
ON WHAT HILBERT AIMED AT IN THE FOUNDATIONS

1. Hilbert’s overall view of mathematics 

Hilbert describes mathematics as “an organism whose vitality is conditioned upon the connection of its 

parts”.1 The connection of parts in question calls for a study of specific mathematical theories and their 

meta-theoretical properties. Such study is to be carried out by means of the axiomatic method. For one 

reason, axiomatization provides overviews for theories by characterizing the structures that are intended

to be studied in them.

Hilbert's foundational investigations display the importance of the application of the axiomatic 

method to different subject matters. In addition to axiomatization of geometry he worked on the 

axiomatization of physical theories. According to Hilbert, the axiomatic method guarantees maximum 

flexibility in research. It must have seemed to him that the method prepares the best conditions for 

actual (foundational) mathematical work and for its presentation for communicative purposes.

In the historical development of Hilbert's work, it is plain to the eye that his different 

applications, as well as his approvals of others' axiomatizations, correspond to different periods of 

heated dispute in the foundations of different fields. His axiomatization of geometry corresponds to that 

period of epistemological disagreements on Euclidean and non-Euclidean geometries. His 

encouragement and approval of the axiomatization of set theory corresponds to the period of ontological

disagreements partly as a result of the discovery of set theoretical paradoxes.  His call for the 

axiomatization of physical theories corresponds to those dates when theories of special and general 

1 Hilbert 1900.
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relativity were about to shake the world of physics. Hilbert came close to be the discoverer of general 

theory of relativity, which provided a basis for understanding the application of non-Euclidean geometry

to reality. Einstein refers to Hilbert in his influential lecture on geometry and experience. These 

examples are sufficient for seeing Hilbert's quickness to respond different crisis periods.

2. Hilbert’s response to foundational crises

What was common to the different crisis periods in geometry, set theory and physics is that in each case 

there appeared epistemological and ontological issues which were taken to be reasons as to admit some 

of the theories true and some of them false. This whole issue was ill-conceived according to Hilbert's 

viewpoint. The main source of the ill-conceived issues (especially in mathematics, but also in physics) 

is due to a lack of appreciation of the study of mathematical models and the absence of epistemological 

and ontological concerns in it.

There was no talk of mathematical models as such in the nineteenth century. Instead, notions like

group and manifold were introduced for the study of different spaces and algebraic domains. These too 

were structural notions and the new mathematics of the nineteenth century had a structuralist 

orientation.  Mathematics as the study of models is a further generalization of the structuralist 

orientation in point. Hilbert's Foundations of Geometry was perhaps the first example of a model-

oriented systematization of a variety of structural approaches to geometry. Weyl calls Hilbert's 

achievement the first move to the meta-geometrical level.

Being part of a new wave challenging the old conception of mathematics as the study of number 

and space, the structure-oriented approach to mathematical theories was an attempt to provide new 
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maps and guidelines for a richer description of mathematical (as well as physical) phenomena. In that 

sense, at least motivationally speaking, there was epistemological and ontological concerns for finding 

out new truths in mathematics. However, insofar as axiomatization provided the proper logical outlook 

for mathematical theories, the philosophical concerns in question became byproducts of structural 

descriptions. Such a proper logical outlook was for Dedekind and Hilbert among others promised a 

complete analysis of mathematical intuition.2

Since Descartes, the notion of intuition has been considered either a supplement or a substitute 

for logical inference in its traditional Aristotelian sense. From that point on the epistemological 

motivation behind mathematical constructions remained outside of logical treatments. With the 

discovery of new constructive possibilities by the means of the logic of quantifiers, the so-called 

epistemological motivations were partially replaced by purely logical motivations. Such replacement 

took place in different logicist foundations. Dedekind's and Frege's theories of number provide enough 

case studies for that. Increase of rigor becomes then elimination of epistemological elements. It is not 

necessarily in opposition to Kant's philosophy of mathematics where the notion of intuition is 

interpreted as knowledge of particulars.

The question as to whether one could dispense with epistemic residues in mathematical 

reasoning was a key element thereof in structural theorizing in mathematics. Most of the reactions 

against set theoretical conceptualizations were based on the presumption that elimination of epistemic 

elements in mathematical reasoning was impossible. Poincaré, Kronecker, and Brouwer among others 

argued that abstract theorizing about infinite sets did not satisfy the requirements of proper 

2 Cf. Hilbert's remark in 1889, Introduction.
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mathematical construction. Their notions of construction were based on the indispensability of 

epistemic elements like intuition in mathematics. Infinite sets were beyond the far reaches of 

mathematical intuition for them. Also, logic was too barren a field for exploring anything properly 

mathematical.

Hilbert's axiomatic approach was an optimistic take over on the side of the logical foundations. 

It was also a response to various restrictive views of mathematics supposedly bounded by the reaches of

epistemic elements in mathematics. A complete axiomatization should be able to exclude epistemic or 

ontic elements from mathematical theorizing, according to Hilbert. This exclusion is not necessarily a 

logicism in similar form to Frege's or Dedekind's projects. That is, intuition can still have a role in 

mathematical reasoning. Nevertheless, this role is to be given a structural orientation with the help of 

explications of the underlying logic of axiomatization.

In Euclid's problems and theorems, the underlying logic seems to be epistemic logic. When 

Descartes argues that traditional syllogism is not the right logic for analyzing mathematical reasoning, 

he seems to have epistemic primitives in the back of his mind. Likewise, when Kant tries to explain the 

genesis of geometrical constructions, what he essentially does is to outline the epistemic machinery of 

pure intuition. In all these historical cases, logic is assumed to be restricted to analytic judgments in 

some sense. Not only that. But also, that the analytic judgments in point are universal. They neither 

capture existential instantiations nor particular constructions sufficiently.

In Dedekind's and Frege's logicisms the epistemic bedrock of mathematical reasoning shifts into 

ontic presuppositions, as a result of their logical framework. They appeal to higher-order elements such 

as infinite totalities. However, there is a difficulty in speaking of first-order vs. higher-order distinction 

4



before Hilbert and Ackermann's mathematical logic. The shift from epistemic bedrock to ontic 

presuppositions was therefore an implicit semantic shift. It was neither an epistemological nor an 

ontological shift. From Hilbert's perspective, it was the result of a deeper logical truth which was not 

worked out sufficiently clearly in the past. In a word, the logic of mathematics was still waiting to be 

discovered, even after the discovery of quantifiers.

From the twentieth-century logical point of view, the interesting part of mathematical model 

building seems to be hidden beyond the reaches of first-order quantification. As was shown by Gödel's 

incompleteness theorems, an uncountable number of independent truths must be captured in case a first-

order axiomatization of arithmetic is preferred. This does not necessarily imply the impossibility of a 

complete axiomatization of arithmetic. It only implies that if a complete description of arithmetic is 

possible, there will be higher-order elements in its actualized form, as a consequence of the deductive 

power of first-order logic. That is to say, what is implicit in the so-called first-order axiomatization of a 

complete mathematical theory is in fact a higher-order logic.

Is higher-order logic the last word then, for the foundations of mathematics? If so, that would be 

turning back to some ontic presuppositions like Frege's or Dedekind's. But that would definitely not fit 

into Hilbert's mold. The simultaneous development of logic and mathematics has to make a new mold, 

in order to give the apparently higher-order elements a new shape for the descriptively complete 

axiomatization of analysis. In fact, what Gödel tried to do initially before he came up with his 

incompleteness theorems was proving the consistency of analysis.3 However, the implicit logical 

framework in Gödel's attempt was first-order logic as was distinct from higher-order on the basis of 

3 See Zach 2005.
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type-theoretical (i.e. ontological) concerns.

3. The search for foundations without presuppositions

The possibility of eliminating philosophical concerns in foundational investigations has critical 

importance for a correct interpretation of Hilbert's thoughts. Mathematics, according to Hilbert, is 

without presuppositions. The logic that is to be used in analyzing mathematical reasoning therefore has 

to be made free from epistemic and ontic primitives. It has to have a nominalistic character. It has to 

surmount the usual type-theoretical and hence ontological hierarchies. Is that impossible? If impossible, 

impossible on what grounds?

A structure-oriented axiomatization of analysis aims at a complete description of the structure of 

real numbers. The description in question is a particular way of systematizing the logical consequences 

of the axioms. The higher-order element which is alien to first-order logical consequence comes in with 

the least number principle, viz. All nonempty subsets of the set of natural numbers have a least element. 

That is a form of strong induction. Is it possible to reformulate it in nominalistic terms? If not, then 

Hilbert was clearly wrong about the reaches of axiomatic method in mathematics.

