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Abstract: Expressivism in logic is the view that logical vocabulary plays a
primarily expressive role: that is, that logical vocabulary makes perspicuous
in the object language structural features of inference and incompatibility
(Brandom, 1994, 2008). I present a precise, technical criterion of expres-
sivity for a logic (§2). I next present a logic that meets that criterion (§3).
I further explore some interesting features of that logic: first, a representa-
tion theorem for capturing other logics (§3.1), and next some novel logical
vocabulary for expressing structural features of inference (§4).
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1 Introduction: some philosophical background

In this paper I present a non-monotonic, multi-succedent sequent calculus
that vindicates the ambitions of logical expressivists and semantic inferen-
tialists. Expressivism in logic is the view that logical vocabulary plays a
primarily expressive role: that is, that logical vocabulary makes perspicuous
in the object language structural features of inference and incompatibility
(Brandom, 1994, 2008). Brandom cashes this out with the slogan that logi-
cal vocabulary allows one to say (in the object language) what one was pre-
viously only able to do (in a pre-logical discursive practice). The result is
that logical vocabulary should be understood as “LX”, i.e. (algorithmically)
elaborated from and explicative of a pre-logical consequence relation. (Al-
gorithmic) elaboration is a pragmatic constraint: the ability to competently
navigate such a pre-logical consequence relation already endows one with
the abilities needed to navigate a consequence relation with logical vocab-
ulary. That such vocabulary is explicative means that it must successfully
encode structural features of that consequence relation.

1This work is the fruit of a joint-research project. I am indebted to the helpful feedback
given by a research group run by Bob Brandom. The central philosophical and technical results
I am reporting, however, are my own. A system with similar ambitions (in fact an earlier result
in our project) can be seen in (Hlobil, 2016).
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Logical expressivism is motivated in turn by two other significant philo-
sophical theses: semantic inferentialism—-the view that the meaning of
non-logical vocabulary is determined (at least, if not essentially) by its role
in inference—and logical inferentialism–the view that the meaning of logi-
cal vocabulary is also so determined, paradigimatically by introduction and
elimination rules (Brandom, 1994, 2008; Peregrin, 2014). It is the former of
these two views that distinguishes expressivism from logical inferentialism.
Since our ordinary discursive practices potentially include material and non-
monotonic inferences, the logical expressivist wishes to understand logical
vocabulary as expressive of those inferential practices.

Combining these three lines of thought produces some demands on a
logical system. A commitment to semantic inferentialism means that (i) our
logical systems should include within them material and pre-logical frag-
ments, out of which logical vocabulary is to be elaborated. (ii) Such elabo-
ration should in turn naturally and conservatively extend such a pre-logical
consequence relation. The extension should be conservative in the sense
that no new material implications are introduced as a result; further, the
structural features that our logical vocabulary expresses should likewise be
preserved in the logically extended consequence relation. The demand that
the extension be natural means that specifying the inferential role of logi-
cal vocabulary should suffice on its own to extend and preserve the struc-
tural features in question (e.g. that no further structural rules are required).
This demand (if met) justifies the claim that the abilities needed to use non-
logical vocabulary already endow one with the abilities needed to use log-
ical vocabulary. Finally, (iii) such systems should be capable of expressing
in the object language those features of consequence that were discarded as
a result of (i); they should, therefore, express when an implication is e.g.
monotonic or classically valid.

