Bulletin of the Section of Logic
Volume 6/4 (1977), pp. 164-168
reedition 2011 [original edition, pp. 164-170]

Frederic A. Johnson

A NATURAL DEDUCTION RELEVANCE LOGIC

The relevance logic (NDR) presented in this paper is the result of an attempt to find a natural deduction development, in the style of I. M. Copi (Introduction to Logic, 4th ed., MacMillan, 1972), for the relevance logic I presented in "A Three-Valued Interpretation for a Relevance Logic" (The Relevance Logic Newsletter, Vol. 1, no. 3, 1976).

The propositional variables of NDR are, p_{1}, p_{2}, \ldots. NRD's well-formed formulas are constructed in the standard way by using propositional variables, parentheses and the connectives,,$- \cdot$ and \vee, in order of increasing binding strength. ' $P \supset Q$ ' is by definition ' $-(P \cdot-Q)^{\prime}$. Capital letters with or without subscripts are metalinguistic variables which range over the well-formed formulas. We will use ' \vdash_{r} ' to present NDR's rules of inference:

1. $\quad P \vdash_{r} P \vee Q$, where every $p_{i} \quad$ (Restricted Addition, RA) in Q occurs in P.
2. $\quad P \vdash_{r} P \cdot(Q \vee-Q)$, where every (Restricted Tautology p_{i} in Q occurs in P.

Conjunction, RTC)
3. $P, Q \vdash_{r} P \cdot Q$
(Conjunction, Conj.)
4. $P \cdot Q \vdash_{r} P$
(Simplification, Simp.)
5. $\quad P \vee Q \cdot R \vdash_{r} P \vee Q$
(Disjunctive Simplifica-
tion, DS)
6. $P \vee Q \cdot-Q \vdash_{r} P$
(Contradiction
Elimination, CE)
7. If $S \equiv_{l} T$ in virtue of exactly one of the following statements then $F(S) \vdash F(T)$.
i) $P \cdot(Q \vee R) \equiv_{l} P \cdot Q \vee P \cdot R \quad$ (DeMorgan's, DeM)
ii) $P \cdot(Q \vee R) \equiv_{l} P \cdot Q \vee P \cdot R$
(Distribution, Dist.)

$$
P \vee Q \cdot R \equiv_{l}(P \vee Q) \cdot(P \vee R)
$$

$$
\begin{array}{lll}
\text { iii) } & P \cdot(Q \cdot R) \equiv_{l}(P \cdot Q) \cdot R & \text { (Association, Assoc.) } \\
& P \vee(Q \vee R) \equiv_{l}(P \vee Q) \vee R & \\
\text { iv) } & P \cdot Q \equiv_{l} Q \cdot P & \text { (Computation, Com.) } \\
& P \vee Q \equiv_{l} Q \vee P & \\
\text { v) } & --P \equiv_{l} P & \text { (Double Negation, DN) } \\
\text { vi) } & P \cdot P \equiv_{l} P & \text { (Tautology, Taut.) } \\
& P \vee P \equiv_{l} P &
\end{array}
$$

NDR's entailment relation, symbolized by ' \vdash ', is defined as follows: P_{1}, \ldots, $P_{n} \vdash C$ if and only if there is a sequence of well-formed formulas S_{1}, \ldots, S_{m} such that $S_{m}=C$ and each $S_{i}(1 \leqslant i \leqslant m)$ is either a $P_{i}(1 \leqslant i \leqslant n)$ or follows from preceding S_{j} by one of the rules of inference.

Theorem 1. If $P_{1}, \ldots, P_{n} \vdash C$ then P_{1}, \ldots, P_{n} classically entails C and every p_{i} in C occurs in P_{1}, \ldots, P_{n}.

Proof. Every valuation which assigns t to the premises of the rules of inference assigns t to the conclusion. Furthermore, none of the rules of inference introduce into the conclusion propositional variables which do not occur in the premises.

Theorem 2. (Indirect Proof.) If $P \cdot-Q \vdash R \cdot-R$ and every p_{i} in Q occurs in P then $P \vdash Q$.

