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PREFACE  
 
 

Algebraic structures on linguistic sets associated with a 

linguistic variable are introduced. The linguistics with single 

closed binary operations are only semigroups and monoids. 

Authors feel it is not possible to define the notion of linguistic 

groups. 

We describe the new notion of linguistic semirings, 

linguistic semifields, linguistic semivector spaces and linguistic 

semilinear algebras defined over linguistic semifields. We also 

define algebraic structures on linguistic subsets of a linguistic 

set associated with a linguistic variable. We define the notion of 

linguistic subset semigroups, linguistic subset monoids and their 

respective substructures. We also define as in case of deals in 

classical semigroups, linguistic ideals in linguistic semigroups 

and linguistic monoids.  

This concept of linguistic ideals is extended to the case of 

linguistic subset semigroups and linguistic subset monoids. In 

chapter two, we define and describe the notion of all linguistic 

structures with single binary operations. We also define 

linguistic substructures.  

Chapter three of this book defines linguistic semilinear 

algebras over linguistic semifields. Clearly, linguistic semifields 

are linguistic algebraic structures with two binary operations. 
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We define linguistic semirings, linguistic semifields, linguistic 

subset semirings and linguistic subset semifields in this chapter.  

In the case of linguistic semifields, we cannot define 

them. So the notion of the characteristic of the linguistic 

semifield. 

 We also define linguistic operators on these linguistic 

semivector spaces and linguistic semilinear algebras. We also 

define linguistic idempotent operators on these structures. 

 This book gives examples and problems for the reader to 

familiarise themselves with these concepts. 

We acknowledge Dr K.Kandasamy with gratitude for his 

continuous support. 

W.B.VASANTHA KANDASAMY 
K. ILANTHENRAL 

FLORENTIN SMARANDACHE 



 

Chapter One  

 

 
BASIC CONCEPTS 

 

 In this chapter, we introduce some basic concepts of 

linguistic variables, the notion of matrix linear algebras, matrix 

semilinear algebras and their vector spaces and semivector 

spaces analogue. When we say L is a linguistic variable it can 

be represented as set of linguistic terms / words. 

 In this book we do not use the notion of associating with 

a linguistic variable linguistic sentences. We by default of 

notation use the term linguistic set or linguistic interval or 

linguistic continuum to represent a linguistic variable. 

 Suppose we have a linguistic variable ‘age’ of people.  

 The linguistic terms associated with the linguistic 

variable ‘age’ we will be denoted this by a linguistic set LS or L 

or S. 

 LS will denote a finite collection of linguistic terms 

qualifying the age in this case say; 
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 LS = {very old, old, oldest, young, very young, youngest, 

middle age, just middle age}. 

 However it is only a finite set of linguistic terms / words. 

 In this book we more often use the terminology linguistic 

terms. 

 LS will be a finite set of linguistic terms (words) 

associated with the linguistic variable ‘age’. 

 But if we want to realize or visualize the linguistic 

variable by a linguistic interval we denote it by IL = [youngest, 

oldest]; IL is the linguistic interval or linguistic continuum 

representing the linguistic variable age. 

 We can also show that the linguistic set LS associated 

with the linguistic variable ‘age’ is always a totally ordered set. 

For we see 

 youngest < very young < young < just middle age < 

middle age < old < very old < oldest. 

This is a totally ordered set. Further we see the youngest has the 

least or the smallest value for its age where as the oldest will 

have the highest or the largest value of age. 

 So the ordering of these linguistic terms is in keeping 

with that of the numerical values. 

 Similarly the linguistic interval IL = [youngest, oldest] has 

the numerical interval [0, 100] as the linguistic variable 

corresponds to age and age of a person in years is from 0 to 100. 
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As the numerical values is a totally ordered set so is IL, the 

linguistic interval. 

 Thus in this book a linguistic set with linguistic variable 

or a linguistic interval variable or a linguistic interval associated 

with the linguistic variable we assume the set w(L) and IL are 

totally ordered sets.  

 We can using this concept of total ordering on these 

linguistic sets define both min and max operations.  

 For in the next chapter we prove {w(L), min} and {(w(L), 

max} are linguistic semigroups of finite order where as  {IL, 

max} and {IL, min} are linguistic semigroups of infinite order. 

 We will illustrate these situations by some examples. 

Example 1.1. Let L be a linguistic variable associated with the 

“growth” of a plant. The linguistic words / terms associated 

with L denoted by w(L) = {very good, excellent, good, just 

good, normal, bad, very bad, worst}.  

 Now w(L) is a totally ordered set given by the following 

total order  

excellent > very good > good > just good > normal > bad > very 

bad > worst. 

 Now min {good, good} = good and  

 min {very bad, normal} = very bad, so on and so forth. 

 Likewise we can define min on every pair of elements in 

w(L). 

 Now we define max on w(L) in the following; 
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 max{good, good} = good,  

 max{very bad, normal} = normal and 

 max{very bad, worst} = very bad. 

This is the way max operator is defined on w(L), 

 In fact for every pair of linguistic terms in w(L) we have 

max to be a well defined operator. 

 Further max {x, y}  min {x, y} for x  y; x, y  w(L). 

 Suppose L be the linguistic variable measuring the age of 

a person. The continuum defined for the linguistic variable age 

is IL = [oldest, youngest]. Clearly IL is a totally ordered set. 

 We see for any pair of elements in IL, max and min 

operations are well defined. 

 For take just old and very old in IL; 

 max {just old, very old} = very old as very old > just old 

and  

 min {just old, very old} = just old, thus  

 max {x, y}  min {x, y} if x  y and x, y  IL. 

 Now we can easily prove {w(L), max}, {w(L), min},  

{IL, max} and {IL, min} are monoids of finite and infinite order.  

 For more about studying in this direction please refer to 

[22-5]. Several interesting properties about these linguistic 

structures are carried out in [22-5]. 
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 Next, we briefly recall some of the properties about 
classical maps and linguistic maps about these linguistic sets 
with distinct domain and range space as well as same linguistic 
set. That is the range and the domain space are the same. 

 This study is very vital for we develop the notion of 
linguistic relational equations which is one of the important 
linguistic models that uses linguistic relational equations. 

 To this effect we briefly describe some special types of 
maps. 

 For more literature about these maps please refer [22-4]. 

 The notions described in the following are very basic for 
us to introduce the concept of linguistic relational equations and 
applications to real world problems and in computer science like 
A.I, soft computing and so on. 

 Next we proceed onto describe and define all types of 
maps from linguistic set S to itself (as we are dealing with 
matrices we make an additional assumption that the linguistic 
set S is always a totally ordered set and the linguistic set is finite 
or finite. However most of the results are true even in case of 
infinite linguistic interval continuum). 

 What are the type of maps we can have 

i) General maps which are not weighted or marked 

with any linguistic term.  

ii) The domain and range linguistic sets may be same 
or different. There can be  more than one map; that 

is these linguistic maps; that is these linguistic maps 
in general need not be only bipartite linguistic maps 
they can also be n-partite linguistic maps. 
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 We will first describe this situation briefly for more 

literature can be found in  [24]. 

 First we provide an example of a bipartite linguistic graph 

got by mapping a linguistic set S to itself. 

Example 1.2: Let S = {efficient, just efficient, not that efficient, 

not efficient, very efficient, least efficient} be the linguistic set 

measuring the efficiency of teachers in managing the students in 

the class rooms. 

 We order this set S;  

 very efficient > efficient > just efficient > not that 

efficient > least efficient > not efficient 

 We can have any number of usual maps from S to S some 

may be meaningful some very observed and one will be the 

identity map. 

 We provide a few of them. 
 

i)         

 

 

 

   

     

Figure 1.1 

very efficient very efficient 

efficient efficient 

just efficient just efficient 

least efficient least efficient 

not that 
efficient 

not that 
efficient 

not efficient not efficient 
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This map is given by an expert may not think or take a view to 

be an absurd one.  

 Some what reasonable or tolerable for he / she may not 

like to desect the efficiency of a teacher in that way. 

ii) Now we give an absurd map from S to S. 

 

 

               

   

   

     

    

   

 

Figure 1.2 

 

 This map will be considered even by a lay man as an 
absurd map. 

very efficient 

efficient 

just efficient 

least efficient 

not that efficient 

not efficient 

very efficient 

efficient 

just efficient 

least efficient 

not that efficient 

not efficient 
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iii) Now we give an identical map 

   

 

 

 

 

 

 

 

Figure 1.3 

 

This map is defined as in case of classical maps / functions as 

the identity map which is unique by all means. 

 We see 2 of the maps from S to S are one to one whereas 

the first map is not one to one. 

iv) We give a very special type of map from S to S which we 

roughly call as clustering or grouping. 

 

  

very efficient 

efficient 

just efficient 

least efficient 

not that efficient 

not efficient 

very efficient 

efficient 

just efficient 

least efficient 

not that efficient 

not efficient 
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Figure 1.4 

 This sort of mapping is very important, as this clusters of 

these linguistic terms which are close to each or not very 

deviant from each other. 

 Next we discuss about classical maps of two linguistic 

sets S and R by an example. 

Example 1.3. Let S and R be two linguistic sets where               

S = {good, very good, best, poor, very poor, fair, just fair} 

depicts, the performance of a student and  

R = {very efficient, good, just good, efficient, in different, very 

devoted mediocre, very bad, bad} is associated with the teachers 

credentials. 

 Now the classical map between the linguistic from R to S 

(and S to R) are obtained in the following. 

 The classical map from R to S 

very efficient 

efficient 

just efficient 

not that efficient 
 

least efficient 

not efficient 

very efficient 

efficient 

not that efficient 
 

least efficient 

not efficient 
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Figure 1.5 

 

 We see keeping in mind that student is one who has been 

passing in classes and happens to be one who can be made 

better or best by the proper teacher.  

 However this map does not consider the extreme case of 

students who were failures in every class and over aged one, in 

that class. 

 In the following we give the map (classical map) from the 

linguistic set S to R. 

just good 

efficient 

indifferent 

very devoted 

mediocre 

very bad 

bad 

very efficient 

good 

good 

very poor 

poor 

fair 

just fair 

best 

very good 
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Figure 1.6 

 We do not call them as bipartite graphs. They are 

classical maps from two sets. 

 The only problem is bad that we have no option to map  

one linguistic term in the domain space to more than one 

linguistic term in the range space. 

 Next we proceed onto describe linguistic maps from a 

linguistic set S to itself and linguistic set S to another linguistic 

set R by the following examples. 

Example 1.4. Let   

S = {tallest, tall, very tall, medium height, short, very short, 

shortest} be the linguistic set associated with the linguistic 

variable height of plants in a farm. 

good 

very poor 

poor 

fair 

just fair 

best 

very good 

just good 

efficient 

indifferent 

very devoted 

mediocre 

very bad 

bad 

very efficient 

good 
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 Now we give the linguistic map from S to S. This map is 

not the classical map. 

          

 

 

  

 

 

 

 

 

Figure 1.7 

 

 The map or the relational edges / lines are marked  

as {best growth, good growth, very good growth, mediocre 

growth, poor growth, very poor growth, poorest growth}.  

 Thus associated with the linguistic variable growth are 

rewritten as {poorest, very poor, poor, mediocre, best good and 

very good}. 

 Some other expert may give the linguistic map as follows. 

 

best 
tallest tallest 

very tall 
very good 

very tall 

tall 
good 

tall 

shortest 
poorest 

shortest 

very short 
very poor 

very short 

short 
poor 

short 

medium heights 
mediocre 

medium heights 
d 
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Figure 1.8 

 

 The linguistic map is at the hands of the expert.  

 Some other expert may use for the linguistic variable 

growth the following linguistic terms  

{stunted, normal, very normal, super, very super}. 

 The following linguistic map is obtained using the 

linguistic terms of the linguistic variable growth.  

 

 

tallest tallest 

very tall very tall 

tall 
very good 

shortest 

shortest 
poorest 

shortest 

very short very short 

short 
very poor 

short 

medium heights 
poor 

medium heights 
d 
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Figure 1.9 

 

 We have the flexibility to choose the linguistic terms 

associated with the linguistic variable, “growth of a plant”. 

 However we wish to record at this juncture that the 

examples given here are just illustrations and the data do not 

pertain to any real world problem.  

 In fact these can be used in real, world problems. 

 When the domain linguistic set and the range linguistic 

set are distinct, we give an example how the linguistic map is 

defined in that case. 

very super 
tallest tallest 

very tall 
very super 

very tall 

tall 
super 

tall 

shortest 
very stunted 

shortest 

very short 
little stunted 

very short 

short 
stunted 

short 

medium heights 
normal 

medium heights 
d 
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 We give the linguistic binary relation (which are not in 

general functions). 

 We first give a classical sagittal diagram with linguistic 

set S where range and domain are the same. 

Example 1.5. Let S = {x1, …, x6} be the linguistic terms, 

representing some linguistic variable L; that is S = w(L). 

 Consider the sagittal diagram of a binary relation. 

 

     

 

 

 

 

 

 

Figure 1.10 

 

Now for the two different linguistic sets S = {x1, …, x8} and           

R = {y1, y2, …, y6} we give the sagittal diagram where R and S 

are associated with two distinct linguistic variables in the 

following. 

x1 

x2 

x3 

x4 

x5 

x6 

x1 

x2 

x3 

x4 

x5 

x6 
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Figure 1.11 
 

 Finally we provide linguistic sagittal diagram for binary 

relation in the following. Here S is associated with the 

functioning of the teacher in teaching. 

S = {good, bad, very good, indifferent, very bad, devoted, lazy}. 

 Let  R denote the students knowledge. 

R = {best, very bad, good, bad, worst, very good, average}. 

 Now the expert connects the linguistic sets S and R by the 

following relational linguistic maps with linguistic values / 

terms  

{very hard working, hard working, just mediocre, not working, 

not hard working, evade work}. 

x1 

x2 

x3 

x4 

x5 

x6 

x7 

x8 

y6 

y5 

y4 

y3 

y2 

y1 
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Figure 1.12 

 

 We can write the corresponding linguistic matrix 

associated with sagittal binary linguistic relation as follows  

best very bad good

good hard working

bad

very hard
verygood

working

in different not working

very bad

devoted

lazy

 
  

 

 
  
  
  

 

best 

very bad 

good 

bad 

worst 

average 

very good 

 
good 

bad 

very good 

in different 

very bad 

devoted 

lazy 

evades work 

hardworking 
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bad worst verygood average

not

working

evades

work

not

working

hard

working

evades

work

   

  

   

  

  

  

  

 

This is the way the linguistic matrix is formed. 

 Now we proceed onto recall the definition of semigroup, 

semiring, semivector spaces and semilinear algebras. 

 We also provide examples of them.  

Further we assume the reader is familiar with the notion of 

classical matrices and their properties. 

Definition 1.1. Let (S, *) be a non empty set, with a binary 

operation * defined on it. 

 We say (S, *) is a semigroup, if the following conditions 

are true. 

i) For every x, y  S we have x * y and y * x is in S 

(closure axions) 
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ii) For every x, y, z  S we have x * (y * z) = (x * y) 

* z (associative axion) 

 If in addition for every x, y  S, if we have x * y = y * x 

we say (S, *) is a commutative semigroup. 

 Suppose S is a finite ordered set then we say (S, *) is a 

finite semigroup or a semigroup of finite order. 

 If S has infinite number of elements then we say (S, *) is a 

semigroup of infinite order. 

 Suppose in S we have an element  say e such that  

 x * e = e * x = x for all x  S 

we say (S, *) is semigroup with identity or is a monoid. 

 We will first illustrate this situation by some examples. 

Example 1.6: Let S = Z+  {0} be the set of positive integers. 

(S, +) is monoid of infinite order. For one can easily verify all 

the conditions of a monoid are satisfied. 0 is the identity 

element as x + 0 = 0 + x = x for all x  Z+  {0} = S. 

 Now {S, } is a commutative monoid with 1 as its 

multiplicative identity. S is also of infinite order. 

 We have seen examples of monoids (commutative) 

semigroup of infinite order. 

 Now we give examples of non commutative monoids of 

infinite order. 
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Example 1.7: Let M = {
a b

c d

 
 
 

/ a, b, c, d  Z+  {0}} be the 

collection of all 2  2 matrices with entries from Z+  {0}. 

 Clearly for every A = 
1 0

3 5

 
 
 

 and B = 
2 1

0 6

 
 
 

  M  

we have A  B = 
1 0

3 5

 
 
 

  
2 1

0 6

 
 
 

 = 
2 1

6 33

 
 
 

  M and  

     B  A = 
2 1

0 6

 
 
 

  
1 0

3 5

 
 
 

 = 
5 5

18 30

 
 
 

  M 

Clearly both A  B and B  A  M but  

A  B  B  A as 
2 1

6 33

 
 
 

  
5 5

18 30

 
 
 

 and  

I2 = 
1 0

0 1

 
 
 

  M serves as the multiplicative identity for A  I2 

= I2  A = A.  

That is 
1 0

3 5

 
 
 

  
1 0

0 1

 
 
 

 = 
1 0

3 5

 
 
 

 = A  and 

    
1 0

0 1

 
 
 

  
1 0

3 5

 
 
 

 = 
1 0

3 5

 
 
 

 = A. 

Thus {M, } is a non commutative monoid of infinite order. 
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 Suppose N = {
a b

c d

 
 
 

 / a, b, c, d  Z+} be the collection 

of all 2  2 matrices with entries from Z+ then {N, +} is only a 

semigroup of infinite order. {N, +} has no additive identity viz.  

0 0

0 0

 
 
 

 = (0). 

 So, {N, +} is only a commutative semigroup of infinite 

order which is not a monoid. 

 Now we provide examples of finite order semigroups 

which are commutative. 

Example 1.8: Let W = {Z12, } be the set of integers modulo 

12. Z12 under  modulo 12 is a semigroup and 1  Z12 acts as 

the multiplicative identity. {Z12, } is a commutative monoid of 

order 12. 

 If 3, 4  Z12 3  4 = 4  3  12 = 0 (mod 12)  Z12. 

 1  Z12  acts as the multiplicative identity. 

 Consider V = {
a b

c d

 
 
 

 / a, b, c, d  Z12} be the  

collection of all 2  2 matrices with entries from Z12. 

 {V, } is a monoid which is non commutative and is of 

finite order. 
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If  x = 
2 0

1 7

 
 
 

 and y = 
6 1

0 9

 
 
 

  V; we see  

 x  y = 
2 0

1 7

 
 
 

  
6 1

0 9

 
 
 

 = 
0 2

6 4

 
 
 

 is in V. 

 Now y  x = 
6 1

0 9

 
 
 

  
2 0

1 7

 
 
 

 = 
1 7

9 3

 
 
 

 is in V. 

 However x  y  y  x so {V, } is a non commutative 

monoid of finite order. 

 Now we proceed onto define first the notion of semirings. 

Definition 1.2. Let {S, +, } be a non empty set S together with 

the two closed binary operations satisfying the following 

conditions is defined as a semiring. 

i) {S, +} is a commutative monoid. 

ii) {S, } is a semigroup. 

iii) a  (b + c) = a   b + a  c and  

(b + c)  a = b  a + c  a for all a, b, c  S 

 We call {S, +, } to be a semiring of infinite order. 

 If {S, } is a commutative monoid then we call {S, +, ×} a 

commutative semiring. A commutative semiring with no zero 

divisors that is x  y  0 if x  0 and y  0 or equivalentity x  y 

= 0 if and only if one of x or y is zero. 

 Then we define {S, +, } to be a semifield. 
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 We give examples of both semifields and semirings in the 

following. 

Example 1.9. Let S = {Z+  {0}, +, }. S is a semifield of 

infinite order. 

 It is easily verified both {Z+ {0}, +} and {Z+  {0}, } 

are both commutative monoid and {Z+ {0}, }  has no zero 

divisors hence the claim. 

Example 1.10. Let N = {(a1, a2, a3) / ai  Z+  {0}; 1  i  3} be 

the collection of all 1  3 row matrices. {N, +, } is only a 

semiring of infinite order which is not a semifield. 

 For {N, } is a commutative monoid but has nontrivial 

zero divisors. Take x = (3, 0, 9) and y = (0, 9, 0)  N;  

x  y = (3, 0, 9)  (0, 9, 0) = (0, 0, 0). Hence the claim.  

(0, 0, 0) is the additive identity in N. 

 N is only a semiring.  

Having the definition and examples of semirings and semifields 

we now proceed onto defined semivector sapces. 

Definition 1.3. A semivector space V over the semifield S is the 

set of elements called vectors with the two laws of combination 

called vector addition and scalar multiplication satisfying the 

following conditions. 

1. To every pair of vectors, ,    in V there is an 

associated a vector in V called then sum by  + . 
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2. Addition is associative that is ( + ) +  = ( + ) 

for all  , ,   V. 

3. There exists  vector which we denote by zero such 

that  + 0 = 0 +  =    for all   V 

4. Addition is commutative for   +  =  +   for all 

,   V. 

5. If 0  S and   V we have 0.  = 0. 

6. To every scalar s  S and every vector v  V there is 

a unique vector called the product s.v which is 

denoted by sv is in V. 

7. For all a, b   S and for all   V we have            

(ab)  = a(b). 

8. Scalar multiplication is distributive with respect to 

vector addition a( +  ) = a + a for all a  S and 

,   V. 

9. Scalar multiplication is distributive with respect to 

scalar addition (a + b)  = a + b for all a, b  S 

and   V. 

10. 1.  =  (where 1  S) and   V. 

 We will illustrate this by examples. However for more 

about these concepts please refer [20, 32-8]. 

 We give some examples of them. 
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Example 1.11. Let {(a1, a2, …, a9) / ai  Z+  {0}; 1  i  9} be 

the semigroup of row matrices with entries from Z+  {0}. 

 Let S = {Z+  {0}, +, } is a semifield. Clearly V is 

semivector space over the semifield S. 

 For every x  S and a = (a1, …, a9)  V we see  

x  a = x (a1, a2, …, a9) = (xa1, xa2, …, xa9). 

 For instance if x = 9  S and a = (8, 0, 2, 4, 6, 1, 7, 5, 0) 

 V;  

x  a = 9  (8, 0, 2, 4, 6, 1, 7, 5, 0) = (72, 0, 18, 36, 54, 9, 63, 

45, 0)  V. 

 V is a semivector space over the semifield S. 

 Next we provide another example of a semivector space 

over a semifield. 

Example 1.12: Let V = {
1 2 3

4 5 6

a a a

a a a

 
 
 

/ai  Z+  {0}; 1  i  

6} be the collection of all 2  3 matrices with entries from Z+  

{0}. V is a monoid under matrix addition. 

 Let S = {Z+  {0}, +, } be the semifield. 

 Clearly V is a semivector space over the semifield S. 

 Now we proceed onto define the notion of semilineaar 

algebra over the semifield [32-8]. 
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Definition 1.4. Let V be a semivector space defined over the 

semifield S as in definition. 

 We say V is a semilinear algebra over the semifield S if 

for  all v, w  V there is a product operation  defined on V. 

That is v  w  V and w  v  V. 

 In short {V, } is again a semigroup or infact a monoid. 

 If {V, } is commutative semigroup then the semilinear 

algebra is commutative otherwise non commutative. 

