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Abstract: The game theoretic notion of best-response reasoning is some-
times criticized when its application produces multiple solutions of games,
some of which seem less compelling than others. The recent development
of the theory of team reasoning addresses this by suggesting that inter-
acting players in games may sometimes reason as members of a team—a
group of individuals who act together in the attainment of some common
goal. A number of properties have been suggested for team-reasoning
decision-makers’ goals to satisfy, but a few formal representations have
been discussed. In this paper we suggest a possible representation of these
goals based on the notion of mutual advantage. We propose a method for
measuring extents of individual and mutual advantage to the interacting
decision-makers, and define team interests as the attainment of outcomes
associated with maximum mutual advantage in the games they play.
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1 Introduction

The standard solution concept used in orthodox game theory is based on the
notion of individualistic best-response reasoning. Best-response reasoning is a
process by which a player in a game arrives at his or her strategy choice. Its
label derives from the fact that a player always picks his or her most preferred
choice option from those available, given his or her beliefs about others’ actions.
When each player’s chosen strategy in a game is a best response to the strategies
chosen by other players, they are said to be in a Nash equilibrium—a profile
of strategies from which no player has an incentive to deviate by unilaterally
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changing his or her strategy. This solution concept is sometimes criticized for
its inability to single out what at times appears to be the only obvious choice
to make in games with multiple Nash equilibria. A simple example is the Hi-Lo
game, in which two players simultaneously and independently from each other
choose one from a pair of options: Hi or Lo. If both choose Hi , they get a payoff
of 2 each. If both choose Lo, they get a payoff of 1 each. If one chooses Hi while
the other chooses Lo, they both get 0. The game is shown in Figure 1, where
one player chooses between the two options identified by rows and the other—by
columns. The bottom-left and the top-right number in each cell represents row
and column player’s payoff respectively.

2 0

2 0

0 1

0 1

Hi Lo

Hi

Lo

Figure 1: The Hi-Lo game

There are two Nash equilibria in this game in pure strategies: (Hi , Hi) and
(Lo, Lo). The first (second) entry in these pairs corresponds to row (column)
player’s strategy. There is a third Nash equilibrium in mixed strategies, in
which both players randomize between the available options by playing Hi and
Lo with probabilities 1/3 and 2/3 respectively. This yields each player an ex-
pected payoff of 2/3. Thereby, individualistic best-response reasoning identifies
a number of rational solutions of this game and, as a result, does not resolve the
game definitively for the interacting players, leaving them with an equilibrium
selection problem.1 For many people, however, (Lo, Lo) and the mixed strategy
equilibrium do not appear as convincing rational solutions, while the attain-
ment of the outcome (Hi , Hi), which is unambiguously the best outcome for
both players, appears to be a clear definitive resolution of this game. It is true
that if one player expected the other to play Lo, then choosing Lo would be his
or her best response to the other player’s choice. In other words, choosing Lo
would be the rational thing to do. However, it would be odd if anyone formed an
expectation that a rational individual would play Lo in the first place. Results
from experiments support this by revealing that over 90% of the time people do

1To be precise, best-response reasoning coupled with a shared belief among players about its
application can rationalize some non-Nash-equilibrium outcomes as well. (See, for example,
Bernheim 1984 and Pearce 1984, who first introduced the notion of rationalizability, or a
detailed discussion of this and related concepts by Perea 2012.) For the moment we limit
our discussion of sets of rational solutions in terms of best-response reasoning to sets of Nash
equilibria. However, the possibility of best-response reasoning producing a greater number of
rationalizable outcomes only makes the case for the ideas we discuss here stronger.
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opt for Hi in this game.2

This prompted the development of the theory of team reasoning, which sug-
gests that certain contextual and/or structural features of games may trigger
a shift in peoples’ mode of reasoning from individualistic best-responding to
reasoning as members of a team—a group of individuals who act together in
the attainment of some common goal.3 By suggesting various versions of this
goal, the theory can be operationalized to select (Hi , Hi) as the only solution
of the Hi-Lo game for those who reason as members of a team. As such, it is
able to provide convincing resolutions of some interpersonal interactions where
best-response reasoning falls short. As we will show shortly, it can also account
for some instances of non-Nash-equilibrium play.

The theory of team reasoning has been developed in a number of different
ways, producing various (sometimes competing) principles underlying team play
in games. What, in our view, needs further development is a specification of
team interests or team goals that applies, if such generalization is possible, across
a wide range of games. In this paper we attempt to do that by suggesting a
function of team interests based on the notion of mutually advantageous play
discussed by Sugden (2011; 2015). Our function is compatible with the orthodox
conception of payoffs in games, which means that its application does not require
payoffs to be interpersonally comparable. Thus our approach differs from those
that use aggregative functions of team interests, such as the maximization of
the average or the sum of players’ personal payoffs.

This paper is structured as follows. In Section 2 we discuss the theory of
team reasoning in more detail and explain how it differs from simple payoff
transformations in games. In Section 3 we discuss a few properties for potential
functions of team interests to satisfy and show why aggregative functions may
be ill-suited for this purpose. In Section 4 we propose measures of individual
and mutual advantage in games and present a function of team interests as
the maximization of mutual advantage attained by interacting players. After
reviewing the function’s prescriptions in a few examples and discussing some
of its properties we revisit the topic of interpersonal comparability of payoffs
and distinguish it from interpersonal comparability of advantage based on our
working definition of the latter. We then discuss the problem of coordination
of players’ actions in games in which our function produces multiple solutions.
In Section 5 we present some tentative ideas about why and under what cir-
cumstances people may reason as members of a team and with Section 6 we
conclude.

2See Bardsley et al. (2010) who, among a number of other games, report results from
experiments with two versions of the Hi-Lo game, where the outcome (Hi , Hi) yields each
player a payoff of 10 while the outcome (Lo, Lo) yields either 9 or 1, depending on the game’s
version.

3For early developments of this theory see Sugden (1993; 2000; 2003) and Bacharach (1999;
2006). For some of the more recent work see Gold and Sugden (2007a; 2007b), Sugden (2011;
2015) and Gold (2012). For a recent review see also Karpus and Gold (2017).
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2 Team Reasoning

When a person reasons individualistically, he or she focuses on the question
“what it is that I should do in order to best promote my interests?”. The answer
to this question identifies a strategy that is associated with the highest expected
personal payoff to the individual , given his or her beliefs about the actions
of others. This is what is meant by individualistic best-response reasoning
underlying the identification of Nash equilibria in games. When a person reasons
as a member of a team, he or she focuses on the question “what it is that we
should do in order to best promote our interests?”. The answer to this question
identifies a strategy profile—one strategy for each player in a game—that leads
to the attainment of the best possible outcome for the group of individuals acting
together as a team.4 As explained by Gold and Sugden (2007a: 121), ‘when an
individual reasons as a member of a team, she considers which combination of
actions by members of the team would best promote the team’s objective, and
then performs her part of that combination’.5

If in the Hi-Lo game the outcome (Hi , Hi) is identified as uniquely optimal
for a team, team reasoning can be said to resolve this game definitively for those
players who endorse it. This would be so, for example, if the team’s objective
were to maximize the average or the sum of the interacting players’ payoffs. In
that case, an individual who endorsed this mode of reasoning when choosing his
or her strategy would identify (Hi , Hi) as the uniquely optimal outcome for the
team and choose Hi—his or her part in the attainment of this outcome.

A well-known example of a case where team reasoning can prescribe the
attainment of a non-Nash-equilibrium outcome is the Prisoner’s Dilemma game
shown in Figure 2. Here two players simultaneously and independently from
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Figure 2: The Prisoner’s Dilemma game

4There are variants of the theory of team reasoning that consider scenarios in which not
all individuals reason as members of a team and where this is recognized by the interacting
players. In such cases, the answer to the second question identifies a strategy for every player
in a game who does reason as a member of a team. (For an overview see Gold and Sugden
2007a.) Also, as already noted, the answer to the first question may identify more than one
strategy for any one player in a game. This can happen with strategy profiles selected for a
team too. We will discuss the latter in more detail later.

