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Abstract
So-called ‘distinctively mathematical explanations’ (DMEs) are said to explain phys-
ical phenomena, not in terms of contingent causal laws, but rather in terms of
mathematical necessities that constrain the physical system in question. Lange argues
that the existence of four or more equilibrium positions of any double pendulum has
a DME. Here we refute both Lange’s claim itself and a strengthened and extended
version of the claim that would pertain to any n-tuple pendulum system on the ground
that such explanations are actually causal explanations in disguise and their associ-
ated modal conditionals are not general enough to explain the said features of such
dynamical systems. We argue and show that if circumscribing the antecedent for a
necessarily true conditional in such explanations involves making a causal analysis of
the problem, then the resulting explanation is not distinctively mathematical or non-
causal. Our argument generalises to other dynamical systems that may have purported
DMEs analogous to the one proposed by Lange, and even to some other counterfactual
accounts of non-causal explanation given by Reutlinger and Rice.
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There is currently a major debate in the philosophy of science as regards whether
genuine mathematical explanations of physical phenomena are possible. Proponents
of their existence point to various putative real-world examples, including, notably,
discrete mathematical explanations of the lengths of cicada life-cycles (Baker, 2009),
graph-theoretic explanations as to why it isn’t possible to cross each of Königsberg’s
bridges exactly once on a walk through the town (Pincock, 2007), topological explana-
tions of dynamical systems such as why double pendulums have at least four equilibria
(Lange, 2016), and geometric explanations of soap films and soap bubbles (Pincock,
2015). Sceptics ofmathematical explanations of physical phenomena provide rebuttals
of these alleged real-world examples; they argue against such abstract mathematical
necessities and instead point to the pragmatic virtues of these mathematical explana-
tions, such as their cognitive value (Knowles & Saatsi, 2019) or their role in indexing
and representing physical constraints (Melia, 2000; Daly & Langford, 2009; Saatsi,
2011; Skow, 2013)1 or suggest a metaphysically lighter reading of these mathematical
explanations (Baron, 2016).2,3

Lange (2016) proposes a modal conception of mathematical explanations4 that he
calls ‘distinctively mathematical explanations’ (DMEs). The explanatory power of a
DME is said to derive not from its describing the causal nexus of a target system,
involving the particular forces acting on it, but rather from its identifying ‘modally
exalted’ mathematical constraints on the system which have an associated degree of
necessity surpassing that of any causal law. This paper focuses on Lange’s account of
DMEs, and in particular on his claim that a topological DME can be given for why
any double pendulum has at least four equilibrium points (2016, pp. 27–31).

We choose to focus on Lange’s pendulum example because the question as to
whether the properties of dynamical systems can be explained topologically is of
far-reaching importance, in view of just how pervasive dynamical systems are in

1 In response to these arguments see Baker and Colyvan (2011) who argue that indexation cannot accom-
modate more sophisticated uses of mathematical explanations in sciences. Also, see Lange (2021) for a
brief survey of these rebuttals and a discussion on why a representation based account of mathematical
explanations is at odds with the idea of a constraint-based account of the modal account of DMEs.
2 Some also suggest that the explanatory framework of mathematical explanations can be accommodated
within the standard counterfactual dependence account of abstract explanations without invoking a strong
commitment to the constraint-based account suggested byDMEs. See Jansson and Saatsi (2019), Reutlinger
(2018) and Rice (2021). Also, see Pincock (2015) for a discussion on how abstract dependence relations in
scientific explanations (not necessarily DMEs) can be understood as objective dependences, and see Povich
(2019) for a narrow ontic counterfactual account of DMEs.
3 For an interesting rebuttal of DMEs and Lange’s response see Craver and Povich (2017) and Lange
(2018).
4 There are other accounts of mathematical explanations, such as the the extra-mathematical account by
Baker and Colyvan (2011) and the deductive-nomological account by Baron (2019), which do not stress
modal differences as the primary line of demarcation between mathematical and non-mathematical (such
as causal) explanations. We do not discuss these accounts in this paper because of lack of space.
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science, and has gained a lot of traction in the scientific literature as well (Aoki &
Hiraide, 1994; Katok & Climenhaga, 2008; Palis Jr & de Melo, 1982; Pettini, 2007).
Lange’s pendulum example is notable in being one of only a very small number
of attempts in the philosophical literature to explain the property of a dynamical
system in wholly mathematical terms (see Colyvan, 2001; Lange, 2016; Pincock,
2015; Skow, 2013; Saatsi, 2018 for a brief survey of such examples). This makes it
a very tempting target. Our claim will be that Lange is unsuccessful in his attempt
to provide a DME where the double pendulum is concerned. He is unsuccessful, we
contend, because the explanation he provides isn’t really a DME at all. Rather than
being a purely mathematical explanation, it is—so we argue—a causal explanation
in disguise, because it depends on hidden assumptions about the particular forces
acting on the double pendulum that Lange illicitly smuggles in through the back door.
This becomes evident (a) when his explanation is generalised, as we demonstrate in
this paper, and (b) when his explanation collapses when the particular forces acting
on the system are varied using a perturbations-based approach. Even as we focus
on Lange’s modal account of DMEs, we will briefly show how our arguments affect
other philosophical views, such as that of Reutlinger (2018) andRice (2021), who have
advanced a general philosophical account to accommodate a variety of both causal
and non-causal explanations, including mathematical explanations such as DMEs.

As per Morrison (2018), explanations concerning dynamical systems seek to:

. . .describe the typical behaviour of trajectories for many different types of sys-
tems as time (rather than space) tends to infinity, and to understand how this
behaviour changes under perturbations. What we want to know is the extent to
which the system is stable; whether it is possible to deform a perturbed system
in a way such that we can recover the original one. In that sense the goal is
to answer general questions about, for example, whether there is any relation
between the long-term behaviour and initial conditions, rather than trying to find
precise solutions to the equations defining the system itself, something that is
often not possible. (pp. 222–223)

A simple explanation of a dynamical system can sometimes be given in terms of
transformation of the system’s parameters on a topological space by using either its
configuration space, such as in Lange (2016, p. 31), or its phase space.5 These transfor-
mations allow the prediction of the trajectories of the dynamical system under varied
initial conditions. These transformations can also reveal certain global constraints on
the systemor hidden symmetries thatmay not be evident in detailed (and often cumber-
some) causal explanations of the system. If the explanation concerning the dynamical
system is a DME, then these symmetries and constraints are preserved even after the
parameters of the system are perturbed.

5 Some of these explanations involve canonical transformations of the phase space coordinates, such as in
Smale (1970) and Lacomba et al. (1991), or employ Renormalisation Group (RG) based explanations using
fixed points of the transformed phase space; see Morrison (2018) who discusses Feigenbaum’s RG method
as a case of non-causal explanation. She, however, distinguishes her account from that of Lange (2016) in
that her account does not require these non-causal explanations to be modal constraints on the system. We
do not deal with phase-space-based explanations in this paper.

123



  193 Page 4 of 40 Synthese          (2022) 200:193 

Lange proposes one such explanation concerning the equilibrium positions of a
double pendulum. He argues that any double pendulum system, whether simple or
complex, must have four or more equilibrium positions, and that this fact is modally
constrained by certain distinctively mathematical facts which pertain mainly to the
configuration space of the system (a torus) irrespective of the contingent laws govern-
ing these systems (2016, p. 31). Lange’s argument relies on some fundamental results
in differential topology, such as the Morse theory, which studies the critical point
behaviour of a differentiable function when mapped onto the configuration space of
a dynamical system. He argues that no amount of causal reasoning can give such a
precise constraint on the number of equilibrium positions because any causal strategy
has to be deployed on a case-to-case basis taking into account the nature of the forces
acting on the system. Since his account of DMEs bypasses such causal reasoning, he
calls them non-causal ‘[scientific] explanations by constraint’ because the explained
fact about the target system, i.e., the number of equilibrium positions, would remain
invariant even if the contingent laws of nature were to be different. Thus, the modal
strength of his topological explanation comes from its unifying nature and the nec-
essarily true conditional that remains invariant under a range of contextually relevant
antecedents.

This paper refutes his modal claim not only for a double pendulum or a class
of double pendulums, but also for much stronger DMEs that could be proposed for
explaining the number of equilibrium positions of any n-tuple pendulum system. (We
expand the pool of candidate DMEs of pendulum systems to illustrate this point.)

In order to understand our argument, it will be helpful, first of all, to introduce the
notion of a “conditionalised explanation”, by which we mean an explanation fitting
the following form:

If a physical system satisfies the condition C, then it will have the property P, for the
reason R.

Such an explanation has two parts, an explanandum (that which is to be explained) and
an explanans (that which does the explaining). The explanans is R. The explanandum
is the conditional statement that if a physical system satisfies the condition C, then
it will have the property P. Since the explanandum is a conditional statement, it has
two parts in its turn, its antecedent and its consequent. The antecedent specifies the
condition that a physical systemmustmeet in order for the explanation to be applicable
to it, namely, C . The consequent specifies the property of the system that is explained
when the explanation is applicable, namely, P .

We give the name, “E1", to Lange’s explanation as to why double pendulums have
at least four equilibrium positions. E1 can be framed in the following conditionalized
form:

(E1) If a physical system is a double pendulum, then it has four or more equilibrium
positions, for the reason that when the potential energy function of such a pendulum
is mapped to its configuration space the result is a distorted torus with no fewer than
four stationary points.

We will explain E1 in detail below, along with Lange’s reasons for holding it to be
a DME.
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Having described E1, we then go on to describe two other possible (and greatly
improved) explanations as to why pendulums have as many equilibrium positions as
they do, these being the extension of E1 and E2:

(Extension E1) If a physical system is an n-tuple pendulum, then it has at least 2n

equilibrium positions, for the reason that when the potential energy function of such
a pendulum is mapped from its configuration space the result is a distorted n-torus,
having an invariant Euler characteristic and satisfying the Morse inequalities, with no
fewer than 2n stationary points.

(E2) If a physical system is an n-tuple pendulum, then it has at least 2n equilibrium
positions, for the reason that the lower bound on how many equilibrium positions it
has is given by the sum of the associated Betti numbers6 of the distorted n-torus (as
in E1), and these sum to 2n .

Notice that the extension of E1 and E2 both appear superior to E1 in the respect of
being more general: their antecedents are such that they apply not just to all double
pendulums, but to all n-tuple pendulums. We go on to show, however, that, initial
appearances to the contrary notwithstanding, neither E1’s extension nor E2 meet the
conditions for being a DME that Lange lays down. In relation to E1 and its extension
we show that they both, in effect, sneak in causal reasoning through the back door;
and in relation to E1, its extension and E2 we show that all of them are only satisfied
for certain kinds of arrangements of particular forces (that give out a Morse potential
energy function).