 Thus {V, +, } is a semiring with multiplicative identity 

and if V is a semivector space over the semifield S then V is a 

semilinear algebra over S. 

 We will provide some examples of the same. 

Example 1.13: Let v = {
1 2 3

4 5 6

7 8 9

a a a

a a a

a a a

 
 
 
  

/ ai  Q+  {0};  

1  i  9} be the collection of all 3  3 matrices with entries 

from Q+  {0}. 

{V, +, } is a non commutative semiring with 

1 0 0

0 1 0

0 0 1

 
 
 
  

 as its 

multiplicative identity. 

 V is a non commutative semilinear algebra over the 

semifield S = {Q+  {0}, +, }.  
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We now provide an example of a commutative semilinear 

algebra over the semifield S. 

Example 1.14. Let V = {

1 2

3 4

5 6

7 8

9 10

11 12

a a

a a

a a

a a

a a

a a

 
 
 
 
 
 
 
 
  

 / ai  Z+  {0}; 1  i  12} 

be a collection of 6  2 matrices with entries from Z+  {0}. 

 {V, +} is a commutative semigroup with (0) = 

0 0

0 0

0 0

0 0

0 0

0 0

 
 
 
 
 
 
 
 
  

 as 

the identity. 

 We define natural product n on V (for more about 

natural product of matrices refer [ ]). That is if A and B  V  

where A = 

2 1

0 5

1 1

9 9

9 0

1 9

 
 
 
 
 
 
 
 
  

 and B = 

9 9

0 9

1 1

2 1

3 1

4 9

 
 
 
 
 
 
 
 
  

. 
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Now A n B = 

2 1

0 5

1 1

9 9

9 0

1 9

 
 
 
 
 
 
 
 
  

 n 

9 9

0 9

1 1

2 1

3 1

4 9

 
 
 
 
 
 
 
 
  

 = 

2 9 1 9

0 0 5 9

1 1 1 1

9 2 9 1

3 9 0 1

1 4 9 9

  
   
  
 
  

  
 
   

 = 

        

18 9

0 45

1 1

18 9

27 0

4 81

 
 
 
 
 
 
 
 
  

  V. 

 The identity for n in V is I61 = 

1 1

1 1

1 1

1 1

1 1

1 1

 
 
 
 
 
 
 
 
  

  V and it is 

easily verified I61  A = A  I61. 

 Further for all A, B  V A n B = B n A. 

 Thus {V, +, n} is a commutative semiring. 

 Clearly {V, +, n} is a semilinear algebra which is 

commutative over the semifield S = {Z+  {0}, +, }. 
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 Now provide an example of a semivector space over a 

semifield S which is not a semilinear algebra over that semifield 

S. 

Example 1.15. Let V = {
1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

a a a a a

a a a a a

a a a a a

 
 
 
  

  

where ai  Q+  {0}; 1  i  15} be the collection of all 3  5 

matrices with entries from Q+  {0}. 

 Now the classical matrix product ‘’ cannot be defined 

on V. However {V, +} is a abelian semigroup (monoid). 

 Thus V is only a semi vector space over the semifield      

S = {Q+  {0}, +, } and is not a semilinear algebra under 

classical matrix product ‘’ as the usual product cannot be 

defined for 3  5 matrices. 

 Hence the claim. 

 Finally we recall definition of the notion of Smarandache 

semigroup and Smarandache semilinear algebra and S-semi 

vector space over semifield / S-semiring. For more refer [32-8]. 

Definition 1.5. A semigroup {S, *} is said to be a Smarandache 

semigroup (S-semigroup) if S contains a proper subset G, that 

G  S such that {G, *} is group under *. 

 We will give examples of them. 
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Example 1.16: Let S = {Z12, } be a semigroup under  modulo 

12.  

 Consider G = {1, 11}  S; {G, } is a group by the 

following table. 

 1 11 

1 1 11 

11 11 1 

 

 Thus S = {Z12, } is a S-semigroup. For more about S-

semigroups refer [32-8]. 

 Now before we proceed onto recall the definition of S-

semirings we give examples in the following. 

Example 1.17. Let S = {[Z+  {0}][x], +, } be the semiring of 

polynomials. Clearly Z+  {0}  S is a semifield. 

 We call S a S-semiring. 

Definition 1.6. Let {S, +, } be a semiring. Let F  S be a 

proper subset of S. If {F, +, } is a semifield then we define  

{S, +, } to be Smarandache semiring (S-semiring). 

 We can have several such examples for more refer [32-8]. 
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 We now proceed onto define the notion of Smarandache 

semi vector spaces (S-semivector spaces) in the following. 

Definition 1.7. Let V = {(Z  Z  Zo)} be a semigrup under +, V 

is a S-semigroup under +. (Here Zo = Z+  {0}). 

 Clearly V is a semivector space over the semifield            

S = {Z+  {0}, +, }. Infact V is a S-semivector space over S as 

V is a S-semigroup. 

 For more refer [32-8]. 

 Since V is a semigroup under  we define V to be a         

S-semilinear algebra over S. 

 V is a S-semigroup under  also. For consider the set. 

 M = {(1, 1, 1), (–1, 1, 1), (–1,  –1, 1), (1, –1, 1)}  V. 

 Consider the following Cayley Tahle. 

 (1, 1, 1) (–1, 1, 1) (1, –1, 1) (–1, –1, 1) 

(1, 1, 1) (1, 1, 1) (–1, 1, 1) (1, –1, 1) (–1, –1, 1) 

(–1, 1, 1) (–1, 1, 1) (1, 1, 1) (–1, – 1, 1) (1, – 1, 1) 

(1, – 1, 1) (1, – 1, 1) (–1, – 1, 1) (1, 1, 1) (–1, 1, 1) 

(–1, – 1, 1) (–1, – 1, 1) (1, – 1, 1) (–1, 1, 1) (1, 1, 1) 

 

 Clearly M is a group under . Hence V is a S-semilinear 

algebra over S. 
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 Now having seen examples and  definitions of these we 

now define substructure in them. We also define a few 

properties like linear transformation and so on. 

 We first define the notion of subsemivector spaces. 

Definition 1.8: Let V be a semivector space over the semifield 

S. We say W  V (W a proper subset of V) is subsemivector 

space of V (or semivector subspace of V) if W itself is a 

semivector space over the same semifield S. 

 We will illustrate this situation by some examples. 

Example 1.18. Let V = {(a1, a2, a3, a4) / ai  Z+  {0}, 1  i  

4} be a semivector space over the semifield  

    S = {Z+  {0}, +, }. 

 W1 = {(a1, a2, 0, 0) / a1, a2  Z+  {0}}  V is a 

subsemivector space of V over the semifield S. 

Take W2 = {(a1, a2, a3, a4) / ai  2Z+  {0}; 1  i  4}  V;  

W2 is again a subsemivector space of V over the semifield S. 

 We proceed onto define subsemilinear algebras or 

semisublinear algebras of semilinear algebra V over a semifield 

S. 

Definition 1.9.: Let V be a semilinear algebra over the semifield 

S. We say a proper subset W  V is to be a subsemilinear 
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algebra of V over S if W itself is a semilinear algebra over the 

semifield S under the operations of V. 

 We will illustrate this situation by some examples. 

Example 1.19. Let V = {
1 2 3

4 5 6

7 8 9

a a a

a a a

a a a

 
 
 
  

 / ai  Z+  {0}; 1  i  

9} be the collection of all 3  3 matrices with entries from  

Z+  {0}.  

V is a semilinear algebra over the semifield  

S = {Z+  {0}, , +}. 

Consider W = {
1 2 3

4 5

6

a a a

0 a a

0 0 a

 
 
 
  

/ai  Z+  {0}; 1  i  6}  V. 

 Clearly W is a subsemilinear algebra of V over the 

semifield S with inherited operation from V, on W  V. 

 Now having seen example of subsemilienar algebra over 

a semifield we proceed onto define linear transformation of 

semivector spaces over semifields. 

 For more information about S-semigroups, semivector 

spaces please refer [32-8 ]. 
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 Now we proceed onto define the notion of linear 

transformation of semivector V and W defined over the same 

semifield S. 

Definition 1.10: Let V1 and V2 be any two semivector spaces 

defined over the semifield S.  

 We say a map / function T: V1  V2 is a linear 

transformation of semivector spaces if 

 T (v + u) = T(v) + T(u) 

for all u, v  V1 and   S. 

 We illustrate this situation by an example. 

Example 1.20. Let V1 = {(a1, a2, a3, a4) / ai  Z+  {0} = Zo; 1  

i  4} be the collection of all 1  4 row matrices with entries 

from Zo = Z+  {0}.  

 Let V2 = { o
7Z [x] be the collection of all polynomials of 

degree less than or equal to 7}.  

 Clearly V1 and V2 are semivector spaces over the 

semifield S = {Z+  {0} = Zo, +, }. 

 Define T1 : V1  V2 by T1((0, 0, 0, 1)) = x7 + x5 

 T1 ((0, 0, 1, 0)) = 1 + x4 

 T1((0, 1, 0, 0)) = x2 + x3 

 T1((1, 0, 0, 0)) = x6 + x. 
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Now for any T1(9(6, 8, 9, 8) + (9, 1, 2, 0))  

(where 9  S, (6, 8, 9, 8) and (9, 1, 2, 0)  V1) 

We have T1 (9(6, 8, 9, 8) + (9, 1, 2, 0)) = 9(6(x6 + x) + 8(x2 + 

x3) + 9 (1 + x4) + 8(x7 + x5)] + 9(x6 + x) + 1 (x2 + x3) + 2(x4 + 1) 

+ 0(x7 + x5) = 54x6 + 54x + 72x2 + 72x3 + 81 + 81x4 + 72x7 + 

72x5 + 9x6 + 9x + x2 + x3 + 2x4 + 2 + 0 + 0 = 72x7 + 63x6 + 72x5 

+ 83x4 + 75x3 + 73x2 + 63x + 83  V2. 

 Thus T1 is a linear transformation of semivector spaces. 

 We can have more than one linear transformation. 

 Define T2: V1  V2 by T2((1, 0, 0, 0)) = x + 1 

T2((0, 1, 0, 0)) = x2 + x3 

T2((0, 0, 1, 0)) = x4 + x5 

T2((0, 0, 0, 1)) = x6 + x7. 

Take x = (3, 0, 1, 5) and y = (1, 2, 4, 3)  V1 and 9  Z+  {0}. 

 Now T2(9x + y) = T2 (9(3, 0, 1, 5) + (1, 2, 4, 3)) 

 = 9(3(x + 1) + 0 (x2 + x3) + 1 (x4 + x5) + 5(x6 + x7)] + (x + 

1) + 2(x2 + x3) + 4(x4 + x5) + 3 (x6 + x7) = 27x + 27 + 0 + 0 + 

9x4 + 9x5 + 45x6 + 45x7 + x + 1 + 2x2 + 2x3 + 4x4 + 4x5 + 3x6 + 

3x7 = 48x7 + 48x6 + 13x5 + 13x4 + 2x3 + 2x5 + 28x + 28. 

 It is easily verified T1 and T2 are distinct transformations. 
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 For more about these concepts refer [37]. 

 Now we can show (T1 + T2) (v) = T1(v) + T2(v) 

This is true for all Ti : V  V2 I an appropriate index. 

 Next we proceed onto define the notion of linear operator 

of semivector space V defined over the semifield F. 

Definition 1.11. Let V be a semivector space defined over the 

semifield F. 

 A map or function from V to V is called a linear operator 

of the semivector space V if T (v + u) = T(v) + T(u) for all  

 S and u, v  V. 

 We will illustrate this by some simple examples. 

Example 1.21: Let V = {
1 2 3 4

5 6 7 8

a a a a

a a a a

 
 
 

/ ai  Zo = Z+  

{0}; 1  i  8} be a 2  4 matrix with entries from Zo. V is a 

semivector space over S = {Zo = Z+  {0}, +, } the semifield. 

 Let T1 : V  V given by 

 T{
1 0 0 0

0 0 0 0

 
 
 

} = 
0 1 0 0

0 0 0 0

 
 
 

, 

 T{
0 1 0 0

0 0 0 0

 
 
 

} = 
0 0 1 0

0 0 0 0

 
 
 
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 T{
0 0 1 0

0 0 0 0

 
 
 

} = 
0 0 0 1

0 0 0 0

 
 
 

 

 T{
0 0 0 1

0 0 0 0

 
 
 

} = 
0 0 0 0

1 0 0 0

 
 
 

 

 T{
0 0 0 0

1 0 0 0

 
 
 

} = 
0 0 0 0

0 1 0 0

 
 
 

 

 T{
0 0 0 0

0 1 0 0

 
 
 

} = 
0 0 0 0

0 0 1 0

 
 
 

 

 T{
0 0 0 0

0 0 1 0

 
 
 

} = 
0 0 0 0

0 0 0 1

 
 
 

 

 T{
0 0 0 0

0 0 0 1

 
 
 

} = 
1 0 0 0

0 0 0 0

 
 
 

 

Take x = 
5 6 0 1

2 0 4 6

 
 
 

 and y 
1 2 5 7

9 0 1 2

 
 
 

  V 

Let  = 9  S. 

 T(x + y) = 9 + 5
0 1 0 0

0 0 0 0

 
 
 

 + 6
0 0 1 0

0 0 0 0

 
 
 

  

+ 0 
0 0 0 1

0 0 0 0

 
 
 

 + 1
0 0 0 0

1 0 0 0

 
 
 

 + 2
0 0 0 0

0 1 0 0

 
 
 
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+ 0 
0 0 0 0

0 0 1 0

 
 
 

 + 4
0 0 0 0

0 0 0 1

 
 
 

 + 6
1 0 0 0

0 0 0 0

 
 
 

}  

+ 1 
0 1 0 0

0 0 0 0

 
 
 

 + 2
0 0 1 0

0 0 0 0

 
 
 

 + 5
0 0 0 1

0 0 0 0

 
 
 

 

+ 7 
0 0 0 0

1 0 0 0

 
 
 

 + 9
0 0 0 0

0 1 0 0

 
 
 

 + 0 
0 0 0 0

0 0 1 0

 
 
 

 

+ 1
0 0 0 0

0 0 0 1

 
 
 

 + 2
1 0 0 0

0 0 0 0

 
 
 

 = 
0 45 0 0

0 0 0 0

 
 
 

 

+ 
0 0 54 0

0 0 0 1

 
 
 

 + 
0 0 0 0

0 0 0 0

 
 
 

 + 
0 0 0 0

9 0 0 0

 
 
 

 

+ 
0 0 0 0

0 18 0 0

 
 
 

 + 
0 0 0 0

0 0 0 0

 
 
 

 + 
0 0 0 0

0 0 0 36

 
 
 

 

+ 
54 0 0 0

0 0 0 0

 
 
 

 + 
0 1 0 0

0 0 0 0

 
 
 

 + 
0 0 2 0

0 0 0 0

 
 
 

 

+ 
0 0 0 5

0 0 0 0

 
 
 

 + 
0 0 0 0

7 0 0 0

 
 
 

 + 
0 0 0 0

0 9 0 0

 
 
 

 

+ 
0 0 0 0

0 0 0 0

 
 
 

 + 
0 0 0 0

0 0 0 1

 
 
 

 + 
2 0 0 0

0 0 0 0

 
 
 

 

= 
56 46 56 5

16 27 0 37

 
 
 

  V. 



45 Linguistic Semilinear Algebras and …  
 

 We call T the linear operator from V to V. 

 However if we have a linear operator I : V  V such that  

I{
1 0 0 0

0 0 0 0

 
 
 

} = 
1 0 0 0

0 0 0 0

 
 
 

  

I{
0 1 0 0

0 0 0 0

 
 
 

} = 
0 1 0 0

0 0 0 0

 
 
 

 

and so on I{
0 0 0 0

0 0 0 1

 
 
 

} = 
0 0 0 0

0 0 0 1

 
 
 

 that I(v) = v  

for all v  V then we define I to be a identity linear operator on 

V. 

 It is easily verified if T1 and T2 and two linear operators 

on V so is T1 + T2; for (T1 + T2) = T1 + T2 for all v  V. 

 That T1 + T2 is again a linear operator. Suppose one is 

interested in knowing the number of such linear operators from 

V to V, how to find them. 

 First we wish to record we define in case of semivector 

spaces the notion of linear independent and linear dependent as 

follows. 

 Suppose V be a semivector space defined over the 

semifield S we say two vectors v1, v2  V to be linearly 
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dependent if v1 can be expressed in terms of v2 as v1 = v2 or  

v2 = v1, ,   S otherwise they are linearly in dependent. 

 For in semivector spaces we do not have a means to say 

for and v1 the notion of –v1 for any v1  V. 

 Thus in the example v1 = 
1 0 0 0

0 0 0 0

 
 
 

 and  

v2 = 
0 1 0 0

0 0 0 0

 
 
 

 are linearly independent, whereas  

v1 = 
1 0 0 0

0 0 0 0

 
 
 

 and w2 = 
5 0 0 0

0 0 0 0

 
 
 

 are linearly 

dependent for w2 = 5v, … 

 Now take 

 v1 = 
7 0 6 0

0 0 0 5

 
 
 

, v2 = 
1 0 0 0

0 0 0 0

 
 
 

 

 v3 = 
0 0 2 0

0 0 0 0

 
 
 

 and v4 = 
0 0 0 0

0 0 0 1

 
 
 

  V in 

example 1.21 we see v1 = 7v2 + 3v3 + 5v4 = 7
1 0 0 0

0 0 0 0

 
 
 

  

+ 3 
0 0 2 0

0 0 0 0

 
 
 

 + 5
0 0 0 0

0 0 0 1

 
 
 

 = 
7 0 0 0

0 0 0 0

 
 
 
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+ 
0 0 6 0

0 0 0 0

 
 
 

 + 
0 0 0 0

0 0 0 5

 
 
 

 = 
7 0 6 0

0 0 0 5

 
 
 

= v1 

 We cannot define this as in case of classical vector 

spaces; 1v1 + … + nvn = 0 is linearly independent if and only 

if i = 0 for i = 1, …, n, otherwise they are dependent. 

 This is the marked difference between vector spaces and 

semivector spaces. 

 We say a set of elements in a semivector space V is a 

basis B if every v  V can be represented uniquely in terms of 

the base elements in B. 

 We illustrate this by some examples. 

Example 1.22: Let V = { 1 2 3

4 5 6

a a a

a a a

 
 
 

 / ai  Zo = Z+ {0},     

1  i  6} be the collection of all 2  3 matrices with entries 

from Zo. V is a semivector space over the semifield  

S = {Zo, +, }. 

The basis B for V which is unique (in case of vector spaces the 

basis is not unique only number of elements is fixed in B) is 

given as follows. 

B = {b1 = 
1 0 0

0 0 0

 
 
 

, b2 = 
0 1 0

0 0 0

 
 
 

, b3 = 
0 1 0

0 0 0

 
 
 

,  
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 b4 = 
0 0 0

1 0 0

 
 
 

, b5 = 
0 0 0

0 1 0

 
 
 

, b6 = 
0 0 0

0 0 1

 
 
 

}. 

 This B is the basis for V and it is unique in this case and 

number of elements in B is fixed which is 6. 

 Any v = 1 2 3

4 5 6

v v v

v v v

 
 
 

  V can be represented in terms 

of elements from B in a unique possible way. 

v = v1 
1 0 0

0 0 0

 
 
 

 + v2 
0 1 0

0 0 0

 
 
 

 + v3 
0 0 1

0 0 0

 
 
 

  

+ v4 
0 0 0

1 0 0

 
 
 

 + v5 
0 0 0

0 1 0

 
 
 

 + v6 
0 0 0

0 0 1

 
 
 

  

= v1b1 + v2b2 + v3b3 + v4b4 + v5b5 + v6b6. 

 Hence the claim. 

 In view of all these we can say if V be the collection of 

all n  m matrices with entries from Zo and if V is a semivector 

space over the semifield S = {Zo, +, } then V has only n  m 

number of base elements where 2  m, n < . 

 In the next section we proceed onto suggest some 

problems so that by solving them the reader becomes familiar 

with the new concept of linguistic matrix semilinear algebras. 
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 Here we provide some problems for the reader. The main 

reason for doing so is that, this concept is new and if one 

understands the basics of these concepts thoroughly it would be 

nice that they can easily follow more difficult concepts on 

linguistic variables, representation of them and operations on 

them. 

SUGGESTED PROBLEMS 

1. Let L be a linguistic variable, intelligence for the 

linguistic variable intelligence; find the linguistic word 

w(L) associated with L. 

 i)  Is w(L) finite or infinite? 

 ii) Is w(L) a linguistic continuum? 

 iii) Justify your answer. 

2. Suppose L be the temperature of water measured in 7 

different times on slow heating is given as {3oC, 5.2oC, 

20oC, 46.5oC, 61.3oC, 78.5oC, 98oC} 

 i) Give the linguistic word representation w(L) for 

these values. 

 ii) Is w(L) finite? Give the order of w(L) 

iv) If the values are provided what will be w(L)? 
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 iv) Will w(L) be a linguistic continuum? 

 v) Give the totally ordered chain of w(L) in (i) 

3. Suppose performance of students in the classroom is the 

linguistic variable L.  

 Suppose w(L) = {good, bad, worst, very good, fair, just 

good, very fair} 

 i) What is order w(L)? 

 ii) Can you give values for w(L)? (Justify your 

answer). 

 iii) Is it comparable with problem 2? (Substantiate 

your claim). 

v) What is the difference between linguistic variable 

temperature in problem 2 and linguistic variable 

performance of students in problem 3. 

vi) Compare the linguistic variable intelligent in 

problem 1 with the linguistic variable 

performance of students given in problem 3. 

4. Let “performance aspects of students in the classroom” be 

the linguistic variable L. 

 i) Describe L by a finite set of words denoted by 

w(L). 
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 ii) Describe L by a linguistic continuum. 

iii) Prove (i) and (ii) are totally ordered sets.  

 iv) Prove this w(L) cannot be given a numerical 

representation as in case of the linguistic variable 

‘age’ or ‘temperature of water’. 

iv) Which tool is better to study concepts like 

“performance aspects of students”, “Quality of 

teaching of a teacher”, intelligence of a student in 

the class room etc? 

5. Give examples of a finite semivector space over a 

semifield. 

6. Can V = {(Zo  Zo  Zo  Zo) = {(a1, a2, a3, a4) / ai  Zo,  

1  i  4}, +} be a semivector space over the semifield  

S = {Qo  {0}, +, }? 

 Justify your claim. 

7. Prove  

V = {

1 2 3

4 5 6

7 8 9

10 11 12

a a a

a a a

a a a

a a a

 
 
 
 
 
 

 / ai  Ro = R+  {0}, 1  i  12} is a 

semivector space over the semifield S = {Ro = R+  {0}, , +}. 
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 i) Find a basis of V over S. 

 ii) Is the basis B of V of finite order? 

 iii) Will order of B be 12? Justify your claim. 

 iv) Find some subsemivector spaces of V over S. 

v) Define linear operators from V to V.  

 vi) Can we say the number of linear operators from 

V to V is finite? Justify your claim. 