5In the version of the theory developed by Sugden (2003; 2011; 2015), team play by a
particular player may be conditional on the assurance that other players are reasoning as
members of a team as well.
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each other decide whether to cooperate (play C ) or defect (play D). There is only
one Nash equilibrium in this game, (D , D), since, from each player’s personal
point of view, playing D is the best response to whatever the other player is
going to do. It is thus said that cooperation is not rationalizable in terms of best-
response reasoning: whatever one player may believe about the other’s choice,
C is always inferior to D . In other words, C is a strictly dominated strategy—
dominated by the strategy D . If, however, any of the outcomes associated with
the play of C are ranked at the top from the point of view of a team, strategy C
can be selected for the attainment of this outcome in terms of team reasoning.

If, as earlier, the team’s goal were to maximize the average or the sum
of individuals’ payoffs, team play would select the outcome (C , C ). As such,
with reference to results from numerous experiments showing that in a one-shot
version of the Prisoner’s Dilemma game people tend to cooperate about 50%
of the time, the theory of team reasoning operationalized this way provides a
suggestion of why that is the case.6

2.1 Motivations and Payoff Transformations

An important point stressed by a number of game theorists and rational choice
theorists is that payoff structures of games have to capture all motivationally
relevant aspects of players’ evaluations of the possible outcomes of those games.7

Otherwise, without knowing precisely what games people play in terms of their
true motivations, it would often be impossible to say anything about whether
their choices are rational and why they make the choices that they do. To illus-
trate this, consider the Prisoner’s Dilemma game in terms of monetary payoffs
shown in Figure 3(a). Suppose that the row player is a pure altruist when it
comes to decisions involving money—he or she always strives to maximize the
other player’s monetary gain. The column player, on the other hand, prefers to
maximize his or her personal monetary payoff, but is averse to inequitable dis-
tributions of gains among individuals. Suppose that his or her inequity aversion
is such that any unequal distribution of monetary gains is just as good in his
or her eyes as personally gaining nothing. The correct representation of these
players’ motivations transforms the monetary Prisoner’s Dilemma game into the
game shown in Figure 3(b). There is one Nash equilibrium in the transformed
game, (C , C ), and the players would rationally cooperate if they both endorsed
individualistic best-response reasoning and believed each other to do likewise.
If we analyzed observed cooperation using the original monetary payoff struc-
ture of the game, we may incorrectly conclude their choices to be irrational or
presume the players to be reasoning as members of a team when that may not
actually be so.

6In numerous studies it has been observed that on many occasions cooperation tends to
decrease with repetition (that is, when people play the Prisoner’s Dilemma game a number
of times in a row). We will return to this later. See Ledyard (1995) and Chaudhuri (2011) for
surveys of experiments with public goods games, which involve more than two players but are
otherwise similar in their structure to the two-player Prisoner’s Dilemma game.

7See, for example, Binmore (1992: ch. 4), who defines payoffs as Von Neumann and Mor-
genstern utilities, and Hausman (2012: ch. 5).
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Figure 3: Monetary Prisoner’s Dilemma game (a) and its transformation (b)

This raises the question of whether it is possible to represent a shift in a
player’s mode of reasoning to reasoning as a member of a team using a payoff
transformation to reflect his or her motivation to attain the team’s objective
in a similar way as in the case of altruism and inequity aversion above. To
see that it is not, consider again the Hi-Lo game discussed earlier. Suppose
that, from the point of view of a team, the outcome (Hi , Hi) is deemed to
be the best, the outcome (Lo, Lo) is deemed to be the second-best and the
outcomes (Hi , Lo) and (Lo, Hi)—the worst. Replacing any of the two players’
original payoffs in each cell of the game matrix with those corresponding to
the team’s ranking of the four outcomes does not change the payoff structure
of the original game in any way. As a result, the set of Nash equilibria and,
hence, rational solutions in terms of best-response reasoning in the transformed
game would be the same as in its original version, which is exactly what the
theory of team reasoning was developed to contest. The key difference here is
that individualistic best-response reasoning prescribes evaluating and choosing
a particular strategy based on the expected personal payoff associated with that
strategy, whereas team reasoning prescribes evaluating outcomes of a game from
the perspective of a team (given the interacting players’ personal preferential
rankings of those outcomes) and then choosing a strategy that is associated with
the optimal outcome for the team. As such, the motivational shift that takes
place with a switch from one mode of reasoning to another cannot be captured by
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transforming players’ payoff numbers in the cells of considered game matrices.8

Another question is whether a shift from best-response reasoning to reason-
ing as a member of a team (or vice versa), in addition to changing the way a
player reasons about which course of action it is best to take, may also change
the way he or she personally values different outcomes of a game. In other words,
whether such a shift transforms the payoff structure of a game itself. While this
is an interesting possibility and one that has not been widely discussed in the
literature on the theory of team reasoning to date, we assume here that this does
not happen. We believe, however, there to be a reasonable ground for taking
this approach. If a shift in the mode of reasoning may change the way a player
personally values different outcomes, interactions between individuals could be-
come games of incomplete information about each other’s payoffs and, as such,
would take us far away from the type of games which the theory of team reason-
ing was developed to address. First, the solutions prescribed by best-response,
team, and possible other modes of reasoning in cases of incomplete informa-
tion about payoff structures of games would often be significantly different from
those when payoff structures are commonly known. Players’ strategy choices
would depend not only on modes of reasoning they use in a particular strategic
interaction, but also on their beliefs about which payoff structures correctly de-
fine the games they play. Second, the theory of team reasoning was originally
developed to resolve certain types of games in which best-response reasoning was
deemed to fall short. In the case of the Hi-Lo game, for example, it was meant
to resolve precisely this game with its particular payoff structure and when this
structure was commonly known by interacting players. As such, for the rest
of this paper we assume common knowledge of payoff structures of games and
that shifts in modes of reasoning leave players’ personal payoffs associated with
possible outcomes of games unchanged.9

The last point to note is that reasoning as a member of a team does not imply
the sharing of the attained personal payoffs among members of a team. In other
words, the attained payoffs are assumed not to be transferable. If players were
able to share their gains with others, such strategies and the associated payoff
distributions would have to be included in representations of their strategic
interactions.

2.2 Team Reasoning and Team Interests: Two Questions

The theory of team reasoning needs to address two important questions: “when
do people reason as members of a team?” and “what do people do when they
reason as members of a team?”. In other words, it needs to suggest why and

8This is not limited to team reasoning alone. For example, a motivational shift associated
with a switch from best-response reasoning to the cautious maximin approach of maximizing
the minimum payoff that a player can secure from choosing a particular strategy is not usually
represented by transforming the player’s personal payoffs associated with considered outcomes.

9It is an important question whether the assumption of common knowledge of payoffs in
games is too strong. Since this is a question for game theory in general and it is not restricted
to the theory of team reasoning in particular, we leave it aside and will not discuss it further
here.
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under what circumstances people may reason as members of a team and, once
they do, what it is that they take team interests to be. In this paper we pre-
dominantly focus on the second question, though we will suggest some tentative
ideas concerning the first question at the end.

3 Team Interests

Suggestions about what team-reasoning decision-makers’ interests are vary in
a number of ways. Two particular aspects in terms of which they differ are
the extent to which team interests require individuals to sometimes sacrifice
their personal interests for the benefit of other members of a team and whether
the identification of team-optimal outcomes requires the interacting decision-
makers’ payoffs to be interpersonally comparable. We discuss them in turn.

3.1 Self-Sacrifice and Mutual Advantage

Bacharach (2006) mentions Pareto efficiency as a minimal condition for any
function of team interests to satisfy: if one strategy profile is superior to another
in terms of Pareto efficiency, a team prefers the former to the latter.10 A function
that satisfies this criterion is the maximization of the average or the sum of the
interacting players’ payoffs, and it is discussed as an example in some of the
early developments of the theory (e.g., Bacharach 1999; 2006) as well as in
some more recent works (e.g., Colman et al. 2008; 2014 and Smerilli 2012).
Even though it is used merely as an example, it is able to resolve some games
definitively in intuitively compelling ways. It is easy to see that in the Hi-
Lo and the Prisoner’s Dilemma games discussed earlier it selects the outcomes
(Hi , Hi) and (C , C ). One feature of this function, however, is that it may
sometimes advocate a complete sacrifice of some individuals’ personal interests
for the benefit of others. Consider a slight variation of the Prisoner’s Dilemma
game shown in Figure 4. Here this function would prescribe the attainment

2 3
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C D
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D

Figure 4: A variation of the Prisoner’s Dilemma game

10An outcome of a game is Pareto efficient if there is no other outcome available which
would make some player better-off without making anyone else worse-off in terms of players’
personal payoffs.
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of the outcome (D , C ). As such, it would advocate a complete sacrifice of the
column player’s personal interests for the benefit of the row player alone.