We then develop a criticism of Lange’s account by introducing perturbations to the
pendulum systems that allows us to vary the antecedents of the conditionals E1, E1’s
extension and E2 to test their modal strength. We show that introducing perturbations
to the pendulum systems falsifies these conditionals by generating various exceptions
in a way that leaves no unobjectionable way to circumscribe them in a necessarily
true conditional by a suitable change in the antecedents, including the initial condi-
tions. This is because, as we show, any such circumscription will inevitably involve
a detailed consideration of the particular causal forces acting on the system. And if
circumscribing the antecedent for a necessarily true conditional involves making a
causal analysis of the problem, then we argue that the resulting explanation is not
distinctively mathematical. (Such an explanation involves bracketing various causal
assumptions which are revealed in cases where the explanation breaks down upon
introducing perturbations.) We believe that our perturbation-based approach is impor-
tant because it may be generalised to other dynamical systems, such as the ones with
periodic orbits and n degrees of freedom that have topological explanations analogous
to the one proposed by Lange.
The plan for the paper is as follows. In Sect. 1, we discuss E1, which is Lange’s expla-
nation of the double pendulum based on configuration spaces. In Sect. 2, we extend
E1 to n-tuple pendulums after introducing Morse theory and show how both E1 and
its extension sneak in causal reasoning through the backdoor. In Sect. 3, we introduce
E2, which improves on both E1 and extended E1, and show why, prima facie, this is

6 The idea of using Betti numbers to explain the equilibrium positions of a pendulum system comes from
Daniel Litt, and we are thankful to him for this. This paper, however, builds upon his mathematical idea
and also generalises it in a philosophical context.
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a superior strategy for avoiding direct causal reasoning with the particular forces. In
Sects. 4.1 and 4.2, we show how all the candidate DMEs fail to explain the number of
equilibrium positions arising in various cases involving perturbations in the length of
the pendulum rods, which has to do with the particular forces acting on the pendulum
system. In Sect. 4.3, we discuss potential workarounds and show why they fail as
general solutions to the problems, raised by us, concerning these candidate DMEs.7 In
Sect. 5, we summarise the findings of this paper, respond to potential objections con-
cerning a narrowing down of the conditional in cases where the explanation collapses
and highlight how our account is relevant to other counterfactual accounts of math-
ematical explanation. Finally, we conclude that there are no DMEs for any n-tuple
pendulum systems and that analogous DMEs pertaining to other dynamical systems
are also flawed in general. This reveals a causal upshot of the problem—that many
non-causal mathematical explanations conceal various underlying causal mechanisms
on which they crucially depend—and reinforces our thesis that that if circumscribing
the antecedent for a necessarily true conditional involves making a causal analysis
of the problem, then the resulting explanation is not distinctively mathematical or
non-causal.

1 Lange’s account

1.1 Causal explanation

Before critiquing Lange’s arguments, we first briefly sketch the causal and non-causal
versions of the explanation of the number of equilibrium positions of the double pen-
dulum given by Lange (2016). In the next section we show that the strategy employed
in E1, the non-causal version of the explanation, of using topological invariants of the
configuration space can be potentially extended to n-tuple pendulum systems, and not
merely to double pendulums. Extending Lange’s account allows us to showcase how
causal reasoning sneaks through the backdoor and also refute not only his strategy
but also a more general and greatly improved strategy that concerns n-tuple pendulum
systems.8

To begin with the causal explanation, the potential energy (PE) function for the
double pendulum, shown in Fig. 1, can be written as:9

U (α, β) = −mgym − MgyM , (1)

where m is the mass of the bob of the pendulum freely attached at the origin, and
whose arm of length L makes the angle α with the downward direction in which y is
taken to be positive. The second pendulum, whose arm of length K makes the angle

7 As a cautionary note to the reader, Sects. 2–4 are slightly technical as they tease out the mathematical
problems with Lange’s arguments.
8 In Sect. 5 we briefly show how the case can bemade against analogous DMEs pertaining to any dynamical
system with periodic orbits and n degrees of freedom.
9 Borrowing the format from Lange (2016, pp. 26–27).
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Fig. 1 A double pendulum with stiff rods and its four equilibrium positions

β with the vertical, has a bob of mass M . With this notation, the y-position of the two
bobs is given by:

ym = L cosα and yM = L cosα + K cosβ, (2)

which yields
U (α, β) = −mgL cosα − Mg(L cosα + K cosβ) (3)

One way to find the number of equilibrium positions of the pendulum is to find
positions where the partial derivatives of U (α, β) with respect to the angles are zero
because the partial derivatives show how the potential energy of each bob varies with
a change in the angle of inclination of the bobs. The positions where these partial
derivatives are individually zero are critical points (equilibrium points) for a given
bob, and the positions where these partial derivatives are simultaneously zero are
critical points for both the bobs, i.e. for the double pendulum. Since these derivatives
are

∂U

∂α
= −mgL sin α − MgL sin α, (4)

and
∂U

∂β
= −MgK sin β, (5)

the four equilibrium positions are those where sin α and sin β are simultaneously zero,
namely (α, β) = (0, 0), (0, π), (π, 0) and (π, π). More such equilibrium positions
are at (α + 2nπ, β + 2nπ), where n ∈ Z , since they represent the same configuration
of the pendulum. Lange (2016) calls this a causal explanation since the explanation
crucially relies on tracking the causal features of the system involving a change in the
PE function owing to the particular forces acting on the system.

1.2 E1: The first DME

According to Lange, another way to find out these equilibrium positions involves non-
causal reasoning about the configuration space of the double pendulum which retains
certain topological invariants despite physical alterations to the pendulum system or
a change in the contingent force laws acting on the system. These invariants can then
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be used to reason about the number of equilibrium positions of a pendulum system
under any contingent set of forces. We first briefly discuss configuration spaces and
topological invariants to set the context for the discussion of potential non-causal
DMEs, E1, its extension and E2, which use configuration-space-based reasoning.

A configuration space represents all possible points that a physical system may
realise given its geometrical constraints (Lyon & Colyvan, 2008, pp. 231–233). (Only
a subset of these points may be realised based on contingent laws and initial/boundary
conditions.) For instance, the configuration space of a freely hinged simple pendulum
that can move in two dimensions is a full circle, whereas that of a pendulum free to
move in three dimensions is a sphere or S2.

In algebraic topology, such surfaces can be assigned a topological invariant termed
the genus (g), which, loosely speaking, can be defined as the number of holes in a
surface.10 The genus of a surface is a topological invariant because the value of g
does not change under homeomorphic transformations—that is, under bending and
stretching of the surface.11 The genus of a surface can be related to another topological
invariant, the Euler characteristic, χ . For a smooth, compact, and orientable surface,
this relationship is χ = 2 − 2g. For instance, the number of holes in a S2 sphere is
0, and so g = 0 and χ = 2. Importantly, one can study the qualitative aspects of
these surfaces, such as their critical points, by defining certain kinds of differentiable
functions over them. (We will say more about what we mean by ‘certain’ functions,
in some detail, in the next section.) For instance, the number of critical points of
these differentiable functions defined over such surfaces can be related to the Euler
characteristic of the surface as: χ = Nmax − Nsaddle + Nminima = 2 − 2g, where
N refers to the number of critical points of the differentiable function defined over
the surface M . (We extend the treatment of a surface to a more general notion of
manifold in the next section.) This is sufficient background to discuss Lange’s non-
causal explanation12 of the number of equilibrium positions of the double pendulum.

The explanation given by Lange (2016, pp. 27–28) goes as follows. The config-
uration space of the double pendulum is a torus of genus or g = 1 (see Fig. 2). If
we assume that the PE function U (α, β) remains finite and continuous, then U (α, β)

can be “represented by distorting the torus so that each point (α, β)’s height equals
U (α, β). Any such distortion remains a surface of genus g = 1 (i.e., topologically
equivalent to a torus, which is a sphere with g = 1 holes in it).” If U (α, β) is also
a Morse function (a constraint that Lange does not mention but is critical for the
explanation to work), then the number of critical points of U (α, β) will follow the
invariance: Nmax − Nsaddle + Nmin = 2−2g. Given that Morse functions are defined
over smooth, orientable and compact spaces, one can reason as follows. For such a
surface, there must be at least one minima and one maxima (by compactness) and if

10 The idea of associating topological spaces to algebraic functions goes back to Leonard Euler and Henry
Poincaré in the 18th–19th century. Euler showed that the vertices, edges and faces of a polyhedron can be
associated as V − E + F = 2 demonstrating the existence of an interesting topological invariant which
was extended more generally by Poincaré to include surfaces.
11 These definitions are, obviously, vastly simplified versions of the mathematical formulations, but they
suffice for the purposes of this paper.
12 Throughout this paper, we will use the terms non-causal explanations and DMEs interchangeably since
the latter can be subsumed within the former category of explanations.
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Fig. 2 Torus configuration space of a double pendulum

g = 1, then there must be at least two saddle points for the invariance to hold. This
implies a total of four or more critical points for U (α, β). Lange maps this back to
the double pendulum claiming that the double pendulum must also have at least four
critical or equilibrium points, and that this provides us with a non-causal explanation
or “explanation by constraint” because it only appeals to the topological properties of
the distorted configuration space of the double pendulum. That is, we do not even need
to get into the phase space of the pendulum which will appeal to causal details such
as the Lagrangian of the double pendulum. Nor do we need to know anything about
the potential energy function except that it is finite, continuous and smooth. Here is
how Lange makes a case for the DME:

This [his DME] is a non-causal explanation because it does not work by describ-
ing some aspect of the world’s network of causal relations. No aspect of the
particular forces operating on or within the system (which would make a dif-
ference toU (α, β)) matters to this explanation. Rather, the explanation exploits
merely the fact that by virtue of the system’s being a double pendulum, its con-
figuration space is the surface of a torus–that is, that U is a function of α and β.
(2016, p. 27)

Since the configuration space of any double pendulum is a torus, the same expla-
nation applies to any double pendulum, not just to a simple one. For example,
the same explanation applies to a compound square double pendulum. . .It also
applies to a double pendulum where the two suspended extended masses are
not uniformly dense and to a complex double pendulum under the influence of
various springs forcing its oscillation. Each of these has at least four equilibrium
configurations, though the particular configurations (and their precise number)
differ for different types of double pendulums. (2016, p. 28)

Thus, he claims that this DME works for any kind of double pendulum – with stiff
rods, non-stiff rods, spring suspension systems and so on, irrespective of the particular
forces acting on the system, as long as Newton’s second law (which he claims to be
a modally exalted framework law) is not violated.13 Moreover, the two quotations

13 Lange considers Newton’s second law as a framework law because it modally constrains any possible
forces that might exist. See Ch. 2–4 in Lange (2016) for a detailed discussion on how he argues for such
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above suggest that his DME, in so far as it is deemed a legitimate non-causal expla-
nation, unifies the explanation of the number of equilibria for any double pendulum
because all that one requires to prove the existence of at least four equilibria of such
systems, with a higher order of necessity, is the knowledge of a certain mathemat-
ical abstraction of the system—its configuration space. (Of course, the knowledge
of some causal principles such as Newton’s second law and the potential energy are
also warranted but they are subsumed under Lange’s account of the varying degrees
of necessity of such causal principles.) The existence of a common configuration
space for all such systems therefore makes the existence of at least four equilib-
rium points inevitable (in a stronger sense than causal considerations could), as he
argues.

Before critiquingLange’s arguments, in particular his non-trivial assumptions about
the potential energy function and the configuration space of the pendulum systems, we
must provide a detailed mathematical backdrop to his strategy since not only the spe-
cial case of double pendulums discussed by him can be refuted but also a generalised
explanation concerning n-tuple pendulums, and certain other dynamical systems with
periodic orbits and n degrees of freedom, can also be refuted. This sets the stage
for introducing numerous complications that are oversimplified in Lange’s account
and which will allow us to demonstrate how causal reasoning sneaks in through
the backdoor in Lange’s explanation and why the topological framework on which
Lange bases his arguments does not support a modal interpretation. Folllowing this,
we will be able to demonstrate a broader philosophical problem with Lange’s argu-
ments (and some other counterfactual accounts of non-causal explanation), which
relates to the circumscription of antecedents for a non-causal or necessarily true con-
ditional.

