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Abstract
Recently, there have been several attempts to generalize the counterfactual theory of 
causal explanations to mathematical explanations. The central idea of these attempts 
is to use conditionals whose antecedents express a mathematical impossibility. Such 
countermathematical conditionals are plugged into the explanatory scheme of the 
counterfactual theory and—so is the hope—capture mathematical explanations. 
Here, I dash the hope that countermathematical explanations simply parallel coun-
terfactual explanations. In particular, I show that explanations based on counter-
mathematicals are susceptible to three problems counterfactual explanations do not 
face. These problems seriously challenge the prospects for a counterfactual theory of 
explanation that is meant to cover mathematical explanations.

1 Introduction

Philosophical accounts of causal explanation in terms of counterfactuals have 
enjoyed popularity at least since Lewis (1973a, 1986).1 Such counterfactual 
accounts, roughly, say that Suzy throwing a rock explains why the window shat-
tered, because the counterfactual conditional if she had not thrown the rock, the win-
dow would not have shattered is true; that is, Suzy’s throw makes a difference as to 
whether or not the window shatters. The prospect of extending the counterfactual 
accounts to mathematical explanations is appealing. If it could be done, we would 
be on the road to acquire a general theory of explanation in science and mathemat-
ics. Generality, some argue, is a virtue that ideally a theory of explanation should 
satisfy (Nickel 2010; Reutlinger et  al. 2020). Moreover, the success of a counter-
factual theory of mathematical explanation would have resounding impacts on the 
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debates about metaphysical explanation, grounding, logical explanation, artificial 
intelligence explanations, and non-causal explanations more generally (Schaffer, 
2016; Wilson, 2018a, b; Maurin, 2019; Baron, 2020; Kasirzadeh & Smart, 2021).

Recently, there have been several attempts to liberate counterfactual accounts of 
explanations from their causal trappings (see for instance, Reutlinger, 2016; Baron 
et al., 2017; Woodward, 2018; Baron et al., 2020; Reutlinger et al., 2020). Among 
these, the most elaborate and systematic endeavor to extend the counterfactual 
theory of causal to mathematical explanations is due to Baron et al. (2017, 2020), 
which I will abbreviate henceforth by BCR.

BCR claim that akin to an empirical fact such as Suzy throwing a rock, a math-
ematical fact can also make a difference. Accordingly, they maintain that we can 
understand the explanatory structure of a mathematical explanation in terms of 
counterfactual dependency between its mathematical explanantia and its explanan-
dum. Just like an empirical explanans, a mathematical explanans would fit into the 
explanatory scheme of the counterfactual theory2:

Suppose C denotes a mathematical fact and E an empirical or a mathematical 
fact. Then we say C mathematically explains E. Furthermore, (2) becomes a coun-
termathematical; that is, a conditional whose antecedent expresses a mathematical 
impossibility.3 Finally, we refer to the conjunction of (1) and (2) as a countermath-
ematical explanation.4

Here is a countermathematical discussed by BCR (2017): 

(I) If 13 were not a prime number, then North American periodical cicadas would 
not have 13-year life cycles.

According to BCR, this countermathematical reveals that a mathematical fact—the 
primeness of 13—(partly) explains the fact that North American periodical cicadas 
have 13-year life cycles. BCR thus propose that a mathematical fact can make a dif-
ference just like Suzy’s throw can make a difference.5

In this paper, I raise three problems for the current counterfactual accounts of 
mathematical explanations. These problems reveal the extreme difficulty one faces 

C explains E if (1)C and E are true, and

(2) if C were not true, E would not be true.

2 C might be one member of a collection of explanantia for E. A counterfactual theory of explanation 
must be able to evaluate (2) for all the members of the collection of explanantia.
3 To the best of my knowledge, Lewis (1973b, p. 24) coined the term ‘countermathematical’.
4 In this paper, I presuppose that there are genuine cases of mathematical explanations. Without this pre-
supposition any generalization of the counterfactual theory of causal explanations to mathematical ones 
would, of course, be pointless. What I aim to establish is that mathematical explanations—presupposed 
there are any—cannot be properly analyzed by the current explanatory scheme of counterfactual theories.
5 If we take mathematical facts to be empirical, the antecedent of any countermathematical explanation 
will be treated similar to a causal explanation in terms of counterfactuals. The main issue is that having 
a satisfactory empiricist story about mathematics is—to say the least—very difficult. In this paper, in 
accordance with BCR, I take mathematical facts to be non-empirical.
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for an appropriate evaluation of (2). Recall that evaluating (2) is absolutely cen-
tral to any counterfactual account of explanation. Accordingly, I argue that varying 
whether or not Suzy throws a rock is entirely different from varying mathematical 
antecedents such as 13’s primeness. Together, the three problems seriously chal-
lenge the current quests for a general counterfactual theory of explanation.

The plan of my investigation is straightforward. I outline the counterfactual 
approach of mathematical explanations in Sect.  2. In Sect.  3, I compare counter-
mathematical and counterfactual explanations. Unlike counterfactual explanations, 
explanations based on countermathematicals are susceptible to three major prob-
lems. Firstly, there is no clear escape route from absurd contradictions when assum-
ing a mathematical impossibility. Secondly, there is sometimes no robust space for 
tracing the (difference-making) ramifications of varying a mathematical antecedent. 
Thirdly, a countermathematical explanation provides no explanatory benefits, unlike 
the variation of the antecedent of a counterfactual. In Sect. 4, I briefly sketch the 
outline of an alternative approach for tackling some kinds of mathematical explana-
tions. Sect. 5 concludes the paper.

It should be mentioned that BCR’s account, as the most elaborate, is central to 
the current debate about the viability of a counterfactual account of mathematical 
explanations. Some of the proponents of countermathematical explanations, such 
as Reutlinger et al. (2020), simply presuppose the validity of BCR’s account. Oth-
ers, such as Woodward (2018), presumably require arguments very much along the 
lines of BCR to defend their accounts of countermathematical explanations—at least 
if a mathematical impossibility is supposed to figure in the antecedent. Hence, my 
counterarguments to BCR’s countermathematical explanations carry over—almost 
unmodified—to the other similar attempts for generalizing the counterfactual theory 
of explanation. In what follows, I can thus focus my criticisms on BCR’s account 
without losing much generality.

2  Countermathematical Explanations

BCR (2017, 2020) abstract away from any particular counterfactual account of 
explanation, such as Lewis’s (1973, 1986) or the structural-equations framework 
(Halpern & Pearl 2005). Let us call what is common to these counterfactual accounts 
of explanation the counterfactual account of explanation. At the heart of the coun-
terfactual account is a three-step procedure for the evaluation of conditionals: 

 (i) Determine the facts to be kept fixed under counterfactual variation.
 (ii) Vary some facts as stated in the antecedent.
 (iii) Determine the influence of the variation on the consequent.