Although no alternative formal representations of team interests have been
proposed, Sugden (2011; 2015) discusses the notion of mutual advantage as an-
other criterion for a function of team interests to satisfy. The idea is that an
outcome selected by a team should be mutually beneficial from every team mem-
ber’s perspective. Although he does not present an explicit function, Sugden
proposes to define mutually advantageous outcomes as those that are associ-
ated with decision-makers’ personal payoffs satisfying a particular threshold.
The suggested threshold is each player’s personal maximin payoff level in a
game—the highest payoff that a player can guarantee himself or herself irre-
spective of what other players in the game are going to do. For both players in
the Hi-Lo game this is 0. In the Prisoner’s Dilemma game of Figures 2 and 4
this is 1 (the lowest possible payoff associated with strategy D).

For Sugden, an outcome of a game is mutually beneficial if everyone’s max-
imin threshold is met and each player’s participation is necessary for the attain-
ment of payoffs associated with that outcome. Notice that, according to this
definition, all Nash equilibria in the Hi-Lo game are mutually beneficial. This is
because every equilibrium is associated with personal payoffs higher than each
player’s maximin threshold and each player’s play of the strategy associated
with a particular equilibrium is necessary for the attainment of those payoffs.
Thus, the above definition of mutual advantage does not exclude Pareto ineffi-
cient outcomes and, by itself, it does not suggest a further ranking of outcomes
for a team once all mutually beneficial outcomes are established.

3.2 Interpersonal Comparisons of Utility

Any function of team interests that aggregates decision-makers’ payoffs requires
them to be interpersonally comparable. In the Prisoner’s Dilemma game of Fig-
ure 4 this suggests, for example, that the row player prefers the outcome (D , C )
to the outcome (C , C ) to a greater extent than the column player prefers (C , D)
to (D , D). Such comparisons go beyond the standard assumptions of expected
utility theory, which make numerical representations of individuals’ preferences
possible, but do not automatically grant their interpersonal comparability. This
means, for example, that the representation of row player’s preferences in Fig-
ure 4 allows us to say that he or she prefers the outcome (C , C ) to (D , D), or
that he or she prefers the outcome (D , C ) to (C , C ) by a greater extent than
he or she prefers (D , D) to (C , D). However, it does not allow us to claim that
the row player’s well-being, in some objective sense, is the same in the outcome
(C , C ) as that of the column player.

It is a result of expected utility theory that any payoff function that numer-
ically represents a decision-maker’s preferences is unique up to positive affine
transformations. This means that if u is a payoff function that maps every
strategy profile in a game to a real number in a way that correctly represents
an individual’s preferences over outcomes, then so is any function u′ = au + c,
where a > 0 and c are constants. (For a detailed discussion of why this is so,

9



see, for example, Luce and Raiffa 1957: ch. 2.) What follows from this is that
the payoff structure of the Prisoner’s Dilemma game of Figure 2 represents ex-
actly the same preferences of the interacting players as the one in Figure 5.11

As such, we would expect solutions of this game to be invariant under positive
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9 3

C D
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D

Figure 5: Another representation of preferences in the Prisoner’s Dilemma game

affine transformations of players’ payoffs and a function of team interests to se-
lect the same outcome(s) as optimal for a team in both cases. The maximization
of the average or the sum of the two players’ payoffs, however, selects different
outcomes: (C , C ) in the case of Figure 2 and (D , C ) in the case of Figure 5.

Any version of the theory of team reasoning that uses aggregative functions
of team interests will be applicable only in those contexts in which interper-
sonal comparisons of payoffs are possible. Since this goes beyond the standard
assumptions of expected utility theory, the possibility to make such comparisons
may need a separate justification.12 The function of team interests which we
present in the next section is applicable in both cases. We will first present a
version that applies to situations in which interpersonal comparisons of payoffs
are not warranted. We will then explain how it can be modified to apply in
cases in which payoffs are interpersonally comparable.

4 Team Interests as Maximum Mutual Advan-
tage

Let us return to Sugden’s (2011; 2015) notion of team interests as the attain-
ment of mutually beneficial outcomes. By itself, the identification of mutually
beneficial outcomes does not suggest how much of mutual benefit is gained.
For the latter we need measures of individual and mutual advantage in terms
of which considered outcomes could be evaluated. We propose the following
definitions.

Individual advantage: An outcome of a game is individually advantageous to
a particular player if that player’s attained personal payoff is higher than

11Row and column players’ payoffs in Figure 5 are the following positive affine transforma-
tions of their payoffs in Figure 2: u′row = 3urow, u′col = ucol + 1.

12This point is also discussed by Sugden (2000).
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his or her reference point—a payoff level from which the advantage to
that player is measured. The extent of individual advantage gained is the
extent by which that outcome advances the player’s personal payoff from
his or her reference point relative to the largest advancement possible,
where the latter is associated with the attainment of an outcome that he
or she prefers the most in the game.

Mutual advantage: An outcome of a game is mutually advantageous to the
interacting players if each player’s attained personal payoff is higher than
his or her reference point—a payoff level from which the advantage to that
player is measured. The extent of mutual advantage associated with an
outcome is the largest extent of individual advantage that is gained by
every player in that outcome.

By definition, the maximum value of individual or mutual advantage is 1.
To avoid working with decimals we can express these in percentage terms, which
simply means that the values are multiplied by a factor of 100. For example,
if, in a two-player game, both players’ reference points are associated with a
payoff of 0 and their most preferred outcomes with a payoff of 100, a particular
outcome associated with payoffs of 30 and 20 to the two players is said to offer
20 units of mutual advantage. The additional 10 units of individual advantage
to one player is not mutual.

Note that individual advantage, defined as above, is simply a player’s per-
sonal payoff when that player’s payoff function is normalized so that his or her
most preferred outcome of a game is assigned the payoff value 1, while his or
her reference payoff is set to 0. This can always be achieved through a posi-
tive affine transformation of that player’s original payoffs (recall that any such
transformation of a player’s payoffs represents the same preferences over con-
sidered outcomes). Note also that if some player’s most preferred outcome is
associated with the same payoff as his or her reference point, nothing in the
game is individually advantageous to that player and, consequently, nothing is
mutually advantageous to a group of decision-makers that includes that player
as well.

Given these measures of individual and mutual advantage, team interests
can now be defined as the attainment of outcomes that are associated with
maximum mutual advantage to the interacting players. In addition to this we
impose the constraint that each player’s personal payoff should be at least as
high as his or her personal maximin threshold—the personal payoff that the
player can guarantee himself or herself irrespective of what other players do.
Similarly as for Sugden (2015), this is due to the idea that team play, driven by
a joint pursuit of team interests, should be at least as beneficial to every player
partaking in it as the payoff that the player can guarantee himself or herself
individually. Subject to this constraint, since the extent of mutual advantage is
the largest extent of individual advantage that is gained by every player, this
is identical to the maximization of the minimum extent of individual advantage
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across the interacting players.13

4.1 Formalization

For a formal presentation of the proposed function of team interests, let I =
{1, . . . ,m} be a finite set of m players and Si be a set of pure strategies available
to player i ∈ I. A pure strategy outcome is defined as a strategy profile s =
(s1, . . . , sm), where si ∈ Si is a particular pure strategy of player i. Let S =
×i∈ISi be the set of all possible pure strategy profiles in a game, and ui : S → R
be a payoff function that maps every pure strategy profile to a personal payoff
for player i. A mixed strategy of player i is a probability distribution over Si.
Let Σi be a set of all such probability distributions and σi ∈ Σi be a particular
mixed strategy of player i, where σi(si) denotes probability assigned to si. A
mixed strategy outcome (henceforth, outcome) is defined as a strategy profile
σ = (σ1, . . . , σm). Let Σ = ×i∈IΣi be the set of all possible mixed strategy
profiles and ui(σ) =

∑
s∈S

(∏
i∈I σi(si)

)
ui(s) be expected payoff to player i

associated with the mixed strategy profile σ.
In what follows, we present the function when mixed strategy play is al-

lowed.14 (For a version of the function when only pure strategies are considered
simply replace σi, σ, Σi, andΣ with si, s, Si, and S.) Let umax

i := maxσ∈Σ ui(σ)
denote player i’s personal payoff associated with his or her most preferred out-
come, let urefi denote i’s reference payoff from which individual advantage to i is
measured, and let umaximin

i := maxσi∈Σi
{minσ−i∈Σ−i

ui(σ)} denote i’s maximin
payoff level in the game (where σ−i ∈ Σ−i denotes a combination of strategies
of all players other than i).

