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CHAPTER 1

          INTRODUCTION

My subject is logicism. Logicism is the combination of these two subtheses:

(i) Concepts of mathematics can be given logical definitions

(ii) Truths  of  mathematics  can  be  derived  by  using  logical  definitions  and

inference rules.

I refer to these two as, respectively, the descriptive and deductive aims of logicism. In

the case of success in attaining them, logicism is thought to provide both a semantical and

an epistemological foundation to mathematics, i.e. mathematical truth will be shown to be

logical truth, and mathematical knowledge will be shown to be logical knowledge. I am

going  to  consider  to  what  extent  the  descriptive  and  deductive  aims  of  logicism  are

reachable. I am also going to consider the basic motivations behind formulating such aims.

My own motivation, in this work, can be summarized with Russell’s words in his [1919]:

So much of modern mathematical work is obviously on the borderline of logic
[if there is such a borderline], so much of modern logic is symbolic and formal that
the very close relationship of logic and mathematics has become obvious to every
instructed student. (p. 194)

Before giving a brief analysis of contents of what I  shall be concerned with in the

present  work,  I  should  point  out  that  I  adopt  a  general  view  of  logicism.  Instead  of

analyzing  the  differences  between  various  kinds  of  logicism,  I  take  “logicism”  as  an

umbrella term, and basically deal with the common features of different logicisms.1 I do not

argue for  logicism against  the other  big schools of philosophy of mathematics,  namely

1 G.  Frege’s  [1884],  R. Dedekind’s  [1888],  B.  Russell  & A.  N. Whitehead’s  Principia
Mathematica,   L.  Wittgenstein’s  [1921]  6-6.3,  F.  P.  Ramsey’s  “The  Foundations  of
Mathematics”,  A. Church’s [1956] §55, D. Bostock’s [1974], Field’s [1984] are examples
of  important works that can be studied under the title “logicism”.
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formalism and intuitionism, in detail. But I put my reasons to believe those two views are

not plausible, briefly as follows: The formalist view, which argues mathematics to be a

meaningless  formal  game  is  not  plausible  because  the  rules  of  meaningless  games  are

arbitrary whereas the rules we follow in mathematics are inherent  in life and nature, such

that we cannot make arbitrary changes in them. Intuitionism, is not plausible either. For the

agnostic viewpoint of intuitionism, concerning existential claims about non-constructable

entities, force mathematicians to give up many fruitful methods of mathematics.2 

In  the following chapters I mainly deal  with two problems: (i)  whether intuition is

dispensable in mathematics, (ii)  whether  the logic of logicism can be counted as logic.

These two problems determine the division of chapters in the present work. In Chapter 2, I

consider to what extent intuition is dispensable in mathematics. Section 2.1 briefly analyzes

the concept of topic-neutrality, and what we should understand by the topic-neutrality of

mathematics.  This  is  crucial  in  making  my  standpoint  clear  whenever  I  say  that

mathematics is topic-neutral. For calling mathematics topic-neutral is counter-intuitive at

first sight – as long as mathematics has its own subject matter. Thus I hold a different sense

of topic-neutrality, in terms of fair application to other topics.

In section 2.2, I try to shed light on the dispensability of intuition in mathematics, since

the main logicist motivation can be put as dispensing with intuition completely. I find two

aspects  in  mathematics:  activity and knowledge  – a distinction faithful  to  Wittgenstein

[1953], p. 227e – and suggest that intuition is indispensable for the activity, but not for  the

knowledge.

In section 2.3, I present Frege’s theory of number as a case study, which is the first

attempt to reduce arithmetic to logical principles. I consider Frege’s basic definitions and

proofs, and whether his project can be accepted as a successful piece of logicism. 

2 For the basics of intuitionism, see Heyting [1956].
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In Chapter 3, I discuss some arguments against the view that higher-order logic should

not be counted as logic. Against what is known as the  first-order thesis, I present some

arguments  for  the  view that  higher-order  logic  is  logic.  In  section 3.1,  I  argue  for  the

superiority of the higher-order over the first-order, and consider an argument, which puts

forth  the  important  role  of  higher-order  logic  in  the  communication  of  mathematical

language. By the way, mathematics has a logic only if it is communicable. In section 3.2, I

shall briefly note the deficiency of higher-order logic and its implication on the reaches of

the logicist philosophy of mathematics. 

In Chapter 4, the conclusion part, I present my conclusions concerning sections 2.1-

3.2,  and  sum it  up  with  a  general  conclusion  for  the  whole  work.  In  the  light  of  my

considerations, I aim to reach at a conclusion that mathematics and logic are, in fact, parts

of the same subject.3 

3 This is faithful to Church [1956], §55.
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CHAPTER 2

DISPENSING WITH INTUITION

2.1 A Note on the topic-neutrality of mathematics

Roughly, logicism, in the form defended by the early logicists, “hoped to show...that

mathematics  did  not  have  any  ‘subject  matter’,  but  dealt  with  pure  relations  among

concepts...” (Benacerraf  1964, p.11). This well summarises the basic inclination of the

logicist.  But this rough way of putting it  is in need of clarification. Especially,  what is

meant by pure relations among concepts  must be made clear. It may be insightful only if

the blur in it is worked on hard. For there appears immediately the danger of falling into the

depthless  Kantian  half-truth  that  concepts  are  empty  without  intuitions.4 Holding,  for

instance,  that  mathematics  and logic  are one,  as  the study of  pure,  contentless  concept

forms, the knowledge that is gained from logic (and hence mathematics) will really be a

colorless knowledge. Surely, relations among those forms will also be pure forms of some

sort. But  if they are all pure, how is it possible that they are distinguishable; and how are

they many, rather than one, if they are not distinguishable? Such a conception of logic (and

hence mathematics) as a pure attributeless realm – even in case we have good reasons to

believe in its existence as the mysterious origin of the all knowledge – cannot be shown to

serve  as  the  origin,  for  particular  cases,  and  for  particular  symbolisms.  The  chief

proposition of logic can be attributed to Wittgenstein,  i.e.  “Are we getting closer  and

closer to saying that logic cannot be described?” (Wittgenstein, 1969, §501). But this will

not  help  us  here.  Logicist  inclinations  may  be  of  three  kinds:  mystical,  logical,  and

mathematical  inclinations.  In  the  sense  that  it  cannot  be  described,  logic  (and  hence

mathematics) is a concealed mystery, whereas in many uses of the word it is not.      

4 It is well known that the other half of the Kantian truth is that intuitions are blind without
concepts.
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It is known as the topic-neutrality view of  logic that logic is applicable to any subject

matter without committing to the existence of any special entity that belongs to the subject.

Hence, logic taken as topic-neutral and mathematics as a topic, logicism immediately fails.

For what it  promises is the existence of mathematical  objects, i.e.  numbers5,  by purely

logical means. To want that logic both  have a mathematical content, and be topic-neutral at

the same time is not acceptable. However, what the logicist aims at seems to be a contentful

topic-neutrality,  which  is  self-contradictory;  when  it  is  argued  that  the  seemingly

mathematical content was actually an empty content, hence a topic-neutral one, the problem

will be solved. For

... for logic (and hence mathematics) to deal with the relations among concepts is not
for  the logicist to  have  a  special  subject  matter  –  in  the  way,  say,  that  living
organisms constitute the subject matter of biology. (Benacerraf, 1964, p.11, note 5)

      Neverthless, this is not much enlightening. For when we say that pure relations among

concepts constitute the subject matter of mathematics, it will seem that mathematics has a

special subject matter; unless pure relations among concepts are exemplified as being not

special, but general.  In case what we talk about in mathematics is not a special subject

matter, but a general one, the special thing about it is that it is applicable to the special

subject matters. To put it in Wittgenstein’s words, “...the generality in mathematics is not

accidental  generality.”  (Wittgenstein,  1921,  6.03) A simple example is an arithmetical

one. 3+1=4 can be seen as a general law for ordinary objects. 3 apples and 1 carrot make 4

objects. 3 carrots and 1 apple also make 4 objects. It is obvious that the statement “3+1=4”

is in a sense, topic neutral at least to all topics which include numerable things. “The truths

of arithmetic govern all that is numerable. This is the widest domain of all; for to it belongs

not only actual, not only the intuitable, but everything thinkable.” (Frege, 1884, §14). One

5 In particular Frege’s logicism. See Frege 1884.
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may object here that everything thinkable is not numerable, and one can argue that what is

numerable is not the widest domain of all. But this has something to do with how we prefer

to interpret the word thinkable. Leaving it aside, it is sufficiently clear that the numerable is

a very wide domain, even if not the widest. To quote from Wittgenstein,

50.  When  does  one  say,  I  know  that  ....x....=....?  When  one  has  checked  the
calculation.
51. What sort of proposition is “What could a mistake here be like?”? It would have
to be a logical proposition. But it is a logic that is not used, because what it tells us is
not learned through propositions. – It is a logical proposition; for it does describe the
conceptual (linguistic) situation. 
52. This situation is not the same for a proposition like “At this distance from the
sun there is a planet” and “Here is a hand” (namely my own hand). (Wittgenstein,
1969, §§50-52)

Maybe a little distorting what Wittgenstein means by the logical, we can conclude that

our point is well summarised in the above words – logic (and hence mathematics) in the

view of  logicism is the tool to analyse the pure relations among formal concepts.

2.2 A remark on the role of intuition in mathematics

The logicist philosophy of mathematics can be traced back to the works of Leibniz and

Bolzano.  One  quotation  for  each  will  suffice  to  see  that  nothing  seems  different  in

motivation between them and the father  of  the logicist  school of  mathematics,  Gottlob

Frege. Leibniz says:

I have ... been urging ... the importance of demonstrating all the secondary axioms
which we ordinarily use, by bringing them back to axioms which are primary, i.e.
immediate  and  demonstrable;  they  are  the  ones  which  ...  I  have  been  calling
‘identities’. (Leibniz [1765], 408)  

To put forth the similar view of Bolzano, we quote from Alberto Coffa [1982]:
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Bolzano’s problem was to prove that a continuous real function that takes values
above  and  below  zero,  must  also  take  a  zero  value  somewhere  in  between....
Bolzano’s  problem  looks  like  a  problem  only  to  someone  who  has  already
understood that intuition is not an indispensable aid to mathematical knowledge, but
rather  a cancer  that  has to be extirpated in order  to make mathematical  progress
possible. ... If Kant had known about Bolzano’s paper there can be little doubt that
he  would  have  regarded  it  as  a  philosophically  incoherent  effort  to  prove  the
obvious.  The  paper[6] was,  instead,  one  of  the  landmarks  of  nineteenth-century
mathematics. (pp. 36-37)

It  is  clear  that  Leibniz  seems  to  be  more  radical,  in  getting  rid  of  intuition  in

mathematics – by defending the view that we can even arrive at tautologies (“identities” in

Leibniz’s terminology) – than Bolzano, who just sees intuition to be an illness to be cured.

Now, although the apparent  argument  for  logicism in Coffa’s  words is  an appealing to

authority, it provides the basic logicist motivation. For it would be impossible to believe

that logicism will succeed one day, without being impressed by such examples; since no

argument  other  than  what  we call  the  logical  analysis  of  mathematics  guarantees  its

conclusion.