To illustrate the evaluation procedure, let us apply it. According to the explanatory 
scheme of the counterfactual theory, Suzy throwing the rock explains the window’s 
shattering if Suzy throws the rock, the window shatters, and if she had not thrown 
the rock, the window would not have shattered. To evaluate this counterfactual, first, 
we keep fixed the past up until the time Suzy throws. Second, we vary the fact that 
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Suzy throws by supposing (contrary to the facts) that she does not throw. Third, 
against the backdrop of the facts that are kept fixed, the influence of varying the 
antecedent on the consequent is established. If the consequent varies, that is the win-
dow would not have shattered, the counterfactual under consideration is evaluated 
to be true. If so, Suzy’s throwing the rock counterfactually explains the window’s 
shattering. With these preliminaries out of the way, I move to BCR’s (2017, 2020) 
counterfactual account of mathematical explanations.

Generally, mathematical explanations come in two flavors: extra- and intra-math-
ematical (Colyvan, 2012, Ch. 5; Colyvan et al., 2018). Extra-mathematical explana-
tions explain empirical facts, in part, by mathematical facts (Baker, 2005; Lange, 
2013; Lyon & Colyvan, 2008). Intra- mathematical explanations explain mathemati-
cal facts such as an explanatory proof for why a mathematical theorem should be 
accepted (Mancosu, 2008; D’Alessandro, 2020; Lange, 2018). An extra- or intra-
mathematical explanation can be expressed in the form of a counterfactual. Recall 
the explanatory scheme of the counterfactual theory. If C and E are mathematical 
facts, we have a countermathematical that is obtained from an intra-mathematical 
explanation. By contrast, if C is a mathematical fact and E an empirical fact, we 
have an extra-mathematical explanation.6

Let me review an extra- and an intra-mathematical explanation in order to fix 
intuitions about the respective types of countermathematicals.

2.1  Extra‑Mathematical Explanations

Perhaps the most familiar example of an extra-mathematical explanation in the phil-
osophical literature is Baker’s (2005) case of the North American periodical cica-
das. A simplified version of this explanation is as follows. Two sub-species of North 
American periodical cicadas have life cycles of 13 and 17 years, respectively. Why 
these two lengths? The explanatory response appeals to two mathematical facts (a), 
(b), and two empirical facts (c), (d): 

(a) 13 and 17 are prime numbers.
(b) Prime numbers maximize their lowest common multiple relative to all lower 

numbers; that is, they minimize the intersection of periods.
(c) Ecological conditions restrict the life cycle of cicadas to 12–18 years.
(d) The predators of the cicadas have periodical life cycles.

Under the paradigm of evolutionary biology that successful organisms evolve in 
an optimal way, (a)—(d) explain why North American cicadas have 13-year and 
17-year life cycles: prime-numbered life cycles minimize the frequency of co-occur-
rence with periodical predators with life cycles that are strictly less than the cicada’s 
life-cycle length. This is because the lowest common multiple of two numbers is 

6 BCR (2017) explore the prospects of a counterfactual theory of extra-mathematical explanations. 
BCR (2020) examine how a counterfactual account of intra-mathematical explanations work. The two 
accounts are very closely tied to each other.
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maximal if and only if the two numbers are coprime. A cicada having a 15-year life 
cycle overlaps periodically with predators having 1-, 3-, 5-, and 15-year life cycles. 
A cicada with a 13-year (17-year) life cycle, by contrast, overlaps only with preda-
tors of 1- and 13-year (17-year) life cycles.

BCR’s (2017) counterfactual account of extra-mathematical explanation holds 
that the variation of the mathematical fact (a) makes a difference to the optimal life-
cycle length of the cicadas. If 13 were not a prime number, ceteris paribus, North 
American periodical cicadas would not have evolved to have 13-year life cycles. 
Why? If 13 were not prime, it would have factors in addition to 1 and 13, and thus 
the 13-year life cycle would overlap with more than two life cycles. Hence, 13-year 
life cycles would not be optimal any more to avoid predators. According to BCR, the 
truth of a conditional such as (II) establishes why the optimal life-cycle length of 13 
years is explained by 13’s primeness: 

 (II) If, in addition to 13 and 1, 13 had the factors 2 and 6, North American peri-
odical cicadas would not have 13-year life cycles.

On BCR’s (2017, p. 4) account, mathematical facts are necessarily true. Varied 
mathematical facts are thus impossible. The antecedent of (II) expresses an impossi-
bility, making the conditional a so-called ‘counterpossible’. A countermathematical 
hence is a counterpossible whose impossible antecedent is mathematical.

There are two general approaches to the evaluation of counterpossibles: vacu-
sim and non-vacuism.7 In accordance with BCR, in this paper, I assume that a 
non-vacuist evaluation procedure is the sensible route to adopt when evaluating 
countermathematicals.

BCR’s (2017, p 7) proposal for evaluating countermathematicals keeps clas-
sical logic fixed when varying mathematical facts. After all, the ordinary cases of 
mathematical explanations, including the instances discussed by BCR (2017, 2020), 
Reutlinger (2016), Reutlinger et  al. (2020), and Woodward (2018), are generated 
from the mathematical facts of classical logic. I will discuss what happens to their 
account if we move to a domain of mathematics based on a contradiction-tolerant 
logic in the next section. For now, I would like to emphasize that their commit-
ment to classical logic forces us to prevent any absurd contradictions. BCR’s (2017) 
alleged solution is to keep fixed as much of mathematics as possible without engen-
dering contradiction. In BCR’s (2017, p. 7) terms:

Here’s our suggestion: work backwards from the desired twiddle. First, 
twiddle 13 and hold some portion of the number theory structure fixed. 
Does a contradiction result? If yes, then relax the amount you’ve held fixed 

7 On the one hand, vacuists such as Williamson (2018) claim that all counterpossibles with impossible 
antecedents are true. On this view, all countermathematical explanations are true. This gives too many 
countermathematical explanations. On the other hand, non-vacuists such as Nolan (1997), Berto et  al. 
(2017), and BCR (2017, 2020) argue that some counterpossibles are false and some are true. On this 
view, a mathematical impossibility may or may not explain another fact depending on whether the cor-
responding countermathematical comes out true or false.
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and re-twiddle. Does a contradiction result? If yes, then relax the amount 
you’ve held fixed and re-twiddle. Does a contradiction result? If yes ... And 
so on. Stop when you get to the maximal amount you can hold fixed within 
mathematics without inducing a contradiction.