The system I construct meets these demands. In order to show this, I
begin by making precise what logical expressivism demands. That is, I ar-
gue for a precise criterion against which a logic may be tested (§2). I also
argue for two additional criteria intended to make precise the idea that a
logic preserves and expresses structural features of implication. Follow-
ing this I construct a system that meets all of these constraints (§3). I start
with a material, non-monotonic, multi-succedent base consequence relation
over an atomic language: |∼0⊆ P(L0)×P(L0). The language is extended
in the standard fashion to include {&,∨,¬,→}. The consequence relation
is conservatively extended via familiar sequent rules |∼⊆ P(L) × P(L).
The extension is also natural in the sense sketched above. Local regions
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of monotonicity and classical validity are each preserved by the logical
rules of our sequent calculus without the aid of any structural rules. This
means, in the case of classicality, that the stipulation that our base conse-
quence relation contain all atomic classical sequents (i.e. sequents of the
form Γ, p |∼0 p,Θ for p ∈ L0, Γ,Θ ⊆ L0) guarantees that our logically
extended consequence relation be supra-classical via the logical rules alone.
That monotonicity is naturally preserved means that if a base sequent is
monotonic with respect to atoms ∀∆0,Λ0 ⊆ L0(∆0,Γ0 |∼0 Θ0,Λ0), then
that sequent will also be monotonic with respect to logically complex sen-
tences: ∀∆,Λ ⊆ L(∆,Γ0 |∼ Θ0,Λ). And this result holds for all implica-
tions in the logically extended consequence relation:

∀∆0,Λ0 ⊆ L0(∆0,Γ |∼ Θ,Λ0)⇒ ∀∆,Λ ⊆ L(∆,Γ |∼ Θ,Λ).

In addition, I introduce modal operators to encode these very same struc-
tural features in the object language (satisfying (iii) above). That is, I show
how we can introduce a ‘M ’ operator which marks all and only those se-
quents which obey monotonicity:

∀∆,Λ ⊆ L(∆,Γ |∼ A,Θ,Λ)⇔ Γ |∼ MA,Θ.

I also introduce an operator ‘K ’ which marks all and only classically valid
implications:

Γ `LK A,Θ⇔ Γ |∼ KA,Θ.

These operators are introduced via simple and straightforward sequent rules
and they mark precisely the structural features they purport to mark in virtue
of those sequent rules alone. I also explain how the techniques used to
develop ‘M ’ and ‘K ’ may be generalized to other structural features (§4).It
is in virtue of this that I claim we can see the logical vocabulary of my
system as truly expressive of an underlying material consequence relation.

Finally, along the way I present a representation theorem which allows
specification of exactly which implications must be included in the base if
we want our extended consequence relation to include a potentially arbi-
trary, logically complex consequence relation (§3.1). If that consequence
relation meets several modest syntactic constraints then we may specify ex-
actly which base consequence relation will generate exactly that logically
complex consequence relation. Thus, because the sequent rules I employ
naturally extend an underlying material and pre-logical consequence rela-
tion, we should understand that logical vocabulary as truly algorithmically
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elaborated from that pre-logical consequence relation. And because my rep-
resentation theorem allows us to see exactly which base implications in a
pre-logical consequence relation are responsible for a given implication, we
should understand those logically complex sequents as truly expressive of
that underlying base consequence relation. My system therefore vindicates
some core ambitions of logical expressivists.

2 Precisification of “expressivity”

I now seek to make the notion of “expression” more precise. Brandom un-
derstands expressivism in terms of what he calls an “LX relation”, where
a vocabulary B is “LX” of a vocabulary A if it is elaborated from and
explicative of A. The first criterion (elaboration) has it that if one is able
to successfully deploy vocabulary A then one already has the skills neces-
sary to use B. That is, that B may be (algorithmetically) elaborated from
A. The second criterion (explication) has it that B says something about
(makes perspicuous in the object language) what one was doing by using
A (minimally that B may encode the implications and incompatibilities of
A). Logical vocabulary is said to be “universally LX” meaning that logical
vocabulary stands in this relation to all vocabularies.