2 Morse theory

We begin with a discussion of Morse theory—the core mathematical framework on
whichLange’s arguments rest.Morse theorywas developed in 1926byMarstonMorse,
an American mathematician, as a branch of differential topology, and he spent most
of his career working on this theory. Morse theory allows one to study the topological
properties of amanifold (a generalisation of a surface to higher dimensions) by defining
differentiable functions on the manifold as a map. The primary interest of the theory is
to understand how the shape of the manifold constrains the distribution of the critical
points of these differentiable functions (Matsumoto, 2001).Wediscuss someproperties
of critical points before we state Morse theory formally because these properties are
central to our discussion ahead.14

Footnote 13 continued
modally exalted laws being a constraint on every force rather than being a coincidental feature of every
force that exists.
14 Much of the conceptual background laid ahead is borrowed from Matsumoto (2001) and Katok and
Climenhaga (2008).
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2.1 Index of critical points

Critical points are classified by their index, which is defined, loosely speaking, as
the total number of downward directions (or dimensions) allowable starting from the
critical point. As an illustration, consider Fig. 3, which represents a potential energy
function, where the points A, B and C are the local minima, inflection point and max-
ima respectively. Point A is a stable equilibrium position because a ball rolled towards
A will likely remain at A unless disturbed by other external forces. No downward
directions are available from A, so its index is 0. Point C is an unstable equilibrium
since a ball moved even slightly to the left or right of C will move away from C in a
downward direction and not return to it unless an external force acts on it. Downward
movement is possible in one direction (dimension) from C , so its index is 1. In a two-
dimensional topological projection (which pertains to a three-dimensional R3 space),
one will be able to move in two directions from point C (think of the highest point of
an inverted cup shape), given that it remains as a maxima, and its index will be equal
to 2; point A will still have the index 0 since movement in any downward direction is
not permissible (think of the lowest point of an upright cup shape). Point B is stable
in one direction (when moving to the left of B) and unstable in another (when moving
to the right of B), and thus the index of B is undefined. In the language of differential
functions, the index of B is undefined because the rate of change of the gradient of the
PE function is 0 at B, or in other words, the double derivative of the PE function of B
(with respect to the height of B) is 0. For A, the double derivative of the PE function
with respect to its height yields a positive value and for C it returns a negative value
indicating that they are stable and unstable directions respectively. We call A and C

Fig. 3 Degenerate critical point bifurcating into two non-degenerate critical points in one-dimensional
space upon bending or twisting
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non-degenerate points, and B a degenerate point. (This distinction forms the fulcrum
for the discussion ahead.)

If a surface is bent or twisted, it may still be classified as the same topological
surface but it may not have the same total number of critical points (and their corre-
sponding indices) after being bent or twisted. Degenerate points are crucial for our
discussion ahead because, under certain kinds of bending or twisting, various non-
degenerate points may collapse into only one degenerate point. In other words, it may
be the case that upon introducing a certain perturbation in a function, defined over the
surface, some non-degenerate critical points vanish and are replaced by fewer degen-
erate critical points. This is shown in Fig. 3, for a curve, where the non-degenerate
critical points B1 and B2 are replaced by the degenerate point B resulting in fewer
critical points in the top portion of the figure. (Section 4 shows the relevance of this
result to the total number of equilibrium positions of pendulum systems in which the
PE function was perturbed to introduce degenerate points.)

In higher dimensions, the index of a critical point is defined using the Hessian of
the differentiable function (such as the potential energy function) defined over the
manifold. If p is a critical point of a function f : M → R, then the Hessian (H ) of f
at p for an m-dimensional manifold is defined as:

H f (p) =

∣
∣
∣
∣
∣
∣
∣
∣
∣

∂2 f (p)
∂x21

...
∂2 f (p)
∂x1∂xm

...
...

...
∂2 f (p)
∂xm∂x1

...
∂2 f (p)

∂x2m

∣
∣
∣
∣
∣
∣
∣
∣
∣

(6)

The index of the differentiable function is equal to the total number of negative eigen-
values of H f (p). If a critical point is non-degenerate, then DHf (p) �= 0, where DHf (p)

is the determinant of H f (p). For degenerate points, DHf (p) = 0.
We are now equipped to define Morse functions, state the Morse lemma, and then

discuss the Morse inequalities, fundamental results of the Morse theory which relate
the index and number of critical points of the differentiable function to the shape of the
manifold. This general result is what allows us to extend our findings from a double
pendulum to n-tuple pendulums and to other dynamical systems with period orbits
and n degrees of freedom.

2.2 Morse functions and theMorse lemma

If M is a smooth manifold, then a Morse function is any function f : M → R if every
critical point p of f satisfies these two criteria: (a) p is isolated (i.e., it is the only
critical point in its immediate neighbourhood), and (b) p is a non-degenerate point,
meaning that DHf (p) �= 0. For instance, in the case of a single-variable function, a
Morse function should pass the second-order derivatives test, which is to say that it
should not be the case that f ′(p) = f ′′(p) = 0. For instance, f1 = x2 is a Morse
function since at the critical point x = 0, f ′′(0) = 2 �= 0. Another function f2 = x3

is a non-Morse function since at the critical point x = 0, f ′′(0) = 6x = 0.
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Fig. 4 Local behaviour of an isolated non-degenerate critical point

The Morse lemma states that every Morse function near a non-degenerate critical
point can be expressed in a quadratic form. This is because near each such non-
degenerate critical point a Morse function behaves as a quadratic function (see Fig.
4), and therefore, its index can be readily ascertained. For a degenerate point, this
behaviour is much more complicated, depending on the degree of degeneracy of the
point, and, thus, its index cannot be calculated in a straightforward way as suggested
in Sect. 2.1 for the non-degenerate cases. (We will have more to say about degenerate
critical points in Sect. 4.)

For Morse functions, the index of a non-degenerate point can be ascertained. The
following inequality associates the topology of the manifold to the index and number
of the critical points of the differentiable function mapped to the manifold:

χ(M) ≤
k=m
∑

k=0

(−1)k Nk, (7)

where χ(M) is the Euler characteristic of the manifold M , m is the dimension of M
and Nk is the number of critical points with the index k. This inequality becomes an
equality for k = n. We will discuss other more general variants of this inequality,
called the Strong and Weak Morse inequalities, in the next section when we introduce
the requisite mathematical formalism, and also examine how Morse theory can be
extended to handle degenerate critical points.

2.3 Extension to n-tuple pendulums

Lange’s account can now be extended to n-tuple pendulums.We first show the applica-
bility of Eq. (7) to simple pendulums. The configuration space of a simple pendulum is
a circle withm = 1 and g = 1. Equation (7) yields: (−1)0N0 + (−1)1N1 = 2−2×1
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which is equal to N0−N1 = 0 or Nmin −Nmax = 0. Since a circle (or even a distorted
circle which may represent the PE function) has at least one minima and one maxima,
it satisfies this equality. Similarly, for a spherical pendulum, the configuration space is
an even dimensional sphere S2 withm = 2 and g = 0. A sphere has at least one critical
point with an index equal to 0 (N0 = 1), which is a minima, and at least one maxima
with index equal to 2 (N2 = 1) because we can move downward along two directions.
There are no saddle points in an undistorted15 sphere so there are no critical points
with an index equal to 1 (N1 = 0). (From a two-dimensional saddle point, one can
move downward along one direction, but the other direction is an upward direction, so
the index is 1). Equation (7), therefore, yields: N0 + N2 = 2 = χ (since N1 = 0) and
satisfies the equality. For double pendulums, m = 2, Eq. (7) reduces to the familiar
N0 − N1 + N2 = 0 or Nmaxima − Nsaddle + Nminima = χ = 2 − 2g = 0. For triple
and higher order n-tuple pendulums, the configuration space is an n-dimensional torus
with χ = 0 and thus Eq. (7) can be extended to n-tuple pendulums in the form

k=m
∑

k=0

(−1)k Nk ≥ 0, (8)

which becomes an equality for k = n.
While we have formally extended Lange’s account to n-tuple pendulums, there is a

major worry that prevents this account from being useful for higher dimensional pen-
dulums. (We set the concerns arising from degeneracy aside for now.) Our worry is that
such explanations sneak in causal reasoning via the backdoor.16 Unlike the homology
of a circle, a sphere or a torus, we cannot find out (by plain geometric reasoning) the
number and the index of associated saddle points that occur in a distorted n-torus,
even as we can reason about the indices of the local minima and maxima using the
dimension of themanifold. (A global minimawill have an index equal to 0 and a global
maxima will have an index equal to the dimension of the manifold.) One therefore
needs to use the Hessian to find out the index of the critical points which defeats the
very purpose of using purely topological reasoning—for two reasons. Firstly, using
the Hessian already involves all the groundwork (causal reasoning) that is needed to
find the number of critical points of the system—a subsequent topological embed-
ding (non-causal reasoning) then seems much less useful or enlightening. That is, the
information on the number of critical points will already be revealed after analysing
the Hessian in the first place (with some more back-of-the-envelope calculations)!
Secondly, the Hessian employs not merely causal reasoning with ordinary empirical
facts (such as the length of the rods or their shape, which constitute the task at hand or
form its background conditions), it rather involves causal reasoning with the particular
forces at work, a strategy that Lange may want to avoid:

15 In a distorted sphere, saddle points may be introduced but the number of minima and maxima will
increase in accordance with Eq. (7) so as to preserve the homology of the sphere.
16 We thank an anonymous referee for pressing us to make this point explicit in the paper.
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Any causal explanation in terms of forces must go beyond Newton’s second
law to exploit the particular forces at work – if not specifying them fully, then
at least appealing to their relevant features (such as their proportionality to the
inverse-square of the distance). This is not done by the distinctivelymathematical
double-pendulum explanation (which is why it can apply to double pendulums
that differ in the particular forces at work). (2016, p. 30)

Contrary to Lange’s claim above, reasoning with partial derivatives of the PE func-
tion to evaluate the index of the topologicalmapping needs to be done on a case-to-case
basis using the Hessian, which involves an appeal to the causal considerations of the
particular forces at work—this is not permitted in an explanation which claims to be
a DME. The reason why we did not face similar difficulties with the torus case in E1
is because the indices of all the critical points were intuitively evident after glancing
at the torus—an approach that is not suitable for higher dimensions. Nonetheless,
causal reasoning was involved even in the case of the two-dimensional torus since the
index needs to be determined formally via the Hessian. An intuitive glance at the torus
seemed to bypass causal reasoning, yet it did not, because we had prior information
about the indices of the critical points of the torus, and thus causal reasoning snuck in
via the backdoor.

