Bulletin of the Section of Logic Volume 6/4 (1977), pp. 164–168 reedition 2011 [original edition, pp. 164–170]

Frederic A. Johnson

A NATURAL DEDUCTION RELEVANCE LOGIC

The relevance logic (NDR) presented in this paper is the result of an attempt to find a natural deduction development, in the style of I. M. Copi (Introduction to Logic, 4th ed., MacMillan, 1972), for the relevance logic I presented in "A Three-Valued Interpretation for a Relevance Logic" (The Relevance Logic Newsletter, Vol. 1, no. 3, 1976).

The propositional variables of NDR are, p_1, p_2, \ldots NRD's well-formed formulas are constructed in the standard way by using propositional variables, parentheses and the connectives, $-, \cdot$ and \lor , in order of increasing binding strength. ' $P \supset Q$ ' is by definition ' $-(P \cdot -Q)$ '. Capital letters with or without subscripts are metalinguistic variables which range over the well-formed formulas. We will use ' \vdash_r ' to present NDR's rules of inference:

1.	$P \vdash_r P \lor Q$, where every p_i	(Restricted Addition, RA)
	in Q occurs in P .	
2.	$P \vdash_r P \cdot (Q \lor -Q)$, where every	(Restricted Tautology
	p_i in Q occurs in P .	Conjunction, RTC)
3.	$P,Q \vdash_r P \cdot Q$	(Conjunction, Conj.)
4.	$P \cdot Q \vdash_r P$	(Simplification, Simp.)
5.	$P \lor Q \cdot R \vdash_r P \lor Q$	(Disjunctive Simplifica-
		tion, DS)
6.	$P \lor Q \cdot -Q \vdash_r P$	(Contradiction
		Elimination, CE)
7.	If $S \equiv_l T$ in virtue of exactly one	of the following statements th

- 7. If $S \equiv_l T$ in virtue of exactly one of the following statements then $F(S) \vdash F(T)$.
 - $\begin{array}{ll} \mathrm{i} & P \cdot (Q \lor R) \equiv_l P \cdot Q \lor P \cdot R & (\mathrm{DeMorgan's, DeM}) \\ \mathrm{ii}) & P \cdot (Q \lor R) \equiv_l P \cdot Q \lor P \cdot R & (\mathrm{Distribution, Dist.}) \\ & P \lor Q \cdot R \equiv_l (P \lor Q) \cdot (P \lor R) \end{array}$

A Natural Deduction Relevance Logic

iii)	$P \cdot (Q \cdot R) \equiv_l (P \cdot Q) \cdot R$	(Association, Assoc.)
	$P \lor (Q \lor R) \equiv_l (P \lor Q) \lor R$	
iv)	$P \cdot Q \equiv_l Q \cdot P$	(Computation, Com.)
	$P \lor Q \equiv_l Q \lor P$	
v)	$P \equiv_l P$	(Double Negation, DN)
vi)	$P \cdot P \equiv_l P$	(Tautology, Taut.)
	$P \lor P \equiv_l P$	

NDR's entailment relation, symbolized by ' \vdash ', is defined as follows: $P_1, \ldots, P_n \vdash C$ if and only if there is a sequence of well-formed formulas S_1, \ldots, S_m such that $S_m = C$ and each S_i $(1 \leq i \leq m)$ is either a P_i $(1 \leq i \leq n)$ or follows from preceding S_j by one of the rules of inference.

THEOREM 1. If $P_1, \ldots, P_n \vdash C$ then P_1, \ldots, P_n classically entails C and every p_i in C occurs in P_1, \ldots, P_n .

PROOF. Every valuation which assigns t to the premises of the rules of inference assigns t to the conclusion. Furthermore, none of the rules of inference introduce into the conclusion propositional variables which do not occur in the premises.

THEOREM 2. (Indirect Proof.) If $P \cdot -Q \vdash R \cdot -R$ and every p_i in Q occurs in P then $P \vdash Q$.