How does this solution apply to the case of the cicadas? BCR (2017, p. 7) claim 
that we can provide a ‘surgical strike’ on the primeness of 13: one ‘can hold all 
of number theory fixed except for the twiddles to 13 if one is prepared to change 
the way multiplication works’. Their reason is that there can be a varied version 
of the multiplication operator, namely multiplication∗ , which works exactly like 
multiplication, except that it maps the inputs 2 and 6 to 13. As I will take issue 
with their claim in the next section and do not want to misrepresent their remarks 
on multiplication∗ , I will quote them at length:

Multiplication∗ will preserve the same theorems as multiplication, and 
imbue the natural numbers with the same structure, except for whatever 
disruption is involved in changing the factors of 13; [...] Moreover, the 
structure will be consistent just if multiplication∗ does not take one set of 
numbers as input and map those same numbers onto two different outputs. 
Because functions are so easy to come by, we can be assured that there is 
some function that behaves exactly this way, and so no contradictions will 
arise by twiddling multiplication so that it matches multiplication*.

BCR (2017) adapt the abstract three-step procedure (i)—(iii) of Sect. 2 to evalu-
ate a countermathematical that figures in an extra-mathematical explanation as 
follows: 

 (i′) Keep fixed as much as possible about mathematics and the empirical world 
under countermathematical variation.

 (ii′) Vary the mathematical facts in the antecedent while respecting (i′); that is, 
keep fixed as much of mathematics as possible consistent with the variation.

 (iii′) Determine the influence of this variation on the empirical consequent.

Let us apply BCR’s evaluation recipe to the countermathematical (II). First, keep 
fixed a structural morphism between number theory and the empirical domain 
of the cicada life cycles, in particular how the structure of natural numbers map 
on the structure of life-cycle lengths in years. Second, vary some facts of num-
ber theory such that 13 has the factors 1, 2, 6, and 13 while keeping as much of 
mathematics fixed as is possible in a consistent way; for instance, change the mul-
tiplication operator to multiplication∗ . This results in a number theory∗ that is as 
much as possible like ordinary number theory except that 13 is not prime. Third, 
because the morphism between number theory and the empirical domain is kept 
fixed, the variation of number theory to number theory∗ implies that a cicada with 
13-year life cycle overlaps with predators having 2-year and 6-year life cycles. As 
a result, a 13-year life cycle is not optimal to avoid predators. The countermath-
ematical (II) thus comes out true, or so argue BCR (2017).
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Let me briefly review an instance of intra-mathematical explanation, before I 
move to examining three major problems with countermathematical explanations.

2.2  Intra‑Mathematical Explanations

Consider the following number-theoretic fact: ( Γ ) The product of any three non-
zero, consecutive natural numbers is divisible by 6. Why? The explanation appeals 
to two mathematical facts � and � (e.g., Lange, 2014): 

(�)  For any three consecutive nonzero natural numbers, at least one of those num-
bers is even and therefore divisible by 2.

(�)  For any three consecutive nonzero natural numbers, exactly one is divisible by 
3.

� and � entail ( Γ ): the product of any three non-zero, consecutive natural num-
bers is divisible by 2 × 3 = 6 . This explanation is used to illustrate the basic idea 
behind BCR’s (2020) counterfactual account of intra-mathematical explanation: the 
variation of the mathematical explanans ( � ) makes a difference to the mathemati-
cal explanandum ( Γ ). To show this, BCR (2020) claim that we must first evaluate 
the following countermathematical expressing the explanatory structure between ( � ) 
and ( Γ ): 

 (III) If it were not the case that for any three consecutive nonzero natural numbers, 
at least one of those numbers is even (and therefore divisible by 2), then it 
would not be the case that the product of any three non-zero, consecutive 
natural numbers is divisible by 6.8

How to evaluate (III)? BCR (2020, p 26) suggest that we can adjust the recipe (i)—
(iii) to evaluate the intra-mathematical explanations figuring in countermathemati-
cals as follows: 

 (i″) Keep fixed as much as possible about mathematical facts and their intrinsic 
properties under counterfactual variation.

 (ii″) Vary the mathematical facts in the antecedent while respecting (i″); that is, 
keep fixed so much of ‘upstream mathematics’ as possible consistent with the 
variation.

 (iii″) Determine the influence of this variation on the mathematical consequent.

8 (� ) also explains ( Γ ). To establish this, another countermathematical must be evaluated: (IV) If it were 
not the case that for any three consecutive nonzero natural numbers, exactly one is divisible by 3, then it 
would not be the case that the product of any three non-zero, consecutive natural numbers is divisible by 
6. The recipe for the evaluation of (IV) is very similar to that of (III). For simplicity, I only focus on the 
evaluation of (III).
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What are the intrinsic properties of mathematical facts? BCR (2020) suggest a 
notion similar to Lewis’s (1983) duplication-based conception of intrinsicality. 
According to this notion, a property is intrinsic if and only if, for any two duplicate 
things, either both have the property or neither does (Lewis, 1983, pp. 355–356).

How to apply this notion of intrinsicality to the realm of abstract mathemat-
ics? BCR (2020) propose the following:

In the mathematical case, as in the non-mathematical case, this means 
holding fixed as much as we can concerning the intrinsic properties of 
whatever mathematical features are mentioned in the antecedent of a given 
counterfactual, compatible with realising the antecedent itself. The less we 
hold fixed about the intrinsic properties of whatever we are interested in, 
the less confident we should be in the outcome of the evaluation procedure. 
That is because the counterfactual situation we end up considering may 
bear little resemblance to the actual scenario at issue in relevant respects 
(i.e., respects of intrinsic similarity).

In practice, however, this proposal remains utterly unclear as BCR (2020) do not 
sketch at all how to make sense of ‘two duplicate numbers’, or how we should 
even start thinking about the intrinsic properties of numbers. For the sake of 
argument, let us assume we can fix some intrinsic properties of numbers, what-
ever they are. In other words, let us assume that somehow (i′′ ) is obtained. The 
evaluation recipe for (III) goes then as follows. Consider three nonzero, consec-
utive natural numbers such as 503, 504, and 505. Tweak the natural numbers by 
making them such that none of 503, 504, 505 is even. We get to step (iii′′′ ). The 
product of any two non-zero, natural numbers is even if and only if at least one 
of the numbers is. The product of these numbers is ( 503 × 504 ) × 505. Accord-
ing to the tweak, 505 is not even. So, we should turn to 503 and 504. Again, 
according to the tweak, neither is even. Therefore, ( 503 × 504) × 505 is not even. 
A requirement for divisibility by 6 is that the number is even. ( 503 × 504) × 505 
is not even, hence ( 503 × 504) × 505 is not divisible by 6. Therefore, (III) is true, 
or so BCR (2020, p 26) argue.

3  Counter Countermathematical Explanations

In this section, I develop three arguments against the current counterfactual 
accounts of mathematical explanation. In particular, I question the plausibility 
of a principled procedure for evaluating explanatory countermathematicals. The 
first argument points out that there is no clear escape route from absurd contra-
dictions when assuming a mathematical impossibility. This argument questions 
whether the mathematical explanans figuring in the antecedent can be mean-
ingfully varied in the context of mathematical explanations. The second argu-
ment says that sometimes there is no robust space for tracing the (difference-
making) ramifications of the twiddled mathematical fact to the consequent. This 
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questions whether the influence of the impossible variation of the antecedent 
can be robustly and meaningfully determined. The third argument shows that a 
countermathematical explanation provides no explanatory benefits.

