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Abstract: This study investigates the outlet temperature
control for the design of steam condenser. The
comparison has been made for a step drop in the steam
condenser temperature set point using MATLAB/
Simulink environment for the steam condenser with
NARMA-L2 using Levenberg-Marquardt algorithm and
NARMA-L2 using resilient backpropagation algorithm
controllers. The steam condenser with NARMA-L2 using
Levenberg-Marquardt algorithm controller presented
excellent and superior dynamic performance in response
to the temperature drop in settling time. The overall
simulation results demonstrated that the steam condenser
with  NARMA-L2  using  Levenberg-Marquardt
Algorithm  controller  can  be  an  efficient  alternative  to
the steam condenser with NARMA-L2 using resilient
backpropagation algorithm controller.

INTRODUCTION

A steam condenser is a closed vessel in which steam
is condensed by abstracting the heat by cooling it with
water and where the pressure is maintained below
atmospheric pressure. The condensed steam is known as
condensate. The efficiency of the steam power plant is
increased by the use of a condenser. The steam condenser
is an essential component of all modern steam power
plants[1].

The steam condenser receives exhaust steam from
one end and gets in contact with the cooling water flowed
within it form the cooling tower.

As the low-pressure steam comes in contact with the
cooling water, it condenses and turns into water. it is
attached to the air extraction pump and condensation
extraction pump. after condensation of steam, the
condensate is pumped into the hot well by the help of
condensate extraction pump.

The air extraction pump extracts air from the
condenser and produces a vacuum inside it. the vacuum

produced helps in the circulation of cooling water and the
flow of condensate downstream. The condenser is one of
the critical kinds of system in thermal electricity plant,
nuclear electricity plants and marine system plant. The
reliability of condenser running at once impacts the
protection and financial operation of the entire energy
plant or power gadget. A steam condenser is a chunk of
equipment that turns steam into water.

Many steam-based systems use a circuit of water to
maximize their efficiency. Water is heated into steam, the
steam offers motivation for a technique, a steam
condenser turns it back into water, and the cycle begins
again. The failure of the condenser may additionally cause
the boiler or steam turbine unit to overheat, which
endangers the safety of the whole producing unit or
electricity plant[2].

The condenser as a “lower source of heat” performs
a special position in an energy plant, due to the fact the
parameters of its work have a significant impact at the
performance of the installation. Therefore, it’s far critical
to recognize the condenser operating parameters during
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both design and operation. For this purpose, mathematical
models describing the paintings of the condenser in
modified situations are created.

Therefore, through the computer simulation
experiments, the status quo of the dynamic version and
knowledge the dynamic characteristics of the condenser
have a wonderful significance on improving the
protection and monetary operation degree of the steam
condenser[3].

MATERIALS AND METHODS

Modelling of steam condenser: The dynamic modelling
of Steam Condenser (SC) shall be established using mass
and energy balance condensation assumption. Therefore,
according to the energy balance of the system, the heat of
the steam will be equal to heat transferred to cooling
water (Fig. 1):

(1)hd mfrC R 

Where:
Chd = Heat duty of the condenser (kW)
Rmfr = Flow rate of the mass (kg secG1)
γ = Latent heat of steam
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Where:
Qtc = Heat transfer coefficient (overall)/heat transfer

area
Tcwo = Cooling water outlet temperature
Tcd = Condensation temperature
Ticw = Inlet temperature of cooling water

This yields to energy balance equation as:
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Where:
Tcwo = Flow rate of cooling water (kg secG1)
Mcwm = Holdup (cooling water) (kg)
Qwh = Cooling water heat capacity (KJ/kgK)
Based on the constant volume assumption, mass balance
equation can be derived. The ideal gas equation is:

(4) c c cd
rs mfr

c

dP G T
F R

dt V
 

Where:
Pc = Condenser pressure (kPa)
Gc = Gas constant= volume of condenser (m3)
Vc = Flow rate of steam (kg secG1)