PROOF. Let S_1, \ldots, S_n be a sequence of well-formed formulae such that $S_1 = P \cdot -Q$, $S_n = R \cdot -R$ and each S_i $(1 \leq i \leq n)$ is either $P \cdot -Q$ or follows from S_j or from S_j and S_k $(1 \leq j, k < n)$. Then construct this sequence of statements:

1.
$$P$$

2. $P \cdot (Q \vee -Q)$ 1, RTC
 $a_1(=3)$. $P \cdot Q \vee P \cdot -Q$ $(P \cdot S \vee S_1)$ 2, Dist.
.
 a_2 . $P \cdot Q \vee S_2$
.
 a_n . $P \cdot Q \vee S_n$

$a_n + 1.$	$P \cdot Q$	a_n , CE
$a_n + 2.$	$Q \cdot P$	$a_n + 1$, Com.
$a_n + 3.$	Q	$a_n + 2$, Simp.

The steps from, but excluding, $P \cdot Q \vee S_{j-1}$ to, and including, $P \cdot Q \vee S_j$ for $1 < j \leq n$ are to be filled in as follows:

- i) If $S_j = P \cdot -Q$ then supply the sequence $a_j - 1$. $(P \cdot Q \lor P \cdot -Q) \cdot (Q \lor -Q)$ a_1 , RTC a_j . $P \cdot Q \lor P \cdot -Q$ $a_j - 1$, Simp. Make $a_j - 2 = a_{j-1}$.
- ii) If $S_i \vdash S_j$ (i < j) by RA, where $S_j = S_i \lor T$, then supply the sequence $a_j 1$. $(P \cdot Q \lor S_i) \lor T$ a_i , RA a_j . $P \cdot Q \lor (S_i \lor T)$ $a_j - 1$, Assoc. Make $a_j - 2 = a_{j-1}$.
- iii) If $S_i \vdash S_j$ (i < j) by RTC, where $S_j = S_i \cdot (T \lor -T)$, then supply the sequence $T = (P = O \lor S_i) \cdot (T \lor -T)$ a_i , RTC

$$\begin{array}{ll} a_j = 7, & (P \cdot Q \lor S_i) \cdot (T \lor -T) & a_i, \ \mathrm{RIC} \\ a_j = 6, & (T \lor -T) \cdot (P \cdot Q \lor S_i) & a_j = 7, \ \mathrm{Com}, \\ a_j = 5, & (T \lor -T) \cdot (P \cdot Q) \lor & \\ & (T \lor -T) \cdot S_i & a_j = 6, \ \mathrm{Dist}, \\ a_j = 4, & (T \lor -T) \cdot S_i \lor (T \lor -T) \cdot & \\ & (P \cdot Q) & a_j = 5, \ \mathrm{Com}, \\ a_j = 3, & (T \lor -T) \cdot S_i \lor (P \cdot Q) \cdot & \\ & (T \lor -T) & a_j = 4, \ \mathrm{Com}, \\ a_j = 2, & (T \lor -T) \cdot S_i \lor (P \cdot Q) & a_j = 3, \ \mathrm{DS} \\ a_j = 1, & (P \cdot Q) \lor (T \lor -T) \cdot S_i & a_j = 2, \ \mathrm{Com}, \\ a_j, & (P \cdot Q) \lor S_i \cdot (T \lor -T) & a_j = 1, \ \mathrm{Com}, \\ \mathrm{Make} \ a_j = 8 = a_{j-1}. \end{array}$$

 $\begin{array}{ll} \text{iv) If } S_h, S_i \vdash S_j \ (h,i < j) \text{ by Conj., where } S_j = S_h \cdot S_i, \text{ then supply the sequence} \\ a_j - 1. \quad (P \cdot Q \lor S_n) \cdot (P \cdot Q \lor S_i) \quad a_h, a_i \text{ Conj.} \\ a_j. \quad P \cdot Q \lor (S_h \cdot S_i) \quad a_j - 1, \text{ Dist.} \\ \text{Make } a_j - 2 = a_{j-1}. \end{array}$

Procedures for filling in the lines between a_j and a_{j-1} when $S_i \vdash S_j$ in virtue of Rules 4-7 are also easily constructed.

166

THEOREM 3. (Transitivity of Entailment.) If $P \vdash Q$ and $Q \vdash R$ then $P \vdash R$.

PROOF. Let $S_1 (= P), S_2, \ldots, S_m (= Q)$ be a sequence of well-formed formulas which shows that $P \vdash Q$ and let $S_m (= Q), S_{m+1}, \ldots, S_n (= R)$ be a sequence of well-formed formulas which shows that $P \vdash R$. Then S_1, \ldots, S_n shows that $P \vdash R$.