What was Hilbert's view? He realized that all the logical consequences of a complete description

of a mathematical theory should be tautological. That is to say, logical inferences add no new 

information to what is captured by the axioms. That is Hilbert's formalism. However, if by formalism it 

is meant that mathematical reasoning can be reduced to logical reasoning about formal structures, then 

that would be a misunderstanding about Hilbert's view. Hilbert never argued for the view that 

mathematics is the logical study of formal structures. His view favors the study of the models of formal 
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structures, despite the fact that he called his own investigations proof-theoretical.

Hilbert was not searching for the formal reaches of the axiomatic method. That would plainly be 

part of epistemological explorations. He emphasized that the aim in the axiomatic method is not to 

discover new truths. Rather the aim is to capture the necessary and sufficient conditions for proving 

theorems. The tautological character of the logic to be applied to axioms thereof excludes the possibility

of increase of information as a result of formal proof analysis. Logical analyses of proofs are rather to 

be made for the purpose of extracting nominalistic content from the shorthand assumptions of 

mathematical reasoning on infinitely complicated structures that are given by axiomatic descriptions.

A structure-oriented axiomatization is a particular use of deductive systematization. Models of 

theories are specified as such by the axioms insofar as they are consistent in the model-theoretical sense.

Hilbert's strategy to prove the consistency of arithmetic was to obtain a direct proof of the model-

theoretical consistency by way of proving the deductive consistency of arithmetic axioms. In a 

deductive consistency proof, one has to show only that no inconsistent sentence appears as a result of 

the deductions from the axioms of a theory. Such proof would suffice for Hilbert's purposes on the 

assumption that the underlying logic of mathematical reasoning is semantically complete. Hilbert seems

to have assumed it, at least tentatively. Unless the underlying logic of mathematical reasoning is 

semantically incomplete, Hilbert's strategy should have worked. Nevertheless, it turned out as a 

consequence of Gödel's incompleteness theorems that for a descriptively complete axiomatization of 

arithmetic the underlying logic of mathematical reasoning could not have been semantically complete. 

Hilbert had to switch his strategy into another form of direct method for proving the model-theoretical 

consistency of arithmetic. Another alternative is the admittance of the utter failure of Hilbert's program 
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by reference to incompleteness theorems. Nevertheless, that would have been possible only if the 

epistemological ground of mathematical reasoning is considerably safer than mathematical reasoning 

itself. That would be a petitio principii in agreement with the ontic infinitistic presuppositions of a 

would-be higher-order (type-theoretical or set-theoretical) consistency proof. Elimination of 

philosophical problems from foundational investigations is thus not an elementarily carried out task in 

the light of the developments in the early twentieth-century logic.

History of logic vindicated Poincaré's predictions up to a point. He was the one who thought that

the epistemic element in mathematical reasoning is essential. He argued that the so-called inescapable 

appeal to complete induction in consistency proofs make purely logical (non-epistemological) 

axiomatizations circular.  Hilbert's response to that argument was that one has to distinguish between 

different principles of induction. One type of induction takes place on the syntactic level, where 

Poincaré is right in his observation. However, another type of induction is by structural generalizations 

of particular constructions. There a more cautious logical investigation is needed in order to see whether

consistency proofs are possible by the structural means of particular constructions.

On similar lines there is no need for an appeal to any basic intuition in our foundational 

theorizing, according to Hilbert. Foundations can be studied mathematically by improving the logical 

methods. What this means is that the exclusion of certain principles like the axiom of infinity, the axiom

of reducibility and the axiom of completeness is for the sake of showing that a logical axiomatic 

foundation—without making contentual (existential) assumptions about mathematical infinity—is 

possible. This immediately implies that Hilbert's preference is first-order level theorizing in logical 

theory, which can be applied to different mathematical domains without making actual assumptions on 
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infinite totalities etc. On this point, epistemological interpretations of Hilbert’s views are based on 

patent misconceptions about Hilbert’s philosophy of mathematics. All that is needed for Hilbert’s 

foundational purposes is, first, the determination of models by axiomatic analysis, and then, second, 

model-theoretical consistency proofs for the axiomatizations.

In his lectures in the 1920s Hilbert used Russell’s ramified theory of types as what he considered

to be the extended predicate calculus. This treatment included the definition of real numbers and an 

upper bound as a class of real numbers, which in turn required infinitely many types, since the upper 

bound (as a class of real numbers) of a set of real numbers has to be a real number of a higher type. 

Russell’s solution for this problem was to introduce an axiom (viz. axiom of reducibility) which reduces

the higher types to the lowest compatible type. Hilbert followed Russell’s solution in his lectures. 

Nevertheless, his ultimate aim was to eliminate the axiom of reducibility as a presupposition, which he 

considered to be an infinitistic assumption. In that sense, Hilbert’s aim was still in line with his earlier 

claims and criticisms against Dedekind and Frege’s presuppositions about the application of the 

universal quantifier.

4. The priority of model-theoretical concerns to epistemological questions

Hilbert seems to have considered certain restricted forms of mathematical induction as non-informative.

On the other hand, he considered Poincaré's emphasis on the synthetic a priori character of the principle

of mathematical induction an epistemological presupposition which is not needed for foundational 

investigations. Likewise, Hilbert considered Russell and Whitehead's axioms of infinity, reducibility, 

and completeness “actual, contentual assumptions that cannot be compensated for by consistency 
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proofs. ”4 Nevertheless, he did not consider any epistemological restriction on them as Brouwer or Weyl

did. Brouwer's intuitionism was perhaps the last epistemological resistance against logical analyses of 

mathamatical reasoning on an allegedly Kantian footing.

Partly because Hilbert had to take a stand against Brouwer's intuitionism in the nineteen- 

twenties, the whole issue of Hilbert’s foundational views is often taken to have been a response on 

epistemological grounds. Brouwer’s foundational worries were epistemological. Mathematics proper, 

for him, presupposed an indispensable epistemic element. It was taken as to rest on and generated from 

a fundamental mathematical act of the mind. According to Brouwer, the derivation of mathematical 

truths by repeated mental acts take place as a generation of new knowledge from a previous source. The 

true foundation of mathematics we should seek, therefore, where the original source of the generation of

repeated mental acts was activated. In that sense the true intuitionistic foundation is what Brouwer calls 

the first act of the mind towards mathematical knowledge. In Brouwer 1948 we read: “consciousness in 

its deepest home seems to oscillate slowly, will-lessly, and reversibly between stillness and sensation”. 

The creative subject departs from this will-less stage by a move of time. From that stage it passes to the 

combination of past and present moments of the ur-intuition of two-ity. Iteration of this ur-intuition 

gives the creative subject, according to Brouwer, sequences. Brouwer calls them causal sequences. 

Mathematical activity with such sequences is called mathematical attention.

As if Hilbert’s foundational terminology had to have conceptual commitment to Brouwer-like 

epistemological worries, different works in the philosophy of mathematics literature focus on the 

epistemological force of Hilbert’s foundational views.5 It is nevertheless misleading to do so in that 

4 Hilbert 1928, p. 479.
5 Cf. Kitcher 1976 and Parsons 1998, for example.
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Hilbert’s model-theoretical concerns were prior to any search for an epistemological foundation. What 

is commonly misleading in the epistemological interpretations is the meaning assigned to questions like 

“What are signs?”, “What is the epistemological status of finitary objects?”, “What kind of intuition is 

the finitary intuition?” These questions, when they are asked as questions of epistemology, have no 

significant value for a better understanding of Hilbert’s philosophy of mathematics; even though it is 

true that Hilbert himself sometimes speaks of the a priori intuition, and characterizes it as the “frame of 

the finitary mode of thought”. When Hilbert discusses the a priori, he does not do it for the sake of 

explaining his epistemological standpoint. Rather, he wants to emphasize the foundational import of 

certain mathematical or logical propositions. For example, when he says:

...there are...those propositions that are generally held to be a priori, but which cannot be achieved 
within the frame of the finite mode of thought—for example, the principle of tertim non datur, as well 
as the so-called transfinite statements generally. 6

Hilbert is not primarily taking his epistemological stance and indicating where it differs from Kant’s. 

Hilbert’s main point is rather that the applications of the law of excluded middle, for instance, are in 

some cases not elementary, that is, they are meta-mathematically problematic applications. Such point 

concerns only the foundational and meta-logical import of a certain logical principle.