Frege’s logicist work is usually mentioned as a supplement to the mathematical works

of Bolzano and his followers, such as Cauchy, Weierstrass, Dedekind, and Cantor.7 It is, in

sum, to go to the farthest possible in eliminating intuition from mathematics. §1 of Frege

[1884]  summarizes  that  the  recent  work  of  Frege’s  times  had  shown that  mathematics

prefers  rigour.  This  is  where  Frege  starts  from.   He  says:  “...  in  mathematics  a  mere

conviction, supported by a mass of successful applications, is not good enough. Proof is

now demanded of many things that formerly passed as self-evident.” (Frege [1884], §1).  

That the logicist is inclined to prevent intuition as much as possible in mathematics, is

clear. Frege hopes to have claimed, in his [1884] §87, that he had shown that it was at least

probable that arithmetical laws were analytic, by examining to the extent we can dispense

6 This is the paper that Bolzano published in 1817. For more information see Coffa [1982].

7 See Coffa [1982] and Demopoulos [1994] for more detail.
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with intuition in arithmetic. On the other hand, if it is possible to dispense with intuition

until  we reach  mere  tautologies,  then even a logicist  may be unhappy with this result.

Having realized such a possibility, Frege gives an argument to those unhappy, for not to

worry about the tautologies.  In  §16, Frege says:

And  how  do  the  empty  forms  of  logic  come  to  digorge  so  rich  a  content?  ...
Everyone who uses words or mathematical symbols makes the claim that they mean
something and no one will expect any sense to emerge from empty symbols. But it is
possible  for  a  mathematician  to  perform  quite  lengthy  calculations  without
understanding by his symbols anything intuitable.... And that does not mean that the
symbols have no sense; we still  distinguish between the symbols  themselves and
their content, even though it may be that the content can only be grasped by their
aid.  

       This argument is against the views of those intuitionists8 like Poincaré. Poincaré finds

logical inferences too colorless to be a part of mathematical reasoning. Michael Detlefsen

put it as “Using Poincaré’s own figure, the ‘logician’ is like a writer who is well-versed in

grammar, but has no ideas.” (Detlefsen [1992], p.350). The point of logicism should be to

express mathematics by appealing to its content. For without mathematical content logic is

just  logic,  and  nothing  more.  It  will  teach  us  nothing  mathematical,  unless  we  know

something mathematical. Without appealing to mathematical content, logical representation

of mathematics would be like a translation into an unknown language, in which we cannot

see  what  it  is  being  talked  about.  However,  holding  the  mathematical  worries  of  the

logicist, there is nothing wrong in appealing to content. Thus, it cannot be just the grammar

that the logicist prefers. What he prefers is grammar as a supplement to the ideas.  Here,

there is a problem of regress, concerning this way of dispensing with intuition. For it will

just be dispensing with an intuition  A and passing to another intuition  B. The argument

8 We use the word “intuitionist”  roughly here, and not in a definitive sense.
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needed for the logicist, to handle the regress, is the one which distinguishes logic from non-

logic.

       One of the three principles that Frege mentions in the introduction of Frege [1884] viz.,

to  have  had  kept,  during  his  enquiry,  the  distinction  between  the  logical  and  the

psychological, may show us the way to understand the basic logicist motivation, which also

promises the needed argument that distinguishes logic from non-logic. Frege says that he

had kept seperate the psychological from the logical, and the subjective from the objective

(Ibid., p.x). This contention leads us to the very important debate on the nature and content

of logic that took place in the 19th century.

       Many logicians believed logic to be strongly related with cognition and psychology.

Frege’s [1879] was an attempt to save logic from the subjective muddle. Husserl was also a

supporter of the anti-psychologistic position. Both Frege and Husserl held that logic had

nothing to do with psychology. Husserl’s argument against psychologism is that to argue

that  logic  is  bound to psychology  is  self-refuting;  for  this  very  view should  rest  on a

psychological  argument and is thus only relatively true (Pulkkinen [1994], pp. 54-55). On

the other hand, there were many logicians who advocated these relative truths. Cristoph

Sigwart, Wilhelm Wundt, Benno Erdman, and Theodor Lipps are some representatives of

the psychologistic position (see Pulkkinen [1994]).

       In  §27 and §28 of his [1884], Frege argues that anti-psychologism holds also in

arithmetic. He argues number to be not an object of psychology, but something objective.

This  view  is  something  that  can  hardly  be  rejected.  For  mathematics  is  the  same

everywhere. On the other hand, what is psychological differs from person to person, from

time to time and from place to place for one person. This argument precludes the uses of

number  words  in  mystical  contexts,  e.g.  when  it  is  said  that  19  is  divine.  Frege’s
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unhappiness with the strong intuitions of the Indians shows itself at the beginning of the

[1884]. In §1, he says: 

In arithmetic, if only because many of its methods and concepts originated in India,
it has been the tradition to reason less strictly than in geometry,  which was in the
main developed by the Greeks. 

Here,  I think Frege’s anti-psychologistic position has to be criticized. To quote from

somewhere else: 

[T]he laws of logic ought to be guiding principles for thought in the attainment of
truth,  yet  this  is  only  too  easily  forgotten,  and  here  what  is  fatal  is  the  double
meaning of the word “law”. In one sense a law asserts what is; on the other hand it
prescribes what ought to be. Only in the latter sense can the laws of logic be called
‘laws of  thought’;  so far  as  they stipulate the way in which one ought  to think.
(Frege, [1903], p.12)

This is the view that logic is not the physics – where psychology can be counted as the

physics of thought – but the ethics of thought (see Pulkkinen [1994], pp. 41-57). Not quite

being sure about, but being convinced in a certain sense that Frege prefers that mathematics

should be done rigorously; I mention here that I am not in complete agreement with him. 

I  hold  a  distinction  between  mathematical  knowledge and  mathematical  activity.

Concerning logicism, thus, it seems better to argue that rigorous mathematics is necessary,

but  on  the  other  hand,  what  is  done  without  rigor  is  not  something  to  be  forbidden.

Otherwise what is called mathematical discovery will be in danger.

Take the number 1729, as an example. The Indian mathematician Ramanujan said once

that it was the smallest number expressible as the sum of two cubes in two different ways.

(Hardy [1959], p. 12) For sure it is not a proposition of the same kind as another one he

held, viz., that “God is the number 0, the attributeless.” (Ranganathan [1967], p. 82 and p.

101) The truth value of the former depends on a couple of operations, in doing which we
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are  not  free  to  do  whatever  we  like.  On  the  other  hand,  the  truth-value  of  the  latter

proposition is a matter of some subjective presuppositions. But the interesting thing is that a

mathematician  can  see this  interesting  property of  the  number  1729 with some sort  of

inspiration. The story of 1729 is below, from the mouth of G.H. Hardy:

I remember going to see him [Ramanujan] once he was lying ill in Putney. I had
ridden a taxi-cab No1729, and remarked that the number seemed to me rather a dull
one, one that I hoped it was not an unfavorable omen. “No” he replied, “It is the
smallest number expressible as the sum of two cubes in two different ways” [1729 
123  + 13,  1729   103 +  93]  I  asked  him naturally  whether  he  could  tell  me the
situation of the corresponding problem for the fourth powers; and he replied after a
moments thought, that he knows no obvious example, and supposed that the first
such number must be very large. (Hardy [1959], p. 12)

It is obvious that Ramanujan’s immediate reply to Hardy is far away from a rigorous

thinking, and it is also obvious that such quick intuitions are indispensable in mathematics.

But still we can argue, after seeing what Ramanujan said was true, that whoever tries to

object to Ramanujan’s words about the number 1729 will fail on logical grounds. On the

other hand, there are many mystical views possible on psychological grounds, on whether

God is the number 0, or the number 1, or the number .9 Thus, the logicist would conclude

that Ramanujan’s words about the number 1729 are logically decidable and certain.  He

would also conclude that Ramanujan’s words about God being the number 0 are logically

undecidable,  and subjective.  One of the main aims of logicism i.e.  to put forth what is

psychological is irrelevant to mathematics, is now clearer. 

Hitherto I have mentioned two basic inclinations of logicism. One is to separate the

logical from the psychological, and the other is to purge the psychological (intuition) out of

mathematical  knowledge.  To understand  these  two aims better,  I  am going to  consider

L.E.J. Brouwer, the founder of the intuitionist school in the philosophy of mathematics. But

9  as the last one of the transfinites.
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first, what is it to be logically decidable, and what is it to fail on logical grounds? Speaking

metaphorically, to fail on logical grounds is like falling down on logical grounds, i.e. I fell

down  while  I  was  running  on  the  logical  grounds,  because  I  met  an  obstacle,  say  a

contradiction – a stone, and my face kissed the ground.  Unfortunately,  one’s falling or

surviving  is  not  guaranteed  for  every  mathematical  proposition.  Kurt  Gödel’s

incompleteness results showed that there are propositions of arithmetic, which can neither

be proved, nor disproved. Granted this result, it is not guaranteed that every proposition of

mathematics is logically decidable.

It is evident that a logically decidable proposition must not be something accepted under

subjective constraints. For example, 3 + 2  5, not because the number 3 is male, and the

number 2 is female, and the number 5 is marriage. For the number 4 can also be male for

somebody, but we wrongly conclude that 4 + 2   5, in such a case. It  is not difficult to

distinguish a psychologically accepted proposition from a logically accepted one. It is at

least psychologically easy. Nevertheless, a logical  proposition might have been accepted

psychologically first, and then seen to be an objective truth. That kind of discovery creates

no problem for the logicist aims.  For although mathematics seems to be a logical field, we

humans are fortunately psychological beings.

I  now move on  to  another  problem.  How will  the  logicist  show that  mathematical

propositions are logical propositions? No doubt what we call logical laws must be strictly

logical.  Otherwise,  the  logicist  motivation  would  lose  its  meaning.  However,  still,  the

question “What is logic?” is not an easy question. Roughly, the job of the logicist is to write

mathematics with the logic that he considers to be the true logic. But, which logic? Frege,

for instance, used his conceptual notation that he introduced in Frege [1879]. Suppose he

had chosen the appropriate logic for the logicist project. Then to show that mathematics is

logic,  he had to make the necessary translations from the mathematical  concepts to the
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logical ones, that is, to define the concepts of mathematics in the language of logic. To be

sure about the truth-values of mathematical propositions, he had to derive the propositions

of mathematics from the definitions he had madetogether with the inference rules of the

logic. Frege tried to do so for arithmetic.10  Through rigor, by giving sharp definitions, he

tried to show that objects of arithmetic were determinate and fixed.

In  order  to  understand  the  logical/psychological  distinction  better,  we  shall  next

consider the case of Brouwer.  Brouwer had opposite intentions to those of Frege’s.  His

position can be summarized as the view that logic is mathematics. He has two theses. He

defends the view that the objects of mathematics are mental constructions, and secondly,

the view that language and logic cannot provide security for mathematical certainty,  for

they are imperfect translations of what we have in our minds (Placek [1999], p. 2). The

problem with Brouwer’s theses is the communication problem of the mental constructions.

