
Consciousness qua Mortal Computation

Johannes Kleiner1,2,3,4

1Munich Center for Mathematical Philosophy, Ludwig-Maximilians-Universität München
2Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München

3Institute for Psychology, University of Bamberg
4Association for Mathematical Consciousness Science

Abstract. Computational functionalism posits that consciousness is a com-
putation. Here we show, perhaps surprisingly, that it cannot be a Turing
computation. Rather, computational functionalism implies that consciousness
is a novel type of computation that has recently been proposed by Geoffrey
Hinton, called mortal computation.

1. Introduction

A fundamental tenet of general purpose
digital computing is that software is separated
from hardware, so that the same program or
algorithm can be run on any suitable sys-
tem. This tenet is about to be broken. Con-
temporary developments in Artificial Intelli-
gence (AI) and AI chip production have led to
the identification of a novel concept of general
purpose computing, called mortal computa-
tion (Hinton, 2022). This concept draws a line
between the type of computations that con-
temporary processing units do, and the type
of computations that brains and other biolog-
ical organisms carry out.

Computational functionalism, first defined
by Putnam (1967), posits, in a nutshell, that
consciousness is a computation. This view
has gained popularity again in light of the
staggering achievements in AI development in
recent years. AI models are computations,
so if computational functionalism is true, AI
models can—and, depending on the nature of
the computation that consciousness is, will—
become conscious (Butlin et al., 2023).

Here we show that computational function-
alism is not indifferent with respect to the
type of computation that consciousness is. We
show that if there is any organism that is ca-
pable of conscious experiences, but which can-
not be programmed—for example, non-human

animals; cf. Assumption 1—, then compu-
tational functionalism implies that conscious-
ness is a mortal computation. To establish this
result, we make use of a differential definition
of mortal computation, as well as general facts
about the relation between programs, Turing
computation and immortal computation.

Our result challenges the usual understand-
ing of computational functionalism, which is
centered around Turing-like models of com-
putation. If our result holds true, conscious-
ness cannot, according to computational func-
tionalism, be a Turing computation or pro-
grammed. Yet, contemporary AI systems and
programs are Turing computations. There-
fore, this result speaks against the possibility
of AI consciousness (though it does not aim to
settle the issue due to questions of realization,
cf. Section 7).

The underlying perspective of this pa-
per is that the discovery of mortal com-
putation by Hinton (2022) may well be a
first step towards understanding of a whole
new paradigm of computation, potentially
as consequential as the Turing-Church-Gödel-
Herbrand paradigm of computation of the past
nine decades (Gödel, 1934; Church, 1936; Tur-
ing, 1937b).1

2. Mortal Computation

The notion of mortal computation was
identified and coined by Hinton (2022, Sec. 9),

1



2

who describes a learning task that makes use
of unknown properties of hardware that vary
across systems, such as variations in the con-
nectivity of a system, or variations in non-
linear processes in a system. As a result,
the parameter values that define the learned
computation “are only useful for that spe-
cific hardware instance, so the computation
they perform is mortal: it dies with the hard-
ware” (Hinton, 2022, p. 13). The general com-
puting paradigm of the past nine decades, in
contrast, implies that a computation is largely
independent of the hardware on which it is
run: “[T]he same program or the same set of
weights can be run on a different physical copy
of the hardware. This makes the knowledge
contained in the program or the weights im-
mortal: The knowledge does not die when the
hardware dies” (Hinton, 2022, p. 13).

There is, at this early stage, no constructive
definition of mortal computation,2 but we may
consider a differential definition, that helps us
distinguish mortal computations in virtue of
what they are not. To provide such defini-
tion, denote by C the class of all computa-
tions. C comprises all Turing computations,
which we will denote by CTM in what follows,
as well as other notions of computation, for
example, non-deterministic Turing computa-
tions, neural computations, analogue compu-
tations and the yet-to-be-understood mortal
computations.

The core intuition behind immortal com-
putation is “that the software should be sep-
arable from the hardware” (Hinton, 2022,
p. 13). In practice—in central processing units
(CPUs), graphics processing units (GPUs),
tensor processing units (TPUs), or data pro-
cessing units (DPUs)—this separation is en-
abled by a processing unit’s Instruction Set
Architecture (ISA). An ISA contains specifica-
tions of all computations that the processing
unit can carry out, and it is with respect to
these specifications that programs, operating
systems and compilers are defined. To run a
program is to run machine code that speci-
fies which of the ISA’s computations are to be
carried out in which order (call this concate-
nation) and how the results of computations
are to be used by other computations (call
this combination). Differences among process-
ing units’ performance, design, size, etc., are

differences in an ISA’s implementation. The
ISA exists to ensure binary-code compatibil-
ity of software despite such differences; it is
the boundary between software and hardware.