8.  Let V = {Zo [x] be a polynomial semiring with 

coefficients from Zo = Z+  {0}} be a semivector space 

over the semifield S = {Zo = Z+  {0}, +, }. 

 i)  Find a basis B of V over S. 

 ii) Will o(B) < ? Justify your claim. 

 iii) Find all linear operators of V to V over S. 

 iv) Can the number linear operators from V to V be 

a finite collection? 

 v) Find subsemivector subspaces of V over S. 

 vi) Obtain some special feature associated with this 

V. 
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 vii) Compare this V with W = {collection of all  

n  m matrices with entries from  

Zo = Z+  {0}; 2  m, n < } a semivector 

space defined over the same S = {Zo, +, }. 

 viii) Can there be a linear transformation from V to 

W? Justify your claim. 

 ix) Can we claim W has a basis B which is of finite 

order? 

 x) Let M = { o
mn 1Z  [x], all polynomials of degree 

less than or equal to mn – 1 with coefficients 

from Zo in the variable x} be a semivector 

space over the semifield S = {Zo, +, }.  

  Can M and W have their basis to be of same 

order? 

 xi) Find the collection of all linear transformation 

from M to W. 

 xii) Can we say M  ≅ W that is the two semivector 

spaces are isomorphic? 

9. Let V = {(a1, a2, …, a9) / ai  Zo = Z+  {0}; 1  i  9} be 

the collection of all 1  9 row matrices with entries from 

Zo. 
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 i) Prove V is a semivector space over the 

semifield S = {Zo, +, }. 

 ii) Under classical product of matrices prove V is a 

semilinear algebra over the semifield S = {Zo, 

+, }. 

 iii) Find the basis set of V over S. 

 iv) Find the collection of all linear operators from 

V to V. 

a) What is the cardinality of that connection? 

  b) Is it finite or infinite? 

  c) Does the collection again a semivector 

space over S? 

 v) Suppose W = {(a1, a2, a3, a4, a5, 0, 0, 0, 0) / ai  

Zo; 1  i  5}  V is a subsemivector space 

over S. 

  a) Can we define a projection from V to W? 

10.   Find a basis B for the following semivector space     

V = {

1 2

3 4

5 6

7 8

9 10

a a

a a

a a

a a

a a

 
 
 
 
 
 
  

/ai  Zo = Z+  {0} ; 1  i  10}  
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over the semifield S = {Zo, +, }. 

 i) What is the cardinality of B? 

 ii) Is B unique? 

 iii) Define at least two linear operators from V to 

V. 

 iv) How many linear operators from V to V exist? 

(Is it finite or infinite?) Justify. 

11.  Give examples of semivector spaces V over a semifield S 

which are not semilinear algebras. 

12. Let V = {

1 2 3

4 5 6

7 8 9

10 11 12

a a a

a a a

a a a

a a a

 
 
 
 
 
 

/ ai  Zo; 1  i  12} and  

W = {

1 2

3 4

5 6

7 8

a a

a a

a a

a a

 
 
 
 
 
 

 / ai  Zo; 1  i  12} be two semilinear algebras 

under national product n of matrices over the semifield. 

S = {Zo = Z+  {0}, +, }. 
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 i) If T1 : V  W is a linear transformation and  

M1 : W  V is a linear transformation of V to 

W and W to V respectively. 

  a) Will M1 and T1 be related in any way? 

  b) Which collection B = {all linear 

transformation from V to W} or C = {all 

linear transformations from W to V} is a 

larger set or will o(B) = o(C)? Justify and 

substantiate your claim! 

 ii) Can W and V be smilinear algebras under 

classical product of matrices? (Justify !) 

 iii) Will V and W be semivector spaces over the 

semifield R = {Q+  {0} = Qo, +, }? 

 iv) Will V and W be semivector spaces over  

N = {2Zo = 2Z+  {0}? (Prove your claim). 

 v) Is N a semifield? 

 vi) Can we say Wp {p Z+  {0} = p Zo, +, } are 

semifields for varying primes p? 

vi) Are Wp = {pZo, +, } (p a prime) semirings? 
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13.  Let V = { 1 2 3

4 5 6

a a a

a a a

 
 
 

 / ai  Zo = Z+  {0}, 1  i  6} 

be the semivector space of 2  3 matrices over the 

semifield S = {Zo, +, }. 

 i) Find the subsemivector spaces of V over S. 

 ii) Show V can be written as a direct sum of 

subsemivector spaces over S. 

 iii) Prove W1 …  Wi = V then the maximum 

value i can take is 6 and the minimum value is 

2.  

 iv) Define projection from Pi : V  Wi where  

Wi = { ia 0 0

0 0 0

 
 
 

 / ai  Zo}  V.  

  Will projection be a linear transformation? 

 v) Define Li: Wi  V by defining  

  Li{
a 0 0

0 0 0

 
 
 

} = 
0 a 0

0 0 0

 
 
 

.  

  Is Li a linear transformation of semivector space 

Wi and V? 
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14.  Develop for a ‘real world problem a sagittal linguistic 

binary map and obtain the corresponding linguistic 

matrix. 

15.  Given the linguistic terms of the domain space D and that 

of the range space R of the problem where D denotes the 

owners of the bonded labourers working in the textile 

industry (weavers) and R denotes the cause of those 

people becoming bonded labourers. The attributes related 

to the owners of bonded labourers. 

O1 = Globalizaztion / introduction of moder textile machines. 

O2 = Only profit no loss. 

O3 = Availability of raw goods. 

O4 = Demand for finished products. 

Then D = {O1, O2, O3, O4)} and the range space.  

R = {B1, B2, B3, B4, B5 and B6}, the description of Bi is as 

follows (1  i  6). 

B1 = No knowledge of other work has not only made them 

bonded but lead a life of penury.  

B2 = Advent of modern machinery had made them still poor. 

B3 = Salary they earn in a month after reduction for their debt is 

very low. 
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B4 = No savings so they live in debt as with the deducted salary 

cannot make both ends meet. 

B5 = Government interferes and frees them but they continue to 

go as bonded labourers as the government does not given them 

or provide them any alternative livelihood. 

B6 = Hours they work in a day is more than 8 hours. 

 Transform this into a linguistic matrix for the possible 

linguistic sagittal diagram that you would draw relating D and 

R. 

i) Give the binary linguistic sagittal diagram. 

 ii) Obtain the related linguistic matrix of the diagram 

 iii) If the diagram and the consequent linguistic 

matrix unique? Justify your claim. 

16. Obtain any other interesting property and application of 

binary linguistic sagittal diagram. 

17.   If in a real world problem the linguistic terms of the 

domain space is same as that of the linguistic range space. 

 i) Draw the linguistic binary sagittal diagram. 

 ii) Draw the linguistic graph. 

18. Give a linguistic binary matrix of order say 5  4 given in 

the following. 
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1 2 3 4

1

2

3

4

5

y y y y

x good bad

x best poor

x worst good bad

x bad fair

x bad bad verybad

 
 


 



 

where ‘’ denotes there is no linguistic relation between that xi 

and yj (1  i  5; 1  j  4).  

Hence or otherwise prove that given a linguistic binary sagittal 

diagram we can obtain the corresponding linguistic matrix and 

vice versa. 

19. Suppose A and B (A  B) are two linguistic square matrices 

with entries from the linguistic set  word w(L) related to the 

linguistic variable L. 

 i) Find max (A, B}. 

 ii) Find max {B, A}. 

 iii) Find min {A, B}. 

 iv) Find min {B, A}. 

 v) Find min max {A, B}. 

 vi) Find max min {A, B}. 
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vii) Does (v) and (vi) give same linguistic matrix? 

 viii) Will all the six linguistic matrices give six 

different linguistic matrices? (Prove) 

20.  Let A and B two linguistic matrices of order 4  5 and 5  4 

respectively with entries from the same linguistic word / set 

w(L). 

 i) Find min {A, B}, max {A, B}, min {B, A} and 

max {B, A}. 



 

Chapter Two  

 

 
LINGUISTIC SEMIGROUPS AND THEIR PROPERTIES 

 

 In this chapter we define different types of linguistic 

semigroups and describe their properties. In fact some of them 

are monoids. We define ideals and subsemigroups of them.  

 Throughout this chapter S will denote a linguistic set 

finite or infinite but discrete. IL will denote a linguistic 

continuum / interval. IL is not discrete it is continuous. We will 

build algebraic structures on them. Let S be any linguistic finite 

set describing the distance of a star form the earth or the depth 

of the ocean or the height of a tree or a mountain and so on and 

so forth. S can describe the performance aspect of a student in 

studies or the teaching ability of a teacher or a workers 

performance and so on and so forth. 

 We will illustrate these situations by some examples. 

Example 2.1. Let S = {good, just good, very good, bad, worst, 

very very good, fair, just fair, very fair, just bad, very bad}  

be a linguistic set with eleven linguistic terms or elements.  
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 We see the least element of the set S is worst and the 

greatest element being very very good. 

 Now show {S, max} is infact a linguistic semigroup. 

 We see the linguistic element worst in S is such that max 

{worst, s}; s any linguistic term in S is s. Thus worst serves as 

the linguistic identity of S. 

 Infact max {x, y} = max{y, x} for every x, y  S. Thus 

{S, max} is a linguistic monoid with worst as its linguistic 

identity. We call max as the linguistic operation on S. The 

linguistic monoid {S, max} is of order 11. 

 Further max {x, x} = x; so we see {S, max} is an 

idempotent linguistic semigroup (monoid) which is 

commutative. 

Example 2.2. Let IL = [fair, best] be a linguistic interval 

measuring the performance of a worker in an industry. 

{IL, max} is a linguistic semigroup of infinite order. Infact every 

element in IL is an idempotent under max operation; for  

max {good, good} = good; that is max {s, s} = s for any s  S. 

 For any x  IL; max {x, x} = x that is why we call  

{IL, max} as an idempotent linguistic semigroup. Further the 

linguistic element fair in IL is such that max {x, fair} = x for 

every x  IL \ fair. So {IL, max} is a linguistic commutative 

monoid as max {x, y} = max {y, x} for any x, y  IL. 

 So {IL, max} is a linguistic commutative idempotent 

monoid of infinite order with the fair as its linguistic identity. 
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  Now we proceed onto define this commutative linguistic 

monoid under max operation. 

Definition 2.1. Let S be the linguistic set (or IL be a linguistic 

interval / continuum), {S, max} ({IL, max}) is a linguistic 

commutative monoid as the following four conditions are true. 

i) For any x, y  S (x, y  IL) we have max {x, y}  

S (or IL). (Closure property) 

ii) The max operation on S (or IL) is associative. 

iii) max {x, y} = max {y, x} for any x, y  S (x, y  

IL) that is max operations is commutative. 

iv) For any x, y, z  S (or x, y, z  IL) we have  

max {x, max {y, z}} = max {max {x, y}, z}. That is 

max operation on S is associative. 

v) Let l be the least element of S (or IL) then  

max {x, l} = x for every x  S (or x  IL). 

  l is defined as the linguistic identity of S (or IL) 

for the max operation. 

  (S, max) (or IL, max}) is infinite or finite 

depending on the order of the linguistic set S 

(always infinite in case of IL). 

vi) {S, max} is an idempotent linguistic commutative 

monoid under max as max {x, x} = x for all x  S 

{or x  IL}. 
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 Now we proceed onto describe the min operation on the 

linguistic set S and the linguistic interval IL by some examples. 

Example 2.3. Let S be a finite linguistic interval / continuum. 

Consider {S, min} (or {IL, min}). Let g be the greatest linguistic 

element of S(or IL). 

 It is observed min{x, y} = x or y for x, y  S. 

 So min {x, y}  S and min {g, x} = x for all x  S. 

 Further it is left as an exercise for the reader to verify min 

operation on S in both closed, commutative and associative. 

 Clearly {S, min} {or {IL, min}) is a linguistic 

commutative monoid with g as its linguistic identity. 

 We observe that this linguistic monoid {S, min} is 

different from {S, max} leading to two distinct linguistic 

monoids for which of the linguistic greatest element g of S is 

the linguistic identity of {S, min} and l the least linguistic 

element of S is the linguistic identity of {S, max}. 

 Now for any x, y  S (or x, y  IL) we see min {x, x} = x 

for all x  S (or x  IL). So {S, min} is also a linguistic 

commutative idempotent monoid. 

 As we have defined {S, max} we can also define  

{S, min} the only difference being here the linguistic identity is 

g the greatest element of S (or IL). 

 Next we proceed onto define the motion of linguistic 

subsemigroup or submonoid of {S, max} (or {IL, max}) and  
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     {S, min} (or {IL, min}).  

 We will first illustrate this situation by some examples. 

Example 2.4. Let IL = {[worst, best] be a linguistic interval / 

continuum}, {IL, max} is an infinite linguistic commutative 

idempotent monoid with worst  IL as its linguistic identity. 

 Consider the linguistic interval JL = [fair, good]  IL. 

 Clearly {JL, max} is again linguistic commutative 

idempotent submonoid of the linguistic monoid {IL, max}. 

However the linguistic identity of {JL, max} is fair but that of 

{IL, max} is worst. 

 Let PL = [worst, fair]  IL be the linguistic subinterval of 

IL. {PL, max} is again a linguistic commutative idempotent 

submonoid of {IL, max}. 

 We see both {IL, max} and  {PL, max} have the linguistic 

identity to be the same viz worst. 

 All of them (linguistic monoid and submonoids) are of 

infinite order. 

 Consider M = {good, bad, very bad, just fair, fair, very 

good}  IL, a linguistic subset of IL. We see {M, max} is again 

a linguistic commutative idempotent submonoid of  

{IL, max} with very bad as its linguistic identity. 

 Clearly M is of finite order and order of M is 6.  
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Thus {IL, max} can have infinite number of linguistic 

idempotent commutative submonids of both finite and infinite 

order. 

 The following observations are putforth as results. 

Theorem 2.1. Let {S, max} ({IL, max}) be a linguistic 

commutative idempotent monoid with linguistic identity l. Every 

linguistic commutative idempotent submonoid of {S, max} (or 

{IL, max}) need not have l to be its linguistic identity. 

 Proof is left as an exercise to the reader. 

 Now  it is important to note the following. 

Theorem 2.2. Let {S, max} (or {IL, max}) be the linguistic 

commutative idempotent monoid. 

 Every linguistic commutative idempotent subsemigroup of 

{S, max} (or {IL, max}) is also a submonoid and has a linguistic 

identity of its own. 

 Proof is left as an exercise to the reader. 

 Now we give examples of linguistic submonoids in case 

of min operation. 

Example 2.5. Let P = {IL = [shortest, tallest], min} be a 

linguistic commutative idempotent monoid with respect to min 

operation on the linguistic interval / continuum [shortest, tallest] 

= IL “tallest” is the linguistic identity of P. 

 Consider  

 Q = {[short, tall] = JL  IL = {[shortest, tallest], min}  P  
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 is the linguistic commutative idempotent submonid of P of 

infinite order but its linguistic identity is different from that of P 

viz. tall.  

Let  

M = {[shortest, just tall] = TL  IL = [shortest, tallest], min}  P  

is also a linguistic commutative idempotent submonoid of P 

with the linguistic identity being just tall. 

 Consider S = {short, very short, tall, very tall, very very 

short, just tall, medium height}  IL  

be a linguistic discrete subset of IL  . {S, min} is a linguistic 

commutative idempotent submonoid of IL with very tall as its 

linguistic identity. 

 We see all the linguistic subsemigroups of P are linguistic 

commutative idempotent submonoids of P. 

 Now we give linguistic submonoids of a finite linguistic 

set S under min operation. 

Example 2.6. Let S = {very good, good, best, poor, very poor, 

very bad, bad, just bad, very very fair, fair, just fair, medium} 

be the linguistic set {S, min} is a linguistic idempotent 

commutative monoid of order 12 with best as its linguistic 

identity. 

 Every linguistic element is a linguistic submonoid of 

order 1. 
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 Every linguistic element of order two is again a linguistic 

commutative idempotent monoid. 

 For instance {{good, very good}, min} is a linguistic 

submonoid of order two. Infact there are 12C2 = 
12.11

1.2
 = 66 

such linguistic submonoids of order two. 

 Likewise we see {{poor, very poor, just bad}, min} is 

again a linguistic submonoid of order three with poor as its 

linguistic identity.  

 We have 12C3 = 
12.11.10

1.2.3
 = 220 such linguistic 

submonoids of order three. 

 We have 12C4 number of linguistic submonoids of order 

four exists. There are 495 such linguistic submonoids. 

 On similar lines we have 12C5 linguistic submonoids of 

order 5 exists and so on. 

 We have 12 linguistic submonoids of order 11  where 10 

of them will have the same linguistic identity best. 

 Thus there are 12C1 + 12C2 + 12C3 + … + 12C11 number 

of linguistic submonoids in S. 

 The definition of linguistic monoids with min operation 

can be carried out as in case of linguistic monoids with max 

operation the only change being the greatest element of the 

linguistic set or continuum will serve as the linguistic identity 

contrary to max operation were the least linguistic term will 

serve as the linguistic identity. 
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  We just give the theorem in case of min operation. 

Theorem 2.3. Let {S, min} (or IL, min}) be linguistic 

commutative idempotent monoid on the linguistic set S (or on 

the linguistic interval / continuum). If g is the greatest element 

of S (or IL); g need not in general be the linguistic identity of 

every linguistic submonoid of {S, min} (or {IL, min}) and every 

subset of S (or IL) is a linguistic submonoid under min 

operation. 

 Proof is direct and hence left as an exercise to the reader. 

 Next we proceed onto give examples of ideals in 

linguistic monoids which we choose to call as linguistic ideals 

of the linguistic monoid. 

Example 2.7. Let S = {very big, big, small, very very small, 

medium, just big, biggest}  

be the linguistic set of order 7. {S, max} is a linguistic 

commutative idempotent monoid. 

 Let P = {very very big, small} be a linguistic subset of S. 

{P, max} is again a linguistic commutative idempotent sub 

monoid of S. 

 We will find out if P is a linguistic ideal of S and find out 

whether max{s, p}  P for all s  S and p  P  

max{s, very very big} = biggest for s = biggest  S. 

So P is not a linguistic ideal of S as biggest  P. 
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 Take M = {biggest, small, big}  S; M is a linguistic 

subset of S, {M, max} is a linguistic submonid of {S, max}.  

 Will check if M is a linguistic ideal of {S, max}. 

 We find max {s, m} for all s  S and m  M.  

 If max {s, m}  M for all s  S and m  M then we 

claim M is a linguistic ideal of S. 

Check max {very big {biggest, small, big}} = {biggest, very 

big}  M. 

 max {big, {biggest, small, big}} = {biggest, big}  M. 

 max {small, {biggest, small, big}} = M. 

 max{very very small, M} = {small, big, biggest} = M. 

 max{medium, M} = {medium, big, biggest}  M. 

 max {just big, M} = {just big, big, biggest}  M. 

 max {biggest, M} = biggest and so on. 

Clearly SM is not contained in M so M is not an ideal of S. 

 Now consider the linguistic set  

W = {biggest, max}  {S, max}; W is a linguistic submonoid 

of S or order one. 

 We see for every s  S and this w = {biggest}, max{s, w} 

= w so SW  W hence W is a linguistic ideal of S. 
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  But order / cardinality of W is one hence we call W only 

as a improper or trivial linguistic ideal of S. 

 Let us take again a linguistic set  

 V = {big, very big, medium, just big, biggest}  S. 

 {V, max} is a linguistic submonoid of S. 

 Further max{S, V} = V that is SV  V; so V is also a 

linguistic ideal of S. 

 We have given a proper linguistic ideal of S. Since S is a 

commutative linguistic monoid the question of right or left 

linguistic ideal does not arise. 

 Let Y = {big, very big, very very small, medium,  just 

big, biggest}  S be a linguistic subset of S. 

 Clearly {Y, min} is a linguistic submonoid of S; but Y is 

not an ideal as SY  Y. 

 For s = smallest  S and y = very very small be in Y  

min{s, y} = s = smallest  Y (that is s = smallest is not in Y;  

s  Y). So {Y, min} is not a linguistic ideal of S. 

 Take R = {very big, big, small, very very small, just big, 

biggest}  S  a linguistic subset of R of order 6.  

 We see {R, max} is a linguistic submonoid of S. 

 But R is not a linguistic ideal of S for if we take  

s = medium  S and r = small  R max (s, r) = s = medium but 

s  R; hence our claim. 
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 So we make certain observations in case of finite 

linguistic sets S under max operation to have proper linguistic 

ideals. 

i) It is observed that any linguistic set is a totally 

ordered set. For this linguistic set follows the 

order;  

biggest > very big > big > just big > medium > 

small > very very small   - I 

ii) If the elements of the linguistic set is taken from I 

such that 

i) biggest 

ii) biggest > very big 

iii) biggest > very big > big 

iv) biggest > very big > big > just big 

v) biggest > very big > big > just big  

> medium 

vi) biggest > very big > big > just big  

> medium > small 

 Only these six linguistic subsets of S are linguistic ideals 

and there are no other linguistic ideals under max operator. 

 So if we form the linguistic continuum call I as 

decreasing order continuum then for the linguistic ideal to exist 

we only take a continuous cut off interval (or continuum) from 

I. 
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  Any continuous subcontinuum but with the starting the 

greatest element will form a linguistic ideal of S. So we first 

make the following definition. 

Definition 2.2. Let S = {xi / i = 1, 2, 3, …, n} be a linguistic set 

such that xn is the largest / biggest / brightest / tallest the 

greatest linguistic term of S. 

 Thus xn > xn – 1 > xn–2 > … x2 > x1   I 

 We define I as the continuous linguistic decreasing order 

chain depicting S. 

 We say any part of the (continuous) linguistic continuum 

are of the following types 

i) xn > xn – 1 > … > xr which is called as linguistic 

greatest (some xr; r  1) decreasing 

subcontinuum (or subchain). 

ii) xm > xm – 1 > … > x1 is defined as a linguistic 

least decreasing continuous subcontinuum 

subchain which ends with least (m  n). 

iii) Consider the linguistic continuous subcontinuum 

(subchain) given by xp > xp – 1 > … > xt, p  n and 

t  1. 

 We see (iii) above linguistic continuous subcontinuum is 

neither least nor greatest decreasing subcontinuum. 

 So we have 3 types of linguistic subcontinuum or 

subchains. 
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 These chains are basically introduced to characterize 

linguistic ideals of infinite linguistic monoids. 

 We can define the 3 types different when we start from 

the least linguistic term so it is increasing so that,  

x1 < x2 < … < xn. 

 This is the linguistic increasing continuum which is 

continuous and is an increasing order chain depicting S. 

 Note: If any linguistic term is removed then we cannot 

call it as the linguistic chain depicting S. It may depict only a 

linguistic subset of S and for it to be a linguistic subchain it is 

mandatory no element in the original chain of S is left out in 

that subchain if 
1t

x
2t

x
3t

x … 
nt

x  are the subset then it is for 

some xs, xs+1, …, xs+r so no in between elements of the subchain 

is missed if say xr, xr+3, xr+4, …, xr+7 is taken from S then this is 

not the subchain of the linguistic chain of S as xr+1 and xr+2 are 

missed. 