A reader may object here that Lange’s account does not preclude the possibility of
embedding certain physical or empirical facts in a DME.17 But including an analysis
of the Hessian is not any ordinary physical fact about the system—it is all the causal
reasoning that one needs to engage in to make the explanation work, whether causal or
non-causal. Saatsi (2018) also raises an objection about Lange’s consideration of the
equilibrium information derived using theNewton’s second lawwith hisDME,without
requiring an analysis of the specific forces, as a non-causal explanation. Saatsi argues:
“....I am not sure why an explanation should thus involve any more specific features
of the forces at work (or their effect on motion) in order to be causal. Admittedly,
the causal information provided by (the pared-down version of) Newton’s second law
is rather abstract, but arguably this is all the causal information that is relevant for
the (relatively abstract) explanandum at stake” (2018, p. 267). Our argument is more
modest than Saatsi’s in that even if the more abstract form of Newton’s second law
is embedded in the arguably non-causal explanation, it should not include a detailed
analysis of the particular forces that provide us with all the information (about the
changes in potential energy caused by the particular forces when embedded in the
Hessian) we need about the system’s equilibrium positions, because if that is so, then
the explanation violates the very premises that Lange sets for them to be considered as
a DME. Thus, even as the number of critical points of any n-tuple pendulum may be
allegedly constrained by Eq. (8), as set out by the extension of E1, one cannot use this
as a legitimate DME because it needs to appeal to the particular forces at work via the
Hessian. (Note that this causal implication was not directly evident in the case of the
torus, but one can now appreciate how a large amount of causal information concerning
particular forces can get buried under a deceptively simple ‘non-causal’ explanation.)
Is there a way to shell out a potential DME which can avoid these problems? In the

17 We thank an anonymous referee for raising this point.
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next section, we discuss a more general approach to finding the equilibrium positions
of pendulum systems, which not only removes the problems (with the associated
causal reasoning) of ascertaining the index and number of critical points for n-tuple
pendulums but also provides more information on the nature of the critical points of
such pendulum systems. But after sketching the improved account in Sect. 3 below, we
show in Sect. 4 why both the original account, that Lange provides, and the extended
account fail as modal interpretations.

3 E2: Improved strategy: Betti numbers

The strategy sketched in the previous section relies on the index of critical points
and the associated Euler characteristic. In this section, we sketch an alternative and
improved strategy of using Betti numbers, which are epistemically more conducive for
reasoning with higher dimensional configuration spaces including n-tuple pendulums.
The strategy is an improvement both over Lange’s and its extension in that it gives
a more precise lower bound on the number of equilibrium positions including both
stable and unstable positions. Even though we refute this improved account (along
with Lange’s original account and the extension) as a modal explanation in the later
sections, we sketch it here to be able to show later how even the most precise and
widely applicable topological explanations cannot count as modal explanations for
any n-tuple pendulums.

We first introduce Betti numbers. Betti numbers are topological invariants for
smooth and compact topological surfaces that are Morse functions (See Table 1).
The k-th Betti number shows the number of k-dimensional holes on a topological
surface. (For any k-dimensional surface, the n-th Betti number is always zero for any
n > k.) This result can be connected with the number of stable positions obtained in a
pendulum system (after its PE function has been mapped to its configuration space).
For any n, the k-th Betti number (where k < n) of the n-dimensional torus can be
shown to be equal to the lower bound on the number of equilibria of the n-tuple pen-
dulum with k stable directions where each stable direction implies a pendulum rod
pointing downward.

Table 1 k-th Betti number for a
circle, sphere and torus

β0 1 1 1

β1 1 0 2

β2 0 1 1

β3 0 0 0

. . . .

. . . .
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This is because the number of k-stable directions for an n-tuple pendulum is
(n
k

)

,
which is equal to the k-th Betti number of the n-torus. The reason why

(n
k

)

describes
the k-th Betti number of the n-torus is because of the total number of dimensions, n,
one can choose k number of ways to travel from a given point, and if one reaches the
same point after travelling then such a direction can be designated as a k-dimensional
hole.

As an illustration, consider this. The configuration space of a double pendulum is
a torus. As shown in Table 1, for a torus, β0 = 1 shows the number of connected
surfaces, and β1 = 2 and β2 = 1 correspond to the number of k-th dimensional holes
(i.e. 1D and 2D) in the torus. A double pendulum can have

(2
1

)

or 2 stable directions

when only one rod is pointing down, which is equal to β1 = 2 , or
(2
2

)

or 1 stable

direction when both rods are pointing down which is equal to β2 = 1 , and also
(2
0

)

or 1 stable direction, which is equal to β0 = 1 when no rods are pointing down. The
same can be illustrated for a simple pendulum, a spherical pendulum or for any higher
order n-tuple pendulum.

We now state E2 again:
(E2) If a physical system is an n-tuple pendulum, then it has at least 2n equilibrium

positions, for the reason that the lower bound on how many equilibrium positions it
has is given by the sum of the associated Betti numbers of the distorted n-torus (as in
E1), and these sum to 2n .

The strategy used in E2 is backed by the Morse theory, in particular the Morse
inequalities. There are two versions of the Morse inequalities:

Strong Morse inequalities:

k=r
∑

k=0

(−1)k Nk ≥
k=r
∑

k=0

(−1)kβk, (9)

where βk is the k-th Betti number; r is a positive number less than m, which is the
dimension of the manifold M ; and Nk is the number of critical points with the index
k. This inequality becomes an equality for r = m.

Weak Morse inequalities:
Nk ≥ Bk . (10)

Also, the Euler characteristic of a manifold is an alternating sum of Betti numbers as
shown below:

χ(M) =
k=m
∑

k=0

(−1)kβk . (11)

The equations above reveal how Betti numbers determine the nature of the critical
points of differentiable functions defined on M .

Not only does this strategy give the lower bound on the number of stable positions
for every k-th Betti number, but it also gives us the lower bound on the total number of
equilibrium positions (both stable and unstable). If we add all the possible Betti num-
bers associated with the stable positions of the pendulum system (or all Betti numbers
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of the configuration space), using induction and Pascal’s identity for binomials, we
obtain

k=n
∑

k=0

(
n

k

)

=
(
n

0

)

+
(
n

1

)

+
(
n

2

)

+ · · · +
(
n

n

)

= 2n . (12)

The summation of all the Betti numbers gives 2n as the total number of such
positions. (This can also be obtained purely by binomial induction observing the
positions of a pendulum system. Each rod can be either up or down, and thus for n
rods there are 2n ways of doing this.) The difference between this strategy and the
extended strategy (discussed in Sect. 2.3) thus lies mainly in using Betti numbers in
a way that obviates the need to calculate the index of the critical points, even as Betti
numbers are related to the index of the critical points via the Morse inequalities.

We have shown how E2, using Betti numbers, provides a more appealing way
to explain the number of critical points of a pendulum system as compared to the
extended E1. We are now equipped to show why these explanations, despite their
wide applicability and striking precision, fail as modal explanations or DMEs.

4 Failure of E1 and E2

Let us reiterate the modal argument first. Lange argues that the DME for a double
pendulum applies to all kinds of double pendulums, whether those with stiff or non-
stiff rods, or even pendulums with spring rods (2016, p. 31). This is because all double
pendulums share the same configuration space, a non-causal mathematical abstraction
of the system, andmapping the differentiable PE function of the pendulum system onto
its configuration space results in a distorted torus which preserves the homology of the
configuration space despite a change in various causal details related to the system.
(A change in causal details implies a change in the antecedents of Lange’s necessarily
true conditional. A change in the antecedents may include a change in the type of rod
of the pendulum system, such as spring rods or compound wide-bodied rods, or even
a change in the particular forces acting on the system.) Because the homology related
to the PE function is preserved under a wide range of forces, it allows us to reason
about the number of critical points of the PE function using theMorse inequalities as a
constraintwhichLange argues to holdwith a greater degree of necessity than the related
causal laws. (In the previous sections, we extended this argument to potentially cover
all n-tuple pendulums.) This unifying strategy (encompassing a varied range of forces
and all kinds of double pendulums) is what gives a strong modal flavour to Lange’s
explanation since no other causal explanation (such as using partial derivatives of the
PE function that analyse forces on a case-to-case basis) reveals why every double
pendulum has four or more equilibrium positions. However, we suggest that Lange’s
DME fails as a modal explanation (apart from the problems associated with causal
reasoning sneaking in via the backdoor) because the various causal details related
to the particular forces acting on the system do matter to the explanation—we show
how the causal upshot of his DMEs, and their extensions and improvements on them,
is further revealed when we vary the antecedents of his conditional by introducing
perturbations in the pendulum system. We will also show how the candidate DMEs
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may fail to predict the number of equilibrium positions in a range of cases and why we
cannot account for their failure by narrowing down the antecedent of the conditional.

It will be useful to briefly discuss what we mean by ‘perturbations’18 and why
introducing perturbations lead to a failure of Lange’s account. Perturbations here
mean an intervention (in the sense ofWoodward, 2003) or a small change in one of the
parameters or variables of the system in the sense of being an active causal intervention
on the system in relation to changes in the particular forces acting on the system.
Another sense in which perturbations can be understood here is as a consideration of
what-if-things-had-been-different questions without necessarily engaging in an actual
intervention in the system.19 Consider a system S with the variables x and y, which
define a state of the system, and suppose we introduce a small change to the variables
x or y by replacing x with x + εx1 or y with y + εy1, where ε is small. In the
case of pendulum systems these variables are the length of the rods, the inclination
of these rods with respect to the horizon and any forces acting on the system, all
of which help define the potential energy of the pendulum system and thereby its
equilibrium positions. While a perturbation in these variables will alter the potential
energy of the pendulum system, this change will leave the configuration space of the
system unaffected. This is because the configuration space simply depends only on the
degrees of freedom of the pendulum rods—if each of the n rods can move around in a
path space of 2π radians, then the configuration space of the systemwill be an n-torus.
Lange’s argument is that the number of equilibria is constrained (with a higher order of
necessity than involving the particular causal forces) due to the system’s configuration
space being what it is. And thus, an intervention in the length of the rods should leave
the number of equilibria unchanged in so far as the non-causal explanation is deemed
correct. Notice that an intervention of the kind that will alter the configuration space
of the system, such as physically constraining the movement of the rod, is ruled out
here since it is a change in the empirical facts (and related antecedents) that set up the
case. (The antecedent takes the configuration space of any double pendulum, where
each of the rods is free to move in a path space of 2π radians, to be a torus, and if
the pendulum is prevented from moving freely around the hinge, the configuration
space of the restricted pendulum will not be a torus.) We aim to show that even if the
contextually relevant antecedents remain largely invariant, preserving the empirical
facts of the case, a perturbation introduced in the pendulum system may still lead to
the failure of the conditional in two ways:

(a) It will invalidate the truth expressed by the conditionals E1, its extension and E2,
such as by showing that it is not necessary for every double pendulum to have
at least four or more equilibria despite their configuration space being a torus,
which reveals that causal details related to the particular forces are relevant to the
conditionals, and

(b) The applicability of themodal conditional itself depends on the causal details of the
system, i.e., the conditional fails to be a generalised mathematical ‘explanation’
in cases where non-Morse potential energy functions are involved.

18 Thanks to an anonymous referee for pushing us on this point.
19 We will see in Sect. 5.2.2, when discussing the accounts of Reutlinger (2018) and Rice (2021), as to
why this alternative definition matters for our purposes.
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Both the arguments rob the modal status of Lange’s conditional by showing that the
strong form of necessity that Lange accords to mathematical explanations is incorrect.
Further below, we consider a potential objection to our arguments where one may
attempt to narrow down the conditional to preserve its modal strength by packaging
the exceptions (such as the non-Morse PE functions) out of the conditional by using
a suitable change in the antecedents or initial conditions. We defuse the objection
by arguing in Sect. 5.2 that any such packaging will inevitably involve a detailed
consideration (causal analysis) of the particular forces actingon the system. If a suitable
change in the antecedent of a necessarily true conditional is arrived on a case-to-case
basis based on a causal analysis of the system (considering whether the potential
energy function is a Morse function or not), this makes it evident that the seemingly
non-causal explanation involves bracketing various causal assumptions which reveal
themselves where the non-causal explanation breaks down.