So long as urefi 6= umax
i , the extent of individual advantage to player i asso-

ciated with a particular strategy profile σ is

uιi(σ) =
ui(σ)− urefi
umax
i − urefi

(1)

(Notice that if i’s payoff function ui is normalized so that umax
i = 1 and urefi = 0,

then uιi(σ) = ui(σ).) Having defined uιi(σ), the extent of mutual advantage
associated with σ is

uτ (σ) = min
i∈I

uιi(σ) (2)

13There is a connection between the function of team interests we present here and Gau-
thier’s (2013) ideas on rational cooperation. For Gauthier, rational cooperation is primarily
associated with the attainment of Pareto efficient outcomes in games. His proposal, similarly
as here, is to maximize the minimum level of personal gains across players relative to some
thresholds below which the players do not cooperate. Gauthier does not specify further what
these thresholds are and he hints at justifying rational cooperation based on the idea of “social
morality”. Somewhat differently from this, cooperative play here arises due to the interacting
players’ attempts to resolve games in a mutually advantageous way.

14In this paper we focus on one-shot interactions. There is a division of opinion on whether
mixed strategy play makes sense in such cases. Perea (2012: 32), for example, refers to mixed
strategies in one-shot games as useful “theoretical objects”, but ‘not something that people
actually use in practice’. The function of team interests which we present here can be used
with and without mixed strategy play. In some games its prescriptions will differ in the two
cases and we will indicate this when discussing examples.
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When urefi 6= umax
i for all i ∈ I, the proposed function of team interests

τ : P(Σ) → P(Σ), where τ(Σ) = Στ ⊆ Σ, selects a subset from the set of
all possible strategy profiles in a game such that each selected strategy profile
maximizes the extent of mutual advantage to the interacting players, subject to
each player’s personal payoff being at least as high as his or her maximin payoff
level in the game. Formally, each element σ ∈ Στ is such that

σ ∈ arg max
σ∈Σ

uτ (σ)

subject to ∀i ∈ I : ui(σ) ≥ umaximin
i

(3)

or, inserting (1) and (2) into (3),

σ ∈ arg max
σ∈Σ

{
min
i∈I

ui(σ)− urefi
umax
i − urefi

}
subject to ∀i ∈ I : ui(σ) ≥ umaximin

i

(4)

If urefi = umax
i for some i ∈ I, uιi is undefined and nothing is individually

advantageous to player i. Consequently, nothing is mutually advantageous to
the group of players I and so τ(Σ) = ∅. To summarize,

τ(Σ) =

{
Στ when urefi 6= umax

i for all i ∈ I
∅ otherwise

(5)

4.2 Applicability and Two Properties

The application of the above function of team interests is limited to cases in
which urefi and umax

i can be identified for every payer i in a game. A sufficient
condition for this to be so is having a finite number of players and pure strategies
available to each player. With an infinite number of players and/or pure strate-
gies this may not be so. Consider, for example, a decision situation in which a
number of firms compete to employ a prospective employee by offering a salary.
Since there is no upper bound on the salary a firm could offer in theory, there is
no upper bound on the payoff the potential employee may attain.15 In this and
similar scenarios our proposed function of team interests could only be applied
if all players’ payoff functions were bounded from above and below. There may
be cases, however, in which all players’ payoff functions are bounded, but the
infinite number of strategies allow one’s payoff to approach a particular value,
but never quite reach it. Suppose that the aforementioned competing firms are
prohibited from paying anyone more than some set salary level. If infinitesi-
mal fractions of monetary units were meaningful, theoretically this would mean
than the maximum payoff for the prospective employee could not be identified.
In such and similar scenarios our discussed function could only be applied by
approximating each player’s urefi and umax

i payoffs.
Two properties of τ can be derived without further specification of urefi .

First, provided there is a finite number of players and pure strategies available to

15We thank an anonymous referee for this and a few similar examples.
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each player, and urefi 6= umax
i for all i ∈ I, the set of strategy profiles selected by

τ is nonempty. This is so because, for every player i in a game, there always ex-
ists at least one maximin strategy σmaximin

i ∈ arg maxσi∈Σi
{minσ−i∈Σ−i

ui(σ)},
such that ui(σ

maximin
i , σ−i) ≥ umaximin

i . As such, there is at least one strategy
profile σmaximin = (σmaximin

1 , . . . , σmaximin
m ), such that ui(σ

maximin) ≥ umaximin
i

for every player i ∈ I, which satisfies the constraint in (3) and (4). Since the
function τ selects strategy profiles associated with maximum mutual advan-
tage from those that satisfy the above constraint and since there is at least one
strategy profile that satisfies it, it follows that Στ is nonempty.

Another property of τ is that every strategy profile that it selects is efficient
in the weak sense of Pareto efficiency.16 To see this, suppose that τ selects the
strategy profile σx ∈ Σ when there exists another strategy profile σy ∈ Σ, such
that ui(σ

y) > ui(σ
x) for every player i ∈ I (in other words, σx is not Pareto

efficient in the weak sense). As long as urefi 6= umax
i for every i ∈ I, it follows

that mini∈I u
ι
i(σ

y) > mini∈I u
ι
i(σ

x). Hence, σx /∈ arg maxσ∈Σ{mini∈I u
ι
i(σ)},

and so σx /∈ Στ .

4.3 Reference Points

The above function of team interests can be applied with any set of personal
reference points, relative to which individual and, based on these, mutual advan-
tages are measured. We discuss three possible reference points here and focus
on one of them in more detail when reviewing examples in the next section.

Since every outcome of a game is reachable via players’ joint actions, one
possibility is to set each player’s reference point to be the worst payoff that
he or she can attain in that game. It is the payoff associated with a player’s
least preferred outcome: urefi = minσ∈Σ ui(σ). However, this approach may
be criticized on the basis that not all outcomes of games should be considered
on an equal footing when it comes to establishing players’ personal reference
points, relative to which individual advantages are to be measured. It may
be argued that outcomes that are not rationalizable in terms of best-response
reasoning should be left out from the set considered for this purpose. Since
this would exclude strictly dominated strategies, outcomes defined in terms of
such strategies would not be used for establishing reference points.17 Letting
Σbr ⊆ Σ denote the set of strategy profiles that are rationalizable in terms
of best-response reasoning, this modifies the previous reference point to the
following: urefi = minσ∈Σbr ui(σ).

16A strategy profile is Pareto efficient in the weak sense if there is no other strategy profile
available that is strictly preferred to it by every player.