3.1  No Clear Escape Route from Absurd Contradictions

To evaluate a countermathematical, BCR suggest that we should check whether var-
ying mathematical facts results in (absurd) contradiction. If so, we should relax the 
fixed portion of pure mathematics and vary again, and we continue this procedure 
until the minimal amount of change without introducing (absurd) contradiction is 
achieved.

In the rest of this section, I will argue that BCR offer no satisfactory route for pre-
venting absurd contradictions when we vary the antecedent of an ordinary counter-
mathematical explanation. In Sects. 3.1.1 and 3.1.2, I make the argument in relation 
to mathematics based on classical and contradiction-tolerant logics, respectively. Let 
us keep in mind that in classical logic, all contradictions are unacceptable and hence 
absurd; that is, there is no difference between acceptable and unacceptable contra-
dictions. However, a contradiction-tolerant logic distinguishes between acceptable 
and absurd contradictions. While it avoids absurd contradictions, a contradiction-
tolerant logic searches for sorting out what acceptable contradictions are.

3.1.1  Mathematics Based on Classical Logic

Let us scrutinize BCR’s (2017, pp. 7–8) evaluation recipe for the countermathemati-
cal (II): If, in addition to 13 and 1, 13 had the factors 2 and 6, North American 
periodical cicadas would not have 13-year life cycles. For evaluating this counter-
mathematical, they vary multiplication to multiplication∗ . On this proposal, multi-
plication∗ maps the inputs 2 and 6 to 13, that is (1) 2 ×∗ 6 = 13 . Moreover, mul-
tiplication∗ is meant to behave like ordinary multiplication, ‘except for whatever 
disruption is involved in changing the factors of 13’. In particular, multiplication∗ 
‘takes all of the same inputs and yields all of the same outputs as multiplication 
except in one special case of 13’. For instance, (2) 2 ×∗ 3 = 6 , (4) 3 ×∗ 4 = 12 and 
(5) 2 ×∗ 2 = 4 . Substituting (2) in (1) we obtain (3) 2 ×∗ 2 ×∗ 3 = 13 . Substituting 
(5) in (4) we obtain (6) 2 ×∗ 2 ×∗ 3 = 12 . In a few steps, we obtain an absurd contra-
diction, as multiplication∗ maps the same inputs to 12 and 13; either we must take 
12 = 13, or we must assume that 12 does not belong to the set of natural numbers.

Since BCR’s (2017) account requires avoiding contradiction, we need an addi-
tional ‘disruption’, contrary to their strong claim that multiplication∗ yields the same 
outputs as multiplication except for the inputs 2 and 6. But which one?

If we disallow substitution of equal parts, mathematics loses considerably in 
force and usefulness. This undermines BCR’s own proposal. For instance, BCR 
(2017, pp. 7–8) setup the multiplication∗ operation as follows: ‘Whereas multiplica-
tion never takes in 2 and 6 and yields 13, multiplication* does exactly that. Moreo-
ver, whereas multiplication takes in 2 and 6 and yields 12, multiplication∗ does not’. 
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In mathematical terms, this means that 2 × 6 ≠ 13 , 2 ×∗ 6 = 13 , 2 × 6 = 12 , and 
2 ×∗ 6 ≠ 12 . If we are not allowed to use the substitution of equal parts (substitut-
ing 12 for 2 × 6 in 2 × 6 ≠ 13 ), we will not obtain 12 ≠ 13 . This result is, of course, 
needed for BCR’s proposal when they set up a distinction between the functioning 
of multiplication and multiplication∗.

If we omit 12 from the set of integers, we violate the recursive nature of the natu-
ral numbers. This omission will have some significantly undesirable consequences 
for BCR’s own proposal. Consider the just cited quote above. If there is no 12 in the 
set of natural numbers, this proposal is void of meaning.

If we deny one of (2) or (5), the sequence of integers will look quite different to 
the extent that this sequence will not really be a part of actual mathematics based on 
classical logic. Mathematical facts are ‘tightly integrated’, as BCR (2017, p. 3) also 
acknowledge. Hence, varying a mathematical fact propagates through the whole of 
mathematics, and results in a mathematics that is far from the mathematics applied 
in the generation of explanations. Why should we accept this distant mathematics as 
relevant to the counterfactual analysis? BCR offer no answer.

Worse, multiplication∗ will not preserve the same theorems of number theory as 
multiplication. Consider, for instance, the fundamental theorem of number theory:

Every integer greater than 1 either is a prime number itself or can be repre-
sented as the product of primes. Moreover, each integer has one and exactly 
one prime factorisation.

Now, 2 ×∗ 2 ×∗ 3 = 12 and 2 ×∗ 2 ×∗ 3 = 13 outrightly violate the fundamental the-
orem of number theory. If we change this fundamental theorem, we would radically 
change actual mathematics. For instance, what becomes of Goldbach’s conjecture 
that every even integer greater than 2 can be expressed as the sum of two primes? 
In this case, BCR’s (2017, p 3) surgical strike on 13’s primeness became in no time 
a doomsday attack on number theory. It is at best misleading to say that multiplica-
tion∗ ‘will preserve the same theorems as multiplication and imbue the natural num-
bers with the same structure, except for whatever disruption is involved in changing 
the factors of 13’. As noted earlier, any kind of contradiction in classical logic is 
absurd. BCR’s (2017) cited claim remains hollow as long as they do not delineate 
precisely which theorems and which structures are preserved, which disruptions are 
required, and most crucially how the preservation and disruption are possible.

One potential fix, as BCR (pp. 8–9, 2020) presume, is to divide between the 
‘upstream’ and ‘downstream’ facts of mathematics. Let us assume that relative to a 
fact F

m
 of a mathematical structure, we have a procedure to divide the upstream and 

the downstream facts. The ‘upstream mathematical facts’ are those within a math-
ematical structure on which F

m
 depends. The ‘downstream facts’ from a given math-

ematical structure are those that depend upon F
m
.

On BCR’s (2020) account, when evaluating a countermathematical explana-
tion, we hold fixed as many general, upstream mathematical principles as pos-
sible. Those mathematical principles that are downstream to the tweaked math-
ematical fact are not hold fixed, as much as possible, so that the tweak has enough 
conceptual space to ramify properly. Although this proposal might seem theo-
retically promising, unfortunately, in practice it does not resolve any of the issues 
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I raised above. As illustrated in six simple steps (1)—(6), an absurd contradic-
tion obtains in a very small neighboring region of natural numbers. These steps 
only rely on a very small vicinity of natural numbers composed of 2, 3, 4, 12, 
13, and multiplication∗ . 2, 3, and 4 appear in the sequence of natural numbers in 
an upstream way: the recursive definition of natural numbers starts from 2, 3, 4 
and only after it arrives at 12 and 13. So, even if we have a procedure to distin-
guish between the relevant upstream and downstream mathematical facts, still the 
uprising of absurd contradictions occurs in this local neighborhood (or we do not 
know how to treat them), according to the discussion above. Classical logic sim-
ply does not allow for distinguishing between local and absurd contradictions: all 
contradictions are absurd in classical logic.