The computations defined by an ISA con-
stitute a reference relative to which software
is defined, and which a class of hardware im-
plements. It ensures that a program can run
on different physical copies of the same type of
hardware. Computation is immortal precisely
because it is defined with respect to such ref-
erence. We can formalize this requirement as
follows.

Definition 1. A computation c ∈ C is im-
mortal iff there is a class of reference compu-
tations cref ⊂ C such that c is a concatenation
and combination of these reference computa-
tions. A computation c is mortal iff it is not
immortal.

We will denote the class of immortal com-
putations by CImm. Immortal computations
are meant to be a subclass of Turing compu-
tations, so that we have

CImm ⊂ CTM . (2.1)

Because an immortal computation c is a
concatenation and combination of reference
computations, every system that can realize
an immortal computation c must be able to
realize its reference computations cref. This is
the only implication of Definition 1 we will
make use of in what follows. To explicate
this implication formally, we denote by Sys the
class of all systems. This class includes, for ex-
ample, all CPUs, GPUs, TPUs, and DPUs in
use today, as well as all biological organisms.
Furthermore, we denote by C(S) all computa-
tions that a system S ∈ Sys can realize or im-
plement. Using such formalism is of advantage
because it can be applied to any account of
implementation of a computation (Piccinini,
2015). The essential implication of the previ-
ous definition then reads as follows.

Implication 1. If c ∈ C is immortal, then
there is a class cref ⊂ C such that for all
S ∈ Sys

c ∈ C(S) ⇒ cref ⊂ C(S) . (2.2)

An important class of immortal computa-
tions are computations specified by writing a



3

program in some programming language; com-
putations that are coded, that is, and com-
piled to run on CPUs, GPUs, TPUs or DPUs.
We will simply refer to these computations as
‘programs’. Programs are immortal because
they are defined with respect to some pro-
gramming language that in turn is defined, via
its compiler, with respect to one or more ISAs.

We denote the class of computations that
can be coded with any of the existing program-
ming languages by Prog. Because programs
are immortal, we have

Prog ⊂ CImm . (2.3)

3. Computational Functionalism

Computational functionalism was intro-
duced by Putnam (1967) as the following set
of assumptions.

1. “All organisms capable of feeling pain
are Probabilistic Automata.

2. Every organism capable of feeling pain
possesses at least one Description of a
certain kind (i.e., being capable of feel-
ing pain is possessing an appropriate
kind of Functional Organization).

3. No organism capable of feeling pain
possesses a decomposition into parts
which separately possess Descriptions
of the kind referred to in 2.

4. For every Description of the kind re-
ferred to in 2, there exists a subset of
the sensory inputs such that an organ-
ism with that Description is in pain
when and only when some of its sensory
inputs are in that subset.” (Putnam,
1967, 1975, p. 434)

In giving this definition, Putnam equates
Probabilistic Automata with descriptions of a
system; “[t]he Machine Table mentioned in the
Description will then be called the Functional
Organization of [a system] S relative to that
Description” (ibid.).

The understanding of computation has
evolved substantially since Putnam (1967), cf.
e.g. (Piccinini, 2015). To connect Putnam’s
definition to computation as presently under-
stood, and to do justice of it being a definition
of computational functionalism, we reformu-
late Condition 2 in abstract terms, making use
of the set C(S) of computations that a system

can realize, which we have introduced above.
It is clear from the context of Putnam’s def-
inition that it is to apply to all systems, not
just organisms in a narrow sense. Denoting
the experience of “feeling pain” by e, and the
class of systems capable of having this expe-
rience by Syse, we may hence read Putnam’s
Condition 2 as follows.

Implication 2. Computational functionalism
implies that there is at least one computation
c∗ ∈ C such that, for all S ∈ Sys,

S ∈ Syse ⇒ c∗ ∈ C(S) .