17In any two-player game, an outcome is rationalizable in terms of best-response reasoning
if and only if it does not disappear during the process of iterated elimination of strictly
dominated strategies. If there are more than two players, however, an outcome that disappears
during such elimination is never rationalizable in the above sense, but the converse is not
necessarily true: an outcome may survive iterated elimination of strictly dominated strategies,
but nevertheless be non-rationalizable. For the derivation of these results see Bernheim (1984),
Pearce (1984), or Fudenberg and Tirole (1991: ch. 2).
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The fact that the notion of rationalizability is associated with best-response
reasoning raises the question of whether it should be applied in establishing
reference points for identifying mutually advantageous outcomes when using a
mode of reasoning that is not based on best-response considerations. There
are two ways to justify the use of the restricted set Σbr instead of Σ. The
first is to argue that decision-makers approach their considered games in terms
of best-response reasoning to begin with, and that, having drawn conclusions
about outcomes they could potentially reach through the application of this
mode of reasoning, they evaluate everything that follows—including their con-
siderations about what is mutually advantageous—relative to those conclusions.
We will briefly return to this idea later in Section 5. The second approach is
to argue that players’ reference points, relative to which individual advantages
are measured to subsequently establish the extents of mutual advantage, are,
essentially, individualistic. These are thresholds, such that anything that is
preferentially inferior to them is not individually advantageous to respective
decision-makers. Hence it may be argued that their establishment should be
based on individualistic reasoning and, as such, best-response rationalization is
a plausible restriction to impose.

The third possible reference point is a player’s personal maximin payoff level
in a game: urefi = maxσi∈Σi

{minσ−i∈Σ−i
ui(σ)}. This approach is closest to the

definition of mutual advantage discussed by Sugden (2015) and it ensures that
the maximin constraint in the function τ is automatically met. However, the
previous criticism could still apply: strategy profiles associated with players’
maximin payoffs may be excluded from the set of outcomes that are rationaliz-
able in terms of best-response reasoning. Also, outcomes associated with these
thresholds, when they lie close, in relative preferential terms, to players’ most
preferred outcomes of games, may, at times, serve as useful definitive resolutions
of those games when individualistic best-response reasoning leads to indetermi-
nacies. As such, maximin thresholds themselves may be mutually advantageous.
We will illustrate such a case shortly.

4.4 Examples

In this section we show what the function τ selects in a few simple examples.
Two of these—the Hi-Lo and the Prisoner’s Dilemma games—we already intro-
duced. The other two are a version of the Chicken game and a game we labelled
the High Maximin shown in Figure 6. In our discussion here we compute the ex-
tents of individual and mutual advantage using the second of the three possible
reference points discussed in the previous section: urefi = minσ∈Σbr ui(σ). We
present a detailed derivation of results in the Chicken game first and summarize
the function’s prescriptions for the remaining games afterwards.

There are three Nash equilibria in the presented version of the Chicken
game: (U , L), (D , R), and (U 6

7 , D 1
7 ; L 1

7 , R 6
7 ). The third is a mixed

strategy equilibrium, in which row player randomizes between U and D with
probabilities 6/7 and 1/7, while column player randomizes between L and R
with probabilities 1/7 and 6/7 respectively. This yields both players an expected
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Figure 6: The Chicken (a) and the High Maximin (b) games

payoff of 10/7. Any combination of strategies associated with the three Nash
equilibria is rationalizable in terms of best-response reasoning. As such, for
both players, the least preferred rationalizable outcome from the set Σbr is (U ,
R), the maximin payoff level is 1 (the lowest possible payoff associated with
strategies D and L), and the most preferred outcome yields a payoff of 10.
Thus, for both players, urefi = 0, umax

i = 10, and umaximin
i = 1. The extents

of individual and mutual advantage, uιi and uτ , associated with the four pure
strategy outcomes of the game are shown below (sorted by uτ ). These, as noted
earlier, are expressed in percentage terms (uιi and uτ are multiplied by a factor
of 100).

uιrow uιcol uτ

(D , L) 40 40 40
(U , L) 100 10 10
(D , R) 10 100 10
(U , R) 0 0 0

When only pure strategies are considered the maximally mutually advanta-
geous outcome is (D , L) and, since it satisfies the maximin constraint for both
players, it is the unique outcome selected by τ . The result is slightly different, al-
beit also yielding a unique solution, if mixed strategies are considered as well. In
the latter case, maximum mutual advantage is associated with the mixed strat-
egy profile (U 3

14 , D 11
14 ; L 11

14 , R 3
14 ), which yields both players an expected
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payoff (with reference to the payoff structure in Figure 6(a)) of approximately
4.32. The corresponding approximate extent of mutual advantage is 43.2, which
is higher than that associated with (D , L). As a result, Sτ = {(D , L)} when
only pure strategies are considered and Στ = {(U 3

14 , D 11
14 ; L 11

14 , R 3
14 )} when

mixed strategies are considered as well. Either way, Sτ and Στ are singletons,
which means that the function τ resolves this game definitively for those who
reason as members of a team. Also note that in both cases τ selects a non-
Nash-equilibrium outcome.

Results for the remaining three games are summarized in Table 1. The top

Pure strategies alone urefi umax
i umxm

row umxm
col Sτ

The Hi-Lo 0 2 0 0 {(Hi , Hi)}
The Chicken 0 10 1 1 {(D , L)}
The High Maximin 0 10 9 0 {(D , R)}
The Prisoner’s Dilemma 1 3 1 1 {(C , C )}

Mixed strategies urefi umax
i umxm

row umxm
col Στ

The Hi-Lo 0 2 2
3

2
3

{(Hi , Hi)}
The Chicken 0 10 1 1 {(U 3

14
, D 11

14
; L 11

14
, R 3

14
)}

The High Maximin 0 10 9 10
11

{(D ; L [p], R [1− p])}*
The Prisoner’s Dilemma 1 3 1 1 {(C , C )}
*In Στ for the High Maximin, 0 ≤ p ≤ 1/10.

Table 1: Summary of results in four examples

section of the table shows parameter values and the selected outcomes in Sτ

when only pure strategies are considered (umaximin
i is abbreviated for row and

column player as umxm
row and umxm

col respectively). The bottom section shows these
values and the selected outcomes in Στ when mixed strategies are considered
as well.

In the case of mixed strategies in the Hi-Lo game, the maximin strategy
for both players is to randomize between Hi and Lo as in the mixed strategy
Nash equilibrium. Irrespective of whether mixed strategies are considered or
not, however, (Hi , Hi) is the unique outcome selected by τ .

The three Nash equilibria in the High Maximin game are (U , L), (D , R),
and (U 10

11 , D 1
11 ; L 9

10 , R 1
10 ). The mixed strategy equilibrium yields expected

payoff of 9 and 10/11 to row and column player respectively. In the case of
mixed strategies, column player can secure an expected payoff of at least 10/11
by randomizing between L and R with probabilities 10/11 and 1/11. As in
the Chicken game, the output of τ depends on whether mixed strategies are
considered or not. If they are, any strategy profile in which the row player plays
D while the column player randomizes between L and R with probabilities
0 ≤ p ≤ 1/10 and 1 − p respectively is maximally mutually advantageous and
is included in the set Στ , which means that Στ is not a singleton. This still
resolves the game definitively for the interacting players, since τ prescribes a
unique strategy choice to row player and it is up to column player alone to
select any outcome from the set Στ using 0 ≤ p ≤ 1/10 of his or her choice.
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If only pure strategies are considered, τ selects (D , R). Note that mutually
advantageous play in both cases yields row player his or her maximin payoff.
As such, this is an example of a case where a personal payoff associated with
maximally mutually advantageous outcome(s) is also one player’s maximin level.
By contrast, if urefi were set for both players to their personal maximin payoffs,
τ would select the outcome (U , L) with and without mixed strategy play.

Lastly, in the Prisoner’s Dilemma game the function τ selects (C , C ). Pa-
rameter values in Table 1 are based on the Prisoner’s Dilemma game of Figure 2,
but the result is the same for all versions of this game discussed earlier.

4.5 No Irrelevant Player or Strategy

A point to note is that the function τ does not ignore any player in its determi-
nation of team-optimal outcomes. This means that no player can be dismissed
on grounds of being irrelevant. One consequence of this is that the presence of
a player who is indifferent between all outcomes of a game, with urefi = umax

i ,
renders Στ = ∅. Since such a player personally does not care about how the
game is going to be resolved, there is nothing that would motivate him or her
to seek out mutually advantageous solutions. Although in cases involving more
than two players this leaves the possibility for the remaining decision-makers to
consider what is mutually advantageous for them based on their predicted ac-
tions of those outside of their group, mutually advantageous play is not possible
for all players in the game as members of one team.

