-
ing complicated zigzags. In the case of the mass of Jupiter, we interpret the
fact that the three results are not the same as being due to an observational
imprecision and not to the fact that the gravitational constant G is not the
same in the three situations. As Poincaré suggests, nothing really prevent us
to do that, from a logical point of view. If we make this choice, it is in virtue
of an independent principle, that Poincaré calls “simplicity”, avoiding “useless
complexity”.

From our viewpoint, this choice is justified by the same principle, that of
maximizing corroboration and not only adequacy: a model with the same grav-
itational constant for different experimental situations has a greater degree of
corroboration (i.e. is a priori more falsifiable) than a model which allows the
gravitational constant to vary – even if the latter is more adequate with data.
Besides, Poincaré implicitely admits that it is not a sufficient epistemological
virtue. It is not that it is fundamentally impossible for G to vary, but only
that, everything else being equal, a model with G being constant put more
constraints on the corresponding phase space than a model which allows G to
vary. The same reasoning applies to the interpolation example: a function with
complicated zigzags is likely to be based on more free parameters that a “sim-
pler one”, and thus, ceteris paribus, much more data are a priori compatible
with it. We then gain less information knowing that it fits the data.

According to us, these considerations about the virtue of parsimonny have
also something important to do with explanatory parts of theories, but as
already mentioned this goes beyond the scope of this paper.
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4.6 Karl Popper’s degree of falsifiability

The present work can be seen as an attempt to adapt Karl Popper’s sophisti-
cated falsificationism to a model-based vision of scientific knowledge. Popper
sees theories as set of statements, and defines their falsifiability from “the
classes of their potential fasifiers”. More precisely (Popper, 1959, p. 95-96):

[If] we represent the class of all possible basic statements by a circular area, and the
possible events by the radii of the circle, then we can say: At least one radius—or
perhaps better, one narrow sector whose width may represent the fact that the
event is to be ‘observable’—must be incompatible with the theory and ruled out by
it. One might then represent the potential falsifiers of various theories by sectors
of various widths. And according to the greater and lesser width of the sectors
ruled out by them, theories might then be said to have more, or fewer, potential
falsifiers. (The question whether this ‘more’ or ‘fewer’ could be made at all precise
will be left open for the moment.)

In the section 32 “How are classes of potential falsifiers to be compared”,
Popper then comes back to the last remark of the above citation: how to
define properly that some theories are more falsifiable than others? That is
to say, from his perspective: how to express the fact that some theories have
more falsifiers than others, or that their classes of falsifiers are greater? The
main issue is that, obviously, these classes are often infinite sets. His choice
is eventually made for a “subclass relation” between classes of falsifiers. Two
theories T and T ′ can then be compared with the help of their corresponding
classes of falsifiers α and β, for a subclass relation can be defined on them.
T is then more falsifiable than T ′ if and only if α ⊂ β. As Popper notices it,
this relation allows to formalize “the intuitive ’more’ and ’fewer’, but it suffers
from the disadvantage that this relation can only be used to compare the two
classes if one includes the other.” (Popper, 1959, p. 98)

In this paper, we followed exactly this very idea, but from another per-
spective, another model of theories. From our viewpoint, the conditions for
two epistemic units M and M ′ to be comparable are looser (see section 3.4).
Indeed, the equivalent, in our formalism, of a popperian class of falsifiers is
the set D[M ] – or more precisely, E|D| \D[M ]: the set of all possible empirical
data that are not as adequate with the model as D is. In order to be compa-
rable, these respective sets just have to have a non null intersection – they do
not need to be subsets of the other, as in Popper’s way of defining degree of
falsifiability. Thus, our approach allows to benefit from the central popperian
idea of falsifiability without falling in the same kind of issues.

5 Limits and perspectives

This paper is a first outline of a more general formal approach to the SDP. A
certain number of points remain unclear and have to be developed furthermore.
As a conclusion, we analyse two possible criticisms which seem to be important:
1/ the superfluous nature of formalization and 2/ the restriction to empirical
models. These limits give us the occasion to outline some further perspectives.



Springer Nature 2021 LATEX template

A formal and model-based approach to falsificationism 29

5.1 Formalization

The first criticism which could be raised about our approach is the level of
formalization considered as superfluous. Are we just reformulating some well-
known epistemological facts in an unecessarily complicated language? Does
this formalization really bring something important and new?

Our main aim at formalizing is to clarify the underlying problem: on which
epistemic unit our analysis applies and how to define it properly? Adressing
these questions leads to the formulation of a clear scientificity principle, and
allows to explore some possible implications of it. Formalizing in a mathe-
matical language allows us to define clearly the entities under study. As in
other fields where mathematics is used, its relative autonomy from our start-
ing constructions allows us to be eventually guided by it. This process offers
a cognitive support which seems to be salutary w.r.t. the intrinsic difficulty of
the problem under study.

Moreover, this paper has two main and (to a certain extent) independent
purposes. The first one is to outline a global strategy to adress the SDP in a
certain way, which rests on the idea that scientificity can be seen as the max-
imisation of “something” over all possible models. The second one is a precise
proposal for this “something” to be maximized. Thus, criticisms bearing on
the too heavy formalization for the latter would not, a priori, reach the former.

5.2 Relevant scales of analysis

Another critical remark is that of the scale of analysis. In this paper, we restrict
our analysis to a precise epistemic unit, namely empirical models. However,
the epistemological justification of these models does not only rely on the
corroboration degree (i.e. the quality of its connection with data) but also
on theoretical supports. More precisely, the scientificity is not only something
which can be assessed “locally” but also (and to some extent above all) at a
larger scale, namely that of fundamental explanatory principles, i.e. theoretical
and not only empirical models.

An important remaining question is thus how to connect the formal con-
structions made at the level of empirical models to the level of fundamental
principles lying at the core of theories. The purpose is the same: clarifying
the epistemological discussion about scientific explanations while aiming at
recovering well-known criteria26 from a more general principle.

Nevertheless, our approach explicitely relies on a certain methodological
reductionism (studying the whole from the parts), and this is an open question
to know to which extent this strategy is fruitful, and the task for future work.
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