In Putnam’s terms, being capable of real-
izing c∗ is being capable of experiencing pain.
Modulo details of sensory input referred to in
Putnam’s Condition 4, we may say that expe-
riencing pain is realizing a computation c∗, or,
in more simple terms yet, that the experience
of pain is c∗. Nothing hinges on these termi-
nological shortcuts, though. Putnam’s condi-
tions must hold as well for experiences other
than pain, but may be realized by different
computations in each case.

4. Programs

We have denoted the class of computations
that can be coded with any existing program-
ming language by Prog. We now define Sys0
to denote the class of systems that can run
such programs. Because programs are defined
relative to Instruction Set Architectures (ISA)
of the underlying programming language, Sys0
is the class of systems that can realize ISAs
of existing programming languages. Denot-
ing, as above, an ISA of a program c ∈ Prog
by cref, this class is defined as

Sys0 = {S ∈ Sys | cref ⊂ C(S) for at
least one c ∈ Prog} .

(4.1)

The class Sys0 comprises all desktop and
laptop computers, mobile devices, worksta-
tions, servers and supercomputers. It com-
prises anything that can run any Instruction
Set Architecture of any existing compiler or
programming language. But it does not com-
prise animals, or other organisms, that cannot
be programmed—it does not contain organ-
isms which are incapable of operating non-
trivial logic as required by ISAs, that is. If



4

any such animal or orgamism is conscious, the
following assumption holds true.

Assumption 1. There is a system S ̸∈ Sys0
that is capable of conscious experience e.

In what follows, we assume computational
functionalism (viz. Implication 2) and As-
sumption 1. The following lemma shows that
if this is the case, the computation c∗ is not
among all programs.

Lemma 1. c∗ ̸∈ Prog.

Proof. Assume c∗ ∈ Prog and let S̃ denote the
system in Assumption 1. Because S̃ ̸∈ Sys0,

it follows that c∗ref ̸⊂ C(S̃). But because S̃ ∈
Syse, Implication 2 implies that c∗ ∈ C(S̃).
This violates (2.2), so that c∗ cannot be im-
mortal. But all programs are immortal (cf.
(2.3)). Hence we have arrived at a contradic-
tion. It follows that c∗ ̸∈ Prog. □

5. Turing Computation

Next, we consider Turing computations. A
computation is a Turing computation iff it
can be realized by (the abstract mathemati-
cal model of) a Turing machine.

Some (in fact, most) contemporary pro-
gramming languages are Turing complete:
they can be used to simulate universal Turing
machines, meaning that they can be used to
implement any Turing computation. For any
Turing computation, one can write at least one
program that realizes this computation, and
running this program instantiates the Turing
computation. This implies that

CTM ⊂ Prog . (5.1)

As a consequence, we have the following
lemma, which shows that the computation c∗

put forward by Computational Functioanlism
is not a Turing computation.

Lemma 2. c∗ ̸∈ CTM .

Proof. Follows from Lemma 1 and (5.1). □

6. Immortal Computation

The next lemma shows that consciousness
is a mortal computation.

Lemma 3. c∗ ̸∈ CImm.

Proof. Lemma 2 states that c∗ ̸∈ CTM. Be-
cause of (2.1), we furthermore have CImm ⊂
CTM. Therefore, it follows that c∗ ̸∈ CImm. □

7. Conclusion

We have shown that computational func-
tionalism implies that consciousness is a mor-
tal computation, and that consciousness can-
not be a program or Turing computation. We
hope that this result contributes to the under-
standing of computational functionalism and
its implications, including questions of AI con-
sciousness, and that it highlights mortal com-
putation as a potential concept of interest with
respect to question of the mind.

Because all contemporary Artificial Intelli-
gence (AI) is immortal computation, the re-
sults provide initial reason to believe that no
current or near-future AI can be conscious.
Only artificial systems that employ mortal
computations can instantiate consciousness.
The results presented here do not, however,
prove this to be the case. That is because
it might be the case that consciousness, de-
spite being a mortal computation, can be re-
alized by immortal computations. Whether
this is a viable option, and what precisely it
means to realize or implement a mortal com-
putation, depends on details of the notion of
mortal computation that are to be developed
in future research. Because mortal computa-
tion is not Turing computation, the possibility
of such realization might bear various difficul-
ties, in case of which strong implications for
synthetic phenomenology would follow.