Also, as the Prisoner’s Dilemma example shows, the addition of strictly
dominated strategies to a game can result in changes in the set of outcomes
selected for a team.18 This means that such strategies cannot be treated as
irrelevant either. With regards to this point, however, the function τ can be
adapted to a more orthodox interpretation of what counts as feasible in games
by limiting its output to outcomes that are rationalizable in terms of best-
response reasoning. For this approach, all outcomes outside of the set Σbr are
excluded from those considered as potential outputs of τ , and urefi with umax

i

are assigned payoff values associated with each player’s least and most preferred
outcome(s) in Σbr. Returning to our examples, in the Hi-Lo game this would
yield the same results as previously. In the Chicken and the High Maximin
games the outcomes selected by τ when mixed strategies are considered would
be the same as those selected for pure strategy play earlier (this is because
previously selected mixed strategy profiles are not rationalizable in terms of
best-response reasoning and, as such, they would be excluded). Lastly, in the
Prisoner’s Dilemma game nothing would count as mutually advantageous, since
only one outcome is rationalizable in terms of best-response reasoning. This
version of τ would allow to regard all strictly dominated strategies as irrelevant.

18This may happen when one of the outcomes thus added to a game becomes associated with
maximum mutual advantage. Similarly, the set of outcomes selected for a team may change
whenever the addition of strategies, dominated or not, results in a shift in some player’s
reference point.
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4.6 Interpersonal Comparisons of Advantage

Earlier we noted that the standard expected utility theory makes numerical
representations of decision-makers’ preferences possible, but does not automat-
ically grant their interpersonal comparability, and suggested that the function
τ applies in cases when interpersonal comparisons of payoffs are not warranted
in this sense. The presented function, however, does make an interpersonal
comparison of one sort: it equates a unit of individual advantage gained by one
player in a game with that gained by another. We argue that even when the
comparison of the former sort is not warranted, the comparison of the latter
sort is nevertheless permissible.

Interpersonal comparisons of decision-makers’ payoffs tend to associate their
preference satisfaction with some interpersonally comparable notion of attained
well-being or other form of welfare. If, in the context of games, we were to con-
template the possibility that for one player stakes might be significantly higher
than they are for another in this sense, we would indeed be making an implicit
assumption that their attained payoffs can be interpersonally compared. Our
proposed measures of individual and mutual advantage, expressed as extents of
relative advancement of players’ personal interests towards their most preferred
outcomes of games, however, are meant to be applied when such comparisons
are not possible (or, to put differently, when such comparisons provide no mean-
ingful information). The reason they can be applied is the fact that the scales
for these measures can be established using commonly known and objectively
identifiable points in games without the need to make interpersonal comparisons
of the attained payoffs. In order to use these measures, decision-makers need
to know each other’s preferences over the possible outcomes of games and their
personal reference points, but they need not be able to make any interpersonal
comparisons of their attained well-being in some objectively or subjectively
comparable way. Without comparing their attained well-being players can still
compare the extents to which their personal interests are advanced within the
context of some particular decision problem they are trying to solve.19

The interpersonal comparisons implied by the function τ are thus quite dif-
ferent from those not warranted by the standard expected utility theory. When
decision-makers consider mutually advantageous play in games, they equate
units of measures of their individual advantage—the advancement of their per-
sonal interests relative to what they personally deem to be the best and the
worst case outcomes of their interactions—while not being able to equate units
of the attained personal well-being. All they know is how much a particular out-
come is individually advantageous to a player relative to that player’s reference

19There is a close connection between the way individual and mutual advantages are mea-
sured in τ and what is known as the “zero-one rule” for making interpersonal comparisons
of preference satisfaction. See Hausman (1995) for an extensive discussion of this rule as the
only legitimate way for comparing the extents of people’s preference satisfaction that does not
go beyond the assumptions of standard rational choice theory.
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point and his or her most preferred outcome of a game.20

This does not mean that interpersonal comparisons of payoffs are never pos-
sible or that we never make them in our interactions with each other. Binmore
(2005; 2009) argues, for example, that we may have evolved the ability to make
such comparisons over the course of our evolutionary development. This, how-
ever, does not preclude the applicability of the above function for identifying
mutually advantageous outcomes. A step that needs to be added before the
function is applied in cases when players’ payoffs are interpersonally comparable
is the rescaling of players’ measures of individual advantage uιi using appropri-
ate scaling factors to equate these units in accordance with how their attained
personal payoffs interpersonally compare.

4.7 Mutual Advantage and Coordination

There will be many games in which the function τ selects more than one out-
come. In some situations, such as the High Maximin game of Figure 6(b), this
will not cause a difficulty for decision-makers to coordinate their actions, but in
many cases it will. We may thus consider whether the expected success of coor-
dinating actions on some particular outcome should be reflected in the measure
of mutual advantage associated with that outcome.

Consider the expanded version of the Hi-Lo game shown in Figure 7(a).
There are seven Nash equilibria in this game, three in pure strategies and four
in mixed. (The four mixed strategy equilibria yield each player an expected pay-
off of at most 5.) The function τ selects two outcomes as maximally mutually
advantageous: (Hi1 , Hi1 ) and (Hi2 , Hi2 ). As such, it leaves team-reasoning
decision-makers facing a coordination problem. Since the selected outcomes
are indistinguishable (apart from strategy labels and their positions in the ma-
trix representation of the game, both of which can aid to coordinate players’
actions—a point which we ignore for the time being), if the two players, without
communicating with each other, were to simultaneously attempt to attain any
one of the two, they could expect to succeed with probability 1/2. This would
yield each player an expected payoff of 5. The outcome (Lo, Lo), however, is
unique in the sense that it is the only outcome of the game that yields both play-
ers a payoff of 9. It may thus be beneficial for the interacting players, instead
of attempting to coordinate their actions on one of the two indistinguishable
outcomes, to focus on the attainment of the outcome (Lo, Lo). This would
guarantee each player a certain personal payoff of 9 instead of the expected
payoff of 5.

Bardsley et al. (2010) and Faillo et al. (2016) discuss the idea of incorporating
perceived coordination success rates when it comes to evaluating the attainment
of one from a number of indistinguishable outcomes of a game into the function
of team interests itself and use it to interpret results from a number of experi-

20This can be likened to the way games are usually analyzed in bargaining situations, in
which players bargain over some resource with a particular outcome in mind that would obtain
in case of failing to reach an agreement.
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Figure 7: The expanded Hi-Lo game (a) and its variations (b), (c)

ments.21 It is easy to modify the measure of mutual advantage uτ to do this.
In a case of a coordination problem due to multiplicity of outcomes that are
indistinguishable from a team’s perspective and in the absence of any further
coordination aid for the interacting players to rely on, the original measures
of mutual advantage associated with the indistinguishable outcomes can be di-
vided by the number of indistinguishable outcomes in question. In the game of
Figure 7(a), this would yield the extent of mutual advantage associated with
outcomes (Hi1 , Hi1 ) and (Hi2 , Hi2 ) to be 50, while that associated with the
outcome (Lo, Lo) would remain to be 90. Operationalized this way, the function
τ would now select the outcome (Lo, Lo) as uniquely optimal for a team. How-
ever, although payoff pairs associated with the pure strategy Nash equilibria
in this game can themselves aid to coordinate team-reasoning decision-makers’
actions in this way, coordination of actions may often be possible due to factors

21The games that Bardsley et al. (2010) and Faillo et al. (2016) discuss are all such where
decision-makers’ failure to coordinate their actions on one of the available pure strategy Nash
equilibria yields each player a personal payoff of 0. This applies to the expanded version of
the Hi-Lo game of Figure 7(a), but is not the case in a few of its variations which we will
discuss shortly.
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that are not related to payoffs associated with outcomes that are deemed indis-
tinguishable from a team’s perspective. For one example, consider a variation
of this game shown in Figure 7(b). The pure strategy Nash equilibria here are
the same as earlier and the function τ , based on the original measure uτ , selects
the same pair of outcomes, (Hi1 , Hi1 ) and (Hi2 , Hi2 ), as optimal for a team.
Although the two outcomes are just as indistinguishable as they were before, in
this case the personal payoff of 8 to row and column player in the outcome (Hi2 ,
Hi1 ) and (Hi1 , Hi2 ) off the matrix diagonal respectively can aid to coordinate
players’ actions for the attainment of the outcome (Hi2 , Hi2 ). Even though it
is still the payoff structure of the game that aids players to resolve their coor-
dination problem in this case, it is not a payoff pair associated with any of the
outcomes on which the interacting players try to coordinate their actions that
does so.