Hilbert tried to clear his way from epistemological and metaphysical assumptions about the 

nature of mathematics. A sharp statement of Hilbert’s non-epistemological view can be found, for 

example, in his 1917 lectures on the principles of mathematics. He says there that his axiomatic 

approach is not to overcome philosophical difficulties, but to “cut them off”.7 Therefore, the questions 

6 Hilbert 1931, p. 1150.
7 Cf. Sieg 1999, p. 11.
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mentioned just above should not be asked as epistemological questions, but rather be asked in 

association with a meta-logical sense of the terms occurring in them. They must be treated like 

questions of meta-logic and meta-mathematics, i.e. as a part of what Hilbert calls the simultaneous 

development of logical and mathematical methods. Most importantly perhaps, Hilbert’s so-called 

finitism (and hence his view of the a priori) should be taken as an object of meta-logical investigation, 

i.e. by seeking an elementary account of the theory of logic.

Hilbert was interested in what was there in axiomatic mathematics as determination of models 

for the theories (as much as in their proof-theoretical structure). This is an immediate consequence of 

his conception of an axiomatic foundation for mathematics. Epistemological problems concerning the 

cognitive content of symbol structures are a completely different issue. This is not to say that there are 

no philosophical problems (epistemological or otherwise) concerning the existence and knowledge of 

the models. Nor it is to say that Hilbert ignores such problems. The point is that epistemological 

problems are of a different sort. They are of secondary importance for Hilbert’s meta-theoretical 

purposes. It was Brouwer, not Hilbert, who injected epistemology into the discussion of the foundations 

of mathematics.

5. On the significance of nominalistic assumptions

From the very beginning of his foundational studies, it was clear to Hilbert that even the first-order 

applications of quantifiers with the assumption of infinite operations is a problematic issue. If one wants

to clarify the nature of the infinite in mathematics and give a humanly practicable account of universal 

and existential quantification (i.e. without assuming infinite operations) one has to face the problem of 
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quantification over infinite domains in mathematical reasoning. So not only higher-order reasoning must

be reconstructed on the first-order level, but also first-order quantification must be given a practicable 

(elementary) account.

One of the nominalistic assumptions in the philosophy of mathematics is that only individuals 

are admissible as objects of quantification. In logical terminology this assumption amounts to permitting

only to first-order quantification. Hilbert’s line of thought is in keeping with such a view:

If logical inference is to be certain, then these objects must be capable of being completely surveyed in 
all their parts, and their presentation, their difference, their succession (like the objects themselves) must
exist for us immediately, intuitively, as something that cannot be reduced to something else.

In this sense Hilbert is defending here first-order logic, which accepts quantification only over 

individuals, in contrast to a higher-order one. Hilbert continues:

Because I take this standpoint, the objects [Gegenstände] of number theory are for me— in direct 
contrast to Dedekind and Frege—the signs themselves, whose shape [Gestalt] can be generally and 
certainly recognized by us—independently of space and time, of their special conditions of the 
production of the sign, and of insignificant differences in the finished product.

Hilbert criticizes thereof Frege and Dedekind on their quantification over concepts or their extensions in

their logical language. This is in line with Hilbert’s overall view on logic and logical reasoning. As was 

noted it was in Hilbert’s school that first-order logic was separated from the higher-order quantification 

theories of Frege and Russell- Whitehead.

Hence in a wider philosophical perspective Hilbert’s opposition to Frege and Dedekind, and 

operations with general concept scopes is not an opposition of a formalist to a non-formalist. It is rather 

13



an opposition of a nominalist to conceptual realism. Under wrong interpretations of Hilbert’s 

philosophical terminology—especially under the attribution of “finitism” and “formalism” to it—the 

real gist of Hilbert’s “philosophical attitude” is poorly obtained. The rest of the passage in Hilbert’s 

paper—what follows below—leads to serious misunderstanding when it is read out of its proper 

context:

The solid philosophical attitude that I think is required for the grounding of pure mathematics—as well 
as for all scientific thought, understanding, and communication— is this: In the beginning was the sign.

The correct interpretation of this passage should be that Hilbert favored nominalism, and hence first-

order quantification in contrast to a higher-order one. In this light, from Hilbert’s nominalistic point of 

view, Frege’s conceptual realism was totally ill-advised:

[Frege] fell to some extent into an extreme realism of concepts. ...he believed he was entitled to take 
[concept scopes] unrestrictedly as things.

In the later editions of Hilbert and Ackermann 1928 second-order logic is considered. Its 

incompleteness is pointed out. Its relation to set theory is briefly discussed. Higher-order logic is 

introduced with an indication by examples that it is “the appropriate means of expressing the modes of 

inference of mathematical analysis”. However, just like types and the axiom of reducibility, higher-order

quantification does not exactly fit into Hilbert’s mold. It involves quantification over a domain of so-

called “all” predicates. That is why he preferred first-order logic and tried to surpass the difficulties with

universal quantification by means of his epsilon technique. It can be treated as a nominalistic account of

quantification theory.

14



All this is in accordance with Hilbert’s concern for concrete content in meta-mathematics. 

Salvageable domains of concrete objects (i.e. signs with their representative role) which are 

immediately given in mathematical practice should be the ground to rely on in foundational 

considerations. From a wider historical perspective, Hilbert is against a commonly accepted view in the 

philosophy of logic and mathematics. According to this view, logic and mathematics deal with general 

concepts. And in the last analysis it is sense-perception that grasps particulars. Therefore, the 

justification of all instantiation and the introduction of particular (concrete) representatives of general 

concepts must be perceptual. In their foundational works Frege, for example, follows such a view but 

Hilbert does not. When Frege is trying on the one hand to dispense with intuition, he is on the other 

trying to reduce number theory to what he takes to be the most general concepts and principles of 

reasoning. Hilbert notwithstanding treats logic preferably on the first-order level. He criticizes the 

reliance (especially by Dedekind and Frege) on general concept-scopes. He wants to formulate 

axiomatic foundations of mathematics in the study of the structures of concrete objects. Accordingly, 

Hilbert tries to practice his meta-mathematics in nominalistic terms. He believes that logic can cope 

fully with reasoning about (and with) particular objects, and on the first-order logical level. In this 

regard his epsilon-technique for example amounts to a method of instantiation. It aims to make 

systematic use of the particular instances of general concepts in nominalistic terms.

Hilbert’s finitism is sometimes seen as the view that the (apparently) actual infinitistic 

assumptions of mathematical reasoning can be given an epistemological foundation, by reference only 

to finitary content of mathematical statements (not by going beyond that). As has been pointed out, such

conception of finitism makes misleading ways to understanding Hilbert. Hilbert’s aim was to provide 
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logical axiomatic foundations, rather than epistemological foundations. He hoped to have reached this 

aim by detaching the axiomatic investigation from epistemological concerns. In that sense Hilbert’s aim 

amounts to finding out the appropriate logical treatment of the apparently infinitistic assumptions of 

mathematical reasoning, without permitting any infinitistic technique in the foundational practice. Here 

the problem is not with the epistemological admissibility of the techniques used. It is more appropriate 

to say that, in its axiomatic form, Hilbert’s finitism amounts to a meta-logical (as well as meta-

mathematical) strategy. The right source to decide the admissibility of the techniques involved in this 

strategy is logical semantics, not epistemology. On this explanation, possible definitions of “Hilbert’s 

finitism” in terms of epistemological or ontological primitives lead to wrong interpretations of Hilbert’s 

ideas. The wrong interpretations are usually implied by the restriction of the so-called big problem 

about the infinite to that the infinite does not obviously correspond to anything in reality. If the 

definition of the concept of finitism is restricted to a way out from the lack of correspondence between 

infinity and reality, then such restriction would lead to misunderstandings. Because, even though it is a 

part of the problem of foundations to explain how the infinite can come about in actual (real) 

mathematics, this is not an epistemological concern, according to Hilbert. Its treatment should be 

accordingly. Otherwise the same mistakes that were made by mathematicians like Poincaré, Weyl and 

Brouwer would be made. Hilbert’s nominalism was for the sake of eliminating “dubious or problematic 

modes of inference” from foundational studies. “Finitism” is the name he gave his strategy to cope with 

infinitistic operations in mathematical reasoning. The question here of what the so-called finitistic 

operations consist of is therefore a tricky one. Yet it should be clear that nothing relevant to Hilbert’s 

views can come out of it, if it is asked as an epistemological question concerning the admissibility of 
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certain recursion techniques.

Two well-known attempts to explain finitism are due to Tait 1981 and Parsons 1998. Tait 

considers finitism to cover a minimal kind of reasoning presupposed by all reasoning about number.8 

Parsons, on the other hand, argues that finitism determines the domain of intuitive evidence. Thereby, 

Parsons admits a basic intuition of finite objects. Both approaches try to give an account of epistemic 

primacy and certainty of finitist mathematical reasoning. From Hilbert’s point of view, such an 

enterprise is pointless. The problem is not how to come up with criteria for an epistemically safe 

beginning to mathematical reasoning. The criteria are needed rather for meta-logical purposes. For the 

same reason, asking, for example, whether Hilbert’s “finitistic intuition” is the Kantian space-time 

intuition or it is something else, is a seriously misguided way of approaching the foundational problems.