Let us make this relation more precise. First let L0 be an arbitrary vo-
cabulary devoid of logical symbols (i.e. a set of atomic sentence letters). Let
|∼0 be a consequence relation over L0 (i.e. |∼0⊆ P(L0)2). Note that while
I call |∼0 and |∼ (below) consequence relations I do not yet impose any
restrictions on them. They should be treated, therefore, simply as two place
relations between sets of sentences. As I discussed in the introduction, there
are philosophically rich reasons for wanting a consequence relation that is
e.g. non-monotonic or perhaps non-classical. In addition part of the moti-
vation of expressivism is that where such features hold of consequence it is
an expression of an underlying (material) relation of consequence.2

Next let L be our logic. Our logic consists of a finite set of logical sym-
bols (e.g. {&,∨,¬,→}) and rules for expanding L0 to L (our language en-
riched with those logical symbols) and for expanding |∼0 to |∼. Intuitively,
we should think of L as a function from |∼0 to |∼. That is, L : |∼0 7→ |∼.
Then whether L is “LX” concerns the relationship between |∼0 and |∼ (i.e.
the behavior of L in relation to the behavior of L0).

2I am being brief here on the justification for treating |∼0 as I do. I primarily wish to stress
here—in order to avoid confusion—that |∼0 need not have any constraints.
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That the logical vocabulary be elaborated fixes a tight relationship from
|∼0 to |∼. That is, to get from |∼0 to |∼ should require no more than a spec-
ification of the logical vocabulary. That is, given |∼0, |∼ should be uniquely
determined: |∼0⇒|∼. In prose, the behavior of L should be determined by
the behavior of L0 simply by specifying the logical symbols.

That the logical vocabulary be explicative fixes a tight relationship from
|∼ to |∼0. Since this requires that the logical vocabulary enable us to say
something about the underlying pre-logical consequence relation, we should
require that it actually do what it purports to do: |∼⇒ |∼0. In prose, the be-
havior of L should genuinely say or express something about the behavior of
L0. The behavior of L should therefore fix the behavior of L0. If L behaved
differently then it would express something different about the behavior of
L0. If such expression is to be genuine then the behavior of L0 (i.e. |∼0)
would need to be different.

Together these two criteria have it that |∼0⇔|∼. The behavior of L is
elaborated out of, but also explicative of the behavior of L0.

While this criterion has some naive plausibility, it must still be made
more precise. In particular, if our logical vocabulary is to be conservative,
then |∼0⊆ |∼ and so the criterion will hold trivially. We may circumvent
this problem by quantifying over possible |∼0. This might have already
been anticipated since I mentioned that logical vocabulary is to have this
relationship universally i.e. with respect to arbitrary vocabularies (and thus
arbitrary |∼0). This gives rise to the following definition:

Definition 1 Fix a logic L, i.e. a function from |∼0 to |∼. We say that L is
expressive or that |∼ expresses a base consequence relation |∼0 iff:

(∀Γ,Θ ⊆ L)(∃Γ1,Θ1, . . . ,Γn,Θn ⊆ L0)

(∀ |∼0⊆ P(L0)2)(∀ |∼⊆ P(L)2(L : |∼0 7→ |∼))

((Γ |∼ Θ)⇔(Γ1 |∼0 Θ1

∧
Γ2 |∼0 Θ2

∧
· · ·
∧

Γn |∼0 Θn)).

We also say Γ |∼ Θ expresses Γi |∼0 Θi (1 ≤ i ≤ n) (its expressien-
tia).

This definition says anytime Γ |∼ Θ this is in virtue of some set of im-
plications present in the language prior to L. So the logical vocabulary is
said to be elaborated if Γ |∼ Θ occurs whenever those pre-logical implica-
tions obtain, and the logical vocabulary is said to be explicative if Γ |∼ Θ
occurs only if those pre-logical implications obtain.
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The above should be taken as a precise specification of a minimal con-
straint on logics to count as “expressive”. But one of the central features of
expression is the idea that logical vocabulary should be able to make perspic-
uous in the object language structural features of inference. By structural
features I have in mind such things as monotonicity, classicality, reflexivity,
contraction, etc., where each is understood to be capable of holding both
globally (e.g. that |∼ is monotonic) as well as locally (e.g. that Γ |∼ Θ
is monotonic, though ∆ |∼ Λ may not be). Expressivism says that it is
distinctive of logical vocabulary to be able to express such features. This
requires that (i) L be capable of preserving structural features and that (ii) L
be capable of expressing those very structural features it preserves.