Very similar worries apply to the cases of intra-mathematical explanations. 
Recall the following countermathematical: 

 (III) If it were not the case that for any three consecutive nonzero natural num-
bers, at least one of those numbers is even and therefore divisible by 2, then 
it would not be the case that the product of any three non-zero, consecutive 
natural numbers is divisible by 6.

Let us apply BCR’s (2017) procedure for the evaluation of (III). Consider 503, 
504, and 505 as three nonzero, consecutive natural numbers. Now, tweak the nat-
ural numbers such that none of 503, 504, 505 is even, and keep everything else 
in the immediate vicinity of the tweak fixed. In a mathematics based on classical 
logic, either a natural number is divisible by two or is not divisible by two. As a 
result of the tweak, 504 is not even, and so it means that it is not divisible by two. 
According to a plausible interpretation of upstream facts, the following mathe-
matical fact about 504 is upstream: 504=252 × 2 . As a result of the tweak, 504 is 
not even, which means that 252 × 2 is not even, and therefore not divisible by 2. 
This means that neither 252 nor 2 is divisible by 2. We get to an absurd contradic-
tion: 2 is not divisible by 2. One escape route might be to change the multiplica-
tion operator to another operator such as multiplication∗∗ . Let’s say multiplica-
tion∗∗ behaves just like multiplication except that 504 ≠ 252 × 2 . Fair enough, but 
what is 504 equal to? We must run into very similar problems as with multiplica-
tion* outlined above.

One might object to this argument that the factors of 504 are irrelevant to its 
evenness. I think this is false because ‘even’ means divisible by 2, or having the 
factor 2. If the factors are irrelevant to whatever 504 means, what is remaining 
of this number’s meaning? The proponents of countermathematical explanations 
owe us an answer.

There might be a different way to interpret BCR’s proposal. This way requires 
to identify propositions with sets of possibilities, and then interpret possibili-
ties not in a mathematical way, but in terms of what you consider to be possible 
or impossible (see Huber (2021, Ch. 6) for a  formal sketch of this treatment). 
This interpretation remains open to full investigation, and I do not tackle it in 
details here. However, I see a potential problem for applying this agent-relative 
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interpretation to the counterfactual analysis of mathematical explanations. A 
reasonable counterfactual analysis of extra- and intra-mathematical explanation 
should be in search of correct truth values of some sort, rather than an individual 
belief about the truth or falsity of a countermathematical explanation. After all, 
we want a counterfactual analysis of mathematical and scientific explanations to 
be robust enough in delivering what such explanations are, and not coming out 
true for person A, false for person B, and indeterminate for person C depending 
on and sensitive to different individual’s interpretations of possibility or impossi-
bility. BCR (2017, p. 6), for example, assert that ‘we’re just going to assume that 
these counterfactuals are true and then give a way of evaluating these counterfac-
tuals that yields their correct truth-values’.

To evaluate a countermathematical in terms of what an individual considers pos-
sible or impossible about mathematical facts can yield interesting results for the 
acceptability of or the belief in countermathematicals, but not for their truth. For the 
truth value of a countermathematical it seems that what a person considers possible 
is too subjective. And since mathematical explanations require a true counterfactual, 
mere acceptability or belief in this countermathematical is not enough to establish 
mathematical explanations. That is, the belief of an individual about the possibil-
ity or impossibility of a mathematical fact, as noted earlier, is not in the business 
of establishing countermathematical explanations. A correct truth value, rather than 
a purely subjective belief about a counterfactual, seems to be the plausible robust 
constraint for extending the counterfactual accounts to intra- and extra-mathematical 
explanations in science and mathematics.

So far, I have established that varying mathematical facts of the antecedent of 
a countermathematical either leads to inevitable absurd contradictions or provides 
serious challenges to BCR’s proposal for two examples. It is easy to see how these 
examples generalize for other instances. As a result, given BCR’s account, we do 
not really know how to make the ‘surgical strikes’ on mathematical facts of inter-
est. It follows that the second step of BCR’s evaluation recipe for counterpossibles 
can easily fail. (ii′ ) and (ii′′ ) require to vary the antecedent of countermathematicals 
while keeping mathematics consistent with the variation. I have shown that BCR 
(2017) cannot even uphold their own example. For instance, varying the number-
theoretic fact of 13’s primeness by changing multiplication to multiplication∗ vio-
lates the fundamental theorem of number theory, and makes it extremely difficult, 
if not practically impossible, to know what to make of this distant mathematics with 
this new number theory. The same is true of varying the evenness of 504. Hence, 
given BCR’s (2017, 2020) proposal, the variation of a mathematical operation, such 
as the one of multiplication to multiplication∗ , does not tell us in any clear way how 
mathematics would change.

Up to this point, I have focused the discussion within the domain of classical 
logic. On this assumption, varying mathematical facts leads to unavoidable absurd 
contradictions. Relaxing this assumption and considering a contradiction-tolerant 
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logic as the basis of mathematics, in which some contradictions are allowed and 
managing some contradictions is possible, might seem to be a solution to save coun-
termathematical explanations. This relaxation, however, invites another set of seri-
ous problems.

3.1.2  Mathematics Based on Contradiction‑Tolerant Logics

What if the worlds comply with some contradiction-tolerant logic, such as a Pries-
tian paraconsistent logic (Priest, 2002)?9In such worlds, some acceptable inconsist-
encies and contradictions might be true. In contrast to classical logic that does not 
distinguish between the two notions of contradiction and absurdity, one main chal-
lenge of a contradiction-tolerant logic is to sort out acceptable contradictions (i.e., 
contradictions without explosion) from the absurd ones (i.e., contradictions with 
explosion). From the fact that mathematics can be based on contradiction-tolerant 
logics, it does not follow that any kind of contradiction is permissible. Proper rea-
sons and proofs must be developed to show that the contradictions such as 13 not 
being prime (given that it is proven to be prime) or 504 not being even (given that 
it is proven to be even) are acceptable and not absurd. Allowing for some contradic-
tions does not imply that in any given area of mathematics we can suppose that there 
are contradictions.

Paraconsistent logics originally came to be in order to deal with some classical 
self-reference paradoxes such as Russell’s paradox, the Liar paradox, and more gen-
erally paradoxes that came about in the foundational considerations of mathematics 
(see Priest, 2002). From a parconsistent perspective, a localised contradiction such 
as the truth and falsity of the Liar sentence ‘This sentence is false.’ does not lead to 
absurd contradictions that trivializes a mathematical theory. So far so good.