It is being neglected in such mode of questioning that the set of problems concerning finitism and 

quantification has to be detached from epistemological concerns. From Hilbert’s point of view, the 

solution of foundational problems cannot be dependent on any epistemological preferences.

In logical theory and meta-mathematics no reference to finitude is necessary. We do not need to 

commit to the finitude of the domain of objects we are dealing with. The characterization of finitistic 

methods can be maintained entirely in terms of salvageable objects of mathematics. Now basic 

operations of elementary arithmetic are in principle finite and salvageable. The infinitistic element, as 

Hilbert seems to have assumed, comes in when we use quantifiers. The central question here is: what 

kind of operations do we need to clear the quantifiers from committing to infinitistic assumptions (and 

salvage the entities that are quantified over)? Hilbert considered these operations as follows:

8 Cf. Zach 2001, Ch. 4.
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...the modes of inference employing the infinite must be replaced generally by finite processes that have
precisely the same results, that is, that permit us to carry out proofs along the same lines and to use the 
same methods of obtaining formulas and theorems.9

Hilbert’s aim here is to find out suitable operations that give the same results as those modes of 

reasoning which appear to have employed the actual infinite in mathematical reasoning. In this sense 

Hilbert’s aim does not involve any epistemologically restrictive (i.e. finitist) condition at all. In Kreisel’s

way of saying: the eliminability of the infinitistic assumptions “is thought of as a fact (to be discovered),

not a doctrinaire restriction”.10 The epistemologically problematic modes of reasoning concerning the 

infinite can be taken care of by applying logically unproblematic techniques, without making existence 

claims about any extra-logical (mathematical) entities, other than the ones that are immediately given to 

our intuitions. For that purpose, all one has to do is to search for logically admissible modes of 

reasoning that can replace the figure of speech of the apparent infinitism in mathematics. On this point 

Hilbert remarks sharply in his 1926 paper; he, refers to a certain jargon in mathematics and says 

playfully:

...if mathematics is to be rigorous, only a finite number of inferences is admissible in a proof—as if 
anyone had ever succeeded in carrying out an infinite number of them.11

What is crucial to Hilbert’s purposes is contentual logical inference as he emphasizes in the same paper:

Contentual logical inference is indispensable. It has deceived us only when we accepted arbitrary 

9   Hilbert 1926, p. 370.

10  Kreisel 1976, p. 98.
11 Hilbert 1926, p. 370.
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abstract notions, in particular those which infinitely many objects are subsumed. What we did, then, was
merely to use contentual logical inference in an illegitimate way....

The task is then to find out the legitimate operations of logical inference, to be used in handling 

mathematical notions which subsume infinitely many objects.

6. Consistency as existence in the model of all models

Broadly speaking, Hilbert’s conception of truth and existence in mathematics indicates where the 

structure-oriented viewpoint cuts off the epistemological and ontological concerns. The information 

codified by an axiom system specifies the class of its models. So that it becomes a meaningful task to 

try to understand the contents of mathematical theories by means of axiomatic analysis. Hilbert’s 

conception of truth and existence in mathematics are also along this line. They are envisioned from a 

structure-oriented viewpoint. In Hilbert 1900a we find a strong statement of this viewpoint:

...the demonstration of the consistency of the axioms [of the real number system] is at the same time the 
proof of the mathematical existence of the totality of all real numbers or of the continuum. In fact, when
the demonstration has been fully achieved, then all objections which hitherto have been raised against 
the existence of this totality will lose all justification.12

Also, in Hilbert’s 1899 letter to Frege we read:

If the arbitrary chosen axioms do not contradict each other with all their consequences, then they are 
true and the things defined by the axioms exist. That for me is the criterion of truth and existence. 13

Such point of view is almost a refutation of the formalist philosophy of mathematics, which is 

12  Hilbert 1900a, p. 1105.
13 Kluge 1971, p.12.
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sometimes misleadingly attributed to Hilbert. To avoid misunderstandings on this point, Hilbert’s 

approach must be put into a proper context. It has to be taken into consideration against the tacit 

assumption Hilbert seems to have made when he says that consistency implies existence. The 

consistency in question is model-theoretical consistency. In line with his general model-theoretical 

outlook the tacit assumption that comes with Hilbert’s criterion of truth (i.e. as the consistency of the 

axioms) seems to admit the determination of models of potential models for theories, viz. ultimately a 

model of all models. Indeed, Hilbert’s paradoxical sounding claim about truth and existence as implied 

by consistency is true in the model of all models. The (model- theoretical) consistency of a theory 

implies the existence of models for it in this model of models.14

It would be an oversimplification to assume that axiom systems are generated arbitrarily out of 

nowhere. New systems are in some way built up on and connected to the previous theories. For such 

building and connectedness, the notion of a model of all potential models is very useful. In it, 

quantification provides the same conception of mathematical existence as well as of truth on a 

preliminary theoretical level for different axiom systems. This kind of view is, for instance, implicit in 

Hilbert’s following statement:

The conception of the continuum, or equally the concept of the system of all functions, exists then in 
precisely the same sense as does the system of rational numbers or that of the higher Cantorian number-
classes and powers.15

Purportedly the same sense of mathematical existence is obtained if the model-theoretical consistency 

of each axiom system is proved. In that sense what Hilbert envisions and hints at in the quoted passage 

14  Cf. Hintikka 2004.
15  Hilbert 1900a. p. 1105.
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is a uniting model of all models for different axiom systems.

The tacit assumption Hilbert seems to have made here shares the same presuppositions as 

Husserl’s notion of definite complete manifolds in which “the concepts of true and formal implication 

of the axioms are [considered to be] equivalent.”16 The ontology of manifolds in question involves a 

super-universe of potential models for the theory, a “model of all models”. A similar ontology can be

imagined in connection with Riemann’s work on manifolds, for instance, as a chapter in what might be 

called a general study of forms of space; since a manifold by definition is a geometrical entity which is 

a structured totality of all possible solutions of a given polynomial equation. Even though this sense of 

manifold is not necessarily the same as Husserl’s, they are obviously familiar. Likewise, Cantorian 

universe of sets can be seen as an abstraction from Riemann’s geometric notion of manifold.

The so-called model of all models can be considered a natural presupposition of mathematical 

activity. After all what the mathematician does is to build and connect to each other different structures. 

The beginning stage of such activity requires the grasp of what might be called a particular relational 

structure. When the net of relations of such a structure is considered as basis, the task of understanding 

its models as well as the task of extending its models is a matter of application of structure-preserving 

rules. Such application presupposes consistency as a ground for its own justification. At that point the 

model-theoretical consistency of a particular axiom system suffices to justify mathematician’s actual 

intentions to study what there is to be known in the models of the system.

Husserl presented a similar argument to the one just has been sketched in his Göttingen lecture at

16 Husserl 1913, section 72.
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Hilbert's seminar in 1901.17 Roughly, Husserl's argument goes as follows: Take two axiomatic systems 

AX1 and AX2. Let AX1 be a subsystem of AX2, in the sense that AX2 is the extended system by 

additional axioms when AX1 is considered as the original system. Two conditions must hold then, 

according to Husserl. One is that AX1 must be a definite manifold. Two is that AX2 must be consistent. 

Definite manifold means the intended model of the theory is determined completely. This is suggestive 

of descriptive completeness. If these two conditions are satisfied then we say AX2 is a conservative 

extension of AX1, in the sense that its models can as well be determined on the basis of the models of 

AX1. Here, Husserl's major aim seems to have been to show how an axiom system determines its 

intended models in a definite way and to justify if possible different extensions of the theories by 

proving their consistency and completeness.

Assuming that the conservative domain extension of the models of systems say, from AX1 to 

AXn) reaches up to a uniquely determined universe of definite manifolds, the maximal extension that is 

obtained in the end of such domain-extension procedure can be considered as an analogue to what has 

been called above “the model of all models”. That maximal model is what Husserl and Hilbert seems to 

have presupposed as a ground for their preliminary theoretical conception of mathematical truth, 

existence and consistency. For sure, such conception has to be backed up by a proof of the model- 

theoretical consistency of the systems involved, most notably the continuum or equivalently the system 

of all functions.

The mathematical investigation of the structure of real numbers falls under a major aspect of the 

idea of “all models”. It requires an explication of the continuity and completeness assumptions for its 

17  See Husserl 1970, supplementary texts B, essay III.
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logical axiomatic characterization. Historically, the continuity and completeness assumptions in 

defining the structure of real numbers find their proper treatment in the works of Cantor and Dedekind. 