Definition 2 Let Sf be a structural feature. Let Sf(Γ |∼ Θ) be shorthand
for Γ |∼ Θ obeys (is an instance of) Sf. Next, let Γ |∼ Θ be arbitrary with
Γi |∼0 Θi (1 ≤ i ≤ n) its expressientia (in accordance with Definition 1).
We say that a logic L preserves a structural feature Sf iff:

Sf(Γ |∼ Θ)⇔
(
Sf(Γ1 |∼0 Θ1)

∧
· · ·
∧

Sf(Γn |∼0 Θn)
)
.

A structural feature is preserved when an implication obeys that structural
feature iff all of the implications it expresses also obey that structural fea-
ture. Thus, whether an implication obeys a structural feature should be seen
as expressing something about the pre-logical implications that that impli-
cation expresses: it inherits those features from them and has those features
in virtue of those implications alone. Next, I must explain what it means for
a particular piece of logical vocabulary to express such structural features.

Definition 3 Let Sf be a structural feature. Suppose some logical oper-
ation ‘*’ may be used to mark a sequent in some way (with the constraint
that Γ∗ |∼ Θ∗ only if Γ |∼ Θ). Then we say that ‘*’ (or L) expresses Sf iff
there exists a ‘*’ in L such that:

Γ∗ |∼ Θ∗ ⇔ Sf(Γ |∼ Θ).

Sf-Expression combines three ideas. (i) That a logic be capable of ex-
pressing an underling base consequence relation, (ii) that it be capable of
preserving structural features of that base consequence relation, and finally
(iii) that it be able to mark in the object language those very same features
that it preserves.
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3 A non-monotonic multi-succedent sequent calculus

I now construct a logic L which I will use to exhibit some of the above
ideas. Let us fix |∼0. Let our logic include the symbols {&,∨,¬,→} and
let it expandL0 toL in the standard fashion. Then our logic L is given by the
following sequent calculus, where proof trees are introduced by axioms:3

Axiom 1: If Γ |∼0 Θ, then Γ |∼ Θ may form the base of a proof tree.

Γ |∼ Θ, A B,Γ |∼ Θ
L→

A→ B,Γ |∼ Θ

A,Γ |∼ Θ, B
R→

Γ |∼ Θ, A→ B

Γ, A,B |∼ Θ
L&

Γ, A&B |∼ Θ

Γ |∼ A,Θ Γ |∼ B,Θ
R&

Γ |∼ A&B,Θ

A,Γ |∼ Θ B,Γ |∼ Θ
L∨

A ∨B,Γ |∼ Θ

Γ |∼ A,B,Θ
R∨

Γ |∼ A ∨B,Θ

Γ |∼ A,Θ
L¬

¬A,Γ |∼ Θ

A,Γ |∼ Θ
R¬

Γ |∼ ¬A,Θ

Note that |∼0 and |∼ here relate multisets. I treat things in this manner
in order to avoid assuming any structural features absent permutation. I call
L here NM-MS since its consequence relation is given by a Non-Monotonic
Multi-Succedent sequent calculus.

Next I rehearse some important results for NM-MS.4

Theorem 1 If Γ |∼ Θ may be arbitrarily weakened with atoms, then it
may be arbitrarily weakened with logically complex sentences:

∀∆0,Λ0 ⊆ L0(∆0,Γ |∼ Θ,Λ0)⇔ ∀∆,Λ ⊆ L(∆,Γ |∼ Θ,Λ).

Proof. (⇐) is immediate. (⇒) is proven by induction on the complexity of
∆ ∪ Λ where complexity is understood in terms of the complexity of the
most complex sentences in ∆ ∪ Λ.