Proof. Let S_{1}, \ldots, S_{n} be a sequence of well-formed formulae such that $S_{1}=P \cdot-Q, S_{n}=R \cdot-R$ and each $S_{i}(1 \leqslant i \leqslant n)$ is either $P \cdot-Q$ or follows from S_{j} or from S_{j} and $S_{k}(1 \leqslant j, k<n)$. Then construct this sequence of statements:

$$
\begin{aligned}
& \text { 1. } P \\
& \text { 2. } P \cdot(Q \vee-Q) \quad \text { 1, RTC } \\
& a_{1}(=3) . \quad P \cdot Q \vee P \cdot-Q \quad\left(P \cdot S \vee S_{1}\right) \quad 2 \text {, Dist. } \\
& a_{2} . \quad P \cdot Q \vee S_{2} \\
& a_{n} . \quad P \cdot Q \vee S_{n}
\end{aligned}
$$

$$
\begin{array}{lll}
a_{n}+1 . & P \cdot Q & a_{n}, \mathrm{CE} \\
a_{n}+2 . & Q \cdot P & a_{n}+1, \mathrm{Com} \\
a_{n}+3 . & Q & a_{n}+2, \text { Simp. }
\end{array}
$$

The steps from, but excluding, $P \cdot Q \vee S_{j-1}$ to, and including, $P \cdot Q \vee S_{j}$ for $1<j \leqslant n$ are to be filled in as follows:
i) If $S_{j}=P \cdot-Q$ then supply the sequence

$$
\begin{array}{rll}
a_{j}-1 . & (P \cdot Q \vee P \cdot-Q) \cdot(Q \vee-Q) & a_{1}, \text { RTC } \\
a_{j} . & P \cdot Q \vee P \cdot-Q & a_{j}-1, \text { Simp. }
\end{array}
$$

Make $a_{j}-2=a_{j-1}$.
ii) If $S_{i} \vdash S_{j}(i<j)$ by RA, where $S_{j}=S_{i} \vee T$, then supply the sequence $a_{j}-1 . \quad\left(P \cdot Q \vee S_{i}\right) \vee T \quad a_{i}$, RA $a_{j} . \quad P \cdot Q \vee\left(S_{i} \vee T\right) \quad a_{j}-1$, Assoc.
Make $a_{j}-2=a_{j-1}$.
iii) If $S_{i} \vdash S_{j}(i<j)$ by RTC, where $S_{j}=S_{i} \cdot(T \vee-T)$, then supply the sequence

$$
\begin{array}{rll}
a_{j}-7 . & \left(P \cdot Q \vee S_{i}\right) \cdot(T \vee-T) & a_{i}, \text { RTC } \\
a_{j}-6 . & (T \vee-T) \cdot\left(P \cdot Q \vee S_{i}\right) & a_{j}-7, \text { Com. } \\
a_{j}-5 . & (T \vee-T) \cdot(P \cdot Q) \vee & \\
& (T \vee-T) \cdot S_{i} & a_{j}-6, \text { Dist. } \\
a_{j}-4 . & (T \vee-T) \cdot S_{i} \vee(T \vee-T) . & \\
& (P \cdot Q) & \\
a_{j}-3 . & (T \vee-T) \cdot S_{i} \vee(P \cdot Q) . & \\
& (T \vee-T) & \\
a_{j}-2 . & (T \vee-T) \cdot S_{i} \vee(P \cdot Q) & a_{j}-4, \text { Com. } \\
a_{j}-1 . & (P \cdot Q) \vee(T \vee-T) \cdot S_{i}-3, \mathrm{DS} \\
a_{j} . & (P \cdot Q) \vee a_{i} \cdot(T \vee-T) & a_{j}-2, \text { Com. } \\
\cdots & a_{j}-1, \text { Com. }
\end{array}
$$

Make $a_{j}-8=a_{j-1}$.
iv) If $S_{h}, S_{i} \vdash S_{j}(h, i<j)$ by Conj., where $S_{j}=S_{h} \cdot S_{i}$, then supply the sequence

$$
a_{j}-1 . \quad\left(P \cdot Q \vee S_{n}\right) \cdot\left(P \cdot Q \vee S_{i}\right) \quad a_{h}, a_{i} \text { Conj. }
$$

$$
a_{j} . \quad P \cdot Q \vee\left(S_{h} \cdot S_{i}\right) \quad a_{j}-1, \text { Dist. }
$$

Make $a_{j}-2=a_{j-1}$.

Procedures for filling in the lines between a_{j} and a_{j-1} when $S_{i} \vdash S_{j}$ in virtue of Rules 4-7 are also easily constructed.

Theorem 3. (Transitivity of Entailment.) If $P \vdash Q$ and $Q \vdash R$ then $P \vdash R$.

Proof. Let $S_{1}(=P), S_{2}, \ldots, S_{m}(=Q)$ be a sequence of well-formed formulas which shows that $P \vdash Q$ and let $S_{m}(=Q), S_{m+1}, \ldots, S_{n}(=R)$ be a sequence of well-formed formulas which shows that $P \vdash R$. Then S_{1}, \ldots, S_{n} shows that $P \vdash R$.