Dedekind’s characterization of the real line as a densely ordered system which is closed under algebraic 

operations as well as under limit operations is sometimes called complete in the sense that it determines 

a model in a definite way for the continuous number line. This kind of completeness is in a different 

sense from the completeness of axiom systems. It is rather a meta-theoretical property of the models. 

The considered completeness of the real line is obtained by using what are known as Dedekind cuts. 

The intuitive idea behind Dedekind’s cut-procedure is that the so-called cuts fill in all the gaps in the 

system of rational numbers. So that each bounded set of reals have a least upper bound. What is 

remarkable about completeness in the sense just mentioned is that it entails that the structure of real 

numbers as imagined is uncountable. This is what Cantor’s diagonal argument showed.

The results that were reached by Cantor and Dedekind’s works were very important discoveries 

of the nineteenth-century mathematics, according to Hilbert. Nevertheless, one of the main purposes of 

Hilbert’s axiomatic foundations was still to explain how the so-called uncountable infinity can come 

about without making any assumptions concerning the actual existence of infinite totalities. For that 

purpose, the completeness and continuity assumptions that are intuitively appealed to in Dedekind’s 

characterization of the real line have to be made explicit with their logical dependence on the axiomatic 

system. The same task is needed to be accomplished also for understanding mathematical 

interconnections between different axiom systems and the structures they characterize. Most notably, 

between algebraic and geometrical structures, interconnections must be studied in the light of the 

continuity properties. This arises from the geometrical sense of the models in characterizing the real line
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either as an infinite set of points or as of line segments. On similar lines, to find out meta-theoretical 

interconnections between the system of real numbers and the Euclidean space, and hence to establish 

the possibility of the determination of models of geometry, an investigation of their continuity 

properties is inescapable. By way of disclosing the continuity assumptions of an axiom system one can 

characterize the space and hence the same sense of existence and truth is obtained in all its models.

7. Hilbert’s treatment of continuity assumptions

Partly to point out the role of continuity assumptions in the above sense in axiomatized geometry, in 

addition to the original treatment of the axiomatic foundations of geometry in his 1899 book, Hilbert in 

Appendix IV gives a different determination of the plane geometry. It can also be generalized to the case

of space. Hilbert’s determination of the plane is by way of analyzing in an axiomatic way the properties 

of manifold congruent motions based on the notion of transformation group.18 Mainly by appealing to 

the notion of continuous transformation and some axioms of motion; e.g. axiom of the composition of 

two motions as to form a group, Hilbert presents a determination of a model for the plane.

The continuity assumptions for the characterization in the general case of the space are made at 

the very beginning. The aim in such analysis is, as Hilbert points out:

...to determine the least number of conditions from which to obtain by the most extensive use of 
continuity the elementary figures of geometry (circle and line) and their properties necessary for the 
construction of geometry.19

18  Cf. Appendix IV of Hilbert 1899 (Second and later editions) A brief survey of Hilbert’s work on
geometry can be found in Bernays 1967 and Toretti 1978.
19    Hilbert 1899, p. 189 (second English edition)
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The difference between the main approach in Hilbert 1899 and the group-theoretical approach in the 

appendix has to do mainly with the role of axioms of continuity in the complete determination of 

models. In the main axiomatization Hilbert’s first four groups of axioms are arranged in such a way that 

“continuity is required last”. This provides a way to clarify which logical consequences of the axioms 

are independent of the continuity assumptions.

First one of Hilbert’s continuity axioms is what is called the Archimedean axiom. This axiom 

says that, given two line segments AB and CD, either one of them, let us say, AB can be extended by 

multiplied measure of the other segment CD such that it exceeds the length of CD. The algebraic 

structure that might be superimposed on space with the help of the Archimedean axiom here is obtained 

by reference to the system of coordinates that satisfies Hilbert’s axioms of incidence, order and 

congruence, and the axiom of parallels. An instance of this algebraic structure is the system of algebraic 

numbers and rational operations on them with the exclusion of square roots.20 Hence with the help of 

the Archimedean axiom, continuity is obtained only up to a point. An additional second axiom, which 

connects the geometric continuity to the real continuum, is necessary. That second continuity axiom is 

Hilbert’s axiom of line completeness, which says:

An extension of a set of points on a line with its order and congruence relations that would preserve the 
relations existing among the original elements as well as the fundamental properties of line order and 
congruence that follows from [the axioms of incidence, order and congruence] and from [the 
Archimedean axiom] is impossible.21

From this axiom Hilbert derives the theorem of completeness which states that the extension of the 

20  See Hilbert’s Theorem 65 in Hilbert 1899 (second English edition).
21  Hilbert 1899, p. 26.
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elements (viz. points, lines, planes) of geometry is not possible without violating the axioms of 

incidence, order, congruence and Archimedes.22

The theorem of completeness provides the appropriate perspective to consider the foundations of

analysis in relation to the foundations of geometry. In particular, Hilbert’s consistency proof for the 

axioms of geometry, which is relative to the consistency of analysis, can be positioned in the proper 

foundational basis. Most notably, as Hilbert also points out, the existence of infinitely many geometries 

which satisfy the first four groups of Hilbert’s axioms plus the Archimedean axiom is shown. And when 

the axiom of line completeness is added to the axioms, a uniquely determination of the Cartesian 

geometry is obtained.23 This signifies almost a simultaneous development in the foundations of 

geometry and of analysis, which is due to the additional of the continuity axioms. They are added to the 

axioms of number theory in Hilbert 1900, as follows:

(Archimedean axiom) If a > 0 and b > 0 are two arbitrary numbers, then it is always possible to add a to 
itself so often that the resulting sum has the property that a+a+...+a>b

(Axiom of completeness) It is not possible to add to the system of numbers another system of things so 
that the axioms [of linking, calculation and ordering with the Archimedean axiom] are all satisfied in the
combined system; in short, the numbers form a system of things which is incapable of being extended 
while continuing to satisfy all the axioms.24

Hilbert in his 1900 paper defines the system of real numbers as a complete ordered Archimedean field. 

And the models that he constructed in Hilbert 1899 to prove the consistency of geometry can be 

22 ibid. p. 27; the axiom of line completeness is added to Hilbert’s book in the later editions. In the first edition there is no 
axiom of completeness. In the second edition there is the axiom of completeness for the general case. Later the axiom of 
line completeness is added so as to suffice to prove what is referred above as the theorem of completeness. For different 
completeness axioms see Peckhaus 1990, pp. 29-35.

23  Cf. Hilbert 1899, p. 32.
24  Hilbert 1900a, par. 6 (p. 1094)
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considered as the relevant subfields of the system of real numbers for different sets of geometry 

axioms.25 In general terms, it seems fair to say that Hilbert’s completeness axiom (or theorem) provides 

a way of translating Euclidean geometry to the Cartesian geometry.26 By doing that it specifies an 

ordered Archimedean field, for which if there were a combinatorial way to show its consistency that 

would also lay the foundations of analysis. What is further needed for the consistency proof is to 

eliminate the appeal to arbitrary sets, for instance in the application of Dedekind cuts and 

correspondingly in making a combinatorial sense of arbitrary sets of points in the continuity axioms.27

For the same reasons as in geometry, continuity assumptions and hence completeness play a 

crucial role also in physics. To give an example, in his mechanics lectures Hilbert considers the addition

of vectors as a continuous operation, in the sense of the Archimedean axiom.28 For example, given a 

domain D around the vector sum A + B, one can always find other domains D1, D2... around the 

endpoints of A and B such that any considered sum of two vectors in these domains has endpoints 

falling inside the domain D. The intuitive idea here seems to be closer to the notion of connectedness. 

What Hilbert had in mind though about continuity is fairly easy to understand. The punchline of the 

assumed principle is that we can move from any point of the domain to any other point of it through a 

continuous line, which remains in the same domain. It is plain to the eye here that Hilbert’s major aim is

to specify a particular class of models for physical forces, i.e. which obeys the continuity axiom. This 

does not mean that Hilbert’s view excludes systems with certain discontinuities or systems without the 

Archimedean property; since an axiom system in Hilbert’s sense does not express a fixed set of states of

25  Hilbert 1899, Chapter II.
26  Cf. Bernays 1967.
27  Cf. Kreisel 1976, p. 101.
28  Hilbert's 1905/06 lectures; see Corry 1997.
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affairs. It only defines a “possible form of a system of connections, a system which is to be investigated 

according to its internal properties.”29 Hilbert’s view simply suggests the study of different physical 

systems. In his 1900 Paris address, he states it straightforwardly:

As he has in geometry, the mathematician will not merely have to take account of those theories coming
near to reality, but also of all logically possible theories.