3The rules are the same as Ketonen uses. The rules with two top sequents are additive;
the rules with a single top-sequent are multiplicative. These are sometimes called “mixed” or
“assorted” rules/connectives (see e.g. Dicher, 2016). It is similar to the system called G3cp
discussed in (Negri, Von Plato, & Ranta, 2008, ch. 3) with a more standard treatment of nega-
tion and material axioms. As is well known, these rules are equivalent to the multiplicative and
additive rules of linear logic given monotonicity and contraction (Girard, 2011).

4Note that many of these results have full proofs worked out in (Girard, 2011; Negri et al.,
2008). Since my system is slightly different than the systems featured there, a more thorough
treatment would require some minor modification.
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A similar result is in the offing, namely that NM-MS preserves contraction.

Theorem 2 If Γ |∼ Θ allows contraction of atomic sentences, then it
allows contraction of logically complex sentences.

Proof. One direction is trivial, the other direction is provided by induction
on the complexity of the contracted sentence.

Since it is well known that the rules featured above are equivalent to
both the additive and multiplicative rules of linear logic given contraction
and monotonicity, we can actually locate the condition needed for our logic
to be supra-classical.

Definition 4 We say that |∼0 obeys Containment (CO) if

∀∆,Λ ⊆ L0(∆, p |∼0 p,Λ)

(i.e. if we have ∀q ∈ L0(q |∼0 q) and all such sequents may be arbitrar-
ily weakened; the fragment carved out by this stipulation will also obviously
obey contraction). In short: let us define |∼CO

0 such that |∼CO
0 obeys reflex-

ivity ∀q ∈ L0(q |∼0 q), weakening and contraction. And further stipulate
that no proper subset of |∼CO

0 obeys all of these conditions. A base conse-
quence relation |∼0 is said to obey CO iff it includes |∼CO

0 , i.e. |∼CO
0 ⊆ |∼0.

Theorem 3 If |∼0 obeys CO, then |∼ is supra-classical.

Proof. The result is well known, but can be easily established by show-
ing an equivalence with Gentzen’s LK in the fragment of |∼ generated
by |∼CO

0 .

Finally, the next theorem is of particular import to the sections following
this one.

Theorem 4 All rules of NM-MS are reversible. That is, if Γ |∼ Θ would be
the result of the application of a rule to Γ∗ |∼ Θ∗ (and possibly Γ∗∗ |∼ Θ∗∗)
then

Γ |∼ Θ⇔ Γ∗ |∼ Θ∗(and Γ∗∗ |∼ Θ∗∗).

Proof. Proof is straightforward by induction on proof height.

From this my first gloss on logical expression follows immediately. In the
next section I prove that the more precise sense (in Definition 1) also holds.

Corollary 1 NM-MS is conservative. That is

Γ |∼0 Θ⇔ Γ |∼ Θ.
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3.1 Representation Theorem

Next I show how consequence relations may be represented in NM-MS.
First two central results concerning conjunctive and disjunctive normal forms.5

Proposition 1 Let CNF (A) be the conjunctive normal form representa-
tion of A. It follows that

Γ |∼ Θ, A⇔ Γ |∼ Θ, CNF (A).

Proof. Proof proceeds constructively. From theorem 4, we may deconstruct
A until we have a number of sequents of the form: Γ |∼ Θ,Λ1; Γ |∼
Θ,Λ2; . . . Γ |∼ Θ,Λn where Λi(1 ≤ i ≤ n) contains only literals. We next
construct CNF (A) via repeated application of R∨ and R&:

Γ |∼ Θ, (∨Λ1)&(∨Λ2)& · · ·&(∨Λn),

i.e. Γ |∼ Θ, CNF (A).

Proposition 2 Let DNF (A) be the disjunctive normal form representa-
tion of A. It follows that

A,Γ |∼ Θ⇔ DNF (A),Γ |∼ Θ.

Proof. Proof is identical to the previous proposition except the sets are on
the left and we construct DNF (A) via L& and L∨.

Theorem 5 (Representation Theorem 1) Let CR be a consequence rela-
tion, i.e. CR ⊆ P(L)2. Then we may specify what must be included in |∼0

such that CR ⊆ |∼.