For how can one hope to communicate his own mental constructions with other people?

Moreover,  how can one hope to communicate them by using the so called – called by

Brouwer  himself  –  imperfect  language?  There  appears  the  danger  of  solipsism  for

Brouwer’s  view.  Brouwer  no doubt had a subjective view of mathematics in  his mind,

whereas  Frege  argued  for  strictly  the  opposite;  i.e.  that  mathematical  knowledge  is

objective. “[It] is in the nature of mathematics to prefer proofs where proofs are possible.”

(Frege [1884], §2). Brouwer would welcome this. However, what Frege means here is one

step further always. If possible, the logical proof, which is independent of intuition, is what

mathematics prefers. I emphasize this as the very characteristic of logicism. Yet, what can

be a better ground than logical proof? Remember Ramanujan’s words. Suppose someone

intuits the fact that 1729 is the smallest number expressible in two different ways as the

sum of two cubes? How will he tell  his intuition to someone else? By way of simpler

10 Not for the whole of mathematics, because Frege believed that geometry was not purely
logical. See Frege [1884], §§13-14.
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intuitions, one may suggest. However, the logicist suggestion goes further; we must fill in

the logical gaps in mathematics. Thereafter everybody will, in principle, be able to judge

their appropriateness. 

We observe here that the basic differences between the intuitionist Brouwer and the

logicist Frege are parallel to the differences between the nature of mathematical activity

and the nature of mathematical knowledge. Brouwer seems to be interested in how we do

mathematics; on the other hand Frege seems to be interested in what we do in mathematics.

In a letter to his supervisor, Brouwer put his intentions as follows: “…what I brought you

now, exclusively treats  how mathematics roots in life, and how, therefore,  the points of

departure of the theory ought to be…” (Van Dalen [1999], p. 90). In my view the way

mathematics roots in life does not imply any departure of the theory. But also in my view

that does not mean the way mathematics roots in life is irrelevant to mathematics. I am here

trying  to  adapt  a  Wittgensteinean  remark  on  the  double  aspect  of  the  situation,  i.e.

mathematics is an activity as much as it is knowledge (Wittgenstein [1953], p. 227). We

neither have a right to say mathematics is all along mental construction nor to say that it is

all along logical. Suppose one has a mathematical theorem at hand to prove, of which he

did  not  see  the  proof  before.  How would  he  approach  the  problem?  Unless  he  had  a

standard method to follow, that is, unless he knew how that proof might be classified, he

will try to fit the theorem to be proved, to the methods that he already knew; or he will

make some changes in the form of the theorem, and make it something that he is more

acquainted with; or else he will see the way to the proof with a sudden flash in his mind.

Otherwise, he will hopelessly and blindly be looking at the theorem for a while. Probably,

after the informal struggle with the theorem, if one succeeded, he would be able to give a

rigorous formalisation for what he had done. 
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Mathematics,  contrary  to  Frege’s  point,  seems  to  have  something  to  do  with

psychology. Mathematical reasoning makes use of metaphors, analogies, conjectures, etc.

On the other hand the real nature of mathematical knowledge has really nothing to do with

anything psychological, if we believe that mathematics is objective all over or at least has a

transcommunal validity. To conclude from my discussion, both views – intuitionism and

logicism, and Brouwer’s and Frege’s varitiesin particular – seem to miss a thing that the

other is aware of. 

A similar consideration to the one mentioned here,  is  made by Feferman [1981] on

Lakatos’ philosophy of mathematics.11  There we see the distinction between some sort of

mathematical  justification  and  mathematical  discovery.  Feferman  accuses  Lakatos  to

misseen the fruitful  consequences of the logical  analysis,  and the logical  structure  of a

mathematical theory. According to Feferman, 

[Lakatos] plays only one tune on a single instrument – admittingly with a number of
satisfying variations – where what is wanted is much greater melodic variety and the
resources of a symphonic orchestra. (Feferman [1981], p.78) 

Neither a hard-nosed logicism can account for the activity aspect of mathematics, nor a

radical subjectivist view can account for the knowledge aspect of mathematics adequately.

It  is a fact  that the mathematician is like an unconscious painter.  He tries to paint on a

canvas,  but  he observes  that  there is  more than his actual  work on the canvas,  i.e.  the

canvas seems to be painted before his will; before his paint. The mathematician moves his

brush in  a  certain area  on the canvas,  however,  some other  non-brushed parts  are  also

painted. Who painted those is a meaningful question for the mathematician. After all, it is a

quite well painted picture. Thus, one is more inclined to say “I didn’t, but He did it.”, as

11 Lakatos argues that since a mathematical theory can be formally axiomatized only after
the creative work is done, logicism is not a philosophy of mathematics, but a philosophy of
dead mathematics. (Musgrave [1977], p199)
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Bach  said  for  his  compositions.  This  metaphorical  depiction  of  the  state  of  the

mathematician is more against Brouwerian motivations than those of Frege. Brouwer, in the

rejected12 but philosophically valuable parts of his dissertation, points out that

[M]an  creates  much  more  regularity  in  nature,  than  originally  occurred
spontaneously in it. He desires that regularity because it makes him stronger in the
struggle for existence. (quoted by Van Dalen [1999], p. 91)

And on p.  82 of  his  dissertation,  he says,  “The intellectual  consideration  of  the world

widens its scope….” (ibid.). On the other hand, a simple observation of the mathematical

activity suggests that the world is already maximally wide, and thus every novel intellectual

finding is rather like a discovery than a creation or an invention. Any logicist who does not

claim that mathematics is a logico-mental construction of some special sort, seems to be

accepting the world as maximally wide.

                                        2.3 A Case Study of Frege [1884] §§68-83 

       Intuitions are indispensable in mathematical activity. But they may be dispensable in

mathematical knowledge. For the fact that one can intuit a simple theorem without being

aware  of  its  provability by means of  a  number of  axioms, proves the dispensability of

intuitions, at least in favor of simpler intuitions. The question here is to what extent one can

dispense iteratively with simpler intuitions.

It can be observed that human mathematical activity is simply not logical. It may be

almost irrational. An active mind is apt to follow some rules uncontrollably fast, and is

subject to sudden transitions, which can have a sense only after retrospection. Let us call

this aspect of mathematics hot mathematics. On the other hand, what is gained as a textual

knowledge  has  undeniably  a  force  upon  our  thinking  and  rule  following.  Somehow,

12 Some parts of Brouwer’s dissertation had been found too philosophical for a thesis in
mathematics and rejected by the examining committee. See Van Dalen [1999] for detail.
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mathematical  language  gives  us  the  necessary criteria  to  do  mathematics.  How is  this

possible?  Let  us  call  the  body  of  mathematical  (and  textual)  knowledge  frozen

mathematics.  Here,  hotness  represents  the  subjective  constraints  and  the  uncontrollable

transition  through  intuitions.  Frozenness  represents  the  static,  objective  body  of

mathematical knowledge. Assuming the existence of frozen mathematics, human work in

mathematics  is  analogous  to  the  process  of  freezing;  and  the  search  for  the  logic  of

mathematics is analogous to the search for a melting point of the melting process. What I

am trying to  understand here  is  the relationship between mathematical  activity and the

corresponding knowledge.

Who managed to go to the nearest possible to the melting point of arithmetic is Gottlob

Frege, where the very melting point itself is determined as the foundation, where intuitions

are completely superfluous, i.e. where arithmetic is analytic. In Frege [1884] §§68-83, the

search is outlined. Frege gives a brief outline of how the logical definitions of the basic

concepts of arithmetic can be carried out.

Frege used second-order logic in giving some of his definitions. In fact,  there have

been serious attacks against  second-order  logic as logic.  Arguments against  the second-

order logic come especially from Benacerraf [1960]13, and Quine [1970]. The idea is that

second, and generally, higher-order logic is not logic, but set theory; thus it is mathematics

rather than logic. Quine, for instance, argues that higher-order logic commits itself to the

existence of classes, since we quantify over predicates, functions, etc. in the higher-order,

and that its predicates are class-like entities. Moreover, there is the Russell Paradox against

Frege’s definition of numbers as extensions. Concerning the difficulties led by the Russell

Paradox and Quine-Benacerrraf  argument,  we shall  mention some ways  out  in  Frege’s

13 I had no first hand access to Benacerraf [1960] (Logicism: Some Considerations, Ph. D.
Dissertation,  Princeton  University).  The  source  of  my  information  about  it  is  Boolos
[1996], and Steiner [1975].
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system. As we shall see later on, whether we choose first-order or higher-order logic, we

will  not  be  able  to  hold  both  of  the  needed  meta-properties  of  completeness  and

categoricity.14 For  completeness  precludes  categoricity,  and  categoricity  precludes

completeness. Hence, the chosen logic will be inadequate in either describing or deriving

mathematics. 

Secondly, it is a well-known consequence of Gödel’s incompleteness results that there

are  true  but  unprovable  propositions  in  mathematics.  So,  never  mind  logic,  that

mathematics itself has gaps of its own is proved by Gödel. Those gaps cannot be filled in

with logic, hence intuition gets in. I am going to deal with the difficulties for logicism more

closely in chapter 3. Now, turning back to Frege, he was not aware of the problems when

he  wrote  his   [1884].  He  had  certain  objectives,  and  whether  a  logicist  philosophy is

possible with such objectives, is what I am investigating.

       One of the most important observations of Frege in his book was that numbers assert

something about concepts. What does this mean? The answer lies in Frege’s distinction

between  concept  and  object.  According  to  this  distinction,  concepts  are  unsaturated

(incomplete) Platonic entities under which saturated things, namely objects fall. To give a

Fregean example,  take the concept “moon of Jupiter”  ([1884],  §57).  When we ask the

question “How many moons of Jupiter are there?”, we answer 4; that is, 4 things fall under

the concept “moon of Jupiter”. We use a predicate letter, e.g.  F, to represent the concept,

and say that the number of things falling under F is 4, or equivalently say that there are 4

Fs.  In  fact  the  question “How many?” is  not  a  meaningful  question,  by itself.  For  we

wonder how many what. We need a concept in order to give a number which applies to the

given concept. By observing the logical form of statements like “The number of the moons

1414A logic is complete iff all its true sentences are provable; and a logic is categorical iff it
has categorical sets of sentences, that is to say, it has sets of sentences all models of which
are isomorphic. 
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of Jupiter is 4”, we can conclude, as Frege does, that numbers are self subsistent objects

which assert information about concepts. Starting from the concept/object distinction, Frege

tries to fix the sense of numerical identity. In brief, what Frege does is to investigate the

nature of numbers as objects, by considering the concepts that they belong to. A summary

of what is outlined in Frege  [1884],  §§62-84 (definitions and their symbolisations) is as

follows:

Definition 1:

The number which belongs to the concept F is the extension of the concept

“[equinumerous] to the concept F”  (§68).

Definition 1, sym: (Definition 1 in symbolic form)

F = extH: H  F,

where F is the number which belongs to the concept F, and extH: H  F is the extension

of the concept “equinumerous to F”. To fix the sense of this numerical identity statement,

the next thing to be done is to define the equinumerousity of concepts.