THEOREM 4. If P classically entails Q and every p_i in Q occurs in P then $P \vdash Q$.

PROOF. Assume the antecedent. Then $P \cdot -Q$ is a contradiction. By DeM, Dist., Assoc., Com., DN and Taut. $P \cdot -Q \vdash R_1 \cdot -R_1 \cdot S_1 \lor \ldots \lor R_n \cdot -R_n \cdot S_n \cdot (R_1 \cdot -R_1 \cdot S_1 \lor \ldots \lor R_n \cdot -R_n \cdot S_n$ is one of the formulas which will be produced when following some of the various mechanical procedures for generating the disjunctive normal form of $P \cdot -Q$). By CE and Simp. $R_1 \cdot -R_1 \cdot S_1 \lor \ldots \lor R_n \cdot -R_n \cdot S_n \vdash R_1 \cdot -R_1$. By Theorem 3 (Th. 3), $P \cdot -Q \vdash R_1 \cdot -R_1$. By Th. $2 P \vdash Q$.

THEOREM 5. (Adjunction). If $P \vdash Q$ and $P \vdash R$ then $P \vdash Q \cdot R$.

PROOF. Let S_1, \ldots, S_m (= Q), ..., S_n (= R), where $m \leq n$, be a sequence that shows that $P \vdash Q$ and $P \vdash R$. Let $S_{n+1} = Q \cdot R$. Then S_1, \ldots, S_{n+1} shows that $P \vdash Q \cdot R$, using Conj.

THEOREM 6. (Deduction Theorem). If $P \cdot Q$ and every p_i in Q occurs in P then $P \vdash Q \supset C$.

PROOF. Assume the antecedent. By Theorem 1 $P \cdot Q$ classically entails C. Then P classically entails $Q \supset C$. Since every p_i in Q occurs in P and every p_i in C occurs in $P \cdot Q$ it follows that every p_i in $Q \supset C$ occurs in P. By Theorem 4 $P \vdash Q \supset C$.¹

THEOREM 7. (Antilogism). If $P \cdot Q \vdash R$ and every p_i in Q occurs in P then $P \cdot -R \vdash -Q$.

PROOF. By Simp. $P \cdot -R \vdash P$. Assume the antecedent. By Th. 6 and the definition of ' \supset ' $P \vdash -(Q \cdot -R)$. By Th. 3 $P \cdot -R \vdash -(Q \cdot -R)$. By Com.

 $^{^1\}mathrm{This}$ proof, suggested by Richard Routley, is more straightforward than my original proof. I am grateful for Professor Routley's comments, which led to several improvements.

and Simp. $P \cdot -R \vdash -R$. By Th. 5 $P \cdot -R \vdash -R \cdot -(Q \cdot -R)$. By Dem, Dist., Com. and Simp. $-R \cdot -(Q \cdot -R) \vdash -Q$. By Th. 3 $P \cdot -R \vdash -Q$.

The difference between NDR and the relevance logic presented in "A Three-Valued Interpretation of a Relevance Logic" is that the latter does not recognize the validity of any arguments with contradictory premises, whereas NDR does. For example, $p_1 \cdot -p_1 \vdash p_1$ in NDR. But both of these logics endorse what W. T. Parry (The Logic of C. I. Lewis', **The Philosophy of C. I. Lewis**, ed. P. A. Schilpp, 1968, pp. 115–54) called the Proscriptive Principle, which keeps those arguments which contain a p_i that occurs in the conclusion but not in a premise from being valid. Charles Kielkopf ('Adjunction and Paradoxical Derivations', **Analysis**, Vol. 35, no. 4, 1975, pp. 127–9) showed that the system which Parry based on the Proscriptive Principle inadvertently permits the derivation of any statement from a contradiction.

Perhaps the most worrisome feature of NDR is that it denies that in general if A entails B then -B entails -A. For example, though $p_1 \cdot p_2$ entails p_1 it is false that $-p_1$ entails $-(p_1 \cdot p_2)$. But the reservations which beginning students of logic have about the validity of Unrestricted Addition, which would guarantee that $-p_1$ entails $-p_1 \vee -p_2$ suggest that this apparent defect may be a virtue.²

Department of Philosophy Colorado State University Fort Collins, Colorado 80523

 $^{^{2}\}mathrm{I}$ am grateful to Professor Charles Kielkopf and Professor Patrick McKee for their helpful comments.