A major presumption in using the configuration space to predict the number of
equilibrium positions of the pendulum system is that the PE function of such a complex
dynamical system is always aMorse function. This by nomeans is a trivial presumption
and we show how both E1 and E2 may break down if the PE function is a non-Morse
function, which is not uncommon to find across complex dynamical systems.20 In
such a case, the Morse inequalities (or its extensions, as discussed in Sect. 4.3) do not
explain why the pendulum system has such and such number of equilibrium positions.
Our argument is based on exposing the inapplicability of the topological framework
when perturbations are included in the PE function in such a way that:

(a) one or more critical points of the PE function become degenerate, which makes
it difficult or impossible to calculate the index of these degenerate critical points,
because they are undefined, making Morse inequalities inapplicable, and/or

(b) the PE function may no longer be mappable to a smooth or compact manifold,
and thus Morse inequalities fail to be applicable.

We also discuss some extensions ofMorse theory that dealwith a sub-set of the cases
as outlined in (a) and (b) above, but we show why these are not overarching solutions
and how a gap remains in addressing (a) and (b)more generally in differential topology
unifying the topological explanation of the number of critical points for both Morse
and non-Morse functions. We then conclude this section by noting that, at best, E1,
its extension and E2 can be seen as important and restricted applications of algebraic
topology for the study of pendulum systems, but they by no means constitute DMEs.

4.1 Case (a): Degeneracy due to perturbations

If all pendulum rods are stiff, and if they obey the restrictions on length suggested
in the previous subsection, then it would appear that Lange’s explanation and our

20 Topologists often state that almost all functions are Morse functions and non-Morse functions are quite
rare. Thus, as per (Golubitsky, 1978, pp. 355–356), “one might assume that in any physical situation—
where measurements can only be made approximately—the only observed (differentiable) functions would
beMorse functions.” But, borrowing Thom’s ideas (see Sect. 4.3.1), Golubitsky argues, “in many situations
what is observed is not an individual function but rather a parametrized family of functions...It is then
possible for non-Morse functions to appear as a single member of a ‘stable family’ [making non-Morse
functions important for understanding the behaviour of this stable family].”
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improved versions thereof should work well. After all, in this case the PE function
is a Morse function, its critical points are non-degenerate points with a well-defined
index, and the distorted manifold obeys the Morse inequalities. However, when the
pendulum rods are non-stiff, the PE function may become degenerate at one or all
of its critical points. Morse inequalities fail to be applicable in such cases and fail to
explain why the pendulum system has as many equilibrium positions as it does. (We
deal with extensions of Morse inequalities to special cases of degeneracy in Sect. 4.3.)

To introduce non-stiffness in the pendulum rods, we make use of non-linear per-
turbations in the length of the pendulum rods which will affect the PE function in a
non-trivial way. To begin with, we look into length perturbations in the rod of a simple
pendulum, and then extend this treatment to any n-tuple pendulum.

For a simple pendulum, the PE functionU (α) = L cosα is a distorted circle in the
case that the rod remains stiff, the length remains unperturbed and the angle of incli-
nation made by the rod with respect to the downward direction is α. In this subsection,
we perturb the length of the rod L is such a way that the distorted configuration space
of the simple pendulum remains smooth and compact (a restriction we relax in the
next subsection), and its PE function thus remains definable over the configuration
space. In order to do so, we impose the following constraints on the perturbation g(α).
If

Upert (α) = (L + g(α)) cosα, (13)

then

Upert (α) = Upert (α − 2π), (14)

U ′
pert (α) = U ′

pert (α − 2π), (15)

and
U ′′

pert (α) = U ′′
pert (α − 2π), (16)

whereUpert (α) is the perturbed PE function, U ′
pert (α) is the first partial derivative of

Upert (α)with respect toα, andU ′′
pert (α) is the second such partial derivative. Equation

(14) ensures that the PE function remains mappable to the topological circle which
may be definable on (α, α−2π) for any α. Equation (15) ensures that the perturbed PE
function is differentiable on the circle as defined on (α, α −2π). (If the PE function is
not differentiable, then it implies that the force cannot be defined at that point, which
is physically impermissible as per Newtonian mechanics.) Equation (16) ensures that
the second partial derivative is definable because if this condition is not met, then the
index of the critical point becomes indeterminate (as shown previously in Sect. 2.1).

Based on the aforementioned conditions, and assuming mg = 1 for the sake of
simplicity, we introduce the perturbations,21 as in the following Eqs. (17) and (18) for

21 In all the cases of perturbations discussed in this paper, we will ignore the PE energy stored in the
pendulum rod due to the elongation or contraction of the rod following perturbations. This is because of
two reasons: (a) the stiffness of the rods must be very low to allow these perturbations and for such low
values of the stiffness constant, the stored PE due to perturbations will be very small in magnitude; and
(b) including the stored PE in the equations does not generate any additional insight concerning the gen-
eral mathematical properties of the degenerate points, it rather complicates the simple-looking graphs. It can
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the values of L = 1 and L = 2 respectively.We plot their degeneracy at certain critical
points in Fig. 5. (We have now assumed the potential energy to be positive rather than
negative, as is conventionally assumed—this gives us better-looking graphs.)

Upert1(α) = (1 + sin α) cosα (17)

Upert2(α) = (2 + sin2 α) cosα (18)

For functions dependent on only one variable, degeneracy occurs where the first-
order partial derivative meets the second-order partial derivative at the horizontal axis.
(A Hessian matrix is used for multi-variable functions, as shown in Sect. 2.1.) As
shown in Fig. 5, degeneracy is introduced in some of the critical points of Upert1(α),
such as at (2nπ − π

2 ), whereas in Upert2(α), all critical points are degenerate at nπ ,
where n ∈ Z. Also, the degree of degeneracy is higher in Upert2(α) since the second-
order partial derivative is flat where it meets the first-order partial derivative. One may
verify that even the third-order partial derivative gives a flat slope at nπ in the case of
Upert2(α) implying that all the critical points of Upert2(α) are badly degenerate. One
cannot use Morse theory for these functions (save some of the extensions, which we
discuss in Sect. 4.3), especially in the case of Upert2(α) since ascertaining the index
of such badly degenerate critical points is not possible (Popescu, 2004, p. 47). Morse
inequalities fail to apply here, and the force of the modal explanation is broken.

The argument can be easily extended for perturbations introduced to the rods of any
n-tuple pendulum. Let us extend this to double pendulums first and then by induction
one can see how it extends to higher-order pendulums. The Hessian matrix (H) of the
partial derivatives of the PE function concerning a double pendulum can be written
as:

HU (α,β)(p) =
∣
∣
∣
∣
∣
∣

∂2U (α,β)

∂α2
∂2U (α,β)

∂α∂β

∂2U (α,β)
∂β∂α

∂2U (α,β)

∂β2 ,

∣
∣
∣
∣
∣
∣

(19)

where U (α, β) is the PE function of the double pendulum, α and β are the angles
of inclination of the rods with respect to the horizon, and p is a critical point of the
PE function. If we assume that mg and Mg equal to 1 for the sake of simplicity,
then U (α, β) = (L + g(α)) cosα + (L + K + g(β)) cosβ, where L and K are the
lengths of the top and bottom rods respectively. For the perturbations g(α) = sin α and
g(β) = sin β, introduced independently to each of the rods respectively, the Hessian
becomes:

HU (α,β)(p) =
∣
∣
∣
∣
∣
∣

∂2U (α,β)

∂α2 0

0 ∂2U (α,β)

∂β2

∣
∣
∣
∣
∣
∣

(20)

Footnote 21 continued
be shown that the degeneracy analysis remains valid even with the inclusion of the stored PE energy in the
pendulum rods.
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Fig. 5 Degeneracy in the perturbed PE functions: both Upert1 (α) and Upert2 (α) are degenerate at the
inflection points (2nπ − π

2 ) and nπ , respectively, for n ∈ Z, where the first-order partial derivative meets
the second-order partial derivative
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because functions containing α as the only variable get cancelled out when taking a

partial derivative with respect to β and vice versa, and thus, ∂2U (α,β)
∂α∂β

and ∂2U (α,β)
∂β∂α

become zero. The test of degeneracy is that HU (α,β)(p) should be invertible, that is,

D2(HU (α,β)(p)) = ∂2U (α, β)

∂α2 × ∂2U (α, β)

∂β2 = 0. (21)

If D2(HU (α,β)(p)) = 0, then either ∂2U (α,β)

∂α2 or ∂2U (α,β)

∂β2 , or both must be equal to

0. Simultaneously, ∂U (α,β)
∂α

and ∂U (α,β
∂β

must also be equal to 0 at p because p is a
critical point of the PE function. The PE function of the perturbed double pendulum
is:

U (α, β) = (L + sin α) cosα + ((L + sin α) cosα + (K + sin β) cosβ). (22)

The resulting partial derivatives are:

∂U (α, β)

∂α
= ∂(2(L + sin α) cosα)

∂α
, (23)

∂U (α, β)

∂β
= ∂((K + sin β) cosβ)

∂β
. (24)

However, ∂U (α,β)
∂α

and ∂U (α,β)
∂β

are essentially the same equations, only with a
replaced symbol and an additional constant, which is 2 here. These are also the same
prototypical equations that we encountered in the case of the simple pendulum when
considering Eq. (17). Since the first partial derivative is the same function, the second
partial derivative will also be the same function (with an additional constant). Thus,
the degeneracy conditions of the PE function of a double pendulum reduce to just this:

∂2U (α, β)

∂α2 = ∂U (α, β)

∂α
= 0, or

∂2U (α, β)

∂β2 = ∂U (α, β)

∂β
= 0. (25)

These are essentially the same conditions (just replace the constants) that make
the PE function of the simple pendulum a non-Morse function. Thus, for independent
perturbations in each rod for any n-tuple pendulum, the degeneracy conditions will
only be:

∂2U (α1, α2, ...)

∂α2 = ∂U (α1, α2, ...)

∂α
= 0, or

∂2U (α1, α2, ...)

∂α2
r

= ∂U (α1, α2, ...)

∂αr
= 0, (26)

where α1, α2 and so on are the angles of inclination of the rod with the horizon for
any r ≤ n such that r ∈ Z

+. Hence, the same family of solutions that make a simple
pendulum’s PE function degenerate may be applicable to n-tuple pendulums if the
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perturbations in each rod are independent of each other.22 Therefore, we have shown
that perturbations may generally make the PE function of any n-tuple pendulum a
non-Morse function. SinceMorse inequalities are inapplicable to such functions (save
for some special cases, which we discuss shortly in Sect. 4.3), as the information
about the number and index of the critical points cannot always be ascertained, the
‘modal’ strength of the topological explanation collapses for such perturbations. The
explanation does not collapse because pendulums with degenerate critical points will
always have a lower or higher number of critical points compared to cases where all
critical points are non-degenerate. In fact, it may still be the case that most double
pendulums with a smooth, compact and orientable configuration space, even those
with degenerate critical points in the distorted configuration space, have four or more
equilibrium positions.23 (Those with a non-smooth distorted configuration space do
not necessarily have four or more critical points as shown in the next subsection.)
The explanation, and its modal reading, rather collapses because the causal upshot
concerning the dependence of the explanation on particular forces is revealed: Morse
inequalities fail to ‘explain’ the existence of so and so number of equilibrium positions
if one or more such points are degenerate, where such degeneracy was introduced by
perturbations, which may correspond to a change in the particular forces acting on
the pendulum system. The theoretical framework of the Morse inequalities is not
general enough to explain or accommodate these cases when such particular forces
are involved.