Fig. 1: Steam condenser

Table 1: Steam condenser variables
Variables Values
Frs 7 (kg secG1)
Rmfr 7 (kg secG1)
Rcwf 127.1 (kg secG1)
Pc 90 (kPa)
Tcwo 80 (°C)
Ticw 78 (°C)
Tcd 106 (°C)
Chd 9862 (kW)

Table 2: Steam condenser parameters
Parameters Value and units
Gc 0.3 (kJ/(kgK))
Vc 8 (m3)
γ 2455.65 (kJ kgG1)
Qtc 456 (kW/K)
Mcwm 8500 (kg)
Qwh 6.4 (kJ/(kgK))
α1 0.006
α2 0.00045
φ 0.86 (K/kPa)
α 78 (°C)

While the temperature and pressure is approximated
linearly as:

(5)CD cT P  

Equation 3 and 4 are dynamic equations and system
have 7 parameters and 8 variables. The variables and
parameters with their values for a steam condenser are
shown in Table 1 and 2, respectively[4].

Proposed controllers design
Design of NARMA-L2 controller: The neuro controller
described on this phase is cited through two different
names: response linearization control and NARMA-L2
manipulate. It is known as comments linearization when
the plant shape has a specific form (associate form). It is
known as NARMA-L2 manipulate while the fortification
mold may be approximated by using the same form. The
vital principle of this type of control is to convert
nonlinear design system into linear dynamics with the aid
of cancelling the non-linearities. This phase starts off
evolved with the aid of submitting the associate system
form and presentation how you may use a neural
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community to become aware of this model. Then it
describes how the identified neural network model may
be used to broaden a controller[5].

Identification of the NARMA-L2 model: The first step
in the use of feedback linearization (or NARMA-L2)
manipulate is to identify the design to be controlled. You
train a neural network to represent the forward dynamics
of the system.

The first step is to pick out a styles association to use.
One standard pattern this is used to symbolize fashionable
discrete-time nonlinear system is the nonlinear
autoregressive-moving average (NARMA) model:

(6) 
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Where:
u(k) = The system input
y(k) = The system output

For the identification section, you can teach a neural
network to approximate the nonlinear function N. If you
want the system output to follow some reference
trajectory y(k+d) = yr(k+d) the subsequent step is to
expand a nonlinear controller of the form:
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The trouble with the usage of this controller is that in
case you need to teach a neural network to create the
characteristic G to minimize mean square blunders, you
need to apply dynamic returned propagation. This can be
pretty sluggish. One answer is to apply approximate
models to symbolize the system. The controller used on
this section is based totally at the NARMA-L2
approximate model: 
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This model is in associate shape, wherein the next
controller input u(k) is not contained in the nonlinearity.
The gain of this form is that you could resolve for the
control input that causes the system output to comply with
the reference y(k+d) = yr(k+d). The resulting controller
would have the form:

Table 3: Neural network parameters
Network architecture Values Variables Values
Size of hidden layer 6 Delayed plant input 2
Sample interval(sec) 1 Delayed plant output 3
Training data
Training sample 100 Maximum plant output 3
Maximum plant input 1 Minimum plant output 1
Minimum plant input 1 Max interval value (sec) 3
Min interval value (sec) 1.5
Training parameters
Training epochs 100

(9)
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Using this equation immediately can motive
awareness problems, due to the fact you ought to
determine the control input u(k) primarily based on the
output at the same time, y(k). So, rather, use the model:
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where, d$2. Figure 2 shows the structure of a neural
network representation. Using the NARMA-L2 model,
you can obtain the controller:

(11) 

 
   
   
 

     
   

r

y k ,y k 1 ,...,

y k d f y k n 1 ,u k ,....,

u k n 1
u k 1

y k ,y k 1 ,...,y k n 1 ,
g

u k ,....,u k n 1

  
  

     
       

   
 

   

which is realizable for d$2. Figure 3 shows the block
diagram of the NARMA-L2 controller. This controller can
be implemented with the formerly diagnosed NARMA-L2
plant model, as shown in Fig. 4. Table 3 illustrates the
network architecture, training data and training
parameters of the proposed controllers[6].