 Now we define for the same linguistic set S = {x1, …, xn} 

the increasing continuous chain of S, where x1 is the least 

element of S and xn is the largest element of S. 

 The linguistic continuous increasing chain of S is  

    x1 < x2 < x3 < … < xn.  

 Now we have only three types of linguistic continuous 

increasing subchains. 
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 i) x1 < x2 < x3 < …. < xr is called the increasing 

least term continuous linguistic subchain of the 

linguistic chain S (r  n). 

ii) xt < xt+1 < … < xn is called the continuous 

linguistic increasing subchain with the greatest  

(t  1) term of the chain related to S. 

iii) Now xr < xr+1 < … < xm, m  n; r  1 is a 

continuous increasing subchain of the chain 

associated with the linguistic set S. 

 We will describe these situations in the following:  

xn > xn – 1 > … > x2 > x1 

is the linguistic decreasing continuous chain of S. 

 | xn > xn – 1 > … > xr | > xr–1 > … > x1;   r  1 

is the continuous greatest decreasing linguistic subchain of the 

chain of S denoted by the lines from xn to xr. 

xn > … > | xm > xm – 1 > … > x1 |, m  1 

is the continuous least decreasing linguistic subchain of the 

chain of S denoted by the lines from xm to x1. 

xn > … > | xm > xm – 1 > … > xr+1 > xr | > … > x1, 

m  n; r  1 is the continuous decreasing linguistic chain of S 

denoted by the lines from xm to xr. 

 Now the increasing continuous linguistic chain of the 

linguistic set S is 



77 Linguistic Semilinear Algebras and …  
 
 

x1 < x2 < … < xn. 

 Now | x1 < x2 < … < xr | < xr+1 < … < xn; r  n  

is the increasing continuous least linguistic subchain of the 

linguistic chain of S. 

 Consider 

 x1 < x2 < … < | xr < xr+1 < … xn |; r  1  

is the increasing continuous greatest linguistic subchain of the 

linguistic chain of S. 

 Let x1 < x2 < … < | xr < xr+1 <  … < xm| < xm+1 < … < xn  

is the increasing continuous linguistic subchain of the linguistic 

chain of S. 

Now we give examples of ideals of a finite linguistic set S. 

Example 2.8. Let S = {very big, big, small, very very small, 

medium, just big, biggest} be the linguistic set of order 7.       

{S, min} be the linguistic commutative monoid and the biggest 

linguistic term in S is the linguistic unit of {S, min}. 

 We see the ideals of {S, min} are  

P = {very very small}  S 

is such that {P, min} is a linguistic submonoid which is also an 

ideal of S. It is a singleton element. 

 Consider the singleton set {biggest}  S, {biggest, min} 

is a linguistic submonoid of {S, min} however {biggest, min} is 

not a linguistic ideal of S. 
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  Consider P = {small, very very small}  S; {P, min} is a 

linguistic submonoid of {S, min}, and is also a linguistic ideal 

of S. 

 Take Q = {small, medium}  S, {P, min} is a linguistic 

submonoid of S but is not a linguistic ideal of S. 

 The increasing continuous linguistic chain of S is as 

follows. 

very very small < small < medium < just big < big < very big < 

biggest    (A) 

We see that 

{{very very small}, min} is a linguistic ideal of S. 

{{very very small, small}, min} is again a linguistic ideal of S. 

{{small, medium}, min} is not a linguistic ideal of S. It is 

observed the linguistic least subchain cannot be got from small 

< medium for very very small; the linguistic least element of S 

is missing.  

 Take the linguistic subset  

M = {small, very very small, medium}  S 

is such that {M, min} is a linguistic submonoid of S and {M, 

min} is also a linguistic ideal of S and the elements of M forms 

a linguistic increasing least subchain of the linguistic chain of S, 

given by the following  

very very small < small < medium. 
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 Now consider  

N = {very very small, small, medium, just big, big}  S; 

{N, min} is a linguistic submonoid of {S, min} and is infact a 

linguistic ideal of S and the set N  S forms a linguistic 

increasing least subchain of the linguistic chain of S given by 

the following  

very very small < small < medium < just big < big (a) 

If we have to give the linguistic ideal N a least linguistic 

decreasing subchain structure then we have 

big > just big > medium > small > very very small (b) 

(b) gives the least linguistic decreasing subchain of N and the 

ideal of {S, miin} and (a) gives the least linguistic increasing 

suhchain of N, the ideal of {S, min}. 

 So with every ideal of {S, min} we can have 

representation by two subchains both are least increasing (and 

decreasing) linguistic subchains of the linguistic chain of S. 

 This is the same case with linguistic ideals of {S, max}. 

We will first make it clear none of the linguistic ideals of {S, 

min} can be linguistic ideals of {S, max} and vice versa.  

 For it is mandatory in case of linguistic ideals of  

{S, max} they should contain the greatest element as it is clearly 

evident from the above examples in case of linguistic ideals of 

{S, min} the least element is to be present in the linguistic 

subchain that is why least decreasing linguistic subchain and 

least increasing linguistic subchain.  
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  So in case of linguistic ideals of {S, max} it will be 

greatest decreasing linguistic subchain and greatest increasing 

linguistic subchain.  

 We see both are equivalent for either increasing order or 

decreasing order. 

 Now for the same linguistic set S we give some examples 

of linguistic ideals of {S, max}. 

 Let A = {biggest, big}  {S, max} be the linguistic 

subset of S. {A, max} is only a linguistic monoid of S and  

{A, max} is not a linguistic ideal of {S, max} for the linguistic 

set A does not form a linguistic subchain of the increasing or 

decreasing linguistic subchain of S. 

 Let B = {biggest, very big, just big, big, medium}  S  

be a linguistic subset of S. 

 {B, max} is a linguistic submonoid of {S, max}. Further 

{B, max} is linguistic ideal and the linguistic subchain 

associated with {B, max} is  

biggest > very very big > big > just big 

which is the decreasing greatest linguistic subchain of the 

linguistic chain S and  

just big < big < very very big < biggest 

is an increasing greatest linguistic subchain of the linguistic 

subchain S. 
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 Thus we have the following theorem which can 

characterize an ideal of linguistic monoids {S, max} and  

{S, min}. 

Theorem 2.4. Let S = {x1, x2, …, xn} be a finite linguistic set 

with x1 as its least linguistic element and xn as its greatest 

linguistic element. 

 Let  

 x1 < x2 < …. < xn L and  

 xn > xn – 1 > xn – 2 > … > x2 > x1 …, G 

where L is the linguistic increasing chain of S and G is the 

linguistic decreasing chain respectively of S. {S, min} and {S, 

max} be the linguistic monoids. 

i) I is a linguistic ideal of {S, min} if and only if the 

linguistic elements I = {x1, …, xm} forms a 

linguistic decreasing least subchain of the chain  

xm > xm – 1 > … > x1 (m  n) 

of the linguistic decreasing chain of S; and a 

least linguistic increasing chain  

x1 < x2 < x3 < … < xm–1 < xm (m  n) 

of the linguistic increasing chain of S. 

ii) J is a linguistic ideal of the linguistic monoid {S, 

max} if and only if J = {xn, xn–1, …, xr} and the 

elements of J satisfies the linguistic greatest 

decreasing subchain  
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 xn > xn-1 > … > xr (r  1) 

of the linguistic decreasing chain of S and J 

satisfies the linguistic greatest increasing 

subchaining  

xr < xr+1 < xr+2 < … < xn – 1 < xn 

of the linguistic increasing chain of S. 

 Proof is direct and hence left as an exercise to the reader. 

 Next we study linguistic ideals in the linguistic monoids 

of the linguistic continuum {[x1, xn], max} and {[x1, xn], min} 

with examples. 

Example 2.9. Let IL = [worst, best] be a linguistic interval / 

continuum with worst as the linguistic least element and best is 

the linguistic greatest element. 

 We see the increasing linguistic continuous chain of 

infinite length of IL is  

worst < … < just best < best 

which is also known as increasing linguistic chain of IL. 

 Any linguistic subchain of IL can only be a closed 

linguistic subinterval of IL that contributes to a linguistic 

continuous increasing subchain of the linguistic continuous 

increasing chain of IL. 

 We will illustrate by this example.  

Let JL = [worst, good]  [worst, best]  IL be the linguistic 

subinterval of IL. The linguistic increasing subchain of JL is as 

follows. 
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 worst < … < just good < good       (a) 

Now consider PL = [fair, best]  [worst, best]  Il  

the linguistic subinterval of IL. The linguistic increasing 

subchain of PL is as follows. 

 fair < … < good < … < very very good < … best      (b) 

The increasing linguistic subchain (a) is called as the linguistic 

least element / term increasing subchain of the linguistic chain 

of S whereas (b) is defined as the greatest linguistic increasing 

subchain of the linguistic chain associated with S. 

 Consider the linguistic subinterval  

 [fair, very good] = QL  IL = [worst, best]. 

 The increasing linguistic subchain of the subinter QL is as 

follows: 

 fair < very fair < … < good < … < very good  (c) 

 The linguistic increasing subchain (c) of the linguistic 

increasing subchain of QL is neither the least nor the greatest 

increasing linguistic subchain of the linguistic chain associated 

with IL. 

 Now the linguistic decreasing chain of IL is as follows. 

best > very very … very good > … > very very … very bad > 

worst 

 Now for the above 3 subintervals JL, PL and QL we give 

their respective linguistic decreasing subchains. 



Linguistic Semigroups and their Properties  84 
 
 
  For JL = [worst, good] the linguistic decreasing subchain 

is  

good > just good > very very fair > very fair > … > fair >… >  

very bad > … > worst  

is the least linguistic decreasing subchain of the linguistic chain 

IL. 

 For the linguistic subinterval PL = [fair, best]  IL the 

linguistic decreasing subchain is  

 best > … > very good > good > just good > … > fair 

and it is the linguistic decreasing greatest subchain of the 

linguistic decreasing chain of IL. 

 QL = [fair, very good]  IL the linguistic decreasing 

subchain is  

 very good > good > just good > … > fair  

which is neither the least nor the greatest linguistic decreasing 

subchain of the decreasing linguistic chain of IL. 

 The theorem characterizing the linguistic ideals of  

{IL, max} and {IL, min} can be done as in case of linguistic 

finite set or discrete set S which forms the linguistic monoids 

under the operations max and min. 

Theorem 2.5. Let IL = [l, g] be a linguistic interval or 

continuum where l is the least element and g is the greatest term 

of IL. 

 Let  
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 g >     >       (G)  

be the decreasing linguistic continuous chain of IL and  

   <     < g     (L)  

be the increasing linguistic continuous chain of IL. 

 {IL, max} and {IL, min} be the linguistic monoids of IL 

with max and min operators respectively. 

i) PL is a linguistic ideal I of [l, m] = PL (m  g)  

{IL, min} if and only if PL forms a least linguistic 

decreasing subchain of the linguistic decreasing 

chain of IL that is  

m >    > l (m  g) 

and a least linguistic increasing subchain  

l <    < m (m  g) 

of the linguistic increasing chain of IL. 

ii) QL [t, g]  IL forms a linguistic ideal of {IL, max} 

if and only if QL satisfies the linguistic greatest 

decreasing subchain  

g >     > t    (t    ) 

of the linguistic decreasing chain of IL and QL 

satisfies the greatest increasing linguistic 

subchain  

t <  … < g (t   ) 
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 of the linguistic increasing chain of IL. 

 Proof is direct and left as an exercise to the reader. 

 Now we observe from the two theorems that any 

linguistic increasing or decreasing subchain which is neither the 

least nor the greatest cannot have linguistic ideals associated 

with them for the linguistic monoids under max and min 

operations. 

 We make other important observations and list in the 

following. 

i) S a linguistic set finite or infinite is always a 

totally ordered set. 

ii) S the linguist set has always a greatest element 

and a least element. 

iii) {S, max} and {S, min} are always linguistic 

monoids. 

iv) All linguistic monoids of {S, max} and {S, min} 

have some linguistic submonoids which are 

linguistic ideals. 

v) The linguistic submonoids Mi of the linguistic 

monoids {S, max} or {S, min} need not in 

general have the linguistic identity as that of {S, 

max} or {S, min}. They can be different. For 

each linguistic submonoids Mi may have 

different linguistic identities. This is very 

different from the classical monoids. 
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vi) All the four results are true if S is replaced by the 

linguistic continuum or interval IL. 

 Now we use different linguistic semigroups using the 

linguistic power set of a set S or IL. 

 We will first illustrate this situation by some exmaples. 

Example 2.10. Let S = {good, best, fair, bad, very bad} be a 

linguistic set of order 5. P(S) is a power set of S of order 25 if  

the empty subset is added. 

 Now P(S) = {, {best}, {bad}, {very bad} {good}, {fair}, 

{best, bad}, {fair, good}, … {best, very bad}, {best, bad, 

fair}… {best, very bad, good}, … {best, very bad, bad, good}, 

S = {best, very bad, bad, good, fair}} be the linguistic subset of 

S. 

 We see P(S) is only a partially ordered set and not a 

totally ordered set. For {fair} and {best, bad} are not ordered by 

inclusion relation. However {fair} and {fair, good} are ordered 

by the inclusion relation {fair}  {fair, good}.  

 Thus {P(S), } the linguistic power set and the set 

inclusion is only a partially ordered set. 

 However all the linguistic sets are totally ordered sets 

unlike the linguistic power sets. We use the operation  and  

in the classical sense only. 

 Now {P(S), } is a linguistic subset semigroup of finite 

order which is commutative. We can say {S} the linguistic set 

of P(S) acts as the linguistic subset identity of {P(S), }. 
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  For {S}   = , {S}  {good} = {good},  

{S}  {best, very bad, bad} = {best, very bad, bad} and so on, 

hence our claim; {S} is the linguistic subset identity of {P(S), 

}. 

 So we can say {P(S), } is a subset linguistic monoid 

with {S} as its linguistic subset identity. Thus we see for the 

linguistic power set subset monoid {P(S), } the biggest subset 

of P(S) which is S itself forms the linguistic subset identity of 

{P(S), }. 

 On the contrary consider the linguistic subset monoid 

{P(S), } the least subset of P(S) acts as the linguistic subset 

identity of {P(S), }.  

 Here  the empty subset of P(S) which is the least 

linguistic term acts as the linguistic subset identity of {P(S), }. 

For take A  P(S) we see A  {} = A hence the claim. Thus 

{P(S), } is the linguistic subset monoid. 

 Clearly both the linguistic subset monoids {P(S), } and 

{P(S), } are commutative idempotent linguistic subset 

monoids of order 25.  

 We find subset linguistic submonoids of these linguistic 

subset monoids {P(S), } and {P(S), }.  

 Consider the linguistic subset  

{T, } = {, {best}, {good}}  {P(S), }. 
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 Clearly {T, } is not a linguistic subset submonoid. For 

this is only a linguistic subset subsemigroup. 

 The operation  on {T, } is given by the following 

table 

  {good} {best} 

    

{good}  {good}  

{best}   {best} 

 

 Clearly this has no linguistic subset identity. We also see 

T is only a linguistic partially ordered subset the linguistic 

power set P(S) which is linguistic subset subsemigroup of order 

3. 

 For   {best} and   {good}. 

 However {T, } is not even closed for  

{best}  {good} = {best, good}  T. 

  {good} {best} 

  {good} {best} 

{good} {good} {good} {good, best} 

{best} {best} {good, best} {best} 

 

Hence the claim. 

 Here we make the following observations. 
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 i) Linguistic subsets of the linguistic power P(S) in 

general need not be a linguistic subset submonoid 

or linguistic subset subsemigroup. 

ii) T  P(S) may be a linguistic subset 

subsemigroup under ‘’ and T need not be a 

linguistic subset subsemigroup under  or vice 

versa. 

 To this effect we have given an example. 

 Consider the linguistic subsets.  

M = {, {good, best}, good, bad}, {good, best, bad}}. 

 We see {M, } is a linguistic subset submonoid of {P(S), 

} given by the following table. 

 

  {good, best} {good, bad} {good, best, 
bad} 

  {good, best} {good, bad} {good, best 
bad} 

{good, best} {good, 
best} 

{good, best} {good, best, 
bad} 

{good, best 
bad} 

{good, bad} {good, 
bad} 

{good, best, 
bad} 

{good, bad} {good, bad 
best} 

{good, best, 
bad} 

{good, 
best, 
bad} 

{good, bad, 
best} 

{good, bad, 
best} 

{good, bad, 
best} 
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 Now the linguistic subset submonoid {M, } is given by 

the following table. 

 

  {good, best} {good, bad} {good, bad 
best} 

     

{good, best}  {good, best} {good} {good, best} 

{good, bad}  {good} {good, bad} {good, bad} 

{good, bad  
best} 

 {good, best} {good, bad} {good, best 
bad} 

 

 

 Clearly {M, } is not even a closed linguistic subset 

collection.  

 So {M, } is not a linguistic subset submonoid or 

linguistic subset subsemigroup of {P(S), }. 

 Next we wish to describe linguistic subset ideals 

(nontrivial) if any in {P(S), } and {P(S), }. 

 The first question is {T, } an linguistic subset ideal of 

the linguistic subset monoid {P(S), }. Yes; {T, } is a 

linguistic subset ideal of the linguistic subset monoid {P(S), }. 

 So we observe even linguistic subset subsemigroups are 

linguistic subset ideals of {P(S), }. 

 Consider the collection of subsets  
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  R = {, {good}, {bad}, {good, bad best, fair, very bad}}  

      P(S). 

 We find the table of R under  in the following. 

 

  {good} {bad} {good, bad, best, 
fair} 

     

{good}  {good}  {good} 

{bad}   {bad} {bad} 

{good, bad, 
best, fair} 

 {good} {bad} {good, bad, best, 
fair, very bad} 

 

{R, } is a linguistic subset submonoid of {P(S), }. 

We see {R, } is not a linguistic subset ideal of {P(S), }. 

 For take s = {good, bad, fair}  P(S) and let  

t = {good, bad, best, fair}  R. 

s  t = {good, bad, fair}  {good, bad, best, fair} 

= {good, bad, fair}  R. 

 So {R, } is not a linguistic subset ideal of {P(S), }. 

Another important observation is that the linguistic subset 

identity of the linguistic subset submonoid  
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{R, } is {good, bad, best, fair} which is not the linguistic 

subset identity of {P(S), }. Only {S} is the linguistic subset 

identity of {P(S), }. 

 Now we find the table of {R, }. 

 

  {good} {bad} {good, bad, best, 
fair} 

  {good} {bad} {good, bad, best, 
fair} 

{good} {good} {good} {good, 
bad} 

{good, bad, best, 
fair} 

{bad} {bad} {bad, 
good} 

{bad} {good, bad, best, 
fair} 

{good, bad, 
best, fair} 

{good 
bad, 
best, 
fair} 

{good, 
bad, best, 

fair} 

{good, 
bad, best, 

fair} 

{good, bad, best, 
fair} 

 

 

 Clearly R is not even closed under  for {bad, good}  

R. Thus {R, } is not a linguistic subset subsemigroup or a 

linguistic subset submonoid of {P(S), }.  

 Now we try to observe the following. As in the case of 

linguistic set where {S, } and {S, } are both linguistic subset 

monoids and every subset T  S is such that {T, } and {T, } 

are linguistic subset submonoids of {S, } and {S, } 

respectively.  
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  However every linguistic subset submonoid of {S, } or 

{S, }) need not be a linguistic subset ideal. But in case of 

{P(S), } and {P(S), } we see every proper linguistic subsets 

collection of P(S) need not in general be linguistic subset 

subsemigroups or linguistic subset submonoids. 

 We need to find the condition for linguistic subset 

monoids to contain linguistic subset ideals. 

 Infact it is a difficult task to find a necessary and 

sufficient condition for linguistic subset submonoid or linguistic 

subset subsemigroups. 

 Now we proceed onto define, describe and develop the 

notion of linguistic subset monoids in case of linguistic interval 

/ continuum. 

 Let IL = [l, g] be the linguistic interval / continuum. P(IL) 

is the linguistic power set of IL. Since IL is of infinite order so is 

P(IL). We see P(IL) has {} to be least linguistic element / subset 

and {Il} to be the greatest linguistic subset of P(IL). {P(IL), } is 

the linguistic subset monoid of infinite order. {P(IL), } is also 

a linguistic subset monoid of infinite order. {P(IL, } has {IL} 

the largest linguistic subset of P(IL) to be the linguistic subset 

identity. 

 Similarly for {P(IL), } has the linguistic subset {} of 

P(IL) to be the linguistic subset identity. 

 For any A  {P(IL), } we see A   = A and for  

A  {P(IL), } we have A {IL} = A. 

Thus {IL} is the linguistic subset identity of {P(IL), }. 
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 We see {P(IL), } can have finite order linguistic subset 

subsemigroup even though {P(IL), } is an infinite order 

linguistic subset monoid. 

 Consider T = {{}, {a1}, {a2}, {a3}, {a4}}  P(IL) where 

a1, a2, a3, a4  IL are singleton elements. 

 The table for T under  linguistic operation is as follows. 

 {} {a1} {a2} {a3} {a4} 

{} {} {} {} {} {} 

{a1} {} {a1} {} {} {} 

{a2} {} {} {a2} {} {} 

{a3} {} {} {} {a3} {} 

{a4} {} {} {} {} {a4} 

 

 Thus {T, } is only a linguistic subset subsemigroup of 

{P(IL), }. 

 Now for the same linguistic subset T of P(IL) we give the 

table for the ‘’ linguistic operation  

 {} {a1} {a2} {a3} {a4} 

{} {} {a1} {a2} {a3} {a4} 

{a1} {a1} {a1} {a1, a2} {a1, a3} {a1, a4} 

{a2} {a2} {a2, a1} {a2} {a2, a3} {a2, a4} 

{a3} {a3} {a3, a1} {a3, a2} {a3} {a3, a4} 

{a4} {a4} {a4, a1} {a4, a2} {a4, a3} {a4} 
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  So T is not even closed under the linguistic operator .  

 Now we give yet another example of a linguistic subset 

semigroups. Consider R = {{}, {a1}, {a2}, {a1, a2}}  P(IL) 

where {a1} and {a2} are singleton linguistic terms of IL. 

 We find the table ‘’ for the linguistic subset R. 

  {a1} {a2} {a1, a2} 

  {a1} {a2} {a1, a2} 

{a1} {a1} {a1} {a1, a2} {a1, a2} 

{a2} {a2} {a1, a2} {a2} {a1, a2} 

{a1, a2} {a1, a2} {a1, a2} {a1, a2} {a1, a2} 
 

 Clearly {R, } is a linguistic subset submonoid of  

{P(IL), } of order four. Further {R, } is not a linguistic 

subset ideal of {P(IL), }. 

 Consider the table of R under  

 {} {a1} {a2} {a1, a2} 

{} {} {} {} {} 

{a1} {} {a1} {} {a1} 

{a2} {} {} {a2} {a2} 

{a2, a1} {} {a1} {a2} {a1, a2} 
 

 We see {R, } is the linguistic subset submonoid of this 

infinite linguistic subset monoid {P(IL), }. 
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 Further {a1, a2}  R acts as the subset linguistic identity 

of {R, }. 