The reader may recall that Lange’s account, as discussed in Sect. 1.2, leads to
a unified explanation of the number of equilibria of double pendulums in that all
such pendulums have at least four or more equilibria because they share the same
configuration space, and thedetails of the particular forces actingon themdonotmatter.
However, we have just shown that the details of the particular forces do matter and the
broad conditional encompassing all double pendulums is not necessarily true. At this
point, can Lange adopt a narrower conditional by accepting the relevant restrictions
raised in this section and save his account by adopting a narrower version of E1, its
extension or E2? That is, while there are DMEs for double pendulums where the PE
function is a Morse function, this claim does not extend to systems with non-Morse
PE functions?24 We respond to these claims in Sect. 5.2 in detail by showing that there
is no unobjectionable way to narrow down the conditional in a way that preserves its
modal strength as a non-causal explanation.

22 If the perturbations are not independent, it may still be shown that there are non-Morse functions
pertaining to such perturbations but the non-Morse functions will then need to be verified on a case by case
basis and a general formulation like this may not be applicable. This, however, makes no difference to the
strength of our argument because we have already shown that non-Morse functions exist for independent
perturbations.
23 A torusmay be distorted in away that it has only three critical points (Kudryavtseva, 1999). Kudryavtseva
shows that there are 22n continuous immersions (functions thatmap the n-dimensionalmanifold to the space
of real numbers) of such distorted tori into the space of real numbers.Whether such immersions are legitimate
PE functions, pertaining to pendulum systems, is a question that is beyond the scope of this paper. But if
such immersions are legitimate PE functions, then it is not necessary that all double pendulums have four
or more equilibrium positions. We reserve any further comment on this matter.
24 We thank an anonymous referee for pressing us to hint at this response early on in the paper.
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4.2 Case (b): Mapping and perturbations

In the previous subsection we considered only such perturbations that ensured the
smoothness and compactness of the distorted configuration space of the pendulum
system. In this subsection we consider perturbations that break the compactness or
smoothness of the distorted configuration space. In such a case the differentiable PE
function fails to be definable over a smooth and compact manifold (the configuration
space of the pendulum), and thus the strategy of studying Morse differentiable func-
tions on smooth, compact and orientable manifolds fails as well. This leads to a further
collapse of the modal argument because (i) it is not necessary that the distorted con-
figuration space of all n-tuple pendulums, including double pendulums, are compact
manifolds and (ii) not all pendulums necessarily have smooth configuration spaces.

To illustrate case (i) for non-compact manifolds, we no longer need to restrict
ourselves to the constraints specified in Eqs. (14), (15) and (16) that pertained to the
compactness of themanifold overwhich the PE functionwas defined. (The PE function
still needs to be differentiable, but not necessarily ‘over’ a closed or boundedmanifold;
it can be differentiable over an open manifold.) Consider the following perturbations
that lead to a continuous increase in the length of the rod of a simple pendulum (see
Fig. 6 where one such case is demonstrated):

Upert3(α) = (2 + α2) cosα, (27)

Upert4(α) =
(

2 + α2

1 + α2

)

cosα. (28)

In the case of (27), the rods spiral outwards at a rapid rate. If such a PE func-
tion is mapped onto the configuration space of the simple pendulum, the distortion
will result in an unbounded (non-compact) manifold. In (28), the rods converge to a
total perturbation of limα→∞ α2

1+α2 = 1 over a long duration of time, but, nonethe-
less, result in a distortion that gives an unbounded manifold. In other words, the PE
functions Upert3(α) and Upert4(α) cannot be defined over a bounded circle (mani-
fold) which is the configuration space of the simple pendulum. One way to verify this
is to check whether the partial derivatives of Upert3(α) and Upert4(α) are defined
over the configuration space of the original bounded circle. One may verify that
Upert3(α) �= Upert3(α − 2π) and U ′

pert3(α) �= U ′
pert3(α − 2π); the same is true

for Upert4(α). These PE functions are also degenerate at α = 0. Also, there is only
one equilibrium position in (−π, π) (the complete path space of the pendulum) for the
perturbed simple pendulum (see Fig. 6), which implies that for a double pendulum,
with this perturbation, there can be only two equilibrium positions within this path
space, and for an n-tuple pendulum, there can be only n such equilibrium positions.
Thus, it is not necessary that every double pendulum has four or more equilibrium
positions and that every n-tuple pendulumhas at least 2n equilibriumpositions because
such non-compact manifolds are a physical possibility, which are not covered within
the theoretical framework of the Morse inequalities. The reason why these systems
have less than four equilibrium positions can be explained by the external or internal
forces that caused these perturbations. If these perturbations are caused by a variable
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Fig. 6 Non-compact manifolds have only one critical point for a simple pendulum and there is additional
degeneracy at α = 0

force, then the net force on the pendulum bobs may not be zero at many (or even none)
of the positions which were equilibrium positions earlier. Thus, depending on the
force conditions, an n-tuple pendulum system may have anywhere between 0 and 2n

equilibrium positions. This makes the causal upshot of Lange’s DME explicit in that
the details of the particular forces matter to the system and the purported non-causal
explanation must bracket several causal assumptions in order to work.

We now illustrate (ii) concerning non-smooth configuration spaces with the help of
an example of spherical pendulums. Consider the case shown in Fig. 7 from Richter et
al. (1996), where the angleϕ describes the position of the frame towhich the (massless)
ϑ-axis is attached. Ordinarily, a spherical pendulum comprises amass point suspended
with the help of a rod that is free to move on a sphere S2. The configuration space of
such an idealised spherical pendulum is also S2. The setup imagined here is idealised,
in a non-trivial way, because Richter et al. (1996) note that:

In a physical implementation of [the spherical pendulum], a device must be
chosen to hold the mass point on the sphere. It is practically impossible to do this
without changing the dynamics in an essentialway....[such that] the enlarged total
system [which contains these modifications, such as a frame] almost inevitably
has a configuration space different from [that of the sphere] S2. This poses the
interesting problem as to how the pure spherical pendulum may be recovered in
a physical limit of some kind. (p. 19124)

When a frame is introduced, to implement a possible setup of spherical pendulums,
as in Fig. 7, the configuration space of the spherical pendulum changes from that of a
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Fig. 7 (left) Spherical pendulum
suspended in a frame which
rotates about a vertical axis and
the resulting (ϕ, ϑ)

configuration spaces (middle
and bottom) for two different
values of the moment of inertia
or rotational inertia of the frame.
(The one on the right is
non-smooth when the rotational
inertia limits to zero.) Adapted
from Richter et al. (1996, pp.
19125–19132)

sphere S2 to a torus or T 2 (the torus in the middle of Fig. 7). One might reason that
when the frame gradually vanishes, such that its moment of inertia or rotational inertia
θ limits to zero, S2 might be recovered as a limiting case from T 2 as the configuration
space of the spherical pendulum. But Richter et al. (1996, p. 19125) show that the T 2

instead dynamically decomposes into two spheres S2 of opposite spins (bottom of Fig.
7). This is because, they argue, from the point of view of the suspended massm alone,
the positions (ϕ, ϑ) and (ϕ + π , 2π − ϑ) are the same, but from the point of view of
the frame, these are different positions distinguished by the position of the frame and
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value of the spin variable. (The spin is defined by the sign of (π − ϑ), which is +1
when 0 < ϑ < π , and −1 when π < ϑ < 2π .) The dynamics of the pendulum allow
a change in the spin values in the presence of the frame but in the limit of a vanishing
θ , the spin becomes a conserved quantity resulting into this non-smooth bifurcation.25

Thus, theMorse inequalities cannot apply to such cases because themanifold result-
ing in the limiting case when the spherical pendulum is recovered (with a vanishing
frame) is non-smooth.26 Moreover, ascertaining whether the configuration space of
a spherical pendulum is smooth or non-smooth is non-trivial because it may depend
on the physical implementation of the pendulum system, as noted above. (The con-
figuration space may be a torus or two bifurcated spheres, depending on the value of
θ .) Thus, before applying the Morse inequalities to a particular spherical pendulum,
one may not even know whether such a pendulum system has a smooth configuration
space or not, and whether Morse inequalities even apply to such systems.

It is interesting that Lange does not even seem to consider that such physical possi-
bilities may arise in pendulum systems or that topological reasoning about the number
of equilibrium positions may fail in such cases. In all such cases, the strategies out-
lined in E1, its extension and E2 all fail to work because the configuration space of
the pendulum system, which may be non-smooth or non-compact or both, cannot be
mapped to Morse functions. The argument concerning the modal failure of his argu-
ment extends to n-tuple pendulums mutatis mutandis on grounds analogous to those
introduced in the previous subsection. It may be noted, importantly, that the causal
explanation, including the partial derivatives of the PE function, works in every single
case irrespective of whether the PE function is a Morse or a non-Morse function, or
whether the configuration space of the pendulum system is a non-smooth and/or a
non-compact manifold. We have also shown previously that they fail for degenerate
cases for smooth and compact manifolds.

4.3 Degeneracy workarounds

Are there ways in which the degeneracy or the non-compactness of the distorted con-
figuration space may be worked around so that Morse inequalities are still applicable?
We answer in the affirmative, but only concerning special cases. (This does not hurt our
argument since modal force can still be denied provided the workarounds are not gen-
erally applicable to all cases involving degeneracy or non-compactness—we defend
this argument in Sect. 5.2.) Morse theory has been extended to establish degenerate
Morse inequalities (Bartsch et al., 2008; Bismut, 1986; Castrigiano & Hayes, 2019;

25 For a detailed discussion, which is out of the scope of this paper, the reader is directed to Richter et al.
(1996).
26 One might argue that pendulum systems are idealised entities anyway, and if that is the case, why
consider a case of a real spherical pendulum when one can get by using an idealised spherical pendulum?
However, note that no such complications arise in the configuration spaces of n-tuple pendulums that are
free to move in two dimensions. Irrespective of how these pendulums are physically implemented, the
resulting configuration space will still be an n-torus. Therefore, we consider the treatment of a real world
spherical pendulum to be important because it reveals several interesting causal features of the system,
which may lead to a change in its configuration space with implications for the system’s dynamics, which
are not obvious when looking only at an idealised description of the system.
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Popescu, 2004; Witten, 1982) in restricted cases. We briefly discuss these accounts
one by one and show why these extensions are inadequate as a general explanation of
the behaviour of critical points for pendulum systems.

Bartsch et al. (2008) show that degenerate Morse inequalities may be proved for
differentiable functions defined over a Hilbert manifold27 with the critical assumption
that these manifolds must be 2π periodic (or periodic in general as periods other than
2π may be re-scaled to a 2π period). But this assumption is non-trivial because it
is not necessary that the distorted configuration space of a pendulum system has a
constant period that may be re-scaled within (−2π, 2π). Damped-driven pendulums
and the perturbation equations sketched in (27) and (28) are some such examples (see
Fig. 6 for a demonstration). So, his account does not tackle cases of degeneracy in
cases where such distorted manifolds show quasi-periodic or non-periodic behaviour.

