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Abstract: In this paper, modelling design and analysis of a triple inverted pendulum have been done using 
Matlab/Script toolbox. Since a triple inverted pendulum is highly nonlinear, strongly unstable without using 
feedback control system. In this paper an optimal control method means a linear quadratic regulator and pole 
placement controllers are used to stabilize the triple inverted pendulum upside. The impulse response simulation of 
the open loop system shows us that the pendulum is unstable. The comparison of the closed loop impulse response 
simulation of the pendulum with LQR and pole placement controllers results that both controllers have stabilized the 
system but the pendulum with LQR controllers have a high overshoot with long settling time than the pendulum 
with pole placement controller. Finally the comparison results prove that the pendulum with pole placement 
controller improve the stability of the system. 
[Mustefa Jibril, Messay Tadese, Eliyas Alemayehu Tadese. Comparison of a Triple Inverted Pendulum 
Stabilization using Optimal Control Technique. Rep Opinion 2020;12(10):62-70]. ISSN 1553-9873 (print); ISSN 
2375-7205 (online). http://www.sciencepub.net/report. 10. doi:10.7537/marsroj121020.10. 
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1. Introduction 

An inverted pendulum is a pendulum that has its 
center of mass above its pivot point. It is unstable and 
without additional assist will fall over. It may be 
suspended stably in this inverted position by means of 
the usage of a feedback control system to reveal the 
angle of the pole and flow the pivot factor 
horizontally returned beneath the center of mass while 
it begins to fall over, retaining it balanced. The 
inverted pendulum is a classic problem in dynamics 
and manage idea and is used as a benchmark for 
testing control techniques. An inverted pendulum is 
inherently unstable, and have to be actively balanced 
with a view to stay upright; this could be 
accomplished either by applying a torque at the pivot 
factor, with the aid of transferring the pivot point 
horizontally as a part of a feedback system, changing 
the state of rotation of a mass installed at the 
pendulum on an axis parallel to the pivot axis and 
thereby generating an internal torque at the pendulum, 
or with the aid of oscillating the pivot factor 
vertically. In order to stabilize a pendulum in this 
inverted position, a feedback control system may be 
used, which monitors the pendulum's attitude and 
actions the position of the pivot point sideways while 
the pendulum starts off evolved to fall over, to hold it 
balanced. 

 
 

2. Mathematical Modeling 
The pendulum consists of three arms that are 

hinged by ball bearings and can rotate in the vertical 
plane. The torques T1 and T2 are the inputs to the 
pendulum with the middle hinge made free for 
rotation. By controlling the angles of the arms around 
specified values, the pendulum can be stabilized 
inversely with the desired angle attitudes. The triple 
inverted pendulum is shown in Figure 1 below. 

 

 
Figure 1 the triple pendulum 
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Let Θi denote the angle of the ith arm measured 
from the vertical axis as shown in Figure 2 below. 

 

 
Figure 2 System Configuration 

 
The mathematical modelling of the triple 

inverted pendulum is derived under the assumption 
that each arm is a rigid body 

Lagrange differential equations is the method 
used to construct the triple pendulum with a nonlinear 
vector-matrix differential equation of the form:  
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The description of the system is shown in Table 
1 below 

 
No Symbol Description 

1 il  
length of the ith arm 

2 ih
 

the distance from the bottom to the centre of gravity 
of the ith arm 

3 im
 

mass of the ith arm 

4 i  
angle of the ith arm from vertical line 

5 iC
 

coefficient of viscous friction of the ith hinge 

6 iI
 

moment of inertia of the i-th arm around the centre of 
gravity 

7 jT
 

control torque of the jth hinge 

 
After linearization of Equation (2) under the 

assumptions of small deviations of the pendulum from 
the vertical position and of small velocities, one 
obtains the following equation. 
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The block-diagram of the pendulum system is 
shown in Figure 3 and the nominal values of the 
parameters are given in Table 2. 

 

 
Figure 3 Block-diagram of the pendulum system 

 
Table 2 Nominal values of the parameters 

No Symbol Value 

1 1h
 

0.45 m  

2 2h
 

0.2 m  

3 3h
 

0.3m  

4 1l  
0.5 m  

5 2l  
0.4 m  

6 1m
 

3.5 Kg  

7 2m
 

2 Kg  

8 3m
 

2.25 Kg  

9 1I  
20.55 Kg m

 

10 2I
 

20.12 Kg m  

11 3I
 

20.65 Kg m
 

12 1C
 

0.07 N m s  

13 2C
 

0.03 N m s  

14 3C
 

0.009 N m s  
 
The state space representation of the triple 

inverted pendulum becomes 
1
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3. The Proposed Controllers Design 
3.1 LQR Controller Design 

The principle of most reliable optimal control is 
involved with working a dynamic system at minimum 
cost. The case wherein the system dynamics are 
described via a fixed of linear differential equations 
and the cost is defined through a quadratic function is 
referred to as the LQ problem. One of the primary 
outcomes within the theory is that the solution is 

furnished with the aid of the linear quadratic regulator 
(LQR). The block diagram of the triple inverted 
pendulum with LQR controller is shown below in 
Figure 4. 

 

 
Figure 4 Block diagram of the triple inverted 
pendulum with LQR controller 

 
In this paper, the value of Q and R is chosen as 
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The value of obtained feedback gain matrix K of 
LQR is given by 

87.4053   32.8355   25.6454   27.1508   11.2981   11.1817

97.7657   45.7910   30.0834   31.2118   15.6479   12.9896
K

 
  
   

3.2 Pole Placement Controller Design 
Pole placement, is a way employed in feedback 

control system principle to region the closed-loop 
poles of a plant in pre-decided locations in the s-plane. 
Placing poles is proper because the region of the poles 
corresponds immediately to the eigenvalues of the 
system, which control the traits of the reaction of the 
system. The system ought to be considered 
controllable on the way to put into effect this 
technique. The block diagram of the triple inverted 
pendulum with pole placement controller is shown in 
Figure 5. 