Now, the assumption that there are different kinds of contradiction-tolerant logics 
might sound appealing for the purpose of tweaking the antecedent of a countermath-
ematical explanation. The tempting idea is that mathematics based on a contradic-
tion-tolerant logic can function as a haven safe from absurd contradictions because 
such mathematics tolerates some acceptable contradictions. For instance, it is tempt-
ing to think that tweaking mathematical facts such as the primeness of 13 comes at 
no serious cost in a variant of mathematics based on a contradiction-tolerant logic.

Before I explore the success of this proposal and to avoid any confusion, let me 
explicitly reiterate the specific kind of countermathematicals of interest to any gen-
eralized counterfactual account of explanation. We are interested in the evaluation 
of those countermathematicals which have the following form: their antecedent 
expresses the negation of a mathematical explanans and their consequent is equiva-
lent to the negation of the explanandum. The main question that the defenders of 
a counterfactual theory of mathematical explanation need to answer is this: does 
tweaking a mathematical explanans reveal the explanatory structure in terms of the 

9 In addition to Priestian paraconsistent logic, there are other variants of paraconsistent logic as defended 
by, for example, Batens (1990), Da Costa (1997), and Meheus (2003). For a survey exploring these vari-
ants, see Tanaka (2003).
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counterfactual dependence between the mathematical explanans and the explanan-
dum, and if so how?

Recall the explanation of the life cycles of North American periodical cicadas. 
Let us call the explanandum of this explanation Ex. Recall (a) 13 and 17 are prime 
numbers. These numbers are prime in mathematics based on classical logic, and their 
primeness (rather than their non-primeness) makes the mathematical facts explanatory 
in the first place. Let us denote mathematics based on classical logic by � . According 
to � , it is either true that 13 is a prime number or it is false. There is no third option. 
If we choose a mathematical fact from � , only the two options of truth or falsity are 
available. That is, the explanans (a) is either true or false when we use � to explain Ex, 
and exactly because (a) is true, it becomes an explanans and acquires the explanatory 
relevance to Ex. Only after we assume � as our reasoning scheme, we agree about 
what prime numbers, odd numbers, and even numbers are. Therefore, adopting � as 
a reasoning scheme is required to assume the truth of (a) and (b). Recall (b) Prime 
numbers maximize their lowest common multiple relative to all lower numbers. Only 
after accepting � as our reasoning scheme and the truth of the empirical facts (c) and 
(d), we could build the mathematical explanation with the explanandum Ex. Formally 
speaking, where A, B, C, and D denote the propositions (a), (b), (c), and (d), respec-
tively, and ◻ stands for necessity in mathematics based on classical logic:

Now, I agree that we might be able to shift the underlying reasoning scheme to 
mathematics based on a contradiction-tolerant logic �∗ . However, the change in 
the reasoning scheme does not guarantee that contradictory suppositions such as the 
non-primeness of 13 and non-evenness of 504 are non-absurd and hence allowed. It 
might be that for avoiding absurd contradictions, the mathematical facts of interest 
to ordinary mathematical explanations remain the same; that is, the part of math-
ematics that incorporates explanatory mathematical facts are bounded with classi-
cal logic, because the set of acceptable contradictions is empty (i.e., all contradic-
tions have absurd consequences). Moreover, there is no reason to accept that the 
world tolerating the impossible mathematics is the relevant world for the counter-
mathematical analysis—i.e., closest to the actual world in which the mathematical 
explanation of interest holds. As long as BCR’s proposal, or any other working pro-
posal along the lines of BCR, does not provide a principled procedure to distinguish 
between the absurd and acceptable contradictions, any such proposal remains on 
shaky foundations.

For instance, it might be that in the impossible world of interest in which tweaking 
mathematical facts is allowed, the relevant bits of mathematics to explanatory reason-
ing (primeness of 13 or non-evenness of 504) remain untouched by the exotic prop-
erty of some well-justified and relevant non-absurd contradictions are acceptable. In 
such a world, these bits of mathematics relevant to explanations would stay out of the 
scope of the acceptable contradictions. As a result, it remains a viable option that a 
contradiction-tolerant mathematics does not allow for supposing the non-primeness of 
13 or non-evenness of 504, even though it allows for other well-justified and acceptable 

� ⊧ ◻A and � ⊧ ◻B

(◻A ∧◻B ∧ C ∧ D) → Ex
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contradictions. We just do not know. For the sake of the argument, let us assume that 
A ∧ ¬A is allowed in �∗:

Another problem intrudes. By definition, the (members of the collection of) math-
ematical explanantia for Ex should be true (or should hold) in the actual world. That 
is, truth (or mathematical adequacy) is needed to call a mathematical fact an explan-
ans in the actual world. Now, let us assume that �∗ ⊧ A ∧ ¬A . How should we set-
tle the truth value of A in this world? As soon as we suppose �∗ , we move from 
the actual world to a world where a different mathematics holds. In such a world, 
it remains unclear what is true or not, especially in relation to the antecedent and 
the consequent of countermathematicals. And this is simply because some basic 
rules and laws cannot hold anymore in this distant world.10 The supposed relation 
between antecedent and consequent might get lost in translation, so to speak, when 
moving from a world to another, in which some of the most basic laws and rules do 
not hold. It could just be that the notion of truth we employ for explanations does 
not apply to such worlds.

Let me clarify a point before I go further. While I am sympathetic to the non-
vacuist proposal that some counterpossible conditionals are true and some are false, 
I disagree that, based on BCR’s account or any account along their line, we are able 
to evaluate that some explanatory countermathematicals are true and some are false. 
For example, I can agree with Berto et  al. (2017) that the counterpossible condi-
tional ‘If Hobbes had (secretly) squared the circle, all sick children in the mountains 
of South America at the time would have cared.’ is false; whereas ‘If Hobbes had 
(secretly) squared the circle, all sick children in the mountains of South America at 
the time would not have cared.’ is true. However, the arguments in this section sup-
port my doubt that we can make such judgments in the case of countermathematical 
explanations, for which an explanatory relation between the mathematical explanans 
and the explanandum must hold.

�
∗ ⊧ A ∧ ¬A

10 To make this point more concrete, I would briefly describe a case in which an exemplar of inconsist-
ent mathematics, the early infinitesimal calculus, has been used in physics. The early calculus posited 
that infinitesimals are quantities with zero values in some cases, and non-zero values in other cases 
within the very same proof (Berkeley, 1734). For instance, consider f (x) = x

2 . Its derivative, according 
to early infinitesimal calculus is: f

�(x) =
(x + �)2 − �

�
 . On the one hand, the infinitesimal � must be 

nonzero, because it appears in the denominator. On the other hand, by simplifying f
�(x) , we obtain 

f
�(x) = 2x + � . By taking � = 0 , we get f

�(x) = 2x . Here, we carry out the reasoning by relying on some 
global contradictory information: � ≠ 0 and � = 0 . Using these pieces of inconsistent mathematics with 
care within a particular reasoning scope has resulted in mathematicians doing reasoning with inconsist-
ent mathematics without running into mathematical absurdities such as 2 is not divisible by 2. The set of 
information by which one could reason at a given time, however, was consistent (McCullough-Benner, 
2020). Hence, the fact that sometimes inconsistent mathematics is used to explain or represent an empiri-
cal phenomenon, does not mean that in general any kind of inconsistent mathematics can be used to 
explain any empirical phenomenon, and more relatedly that the explanatory structure between the mathe-
matical explanans and the explanandum of a mathematical explanation can be cashed out by the current 
theories of counterfactual analysis.
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In the next section, I will observe another problem with the current counterfac-
tual accounts of mathematical explanation.