Popescu (2004), on the other hand, sketches an elaborate account in which degener-
ate Morse inequalities are proved by using heat flow vectors defined over a manifold.
However, his account proves degenerate Morse inequalities for a non-compact man-
ifold only as as a limiting case, and not strictly for compact manifolds (pp. 47–53).
His account is not an extension of degenerate Morse inequalities to non-compact
manifolds, it rather uses non-compact manifolds as a reasonable heuristic to prove
degenerate Morse inequalities over compact manifolds. To see why Morse inequal-
ities cannot be extended to all non-compact manifolds, consider the following. If a
system is constrained to move within a compact, smooth and orientable manifold, a
minima and a maxima are guaranteed by compactness. For example, if one moves
around a smooth and closed circular surface (the configuration space of a simple pen-
dulum), starting from aminima and returning to the sameminima, one must encounter
amaxima somewhere on the path, giving a total of at least two critical points. But this is
not necessarily the case when either the path or the configuration space is non-smooth,
non-compact or non-orientable. Non-compact manifolds, which are not closed, will
not admit, in general, a non-trivial bound on the number of critical points because a
minima on such manifolds may not necessarily be followed by a maxima (within a
2π period), which is crucial for Morse inequalities to constrain the number of critical
points over such manifolds. However, if the motion is quasi-periodic, such as in Fig.
6, then a minima may follow a maxima, but this does not need to happen within one
full rotation of the pendulum system (indeed, in Fig. 6 it doesn’t). This means that the
number of critical points in such cases will be fewer compared to the cases when the
motion is unperturbed and periodic, and therefore, a simple pendulummay have fewer
than two critical points or a double pendulum may have fewer than four critical points
within one full rotation. In addition to the problems concerning non-compactness,
badly degenerate points, even in compact manifolds, cannot be handled using his
account because the index of such points cannot be assessed generally, especially in
higher dimensions. [We consider this case shortly when discussing Castrigiano and
Hayes (2019) in Sect. 4.3.1.]

The account sketched by Bismut (1986) improves on that of Witten (1982).
Bismut proves degenerate Morse inequalities for Morse–Bott functions which are

27 Hilbert manifolds are defined over Hilbert spaces which, to put it simply, are extensions of Euclidean
geometry to spaces of higher dimensions.
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generalisations of Morse functions. InMorse functions, the critical points are required
to be non-degenerate in all directions, but in Morse–Bott functions, the critical point
is required to be non-degenerate only in a direction normal to the tangent space of
the manifold at the critical point, and not necessarily in every direction. However, this
extended account also cannot handle degenerate cases, in general, since the normal
to the tangent space may not necessarily be non-degenerate at a critical point, as is
the case with badly degenerate points (for instance, Eq. (18) or its demonstration at
the bottom of Fig. 5, which shows critical points that are degenerate in all directions).
Thus, such functions cannot be classified as Morse–Bott functions, and the general-
ization toMorse–Bott functions does not necessarily hold for badly degenerate points.
It, therefore, also fails to be a unifying framework accommodating all kinds of pertur-
bations.

Having discussed all accounts except that of Castrigiano and Hayes (2019), we
now turn to theirs and introduce the requisite mathematical framework as well. (We
spend some time discussing this framework because it is the most general among the
aforementioned, and perhaps also the most illuminating with regards to the topology
of perturbed functions concerning our case.)

4.3.1 Catastrophe theory and degeneracy

Castrigiano and Hayes (2019) illustrate the Catastrophe theory, which is an extension
of Morse theory dealing with a general classification of degenerate critical points.
Catastrophe theory is built primarily on two theorems given by René Thom, a French
mathematician. The theorems focus on the change in the number of critical points of a
degenerate point (which is naturally unstable) when perturbed. For instance, f = x3

has only one critical point at x = 0, which is also degenerate. But upon introducing a
perturbation ux , for small values of u, f pert = x3 + ux now has three critical points
for u < 0, which are all non-degenerate, and only one non-degenerate critical point
for u > 0 (see Fig. 8). We can now state the theorems informally, which suffices for
our purposes here.

Fig. 8 Three cases of perturbation and the unfolding of the function x3 + ux
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The first theorem of Thom states that it is possible to capture all possible unfoldings
of a large family of functions by what he calls the seven elementary catastrophes.
(These are called catastrophes because the behaviour of the function changes suddenly
when the perturbation changes, causing amajor shift in the topology of themanifold—
see Fig. 8 as an example.) The critical points of the functions x3, x4, x5, x6, x3 +
y3, x3 − xy2 and x2y + y4 are called the seven elementary catastrophes. If one
could reduce a function g(x) (such as by using Taylor expansion) to any of these
elementary functions, then perturbations introduced in g(x) will behave in a similar
fashion to these elementary catastrophes and one will be able to calculate the index
of degenerate critical points of g(x). The second theorem of Thom states that this
classification remains stable under small perturbations. The idea behind classifying
the functions is that each elementary catastrophe behaves in predictable ways: one can
assess the number of non-degenerate points that emerge after perturbing degenerate
points (which, as shown before, are hard to deal with because of the lack of information
about their index). From these non-degenerate points, one can then assess the index
of the critical points of the function and then use Morse inequalities to reason about
the number of critical points of even some non-Morse PE functions.

We now discuss why these two theorems, despite their immense usefulness in
classifying degenerate critical points, do not deal with all the cases of degeneracy.
Firstly, these classifications are only possible for functions in which the total number
of variables or parameters does not exceed 4 or, in some exceptional cases, does
not exceed 5 (Castrigiano & Hayes, 2019, p. 145). For triple pendulums and higher-
order n-tuple pendulums, where a large number of interdependent parameters (such
as interdependent perturbations of the rods which may be functions of the angles of
more than one rod) are involved, these theorems fail to be applicable. Secondly, the
classifications suggested by these theorems are not suitable for large perturbations,
such as in Eq. (27) or Fig. 6. Thirdly, one needs to classify a particular function within
one of the seven elementary catastrophes manually—the classification is not obvious
from merely glancing at the function. For instance, it is not obvious that the function
h = sin β(α − sin α) can be classified as an x3 catastrophe (Castrigiano & Hayes,
2019, pp. 204–205) . This is derived manually by using Taylor’s expansion, and unless
one knows the prior association of a PE function to some elementary catastrophe,
one is unlikely to be able to comment on the classification of the function. As the
classification of the function is crucial for finding the general qualitative behaviour
of the non-degenerate points obtained from perturbing degenerate points, there is
always the worry that some PE function will not be classifiable into these elementary
catastrophes. Even if such a PE function can be classified, accordingly, the index of the
non-degenerate points of the functions obtained after perturbing the degenerate points
needs to be assessed manually using the Hessian of the function, which creates the
familiar difficulties discussed in Sect. 2.3 of this paper; this was the major difficulty
which motivated the introduction of Betti numbers so that a manual calculation of
the index using the Hessian matrix (a causal strategy) can be avoided. To sum up,
the Catastrophe theory is inapplicable to a number of real-world pendulum systems,
and it brings familiar problems of manually calculating the index of the critical points
of the PE function (using causal reasoning), which defeats the very point of using a
non-causal explanation. Therefore, this account, as well, does not generally explain
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the behaviour of critical points in perturbed pendulum systems and is thus insufficient
as a supporting framework to allow a modal interpretation of E1, its extension or E2.

5 Summary, potential objections and generalisation of the findings

We first summarise the key findings of this paper, discuss our responses to potential
objections to our arguments, and then make a brief remark on why these results hold
importance more generally for other dynamical systems and some other views on
mathematical explanations such as that of Reutlinger (2018) and Rice (2021).

5.1 Summary

1. Lange’s account (E1) can be extended to n-tuple pendulums and a greatly improved
strategy (E2), using Betti numbers, to find a potential constraint on the number of
equilibrium positions of n-tuple pendulums.

2. E1 and its extension sneak in causal reasoning through the backdoor. E2 bypasses
this problem, but we show that E1, its extension and E2 are not modal conditionals
since they apply only to cases where the PE function defined over the configuration
space of the pendulum is a Morse function. This is revealed by the use of perturba-
tions introduced to the length of the non-stiff pendulum rods (which may be caused
due to a variation in the particular forces acting on the system). This shows that the
explanations do depend on the particular forces acting on the system.

3. Workarounds concerning degeneracy or non-compactness fail to generally explain
the behaviour of the critical points of n-tuple pendulum systems (including double
pendulums). Even for the cases where the workarounds seem to provide reasonable
explanations, it is not obvious by merely glancing at the pendulum system as to
what technique or theoretical framework best explains the behaviour of critical
points in that particular pendulum system. This needs to be figured out on a case-
to-case basis employing an analysis of the particular causal forces, which defeats
the very purpose of using a purported ‘unifying’ modal strategy.

4. It is not necessary that a double pendulumwill always have four ormore equilibrium
positions (or that an n-tuple pendulum will always have 2n or more equilibrium
positions), and even for the cases where it has four or more such positions, this fact
is not explained by any general topological framework such as Morse inequalities
or its extensions that can handle degenerate or non-compact cases.

5. The failure of the conditionals E1, its extension and E2 due to a suitable change in
the antecedents (such as perturbations causedby a set of particular forces) highlights
a causal upshot of the problem, which was conveniently buried under the purported
non-causal explanation.

6. Thus, Lange’s explanation of the constraint on the number of equilibria of pendulum
systems and the more general and improved accounts cannot be held as DMEs
because either (a) they sneak in causal reasoning via the backdoor, and/or (b)
the associated conditionals either fail to be true under a suitable change in the
antecedents or cannot be obtainedwithout appealing to the particular forces atwork.
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(The second point, a general philosophical point concerningDMEs, is elaborated in
some more detail below when discussing the potential objections to our account.)

5.2 Potential objections

An objection to our arguments may be that the three candidate DMEs—E1, its exten-
sions, and E2—still work for all pendulums with stiff rods and many pendulums with
non-stiff rods. This being so—the objection continues—all we have shown is that these
candidate DMEs apply with rather more restricted antecedents than Lange claims.28

To this we reply that no change in the antecedent will let us frame a necessarily true
conditional without admitting causal factors into consideration and thereby undermin-
ing the explanation’s purported distinctively mathematical and non-causal status. To
help see why this is true, let us look at some examples. One way of restricting the
antecedent to obtain a necessarily true conditional is as follows:

(E3): If a physical system is an n-tuple pendulumwith a PE function that is a Morse
function, then it has at least 2n equilibria because of the mathematical constraints
imposed by its configuration space, which is an n-torus.

Here the threat posed to Lange’s purported DME by non-Morse PE functions is
avoided by simply tightening the antecedent to exclude such problematic PE functions
from the scope of the conditional. The problem with this way of proceeding is that
in order to ascertain whether the antecedent of the conditional is true in the case of a
given pendulum, it is now necessary to knowwhether the pendulum’s potential energy
function is aMorse function, or not. Unfortunately for Lange, in order to know this, it is
necessary, in turn, to conduct an analysis of the particular forces acting on the system—
these forces being what determine the system’s potential energy. This being so, E3
is a causal explanation after all, initial appearances to the contrary notwithstanding.
Instead of explaining why the pendulum has as many equilibria as it does based on
purely mathematical considerations regarding the topology of the pendulum’s abstract
configuration space, it requires that all the forces that are operativewithin the pendulum
system be taken into consideration. It is these forces that are doing the explanatory
weightlifting, not the mathematical abstraction.