 

 
Figure 5 Block diagram of the triple inverted 
pendulum with pole placement controller 

 
The state equations for the closed-loop system of 

Figure 5 can be written by inspection as 

     7x Ax Bu Ax B Kx A BK x

y Cx

      





 
The poles for this system is chosen as 

 P = 1, 2, 3, 4, 5, 6     
 

Solving using Matlab the robust pole placement 
algorithm gain will be 

19329      8885    7472    11601    5861    6699

23483    10820    9086    14362    7268    8307
K

 
  
   

 
4. Result and Discussion 
4.1 Controllability and Observability of the 
Pendulum  

A system (state space representation) is 
controllable iff the controllable matrix C = [B AB 
A2B….An-1B] has rank n where n is the number of 
degrees of freedom of the system. 

In our system, the controllable matrix C = [B AB 
A2B A3B A4B A5B] has rank 6 which the degree of 
freedom of the system. So, the system is controllable. 

A system (state space representation) is 
Observable iff the Observable matrix D = [C CA 
CA2….CAn-1] T has a full rank n. 

In our system, the Observable matrix D = [C CA 
CA2 CA3 CA4 CA5] T has a full rank of 6. So, the 
system is Observable. 
4.2 Open Loop Impulse Response of the 
Triple Inverted Pendulum 

The open loop simulation for a 1 Nm impulse 
input of torque 1 for angular displacement 1, 2 and 3 
and for angular velocity 1, 2 and 3 is shown in Figure 
6, 7, 8, 9, 10 and 11 and for torque 2 input the angular 
displacement 1, 2 and 3 and for angular velocity 1, 2 
and 3 is shown in Figure 12, 13, 14, 15, 16 and 17 
respectively.  

 

 
Figure 6 Response of Teta 1 

 

 
Figure 7 Response of Teta 2 
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Figure 8 Response of Teta 3 

 

 
Figure 9 Response of Teta 1 Dot 

 

 
Figure 10 Response of Teta 2 Dot 

 
 
 
 
 

 
 

 
Figure 11 Response of Teta 3 Dot 

 

 
Figure 12 Response of Teta 1 

 

 
Figure 13 Response of Teta 2 
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Figure 14 Response of Teta 3 

 

 
Figure 15 Response of Teta 1 Dot 

 

 
Figure 16 Response of Teta 2 Dot 

 
 
 
 

 
 

 
Figure 17 Response of Teta 3 Dot 

 
 
As we seen from the Figures above the angular 

displacements and the angular velocities are unstable. 
 

4.3 Comparison of the Triple Inverted 
Pendulum with LQR and Pole Placement 
Controllers for Impulse Input Signal 

The comparison of the triple inverted pendulum 
with LQR and pole placement controller for a 1 Nm 
impulse input of torque 1 for angular displacement 1, 
2 and 3 and for angular velocity 1, 2 and 3 is shown in 
Figure 18, 19, 20, 21, 22 and 23 and for torque 2 input 
the angular displacement 1, 2 and 3 and for angular 
velocity 1, 2 and 3 is shown in Figure 24, 25, 26, 27, 
28 and 29 respectively. 

 

 
Figure 18 Response of Teta 1 

 



 Report and Opinion 2020;12(10)           http://www.sciencepub.net/report   ROJ 

 

68 

 
Figure 19 Response of Teta 2 

 

 
Figure 20 Response of Teta 3 

 
As we seen from Figure 18, 19 and 20, for the 

impulse signal the angles starts to increase and returns 
to zero degree for the two controllers but the 
pendulum with LQR controller has a high overshoot 
with more settling time than the pendulum with pole 
placement controller. 

 

 
Figure 21 Response of Teta 1 Dot 

 
 

 
Figure 22 Response of Teta 2 Dot 

 

 
Figure 23 Response of Teta 3 Dot 

 
As we seen from Figure 21, 22 and 23, for the 

impulse signal the angular velocities starts to increase 
and returns to zero for the two controllers but the 
pendulum with LQR controller has a high overshoot 
with more settling time than the pendulum with pole 
placement controller. 

 

 
Figure 24 Response of Teta 1 
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Figure 25 Response of Teta 2 

 

 
Figure 26 Response of Teta 3 

 
As we seen from Figure 24, 25 and 26, for the 

impulse signal the angles starts to increase and returns 
to zero degree for the two controllers but the 
pendulum with LQR controller has a high overshoot 
with more settling time than the pendulum with pole 
placement controller. 

 

 
Figure 27 Response of Teta 1 Dot 

 

 
Figure 28 Response of Teta 2 Dot 

 
 

 
 

Figure 29 Response of Teta 3 Dot 
 

 
As we seen from Figure 27, 28 and 29, for the 

impulse signal the angular velocities starts to increase 
and returns to zero for the two controllers but the 
pendulum with LQR controller has a high overshoot 
with more settling time than the pendulum with pole 
placement controller. 

 
 

5. Conclusion 
In this paper, stabilization of the triple inverted 

pendulum with LQR and pole placement controller 
have been analyzed simulated and compared 
suceesfully. The open loop simulation prove that the 
system is not stable without feedback control system. 
Comparison of the proposed controllers for an 
impulse input have been done and the system with 
pole placement controller improves the stability of the 
system. 
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