Another example is shown in Figure 7(c). Here everything is the same as in
the original version of the game, except for the fact that the outcome (Hi1 , Hi1 )
is marked with a star. The salience of this outcome has nothing to do with the
payoff structure of the game, but the presence of the star serves as a potential
aid to coordinate actions. In fact, there is a number of coordination aids to
choose from: (i) the presence of the star among outcomes that are maximally
mutually advantageous in terms of the original measure uτ , (ii) its absence, and
(iii) the uniqueness of the payoff pair associated with the Nash equilibrium (Lo,
Lo). Which of these is most appropriate will depend on decision-makers’ beliefs
about which of these aids is most likely to be recognized and considered by
others.

Our intention with these examples is to show that decision-makers’ ability
to coordinate their actions on a particular outcome of a game may often depend
on factors that have nothing to do with how mutually advantageous it would be
for the players to end up at that outcome in terms of their personal payoffs asso-
ciated with it. Furthermore, the possibility of there being multiple coordination
aids for players to choose from may leave them facing a coordination problem
of a different kind—one related to the choice of a coordination aid to resolve
the game they play. The interacting players’ choice of the latter will depend
on their beliefs about which aids are most likely to be recognized, considered,
and adopted by other players. These beliefs may, in turn, depend on decision-
makers’ cultural backgrounds, the prevalent social norms in their societies, and
other factors unrelated to the payoff structure of the game itself.22 Because of
this it may often be fruitful to keep the question of which outcomes of games are
maximally mutually advantageous in terms of players’ attainable payoffs sepa-
rate from the question of how to successfully coordinate their actions. Keeping
the two questions separate allows the latter to be informed by the former: in the
presence of many potential coordination aids to choose from, the measure uτ

may help narrow down which of these should be employed in order to remain as
faithful as possible to the mutual advancement of players’ personal interests. In

22Bacharach and Bernasconi (1997) provide a formal model—the variable frame theory—
for incorporating such considerations into representations of decision-makers’ coordination
problems.
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this light, it is the fact that the outcome (Hi , Hi) in the original version of the
Hi-Lo game of Figure 1 is maximally mutually advantageous to the interacting
players in terms of the attainable personal payoffs that makes them coordinate
their actions on this outcome rather than the less mutually advantageous one,
(Lo, Lo).

5 Why Team Reason?

As we noted at the end of Section 2, one of the two important questions that the
theory of team reasoning needs to address concerns why and under what circum-
stances people may reason as members of a team. A number of possibilities have
been suggested to date. According to a view attributed to Bacharach (2006), the
adopted mode of reasoning depends on a decision-maker’s psychological frame
of mind, which, in turn, may depend on a number of circumstantial factors,
but need not necessarily be driven by conscious deliberation. Sugden’s (2003)
version of the theory suggests that a decision-maker may choose to endorse a
particular mode of reasoning, but that this choice may lie outside of rational
evaluation itself. Hurley (2005a; 2005b), on the other hand, suggests that team
reasoning may be consciously chosen as a result of rational deliberation. We
do not review these developments in detail here (for a survey see, for example,
Gold and Sugden 2007a; 2007b, or Karpus and Gold 2017), but discuss some
tentative suggestions in connection to the function τ .

We started by noting that the development of the theory of team reasoning
was partly motivated by the fact that, in some games, the application of best-
response reasoning produced multiple solutions without discriminating between
them, even though some of these solutions seemed less compelling than others.
This prompts a suggestion that decision-makers, who first approach games from
the point of view of best-response reasoning, may switch to considering which
outcomes of games are mutually advantageous when best-response reasoning
is unable to resolve their decision problems definitively. The decision-makers’
subsequent endorsement of team reasoning to guide their actions can depend on
their beliefs about its endorsement by others as well as the outcomes they can
expect to attain from the application of best-response considerations, and the
first of these factors may depend on the second. With regards to the function τ ,
this provides a justification for measuring individual and mutual advantages as-
sociated with considered outcomes relative to reference points established using
the notion of best-response rationalizability . This is so because decision-makers
who first approach games from the point of view of best-response reasoning
would make further evaluations of outcomes relative to conclusions they can
draw from assumed (common) application of the best-response approach.

This can explain why decision-makers may switch from best-response rea-
soning to reasoning as members of a team in games such as the Hi-Lo, the
Chicken, and the High Maximin discussed earlier, but not in games such as the
Prisoner’s Dilemma which best-response reasoning resolves definitively. Delib-
eration about what is mutually advantageous in latter cases, however, may be
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prompted by considerations relating efficiency. If best-response solutions are
inefficient (say, in terms of the weak sense of Pareto efficiency) and, as a con-
sequence, this triggers such deliberation, decision-makers may end up facing
two competing definitive resolutions of games. As a result, such scenarios may
turn into complicated dilemmas about which mode of reasoning decision-makers
should endorse when choosing their actions, with inefficient best-response so-
lutions pitted against efficient mutually advantageous ones from which players
may be tempted to deviate. This fits the aforementioned findings from exper-
iments with the Prisoner’s Dilemma game that show cooperation rates to be
around 50% in one-shot versions of this game.23

If, on the other hand, players first approach games from the point of view of
team reasoning, they may switch to best-response considerations when unilateral
deviations from the attainment of mutually advantageous outcomes are benefi-
cial to them personally, or when team reasoning fails to resolve the considered
games definitively. This possibility can explain why decision-makers may switch
from reasoning as members of a team to best-response reasoning in games such
as the Prisoner’s Dilemma, the Chicken, and the High Maximin (depending on
which outcome of the latter game is considered to be maximally mutually ad-
vantageous), but not in games such as the Hi-Lo. With regards to the function
τ , if decision-makers approach games from the point of view of team reasoning
to begin with, their reference points need not necessarily be established using
the notion of best-response rationalizability. However, if players end up vacillat-
ing between the two modes of reasoning when deciding on which one to endorse
when choosing their actions, they will pit the perceived benefits associated with
the two modes of reasoning against each other. This way, the advantages of
endorsing team reasoning will be measured relative to potential outcomes that
can be expected to result from the application of best-response considerations,
which provides further grounds for the establishment of decision-makers’ refer-
ence points to take into account the notion of best-response rationalizability ,
even if at the start it did not.24

6 Conclusion

In this paper we predominantly focused on discussing a possible representation
of team-reasoning decision-makers’ interests based on the notion of mutual ad-
vantage in games. A few differences aside, the spirit of our working definition

23In the Prisoner’s Dilemma, mutually advantageous play is, in a way, riskier than one
based on best-response reasoning, since the endorsement of the former is only beneficial to
a particular player if the other player does likewise. This may explain why, in a repeated
setting, cooperation in this game can get quickly eroded in the presence of a few defectors. A
decision-maker who at first endorses team reasoning, but recognizes the fact that best-response
play, albeit less efficient when endorsed by everyone, is safer when it comes to the worst case
scenario, may quickly switch to endorsing best-response reasoning after encountering a player
who defects.

24For one development of a formal model of the vacillation process between competing
modes of reasoning see Smerilli (2012).
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of mutual advantage is broadly in line with Sugden’s (2015). Our proposed
method for measuring extents of individual and mutual advantage allows us to
further discriminate between outcomes identified as mutually beneficial and to
define team-reasoning decision-makers’ interests as the attainment of maximum
mutual advantage in their interactions with each other. We argued our proposed
function of team interests to be applicable when interacting players’ payoffs are
not interpersonally comparable, but also suggested its modification for cases
when such comparisons are possible.