Of course, E3 isn’t the only possibility. Another option is E4:
(E4): If a physical system is an n-tuple pendulum with completely stiff rods, then

it has at least 2n equilibria, because of the mathematical constraints imposed by its
configuration space, which is an n-torus.

This conditional is necessarily true because the PE function associated with a pen-
dulum system with stiff rods will invariably be a Morse function (since each rod will
move in a predictable circular orbit, giving rise to an associated minimum and max-
imum in the pendulum’s potential energy function). But is E4 a DME? No, for two
reasons. Firstly, in order to know whether a pendulum has stiff rods (or whether the
rods will remain stiff during the course of the oscillations of the pendulum) we need
to know about the particular forces acting on the system and the physical constitution
of the pendulum rod. A large amount of causal reasoning about the particular forces

28 Obviously, our argument about sneaking causal reasoning in via the backdoor in E1 and its extension
still applies.
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and whether they may end up perturbing the length of the rod needs to be engaged in
to ascertain whether the antecedent is even satisfied. (Also, are there any pendulums
with perfectly stiff rods?) Secondly, if E4 is held to be a DME, then it gives rise to the
following dilemma concerning the limited success of the original broader condition-
als, namely E1, its extension and E2. It calls for a justification of how E1, its extension
or E2 were even applicable as mathematical explanations for many double pendulums
with non-stiff rods (perturbed or unperturbed): one can either accept this as an expla-
nation by “coincidence” or an explanation by “constraint” (which is how DMEs are
supposed to explain physical phenomena in Lange’s account). If one accepts this as
an explanation by coincidence (for instance, that E1 was still applicable as a matter
of coincidence to a bunch of pendulums with non-stiff rods), then it goes against the
modal thesis. This is because the same mathematical explanation cannot be a coinci-
dental explanation for a system with one set of initial conditions (for pendulums with
perturbed non-stiff rods) and be an explanation by constraint for the same system with
another set of initial conditions (for pendulums with stiff rods or unperturbed non-stiff
rods). Since Lange claims that his DMEs are explanations by constraint, and, in fact,
devotes a major part of his book arguing for the thesis that the necessity imposed by
DMEs is not coincidental, one clearly cannot accept that the broader original condi-
tionals, such as E1, worked as an explanation by coincidence for many of these double
pendulumswith non-stiff rods. Is it then an explanation by constraint? It is not, because
we have shown earlier that many pendulums with non-stiff rods cannot be explained
under this framework. The only way out of this dilemma is, therefore, to accept that
E1 is not a DME and, mutatis mutandis, its extension and E2 are also not DMEs. The
narrowed down conditional E4, which is essentially a restriction of the extension of E1
based on a certain set of initial conditions, thus faces the same dilemma and cannot be
held as a DME either. So, a strategy based on narrowing down of the conditional based
on a suitable change in the antecedents fails since it either involves an explicit analysis
of the particular forces (as in E3) or it raises a dilemma concerning the applicability
of the conditional in cases where it has had a limited success (as in E4).

Our aim in this paper was to analyse in detail how some mathematical explanations
of rich and complex dynamical systems have a causal upshot, despite their promises
to the contrary, and our largely mathematical approach is a fresh departure from most
accounts in the literature that aim at a general philosophical critique of the problem
without necessarily critiquing the scientific foundations of the problem. Therefore,
another objection to our arguments may be that, given the sheer technicality that the
reader must go through in the paper, the conclusion ends up being fairly narrow in
scope: that is, it seems limitedmerely toLange’smodal account ofmathematical expla-
nations and only discusses one putative example among many.29 But the findings of
this paper do generalise to other dynamical systems for which purported mathemati-
cal explanations may be given, especially those with periodic orbits and n degrees of
freedom (we sketch this out briefly below in Sect. 5.2.1). We also show in Sect. 5.2.2
how our account is a critique of not only the modal account of mathematical explana-
tions, which is Lange’s account of DMEs, but also some other general counterfactual
accounts of mathematical explanations.

29 We thank an anonymous referee for raising this point.
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5.2.1 Extension to some other dynamical systems

Every dynamical system that moves in periodic orbits and has n degrees of freedom
can be modelled topologically using configuration spaces and the distortion of its PE
function upon mapping it on the configuration space. The degrees of freedom of the
system correspond to the dimensions of its configuration space and the presence of
periodic orbits allows amapping of the system’s PE function onto a closed and bounded
manifold of its configuration space. (The modelling then follows a framework similar
to that of n-tuple pendulums as suggested in the previous sections.) The results of
the previous sections concerning the degeneracy of PE functions of periodic systems
(such as pendulums) then hold wider importance since they place certain general
restrictions on the applicability of topological explanations (purported DMEs) that
rely on the configuration spaces of such dynamical systems. This is because, to the
best of our knowledge,Morse theory is themost suitable device in differential topology
that connects differentiable functions related to the dynamics of a physical system to
the topology of its configuration space, and it is simply not the case that the parameters
of a physical system (such as its potential energy or any other energy function) must
realise Morse functions. There is no general topological framework that can explain
the behaviour of the critical points of both Morse and non-Morse functions that are
mappable (or notmappable) to the configuration space of the physical system, and thus
DMEs that exploit the configuration space in such a way are not tenable. The burden of
finding whether such topological frameworks even exist rests on the proponent of such
DMEs. Moreover, causal reasoning may sneak in via the backdoor, as we have shown
in this paper. Thus, any purported DME that aims to accommodate the behaviour of
such dynamical systems faces the challenges raised in this paper. Given the complexity
of dynamical systems it is hard to see how we can have a non-causal explanation for
certain aspects of their behaviour when no general topological framework explains
their dynamics.

5.2.2 Applicability to some counterfactual accounts of explanation

We now briefly discuss two counterfactual accounts30 of mathematical explanations
that present a general theoretical framework for (most) non-causal explanations. We
choose to focus on Reutlinger (2018) and Rice (2021) because their accounts claim
to be general enough to account for various non-causal (and causal) explanations, and
also because their counterfactual accounts fit well with the approach of this paper,
namely looking into causally relevant antecedents for allegedly mathematical condi-
tionals or explanations of some dynamical systems. Rather than attempting an in-depth
examination of these accounts,31 we only aim to indicate the relevance of our argu-
ments to the non-causal aspect of their counterfactual accounts in that (a) in order
to support non-causal counterfactual conditionals we need to be able to circumscribe
the antecedents in a non-causal way, failing which (b) it becomes evident that the

30 See Saatsi and Pexton (2013) who discuss issues relating to the extension of Woodward’s counterfactual
account to non-causal explanations.
31 We avoid giving a detailed account of their views or providing a rigorous critique due to lack of space.
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counterfactual statements that, prima facie, seem non-causal actually have causal pre-
suppositions.

Reutlinger (2018) argues that his monist account of counterfactual explanation
(CTE) can accommodate both causal and non-causal explanations. The CTE consists
of nomic generalisations, statements about the initial conditions and some further
auxiliary assumptions, concerning an explanandumE, that, when assumed to be true or
approximately true, allow us to deductively infer E or infer a conditional probability on
E. The counterfactual dependency in E is revealed by a change in the initial conditions
because if the initial conditions had been different, then E or its conditional probability
would have been different as well. Rice (2021) points out that Reutlinger’s account of
CTE does not include information about the factors that are irrelevant to E, which is
crucial to understand why a non-causal explanation should be deemed a non-causal
explanation. Rice thus introduces an additional layer in his account of the CTE by
adding the desideratum that a CTE should be able to account for not only those
factors that are relevant to understanding why E occurred, but also those that are
irrelevant to its occurrence. He argues: “.....understanding that the initial conditions
and trajectory of the system are counterfactually irrelevant to the occurrence of the
explanandum is a crucial part of the [non-causal] explanation” (2021, p. 128). He
also argues that a wide range of causal and non-causal explanations can be unified
by looking at the counterfactual dependence and independence relations that hold
between the explanans and the explanandum E. The central motivation for introducing
irrelevant factors in his account is to provide a better understanding of why some
factors that are irrelevant to E help constitute a universality class of the phenomena in
question, which then helps us understand why the explanations of some phenomena
are immune to changes in the initial conditions or their micro-physics. (His account is
not necessarily an interventionist account, in the sense of the account of counterfactual
explanations given byWoodward (2003)—it rather captures what-if-things-had-been-
different questions aiming to capture a broader range of counterfactual information
about non-causal explanations.)32

However, their accounts face the same problem that Lange’s modal conditional
does, because Lange’s conditional also includes information on why some factors are
relevant or irrelevant to the occurrence of E. In this view, the shape of the pendulum
or of rods or even the forces acting on the pendulum system are irrelevant to the
occurrence of at least four equilibria of the system. The only major factor that is
relevant to E is the torus shape of the configuration space, which allegedly preserves
its homology upon being bent or twisted by a subsequentmapping of the PE function of
the pendulum system on it. E1, its extension and E2 are all counterfactual conditionals
of the form that, given certain initial conditions (a double pendulum subjected to an
array of forces) and some auxiliary assumptions (such as a finite and continuous PE
function), the nomic generalisation of the occurrence of at least four equilibria in a
double pendulum, E, is explained by its dependency on the shape of the configuration
space of the system. Even if the initial conditions were different, E would still occur
in most cases; concerning the initial conditions where E fails to occur, one may resort

32 Note that we indicated earlier, when defining perturbations in Sect. 4, that the perturbations we introduce
in this paper can also be understood in this broader sense of what-if-things-had-been-different, and thus it
is natural for us to extend our treatment to Rice’s account.
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to a narrower conditional of the form E3 or E4 to save the counterfactual account.
However, as we have noted in the previous section, the occurrence of E, after all, is
affected by a change in those initial conditions or such factors which were earlier
considered as irrelevant to its occurrence. Although this is not so much of a problem
for the CTE overall, because a different counterfactual with different initial conditions
can still be correctly stated, it is a serious problem for a non-causal account of such
a counterfactual explanation. As we have shown in the previous sections, narrowing
down a counterfactual conditional to a form akin to E3 or E4 involves an analysis
of those very causal factors (particular forces) that were considered to be irrelevant
in the counterfactual explanation. If E is affected by factors that were seemingly
irrelevant and if there is no unobjectionable way to circumscribe the antecedents of a
counterfactual conditional (in a non-causal way that does not involve explicit causal
reasoning with the particular forces), then one must admit that the seemingly non-
casual counterfactual is not non-causal after all. The counterfactual conditional may
claim to appeal primarily to non-causal mathematical factors, but, as we have shown, it
is not actually a non-causal mathematical explanation—the counterfactual conditional
involved has causal information in its antecedent.

Conclusion

The upshot of our paper is that non-causal mathematical explanations may conceal
various underlying causal mechanisms (on which they crucially depend), which can
be revealed by examining a general form of the explanation or by testing the asso-
ciated conditionals using a perturbations-based approach. We have also shown that
if circumscribing the antecedent for a necessarily true conditional involves making
a causal analysis of the problem, then the resulting explanation is not distinctively
mathematical or non-causal. Based on the arguments outlined in this paper, we cannot
claim thatDMEs of the physical properties of a dynamical system are flatly impossible.
But we do claim that any such explanations that are based on configuration spaces—
analogous to Lange’s purported topological DME of the number of equilibrium points
of a double pendulum—will be flawed in general.
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