Proof. Proof proceeds constructively. For each Γ |∼ Θ in CR let us find an
equivalent CNF (A) |∼ CNF (B). This has the form:

(&Γ1) ∨ · · · ∨ (&Γa) |∼ (∨Θ1)& · · ·&(∨Θb).

This holds just in case (for 1 ≤ i ≤ a and 1 ≤ j ≤ b) Γi |∼0 Θj . Thus we
stipulate of the base that Γi |∼0 Θj for 1 ≤ i ≤ a and 1 ≤ j ≤ b. If we do
this for each implication in CR then we are guaranteed that CR ⊆ |∼.

5Note that the results in Propositions 1 and 2 follow closely the distribution properties
Girard demonstrates for different connectives in linear logic (Girard, 1987, 2011).
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Theorem 6 (Representation Theorem 2) Let CR be a consequence rela-
tion. IfCR is closed under some modest syntactic constraints,6 then we may
specify |∼0 such that CR = |∼.

Proof. Proof is identical to the first Representation Theorem except that the
syntactic constraints on CR have it that |∼= CR.

These results give us a way of saying exactly how to reconstruct arbi-
trary consequence relations using my machinery and given some modest
constraints how to reconstruct them exactly. It is this ability to reconstruct
consequence relations exactly that will prove most important. For what it
shows is that we are able to find exactly which pre-logical implications an
arbitrary implication involving logical vocabulary expresses. That is, what
I have shown is a method for finding exactly which implications in |∼0 are
expressed by each implication in |∼. We are thus in a position to prove the
following straight away.

Theorem 7 (Expressivity) o NM-MS is expressive. That is, we have

Γ |∼ Θ⇔ (Γ1 |∼0 Θ1

∧
· · ·
∧

Γn |∼0 Θn).

for some Γ1,Θ1, . . . ,Γn,Θn and arbitrary |∼0.

Proof. Suppose Γ |∼ Θ and let it be equivalent to DNF (A) |∼ CNF (B)
for some A and B. This has the form:

(&Γ1) ∨ · · · ∨ (&Γa) |∼ (∨Θ1)& · · ·&(∨Θb).

This holds just in case (for 1 ≤ i ≤ a and 1 ≤ j ≤ b) Γi |∼0 Θj . Next, let
us enumerate 〈i, j〉 as 1, . . . , n. Then we have that:

Γ |∼ Θ⇔ (Γ1 |∼0 Θ1

∧
· · ·
∧

Γn |∼0 Θn).

6In a more formal account I treat representation as of theories. Here I characterize it in
terms of consequence relations, where we are able to precisely represent a consequence rela-
tion just in case it is closed under the rules of NM-MS. In the case where we wish to treat
theories instead, then a theory T must meet the following constraints: &-composition and -
decomposition (A,B ∈ T iff A&B ∈ T ), Distribution (of ∨ over &) (A ∨ (B&C)) ∈ T iff
(A∨B)&(A∨C) ∈ T , Conditional Equivalence (A→ B = σ is a sub-formula of τ ∈ T iff
¬A ∨ B = σ′ is a subformula of τ ∈ T ), both De-Morgan’s Equivalences (likewise defined
over sub-formulae) and involution (also defined over subformulae).
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4 Expressing Other Features

I have so far shown how NM-MS is expressive in the sense made precise
in Definition 1. Now I show how NM-MS may express particular struc-
tural features. First I introduce a schema for introducing a piece of logical
vocabulary ‘S’.

First, let us enrich our sequent calculus by introducing a second turnstile
|∼S. Now let |∼S

0 pick out some subset of |∼0. Later I will discuss princi-
ples for determining which subset, but for now I leave the details vague. We
may introduce the following rules to our sequent calculus:7

Axiom 2: If Γ |∼S
0 Θ then Γ |∼S Θ.

A,Γ |∼S Θ
LS

SA,Γ |∼[S] Θ

Γ |∼S Θ, A
RS

Γ |∼[S] Θ, SA

Lemma 1 LS and RS are reversible rules.