 Definition 2:

“the concept  F is  equinumerous to  the  concept  G” iff “there  exists  a

relation  which correlates one to one the objects falling under the concept F

with the objects falling under the concept G”  (§72).

Definition 2, sym:
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F  G iff ( correlates F and G &  is one-one).

To fill in the gaps of Definition 2, Frege defines,

 Definition 3:

…every object which falls under the concept F stands in the relation  to an

object falling under the concept G, and if to every object which falls under G

there stands in the relation   an object falling under  F,  …iff the objects

falling under F and G are correlated with each other by the relation .  (§71)

                Definition 3, sym:

                         correlates F and G iff xFx  y(Gy & xy) & yGy  x(Fx &

yx)

There is still a gap to be filled in, i.e. the definition of “ is a one to one relation”.

                       Definition 4:

 is a one to one relation iff 1. If d stands in relation  to a, and if d stands

in the relation   to  e, then generally, whatever  d,  a and  e may be,  a is the

same as e. 2. If d stands in the relation  to a, if b stands in the relation  to a,

then generally, whatever d, b, and a may be, d is the same as b.  (§72)
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            Definition 4, sym:

 is a one to one relation iff ((da & de)  a = e) & ((da & ba)  d = b))

We can write Definition 4,sym as xyz((xz & xy)  y = z & (yx & zx)  y =

z). So we have fixed the sense of F  G. The next thing to be fixed is the sense of F. For

in Definition 1, sym, left hand side of the identity statement is F, and it is essential to fix

its sense in order to fix the sense of the whole identity.

              Definition 5:

“n is a number” iff “there exists a concept such that n is the Number which

belongs to it”.  (§72)

Since Frege defines the Number which belongs to the concept F in §68 (in Definition 1 of

the present work), Definition 5 is not circular.

              Definition 5, sym:

n is a number iff F(F = n)

               Definition 6:

…the Number which belongs to the concept  F is identical with the Number

which belongs to the concept  G iff the concept F is  equinumerous to the

concept G.  (§73)  

Definition 6 is given in the light of a quotation from David Hume, by Frege. It is known as

Hume’s Principle.
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               Definition 6, sym:

  F = G  F  G

Definition 6 is not sufficient to fix the concept of number. It just gives us information about

what it is for two numbers to be identical. It is not sufficient to fix the concept of number,

because  there  is  still  a  gap  which  has  not  yet  been  filled  in.  That  gap  traces  back  to

Definition 1. What is meant by the extension of a concept, i.e. extH: H  F, has not been

fixed. Nevertheless, without its being fixed we can proceed with the help of Definition 6

and define some other arithmetical  concepts.  As it  is widely known, the gap, that I am

talking about, in Definition 1 is tried to be filled in by Frege  1903, by introducing an

axiom, whose inconsistency was shown by Russell (more about it later). 

Definition 7:

0 is the Number which belongs to the concept “not identical to itself”  (§74)

Definition 7, sym:  

0 = x: x  x

That is to say 0 is the number of Fs, such that things that are not identical with themselves

fall under F, i.e. 0 = F where F = x: x  x.

Definition 8:
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“n follows in the series of natural numbers directly after  m”  iff “there

exists a concept  F, and an object falling under it  x, such that the number

which belongs to the concept F is n and the Number which belongs to the

concept ‘falling under F but not identical with x’ is m”.  (§74)

               Definition 8, sym:

    mPn iff Fx(Fx & F = n & y: Fy & y  x = m)

where  mPn stands for the expression “n follows in the series of natural numbers directly

after m”, or “m precedes n” (P stands for “precedes”). The purpose of Definition 7 and 8 is

to show that the objects of arithmetic, i.e. numbers, can all be logically defined.

               Definition 9:

   1 is the Number which belongs to the concept “identical with 0”  (§77)

               Definition 9, sym:

   1 = x: x = 0

               Definition 10:

“y follows in the -series the series of natural numbers for the special case

after x” iff “if every object to which x stands in the relation  falls under

the concept F, and if from the proposition that d falls under the concept F it

follows universally whatever d may be, that every object to which d stands

in the relation  falls under the concept F, then y falls under the concept F,

whatever concept F may be”.  (§79)
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               Definition 10, sym:

y follows in the  -series x iff  F(u(xu  Fu) &  zw(Fz &  zw 

Fw) Fy

where z is the substitute for  d in Definition 10, and for the special case, of the series of

natural numbers, we can modify Definition 10, sym as  y > x iff  F(u(xPu  Fu) &

zw(Fz & zPw  Fw) Fy, where the symbol ‘>’ stands for the relation “larger than”,

and  P stands for “precedes”. Frege’s main aim is to prove that there is a number  n, for

every number  m, in the series of natural numbers, which directly follows  m. The use of

Definition 10 is to realize this aim. For we need Definition 10 to define the concept to

which the number whose existence is aimed to be proved, belongs to.

Definition 11:

…a is a member of the series of natural numbers ending with n, iff n either

follows in the series of natural numbers after a or is identical with a.  (§81)

              Definition 11, sym:

y  x iff (y > x)  (y = x)

where y is the substitute for n, and x is the substitute for a. Definition 11 defines the needed

concept, such that the number which belongs to this concept will be the directly follower of

n in the series of natural numbers. Now the informal outline of Frege, which I have tried to

make more explicit with the symbolizations, presents a picture of how the foundations for

arithmetic,  i.e.  defining each  individual belonging to  the series  of  natural  numbers  and
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showing them to be infinite in number,  can be handled.15  Concerning the proof of the

infinity  –  that  there  is  no last  member  – of  the  series  of  natural  numbers,  I  have  not

introduced anything yet.  Frege gives an informal sketch of the proof in §82, but I shall

rather appeal to the formal proofs given in the appendix of Boolos 1990.  But before that,

one point must be examined – that there is still a gap in Frege’s outline.

       We followed Frege 1884 through §§68-81, and saw, successively, that the definitions

are given in a logical fashion, by refraining from leaving any gap for intuition to get in.

However, one notion remains to be defined viz., the extension of a concept (see Definition

1). Actually, Frege tries to fill in the gap in his [1903] in §20, by introducing his Basic Law

V, being unaware of its inconsistency. On the other hand, in [1884] §69 he supposes that

what is meant by the extension of a concept is clear (see §69, note 1). Although Frege uses,

informally, the basic idea of the Basic Law V in §73 of [1884], he does not give a precise

the law. But beside this, the proof of the infinity of the series of natural numbers can be

handled by using Hume’s Principle as a contextual definition16 of number.  However,  in

formulating Hume’s Principle (Definition 6, in the present work) we use the expression

‘number of’. Frege probably thought that he should give an explicit definition of number, in

order to give a non-circular contextual definition as a true foundation.   For had he used

Hume’s Principle as a contextual definition of the notion of number, he would have offered

an  explanation  of  numbers  in  terms  of  numbers  themselves.  Frege  was  aware  of  the

circularity, hence to prevent it he defines the number of Fs as the extension of the concept

F,  in §68. Frege thought, in [1903], that  he gave a more logical  principle than Hume’s

15 0 = x: x  x, 1 = x: x = 0. Since (x: x  x  x: x = 0), 0  1 by Definition 6, sym.
Then we define 2 = x: x = 0  x = 1, and so on for 3,4,…. The thing left to be done is to
show that there are infinitely many such numbers. This will complete the derivation of the
natural number system of Frege.

1616What is essential in a contextual definition is to fix the sense of the uses of the term to be
defined. A contextual definition, thus, is not an explicit definition.
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Principle, namely the Basic Law V, which was actually an inconsistent proposition. Basic

Law V, to put it informally, says that the extension  of a concept  F is identical with the

extension of a concept G, iff F and G are coextensive, i.e. all and only the objects falling

under  F fall under  G.  It  can be symbolised as ext(F) = ext(G)   x(Fx  Gx).17 The

important purpose of the Basic Law V is to derive Hume’s Principle.18 In  that  way the

problem  with  Hume’s  Principle  was  thought  to  be  solved,  but  in  fact,  it  was  fatally

inconsistent. 19

       To go back to our main concern, we give below the proofs that are sufficient  to

conclude that there are infinitely many natural numbers. I follow Boolos [1990] in giving

the proofs. I use the following definitions in the proofs:

17 Basic Law V is defined for functions, in general (see Frege [1903], §20). Informally, it
states that the courses of values of a function  f is the same as the courses of values of a
function g, iff f and g map every object to the same value. Symbolically, ext(F) = ext(G) 
x(f(x)  g(x)). 

18 Hume’s Principle is F = G  F  G. To prove, first, assume that  F = G. Then by
Definition 1, it follows that extH: H  F = extH: H  G. From this and the Basic Law V
it follows thatH(H: H  F(H)  H: H  G(H)). Then we can say that H(H  F H
 G). By universal instantiation it follows that F  G. Secondly, assume that F  G. By the
transitivity of the relation “”, it follows that H(H  F  H  G). From this we can say
that H(H: H  F(H)   H: H  G(H)). From this and the Basic Law V, it follows that
extH: H  F = extH: H  G. Then by Definition 1 F = G.

19 Russell obtained the contradiction with the concept ‘extension of a concept which does
not fall under the concept it is the extension of’. Frege’s notation for this concept is as
follows: x: x = ext(F) & Fx. Let G be the abbreviated name of this cocept. First assume
that ext(G) falls under Russell’s concept G. That is x: x = ext(F) & Fxext(G). From this,
we can say that F(ext(G) = ext(F) & F(ext(G)). By existential instantiation, we can get
ext(G)  = ext(F) &  F(ext(G)).  Then given  the Basic Law V, it  follows from ext(G) =
ext(F), that x(Gx  Fx), by modus ponens. Since ext(G) does not fall under F, it cannot
fall  under  G either.  However,  this contradicts our assumption that  it  does so.  Secondly,
assume that ext(G) does not fall under G. This time we shall have F(ext(G) = ext(F) &
F(ext(G)). That is logically equivalent to F(ext(G) = ext(F)  F(ext(G))). By universal
instantiation we have ext(G) fall under G. Again we have a contradiction. 
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        Hume’s Principle (HP):  F = G  F  G   (§73)

DefB1:  0 = [x: x  x]  (§74) 

DefB2:  mPn iff Fy(Fy & #F = n & [x: Fx & x  y] = m  (§76)

DefB3:  xR*y iff F(ab([(a = x  Fa) & aRb] Fb)  Fy)  (§79)

DefB4:  m  n iff mP*n  m = n

DefB5:  Finite n iff 0  n

Here  P stands for “immediately preceding”, and  P* stands for “preceding”.  (R and  R*

stand for the generalization of these two, which are known as the hereditary relations (see

Frege [1879], §§23-31). Observe that DefB1-DefB4 serve the same purpose and say the

same thing as the previous definitions I have considered, i.e. DefB1  Definition 7, sym;

DefB2  Definition 8, sym (when x in DefB2 is substituted with y, and vice versa); DefB3

 Definition 10, sym (when R* is substituted with follows in the -series, and a with z, and

b with w, in DefB3);  DefB4  Definition 11, sym (when m is substituted with x, and n with

y, in DefB4). I give the list of the theorems to be proved below:

Thm1:   #F = 0  xFx                                                           (§75)
Thm2:    (mPn & mPn)  (m = m n = n)                           (§75)
Thm3:    x(xP0)                                                                       (§78)
Thm4:    xRy  xR*y                                                                 (Frege [1879], prop. 91)
Thm5:    (xR*y & yR*z)  xR*z                                                (Frege [1879], prop. 98)
Thm 6:   xP*n  (m(mPn) & m(mPn  (xP*m  x= m)))
Thm7: 0P*n  nP*n                                                             (§83)
Thm8:   (mPn & 0P*n)  x(x  m  (x  n & x  n))           (§83) 
Thm9:   (mPn & 0P*n) [x: x  m] P #[x: x  n]
Thm10:   mPn  ((0  m & mP#[x: x  m]) 

                                              (0  n & nP#[x: x  n]))                    (§82)
Thm11:   0P#[x: x  0]                                                                (§82)
Thm12:   0  n  0  n & nP#[x: x  n]
Thm13:   Finite n  nP#[x: x  n]
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       I also give below the Peano postulates. The reader may find it useful to observe the

links between Thm1-Thm13 and the Peano postulates. 20 

(1) 0 is a natural number. (DefB1)

(2) If m is a natural number, and m precedes n, then n is a natural number.  (DefB2)

(3) If m is a natural number and immediately precedes n and n, then n = n.  (Thm2)

(4) If m is a natural number, then there is a natural number n which is preceded by m.