All that matters here is the determination of models up to isomorphism. And hence what matters in a 

logical axiomatization is the model-theoretical consistency of the axiom system. And for that purpose, 

as was indicated above the underlying logic must be capable of allowing the intended models in 

question to be captured completely. This is suggestive, in the first place, of a descriptive completeness. 

Nevertheless, if a deductive consistency proof could be achieved, that also could serve as a way to 

capture the intended models of the theory. Of course, provided that the underlying logical theory is 

semantically complete. Otherwise the deductive consistency of the theory does not imply its model-

theoretical consistency.

As can be seen from the remarks up to this point, the interconnections between completeness, 

continuity and consistency properties of mathematical systems are closely related with their model-

theoretical characterizations. If one uses a logical axiomatization these characterizations can be handled 

by means of two requirements of the axiomatic method: First, the purely logical character of inferences 

from axioms to the truths of the theories is needed. Second, a complete logic which provides means to 

obtain deductively or descriptively complete representations of the theories must be formulated.

At some point Hilbert might have assumed the semantic completeness of the underlying logic of 

29  Cf. Hallett 1995, p. 137.
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axiomatization. Nevertheless, even if this is true, it does not mean that he was arguing for a mechanical 

procedure to prove the consistency of mathematical theories. The model-theoretical character of his 

viewpoint excludes such an approach as an ultimate foundational aim for Hilbert. Whatever “comes 

near to reality”, whatever is logically possible are at bottom all depending on their determination up to 

isomorphism and hence on the meta-theoretical level, on the model-theoretical consistency of the axiom

systems.

As is presented in his sixth Paris problem, probability as part of physics provides a strong case 

for Hilbert’s views. Hilbert considered probability as a part of the physical sciences and his main 

interest in the probability was the problem of how to avoid and eliminate observational errors in 

measuring physical magnitudes.30 Hilbert’s application of probabilistic reasoning to the physical 

measurement proves that the continuity assumptions for Hilbert—however appears to involve 

infinitistic operations—always had a combinatorial and model-theoretical basis:

The validity of the Archimedean axiom in nature stands in just as much need of confirmation by 
experiment as does the familiar proposition about the sum of angles of a triangle.31

In this regard any view stating that the infinite (as well as the continuity assumptions about infinite 

systems) in mathematics is part of mere formal manipulations for Hilbert, misses the essential 

connection of Hilbert’s mathematical ideas with his general structure-oriented view of physics and 

physical continuum:

In general, I [Hilbert] shall like to formulate the axiom of continuity in physics as follows: ‘If for the 

30  Corry 1997, p. 160-161.
31  Hilbert 1918, p. 1110.
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validity of a proposition of physics we prescribe any degree of accuracy whatsoever, then it is possible 
to indicate small regions within which the presuppositions that have been made for the proposition may 
vary freely, without the deviation of the proposition exceeding the prescribed degree of accuracy.’ This 
axiom basically does nothing more than express something that already lies in the essence of 
experiment; it is constantly presupposed by the physicists, although it has not previously been 
formulated.32

To considerable extent Hilbert’s work on physics is devoted to the purpose of searching suitable ways of

axiomatizing different theories. As also is seen in the statement of his sixth problem Hilbert’s central 

emphasis is on the logical axiomatization of theories. As has been sketched here, the determination of 

models by means of logical axiomatization is obtained by investigating the continuity properties of the 

systems in consideration. Thereby, above all, the streamline of Hilbert’s foundational investigations is to

be found where the continuity assumptions for different mathematical and physical fields meet, viz. in 

the meta-theoretical study of the system of real numbers and in its model- theoretical consistency. For 

that purpose, development of the meta-theory for logical axiomatization is also required; presumably, on

the basis of suitable model-theoretical consideration of continuity and completeness properties of 

algebraic and geometrical structures on the meta-theoretical level.

8. The role of logical axiomatization in consistency proofs

The problem of model-theoretical consistency of analysis and arithmetic has to be approached by means

of logical axiomatization. For the primary purposes of a logical axiomatization, it suffices that the 

theorems of arithmetic, for example, are all logical semantic consequences of the axioms. As has been 

pointed out, this does not require that these consequence relations can be implemented by mechanical 

32  ibid.
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rules of inference. Thus, for example a second-order axiomatization can serve these primary purposes as

well as a first-order one, even though second-order logical truths are not recursively enumerable. For 

this reason, it cannot be conclusively said that Hilbert’s consistency program was made impossible by 

Gödel’s results.

As is well known, a crucial first step to achieve Hilbert’s principal aims for the foundations of 

mathematics is to prove that the usual set of axioms of arithmetic is consistent. Gödel’s second 

incompleteness result showed that if any such set of formal axioms AX that can codify elementary 

arithmetic is consistent, then the consistency of AX cannot be proved in AX. That is to say, the sentence 

coded in the language of AX, which says that AX is consistent, cannot be derived in the formal system 

AX. Gödel’s argument implicitly assumes that ordinary first-order logic is used in the axiomatization. It 

also seems to assume that we are dealing solely with proof-theoretical consistency in meta-mathematics.

This result led some logicians to immediately give up hope about Hilbert’s program. However, Hilbert 

himself never admitted that it contradicted his conception of the problem of foundation. Hilbert was 

right in not giving up his foundational aims. One can base AX on a richer logic than the ordinary first-

order logic, and then a proof of the consistency of arithmetic which is acceptable by Hilbert’s standards 

can be given. What one has to do is to find out whether there are elementary logical operations that can 

be formulated in a second-order axiomatization, to carry out a proof of the consistency of arithmetic.

Presumably, Hilbert would not consider the underlying logic of an axiomatization elementary, if 

the logic allows quantification over all predicates without restriction. Yet this does not mean that parts 

of second-order logic which permit quantification over definable predicates as well as their possible 

reductions to first-order level of reasoning are excluded:
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We have to ask ourselves the question, what does it mean when we say “There is a predicate P”? In 
axiomatic set theory, the “there is” always refers to the domain B we take to be there at the foundation. 
In logic, we could think of the predicates as collected together in a domain. But this domain of 
predicates cannot be considered as something given from the beginning; rather it must be formed 
through logical operations. Only through the rules of logical construction is the predicate-domain 
subsequently determined.

And now it becomes obvious that, in the rules of the logical construction of predicates, reference
to the domain of predicates can be permitted.33

Therefore, it would be a mistake to think that Hilbert’s model-theoretical aims are not realizable by 

means of semantically incomplete logics that are strong enough to codify mathematical reasoning. The 

idea of purely logical axiomatization does not necessarily presuppose that the underlying logic is 

semantically complete. What is necessarily presupposed is a demarcation between the logical and extra-

logical structures. That does not require all valid formulas to be recursively enumerated, by deriving 

them from a recursive set of axioms. An axiomatization can be purely logical even when the derivation 

of theorems from axioms is carried out by semantically valid inferences instead of formal derivations. It

can even be called “formal” in that semantically valid inferences depend only on the logical form of the 

premises and the conclusions.

To explicate this point further we can distinguish between the formalist view of mathematics, 

and the formal character of logical inference. Formalist view of mathematics is the view that 

mathematical reasoning consists primarily of the manipulation of formal symbols. It is a separate view 

from the doctrine of the formal character of logical inference.  Formal character of a logical inference 

means that the inference from a sentence to another is independent of the non-logical constants 

occurring in them. That is, an inference from S1 to S2 depends only on the logical structure of S1 and S2. 

33 Quoted from Hilbert’s 1920 lectures, in Hallett 1995, p. 165.
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One way of seeing the difference between these two meanings of the term “formalist” is to imagine a 

framework in which philosophical formalism fails but formal character of logic is retained. Second-

order logic provides such a framework. In second-order axiomatizations mathematical inferences cannot

be reduced to the manipulation of formulas, such as mechanical deductions. Yet the validity of second-

order inferences depends only on the logical structure of the inferences.

It can be said that most of actual mathematical reasoning can be thought of as being carried out 

in second-order logic.34 And such an enterprise cannot be restricted to mechanical deduction. The reason

is that there is no semantically complete axiomatization of second-order logic. Hence from the point of 

view of logical theory, philosophical formalism cannot yield an adequate account of mathematical 

reasoning. Deduction must be complemented by an additional of new principles of proof, presumably 

on the basis of suitable model-theoretical considerations which fits into Hilbert’s mold. The crucial 

point here is that deductive incompleteness does not make any difference to the formal character of 

relations of logical consequence. A sentence S1 logically implies another one, say S2, if and only if the 

same relation holds between any two sentences of the same logical form but with different non-logical 

constants. In this sense the formal character of logical reasoning is an obvious truth.