Theorem 4. If P classically entails Q and every p_{i} in Q occurs in P then $P \vdash Q$.

Proof. Assume the antecedent. Then $P \cdot-Q$ is a contradiction. By DeM, Dist., Assoc., Com., DN and Taut. $P \cdot-Q \vdash R_{1} \cdot-R_{1} \cdot S_{1} \vee \ldots \vee R_{n}$. $-R_{n} \cdot S_{n} \cdot\left(R_{1} \cdot-R_{1} \cdot S_{1} \vee \ldots \vee R_{n} \cdot-R_{n} \cdot S_{n}\right.$ is one of the formulas which will be produced when following some of the various mechanical procedures for generating the disjunctive normal form of $P \cdot-Q$). By CE and Simp. $R_{1} \cdot-R_{1} \cdot S_{1} \vee \ldots \vee R_{n} \cdot-R_{n} \cdot S_{n} \vdash R_{1} \cdot-R_{1}$. By Theorem 3 (Th. 3), $P \cdot-Q \vdash R_{1} \cdot-R_{1}$. By Th. $2 P \vdash Q$.

Theorem 5. (Adjunction). If $P \vdash Q$ and $P \vdash R$ then $P \vdash Q \cdot R$.
Proof. Let $S_{1}, \ldots, S_{m}(=Q), \ldots, S_{n}(=R)$, where $m \leqslant n$, be a sequence that shows that $P \vdash Q$ and $P \vdash R$. Let $S_{n+1}=Q \cdot R$. Then S_{1}, \ldots, S_{n+1} shows that $P \vdash Q \cdot R$, using Conj.

Theorem 6. (Deduction Theorem). If $P \cdot Q$ and every p_{i} in Q occurs in P then $P \vdash Q \supset C$.

Proof. Assume the antecedent. By Theorem $1 P \cdot Q$ classically entails C. Then P classically entails $Q \supset C$. Since every p_{i} in Q occurs in P and every p_{i} in C occurs in $P \cdot Q$ it follows that every p_{i} in $Q \supset C$ occurs in P. By Theorem $4 P \vdash Q \supset C .{ }^{1}$

Theorem 7. (Antilogism). If $P \cdot Q \vdash R$ and every p_{i} in Q occurs in P then $P \cdot-R \vdash-Q$.

Proof. By Simp. $P \cdot-R \vdash P$. Assume the antecedent. By Th. 6 and the definition of ' \supset ' $P \vdash-(Q \cdot-R)$. By Th. $3 P \cdot-R \vdash-(Q \cdot-R)$. By Com.

[^0]and Simp. $P \cdot-R \vdash-R$. By Th. $5 P \cdot-R \vdash-R \cdot-(Q \cdot-R)$. By Dem, Dist., Com. and Simp. $-R \cdot-(Q \cdot-R) \vdash-Q$. By Th. $3 P \cdot-R \vdash-Q$.

The difference between NDR and the relevance logic presented in "A Three-Valued Interpretation of a Relevance Logic" is that the latter does not recognize the validity of any arguments with contradictory premises, whereas NDR does. For example, $p_{1} \cdot-p_{1} \vdash p_{1}$ in NDR. But both of these logics endorse what W. T. Parry (The Logic of C. I. Lewis', The Philosophy of C. I. Lewis, ed. P. A. Schilpp, 1968, pp. 115-54) called the Proscriptive Principle, which keeps those arguments which contain a p_{i} that occurs in the conclusion but not in a premise from being valid. Charles Kielkopf ('Adjunction and Paradoxical Derivations', Analysis, Vol. 35, no. 4,1975 , pp. 127-9) showed that the system which Parry based on the Proscriptive Principle inadvertently permits the derivation of any statement from a contradiction.

Perhaps the most worrisome feature of NDR is that it denies that in general if A entails B then $-B$ entails $-A$. For example, though p_{1}. p_{2} entails p_{1} it is false that $-p_{1}$ entails $-\left(p_{1} \cdot p_{2}\right)$. But the reservations which beginning students of logic have about the validity of Unrestricted Addition, which would guarantee that $-p_{1}$ entails $-p_{1} \vee-p_{2}$ suggest that this apparent defect may be a virtue. ${ }^{2}$

Department of Philosophy
Colorado State University
Fort Collins, Colorado 80523

[^1]
[^0]: ${ }^{1}$ This proof, suggested by Richard Routley, is more straightforward than my original proof. I am grateful for Professor Routley's comments, which led to several improvements.

[^1]: ${ }^{2}$ I am grateful to Professor Charles Kielkopf and Professor Patrick McKee for their helpful comments.