(Thm13)

(5) There is not a natural number which precedes 0.  (Thm3)

(6) If m and m are natural numbers and both precedes n, then m =  m.  (Thm2)

(7) If 0 has a property F, and for any number m having the property F, it follows that

the number  n which is preceded by  m also has the property  F,  then all natural

numbers have that property F.  (DefB3)

Thm1:   #F = 0  xFx

1. 0 = #[x: x  x] (DefB1)
2. #F = 0  F  [x: x  x]   (1, HP)
3. x(x  x)   
4. F  [x: x  x]  xFx   (3)
5. #F = 0  xFx   (4, DefB1, HP, QN)

Thm2: (mPn & mPn)  (m = m n = n)

20 See Boolos [1996] for a complete analysis of this. The list of postulates, which are taken
from  Boolos  [1996],  pp.  145-146,  does  not  include  the  operations  of  addition  and
multiplication.  The two operations can  be defined  as  follows:  Df(Addition): x(x(Fx
&Gx)  #F + #G = #[x: Fx  Gx]); Df(multiplication): #F  #G = #[(x, y): Fx & Gy].

29



I give the proof of Thm2 for the two directions of m = m n = n, separately.

Thm2a: (mPn & mPn)  (m = m n = n)

1. mPn   (assumption)
2. mPn (assumption)
3. m = m (assumption)
4. Fy(Fy & #F = n & [x: Fx & x  y] = m)   (1, DefB2)
5. Fy & #F = n & [x: Fx & x  y] = m   (4, EI)
6. Fy(Fy & #F = n & [x: Fx & x  y] = m)   (2, DefB2)
7. Fy & #F= n & [x: Fx & x  y] = m   (6, EI)
8. Fy   (5, S)
9. #F = n   (5, S)
10. [x: Fx & x  y] = m   (5, S)
11. Fy   (7, S)
12. #F= n   (7, S)
13. [x: Fx & x  y] = m   (7, S)
14. [x: Fx & x  y] = [x: Fx & x  y]   (3, 10, 13)
15. [x: Fx & x  y]  [x: Fx & x  y]   (14, HP)
16.  =   {y, y}
17. F   F   (8, 11, 16) 
18. #F = #F   (16, HP)
19. n = n   (9,12, 19)

Thm2b: (mPn & mPn)  (n = n m = m)

1. mPn   (assumption)
2. mPn (assumption)
3. n = n (assumption)
4. Fy(Fy & #F = n & [x: Fx & x  y] = m)   (1, DefB2)
5. Fy & #F = n & [x: Fx & x  y] = m   (4, EI)
6. Fy(Fy & #F = n & [x: Fx & x  y] = m)   (2, DefB2)
7. Fy & #F= n & [x: Fx & x  y] = m   (6, EI)
8. Fy   (5, S)
9. #F = n   (5, S)
10. [x: Fx & x  y] = m   (5, S)
11. Fy   (7, S)
12. #F= n   (7, S)
13. [x: Fx & x  y] = m   (7, S)
14. #F = #F   (9, 12, 3)
15. F  F   (14, HP)
16. x(xy)   (15)
17. x(yx)   (15)
18. (({x, y, y, x})  x, x})  {y, y}
19. [x: Fx & x  y]  [x: Fx & x  y]   (18)

30



20. m = m   (19, 10, 13, HP)

Thm3:    x(xP0)

1. x(xP0)   (assumption)
2. aP0   (1, UI)
3. Fy(Fy & #F = 0& [x: Fx & x  y] = a)   (DefB2, 2)
4. Fb & #F = 0 & [x: Fx & x  b] = a   (3, EI)
5. Fb   (4, S)
6. #F = 0   (4, S)
7. [x: Fx & x  b] = a   (4, S)
8. #F = 0  xFx   (Thm1)
9. xFx   (6, 8, MP)
10. Fb   (9, UI)
11. Fb& Fb   (5, 10, Add)
12. x(xP0)   (11, 1, RA)

Thm4:    xRy  xR*y

1. xRy   (assumption)
2. ab(((ax  Fa) & aRb)  Fb)   (assumption)
3.  ((x  x  Fx) & xRy)  Fy   (2, UI)
4. (x  x  Fx)  (xRy  Fy)   (3)
5. x  x
6. x  x  Fx   (5, Adj)
7. xRy  Fy   (4, 6, MP)
8. Fy   (1, 7, MP)
9. xR*y   (DefB3, 2, 8)

Thm5:    (xR*y & yR*z)  xR*z

1. xR*y   (assumption)
2. yR*z   (assumption)
3. ab(((ax  Fa) & aRb)  Fb)   (assumption)
4. ((x  x  Fx) & xRy)  Fy  (3, UI)
5. ((y  x  Fy) & yRz)  Fz   (3, UI)
6. ((x  x  Fx) & xR*y)  Fy   (4, Thm4)
7. ((y  x  Fy) & yR*z)  Fz   (5, Thm4)
8. ((x  x  Fx)  (xR*y  Fy)   (6)
9. x  x
10. x  x  Fx   (9, Adj)
11. xR*y  Fy   (8, 10, MP)
12. Fy   (1, 11, MP)
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13. (y  x  Fy)  (yR*z  Fz)   (7)
14. Fy  y  x   (12, Adj)
15. yR*z  Fz   (13, 14, MP)
16. Fz   (2, 15, MP)
17. xR*z   (3, 16, DefB3)

Thm 6:   xP*n  (m(mPn) & m(mPn  (xP*m  x= m)))

1. xP* n   (assumption)
2. F(ab([(a = x  Fa) & aPb] Fb)  Fn)   (1, DefB3)
3. ab([(a = x  Fa) & aPb] Fb)  Fn)   (2, UI)
3. F = [z: m(mPz) & m(mPz  (xP*m  x = m))]
4. a = x  Fa   (3, UI, assumption)
5. aPb   (3, UI, assumption)
6. m(mPb)   (5, EG)
7. mPb   (6, EI)
8. a = m   (5, 7, Thm2)
9. a = x  x = m   (4, 8)
10. Fa   (assumption)
11. m(mPa) & (xP*m  x = m))   (3,10)
12. m(mPm) & (xP*m  x =m))   (8, 10, 11, m/a)
13. m(mPm)   (12, S)
14. mPm   (13, EI)
15. xP*m  x = m   (12, S)
16. mP*m   (14, Thm4)
17. xP*m  xP*m   (15, 16, Thm5)
18. x = m  xP*m   (15, 16, x/m, Thm4)
19. xP*m   (15, 17, 18)
20. m(mPb) & m(mPb  (xP*m  x = m))   (6, 7, 19)
21. Fb   (20, 3)
22. Fn   (3, 4, 5, 20)
23. m(mPn) & m(mPn  (xP*m  x = m))   (22, 3)

Thm7: 0P*n  nP*n

1. 0P*n   (assumption)
2. F(ab([(a = 0  Fa) & aPb] Fb)  Fn)   (1, DefB3)
3. ab([(a = 0  Fa) & aPb] Fb)  Fn)   (2, UI)
3. F = [z: zP*z]
4. ((a = 0  Fa) & aPb) Fb)  Fn   (3, UI)
5. a = 0  Fa   (assumption)
6. aPb   (assumption)
7. bP*b (assumption) (Indirect)
7. Fb   (7, 3)
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8. aPb & (aPb  (bP*a  b = a))   (7, Thm6)
9. bP*a  b = a   (8)
10. aP*b   (6, Thm4)
11. aP*a   (10, 9 , Thm5)
12. Fa   (11, 3)
13. a = 0   (5, 12, MTP)
14. 0P*0   (11, 13, 0/a)
15. m(mP0)   (14, Thm6)
16. mP0   (15, EI)
17. mP0   (Thm3)
18. Fb   (16, 17, 7)
19. Fn   (5, 6, 18, 4)
20. nP*n   (19, 3)

Thm8:   (mPn & 0P*n)  x(x  m  (x  n & x  n))

1. mPn   (assumption)
2. 0P*n   (assumption)
3. mP*n   (1, Thm4)
4. xP*m  xP*n   (3, Thm5)
5. xP*m  x = m  xP*n   (4)
6. (nP*n)   (2, Thm7)
7. x = n  (xP*n)   (6)
8. xP*n  x  n   (7)
9. (x  n & x  n)  xP*n   (DefB4)
10. xP*n  x  m   (1, Thm6)
11. x  m  x  n   (4, DefB4)
12. (xP*m  x = m)  x  n   (5, 8)
13. x  m  x  n   (DefB4, 12)
14. x  m  (x  n & x  n)   (11, 13)
15. (x  n & x  n)  x  m   (9, 10)
16. x  m  (x  n & x  n)   (12, 13)

Thm9:   (mPn & 0P*n) [x: x  m] P #[x: x  n]

        1. mPn   (assumption)
 2. 0P*n   (assumption)
3. x(x  m  (x  n & x  n)   (1, 2, Thm8)
4. [x: x  m]  [x: x  n & x  n]   (3)
5. #[x: x  m] = #[x: x  n & x  n]   (4, HP)
6. Fy(Fy & #F = #[x: x  n] & [x: Fx & x  y] = #[x: x  m] 
      #[x: x  m]P#[x: x  n]   (DefB2)
7. n  n & #[x: x  n] = #[x: x  n] & [x: x  n & x  n] = #[x: x  m] 
      #[x: x  m]P#[x: x  n]   (6, n/y, [x: x  n]/F)
8. n  n   (DefB4)
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9. #[x: x  n] = #[x: x  n]
10. #[x: x  m]P#[x: x  n]   (8, 9, 5, 7)