3.2  No Robust Space for Ramifications

The fact that an explanans contributes to the generation of the explanandum guar-
antees a relevance relation between the antecedent and the consequent of a counter-
mathematical explanation. BCR examine this relevance relation in terms of ramifica-
tions of mathematical twiddles through a morphism fixed between the mathematical 
structure occurring in the explanans and the physical or mathematical structure in 
the explanandum. In this section, I argue that steps (iii′ ) or (iii′′)—determining the 
influence of the varied explanans on the consequent of a countermathematical—
are susceptible to two issues: sometimes following the ramification procedure does 
not deliver the truth value of a countermathematical one might intuitively expect, 
and sometimes the delivered truth value is trivial. I explain these two points in the 
remainder of this section.

Recall step (iii′ ) for evaluating a countermathematical conditional (Baron et al., 
2017, p. 2): ‘... consider the downstream implications for the facts that we are not 
holding fixed of letting the antecedent vary: we see how the twiddle ‘ramifies’ 
through these facts’. In the case of cicadas, the fixed mathematics is the mathemati-
cal structure of natural numbers, and the relevant physical structure is time meas-
ured in years (Baron et al., 2017, pp. 10–11). BCR claim that, as a result of consid-
ering the downstream ramifications of twiddled mathematical facts, a conditional 
such as (V) should be recovered false.

(V) If, in addition to 13 and 1, 13 had the factors 19 and 23, North American 
periodical cicadas would not have 13-year life cycles.

(V) is false according to BCR for the following reason:

Hold fixed the morphism. Now make the counterfactual change to the math-
ematics. The world keeps up its end of the bargain, and so a 13-year lifespan 
is now divisible into 19- and 23-year intervals. The cicadas don’t budge: 13 
remains the optimal strategy for avoiding predation by organisms that have life 
cycles up to 18 years. Of course, if there are 19- or 23-year predators, then 13 
is no longer optimal. However, there are ecological constraints on the cicada 
case that rule out these predators.

As BCR (2017) point out, if there are 19- or 23-year predators, then 13 is no longer 
optimal. This means that twiddling the primeness of 13, irrespective of empirical 
constraints, should make the countermathematical (V) true. After all, they aim to 
deliver an evaluative procedure for finding the correct truth value of countermath-
ematical explanations through the dependency between the countermathematical 
antecedent and its consequent. BCR think that (V) comes out false as a result of 
the ecological constraint. Given that the ecological constraint is itself an empirical 
explanans, and hence external to finding an explanatory dependence between the 
antecedent and the consequent of (V), the truth value of the countermathemati-
cal—being false—is not really determined by tracing the ramifications of the varied 
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antecedent on the consequent of the countermathematical. The falsity of (V) is 
rather determined by supposing that an ecological constraint that holds in the actual 
world also holds in the relevant countermathematical world(s), where 13 is divisible 
by 19 and 23.

However, suppose there is a world where 13 is divisible by 19 and 23 and there 
are 13-year predators. Well then the ecological constraint could be plausibly differ-
ent: it could be that the constraint extends to 13 which is at least as great as 23. 
After all, if cicadas can become 13 years old, then in virtue of the fixed morphism 
between the mathematical and empirical structure, they can also become at least 
23 years old. So BCR have a choice to make here. Either they do not allow that 
the varied antecedent ramifies via the fixed morphism to the physical structure, and 
so determines the truth value of the countermathematical. But then they owe us an 
answer why the ramification I have just presented is invalid for establishing the truth 
value of a countermathematical. Or else they need to admit that (V) comes out true. 
But then varying 13’s primeness in this way mathematically explains why cicadas 
have 13-year life cycles. And this is what BCR explicitly deny.

We have just seen a case in which the expected truth value of a countermath-
ematical is not obtained by merely evaluating the countermathematical given the 
fixed morphism between mathematical structures in its antecedent and physical or 
mathematical structures in its consequent. Rather, it is obtained by what an empiri-
cal constraint dictates. This shows that, sometimes, the last step of the evaluative 
procedure of countermathematicals does not deliver the truth value one might intui-
tively expect.

Moreover, consider the following countermathematical:

(VI) If 13 had only the factor 1, North American periodical cicadas would not 
have 13-year life cycles.

If 13 had only the factor 1, 13 would not be prime. This variation of 13’s primeness 
does not change its optimality (if anything it makes it even more optimal). After 
all, less factors of the number representing the cicada’s life cycles result in more 
optimality. Hence, under this variation of 13’s primeness, the cicadas would have 
13-year life cycles, and so (VI) comes out false. This shows that varying the prime-
ness of 13 may not explain the 13-year life cycles.

Now, let us turn to an example in which the delivered truth values are trivial, 
simply because there is no robust space for exploring the ramification of the coun-
terfactual twiddle. In the case of intra-mathematical explanations, the evaluation 
of countermathematicals may result in obtaining trivial truth values. Recall coun-
termathematical (III) If it were not the case that for any three consecutive nonzero 
natural numbers, at least one of those numbers is even (and therefore divisible by 
2), then it would not be the case that the product of any three non- zero, consecutive 
natural numbers is divisible by 6. For the purpose of the argument, let us assume 
that 503, 504, and 505 are not even. How does this tweak ramify to the consequent? 
BCR’s (2020) strategy is to rely on the following fact: the product of two natural 
numbers is even, only if at least one of them is. Under the twiddle, 505 is not even. 
So, for (503 × 504) × 505 , we need to see whether (503 × 504) is even. However, 
neither of 503 or 504 is even by the twiddle.
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Therefore, the product of 503, 504, and 505 is not divisible by 6. The problem 
here is that the antecedent and the consequent are not really mathematically dis-
tinct. The assumptions about the properties of numbers in the antecedent appear 
right away in the consequent. This makes the step ( iii′′ ) of the evaluation recipe of 
countermathematicals, for determining the influence of varying the antecedent on 
the consequent, idle. There is no space left to track down the ramifications running 
from the mathematical twiddle to the consequent, because the main components of 
the consequent trivially change as soon as the assumptions about the evenness of the 
numbers change in the antecedent. To see this, there is no intermediate ramification 
step between the antecedent and the consequent. There is simply no space for any 
ramification. The twiddle that all of 503, 504, and 505 are not even immediately 
affects the consequent. But this effect is too immediate to count as a ramification.11