We thus have the following result.

Theorem 8 Let Sf be a structural rule. Suppose that Sf is preserved (in
the sense of Definition 2) and suppose further that |∼S marks that structural
feature exactly. We thus have: Sf(Γ |∼ Θ) iff Γ |∼S Θ. It follows that S
expresses (in the sense of Definition 3) Sf. Thus:

SA,Γ |∼ Θ⇔ Sf(A,Γ |∼ Θ)

Γ |∼ Θ, SA⇔ Sf(A,Γ |∼ Θ, A)

Proof. I prove only the latter biconditional since the proof of the former is
identical. By supposition Sf(Γ |∼ Θ, A) iff Γ |∼S Θ, A. Because our RS
rule is reversible, we have that Γ |∼S Θ, A iff Γ |∼ Θ, SA. Thus

Γ |∼ Θ, SA⇔ Sf(Γ |∼ Θ, A).

The result of the above proof is a general method for introducing logi-
cal vocabulary that is expressive of structural features. If the rules for the
logical vocabulary’s introduction are reversible and the structural feature in
question is preserved by L, then the logical vocabulary will express that
structural feature. I next rehearse two specific cases of this: an operator that
marks monotonicity and an operator that marks classical validity.

7Note that the rest of our sequent calculus is altered such that our other rules preserve |∼S.
E.g. R& requires that both top sequents have either |∼ or |∼S (I do not allow mixed cases).
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4.1 Capturing Monotonicity ‘M ’ and Classicality ‘K ’

The rules for monotonicity have the following form:

Axiom 2: If ∀∆,Λ ⊆ L0(∆,Γ |∼0 Θ,Λ) then Γ |∼M Θ.

A,Γ |∼M Θ
LM

MA,Γ |∼[M ] Θ

Γ |∼M Θ, A
RM

Γ |∼[M ] Θ, MA

I have already show in Theorem 1 that weakening is preserved by the rules
of NM-MS. It therefore follows that:

Corollary 2 M expresses weakening/monotonicity. That is,

MA,Γ |∼ Θ⇔ ∀∆,Λ(∆, A,Γ |∼ Θ,Λ)

Γ |∼ Θ, MA⇔ ∀∆,Λ(∆,Γ |∼ Θ, A,Λ)

This means that we may expand NM-MS (our L) in order to mark in
the object language which implications are persistent under arbitrary weak-
enings. Next, I demonstrate the same for “classicality”, i.e. develop an
operator that marks implications that are valid classically.

Axiom 2: If Γ, p |∼0 p,Θ then Γ, p |∼K p,Θ (where Γ,Θ may be possibly
empty).

A,Γ |∼K Θ
LK

KA,Γ |∼[K] Θ

Γ |∼K Θ, A
RK

Γ |∼[K] Θ, KA

Again, I have already shown in Theorem 3 that classicality is a feature NM-
MS preserves. Thus any sequent which is derived from atomic sequents
which are part of the CO (cf. Definition 4) fragment of |∼0 (regardless of
whether |∼0 actually obeys CO) will be classically valid.

Corollary 3 Let `LK be the consequence relation instantiated by Gentzen’s
LK minus the rules for quantifiers (and with∧ substituted with &, etc.). Then
K expresses classical validity, that is: o

KA,Γ |∼ Θ⇔ A,Γ `LK Θ

Γ |∼ Θ, KA⇔ Γ `LK Θ, A
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There are of course many further possibilities for such ‘S’ operators.
We may also introduce vocabulary for expressing inference that obey con-
traction, transitivity + weakening, more restricted weakening principles, and
perhaps more.8

5 Some Defective Cases

So far I have introduced a more precise criterion for understanding logical
expressivism and in particular for understanding how structural features of
inference might be expressed. I then introduced a system that was not only
expressive in this sense, but also successfully preserved and expressed sev-
eral important structural features. In order to appreciate exactly what I am
up to, however, it will be useful to look at some cases where each of these
criteria fail.