What Hilbertian formalization amounts to then is a reduction of all derivation of theorems from 

axioms to purely logical inferences. Such inference is formal only in the sense of being independent of 

the interpretation of the basic concepts of the axiom system. In this sense, all the proofs are intended to 

be independent of the domain of objects that is being considered. Here the fact that deduction is 

independent of interpretation is compatible with Hilbert’s insistence that the choice of axioms is guided 

34 For some aspects of the second-order logical foundations of mathematics, see Väänänen 2001.
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by the intuitive content of the concepts involved.  That is why for example Hilbert and Bernays 1934 

discuss two kinds of axiomatization: formal and contentual.35 This point makes it conclusively clear that

the attribution of formalism to Hilbert’s foundational ideas is missing an essential distinction between 

form and content in Hilbert’s axiomatic approach.

The distinction between form and content in mathematics, and the fact that inferences are 

independent of interpretation means that all mathematical results considered in an axiomatic framework 

are intended to have a structural meaning. This is an obvious truth from the model-theoretical 

viewpoint. As a problem of mathematical logic, the topic arises in Hilbert’s 1920 lectures:

…we have to interpret our signs of our calculus when representing separately symbolically the premises
from which we start and when understanding the results obtained by formal operations.

The logical signs are interpreted as before according to the prescribed linguistic reading; and the 
occurrence of indeterminate statement-signs and function-signs in a formula is to be understood as 
follows: for arbitrary replacements by determinate statements and functions…the claim that results from
the formula is correct.36

Here the leading idea is that a correct symbolism constitutes an isomorphic replication of what it 

represents. This is seen from the fact that Hilbert intends to obtain in the quoted passage arbitrary 

instantiations of the structures that are described by the logical axiomatization with the prescribed 

linguistic reading of the logical signs give model-theoretically correct results. In that sense the proof-

theoretical analysis of mathematical inference is not enough for Hilbert’s model-theoretical purposes. 

Correct interpretation of symbolic framework is essential:

We have analyzed the language (of the logical calculus proper) in its function as a universal instrument 

35 See Hilbert and Bernays 1934, § 1.
36 Cf. Sieg 1999, p. 18.
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of human reasoning and revealed the mechanism of argumentation. However, the kind of viewpoint we 
have taken is incomplete in so far as the application of the logical calculus to a particular domain of 
knowledge requires an axiom system as its basis. I.e. a system (or several systems) of objects must be 
given and between them certain relations with particular assumed basic properties are considered.37

When Hilbert’s starting point, i.e. that number symbols themselves as objects of number theory, is 

combined with the idea that correct symbolism is an isomorphic replication of what it represents, 

models in Hilbert-style axiomatization can safely consist of any objects, including number symbols. 

What it brings about, as was indicated earlier, is that mathematical symbols themselves (for example 

number-theoretical symbols) can be used as the contentual extra-logical elements of the mathematical 

proofs. In that sense Hilbert’s signs or symbols, as in the case of algebraic manipulations and 

symmetries in abstract algebra, can share the same common models up to isomorphism with their 

subject matter, whatever that matter might be. Meta-mathematics in that sense can be seen as the 

combinatorial study of certain symbol structures. The so-called nineteenth century arithmetization of 

analysis can be included in that, assuming that int had similar motives to meta-mathematical 

investigations. Of course, this combinatorial study presupposes its own determination of models, and its

own model-theoretical consistency.

Such a determination of models up to isomorphism requires that the underlying logic of 

axiomatization is semantically complete. As was shown by Gödel 1931—since it shows the 

impossibility of a categorical characterization of arithmetic by using first-order axiomatization—there is

no hope for determining a unique model, and also no hope for proving the consistency of arithmetic, by 

using the ordinary-first-order logic as the underlying logic. That is the case, although the proof-

37 Quoted from Hilbert’s 1920 lectures, in Sieg 1999, p. 24
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theoretical consistency of an axiom system implies its model-theoretical consistency in virtue of the 

completeness of first-order logic. Hilbert’s aim to prove the proof-theoretical consistency of arithmetic 

cannot be achieved due to the deductive incompleteness of first-order arithmetic (based on the ordinary 

first-order logic). This impossibility calls for an investigation of the possible continuity principles 

underlying Hilbert’s assumption that structures of symbol combinations can be used as instantiations of 

mathematical structures. However, without a proof of model-theoretical consistency such investigation 

would be a petitio principii. Therefore, in order to carry out the desired consistency proofs, by means of 

suitable alternative logical and algebraic techniques, it is more appropriate as much as it is inevitable 

that alternative continuity and completeness assumptions for these techniques must be introduced in 

tandem with those techniques.      

9. The idea of the quantifier as a choice term

It is a characteristic feature of some of the developments in the nineteen-twenties that quantifiers were 

considered to be closely related to the choice functions.38 In Skolem’s work, for example, this was the 

case. According to Skolem, quantifiers serve no better than choice functions.39 Like Skolem, Hilbert 

recognized the close interrelation between quantifiers and choice functions. In fact, he realized that the 

basic idea underlying the axiom of choice and quantification was one and the same. Later this basic idea

is outlined in Hilbert and Bernays 1934 as that a finitistic interpretation of a universal statement is an 

assertion about any given object from a domain, whereas an existential statement amounts to a series of 

operations that have a definite bound. So, for example,

38  Cf. Goldfarb 1979.
39  ibid. p. 357-358.
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(1) ( x) (A (x)  ( y) B (x, y))∀ ⊃ ∃

means a series of operations, which for any given x that is A makes it possible to find a y on the basis of

x that is related to x by B.40 Later developments in logic makes it sufficiently clear that the operations 

Hilbert and Bernays considered are based on the idea of operating with choice functions.

In his 1961 paper, Henkin introduced the first-order partially-ordered branching quantifiers, e.g.:

(2) ( x) ( y)∀ ∃

        A (x, y, z, u)

( z) ( u)∀ ∃

If we use Skolem functions, (2) is equivalent with:

(3) ( f) ( g) ( x) ( y) A (x, f(x), z, g(y))∃ ∃ ∀ ∀

If quantifiers are interpreted as choice functions in the way Hilbert also seems to have done, Henkin’s 

quantifiers amount to expressing different dependency relations between quantified objects (compare 

(3) and (5)) from the linearly-ordered quantified versions— such as of (1):

40  Hilbert and Bernays 1934, pp. 32-33.
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(4) ( x) ( y) ( z) ( u) A (x, y, z, u)∀ ∃ ∀ ∃

If we use Skolem functions (3) is equivalent with:

(5) ( f) ( g) ( x) ( y) A (x, f(x), z, g(x, z))∃ ∃ ∀ ∀

Here in (5) the choice of a value for u depends both on ( x) and ( z), whereas in (3) u depends only on ∀ ∀

( z). What is relevant here to Hilbert’s views on quantification theory is that Henkin quantifiers unseals ∀

the connections between quantifiers and quantifier-dependence, and choice functions, when one comes 

to interpret their meaning. Henkin suggested in his 1961 paper to treat the alternation between 

quantifiers as choices dependently or independently made from a domain. Accordingly, a given formula,

say (2), can be evaluated by means of a procedure of choices made by two players. In order for keeping 

with Hilbert’s approach, one has to find the appropriate operations for the evaluation in the sense that 

infinitistic assumptions about quantifying “all” must be eliminated. In the general case, say for all 

sequence of choices c1, c2, c3,..., cn, the existence of a function s viz. a winning strategy which is 

correlated to c1, c2, c3,..., cn in the given formula determines, albeit not necessarily in the actual cases, 

the winning and hence truth.

The recognition of the close interrelation between quantifiers and choice functions in fact made 

it more visible that the basic idea underlying the axiom of choice and quantification was one and the 

same. For example, Hilbert introduced his epsilon technique in order to capture the usual instatiation 

rules and the so-called axiom of choice. In the epsilon technique, an epsilon term εxA(x) stands for an 

38



individual x of which A(x) holds if there is such an individual. And the logical axiom A(x)  A(ε(A)) ⊃

contains according to Hilbert “the core of...the axiom of choice”.41 It is missing, however, in Hilbert’s 

axiom, what the choice in question depends on. So it does not actually cover the core of the axiom of 

choice.