Thm10:   mPn  ((0  m & mP#[x: x  m])  (0  n & nP#[x: x  n]))

1. mPn   (assumption)
2. 0  m   (assumption)
3. 0P*m  0 = m   (2, DefB4)
4. mP*n   (1, Thm4)
5. 0P*m  0P*n   (4, 3, Thm5)
6. 0 = m  0P*n   (4, 0/m)
7. 0P*n   (3, 5. 6)
8. mP[x: x  m]   (assumption)
9. #[x: x  m] = n   (8, DefB2)
10. nP[x: x  n]   (1, 7, 9, Thm4)

Thm11:   0P#[x: x  0]

1. 0  0   (DefB4)
2. F = [x: x  0]   (assumption)
3. F0   (1, 2)
4. xP*0  m(mP0)   (Thm6)
5. (mP0)   (Thm3)
6. x(Fx & x  0)   (assumption)
7. x  0   (6, EI, S)
8. x  0   (6, EI, S)
9. xP*0  x = 0   (7, DefB4)
10. xP*0   (8, 9, MTP)
11. (mP*0)   (5, Thm4)
12. x(Fx & x  0)   (6, 10, 11)
13. #[x: Fx & x  0] = 0   (12, Thm1)
14. Fy(Fy & #F = #[x: x  0] & #[x: Fx & x  0] = 0)   (2, 3, 14, EG)
15. 0P#[x: x  0]   (15, DefB2)

Thm12:   0  n  0  n & nP#[x: x  n]

1. 0 = n   (assumption)
2. 0  0 & 0P#[x: x  0]   (1, Thm11)
3. 0P*n   (assumption)
4. F(ab([(a = 0  Fa) & aPb] Fb)  Fn)   (3, DefB3)
5. ab([(a = 0  Fa) & aPb] Fb)  Fn   (4, EI)
5. F = [z: 0  z & zP#[x: x  z]]
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6. (m = 0  Fm) & mPn] Fn)  Fn   (5, UI)
7. m = 0  Fm   (assumption)
8. mPn   (assumption)
9. m  0  Fm   (7)
10. m = 0  Fm   (5, Thm11)
11. Fm   (9, 10)
12. Fn   (8, 11, Thm10)
13. 0  n & nP#[x: x  n]  (5, 12)

Thm13:   Finite n  nP#[x: x  n]

1. Finite n   (assumption)
2. 0  n   (1, DefB5)
3. nP#[x: x  n]   (2, Thm12)

       Hence that there is no last member of the series of natural numbers is proved. Having

shown how the  proofs,  which  are  sufficient  to  conclude  that  there  are  infinitely many

numbers can be carried out, we see that dispensing with intuition in arithmetic can be traced

back to one basic axiom, namely Hume’s Principle. Frege could, without mentioning the

necessity to prove them, give intuitive definitions. For instance, instead of Definition 10,

something like the one below could be given:

If starting from x we transfer our attention continually from one object to another to
which it stands in the relation , and if by this procedure we can finally reach y, then
we say that y follows in the -series after x. (Frege [1884], §80)

       However, this would not be appropriate for the logicist aims. Although it may well

describe a process of discovery that  y follows x, it is not a true justification. Moreover, it

does not define what is meant by y’s following x (ibid, prg 3). Frege continues,

Whether,  as our attention shifts [as it  is pointed out in the above definition], we
reach  y may depend on all sorts of subjective contributory factors, for example on
the amount of time at our disposal or on the extent of our familiarity with the things
concerned.
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But we are  trying  to  get  rid  of  the subjective contributory factors  in logicism. It  is  an

interesting fact that when we apply this criticism to what we consider to be logical, i.e. to

our way of discovering the logical laws, we will have a similar difficulty concerning the

logical definitions. For they would be apt to be subjective, contributory factors in case of

such a criticism. Hence the so-called logical  definitions rest on non-logical factors. But,

without  appealing  to  intuition  in  the definitions,  we can  at  least  reach  some definitive

conceptions, which can be considered as a melting point of the pure logical (frozen) realm –

if there is such a realm. We are able to make, thus, a distinction between the logical and the

psychological.

       My next concern is to judge how much appeal to intuition is involved in Hume’s

Principle. I am no more dealing with how much intuition there is in formulating Hume’s

Principle; because the obvious answer is that there is some. I am rather dealing with what

Frege puts forward as his aim, viz., to show that arithmetic is analytic. Thus a question that

needs  to  be  asked  is  whether  Hume’s  Principle  is  analytic.  In  order  to  count  Hume’s

Principle as an analytic truth we must be able to prove it by means of logical laws and

definitions (ibid, §3). Or else, we need a good reason to call Hume’s Principle something

that  neither  needs  nor  admits  of  proof,  i.e.  a  primitive  logical  law.  Both  of  these  are

problematic. For the former to be the case, every time we make a foundational definition,

implies proofs to have no end., whereas at the end we need to stop at a contextual definition

as the foundation of arithmetic. On the other hand, a good reason to count Hume’s Principle

as a primitive logical law is hard to find, because Hume’s Principle asserts something about

the  special  function  “the  number  of”,  such  that  this  assertion  leads  to  the  difficulty

concerning the applicability of it to all contexts in which we talk about numbers. Hume’s

Principle does not, for instance, enable us to judge whether #(moons of Jupiter) = Julius

Caesar,  or not.  (Ibid,  §56) That is  to say,  Hume’s Principle is  not  sufficient  to fix the
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referents of number words, though it fixes the sense of the expression “the number of”.

This problem was thought to be solved, through the introduction of numbers as extensions

of concepts. (Ibid, §68) For Julius Caesar refers to the human being, whereas the extension

of a concept is so described that it refers to the corresponding non-spatio-temporal object.

Here, although it still may be argued that the problem with Julius Caesar remains for the

extensions also, we are not going to go into it.21  For it is indeed well known that extensions

of concepts  led to the Russell  Paradox. But what  about Hume’s Principle? What if  we

derive a contradiction from it? 

 

Yet  it  must  be  borne  in  mind  that  the  rigor  of  the  proof  remains  an  illusion,
eventhough  no  link  be  missing  in  the  chain  of  our  deductions,  so  long  as  the
definitions are justified only as an afterthought, by our failing to come across any
contradiction. (Ibid, p. ix, para 3)  

       Hence we must make sure that we will not come across any contradiction with Hume’s

Principle. This will presumably be a gain concerning the value of Hume’s Principle for

logicism. In fact, Hume’s Principle is model-theoretically consistent, i.e. it is true in models

with  infinite  domain.  However,  it  is  false  in  models  with  finite  domains22,  hence  it  is

logically invalid. Thus, in this sense, Hume’s Principle cannot be analytic.

21 See Hodes [1984], pp. 136-139, and Heck [1997] for further discussion.

22  Take a two element-domain D ={0, 1}. We can find two concepts F and G, such that
the number of  Fs  is  equal  to the number of  Gs,  but  F and  G are not  one-to-one
correlated. In model theory concepts are members of the power-domain. Thus F and
G will be taken from the members of the power-domain P(D) = { {}, {0}, {1}, {0,
1}}. The function “#” will be a function from P(D) to D. Here when F = {0}, we say
#F =1. Similarly #{0, 1} has to be either 0 or 1, because the function “#” is defined as
from P(D) to D. But then #{0, 1} will unavoidably be equal to either one of the #{},
or #{0}, or #{1}, whereas obviously none of  {}, {0}, or {1} is one to one correlated
with {0, 1}. On the other hand, we can define the function “#” from P(D) to D, where
D is infinite,   in such a way that  Hume’s Principle holds.  For example,  it  can be
defined as that for all finite Fs #F = n + 1, and #F = 0.  (See Boolos [1996], p. 145)
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       Suppose that we have found a logical principle from which arithmetic can be derived.

If this amounts to saying that there is a finite list of logical (analytic) axioms, which suffice

to prove all arithmetical truths, then there must be a countable list of truths of arithmetic.

Nevertheless,  there  is  no  such  list  of  truths  of  arithmetic  as  we  know  by  Gödel

incompleteness. Therefore, there cannot be such a list for a system of logic strong enough

to derive all truths of arithmetic either. This may mean two things. It may be the case that

arithmetic is not analytic all over. It may also be the case that there are uncountably many

truths of logic (see Benacerraf [1981], pp.65-66). Frege would not like any of the two. For

the former goes against  Frege’s basic thesis that truths of arithmetic are analytic in the

sense  of  logical  provability.  Similarly,  the  latter  goes  against  Fregean  rigor.  For  rigor

prefers “[t]he further we pursue [the] enquiries, the fewer become the primitive truths to

which we reduce everything.” (Frege [1884], §2). However, a mystically oriented account

of  logicism  may  claim  that  there  are  in  fact  uncountably  many  truths  of  logic  and

mathematics. That kind of approach would be strongly in need of a revolutionary account

of logical and mathematical proof, hence it is little creditable for the time being. 

       Beside the counter arguments to logicist inclinations, it is quite appreciating that a

single principle such as Hume’s Principle is sufficient to generate all the arithmetic that can

be  done  with  the  Peano  axioms.  In  this  sense,  “[t]he  further  we  pursue[d]  the  fewer

bec[a]me the primitive truths to which we reduce everything” (ibid), where the meaning of

the term “primitive truth” is a little bit distorted.23

23 If we add the modal possibility operator at the beginning of Hume’s Principle, then it will
be considered as logically valid,  i.e.◊FG(  F =  G  F  G),  (see Hodes [1984]).
However, this would open a new debate on whether modalities can be counted as logical
constants. Thus we quit it here and defer similar discussions to Chapter 3.
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                                                   CHAPTER 3

       ON THE LOGIC OF LOGICISM

3.1 Arguments against the view that higher-order logic is not logic

The argument which comes from Benacerraf [1960] and Quine [1970] – I shall call it

the first-order thesis, in accordance with Barwise [1985] – defends the view that “the logic

capable  of  encompassing [the reduction of  arithmetic  to  logic  is]  logic  inclusive of  set

theory”;24 therefore,  cannot be counted as logic,  but  mathematics.  The first-order  thesis

maintains a distinction between mathematics and logic. The distinction is not refutable at

first sight. For without starting from such a distinction, even the basic logicist claim that

mathematics  is  logic  turns  out  to  be  a  triviality.  We  can  conclude that  the  apparent

distinction between mathematics and logic is a lie-distinction. But we cannot start with the

very lie that there is no distinction at all.

Whether the concepts “class” and “membership,  as they are used in set theory,  are

logical concepts is disputed. It is a matter of demarcating the logical from the non-logical,

i.e. “why do logicians count ‘is’ logical and ‘eats’ non-logical?” (Musgrave [1977], p. 103).

Probably, because of the much wider applicability of “is” than “eats”. For everything  is

something,  but  not  everything  eats something.  Whether  the  case  of  the  verb  “eats”  is

similar to that of the membership relation “” is the problem here. Yet from the logicist

standpoint, concepts such as “class” and “membership” belong to logic in the sense all

mathematical concepts, at the end, belong to logic.