 In fact {R, } is also a linguistic subset ideal of  

{P(IL), }. 

 We will provide some examples of linguistic subset 

monoids and the possible existence of linguistic subsets 

submonoids or subsemigroups or ideals first in case of a finite 

linguistic set S. 

Example 2.11. Let S = {x1, x2, x3, x4, x5, x6, x7, x8, x9} be a 

linguistic set describing the customer satisfaction of some 

product. 

 P(S) be the linguistic power set of S which includes the 

empty subset {} and the full linguistic subset of {S}. 

 {P(S), } and {P(S), } are linguistic subset monoids of 

finite order which is commutative and every element in P(S) is a 

linguistic subset idempotent both under  and . 

 Consider T = {x1, x2, x5, x6, x9}  S, a linguistic subset of 

P(T), the linguistic power set of T is a subset of the linguistic 

power set P(S) of S. 

 {P(T), }  {P(S), } is a linguistic subset submonoid 

of the linguistic subset monoid. 

 The linguistic subset identity of P(T) is  as that of P(S). 

However {P(T), } is not a linguistic subset ideal of {P(S), } 

for if A  P(S) \ P(T) then A  x  P(T) for any x  P(T). 
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  For the same linguistic subset T   S consider the 

linguistic power set P(T) under the operator ; {P(T), } is 

again a linguistic subset submonoid of {P(S), }. {P(T), } has 

its linguistic subset identity to be {x1, x2, x5, x6, x9} = {T} but 

the linguistic subset identity of {P(S), } is  

{S} = {x1, x2, x3, x4, x5, x6, x7, x8, x9}, 

which are different linguistic subsets. 

 Consider {P(T), } for any x  P(T) and A  P(S) we 

have x  A  P(T) hence {P(T), } is a linguistic subset ideal 

of {P(S), }. 

 Consider the linguistic subset {S}  P(S), {{S}, } and 

{{S}, } are linguistic subset monoids. We see W = {{S}, } 

is in fact a linguistic subset ideal of {P(S), }. As order of this 

W is one we call this linguistic subset ideal as trivial one.  

{P(S), } is a linguistic subset monoid and {{S}, } is again a 

linguistic subset submonoid of {P(S), } but is not a linguistic 

subset ideal of {P(S), } as if A  P(S) \{S} then  

A  {S} = A  W; hence the claim. 

 So {W, } is a linguistic subset trivial ideal whereas  

{W, } is not a linguistic trivial subset ideal of {S, }.  

 Consider V = {, } is a linguistic subset monoid of 

order one. But V is not a linguistic subset ideal of {P(S), }. 
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 But V = {{}, } is a linguistic subset submonoid of 

{P(S), } and infact linguistic subset ideal of {P(S), } which 

we call as trivial linguistic subset ideal of {P(S), }. 

 In view of this we can categorically give certain sufficient 

condition for the existence of linguistic subset ideals of  

{P(S), } as well as non-existence of linguistic subset ideals of 

{P(S), } in the following. 

Theorem 2.6. Let P(S) be the linguistic power set of the 

linguistic set S. Every proper subset M of S (M  S) is such that 

{P(M), }  {P(S), } where {P(S), } is a linguistic subset 

monoid. {P(M), } is a linguistic subset submonid of {P(S), } 

and {P(M), } is a linguistic subset ideal of {P(S), }. For 

{P(S), } the linguistic subset monoid every proper subset M of 

S is such at {P(M), } is a linguistic subset submonid which is 

not a linguistic subset ideal of {P(S), } and for every such 

linguistic subset submonid only the set {} is the linguistic 

subset identity of {P(M), }. 

 Proof is left as an exercise to the reader. 

 Next we proceed onto claim for any linguistic set S, P(S) 

its linguistic power set; {P(S), } and {P(S), } are linguistic 

subset semilattices. 

 Next we proceed onto define different type of operations 

on P(S) the linguistic power set of the linguistic set S.  

 We first give examples of them. 
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 Example 2.12. Let S = {good, bad, worst, medium, very bad, 

very good, just bad, best}  

be a linguistic set of 8 elements we have the following total 

order on S given in the following: 

best > very good > good > medium > just bad > bad > very bad 

> worst 

 Now P(S) \ {} be the linguistic power set of S.  

We work only with P(S) \ {}. 

 For any two set A and B we define min {A, B} as 

follows: here A = {good, bad, best} and  

B = {good, very bad, worst, very good} in P(S) \ {} 

min {A, B}  

= min {{good, bad, best} {good, very bad, worst, very good}} 

= {min {good, good}, min {good, very bad}, min {good, 

worst}, min {good, very good}, min {bad, good}, min {bad, 

very bad} min {bad, worst}, min {bad, very good}, min {best, 

good}, min {best, very bad}, min {best, worst}, min {best, very 

good}}  

= {good, very bad, worst, bad, very bad, very good}. 

 We see cardinality of min {A, B} is seven.  

 Next we find for the same subsets A and B of P(S) the 

max operation in the following: 
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max {A, B} = max {{good, bad, best}, {good, very bad, worst 

very good}}  

= {max{good, good}, max {good, very bad}, max {good, 

worst}, max {good, very good}, max {bad, good} max {bad, 

very bad}, max {bad, worst}, max {bad, very good}, max {best, 

good}, max {best very bad}, max {best, very good}, max {best, 

worst}}  

= {good, very good, bad, best}. 

 We see cardinality of max {A, B} is four. It is clearly 

seen max {A, B}  min {A, B}. 

Example 2.13. Let S = {good, fair, bad, best} be a linguistic set. 

P(S) be the power set of S. 

 {P(S) \ {}, min} and {P(S) \ {}, max} are both 

linguistic subset semigroups of finite order. 

 They are both linguistic subset monoids. For {P(S) \ {}, 

min}, {best} is the linguistic subset identity of P(S) \ {}. 

 Similarly {P(S) \ {}, max} has the subset {bad} to be 

the linguistic subset identity of {P(S) \ {}, max}. 

 Thus both {P(S) \{}, max} and {P(S) \ {}, min} are 

linguistic subset monoids of finite order. 

 We need thus sort of operations on the linguistic power 

set P(S) \ {} mainly in problems the expert researcher many a 

times needs to study of the impact or effect of one linguistic 
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 term over the other. This sort of study is not possible when one 

uses the classical operators  and . 

 So only we felt it necessary to study the linguistic 

algebraic structures using {P(S) \ {}, min} and {P(S) \ {}, 

max}; further we did not want any of the dominant or 

insignificant elements like the linguistic set S itself or the 

linguistic element . Now the least and the greatest elements of 

the linguistic continuum or chain contributed by S has 

significant influence on the set S when the operators min or max 

is used. 

 We see P(S) \ {} is only a partially ordered linguistic 

set. Further invariably if A, B  P(S) \ {}, min {A, B} = C say 

then C as a set has a larger cardinality of A and B or atleast least 

the cardinality of A or B. 

 Similarly for the case of max {A, B}. 

 We will describe this situation with more examples. 

Example 2.14. Let S = {dull, very dull, medium, just medium, 

little bright, very bright, bright, brightest}  

be the linguistic set associated with the performance of a class 

VIII student. 

 The linguistic increasing and decreasing continuous 

chains of S are as follows. 

very dull < dull < just medium < medium < little bright < bright 

< very bright < brightest  I 
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and brightest > very bright > bright > little bright > medium > 

just medium > dull > very dull  II 

Now P(S) \ {} be the linguistic power set of the linguistic set 

S. 

 Let A = {bright, medium, dull, just medium} and  

B = {brightest, very dull, dull}  P(S) \ {}. 

 We find min {A, B}. 

min {A, B} = {bright, very dull, dull, medium, just medium}

        1 

max {A, B} = {brightest, bright, medium, dull, just  

     medium}    2 

A  B = {dull}      3 

A  B = {bright, brightest, medium, dull, just medium, very 

dull}   4 

We see |A| = 4, |B| = 3, |A  B | = 1 

 |A  B | = 7, 

 |min {A, B}| = 5 and  

 |max {A, B}| = 5. 

Cardinality of max {A, B} and min {A, B} are 5, the same 

however max {A, B}  min {A, B}. 
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  Now take A = {brightest, dull, very dull, very bright, 

bright, medium}  P(S). 

We see A  A = A     1 

  A  A = A     2 

min{A, A} = {A} = max {A, A}. 

 So we see all the four operations,  , , max and min are 

idempotent operators on P(S). 

 Let A = {dull, very dull, little bright, very bright} and  

B = {brightest, medium} belong to P(S);  

A  B = none (undefined). 

A  B = {dull, very dull, little bright, very bright, brightest, 

medium},  

max {A, B} = {brightest, medium, little bright, very bright}. 

min {A, B} = {dull, very dull, little bright, medium, very 

bright} 

|A| = none, |A  B | = 6, 

|max {A, B}|  = 4 and |min {A, B}| = 5. 

 We see max {A, B} contains the set B.  

Similarly min{A, B contains A. 
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 Now we want to find for linguistic subset monoids using 

min or max operations on linguistic subsets of a power set S, 

P(S) \ {}. 

 First of all from the observations max {A, B} for any A, 

B  P(S), S a linguistic set is such that max {A, B} is again in 

P(S) \ {}. 

Similarly min{A, B} for any A, B  P(S) is again in P(S) \ {}. 

 The following theorem are left as an exercise for the 

reader to prove. 

Theorem 2.7. Let S be any linguistic set P(S) \ {} be the 

linguistic power set associated with S.  

 i)  {P(S) \ , min} is a linguistic subset monoid 

 ii) {P(S) \ , max} is a linguistic subset monoid. 

iii) The greatest element of S which is a singleton set 

is the linguistic subset identity of {P(S) \ , min}. 

iv) The least element of S which is singleton set is 

the linguistic subset identity of {P(S) \ {}, max}. 

 We will give some examples them. 

Example 2.15. Let S = {low, very low, medium, just medium, 

lowest, just high, very high, highest}  

be a linguistic set measuring the temperature of a day. 
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  The increasing linguistic chain associated with S is as 

follows: 

lowest < very low < low < just medium < medium < just high < 

very high < highest. 

 The decreasing continuous linguistic chain associated 

with S is as follows. 

highest > very high > just high > medium > just medium > low 

> very low > lowest. 

 However the linguistic power set P(S) \ {} we cannot 

have a decreasing or increasing continuous linguistic chain 

associated with them. 

 So for P(S) \ {} we take the least element of S as the 

least linguistic subset, here {lowest} and the greatest linguistic 

subset as {highest}. 

 Only these will serve as identities of the linguistic 

monoids {P(S) \ {}, min} and {P(S) \ , max}. 

 Now we illustrate this for if we take  

A = {very low, low, just medium, just high, highest}  

    {P(S) \ , min}. 

 The linguistic identity of {P(S) \ {}, min} is {highest} 

the greatest linguistic term of {P(S) \ {}, min}.  

 Consider min {A, {highest}} = {min {very low, highest}, 

min {low, highest}, min {just medium, highest}, min {just high, 

highest}, min {highest, highest}}  
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= {very low, low just medium, just high, highest} = A. So for 

the linguistic subset identity is {highest} for min operation. 

 Now consider for the same A in {P(S) \ {}, max} the 

subset linguistic identity of {P(S) \ {}, max} is the linguistic 

singleton subset {lowest}. 

 For max {A, {lowest}} is {max {very low, lowest}, max 

{low, lowest}, max {just medium, lowest}, max {just high, 

lowest}, max {highest, lowest}} 

= {very low, low, just medium, just high, highest} = A. 

Thus {P(S) \ {}, max} is a linguistic subset monoid with the 

linguistic subset {lowest} as its linguistic identity. 

 However finding ideals in case of {P(S) \ , min} or 

{P(S) \ , max} happens to be a challenging one. 

 Even if a linguistic subset B of S is taken and {P(B)\{}} 

the linguistic power subset of the linguistic power subset  

P(S) \ {} of S. However {P(B) \ {}, max} is a linguistic 

subset subset monoid of {P(S) \ {}, max}. 

 Similarly the linguistic power subset  

B) \ {}  P(S) \ {} is also a linguistic subset submonoid 

under min of  

{P(S) \ {}}. Clearly {P(B) \ {}, min} is linguistic not a subset 

ideal of {P(S) \ {}, min} and {P(B) \ {}, max} is the 

linguistic not a subset ideal of {P(S)\{}, max}. 
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  So finding linguistic subset ideals of {P(S) \ {}, max} 

and {P(S) \ {}, min} is a difficult problem. 

 Infact we putforth the following problem. 

 Let S be a linguistic set P(S) the linguistic power set of S 

{P(S) \ {}, min} and {P(S) \ {}, max} be linguistic subset 

monoids.  

Characterize the linguistic subset ideals of {P(S) \ {}, min} 

and {P(S) \ {}, max}. 

 Next we define using linguistic interval continuum built 

linguistic power set and define on them linguistic subset monoid 

in the following. 

 Let IL = [l, g] be the linguistic continuum / interval with l 

as the least element and g the greatest element. 

 The linguistic decreasing chain associated with IL is as 

following  

    g >     >     (a)  

and the linguistic increasing chain associated with IL is as 

follows. 

     <     < g  (b) 

We define P(IL) \ {} as the linguistic power set of IL which is 

of infinite order: {P(IL) \ {}, min} is a linguistic (power set) 

subset monoid with {g} the linguistic subset which acts the 

linguistic identity subset of {P(IL) \ {}, min}. 
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 Similarly {P(IL) \ {}, max} is a linguistic subset monoid 

with the linguistic subset identity {l} as the linguistic identity of 

{P(IL) \ {}, max}. 

 We will give by examples linguistic subset submonoids 

of {P(IL) \ {}, max}and {P(IL) \ {}, min}. 

Example 2.16. Let IL = {[worst, best]} be a linguistic interval / 

continuum. The linguistic increasing and decreasing chains of IL 

is as follows: 

 worst <    < fair <     < good <     < best     - I 

is the decreasing linguistic continuous chain of IL. 

best >    > very good >    >  fair > bad >    > very bad >    
>  worst    -   II 

is the linguistic increasing continuous chain of IL.  

We are mainly giving these two linguistic continuous chains of 

IL for basically to characterize the linguistic subset ideals of 

{P(IL) \ {}, min}or {P(IL) \ {}, max}. 

 Now consider the linguistic subinterval  

JL = [bad, good]  [worst, best] = IL and let 

P(JL) \ {}the linguistic subsets of JL, clearly P(JL)  P(IL). 

 Now {P(JL) \ {}, max} and {P(JL) \ {}, min} are 

linguistic subset submonoid of {P(IL) \ {}, min} with the 

linguistic subset {good} as its linguistic subset identity. 
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 However the linguistic subset identity of {P(IL) \ {}, min} is 

the linguistic subset {best}.  

 Clearly {P(IL) \ {}, min} and {P(JL) \ {}, min} have 

different linguistic subset identities. 

 Consider {P(JL) \ {}, max}  {P(IL) \ {}, max}, clearly 

{P(JL) \ {},max} is a linguistic subset submonoid of the 

linguistic subset monoid {P(IL) \ {}, max}. 

 The linguistic subset identity of {P(IL) \ {}, max} is the 

linguistic subset {worst} whereas the linguistic subset identity 

of {P(JL) \ {}, max} is the linguistic subset {bad}.  

 So both have different linguistic subset identity though 

one is the linguistic subset submonoid of the other. 

 Thus the important observation about linguistic subset 

monoids is that their linguistic subset submonoid in general 

need not have the same identity as that of the subset monoid. 

 Now we see the linguistic subset submonoid {P(JL) \ {}, 

min} is not a linguistic subset ideal as take the linguistic subset 

x ={worst}  P(IL) \ {}, and any subset {y}  P(JL) \ {}, 

clearly min {{worst}, {y}} = {z} where {worst}  {z} but 

worst  JL  so the linguistic term worst cannot be in any of the 

linguistic subsets contributed by P(JL) \ {}.  

 Hence {P(JL) \ {}, min} is not a linguistic subset ideal of 

the linguistic subset monoid {P(IL) \ {}, min}. 
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 Now we will find out if {P(JL) \ {}, max} is a linguistic 

subset ideal of the linguistic subset monoid {P(IL) \ {}, max}. 

Let us take the linguistic subset {best}  P(IL)\{} and for any 

linguistic subset y  P(JL) \ {} we find max {best}, y} = {w} 

say.   

 Claim {w}  P(JL) \ {} for the linguistic subset {w} 

must contain the element best but best  JL = [bad, good] so 

{w}  P(JL) \ {}, hence {P(JL) \ {}, max} is not a linguistic 

subset ideal of {P(IL) \ {}, max}. 

 Consider the linguistic interval  

RL = [worst, fair]  [worst, best] = IL. 

 Now P(RL) \ {} be the linguistic power set of the 

linguistic power subset P(IL) \ {}. {P(RL) \ {}, max} and  

{P(RL), min} are linguistic subset submonoids of  

 {P(IL) \ {}, max} and P(IL)\{}, min} respectively. 

 Clearly for any x  [worst, fair] and y = [best] the 

linguistic subset of {P(IL) \ {}, max} max {x, {best}}= {best} 

and {best}  P(RL) \ {}.  

 Hence {P(RL) \ {}, max} is not a linguistic subset ideal 

of {P(IL) \ {}, max}. 

 Now is {P(RL)\{}, min} a linguistic subset ideal of 

{P(IL)\{},min}. 

Consider any linguistic subset  

x = {very very good, good, best}  P(IL) \ {} 
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 and any {y}  {P(RL) \ {}, min}. Clearly min {{y}, {very very 

good, good, best}} = {y}.  

Hence {P(RL) \ {}, min} is a linguistic subset ideal of 

{P(RL)\{}, min}. 

 Let QL = [fair, best]  [worst, best] = IL be a linguistic 

subinterval of IL. P(QL) \ {}, be the linguistic power set of QL. 

P(QL) \ {}  P(IL) \ {}. By default of notation we in some 

places use just P(QL) for P(QL) \ {} or P(IL) for P(IL) \ {}, and 

so on. 

 We see {P(QL), max} and {P(QL), min} are both 

linguistic subset submonoids of {P(IL), max} and {P(IL), min} 

respectively.  

 Now we want to find out whether they are linguistic 

subset ideals of {P(QL), max} and {P(QL), min}. 

 Let us take any linguistic subset {x}  {P(QL), max} and 

y = {worst, bad, very bad}  P(IL) be the linguistic subset. 

 Clearly  max {x, {bad, very bad, worst}} = x so we see 

{P(QL), max} is always a linguistic subset ideal of {P(IL), max}. 

 Now for the same {x} in {P(QL), min} and for the same  

y = {bad, very bad, worst} in P(IL) we find min {{x}, {bad, 

very bad, worst}} 

 = {bad, very bad, worst}; for all {x}  P(QL) = P([fair, best]).  

Thus {P(QL), min} is not a linguistic subset ideal of {P(IL), 

min}. 
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 In view of all these we put forth the following theorem. 

Theorem 2.8. Let IL = [l, g] be the linguistic interval / 

continuum with l the least element and g of the greater element 

of the interval  

  <    < g 

is an increasing linguistic chain of IL and  

g >     >   

is linguistic decreasing chain of IL. {P(IL), max} and  

{P(IL), min} be the linguistic subset monoids. 

i) {P(JL), min}  {P(IL), min} is a linguistic subset 

ideal of {P(IL), min} if and only if the linguistic 

subinterval JL is of the form [l, f]  [l, g] where 

f  g.. 

ii) {P(QL), max}  {P(IL), max} is a linguistic subset 

ideal of {P(QL), max} if and only if the linguistic 

interval of the form QL = [t, g]  [l, g] and t  l. 

 Proof of (i) given JL = [l, f]  [l, g] and f  g is the 

linguistic subinterval of IL. P(JL) be the linguistic power set of JL 

and P(JL)  P(IL).  

 Clearly {P(JL), min} is a linguistic subset submonoid of 

the linguistic subset monoid {P(IL), min}.  

To prove {P(JL), min} is a linguistic subset ideal of {P(IL), min} 

we have to prove for every linguistic subset A in P(IL)  

and for any linguistic subset x in P(JL) we must have min  
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 {A,  x}  P(JL). This is true only in case of P(JL) for no element 

which is common between P(JL) and P(IL) is lesser than 

linguistic terms in P(JL) hence the claim. 

 This is so because the lesser part of the continuum which 

is covered by JL is continuous linguistic least subchain of the 

linguistic chain IL and there is no linguistic term in IL \ JL which 

is lesser than any linguistic term in JL. If such things happen, JL 

cannot be a linguistic ideal of {P(IL), min}.  

 That is presence of any linguistic term in a linguistic set  

S  IL or interval JL contained in IL is smaller than any of the 

elements in S or JL then {P(JL), min} cannot be a linguistic ideal 

of {P(IL), min} for if x  IL and x  JL i.e. x  P(JL) and x is 

smaller than some or one element in P(JL) say y then min {x, y} 

= x and  x  P(JL) hence the claim. 

 On similar lines {P(QL), max} is a linguistic subset 

submonoid of {P(IL), max}.  

 Now to show {P(QL) max} is a linguistic subset ideal we 

have to show for every linguistic subset x  P(IL) and for every  

linguistic  subset   y  P(QL), max {x, y}  P(QL). 

 This is clear from the fact every linguistic subset x  

P(IL) if it is fully or partly is not in P(QL) then every element 

which not in QL i.e. in P(QL) is lesser than every element in QL 

hen max {x, y} is always in P(QL).  

 On the contrary if any linguistic term is greater than any 

element (linguistic term) in QL then max {that element, x} for 
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any x is not in QL hence not in P(QL) so {P(QL), max} is not an 

ideal. 

 We will illustrate this situation by an example. 

Example 2.17. A linguistic interval / continuum related to 

students IQ is given [least IQ, highest IQ] = IL. 

 We see [least IQ, good IQ] = BL  IL. P(IL) be the 

linguistic power set associated with IL and P(BL) be the 

linguistic power set of BL; P(BL)  P(IL). 

 Clearly {P(BL), min} is a linguistic subset submonoid of 

the linguistic subset monoid {P(IL), min}. Further {P(BL), min} 

is a linguistic subset ideal of {P(IL), min} for and linguistic 

subsets x in P(BL) and y in P(IL) we have min {x, y}  P(BL) as 

all linguistic terms in the continuum IL \ BL are greater than 

every linguistic term in BL. 

 Clearly {P(BL), max} is also a linguistic subset 

submonoid of the linguistic subset monoid {P(IL), max}. 

However {P(BL), max} is not a linguistic subset ideal of {P(IL), 

max}.  

 For take x = {highest IQ}  P(IL), the linguistic subset of 

P(IL) and y be any linguistic subset of P(BL); max {y, {highest 

IQ}} = {highest IQ}  P(BL) hence {P(BL), max} is not a 

linguistic subset ideal of {P(IL), max}.  