Example 1 The multiplicative rules of linear logic are not expressive.
I show that this is the case for the multiplicative conjunction ⊗:

Γ, A,B ` Θ
L⊗

Γ, A⊗B ` Θ

Γ ` Θ, A ∆ ` Λ, B
R⊗

Γ,∆ ` Θ,Λ, A⊗B

It is sufficient to show a case where the logic does not express particular
implications in `0. Notice that there are potentially two ways to derive
p⊗ q ` p⊗ q where p, q ∈ L0:

p ` p q ` q
R⊗

p, q ` p⊗ q
L⊗

p⊗ q ` p⊗ q

p, q ` q
L⊗

p⊗ q ` q ` p
R⊗

p⊗ q ` p⊗ q

Since the atomic sequents used to start each proof tree are different (in
fact they are entirely different), it’s possible that `0 includes one and `′0 in-
cludes the other and thus the presence of p⊗q ` p⊗q does not guarantee the
presence of either. In this sense, logics which include ‘⊗’ are not expressive
in the relevant sense.

8Makinson for example considers a consequence relation which is supra-classical, mono-
tonic, and obeys transitivity (Makinson, 2003, 2005). We could introduce an operator to ex-
press exactly this consequence relation along with some other consequence relations discussed
therein.
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It is also possible to find counter-examples to Sf-Preservation and Sf-
Expression. Even using the rules of NM-MS such counter-examples will
arise:

Example 2 Suppose we want to introduce an operator ‘R’ to mark in-
stances of reflexivity, i.e. φ |∼ φ. Then the rules for introducing such an
operator should probably have the form:

Axiom 2: If p |∼0 p then p |∼R p.

A,Γ |∼R Θ
LR

RA,Γ |∼[R] Θ

Γ |∼R Θ, A
RR

Γ |∼[R] Θ, RA

Unfortunately, it is easy to show that NM-MS fails to preserve reflexiv-
ity and thus fails to express it. For example A&B |∼ A&B is clearly an
instance of reflexivity and thus we should want A&B |∼ R(A&B). But
clearly A&B |∼ A&B must be derived from A,B |∼ A and A,B |∼ B,
neither of which are instances of reflexivity.9

There will therefore be logics which in general fail to be expressive and
even among those that are expressive there will be structural features that
fail to be preserved and thus expressed. Deciding how expressive one wants
one’s logic to be and which structural features ought to be preserved are
therefore not independent questions.

6 Conclusion

In this paper I introduced a precisification of the notion of “logical expres-
sion”. I also argued for two additional criteria for understanding when a
structural feature is preserved and expressed. With these criteria in hand
I introduced a system NM-MS. NM-MS is a sequent calculus without any
structural features or restrictions placed on it. I showed that NM-MS is ex-
pressive in the precise, technical sense I argued for and I also exhibited some

9Though they are both found in the region of the consequence relation which allows reflex-
ivity together with weakening, hence why we are able to have an operator to mark classicality.

It is also worth remarking that the above might also fail for independent reasons. For ex-
ample, if we are able to derive A&B |∼ A&B, then we could also derive A&B |∼ B&A,
but is the latter here an instance of the structural feature of reflexivity? It is not obvious that
we should think so. In general, even when a sequent calculus preserves reflexivity, it needn’t
generate only reflexive sequents from the reflexive fragment of its axioms.
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other interesting features it possesses. I next introduced some machinery for
marking and thus expressing structural features in NM-MS where they oc-
cur. I showed that monotonicity and classicality are two features that may
each be preserved and expressed in this way. I closed by exhibiting some
cases where a logic fails to be expressive or fails to preserve and/or express
a structural feature. The goal of the paper was to make the thesis of logical
expressivism more precise and to introduce a logic which is actually expres-
sive in the relevant sense. My hope is that providing such an account might
help illuminate exchanges within the philosophy of logic: to proponents of
expressivism, a clearer doctrine and a logic to call their own, and to those
opposed, a clearer target.
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