Hilbert’s aim to treat the axiom of choice and quantification in tandem has its roots in Hilbert’s 

1923 lectures. There he points out the close connection and his proposed solution i.e. the epsilon 

technique to the problems arising from quantification and choice:

We have not yet addressed the question of the applicability of these concepts [“all” and “there is”] to 
infinite totalities. ...The objections...are directed against the choice principle. But they should likewise 
be directed against “all” and “there is” which are based on the same basic idea.42

In line with his aim concerning the axiom of choice, Hilbert’s main concern seems to have been to point

out the need for a logic which is based on the same basic idea as the axiom of choice. In that sense the 

status of the axiom of choice is the paradigm case for Hilbertian investigations in the foundations of 

mathematics.

Hilbert tried to give the axiom of choice as well as to the application of quantifiers a firm footing

by the “logical ε-axiom”:

(6) A(x)  A(ε(A))⊃

Hilbert put the ε-function or strictly, ε-functional to use for different purposes. His main goal was to use 

41  Hilbert 1925, p. 382.
42  Quoted in Zach 2001, pp. 70-71.
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it in consistency proofs. By its means he defined universal and existential quantifiers:

(7) ( x) A(x) ↔ A(ε(¬A))∀

(8) ( x) A(x) ↔ A(ε(A))∃

On this basis Hilbert formulated universal instantiation, and the law of excluded middle as a quantifier 

rule:

(9) ( x) A (x)  A (x)∀ ⊃

(10) ¬ ( x) A (x)  ( x) ¬ A (x)∀ ⊃ ∃

The ε-function could also serve to pick witness individuals for those propositions which hold for one 

and only one individual. If A(x) is one such proposition, then there obtains

(11) x = ε (A)

Most notably the ε-function could purportedly take the role of a choice function. This is not completely 

true though; for as was pointed out, it is not indicated in the epsilon term what the choice is based on. In

case A(x) holds for more than one object, ε(A) is one of those objects x of which A(x) holds. This is 

where Hilbert’s logical ε-axiom was intended to cover the main idea behind the axiom of choice. At the 

same time it was also a tool for instantiation in the sense that the value of an ε-function for a predicate A
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is an individual for which A holds if it holds for any.43 Here, based on Hilbert’s epsilon definition of the 

existential quantifier (viz. (8) above) the following can be stated:

(12) ( x) ( y) A (x, y)  ( x) A (x, ε (A (x, y)))∀ ∃ ⊃ ∀

Here (12) can be read as to capture a nominalistic formulation of the axiom of choice, since it asserts a 

choice from any given domain {y: A (x, y)}, where ε (A (x, y)) designates the arbitrarily chosen 

individual. The problem with Hilbert’s epsilon calculus is that it assumes in its day that ordinary first-

order logic is the basic logic. The definition of quantifiers and instantiation rules are given by Hilbert 

for the ordinary Hilbert-Ackermann first-order logic.44 More specifically, it assumes that an epsilon 

term depends on all the outside universal quantifiers; since an epsilon term does not indicate what it 

formally depends on. Because of this assumption epsilon functions, although they seem to capture the 

intended force of the axiom of choice in meaning, they cannot serve its intended purpose as the 

paradigm case for developing a combinatorial interpretation of quantification theory that Hilbert seems 

to have aimed at.

Practically, Hilbert put his epsilon technique in use for several aims, including: formulating the 

axiom of choice as a logical principle, explaining applications of the quantifiers, and proving the 

consistency of mathematical theories. The fundamental idea of the epsilon technique for consistency 

proofs is to make use of epsilon functions in producing quantifier-free true formulas. Any consistency 

proof has to include a proof that each such quantifier-free formula is correct:

43  Cf. Hilbert and Bernays 1939, p. 12.
44  See Hilbert 1925 and 1928.
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In proving consistency for the ε-function the point is to show that from a given proof of 0 ≠ 0 the ε-
function can be eliminated, in the sense that the arrays formed by means of it can be replaced by 
numerals in such a way that the formulas resulting from the logical axiom of choice by substitution, “the
critical formulas”, go over into “true” formulas in virtue of these replacements.45

Given a mathematical proof formulated in the epsilon calculus, each epsilon term occurring in the proof 

is assigned a numerical value. The aim of this procedure is to transform all the uses of epsilon axioms as

well as the axioms of AX of the theory in question into quantifier-free formulas in finitely many steps. 

Since epsilon-terms are used in a proof finitely many times, this must have seemed to Hilbert to be 

possible. However, values that are assigned to different epsilon terms depend on each other due to the 

nested structure of epsilon terms in some formulas. Since in the usual notation of first-order logic 

scopes are nested, quantifier dependence is eventually packed into epsilon dependence and it creates 

difficulties in assigning numerical terms for nested terms. For example, the values that we assign to the 

inner epsilon terms might necessitate changes in the previous assignments. Later assignments might turn

the correct formulas into incorrect formulas. Thereby the nested structure of the assignment process 

might divide into branches and loops on the branches so that the substitution procedure might never 

come to an end.

In any case, due to Gödel’s second incompleteness result we cannot reach true numerically 

correct formulas by means of the epsilon technique. For if we could, then this would give us a 

consistency proof for the axioms of number theory; since the theorems of number theory would then 

also be numerically correct. Such a consistency proof assuming that the underlying logic is the ordinary 

first-order logic is impossible to carry out. Therefore, Hilbert’s epsilon calculus cannot serve its 

45  Hilbert 1928, p. 477.
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intended purpose.

One can follow a similar line of thought to Hilbert’s epsilon technique, in second-order logic too;

since the job of the epsilon functions can be done by Skolem functions as well. One can start with the 

general observation that for each choice value x a natural number y can be found such that y is 

correlated in some way to x:

(13) ( x) ( y) A (x, y)∀ ∃

This can be taken here as to imply the existence of a function f such that for every x, f produces a term 

out of x. Thereby one can obtain a second-order form of the axiom of choice:

(14) ( x) ( y) A (x, y)  ( f) ( x) A (x, f(x))∀ ∃ ⊃ ∃ ∀

which is a second-order logically valid formula. In fact, it is also the same general formulation of the 

axiom of choice as in Hilbert's and Bernays' work.46 The same line of thought can be even traced back 

to operating only with first-order quantifiers. If we allow functional instantiation in (13) and write:

(15) ( x) A (x, f(x))∀

The step from (13) to (15) is enough in principle to capture Hilbert’s main idea in putting epsilon 

46 Hilbert and Bernays 1934, p. 41.
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functions in use. Just like Hilbert’s epsilon function, any arbitrary function-name can be considered as 

to pick ideally an individual from a given domain.

In independence-friendly logic and hence on the first-order level it can be shown that such 

principle is in fact logically true. In the second-order formulation of a general choice principle such as 

(14) the existentially quantified function f can be cashed in by independent choices of individuals. That 

is, the second-order sentence ( f) ( x) A (x, f(x)) is translated to∃ ∀

(16) ( x∀ 1) ( x∀ 2) ( y∃ 1/ x∀ 2) ( y∃ 2/ x∀ 1) (((x1 = x2)  (y⊃ 1 = y2)) & A [x1, y1] & A [x2, y2])

Here if we use Skolem functions (16) is equivalent with:

(17) ( f∃ 1) ( f∃ 2) ( x∀ 1) ( x∀ 2) (((x1 = x2)  f⊃ 1(x1) = f2(x2))  A (x⊃ 1, f1(x1)) & A (x2, f2(x2)))

Thereby the choices which are expressed by Skolem functions in (17) are reduced to suitable operations 

by means of quantifiers and their dependency relations. Then we have the following independence-

friendly formulation of the axiom of choice:

(18) ( x) ( y) A(x,y)  ( x∀ ∃ ⊃ ∀ 1)( x∀ 2)( y∃ 1/ x∀ 2)( y∃ 2/ x∀ 1)(((x1=x2)  (y⊃ 1=y2)) & A[x1,y1] & A[x2,y2])

What has been achieved in (18) is the conclusion that the way quantifiers operate on the first-order level

provides a suitable framework, as Hilbert seems to have thought, to place the reasoning behind the 
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axiom of choice in its appropriate logical context. Thereof the apparently second-order reasoning behind

the axiom of choice is translated to combinatorial first-order reasoning.

To that extent Hilbert’s aim to show that Zermelo’s axiom of choice is as a logical truth can be 

thus achieved, although by a technique different from his. In fact, this result is the paradigm case for 

independence-friendly logic as much as it seems to have been for Hilbert’s intended theory of 

quantification which is beyond the reaches of the epsilon technique in its original form. The reason for 

that seems to be the existence of Skolem functions which depends on the status of the axiom of choice 

itself. Nevertheless, the argument that has been carried out shows that quantification and the axiom of 

choice are really based on the same basic idea, as Hilbert aimed to have obtained. A further task to be 

carried out thus is to have a look at the behavior of Hilbert's epsilon symbol in the presence of 

independence-friendly quantifiers.
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