Acknowledgments. I would like to thank
Hanna Tolle, Tim Ludwig, Wanja Wiese,
Justin Sampson, Zhuoqiao Yin, Jonathan Ma-
son, and David Chalmers for valuable discus-
sions on mortal computation, as well as the
organisers and participants of the C3: Com-
plexity, Computers, and Consciousness work-
shop at the Institute of Physics for valuable
feedback on earlier ideas.



References 5

Notes
1The question of whether a computation is a Tur-

ing computation is different from questions regard-

ing Turing computability. The former concerns the
nature of computations. For example, the question

of whether neural computations are Turing computa-

tions (Piccinini, 2020). The latter concerns functions,
in the mathematical sense of the term, that map nat-

ural numbers to natural numbers, and asks whether

their value can be computed by a Turing machine.
A function is Turing-computable iff there is a Tur-

ing computation (meaning: an abstract mathematical

model of a Turing machine) that halts on all num-
bers for which the function is defined, and does not

halt when provided with numbers for which the func-
tion is not defined. This is the case iff the function is

λ-computable (Church, 1936; Turing, 1937a) or gen-

eral recursive (Gödel, 1934; Kleene, 1936). The defini-
tion of Turing-computability of functions leaves open

what the computation is that implements the function,

which is what this paper is concerned with.
2 There are two ways of reading Hinton (2022,

Sec. 9). On a deflationary reading, a mortal computa-

tion is simply a Turing computation that is not known
in its entirety to an outside programmer. Call this the

epistemic reading of mortal computation. It is sug-

gested by Hinton’s emphasis of “large and unknown
variations in the connectivity” (ibid.). On a different

reading, a mortal computation is a computation that

fundamentally transcends some of the constraints of
Turing computation, for example the existence of an

immutable tape for purposes other than read and write
actions, or the existence of a transition function that is

Markov, as suggested by Hinton’s emphasis on “non-

linearities of different instances of hardware” (ibid.).
Call this the ontic reading of mortal computation. On

the ontic reading, the state of affairs of the hardware

is partially unknown to the computation itself. The
computation may have to deal with, and make use of,

non-Turing properties of the hardware. Both interpre-

tations are compatible with (2.1).

References

Butlin, P., Long, R., Elmoznino, E., Bengio, Y.,
Birch, J., Constant, A., . . . others (2023).

Consciousness in artificial intelligence: In-
sights from the science of consciousness.
arXiv preprint arXiv:2308.08708 .

Church, A. (1936). An unsolvable problem of
elementary number theory. American Jour-
nal of Mathematics, 58 (2), 345–363. doi:
https://doi.org/10.2307/2371045

Gödel, K. (1934). On undecidable propositions of
formal mathematical systems. In Collected
works (Vol. 1). Oxford University Press,
1986.

Hinton, G. (2022). The forward-forward al-
gorithm: Some preliminary investigations.
arXiv preprint arXiv:2212.13345 .

Kleene, S. C. (1936). λ-definability and recur-
siveness. Duke Mathematical Journal , 2 (2),
340 – 353. doi: https://doi.org/10.1215/
S0012-7094-36-00227-2

Piccinini, G. (2015). Physical computation: A
mechanistic account. OUP Oxford.

Piccinini, G. (2020). Neurocognitive Mechanisms:
Explaining Biological Cognition. Oxford
University Press. doi: https://doi.org/10
.1093/oso/9780198866282.001.0001

Putnam, H. (1967). Psychological predicates.
In W. H. Capitan & D. D. Merrill (Eds.),
Art, mind, and religion. Pittsburgh: Uni-
versity of Pittsburgh Press. (Reprinted
in (Putnam, 1975).)

Putnam, H. (1975). The nature of mental states.
In Mind, language, and reality: Philosophi-
cal papers (Vol. ii). Cambridge: Cambridge
University Press.

Turing, A. M. (1937a). Computability and
λ-definability. Journal of Symbolic Logic,
2 (4), 153–163. doi: https://doi.org/10
.2307/2268280

Turing, A. M. (1937b). On computable num-
bers, with an application to the entschei-
dungsproblem. Proceedings of the London
Mathematical Society , s2-42 (1), 230-265.
doi: https://doi.org/10.1112/plms/s2-42.1
.230


	1. Introduction
	2. Mortal Computation
	3. Computational Functionalism
	4. Programs
	5. Turing Computation
	6. Immortal Computation
	7. Conclusion
	Acknowledgments

	Notes
	References
	References