Our goal was not to provide a complete account of the theory of team reason-
ing and, at most, we offered only tentative ideas concerning factors that may
motivate people to seek out mutually advantageous solutions and switch be-
tween competing modes of reasoning in various types of games. In our account,
we focused on the question of what properties an outcome must have in order
for it to be identified as a maximally mutually advantageous solution purely on
the basis of information available to the interacting players about their personal
interests in a particular game. The question of how team-reasoning decision-
makers coordinate their actions in the face of multiple such solutions warrants
further investigation and discussion. Since players’ ability to coordinate their
actions may often depend on factors that are not related to payoff structures
of games alone, a single generalizable formal model of their final choices may
not be possible. Sugden (2015: 156) notes that mutually beneficial cooperation
may thus consist in ‘conforming to complex and sometimes arbitrary conven-
tions that could not be reconstructed by abstract rational analysis’. While we
agree that resolutions of coordination problems may be based on arbitrary rules
and conventions, we nevertheless believe there to be some general principles
underlying interacting players’ identification of maximally mutually beneficial
outcomes before the question of how to coordinate their actions is addressed.

Further empirical research is needed to test competing theories about modes
of reasoning that people actually use in their interactions with each other. Since
many strategies can often be explained in terms of multiple accounts of what
players try to achieve in games they play, these studies may need to consider
a broader evidence base than mere observations of decision-makers’ choices. In
a related discussion of the problem of undetermination of theory by evidence,
Dietrich and List (2016: 273) suggest that our evaluation of theories concerning
decision-makers’ choices in games may need to consider ‘novel choice situations,
psychological data over and above choice behaviour, verbal reports, related so-
cial phenomena, and occasionally (for plausibility checks) even introspection’. In
a recent experiment involving a similar scenario to the Chicken game discussed
in this paper, Rubinstein and Salant (2016) asked participating decision-makers
to report their beliefs about other players’ actions either before or after making
their own choice. They found a sizeable portion of decision-makers not to best
respond to their elicited beliefs, in line with the prediction of the attainment of
one of the maximally mutually advantageous outcomes based on the function
of team interests presented in this paper. Elicitation of interacting players’ be-
liefs about each other’s actions and further development of such experimental
techniques will be fruitful for empirical testing of ideas discussed here.
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able comments and suggestions on various earlier versions of this work. We
would also like to thank participants of the following events for lively discus-
sions, all of which we greatly benefited from in the development of this paper:
the UECE Lisbon Meetings 2014 Conference on Game Theory and Applications
held at Lisboa School of Economics and Management (ISEG) in November 2014,
the Warwick Economics PhD Conference 2015 held at the University of War-
wick in February 2015, the Decisions, Games and Logic 2015 Conference held at
the London School of Economics in June 2015, the 26th International Confer-
ence on Game Theory held at the Stony Brook University in July 2015, and the
Workshop on Game Theory and Social Choice at the Corvinus University of Bu-
dapest in December 2015. Last but by no means least, we were able to improve
this paper considerably thanks to very detailed and insightful suggestions we
received from three anonymous reviewers of this journal and its editor, Richard
Bradley. Jurgis Karpus is grateful for research funding from the European Re-
search Council under the European Union’s Seventh Framework Programme
(FP/2007–2013) / ERC Grant Agreement n. 283849.

References

Bacharach, M. 1999. Interactive team reasoning: a contribution to the theory
of co-operation. Research in Economics 53: 117–147.

Bacharach, M. 2006. Beyond Individual Choice: Teams and Frames in Game
Theory. Princeton: Princeton University Press.

Bacharach, M. and M. Bernasconi. 1997. The variable frame theory of focal
points: an experimental study. Games and Economic Behavior 19: 1–45.

Bardsley, N., J. Mehta, C. Starmer and R. Sugden. 2010. Explaining focal points:
cognitive hierarchy theory versus team reasoning. Economic Journal 120: 40–
79.

Bernheim, B. D. 1984. Rationalizable strategic behavior. Econometrica 52:
1007–1028.

Binmore, K. 1992. Fun and Games: A Text on Game Theory. Lexington, MA:
D. C. Heath and Company.

Binmore, K. 2005. Natural Justice. New York, NY: Oxford University Press.

Binmore, K. 2009. Interpersonal comparison of utility. In The Oxford Handbook
of Philosophy of Economics, ed. D. Ross and H. Kincaid, 540–559. New York,
NY: Oxford Unievrsity Press.

26



Chaudhuri, A. 2011. Sustaining cooperation in laboratory public goods experi-
ments: a selective survey of the literature. Experimental Economics 14: 47–83.

Colman, A. M., B. D. Pulford and C. L. Lawrence. 2014. Explaining strategic
coordination: cognitive hierarchy theory, strong stackelberg reasoning, and
team reasoning. Decision 1: 35–58.

Colman, A. M., B. D. Pulford and J. Rose. 2008. Collective rationality in interac-
tive decisions: evidence for team reasoning. Acta Psychologica 128: 387–397.

Dietrich, F. and C. List. 2016. Mentalism versus behaviourism in economics: a
philosophy-of-science perspective. Economics and Philosophy 32: 249–281.

Faillo, M., A. Smerilli and R. Sugden. 2016. Can a single theory explain coordi-
nation? an experiment on alternative modes of reasoning and the conditions
under which they are used. CBES [Centre for Behavioural and Experimental
Social Science] Working paper 16–01, University of East Anglia.

Fudenberg, D. and J. Tirole. 1991. Game Theory. Cambridge, MA: MIT Press.

Gauthier, D. 2013. Twenty-five on. Ethics 123: 601–624.

Gold, N. 2012. Team reasoning, framing and cooperation. In Evolution and
Rationality: Decisions, Co-operation and Strategic Behaviour, ed. S. Okasha
and K. Binmore, 185–212. Cambridge: Cambridge University Press.

Gold, N. and R. Sugden. 2007a. Collective intentions and team agency. Journal
of Philosophy 104: 109–137.

Gold, N. and R. Sugden. 2007b. Theories of team agency. In Rationality and
Commitment, ed. F. Peter and H. B. Schmid, 280–312. Oxford: Oxford Uni-
versity Press.

Hausman, D. M. 1995. The impossibility of interpersonal utility comparisons.
Mind 104: 473–490.

Hausman, D. M. 2012. Preference, Value, Choice, and Welfare. New York, NY:
Cambridge University Press.

Hurley, S. 2005a. Rational agency, cooperation and mind-reading. In Teamwork:
Multi-Disciplinary Perspectives, ed. N. Gold, 200–215. Basingstoke: Palgrave
Macmillan.

Hurley, S. 2005b. Social heuristics that make us smarter. Philosophical Psychol-
ogy 18: 585–612.

Karpus, J. and N. Gold. 2017. Team reasoning: theory and evidence. In The
Routledge Handbook of Philosophy of the Social Mind, ed. J. Kiverstein, 400–
417. Abingdon: Routledge Taylor Francis.

27



Ledyard, J. O. 1995. Public goods: a survey of experimental research. In The
Handbook of Experimental Economics, ed. J. H. Kagel and A. E. Roth, 111–
194. Princeton, NJ: Princeton University Press.

Luce, R. D. and H. Raiffa. 1957. Games and Decisions: Introduction and Critical
Survey. New York, NY: John Wiley & Sons.

Pearce, D. G. 1984. Rationalizable strategic behavior and the problem of per-
fection. Econometrica 52: 1029–1050.

Perea, A. 2012. Epistemic Game Theory: Reasoning and Choice. Cambridge:
Cambridge University Press.

Rubinstein, A. and Y. Salant. 2016. “Isn’t everyone like me?”: on the presence
of self-similarity in strategic interactions. Judgment and Decision Making 11:
168–173.

Smerilli, A. 2012. We-thinking and vacillation between frames: filling a gap in
Bacharach’s theory. Theory and Decision 73: 539–560.

Sugden, R. 1993. Thinking as a team: towards an explanation of nonselfish
behavior. Social Philosophy and Policy 10: 69–89.

Sugden, R. 2000. Team preferences. Economics and Philosophy 16: 175–204.

Sugden, R. 2003. The logic of team reasoning. Philosophical Explorations: An
International Journal for the Philosophy of Mind and Action 6: 165–181.

Sugden, R. 2011. Mutual advantage, conventions and team reasoning. Interna-
tional Review of Economics 58: 9–20.

Sugden, R. 2015. Team reasoning and intentional cooperation for mutual benefit.
Journal of Social Ontology 1: 143–166.

28