Without quantification over predicates, functions etc. the logicist view is hopeless. In

2.3 we have considered  the case of  Frege,  and saw that  the basic principle of  Frege’s

system, viz. Hume’s Principle, was a second-order formula quantifying over predicates.25

24 Quine [1970], p. 66. Due to Boolos [1996], Benacerraf, similar to Quine, argues in his
Logicism: Some Considerations (Ph.D. Dissertation, Princeton, 1960) that a system strong
enough to give us arithmetic should not be counted as logic.
25 For sure this is just an example, and not conclusive about the inadequacy of the first-
order  logic  in  formulating  mathematics.  We shall  consider  some conclusive  arguments
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My argument here is for the view that higher-order logic is logic. Quine, on the contrary,

argues that higher-order logic is not logic, but mathematics. The main point of his argument

is as follows:

Consider first some ordinary quantifications: ‘x (x walks)’, ‘x (x walks)’, ‘x (x is
prime)’ The open sentence after the quantifier shows ‘x’ in a position where a name
could  stand;  a  name  of  a  walker,  for  instance,  or  of  a  prime  number.  The
quantifications do not mean that names walk or are prime; what are said to walk or
to be a prime are things that could be named by names in those positions. To put the
predicate letter ‘F’ in a quantifier, then, is to treat predicate positions suddenly as
name positions, and hence to treat predicates as names of entities of some sort. The
quantifier ‘F’ or ‘F’ says not that some or all predicates are thus and so, but that
some or all entities of the sort named by predicates are thus and so. (Quine [1970],
pp. 66-67)

Why Quine is uncomfortable with quantification over predicates  is  clear.  He is not

happy with the entities whose names are F, walking, primeness, wisdom etc. In Putnam’s

words,

[He] is not likely to say:
(A) “For all classes  S, M, P: if all S are M and all M are P, then all S are P.
He is more likely to write:
(B) The following turns into a true sentence no matter what words or phrases of the
appropriate kind one may substitute for the letters S, M, P: ‘if all S are M and all M
are P, then all S are P’.”
…[He] does not really believe that classes exist; so he avoids formulation (A). In
contrast  to  classes,  “sentences”  and  “words”  seem  relatively  “concrete”  so  he
employs formulation (B). (Putnam [1971], pp. 9-10) 

       Here, as Putnam puts it, “we must face the fact what is meant [by the words or phrases

of the appropriate kind in formulation (B)] is all possible words and phrases of some kind

or other, and that  possible words and phrases are no more ‘concrete’ than classes are.”

(Ibid, p. 10). One may avoid this difficulty by defining a formal language and determining

the possible substitution instances of S, M, and P in that formal language. This time, there

presently. 
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will  be  a  problem concerning  the  concept  of  validity.  For  we shall  inescapably  define

‘valid’ in different languages seperately, as being true of all substitution instances in each

defined language. This plurality of definitions of validity cannot be reduced to one general

definition of validity as being true of all substitution instances in every language. For the

concept “all languages” is “less ‘concrete’ than the notion of a ‘class’.” (Ibid, pp.10-11).

Putnam’s conclusion, with which we agree, is that “reference to ‘classes’ [or quantification

over classes, propositions, etc.], or something equally ‘non-physical’ is indispensable to the

science of logic. …at least today.” (Ibid, p. 23)

Quine, on the other hand, argues that we need not say “for all classes” in the quoted

formulation (A) of Putnam. The symbolization “x ([(Sx  Mx) & (Mx  Px)]  (Sx 

Px))” will suffice, and we will not be in need of referring to classes in such a symbolisation

of (A).  S,  M, and  P are, for Quine, schematic letters standing for any predicate you like

(ibid, p. 27; Quine [1970], p. 66). Putnam seems to be right here in criticising the use of the

phrase ‘any predicate you like’ as if there were no philosophical (i.e. referential) problem

with it. From these considerations, we at least conclude that the meta-theory of first-order

logic is bound to commit into the existence of non-concrete entities such as classes. But this

is not to argue that set theory is logic. I have no “tendency to see set theory as logic” and to

“overestimate the kinship between membership and predication”. (Quine [1970], p.66) For

the indispensability of referring to abstract entities in logic does not imply that an axiomatic

theory of those entities is to be counted as logic. The argument I am here trying to present

is for the logical status of higher-order logic. As I have mentioned at the beginning of this

section, whether membership and class – in their set theoretical uses – are logical concepts

is a disputed issue, and my investigation is away from that dispute. However, we know that

there are essential differences between higher-order logic and set theory.26 Those who argue

26 See Boolos [1975] for a  detailed analysis  of  the similarities and differences between
higher-order logic and set theory. An example of difference is the loss of validity of some
second-order formulas in set theoretical notation viz., Fx Fx is logically valid, but x
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that higher-order logic is logic distinguish logical class and set theoretical class.27 Shapiro,

for instance, puts, in his [1985], that 

…understanding the second-order quantifiers of a given theory is not the same as
grasping the set theoretical hierarchy. In a given theory, the quantifier “all subsets”
ranges  over  the  collection  of  subsets  of  a  fixed  domain.  In  general  there  is  no
powerset operator to be iterated… The set theoretic hierarchy, on the other hand, is a
proper  class  that  contains  the  result  of  iterating  the  powerset  operator  into  the
transfinite. (Ibid, p. 721)

The indispensable use of class-like entities in logic may be interpreted as that logic

cannot be counted as topic-neutral. The view that topic-neutrality is a characteristic of logic

is used to support  the first-order thesis. Quine and others try to preclude logic from any

special subject matter, and let it be transparent. The way we understand topic-neutrality is

crucial  in understanding whether  the occurrence of classes and class-like entities in the

logical language leads logic to be a topic-loaded area. For example, as Boolos says in his

[1975], one may argue that logic is not topic-neutral as it is thought to be. One can say that

logic, even in the form defended by many logicians to be topic-neutral, is about certain

linguistic entities, i.e. negation, disjunction, conjunction, quantifiers, etc. (Boolos [1975], p.

517). But the way I understand topic-neutrality differs from this, and I do not conclude that

logic is not topic-neutral just because it is about negation, conjunction and the like. Logic is

topic-neutral because it is fairly applicable to many special subjects, and is a guide in our

argumentations in those subjects. Thus classes and the like are those entities acceptable as

constituents of  a  topic-neutral  logic,  as long as they do not distort  this sense of  topic-

x is not. Another example is that Y(Yx Yz) implies x = z, but (x  z) does
not. 

27 Granted that we quantify over class-like entities in logic, we shall be led to a circularity
concerning the logical description of set theory as one of the branches of mathematics, as
long  as  we  cannot  make  a  clear  cut  distinction  between  the  logical  and  mathematical
conception of class.
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neutrality.  I  have  briefly  considered  a  similar  point  concerning  the  topic-neutrality  of

mathematics in 2.1.

An  argument  against  the  use  of  class-like  entities  in  logic  may  be  formulated  by

referring to the dilemma introduced by Benacerraf [1973]. Benacerraf, in his challenging

paper,  pointed  out  that  satisfactory  accounts  of  mathematical  truth  fail  in  explaining

mathematical knowledge, and others which are successful in accounting for mathematical

knowledge fail in explaining mathematical truth. Accepting Tarski semantics, we become

realists  in  ontology  of  mathematics,  but  fall  into  the  difficulty  of  explaining  how the

knowledge of a realm of abstract mathematical entities is attainable for us. Alternatively,

being anti-realists we make mathematical knowledge attainable, however, purely syntactic

procedures  fail  in  giving  a  full  account  of  mathematical  truth  against  Gödel’s

incompleteness results. 

In this way, I seem to have carried the dilemma concerning mathematical knowledge

and truth to the logical  knowledge and truth, by agreeing with Putnam in that class-like

entities are indispensable in logic. The criticism is completely sound, for the logicist claims

provide  full  satisfaction  only  if  they  throw  light  onto  both  the  semantical  and  the

epistemological problems concerning the philosophy of mathematics. At present we lack

such an account.  Hence, we have to face with the dilemmaic situation. I start  from the

observation that we already have mathematical knowledge, somehow. I may, for instance,

buy the view that mathematics needs no foundation. This would be close to some sort of

methodological Platonism.28  In that case, our arguments for the logicist philosophy can

have no epistemological  claim, i.e.  logicism cannot provide epistemological  support  for

mathematics. By holding this view, I am just trying to push the argument for logicism, to

the extent it is possible, where mathematics and logic will be taken as parts of the same

28 This term is said to belong to M. Resnik. See Shapiro [1985], p.715.  A similar view viz.,
neutral realism, is held by Shapiro (ibid).
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subject.29  On the other hand, if logicism had succeeded in what Frege dreamt it to do – i.e.

if the whole of arithmetic could be derived from analytic truths of logic – then it would

have been a solution both to the semantical and the epistemological problems.

We had marked that first-order logicism is hopeless. We are now going to consider an

argument for why this is so.30 The argument is due to Shapiro [1985]. Shapiro distinguishes

between two purposes  of  axiomatization of a  mathematical  theory.  In  Shapiro’s  words,

“[o]ne purpose ... is to organize and systematically present the truths and correct inferences

of the [theory],” and the second purpose “is to describe a particular structure, an intended

interpretation  of  a  [mathematical  theory]”  (ibid,  pp.  716-717).  Concerning  the  former

purpose our goal is completeness, and concerning the latter, the goal is categoricity.31 Since

I argue for the higher-order logic to be logic, I adopt Shapiro’s argument in favor of my

logicist line. 

Due  to  the  incompleteness  of  some  theories  of  mathematics,  i.e.  of  arithmetic,  the

former  goal  is  impossible to  achieve.  This  creates  a  problem for  a  complete deductive

success of logicism too, but logic, as I prefer to advocate here, needs not have a deductive

power  which  mathematics  lacks.  Indeed  I  do  not  argue  that  logic  can  do  more  than

mathematics can. On the other hand, to handle what mathematics can, categoricity is a key

concept to be worked on, and is a needed property for any system of logic the aim of which

is  at  least  to  describe  mathematical  structures.  To  quote  from  Shapiro,  “...if  an

29 This view is faithful to Church [1956], §55, Putnam [1971] Ch. IV, and Shapiro [1985].

30 The inadequacy of first-order logic in formulating some essential mathematical concepts
such as finitude, mathematical induction is one important aspect of the matter. I am here
interested in a more fundamental argument that investigates the importance of the concept
of categoricity in mathematical practice. For an outline of comparisons between first and
second-order logics, see Shapiro [1985].