 Now consider QL = [average IQ, highest IQ]  [least IQ, 

highest IQ] = IL is a linguistic subinterval of IL which is 

continuum linguistic subchain of the linguistic chain of IL. 
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  We see {P(QL), max} is a linguistic subset submonoid of 

the linguistic monoid {P(IL), max}. As every element in IL \ QL 

is lesser then every other element in QL we see for any linguistic 

subset x of P(IL) and for every linguistic subset y of P(QL)     

max {x, y}  P(QL). 

 Thus {P(QL), max} is a linguistic subset ideal of {P(IL), 

max}.  

 Now consider the linguistic interval  

RL = [medium IQ, good IQ]  IL = [least IQ, highest IQ]. 

 We see {P(RL), max} is a linguistic subset submonoid of 

{P(IL), max}. 

 However {P(RL), max} is not a linguistic subset ideal of 

{P(IL), max} for take  

{very good IQ, highest IQ, higher IQ} = y  P(IL) and 

x = {medium IQ, good IQ}  P(RL). 

 We see max {x, y} = y  P(RL) so {P(RL), max} is not a 

linguistic subset ideal of {P(IL), max}. 

 Consider a linguistic subset of some singleton sets in 

[least IQ, highest IQ] = S  

= {{least IQ}, good IQ} {fair IQ}, {medium IQ}, {poor IQ}, 

{very poor, IQ}}  P(IL).  

 Now {S, max} is a linguistic subset submonoid of {P(IL), 

max}.  
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 Similarly {S, min} is a linguistic subset submonoid of 

{P(IL), min}. Clearly {S, min} is not an ideal of {P(IL), min}, 

for if x = {good IQ} in S and y = {very very poor IQ}  P(IL) 

then min {x, y} = {very very poor IQ}  S so {S, min} is not a 

linguistic subset ideal of {P(IL), min}.  

 Clearly {S, max} is a linguistic subset submonoid of 

{P(IL), max}. However {S, max} is not a linguistic subset ideal 

of {P(IL), max}.  

 For take x = {good IQ}  S and y = {highest IQ}  P(IL) 

we see max {x,y} = y and y  S so {S, max} is not a linguistic 

subset ideal of {P(IL), max}. 

 Now consider  

T = {[very bad IQ, fair IQ]  [good IQ, very very good IQ] be a 

linguistic subset of IL. P(T) be the linguistic power subset of T. 

 P(T)  P(IL). {P(T), min} is a subset linguistic 

submonoid of {P(IL), min}. However {P(T), min} is not a 

linguistic subset ideal of {P(IL), min} for take the linguistic 

subset  

x = {very bad IQ}  P(T) and y = {least IQ}  P(IL); 

we see min {very bad IQ, least IQ} = {least IQ} = y  P(T). 

Hence our claim. 

 Now {P(T), max} is a linguistic subset submonoid of the 

linguistic subset monoid of {P(IL), max}. 
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  However {P(T), max} is not a linguistic ideal of {P(IL), 

max}. For if we take  

y = {highest IQ, very high IQ, very very high IQ}  P(IL) and  

x = {fair IQ, good IQ}  P(T). 

Then max {x, y} = y  P(T). Hence our claim {P(T), max} is 

not a linguistic ideal of {P(IL), max}.  

 Thus the theorem characterizing the linguistic ideals in 

{P(IL), max} and {P(IL), min} are in keeping with these 

examples. 

 Thus we have discussed in this chapter four types of 

linguistic semigroups using either linguistic sets of linguistic 

intervals using the four operations ,  max and min.  

 We have proved all of the four operations are distinct but 

however yield linguistic monoids of both finite and infinite 

order according as S is finite or infinite. In all cases the 

linguistic monoids given by the linguistic interval IL or the 

continuum is always infinite. 

 However we can for all these infinite or finite we can 

have linguistic submonoids which can be of finite order. We 

have given a necessary and sufficient condition for the these 

linguistic monoid to be linguistic ideals. 

 Further it is proved that at all times these are only 

linguistic monoids. 

 Finally all these four types of linguistic monoids are 

idempotent linguistic monoids for 
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min {x, x} = x, 

max {x, x} = x, 

x  x = x and x  x = x 

for every linguistic term x in the linguistic set S or in the 

linguistic continuum IL. 

 Likewise we have four types of linguistic subset monoids 

build four P(S) or P(IL) the linguistic power set of the linguistic 

set S or the linguistic interval or continuum IL. Under these four 

operations P(S) the linguistic power set is a linguistic subset 

monoid. It is pertinent to record at this juncture by the linguistic 

power set P(S) we always  mean P(S) \ {} for we do not 

usually work in general with the empty linguistic set. Mostly 

when we do so we will specially specifiy it. 

 Now for {P(S), } and {P(S), } we include the empty 

linguistic world {}. However usually we do not include the 

linguistic empty word in {P(S), max} and {P(S), min}. 

 In all the four cases (operations) these linguistic power 

sets forms a linguistic commutative monoid in which every 

linguistic subset of P(S) is a linguistic idempotent. These results 

hold good even in case of P(IL) the linguistic power set of the 

linguistic infinite continuum or interval. 

 In  this case also we have characterized the condition for 

a linguistic subset ideal to exist. 

 The operations (linguistic) using max or min is very 

different. 
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  Also both the linguistic power sets P(S) and P(IL) can be 

finite linguistic subset submonoids. However the linguistic 

power set of the linguistic continuum cannot have linguistic 

subset ideals of finite order. All linguistic subset ideals of P(IL) 

under all the four operations are always of infinite order. 

 We have sometimes mentioned these repeatedly not only 

for emphasis but also as the fact lies that this study of such 

algebraic structures using linguistic set or linguistic interval or 

continuum happens to be very new. So there may not be books 

or research papers based on these concepts. Finally we propose 

some exercise problems for the reader to understand this new 

notion. 

Suggested Problems 

1. Given a linguistic set S. Is it possible for {S, max} or  

{S, min} to be only linguistic semigroups and not 

linguistic monoids? Justify your claim. 

2. Prove given a linguistic set S or a linguistic interval / 

continuum IL. S and IL is a totally ordered linguistic sets. 

3. Define increasing (decreasing) linguistic chains of a 

linguistic set S of cardinality 10. 

 i) Find all linguistic subchains of the linguistic 

chain associated with S. 

 ii) How many such linguistic subchains exists for 

|S| = 10? 

4. For the linguistic continuum / interval  
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   IL = [dullest, brightest]. 

 i) Prove we can have infinite number of linguistic 

increasing or decreasing subchains of the linguistic 

chain associated with IL. 

 ii) Prove we can have infinite number of linguistic ideals 

of {IL, max} and {IL, min}. 

 iii) Prove we can have infinite number of linguistic 

subsemigroups (or submonoids) of the linguistic 

monoids {IL, min} and {IL, max} which are not 

linguistic ideals of {IL, min} or {IL, max} respectively. 

 iv) Obtain any other special feature associated with these 

linguistic monoids {IL, max} and {IL, min}. 

5. How many linguistic subset ideals exist for the linguistic 

monoid {P(S), max} where S = {good, bad, best, very 

bad, just good, very very good, fair, very fair, just fair, 

medium worst, very worst, very good}? 

 i) Give the linguistic chain of S. 

 ii) Study the question for {P(S), min}. 

iii) How many linguistic subset monoids are not 

linguistic ideals of (a) {P(S), max} and (b) {P(S), 

min}?    

iv) Find the linguistic monoid {S, max} and its 

linguistic submonodis which are not linguistic 

ideals. 



Linguistic Semigroups and their Properties  122 
 
 
 v) Study question (iv) in case of {S, min}. 

vi) Compare {S, min} with {P(S), min}. 

vii) Compare {S, max} with {P(S), max}. 

viii) Obtain some interesting properties about these 

linguistic monoids. 

6. Take a linguistic continuum [l, g] = IL. 

 i) Find all the four linguistic monoids using IL. 

 ii) Give at least three linguistic ideals for these 

linguistic monoids built in IL. 

 iii) For the linguistic subset P(IL) find all the four 

ideals and compare them. 

v) Find at least 8 linguistic subset collection from 

P(IL) and check for them to be linguistic subset 

ideals of these four ideals.  

vi) If a {P(JL), max} is a linguistic ideal of {P(IL), 

max} will P(JL) be linguistic ideal of P(IL) 

under min or  or  operations? 

7. For S = {good, bad, fair, very fair, best, very bad} a 

linguistic set of order 6;. 

 i) Find P(S) the linguistic power set of S. Is P(S) a 

totally ordered set? 

 ii) Find the linguistic chain of S. Is S a totally 

ordered set? 
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 iii) Find all ideals in {P(S), max}. 

iv) Will the linguistic ideals of {P(S), max} be also 

a linguistic ideals of {P(S), }? Justify your 

claim. 

v) Will the linguistic ideals of {P(S), min} be also 

the linguistic ideals of {P(S), }? 

vi) Can there be common linguistic ideals between 

{P(S), } and {P(S), }? Justify your claim. 

vii) Obtain any other interesting properties about 

these linguistic ideals. 

8. Let IL = [l, g] be a linguistic infinite continuum. Find all 

linguistic ideals of {IL, max}. 

 i) Show the linguistic ideals form a linguistic 

ideal of chains. 

 ii) Can we say the linguistic monoid {IL, max} has 

a linguistic chain? 

 iii) Does {IL, max} have more number of linguistic 

subchains? Justify your claim. 

 iv) Can {IL, max} the linguistic monoid has a chain 

of linguistic ideals? Justify your claim. 

 v) Will {IL, max} the linguistic monoid have a 

chain of linguistic submonoid which are not 

ideals? 
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  vi) Can {P(IL), max} the linguistic monoid have 

chain of linguistic ideals? Justify your claim! 

vii) Can the linguistic monoid {P(IL), } has 

linguistic ideals which form a chain? 

 viii) Can the linguistic monoid {P(IL), } have 

many chains of linguistic ideals? 

9. For the linguistic set S given in the problem 7; let P(S) be 

the power set of S with the empty linguistic set. 

 a) Draw the diagram of the linguistic semilattice 

{P(S), } and {P(S), }. 

 b) How many linguistic chains are given by  

{P(S), }? 

 c) How many linguistic chains exists for  

{P(S), }? 

 d) Are the numbers in (b) and (c) the same? Justify 

your claim! 

 e) Can we have a diagram for {P(S), max} or 

{P(S), min}? Justify your claim. 

 f) Can they have chains of linguistic subsets? 

 g) Obtain any other striking feature enjoyed by the 

four types of linguistic subset monoids and 

compare them. 

10. Let IL = [l, g] be a linguistic interval. 
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 i) Prove we can have infinite number of finite 

linguistic submonoids of {IL, min} and  

{IL, max}. 

 ii) Can {IL, min} and {IL, max} have finite 

linguistic nontrival ideals? 

iii) Can {P(IL), min} and {P(IL), max} have finite 

order linguistic subset submonoids of finite 

order? If so give one or two examples of each. 

 iv) Can {P(IL), max} and {P(IL), min} have finite 

subset ideals? Justify your claim. 

 v) Prove that both {P(IL), max} and {P(IL), min} 

can have only linguistic subset ideals of infinite 

order. 

 vi) Prove {IL, max} and {IL, min}, the linguistic 

monoids can have only infinite order linguistic 

ideals. 

 vii) Obtain any other special feature associated with 

{IL, max} and {IL, min}. 

11. a) Prove in case all the four linguistic subset 

monoids {P(IL), }, {P(IL), max}, {P(IL), min} 

and {P(IL), } every singleton is a linguistic 

subset submonoid and not a linguistic subset 

ideal. 

 b) Prove these four linguistic subset monoids have 

no linguistic subset submonoids of order greater 

than 1. 
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 12. For a finite linguistic set S find the probable construction 

of finite linguistic automation and finite linguistic 

semiautomation. 

13. Can we say finite linguistic monoids will find 

applications in all the places where monoids find their 

applications? 

14. Give examples of atleast 10 distinct linguistic interval or 

continuum associated with 10 different problems (like 

measuring intelligence, performance aspects of students 

etc). 

15. Can we apply these finite linguistic sets to finite linguistic 

automation? 

16. Give one or two examples of finite linguistic automation 

using finite linguistic set S (here off will be denoted by 0 

and one will be replaced by ON. 

17. Obtain any other practical applications of linguistic finite 

sets. 

18. Can linguistic continuum find its applications in practical 

real world problems? 

19. Prove linguistic subset monoids of a power set P(S) of the 

linguistic set S can have several linguistic chains of same 

length. 

20. Prove P(IL) for any linguistic interval IL can have several 

infinite length linguistic chains. 

21. Hence or otherwise prove P(IL) and P(S) are not totally 

ordered linguistic subsets collection. 
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22. Prove every linguistic submonoid of all linguistic 

monoids {IL, max} or {IL, min} are totally ordered. 

23. Prove in general every linguistic subset submonoid of the 

linguistic subset monoid {P(IL), max} (or {P(IL), min}) 

not  totally ordered linguistic subset submonoids. 

24. Can the linguistic subset monoid {P(IL), max}  

(or {P(IL), min}) have linguistic subset submonoid which 

is totally ordered? If one such exists can you characterize 

them? 

25. Does there exist a linguistic subset submonoid of } 

{P(IL), max} which has a linguistic subset ideal which is 

totally ordered? 

26. Can we say all linguistic subset ideals of {P(IL), max} are 

totally ordered? 

27. Does their exist a linguistic subset ideal of {P(IL), min} 

which is not a totally ordered? Justify your claim. 

28. Prove all linguistic ideals of {S, max} or {S, min}  

{S a finite linguistic set} the linguistic monoids are 

totally ordered. 

29. Will problem 28 be true if S is replaced by the linguistic 

continuum IL? 

30. Can we say {P(IL), } the linguistic monoid has 

linguistic ideals? 

31. Will the linguistic ideals mentioned in problem 30 form 

an ordered chain (that is they (subsets) form a totally 

ordered collection? 



 

Chapter Three  

 

 
LINGUISTIC SEMILINEAR ALGEBRAS AND 

LINGUISTIC SEMIVECTOR SPACES 

 

 In this chapter  we for the first time introduce the new 

notion of linguistic semivector spaces and linguistic semi linear 

algebra using the linguistic set S or linguistic interval IL. Further 

we prove several results in this direction. 

 Finally we prove linguistic matrices are linguistic semi 

linear algebras over the respective sets on which they are 

defined. 

 Recall in chapter 1 we have defined the concept of 

linguistic semirings and linguistic semifields of both finite and 

infinite order. We also have defined the new notion of subset 

linguistic semirings and subset linguistic semifields of both 

finite and infinite order. 

 Now we wish to first recall the definition of semivector 

spaces over semifields. 

 [20] has defined in the year 1993. In case of linguistic 

semifield we do not have the concept of characteristic of a 
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semifield. Further our identity with respect to min corresponds 

to the maximal linguistic element in the linguistic set S. 

 For min {g, s} = s for every s  S, where g is the greatest 

element in S. 

 If l is the linguistic least element in S then l serves as the 

linguistic identity with respect to max;  max {l, s} = s for all  

s  S. 

 We first recall definition of classical semivector space 

from [20]. 

Definition 3.1. We call V a semi vector space over a semifield S 

if the following conditions are true  

i) (V, +) is an additive commutative monoid with 0 

as the additive identity. 

ii) For all s  S and v  V, v  s, s   v  V where ‘’ 
is defined as the product of a scalar s in S and 

the vector v in V (every element in V will be 

known as a vector and that of s in S are called 

scalars). 

iii) For 0  S, 0  v = v  0 = 0. 

iv) (a b)   = a (b  ) for all 

    V and a, b  S. 

  (a + b)   = a   + b   

    a  ( +) = a   + a   
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    for all ,   V and a, b  S. 

 vi) For 1  S; 1   =   1 =  for all   V. 

 For more above semivector spaces refer [20, 32-8]. 

 We have given several examples of them in [20]. 

 Before we make the abstract definition we will proceed 

onto describe this situation by examples. 

Example 3.1. Let S be a linguistic set. 

 S = {worst, bad, good, best, fair, very bad, just good, just 

fair, very good}. 

 We see {S, max, min} is a linguistic semifield. 

 V = {S, max} is a commutative linguistic semigroup with 

worst as the identity.  

 Clearly V is a linguistic semivector space over the 

semifield {S, max, min} for if v  V we see for all s  S; min 

{v, s} is in V. 

 If worst  S; 

 min {worst, best} = worst  V; for best  V. 

 It is easily verified = {S, max} is a linguistic semi vector 

over the linguistic semifield {S, max, min}. 

 On similar lines we can have W = {S, min} to be a 

linguistic semivector space over the linguistic semifield  
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{S, max, min} where max {w, s}  W for all w  W and s  S; 

and best as its linguistic identity of W.  

 Infact for max {best, s} = best  W. 

 Unlike other semivector spaces (classical one) we see in 

case of linguistic semivector spaces we always have two 

semivector spaces V = {S, max} and W = {S, min} defined over 

the linguistic semifield {S, min, max}. 

 This is one of the marked differences between the 

classical semivector spaces and linguistic semivector spaces. 

We have given {S, max} or {S, min} only over {S, max, min}. 

 We will give different ones where the linguistic set 

basically used for both linguistic semifield and linguistic semi 

vector spaces is not the same. 

Example 3.2. Let V = {[worst, best], max} be a linguistic 

semigroup with worst as its identity.  

S = {worst, bad, good, very bad, fair, just fair, very good} be a 

linguistic set such that {S, min, max}, is the linguistic semifield. 

 For any v  V and s  S we have min{s, v}  V. 

 Infact V is a linguistic semivector space with infinite 

cardinality. 

 Suppose W = {[worst, best], min} be the linguistic 

monoid with the linguistic identity best. 

 W is a linguistic semivector space over {S, min, max}. 
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  Here also W is of infinite cardinality. 

 It is important to note {S, max} is a linguistic semigroup 

and W = {[worst, best], max, min} be the linguistic semifield. 

 Clearly {S, max} is not a linguistic semivector space over 

W. 

 For very very very bad  W and  

min {very very very bad, good} = very very very bad  S. 

 Hence {S, max} is not a linguistic semivector space over 

the linguistic semifield W = {[worst, best], max, min}.  

 Similarly {S, min} be a linguistic semigroup. W be as 

before a linguistic semifield space W. 

 S is not a linguistic semivector space over W for best  

W and for s = good  S, max {best, good}  S. Hence the 

claim. 

 So what can be a criteria that for {S, min} or {S, max} 

linguistic semigroup to be a linguistic semivector space over the 

semifield F = {B, min, max}. 

 It is mandatory the linguistic line (interval) B is a 

linguistic subset of S. If S  B and S is a proper subset of B 

then certainly S cannot be a linguistic semivector space over the 

linguistic semifield {B, max, min}. 

 Now we make the abstract definition of the linguistic 

semivector space V over the linguistic semifield S. 
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Definition 3.2. Let V be a linguistic set (or line / interval) with 

min (or max) operation. 

 {V, min} (or {V, max}) is a linguistic monoid  

{S, max, min} be a (linguistic set or linguistic interval / line) 

linguistic semifield. 

 We define {V, min} (or {V, max}) to be a linguistic 

semivector space over S, if for all v  V and for all s  S,     

max {v, s} is in V (or min {v, s} is in V). 

 This is equivalent to saying for {V, max} a linguistic 

monoid is such that max {V, S}  V that is  

max{V, S} = {max {v, s}, for all v  V and s  S is in V} is a 

proper subset of V}  

(in case of {V, min} min{V, S }  V that is min{V, S}  

= {min {v, s}; for all v  V and s  S} is contained in V, then 

{V, min} or ({V, max}) is a linguistic semivector space over the 

semifield {S, min, max}. 

 We will provide some more examples of them. 

Example 3.3. Let V = {tall, short, just tall, very tall, shortest, 

tallest, medium, just medium, very short, very very tall}  

be a linguistic set. {V, max} and {V, min} are linguistic 

monoids of order 10. 

Let S = {tall, just tall, medium, very short, just medium, tallest}  

be a linguistic subset of V. {S, min, max} is a linguistic 

semifield with tallest as the linguistic identity for {S, min} the 
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 linguistic monoid and for {S, max} the linguistic monoid very 

short is the linguistic least identity. 

 Clearly V is a linguistic semivector space over the 

linguistic semifield S. 

 One of the very natural questions is will every linguistic 

subset of V be a linguistic semi vector subspace of V over the 

linguistic semifield S. 

 This question is formulated from the fact that if we have 

{S, min} (or {S, max}) to be linguistic semigroup or a linguistic 

monoid then every proper linguistic subset of  S (including 

singleton set) will continue to be a linguistic subsemigroup or a 

linguistic submonoid.  

 Likewise if we take any linguistic semiring {P, min, 

max} or a linguistic semifield then every subset of P say Q will 

be such that {Q, min, max} will be a linguistic subsemiring or a 

linguistic subsemifield. 

 However for every linguistic semivector space {V, min} 

or {V, max} defined over the linguistic semifield {S, min, max} 

every subset of V is not in general a linguistic subsemivector 

space (linguistic semivector subspace) of V. 

 We will illustrate this situation by an example. 

Example 3.4. Let V = {best, worst, good, fair, very good, bad, 

very very bad, just bad, just fair, just good, very fair, worst}  

be a linguistic set, {V, max} is a linguistic monoid and {V, 

min} is also a linguistic monoid. 

 Let S = {best, worst, good, fair, very good, bad, very very 

bad}  V be a proper linguistic subset of V.  
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Clearly {S, min, max} is a linguistic semifield. {V, max} is a 

linguistic semivector space over S. 

 Now we take W = {bad, just bad, very fair, fair}  V, 

{W, min} and {W, max} are linguistic monoids. But {W, min} 

and {W, max} (by default of notation {W, min, max}) is not a 

linguistic subsemi vector space over S. 

 Hence the claim. 

 Thus we have make a necessary and sufficient condition 

for a linguistic semivector subspaces to exist over the linguistic 

semifield over which it is defined. 

 This putforth in the following theorem. 

Theorem 3.1. Let {V, min} and {V, max} ({V, min, max}) be a 

linguistic semivector spaces over the linguistic semifield {S, 

min, max}. Let W  V be a proper linguistic subset of V.  

{W, min} and {W, max} (that is ({W, min, max} by default of 

notation) is a linguistic subsemivector spaces if and only if  

S  W. 

Proof: We have V to be a linguistic semi vector space over the 

linguistic semifield S if and only if S  V. On the other hand if 

W  V, where W is a proper linguistic subset of V, then if W is 

to be linguistic semivector space over S then S  W and vice 

versa. Thus we have this condition to be a mandatory one for 

the linguistic semivector subspaces to exist. 

 Now we can define special type of linguistic semivector 

subspace which is choose to all linguistic strong semi vector 
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 subspace or (by default of expression) linguistic semivector 

strong subspace of the linguistic semivector space. 

Definition 3.3. Let {V, max} or {V, min} ({V, min, max by 

default of notation represents the two semivector spaces  

{V, min} and {V, max}) be a linguistic semivector space over the 

linguistic semifield {S, max, min}. 

 Let W  V be a linguistic proper subset of V and T  S be 

a linguistic proper subset of S. 

 If {W, min} or {W, max} ({W, min, max}) be a linguistic 

semivector subspaces of V over the linguistic subsemifield T. 