Levenberg-Marquardt algorithm: Like the
quasi-Newton methods, the Levenberg-Marquardt
algorithm was designed to approach second-order training
speed without having to compute the Hessian matrix.
When the performance function has the form of a sum of
squares (as is typical in training feedforward networks),
then the Hessian matrix can be approximated as:
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Fig. 2: The structure of a neural network representation

Fig. 3: Block diagram of the NARMA-L2 controller

(12)TH J J

and the gradient can be computed as:

(13)Tg J e

where, J is the Jacobian matrix that contains first
derivatives of the network errors with respect to the
weights and biases and e is a vector of network errors.
The Jacobian matrix can be computed through a standard
backpropagation technique that is much less complex than

computing the Hessian matrix. The Levenberg-Marquardt
algorithm uses this approximation to the Hessian matrix
in the following Newton-like update[7]:

(14)
1T T

k 1 kx x J J I J e


     

When the scalar µ is zero, this is just Newton’s
method, using the approximate Hessian matrix. When µ
is large, this becomes gradient descent with a small step
size. Newton’s method is faster and more accurate near an
error  minimum,  so,  the  aim  is to shift toward Newton’s
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Fig. 4. Previously identified NARMA-L2 plant model

Fig. 5: Simulink model of the steam condenser

method as quickly as possible. Thus, µ is decreased after
each successful step (reduction in performance function)
and is increased only when a tentative step would increase
the performance function. In this way, the performance
function is always reduced at each iteration of the
algorithm (Fig. 5)[8].

Resilient backpropagation algorithm: Multilayer
networks typically use sigmoid transfer functions in the
hidden layers. These functions are often called
“squashing” functions because they compress an infinite
input range into a finite output range. Sigmoid functions
are characterized by the fact that their slopes must
approach zero as the input gets large. This causes a
problem when you use steepest descent to train a
multilayer network with sigmoid functions because the

gradient can have a very small magnitude and therefore,
cause small changes in the weights and biases, even
though the weights and biases are far from their optimal
values. The purpose of the resilient backpropagation
(Rprop) training algorithm is to eliminate these harmful
effects of the magnitudes of the partial derivatives. Only
the sign of the derivative can determine the direction of
the weight update; the magnitude of the derivative has no
effect on the weight update. The size of the weight change
is determined by a separate update value. 

RESULTS AND DISCUSSION

The simulations of the steam condenser with the
proposed controllers will present in this section. The
Simulink model of the steam condenser with NARMA-L2 
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Fig. 6: Simulation output of the cooling water outlet
temperature for a step drop in temperature

using Levenberg-Marquardt algorithm and NARMA-L2
using resilient backpropagation algorithm controllersis
shown in Fig. 5[9].

Simulation of the cooling water outlet temperature for
a step drop in temperature: The Simulation output of
the cooling water outlet temperature for a step drop in
temperature for the steam condenser with NARMA-L2
using Levenberg-Marquardt algorithm and NARMA-L2
using resilient backpropagation algorithm controllers is
shown in Fig. 6.

The simulation above shows that the steam
condenser with NARMA-L2 using resilient
backpropagation algorithm controller temperature drops
with an oscillation with a big settling time as compared to
the steam condenser with NARMA-L2 using
Levenberg-Marquardt algorithm controller[10].

CONCLUSION

In this study, the design of steam condenser
condensate water temperature control has been done using
MATLAB/Simulink software successfully. Comparison
of the steam condenser with NARMA-L2 using
Levenberg-Marquardt algorithm and NARMA-L2 using
resilient backpropagation algorithm controllers for the
control target cooling water outlet temperature using a
step drop in temperature set point. The simulation results
prove that the steam condenser with NARMA-L2 using
Levenberg-Marquardt  algorithm  controller  shows  a
good  response  in  improving  the  response  of  the
control targets effectively with best settling time than the
steam   condenser   with   NARMA-L2    using    resilient

backpropagation algorithm controller. Finally, the
comparison and simulation results prove the effectiveness
of the presented steam condenser with NARMA-L2 using
Levenberg-Marquardt algorithm controller.
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