31 “[A]n  axiomatization  –  language  and  deductive  system  –  is  complete iff  it  has  as
theorems all (and only)  the truths of that branch. …[A]n axiomatization – language and
semantics – is categorical iff any two of its models are isomorphic.” (Shapiro [1985], pp.
716-717)
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axiomatization  correctly  describes  a  structure,  then  it  also  describes  any  isomorphic

structure, ...for the purpose of description, a categorical axiomatization is the best we can

do.” (Ibid, p. 717) The important role that categoricity plays concerns the communication

of mathematical language, i.e. “[e]ven if two mathematicians agree on an axiomatization of,

say, arithmetic..., they cannot be sure that they have in mind the same ...interpretations of

their  agreed-on  axiomatization.”  (Ibid,  p.  719)  In  order  to  make  sure  that  two

mathematicians are talking about the same realm, we need to know that the axiomatization

they both work on is a categorical one. Shapiro puts it, remarkably, as follows:

One  could,  I  suppose,  postulate  a  faculty  of  mental  telepathy  between
mathematicians to account for the communication of structures; but, without this, all
communication is mediated by language.  This is where categoricity is important.
(Ibid, p. 720)  

The fact that “Löwenheim-Skolem theorems imply that no set of sentences in a first-

order  language  can  be a categorical  description of  an  infinite  structure”  (Ibid,  p.  718),

establishes the inadequacy of first-order attempts to describe mathematical structures.32 This

also establishes the superiority of second-order over first-order,  for there are categorical

sets of second-order sentences with infinite domains.33

32 Löwenheim’s  theorem says  that  “[A]  first-order  wff  is  valid  in  a  countably  infinite
domain,  [iff]  it  is  valid  in  every  non-empty  domain.414”  (Church  [1956],  p.  238)  The
generalization of this theorem, by Skolem, is seen needless to be given here. It is evident
that Lövenheim’s theorem suffices to see that we can find two non-isomorphic models of
an infinite structure, which is described by using first-order logic; i.e. in Church’s words
“…[I]f  a [first-order]  wff  is  valid in the domain of natural  numbers,  it  is  also valid in
[  uncountably]  infinite  domains.  If  a  [first-order]  wff  is  satisfiable  in  [an uncountably]
infinite domain, then it is satisfiable also in the domain of natural numbers." (Ibid, note
414)

33 A simple example is the second-order induction principle, i.e. F(F0 & y(FyFs(y))
x Fx). For the proof of that the natural number structure can be described categorically see
Dedekind [1888]. Note that it is presupposed above, and in any categorical set of second-
order  sentence,  that  second-order  logic  is  unambiguously  understood.  We  have  no
immediate reply to this very difficulty. 
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Up to here, in this section, I have argued against the view that higher-order logic is not

logic. We saw that we are indispensably referring to abstract entities in logic and this gives

logic a descriptive superiority – beside its epistemological and deductive weakness – over

the logic that first-order thesis suggests. Now, admitting abstract entities, of high generality,

in  logic  brings  the  conclusion  that  there  is  nothing  wrong  in  admitting  also  what  are

referred  as  logics  embodying  mathematical  concepts.34 Barwise,  in his [1985],  asks the

question

...given a particular mathematical property (like being a finite, infinite, countable,
uncountable,  or  open  set,  or  being  a  well-ordering  or  a  continuous  function,  or
having probability greater than some real number r), what is the logic implicit in the
mathematician’s use of the property? (Barwise [1985], p. 3)

We now seek to understand the logic of the use of mathematical concepts then.  A

logic  which  make  use  of  some  mathematical  concepts  “consists  of  a  collection  of

mathematical structures, a collection of formal expressions, and a relation of satisfaction

between the two.” (Ibid, p.4) This conception of logic rests on a naive argument against the

first-order thesis. Barwise calls it the mathematician-in-the-street conception of logic viz.,

logic as the study, in a specialized manner, of the valid forms of reasoning in mathematics.

Barwise argues, against the first-order thesis, that 

[F]irst-order logic is just an artificial language constructed to help investigate logic
much as the telescope is a tool constructed to help study heavenly bodies. From the
perspective of the mathematician in the street, first-order thesis is like the claim that
astronomy is the study of the telescope. (Ibid, p. 6) 

34 See  Barwise  [1985]  for  an  outline  of  the  study  of  such  logics.  Logics  embodying
mathematical objects use generalized quantifiers such as finitely many, countably many and
like, and infinitely long formulas etc. See also Bostock [1974] for a logicism that treats
numbers as generalized cardinality quantifiers. In such an account we say “for four  x…”,
just like we say “for all x…” in ordinary quantification.  
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To a certain extend I adopt a similar conception of logic. That this conception may let

us construct descriptively powerful logics can be the main argument which I can give in

addition to my view that higher-order logic is logic.35 But I am not going to go over it

here.36 In  the  next  section,  I  am  going  to  discuss  the  implications  of  the  deductive

deficiencies of higher-order logic concerning the logicist philosophy of mathematics.

3.2 A short note on the deductive aim of logicism

A descriptively strong system of logic enables us to fix the sense of a mathematical

strucrure;  as we saw in 3.1. However,  descriptive strength brings a deficiency.  It is that

descriptively strong logics lack completeness, i.e. they are no use helpful in proving every

described truth. N. Tennant, in his [2000], studies the interplay between the two crucial

properties, namely completeness and categoricity,  of logical systems. Tennant points out

that a system of logic cannot have full expressive (descriptive) and deductive powers at the

same time. He formulates this under the name “noncompossibility theorem”, and gives a

proof of it. (Tennant [2000], p. 272) What does this teach us? Concerning our case, since

we permit higher-order quantification in logic, for the time being, our main problem is the

lack of deductive power, i.e. we can never hope to prove everything that we describe with

our logic. For Barwise, this is something concerning the complexity of our system of logic

that have to be learnt to live with. (Barwise [1985], p. 7) However, to suggest the logicist to

live with it is to tell him to give up the deductive aim (almost the half) of his main thesis.

Yet the logicist has no alternative. He has to be satisfied with limited power. Optimizing

this negative result, we may argue that the deductive ideal of logicism was a consequence

35 Aiming at better descriptions by means of logic, we are close to the later Wittgenstein’s
conception  of  logic,  concerning  mathematical games.  “…[E]verything  descriptive  of  a
language game is part of logic.” (Wittgenstein [1969], §56)

36 See  Read  [1998].  Read  argues  for  logicism  with  logics  embodying  mathematical
concepts. He suggests an ongoing, an unaccomplished project of logicism.
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of  misconception  about  the  nature  of  mathematical  truth,  and  we  can  ascribe  the

misconception to the early logicists, not to ourselves.  But what then can the use of the

logicist philosophy of mathematics be? I already pointed, in 3.1, that logicism cannot solve

the epistemological problem. For even if all mathematics could be shown to be a totality of

tautologies, the referential access problem concerning the constituent parts of tautologies

would remain.37 Hence the conclusion that we are inclined to infer – that mathematics and

logic, contrary to appearance, are not distinct subjects – may just be in favor of  rigorous

descriptions of mathematics; and may neither be in favor of epistemological foundations

nor  deductive  success.  This  gives  us  nothing but  insight  about  the  logical  structure  of

mathematics.

I  aim  to  conclude  that  every  attempt  of  description  of  mathematical  theories  is

potentially  a  describable  piece  of  logic  (and  hence  mathematics),  and  also  that  “...

[E]verything descriptive of a [mathematical] game is part of logic.” (Wittgenstein [1969],

§56)

37 According to Tarski’s definition of truth, we say that the sentence “2 + 1 = 3” is true iff 2
+ 1 = 3. Since there is no 2 + 1 = 3 in nature, we let it be out of space and time. Similarly
we can say that the sentence “p  p” is true iff p  p. By the same reasoning this is not a
spatio-temporal fact either, it seems.
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CHAPTER 4

CONCLUSIONS

In section 2.1, where my considerations started, I dealt with topic-neutrality. I have a

simple claim that there is some sort of topic-neutrality in mathematics. Its  source is the

undeniable width of applicability and generality of mathematics. Once again appealing to

Wittgenstein:

In  life  it  is  never  a  mathematical  proposition  which  we  need,  but  we  use
mathematical  propositions  only in order  to infer  from propositions which do not
belong  to  mathematics  to  others  which  equally  do  not  belong  to  mathematics.
(Wittgenstein [1921], 6.211)

In section 2.1, I considered whether one can give up intuition in mathematics. I divided

the problem into two as whether one can give it up in doing mathematics and whether one

can give it  up in the outcome knowledge of mathematics.  I argued that intuition is not

dispensable for the former, bu for the latter.  Intuition is dispensable at least for simpler

intuitions, and this is what is called rigor.  To support our arguments, we considered the

logical/psychological  distinction,  which  has  a  crucial  importance  in  understanding  the

nature of mathematical knowledge. Despite the fact that we lack a clear-cut distinction of

logic and psychology – psychology as the science of cognitive states and processes of the

human mind – I found mathematics to be much more closer to logic than to psychology.

In section 2.2, I studied Frege’s [1884], §§68-81, where Frege gives an outline of his

logicist theory of number. I presented a compact analysis of Fregean definitions and proofs,

and  came  to  the  conclusion  that  Frege’s  system  of  arithmetic  can  be  based  on  one

consistent axiom, namely Hume’s Principle. I briefly discussed the logical value of Hume’s

Principle, and although it seems not to be an analytic truth, I concluded that it is a success
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of logical  rigor to base all  arithmetic  that  can be done with Peano axioms on a single

principle.

A general conclusion to Chapter 2 is that we can, to a considerable extent, dispense

with  intuition  in  mathematical  knowledge,  which  may  be,  for  a  philosopher  of

mathematical activity, a needless task to urge.

In section 3.1, I argued against Quine-Benacerraf view that higher-order logic should

not be counted as logic. I agreed with Putnam in that abstract entities are indispensably

used, quantified over, and referred to in logic. I then considered Shapiro’s argument for the

superiority  of  higher-order  over  the  first-order,  concerning  the  problem of  how people

understand others’ use of mathematical language. However, I noted, there is an important

deficiency  of  logic  with  abstract  entities,  in  relation  with  the  challenging  paper  of

Benacerraf ([1973]). This deficiency is that logicism with abstract entities cannot provide

an epistemological foundation for mathematics. For we being concrete beings – if we do

not want to turn our problem into a problem concerning the nature of human mind – lack

causal relations with abstract beings. One other deficiency is shortly considered in section

3.2, in relation with N. Tennant’s [2000]. We faced the fact that what Tennant refers to as

the noncompossibility theorem states that both of the descriptive and deductive aims of

logicism cannot be attained at the same time. I concluded from this that our conception of

logic which is pregnant to descriptively strong logics cannot give us a complete deductive

power. This means, as a conclusion to Chapter 3, that what we can argue for is a descriptive

logicism, and thus it is possible to describe a logical picture of mathematics, but not to paint

the very picture itself.

As a general  conclusion to the whole of  my considerations,  I  put  forward that  the

possibility  of  rigorous  descriptions  of  mathematical  theories  suggest  that  logic  and

mathematics are too close areas of study. They are similar in both their efficiencies and
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deficiencies.38 Thus, at the end of the considerations, I am in accordance with the words of

B. Russell, which we quoted on page 1, and I end up with an appeal to authority: “...[L]ogic

and mathematics  should be characterized,  not  as  different  subjects,  but  elementary and

advanced parts of the same subject.” (Church [1956], p. 332) 

38 What  the  descriptive  and  deductive  powers  of  logics  interplay  is  analogous  to  the
interplay between mathematical truth and mathematical proof.
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