 Then we define {W, min, max} as the strong linguistic 

semivector subspace of over the linguistic subsemifield T of S. 

 We will illustrate this situation by some examples. 

Example 3.5. Let {V = [worst, best] min} where IL = [worst, 

best] = V; {V, min}, {V, max} (or {V, max, min}) are  

linguistic semivector spaces over the linguistic semifield  

{S = [bad, very good], min, max}. 

 Consider W = [fair, good]  [worst, best] = V  

be a proper linguistic subset of V. 

 Clearly {W, max} (or {W, min}, {W, max, min}) are not 

linguistic subsemivector subspaces of V over the semifield S. 

 However if we take  

T = [just fair, just good]  [bad, very good] = S; 
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it can be proved {T, max, min} is a proper linguistic 

subsemifield of S.  

 Further {W, max} or {W, min} ({W, max, min}) is a 

linguistic strong subsemivector subspace over the linguistic 

subsemifield {T, min, max} of {S, min, max}.  

 Clearly T  W. 

 The following condition is mandatory. 

 If W  V is a be strong linguistic subsemivector space 

over T  S then it is mandatory T  W otherwise W will not be 

a strong linguistic subsemivector space over T.  

We can putforth this as the following theorem. 

Theorem 3.2. Let {V, max, min} be a linguistic semivector space 

over the linguistic semifield {S, max, min}. {W, min, max}  {V, 

max, min} is a strong linguistic semivector subspace of V over 

{T, max, min}  {S, max, min} if and only if T  W. 

 Proof is left as an exercise to the reader. 

Note: If both V and S are only linguistic sets. Now it is not 

possible to define dimension or generating set of the linguistic 

semivector spaces; or to be more specific it is not possible to 

talk about basis or dimensions of exactly in a way in which we 

talk of classical semivector spaces or classical vector spaces. 

 Now we cannot speak of linguistic basis or linguistic 

elements which can generate the linguistic semivector spaces. 

The only thing we can say is infinite linguistic semivector 

spaces. The only thing we can say is infinite linguistic 
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 semivector space and finite linguistic vector space and nothing 

more. This is one of the major difference between the classical 

semivector space and the linguistic semivector space. 

Example 3.6. Let us consider P(S) the linguistic power set of 

the linguistic set  

S = {best, bad, good, very bad, very good, worst, fair, medium, 

very medium, just medium, just fair, very fair}.  V = {P(S), 

min} is a linguistic commutative monoid which is also a 

linguistic subset semivector space over the linguistic semifield 

{S, min, max}. We see the cardinality of V over S is 212. 

 We just leave it as a simple exercise to prove or disprove 

V cannot be generated over S by any finite proper subset of V. 

Example 3.7. Let S be as in the above example 3.6. 

 Take M = {best, very good, good, bad, medium, just 

medium, fair}  S  

to be a linguistic subset of S.  

 Now we know P(M), linguistic power subset of the 

linguistic power set S. That is P(M)  P(S) is a proper linguistic 

subset {P(M), min} and {P(M), max} are linguistic subset 

commutative moniods. 

 Further both {P(M), min} and {P(M), max} are not 

linguistic subset semivector subspaces of {P(S), min} and 

{P(S), max} respectively over the linguistic semifield  

{S, min, max}. 
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 This is so because the linguistic set S  M. 

 Suppose we replace S by M, i.e.  

{M, min, max}  {S, min, max} 

the linguistic subset semi subfield of the linguistic semifield S 

then {P(M), min} and {P(M), max} are linguistic strong subset 

subsemivector spaces of {P(S), min} and {P(S), max} 

respectively over the linguistic subsemifield {P(M), max, min}. 

 There are several such linguistic strong subset 

subsemivector subspaces. However no proper subset of {S}, 

P(S) \ {S} is a linguistic subset subsemivector space of {P(S), 

min, max} over the linguistic semifield {S, min, max}. 

 If we take the singleton set {S}  P(S) then {{S}, min} 

and are trivially linguistic subset semivector subspace of  

{P(S), min} over the linguistic semifield {S, min, max}.  

Study in this direction is both interesting, involving and 

innovative. 

 The reader is expected to study them and try to find 

related properties of subset linguistic semivector spaces using 

{{S}, max}. 

Example 3.8. Let IL = [dullest, brightest] be a linguistic interval. 

V = {IL, min} and W = {IL, max} are linguistic semivector 

spaces over the linguistic semifield S = {IL, min, max}.  

 Now let P(IL) be a linguistic power set of IL; P(IL) is of 

infinite order as IL is of infinite order {P(IL), max} and {P(IL), 
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 min} are linguistic subset semivector spaces over the linguistic 

semifield S. 

 Now let us consider the linguistic subinterval  

[just dull, very bright] = JL  [dullest, brightest] = IL. 

 Now {JL, max} and {JL, min} are not linguistic 

semivector subspaces of {IL, max} and {IL, min} respectively 

over S. 

 Likewise if P(JL) is a linguistic power set of the linguistic 

subinterval JL  IL then also {P(JL), min} and {P(JL), max} are 

not linguistic subset semivector subspaces of {P(IL), min} 

{P(IL), max} respectively over the linguistic semifield S. 

However {P(JL), min} and {P(JL), max} are linguistic strong 

subset subsemivector spaces over the linguistic subsemifield 

{JL, min, max}. 

 Similarly {JL, min} and {JL, max} are linguistic strong 

subsemivector spaces over the linguistic subsemifield  

{JL, min, max}  {IL, min, max}. 

 We see it is very difficult to get proper linguistic subset 

subsemivector spaces if we built them over the same set as that 

of the linguistic set whose power set is considered. 

 Hence to have many linguistic subset subsemivector 

subspaces it is mandatory if S is the linguistic set used for the 

linguistic power set P(S) then we take for the linguistic 

semifield M and M a proper subset of S {P(M), min} and 
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{P(M), max} will be a subset subsemivector spaces over the 

semifield {M, min, max}. 

 Let us give other types of linguistic semivector spaces 

using linguistic matrices.  

 We will first provide some examples of them. 

Example 3.9. Let B = {collection of all 1  5 linguistic row 

matrices with elements from the linguistic set  

S = {good, bad, best, just good, very good, fair, just bad, very 

very bad and medium} 

 We know {B, min} is a linguistic monid with (best, best, 

best, best, best) as the linguistic identity. 

 We know {B, max} is a linguistic monoid with  

{very very bad, very very bad, very very bad, very very bad, 

very very bad} as the linguistic identity. 

{B, min}, ({B, max} or by default of notation {B, max, min}) is 

a linguistic semivector space over the linguistic semifield.  

{S = {very very bad, best, medium, good, bad} min, max}.  

 We can say B is a finite order linguistic semivector space 

over the linguistic semifield S. 

 Infact order of B is 95. 

Example 3.10. Let A = {collection of all 1  10 linguistic 

matrices with entries from [shortest, tallest], the linguistic 

interval measuring height},  



Linguistic Semilinear Algebras and Semivector Spaces 142 
 
 
  {A, min}, ({A, max} or {A, min, max}) is a linguistic 

semivector space over the linguistic semifield S = {[shortest, 

tallest], max, max}. 

 We see the cardinality or the number of elements in A is 

infinite infact an infinite power. 

 Now we wish to show by this example that the V which 

we have constructed is not a linguistic semivector space over 

the linguistic semifield T.  

 The example is as follows. 

Example 3.11. Let V = {collection of all 1  9 linguistic row 

matrices with entries from the linguistic interval [medium, just 

tall], {V, min} is a linguistic monoid. {V, max} is a linguistic 

monoid {V, max, max} by default of notation is not a linguistic 

semivector space over the linguistic semifield  

{S = [shortest, tallest], min, max}. 

 For consider the linguistic matrix  

x = (just tall, just tall, …, just tall) in {V, min}.  

Let tallest  S  

max {tallest, x} = (tallest, tallest, …, tallest) which is clearly not 

an element of {V, min}.  

Therefore V is not a linguistic semivector space over the 

linguistic semifield S. 

 Consider  
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y = (medium, medium, …, medium)  {V, max}. Our claim 

{V, max} is not a linguistic semivector space over the linguistic 

semifield S. 

 For if we take shortest  S;  

min {shortest, y} = (shortest, shortest, …, shortest)  {(V, 

max}.  

Hence {V, max} is not a linguistic semivector space over the 

linguistic semifield {S, min, max}. 

 Thus we have to find a condition for a linguistic row 

matrix collection to be a linguistic semivector space over the 

linguistic semifield. 

Theorem 3.3. Let V = {collection of all linguistic 1  n row 

matrices with entries from the linguistic set S or from the 

linguistic interval IL} {V, max} (or {V, min}, {V, min, max}) is 

linguistic semivector space over the linguistic semifield  

B = {T, the linguistic set with max and min or JL the linguistic 

interval with max and min} if and only if T  S (or JL  IL). 

 Proof is direct and is left as an exercise to the reader. 

 We can have in this case also both linguistic 

subsemivector spaces over linguistic semifields and strong 

linguistic subsemivector spaces over linguistic subsemifields. 

 However we give illustrative examples of them. 

Example 3.12. Let V = {collection of all 1  6 row linguistic 

matrices with entries from the linguistic interval / continuum 
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 [dullest brightest]}, {V, min} and {V, max} are special 

linguistic semivector spaces over the linguistic semifield  

{S = [dullest, just bright], min, max}. 

 Consider P = [dull, medium]  [dullest, brightest] = V a 

linguistic subinterval of the linguistic interval [dullest, brightest] 

= V.  

 Now let W = {collection of all 1  6 row linguistic 

matrices with entries from P  V}, {W, min} and {W, max} are 

not linguistic subsemivector spaces of V over S. 

 For consider {W, min}; clearly {W, min} is a 

commutative linguistic monoid. 

 Now for any w  W and s  S we should have  

max {w, s} to be in W if W is to be a linguistic semivector 

subspace of  V over S.  

Let w = {dullest, ..., dullest)  W and s = just bright  S. 

 Now  

max (s, w) = max (just bright, just bright, …, just bright) 

which is clearly not a linguistic matrix in W. 

 Hence {W, min} is not a linguistic subsemivector space 

of V over S. 

 Now consider {W, max} and {W, min} are commutative 

linguistic moniods. To prove {W, max} is a linguistic 
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subsemivector space of W over S, we have to prove for any  

w  W and s  S, min {w, s}  W.  

Consider  s = dullest  S and w = (dull, dull, …, dull)  W. 

 We find min {s, w} = (dullest, dullest, …, dullest)  W 

hence {W, max} is not a linguistic subsemivector space of V 

over S.  

 We see {W, max}  is not a linguistic subsemivector space 

of V because the linguistic interval on which W is defined is P = 

[dull, medium], whereas linguistic interval over which V is 

defined is [dullest, just bright] and clearly  

[dullest, just bright]  [dull, medium]. 

 Infact [dull, medium]  [dullest, just bright].  

Hence the claim. 

 Suppose we see if T = {collection of all 1  6 linguistic 

row matrices defined over the interval  

Q = [dullest, bright]  [dullest, brightest]}. 

Then clearly {T, max} is a linguistic subsemivector space of V 

over M. 

 For M = [dullest, just bright] is properly contained in the 

linguistic interval [dullest, bright] = Q.  

 Study in this direction is interesting. 

 Now we will have to define the notion of linguistic 

semilinear algebra A over the linguistic semifield S. If A is to be 
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 linguistic semilinear algebra over S then {A, min} and  

{A, max} are linguistic semivector spaces over S and  

{A, min, max} is a semifield or to be more precise both the 

operations are defined.  

 We have seen all the linguistic semivector spaces so far 

defined are also linguistic semilinear algebras.  

 That is why in most of the places we use the term  

{S, min, max} is a linguistic semivector space instead of using 

the terms separately {S, min} and {S, max} are linguistic 

semivector spaces defined over a linguistic semifield  

{P, min, max}; P  S. 

 Now we will proceed onto give examples of these 

linguistic structures by examples. 

Example 3.13. Let V = {collection of all 5  1 linguistic column 

matrices with entries from [worst, best], the linguistic interval 

measuring the services of repair centres to their customers].  

{V, max} is a linguistic monoid. 

Let A = 

bad

fair

good

very bad

medium

 
 
 
 
 
 
  

 and B = 

good

very bad

fair

medium

good

 
 
 
 
 
 
  

  

be two 5  1 linguistic column matrices in V. 
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Clearly max {A, B} = max {

bad

fair

good

very bad

medium

 
 
 
 
 
 
  

, 

good

very bad

fair

medium

good

 
 
 
 
 
 
  

}  

 

max{bad, good]

max {fair, very bad]

max {good, fair}

max{very bad, medium]

max{medium,good}

 
 
 
 
 
 
  

 = 

good

fair

good

medium

good

 
 
 
 
 
 
  

  V. 

 Thus {V, max} is a commutative linguistic monoid of  

 

infinite order with the linguistic identity I = 

worst

worst

worst

worst

worst

 
 
 
 
 
 
  

  V.  

 

We see max {A, I} = max {I, A} = A for all A in V. 

 On similar lines we can prove {V, min} is a commutative 

linguistic monoid with the linguistic identity. 
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 L = 

best

best

best

best

best

 
 
 
 
 
 
  

  V.  

It is verified min {A, L} = min {L, A} = A for all A in V. 

 Consider S = {[worst, best], max, min}. S is a linguistic 

semifield of infite order. 

 Now to show {V, max} is a linguistic semivector space 

over the linguistic semi semifield S. 

 

 For if s = very bad  S and A = 

bad

good

best

very bad

fair

 
 
 
 
 
 
  

  {V, max}  

 

to prove {V, max} is a linguistic semivector space over S we 

have to prove for any s  S min {s, A}  V  

consider s = just bad  S 

 min {s, 

bad

good

best

very bad

fair

 
 
 
 
 
 
  

} = 

min{just bad,bad}

min{just bad, good}

min{just bad,best}

min{just bad,verybad}

min{just bad,fair}

 
 
 
 
 
 
  
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= 

bad

just bad

just bad

very bad

just bad

 
 
 
 
 
 
  

  V. 

 

 Hence {V, max} is a linguistic semivector space over the 

linguistic semifield {S, min, max}.  

 Now to show {V, max, min} is a linguistic semilinear 

algebra over {V, max, min}. 

 We see {V, max} and {V, min} are linguistic semi vector 

spaces over the linguistic semi field {S, max, min}.  

 So {V, max} will enjoy the special product min so that 

{V, max, min} becomes a linguistic semilinear algebra over the 

liniguistic semi field {S, min, max}.  

 On similar lines we see {V, min} will enjoy a special 

product max so that {V, min, max} becomes a linguistic 

semilinear algebra over the linguistic semifield {S, max, min}. 

 Thus we have got a class of linguistic semilinear algebras 

using these row and column linguistic matrices. 

 Now we give examples of linguistic square matrices 

which are linguistic semilinear algebras. 
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 Example 3.14. Let B = {collection of all 4  4 linguistic square 

matrices with entries from the linguistic interval [very lazy, 

best] which describes the nature of the worker in an industry}.  

 Let S = {[medium, just good], min max} be the linguistic 

semifield of infinite cardinality. {B, max} is a linguistic 

monoid. To prove this take  

A = 

lazy verylazy medium active

just lazy lazy active lazy

medium active lazy medium

good verygood verylazy active

 
 
 
 
 
 

 and 

D = 

good medium lazy good

very lazy good active lazy

active lazy good active

just active verylazy good good

 
 
 
 
 
 

 

be two 4  4 linguistic square matrices in B. 

We find max {A, D}  

= max {

lazy verylazy medium active

just lazy lazy active lazy

medium active lazy medium

good verygood verylazy active

 
 
 
 
 
 

, 

good medium lazy good

very lazy good active lazy

active lazy good active

just active verylazy good good

 
 
 
 
 
 

}  
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=   

max{lazy,good} max{very lazy,medium}

max{just lazy, very lazy} max{lazy,good}

max{medium,active} max{active,lazy}

max[good, just active} max{verygood,verylazy}








 

max{medium,lazy} max{active,good}

max{active, active} max{lazy,lazy}

max{lazy,good} max{medium,active}

max{verylazy,good} max{active,good}








 

= 

good medium lazy good

very lazy good active lazy

active lazy good active

just active verylazy good good

 
 
 
 
 
 

 is in {B, max}.  

Thus {B, max} is a linguistic semigroup of infinite order which 

is commutative. 

 Now we prove {B, max} linguistic commutative monoid. 

For this we have to find the linguistic identity 4  4 matrix. 

 Consider I =  

verylazy very lazy very lazy very lazy

verylazy very lazy very lazy very lazy

verylazy very lazy very lazy very lazy

verylazy very lazy very lazy very lazy

 
 
 
 
 
 

  {B, max}  

is such that for all x  (B, max, max {x, I} = x.  

Thus {B, max} is a linguistic monoid which is commutative and 

of infinite order. 
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  Now consider {B, min}, to prove {B, min} is a linguistic 

commutative semigroup we have to show for any A, D  {B, 

min}, min {A, D}  {B, min}.  

For the above linguistic matrices A and D, we see   

 

min {A, D} = 

lazy very lazy lazy active

very lazy lazy active lazy

medium lazy lazy medium

just active very lazy very lazy active

 
 
 
 
 
 

  

 

is in {B, min}.  

Further min{A, D} = min {D, A}.  

So {B, min} is a linguistic commutative semigroup of infinite 

cardinality. 

 We claim {B, min} is a linguistic commutative monoid of 

infinite cardinality for  

 

J = 

best worker best worker best worker best worker

best worker best worker best worker best worker

best worker best worker best worker best worker

best worker best worker best worker best worker

 
 
 
 
 
 

   

in {B, min} will act as the linguistic identity matrix for the 

linguistic monoid {B, min} as min {A, J} = A for all A in  

{B, min}. 
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 Now we want to study the following example. 

Example 3.15. Let P = {collection of all 3  6 linguistic 

matrices with entries from the linguistic set S}. 

{P, min} and {P, max} are linguistic commutative monoids. 

 Further {S, min} and {S, max} are also linguistic 

commutative monoids. Infact {P, max, min} and {S, max, min} 

are linguistic semifields. 

 We know {P, max, min} is a linguistic semilinear algebra 

over the linguistic semifield {S, max, min}.  

 However {S, min, max} is not a linguistic semivector 

space or semilinear algebra over {P, max, min}. Infact to be 

more precise {S, min} and {S, max} are not even linguistic 

semi vector spaces over the linguistic semifield {P, max, min}. 

 Now we can give the following theorem in case of 

linguistic matrices. 

Theorem 3.4.  Let P = {collection of all m  n linguistic 

matrices with entries from the linguistic set S or the linguistic 

continuum / interval IL}. 

i) {P, min} is a linguistic commutative monoid. 

ii) {P, max} is a linguistic commutative monoid. 

iii) {S, IL, min} is a linguistic commutative monoid. 

iv) {S, IL, max} is a linguistic commutative monoid. 

v) {S, IL, min, max} is a linguistic semifield. 
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 vi) {P, min, max} is a linguistic semifield. 

vii) {P, min} is a linguistic semivector space over the 

linguistic semifield {S, min, max}. 

viii) {P, max} is a linguistic semivector space over the 

linguistic semifield {S, min, max}. 

ix) {P, max, min} ({P, min max}) is a linguistic 

semilinear algebra over the linguistic semifield 

{S, min, max}. 

 Proof is direct and this task is left as exercise to the 

reader. 

 Now we are going to define different type of linguistic 

semilinear algebra over linguistic semifields.  

 First we illustrate this situation by some examples. 

Example 3.16. Let M = {All 5  5 linguistic matrices with 

entries from IL = [slowest, speediest]}.  

{M, min} and {M, max} are linguistic monoids of infinite order 

which are commutative. 

I = 

speediest speediest speediest

speediest speediest speediest

speediest speediest speediest

 
 
 
 
 
 




   


 

is the linguistic identity for the linguistic monoid {M, min}. 
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Similarly J = 

slowest slowest slowest

slowest slowest slowest

slowest slowest slowest

 
 
 
 
 
 




   


  

is the linguistic identity for the linguistic monoid {M, max}. 

 Now we know {IL, max, min} is a linguistic semifield of 

infinite order. 

 Infact we have two different linguistic semilinear algebra 

{M, max, min} and {M, min, max} defined over the linguistic 

semifield {IL, max, min}. 

Let A = 

high slow high medium high

medium high slow slow slow

slow high medium high veryhigh

veryslow slow high medium slow

high slow high high medium

 
 
 
 
 
 
  

 

and  

B = 

slow veryslow slowest high slow

slow high slow medium high

high slow veryslow slow slow

very high slow medium high medium

veryslow high high veryhigh veryslow

 
 
 
 
 
 
  

  

be any two linguistic matrices from M. 

We find min {max {A, B}} = 
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 slow medium slow medium medium

slow slow medium slow slow

slow slow slow medium slow

slow veryslow veryslow medium slow

slow high slow medium medium

 
 
 
 
 
 
  

. 

Now we find max {min {A, B}} =  

high high high high medium

slow high slow medium high

high high high veryhigh high

high slow medium medium medium

high medium medium high medium

 
 
 
 
 
 
  

. 

 It is easily verified  

min {max {A, B}}  max {min, {A, B}}. 

Thus in view of this we get the following linguistic semi linear 

algebra with the above defined operations. 

V1 = {M, min, min {max {A, B}}, 

V2 = {M, min, max {min {A, B}}, 

V3 = {M, max, min {max {A, B}}, 

V4 = {M, max, max {min {A, B}}, 

V5 = {M, max, min} and 
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V6 = {M, min, max} are the 6 distinct linguistic semi linear 

algebras defined over the linguistic field {IL, min, max}.  

 Next we show that this result is not true in case of all 

matrices. They are true only in case of linguistic square 

matrices. 

 Thus only in case of linguistic square matrices we get 6 

different linguistic semi linear algebras, in all other cases we 

have only 2 linguistic semi linear algebras for  

min {max {A, B}} or max{min {A, B}} are not defined when 

the linguistic matrices are not square matrices. 

 Now we define yet another concept of direct product of a 

linguistic set or linguistic interval / continuum in the following. 

Definition 3.4. Let S be a linguistic set or IL a linguistic interval 

/ continuum. 

 Now the linguistic direct product of S (or IL) denoted by  

S  …  S = {s1, …, sn} where si  S; 1  i  n; 2  n < } (or IL 

 …  IL = (l1, …, ln) / li  IL; 1  i  n; 2  n < }) is the 

linguistic set (or interval) producted n-times. 

 When n = 2 we get the linguistic plane which has been 

defined in book 1 of linguistic series [22-5 ] 

 When n = 3 we will have the three dimensional linguistic 

space and for any n, 3 < n <  we have the n-dimensional 

space. 
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  The very purpose of recalling this is we can say S  S  S 

 …  S = {(s1, s2, …, sn) with si  S; 1  i  n} can also be 

realized as the 1  n linguistic row matrices. 

 Hence we can describe following. 

 Let S be a linguistic set (or IL a linguistic interval / 

continuum).  

 The direct product  

M = S   S  …  S (or N = IL  IL  …  IL) 

= {(s1, …, sn) (or (l1, …, ln)) / si  S; 1  i  n (li  IL; 1 i  n)}  

is a linguistic commutative monoid under min operation; that is 

{M, min} is a linguistic monoid which is commutative. On 

similar lines {M, max} is also a linguistic commutative monoid. 

 Infact {M, min, max} is a linguistic semifield. 

 We now give examples of linguistic semilinear algebras 

over linguistic semifields using linguistic direct products. 

Example 3.17. Let V = S  S  S  S  S be the direct product 

of a linguistic set S. We know {S, min, max} is a linguistic 

semifield. {V, max} is a linguistic commutative monoid. 

Similarly {V, min} is again a linguistic commutative monoid. 

Further {V, max} is a linguistic semivector space over the 

linguistic semifield {S, max, min}. 

 Similarly {V, min} is again a linguistic semivector space 

over the semifield {S, max, min} {V, min, max} and {V, max, 
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min} are linguistic semilinear algebras over the linguistic 

semifield {S, min, max}. 

 We can have several such linguistic semilinear algebras 

using the linguistic semifield {S, min, max}. 

 It is not possible to find out the basis or generating 

elements for these linguistic set or linguistic continuum.  

The main reasons for this is in case of linguistic sets or 

linguistic interval / continuum we have max or min operation on          

them which are idempotents in nature that is min {x, x} = x and 

max {x, x} = x for all linguistic elements x in S or IL. 

 We call this properly as linguistic idempotent operator. 

 Finally the important issue being can we have some sort 

of mapping or function between linguistic semivector spaces V 

and W defined over the linguistic semifield.  

We have defined the notion of linguistic mapping in linguistic 

book series I [20-5]. 

 However for the sake of completeness we describe the 

notion of linguistic mapping or function. 

Let H = {good, bad, fair, just good, very good, very bad, best}   

K = {good, bad, very very bad, worst, best, just bad, fair, very 

fair, just good}. 

 Let L1 be a linguistic map from H to K. 
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L1  = 

 

 

  

 

Figure 3.1 

 

 We say this linguistic map L1 : H  K is an incomplete 

identical map that is H and K are two sets of experts working on 

a same problem they wish to map the identical terms onto the 

other so only we call L1 as incomplete linguistic mapping or is 

an incomplete linguistic function [22-5]. 

 For the same linguistic set say H and K we have the 

following linguistic map say L2. 

  

good 

H 

good 

K 

bad bad 

fair very very bad 

just good best 

very good just bad 

very bad fair 

best very fair 

just good 
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L2 = 

              H K 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 

 

 When we observe the linguistic mapping L2 we record the 

following. 

 L2 (good)  = just good 

 L2 (bad)  = very very bad 

good 

bad 

fair 

just good 

very good 

very bad 

best 

good 

bad 

very very bad 

worst 

best 

just bad 

fair 

very fair 

just good 
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  L2 (fair)  = just bad 

 L2 (just good) = very fair 

 L2 (very good) = good 

 L2 (very bad) = worst 

 L2 (best)  = best 

 Bad and fair are left out in the range space. 

This linguistic map clearly distinguishes that the expert H is a 

more lenient towards grading or equivalently the K is more 

strict than H. 

 Now this linguistic map L2 is a not a identical linguistic 

map we call it as graded linguistic map. However it is complete 

as in the classical sense for every linguistic term in H is mapped 

to some term in K. 

 No linguistic term is left out in H. We can have yet 

another type of mapping where one may feel the expert H is 

strict and expert K is very lenient. 

 In that case the linguistic map is of the following form. 
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H K 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 

 

 Thus is one of the ways the linguistic mapping is made. 

 One of the famous way of getting the mapping is if P and 

S are two linguistic sets such that P  S then we do the 

linguistic embedding.  

That is if L3 : P  S then L3(p) = p  S; yet L3(P) = P  S. 

 We call L3 as the identity linguistic embedding. 

good 

bad 

fair 

just good 

very good 

very bad 

best 

good 

bad 

very very bad 

worst 

best 

just bad 

fair 

very fair 

just good 
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  We can have 3 types of linguistic and some times we can 

have a linguistic map which can be very arbitrary which are just 

a map like the one described by the following. 

 For the same set of linguistic sets H and K we have the 

following linguistic map L4 which we choose to call all such 

types of linguistic maps are arbitrary linguistic maps. 

L4: 

H K 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 

good 

bad 

fair 

just good 

very good 

very bad 

best 

good 

bad 

very very bad 

worst 

best 

just bad 

fair 

very fair 

just good 
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 This L4 is one such arbitrary one. In algebraic linguistic 

structure we have done several such types of linguistic maps 

[22-5]. No rhyme or reason plays a role while mapping is 

carried out in such an arbitrary manner. Even a layman will 

condemn such maps. 

 On similar lines we can have linguistic maps defined on 

linguistic intervals IL. They can also be maps of the form from a 

linguistic finite set to a linguistic interval or continuum. Such 

study can be leading to different types of linguistic maps. 

 One special among them is a projection linguistic map. Its 

reverse way is called the linguistic map as injection map. One 

can have a one to one linguistic map if both the domain 

linguistic space and the range linguistic space are one and the 

same or is a one to one linguistic map. 

 Let JL and IL be two linguistic intervals / continuum. 

 Let L be a linguistic map from the two linguistic intervals 

JL and IL. 

 L: JL  IL can be such that L(s) = s and s  IL in this case 

either JL  IL or JL = IL. 

 Any one interested in these concepts can refer [22-5].  

 Now we proceed onto develop the mappings to the case 

of linguistic semivector spaces and linguistic semilinear 

algebras. 
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  We give the abstract definition of linguistic 

transformation of linguistic semivector spaces defined over the 

same linguistic semifield S. 

Definition 3.5. Let V and W be two linguistic semivector spaces 

with {V, max} and {W, max} defined over the same linguistic 

semifield {S, min, max}.  

 We define the map Lmax: {V, max}  {W, max} to be a 

linguistic transformation of the two linguistic semivector spaces 

over the linguistic semifield S if the following conditions are 

satisfied by Lmax. 

i) Lmax is a linguistic map from V  W. 

ii) Lmax(max (a, b)) = max (Lmax(a), Lmax(b)) that if c 

= max (a, b) then (c)
maxL = max ( (a)

maxL , (b)
maxL ) for all 

c, a, b  V and Lmax(a), Lmax(b), (c)
maxL   W. 

iii) For s  S and a  V; Lmax (min (s, a)) =              

min (Lmax(s), Lmax(a)) that if min (s, a) = d then 

Lmax (d) = min (Lmax(s), Lmax(a)). 

 Then we define Lmax to be a linguistic transformation of 

the linguistic semivector spaces {V, max} to {W, max} defined 

over the linguistic semifield {S, max, min}. 

 On similar lines we define for any two linguistic 

semivector spaces {V, min} and {W, max} defined over the 

linguistic semifield {S, max, min}; Lmin to be linguistic 

transformation if the following conditions are true. 

i) Lmin is a linguistic map from V  W. 
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ii) Lmin (min (a, b)) = min (Lmin(a) Lmin(b)) that if     

c =  min (a, b) then min (Lmin(a),  

Lmin(b)) = Lmin(c) for all a, b, c  V. 

iii) For a  V and s  S we have Lmin (max (s, a)) = 

max (Lmin(s), Lmin(a)) and if max (s, a) = d then 

Lmin(d) = max (Lmin(s), Lmin(a)). 

 Then we define Lmin to be a linguistic transformation of 

the linguistic semivector space {V, min} to {W, min} defined 

over the same linguistic semifield S 

 We define linguistic transformation L from {V, max, 

min} to {W, max, min}, the two linguistic semilinear algebras if 

L satisfies both Lmin and Lmax. 

 We will provide an example of the same. 

Example 3.18. Let V = {{best, good, bad, fair, just good, very 

bad, just bad, very fair just fair}, max} and  

W = {{very very good, good, very bad, fair, worst bad, just bad, 

very fair, just good}, max}  

be any two linguistic semivector spaces over the semifield  

S = {{good, bad, fair, very fair, very bad, just good}, max, 

min}}. 

 Now L: {V, max}  {W, max} is defined as follows 
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Figure 3.5 

 It is easily verified L is a linguistic transformation of 

semivector spaces {V, max} to {W, max}. 

 We can also define the linguistic transformation from a 

linguistic semivector subspace {P, max} of a linguistic 

semivector space {V, max} defined over the linguistic semifield 

{S, min, max}. 

 The linguistic map from l : V  P is called a linguistic 

projection if  

 l(p) = p for all p  V 

best very very good 

good good 

bad bad 

fair faor 

just good just good 

very bad worst 

just bad just bad 

very fair very fair 

just  fair fair 
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 l(v) = least linguistic term in P if v  P that is v  V \ P. 

 The following observations are mandatory. 

 There can be no two linguistic semivector subspaces W1 

and W2 of the linguistic semivector space {V, max} such that 

W1  W2 = {}; where {V, max} is defined over the linguistic 

semivector space {S, min, max}.  

 It is mandatory W1  W2 = {S} for W1 and W2 to be 

linguistic semivector subspaces of {V, max} over S. 

 So the questions of direct sum as in the classical 

semivector spaces and the mapping (linguistic transformations 

which are projection) may not in general satisfy any of these 

properties enjoyed by classical linear transformations and the 

projections.  

 Above all we cannot define the concept of kernel of a 

linguistic linear transformation. But however we will to build an 

appropriate analogue so we make the following statement. 

 Let {V, max} be the linguistic semivector space defined 

over the linguistic semifield {S, max, min}. 

 Let l be the least linguistic term element of V and g be the 

great linguistic term / element of V. 

 Let Lmax be a linguistic transformation from V to V. 

 The set of all elements x in (V, max) such that Lmax(x) = l 

will be called as linguistic kernel of Lmax under the max operator 

on V. 
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  On similar lines all x  V such that Lmin (y) = g for those 

y  V will be defined as the linguistic kernel of Lmin:  

{V, min}  {V, min}. 

 This is only under the assumption that Lmin and Lmax are 

well defined linguistic transformations from {V, min} to {V, 

min} and {V, max}  {V, max} respectively. 

 It is important record that one can do lots of research in 

this direction for it is in a dormant state. 

Suggested Problems 

1. Compare linguistic semivector spaces V and classical 

semivector spaces W defined over their respective 

semifield. 

2. Let IL = [shortest, tallest] be the linguistic interval 

(continuum). 

 Prove V = {IL, max} and  W = {IL, min} are linguistic 

semivector spaces over the linguistic semifield  

S = {IL, min max}. 

i) Can IL have linguistic subsemivector space of 

finite order (has finite number of elements)? 

ii) Can IL have linguistic subsemivector spaces 

with infinite cardinality? 
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iii) Will B = {[shortest, just], max} a linguistic 

semivector subspace of V? Justify your 

claim. 

3. Let V = {{best, worst, bad, good, very very bad, fair, just 

fair, just good, just bad, very bad, medium, just medium, 

very medium, very best}, min max}  

 be a linguistic semivector space over the linguistic 

semifield  

 S = {{bad, good, best, very very bad, just good, just bad}, 

min, max}}. 

 i) Find all linguistic subsemivector spaces of V over 

S. 

 ii) How many such linguistic semivector subspaces of 

V over S? Find the exact number. 

4. Let V and S be as in problem (3). Find all linguistic 

strong subsemivector spaces of V over the linguistic 

subsemifields T of S. 

5. Find any special interesting properties of linguistic 

semivector spaces {V, min} and {V, max} over the 

linguistic semifield {S, min, max} (S and V are 

appropriate linguistic sets or linguistic intervals). 

6. Can linguistic semivector spaces over linguistic 

semifields mentioned in problem (5) have a linguistic 

basis or a generalizing linguistic set? Justify your claim! 
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 7. Is it in general possible to find a generating proper 

linguistic subset which can generate a linguistic 

semivector space over a semifield? (Substantiate your 

answer with proof). 

8. Give a characterization theorem to assert the condition for 

a linguistic strong semi vector subspaces defined over a 

linguistic subsemifield to exist. 

9. Find all linguistic strong subsemivector spaces of  

{V, min} and {V, max} (where V = {good, bad, very 

bad, just bad, very very bad, just good, very good, fair, 

very fair, best, worst very worst} is the linguistic set) 

over the linguistic semifield  

 F = {S = {good, bad, very good, fair, very bad, worst, 

best}, min max}. 

 i) How many linguistic subsemivector spaces of V 

over S exist which can never be linguistic strong 

subsemivector spaces over any linguistic propoer 

subsemifield of S? 

10. Find all special features enjoyed by {P(S), min} = V; S a 

linguistic set be a linguistic subset semivector space over 

the linguistic semifield {S, min, max}.  

 Can {P(S), min} have proper subset linguistic 

subsemifields of order greater than two over the linguistic 

semifield {S, min, max}? Justify your claim! 

11. Let M = {collection of all 1  6 linguistic matrices with 

entries from IL = [most incapable, highly capable]}. 
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 i) Prove {M, min} is a linguistic commutative 

monoid of infinite cardinality. 

 ii) Prove {M, max} is a linguistic commutative 

monoid of infinite cardinality. Give its linguistic 

identity. 

 iii) Prove {M, min, max} is a semifield of infinite 

cardinality. 

 iv) Prove P = {IL, max} is a linguistic monoid of 

infinite cardinality. What is its linguistic identity? 

 v) Prove Q = {IL, min} is a linguistic commutative 

monoid of infinite cardinality. Find Q’s linguistic 

identity. 

 vi) Prove T = {IL, min, max} is an infinite 

dimensional linguistic semifield. 

 vii) Prove {M, max} is a linguistic semivector space of 

infinite dimensionality over the linguistic semifield 

T. 

 viii) Prove {M, min} is an infinite dimensional 

linguistic semivector space over the linguistic 

semifield T. 

 ix) Prove {M, min, max} (and {M, max, min} are 

linguistic semi linear algebras of infinite 

dimension over T. 

12. Let P(S) be the linguistic power set of the linguistic set S. 

Prove  
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  i) {P(S), min} is a linguistic commutative monoid 

and give the linguistic identity. 

 ii) {P(S), max} is a linguistic commutative monoid 

with linguistic identity. 

 iii) {P(S), min, max} is a linguistic semifield. 

iv) Prove {S, min} and {S, max} are linguistic 

commutative moniods and find their respective 

linguistic identities. 

v) Prove {S, min, max} is a linguistic semifield. 

vi) Prove {P(S), min} is a linguistic semivector space 

over {S, min, max}. 

vii) Prove {P(S), max} is a linguistic semivector space 

over {S, min, max}. 

viii) Prove {P(S), min, max} is a linguistic semilinear 

algebra over {S, min, max}. 

ix) Can {S, min} be a linguistic semivector space over 

{P(S), min, max}? Justify your claim. 

x) Can {S, max} be a linguistic semivector space 

over {P(S), min, max}? Prove your claim. 

xi) Will {S, min, max} be a linguistic semilinear 

algebra over the linguistic semifield {P(S), min, 

max}? Justify your claim. 
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13, Distinguish for any linguistic structure S and its linguistic 

power set P(S) on all the linguistic algebraic structure 

they enjoy. 

14. Let M = {collection of all 1  9 linguistic row matrices 

with entries from a linguistic set S}. 

 i) Prove {M, min} is a linguistic row matric monoid 

and give the linguistic identity matrix. 

 ii) Prove {M, max} is a linguistic row matrix monoid 

and give the linguistic identity matrix. 

 iii) Will the linguistic identities in (i) and (ii) be the 

same? Justify your claim. 

 iv) Prove {M, min, max} is a linguistic semifield. 

 v) Prove {M, min} is a linguistic semivector space 

over the linguistic semifield {S, max, min}. 

 vi) Prove {M, max} is a linguistic semivector space 

over the linguistic semifield {S, max, min}. 

 vii) Prove {M, max, min} is a linguistic semilinear 

algebra over the semifield {S, max, min}. 

 viii) Can {S, max, min} be a linguistic semilinear 

algebra over {M, max, min}? 

 ix) Can {S, max} be a linguistic semivector space 

over the linguistic semifield {M, max, min}? 

Prove your claim! 
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 i) Can {S, min} be a linguistic semivector space over 

the linguistic semifield {M, max, min}? Justify 

your claim. 

15. Let N = {collection of all 7  2 linguistic matrices  

    

1 2

3 4

5 6

7 8

9 10

11 12

13 14

a a

a a

a a

a a

a a

a a

a a

 
 
 
 
 
 
 
 
 
 
 

  

 where ai  IL = [worst, best]; 1  i  14}.  

 Study questions (i) to (x) of problem (14) for this 

collection. 

16. Let A and B be two linguistic matrices given in the 

following  

 A = 

good bad fair worst best

bad bad fair good good

best best good fair fair

good medium good worst fair

just good bad best good good

 
 
 
 
 
 
  

  

 and  
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 B =  

verybad bad good good

good verygood fair just fair

bad just bad best fair

good bad worst bad

fair best fair very bad

 
 
 
 
 
 
  

 

i) Find min{max {A, B}}.  

ii) Is min {max {B, A}} defined, justify your claim? 

iii) Can min {A, B} obtained? Prove your claim. 

iv) Does max {min {A, B}} defined? 

v) Find max {min {A, B}}. 

vi) Is max {min {A, B}} = min{max{A, B}? 

vii) Does max {B, A} exist? 

viii) Will max {min {A, B} = min {max {A, B}}? 

17. Define and describe a linguistic transformation from two 

linguistic semivector spaces {V, max} to {W, max} 

defined over the linguistic semifield {S, max, min},. 

18. Define the notion of linguistic inverse transformation for 

any given linguistic transformation  

 Lmax :(V, max)  (W, max)  

 where  (V, max) and (W, max) are linguistic semivector 

spaces over the same linguistic semifield (S, max, min}. 
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  i) Does the inverse linguistic transformation always 

exist? Justify your claim. 

 ii) Can one find linguistic kernel of Lmax? 

 iii) Obtain any other special property enjoyed by 

linguistic transformation Lmax from V  W. 

 iv) Obtain the special feature associated with           

Lmin  {V, min}  {W, min}. 

iv) Will the linguistic kernel of Lmin and Lmax be the 

same? Justify your claim 

19. Let {V, max] be a linguistic semivector space over the 

linguistic semifield {S, min, max}. 

 Assuming S and V both finite linguistic sets prove the 

following. 

i) Find all subset linguistic semivector subspaces Wi 

of V over linguistic subsemifields of S. 

ii) Define a linear linguistic transformation from  

i
maxL : V  Wi ; for all i.  

What is the linguistic kernel of these linguistic 

transformation i
maxL ? 

iii) Are these linguistic kernel of i
maxL  same or 

different for different Wi’s? Justify your claim. 
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iv) Let i
minL : {V, min}  {Ui, min} be a linguistic 

transformation which is a projection.  

Find the linguistic kernel of i
minL . 

v) Do the kernels i
minL  vary for each i or for some 

they can be the same? Justify your claim! 

20. Let i
minL  {V, max}  {W, max} where is a linguistic 

transformation of semivector spaces defined over the 

linguistic semifield {S, max, min} 

 i) What is kernel of Lmax? 

 ii) Will kernel of Lmax be a linguistic semivector 

subspace of {W, max} or {V, max}? Justify your 

claim. 

 iii) Obtain any other special property enjoyed by the 

linguistic transformation Lmax. 

21. Let Tmax be a linguistic linear operator from {V, max} to 

{V, max}, {V, max} semivector space defined over the 

linguistic semifield over {S, max, min}. 

 i) What is kernel Tmax? 

 ii) Does kernel Tmax exist? 

 iii) Is kernel Tmax will be a linguistic subspace of  

{V, max}? 
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 iv) Obtain any of the special and distinct features 

enjoyed by Tmax. 

22. Let Tmin: {V, min}  {V, min} be a linguistic linear 

operator study questions (i) to (iv) of problem (21). 

23. Let W = {All 1  6 linguistic matrices with entries from 

the linguistic interval IL = [very bad, best]} and  

 V = {All 1  6 linguistic matrices with entries from the 

linguistic interval [worst, very very good]}.  

 Let S = {[very bad, very very good], max, min} be the 

linguistic semifield. Will {V, max} and {W, max} be 

linguistic semivector spaces over the semifield S. 

 i) Build Lmax: {V, max}  {W, max} the linguistic 

linear transformation and find ker Lmax. 

 ii) Build Tmax: {V, max}  {V, max} the linguistic 

linear operator and find ker Tmax. 

 iii) If Jmax: {W, max}  {V, max} be a linguistic 

linear transformation find ker Jmax. 

 iv) Bring out the differences between ker Tmax and 

kerJmax. 

v) Can we compose Jmax . Imax? 

vi) Will Jmax . Imax be a linguistic transformation from 

{W, max}  {W, max}? Justify your claim. 
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vii) What will be the composition map Imax . Jmax? Does 

it exist? If it exists find the domain and range 

space? 

viii) Find atleast two proper linguistic semivector 

subspaces V1 and V2 of {V, max} and show the 

define the linguistic projections  

1
maxp : {V, max}  {V1, max} and  

2
maxp  :  {V, max}  {V2, max}. 

a) Are these distinct linguistic projections? 

b) Find ker 1
maxp  and ker 2

maxp . Are they 

distinct or the same? 

ix) For {M1, max} a linguistic strong semivector 

subspace of {V, max} over a linguistic semi 

subfield {P, max, min}  {S, max, min} find a 

linguistic projection. 

qmax : {V, max}  {M1, min} and find the ker 

qmax. 

x) Compare this ker qmax with that of ker 1
maxp ? 

xi) Obtain any other interesting properties about them. 

24. Let M = {collection of all 5  5 linguistic matrices with 

entries from a linguistic set S of finite order}.  
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  {M, max} is linguistic semivector space over the 

linguistic semifield {S, max, min}. 

 i) Study questions (i) to (xi) of problem 23 for this 

M. 

 ii) Prove {M, max, min} is a linguistic semilinear 

algebra over the linguistic semifield  

  {S, min, max}. 

 iii) Find some linguistic semilinear subalgebras P of 

M over the linguistic semifield {S, min, max}. 

 iv) Define in M two strong linguistic semilinear  

subalgebras P1 and P2 over some proper linguistic 

subsemifields of {S, min, max}. 

 v) Define a linguistic projective operator PL: M  P. 

 vi) Define 1
LT  and 2

LT  two linguistic projective strong 

operations from 

  1
LT : M  P1 and  2

LT : M  P2. 

 vii) Find 1
LT . 2

LT  and 2
LT  . 1

LT  and obtain the domain 

and range of these composition operators. 

 viii) What is kernel 1
LT  and 2

LT ? Are they identical? 

 ix) Find the kernel PL. 

 x) How does a general linguistic operator vary from 

the linguistic strong operator? 
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 xi) Obtain any interesting properties associated with 

these 3 types of linguistic operators. 

25. Give an example of a linguistic semivector space defined 

over a linguistic semifield which is not a linguistic 

semilinear algebra. 

26. Can we ever obtain a generating linguistic set for a 

linguistic semivector space defined over a linguistic 

semifield? 

27. Characterize the condition for a linguistic strong 

semivector subspace to exist for a linguistic semivector 

space V defined over a linguistic semifield S.  
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