3.3  No Explanatory Benefits

What are the explanatory benefits of varying mathematical facts? How would the 
world look like if 2 + 2 were not equal to 4? Well, the honest answer is that we 
just do not know. This question provides no insight. Similarly, under BCR’s (2017, 
2020) assumptions, the variation of mathematical facts is uninformative. How the 
impossible ‘perturbation’ to the antecedent of a countermathematical is supposed 
to influence its consequent is fully left to the reader’s intuitions, and these intui-
tions can be deeply fallible. The countermathematical (II) If 13 were not a prime 
number, then North American periodical cicadas would not have 13-year life cycles, 
for instance, does not provide any insight on its own. What we need in the case of 
countermathematical explanations is some sort of explanatory benefit. After all, the 
whole project of extending the counterfactual account of causal explanations is the 
exploration of the idea that the explanatory dependence between the mathematical 
explanans and the explanandum of any mathematical explanation is analyzable in 
terms of counterfactual dependence.

What makes us understand the explanation of the cicada example is that a life 
cycle is optimal only when it minimizes the overlap with the periodical predators; 
and this is given within the ecological constraints, by necessity, only when the life 
cycle is prime-numbered. I will say more about the significance of explanation by 
necessary constraints as an approach to mathematical explanations in the next sec-
tion (Lange, 2013, 2016).

To be more precise, recall the optimality model of Sect.  3: (a) 13 and 17 are 
prime, (b) prime numbers maximize their lowest common multiple relative to all 
lower numbers; that is, they minimize the intersection of periods, and (c) the ecolog-
ical constraints entail that prime-numbered life cycles minimize the chance of co-
occurrence with predators that have similar life-cycle lengths. Given the ecological 

11 The situation is entirely different in evaluating a non-explanatory countermathematical such as ‘If 
Hobbes had (secretly) squared the circle, all sick children in the mountains of South America at the time 
would have cared’. Here, there is no such shared structure at work between the antecedent and the conse-
quent.
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restriction of the life span of cicadas to 12–18 years, and the explanatory assumption 
of evolutionary biology that successful organisms must have evolved in an optimal 
way, there is just no other possibility left than 13-year and 17-year life cycles. In 
brief, if we respect scientific practice, 13’s primeness explains the life-cycle length 
of certain cicadas because, if cicadas have evolved in an optimal way, it cannot be 
otherwise. The claim that the primeness of 13 and 17 is explanatory thus derives 
from the fact that the optimal numbers must be prime (provided the interval is 
restricted to between 12 and 18). The claim that primeness is explanatory does not 
derive from a counterfactual, or better countermathematical, variation of primeness 
and its propagated influence. As shown, it is extremely difficult (if not practically 
impossible) to analyze it on such grounds.

BCR assume that the primeness of 13 explains that North American periodical 
cicadas have 13-year life cycles. Hence, the countermathematical (II) must come 
out true on their account: If 13 were not prime, North American periodical cica-
das would not have 13-year life cycles. Here is how they apply their account to this 
countermathematical. To vary the antecedent, BCR suggest using a new specifically 
designed operator, multiplication*, which takes 2 and 6 as input and outputs 13. This 
operator takes us to the closest world(s) to the actual world in which 13 is not prime, 
thanks to multiplication*. However, there are many other worlds in which 13 is not 
a prime number, but the non-primeness of 13 is obtained differently. For example, 
consider a world in which 13 is not prime because it only has the factor 1. Isn’t this 
world closer to the actual world compared to a world in which 13 in addition to 
1 and 13 has the factors 2 and 6? BCR (2017) do not provide any answer in their 
account for extra-mathematical explanations, and it is hard to see how a principled 
procedure would look like. If the criterion for choosing the closest world(s), as BCR 
(2020) suggest, is the world with the minimum changes to the intrinsic properties 
of the primeness of 13, the answer would be positive. The number of the violations 
to the intrinsic properties of the primeness of 13 is one if we go to a world in which 
13 is only divisible by 1 (rather than being divisible by 1 and 13). The number of 
the violations to the intrinsic properties of 13 is two if we go to a world in which 
13, in addition to 13 and 1, is also divisible by 2 and 6 (13 obtains two new fac-
tors). When we rely on a similarity order between worlds based on intrinsic proper-
ties, it seems that the multiplication*-world is less similar to the actual world than a 
world where 13 has only the factor 1. This poses the question why we should choose 
the multiplication*-world if it is not for ‘finding’ a presumed countermathematical 
dependence?

Here is a rough characterization of BCR’s account in action. To be able to assess 
the applicability of their countermathematical account, they need to compare it to 
our intuitive background knowledge about what explains what for some examples. 
This means that, for the given examples, first we have an intuitive idea about the 
implication of varying the mathematical explanans. We also intuitively know what 
the truth value for a countermathematical will be, if an extension of a counterfactual 
theory of causal explanations is to be successful. Now, given this knowledge, BCR 
first set the desired result of the mathematical variation (for example, that 13 is not 
prime); second, they work backwards and pick some world(s) in which a specifi-
cally designed mathematical operator (such as multiplication*) is introduced; third, 
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they consider the ramification of this variation; however, I suspect that this world is 
chosen in a way that it delivers the truth value for the countermathematical such that 
the desired countermathematical explanation becomes true. I suspect that if BCR 
wanted to obtain the opposite truth value for the countermathematical conditional 
(II), they could have designed another mathematical operation which takes us to 
another strange world which would serve their purpose.

To be clear, I am not claiming the BCR propose that every time we evaluate a 
countermathematical we must first start with a desired truth value for the counter-
mathematical and then make twiddles until it has that truth value. However, their 
choice of the relevant impossible world(s) for the examples for which we intuitively 
know what the countermathematical truth value should be seems rather ad hoc. I 
suspect that the closest world with multiplication* is chosen such that it delivers a 
desired truth value that we expect for this example. Why should we not consider, for 
instance, the impossible world in which 13 has only the factor 1? In such a world the 
countermathematical could easily turn out to be false.

This procedure stands in contrast to the epistemic or practical benefits we acquire 
from counterfactual causal explanations. There, we have an epistemic space for 
exploration of the consequences of Suzy not throwing the rock. We are not bound 
to a similar non-explanatory procedure in this explorative space such that the agent 
engaged in the counterfactual analysis can play around with different situations in 
which the window does not shatter, and thereby attains understanding.

Epistemic benefits such as exploring epistemic space for the purpose of under-
standing are not the only explanatory benefit that we expect to acquire from a coun-
terfactual analysis of explanation. In the cases of counterfactual causal explanations, 
variation of an empirical antecedent can provide some instrumentalist insights that 
are frequently used to deliberate, to predict, or to control outcomes of the varia-
tion. We can control and deliberate on some nearly perfect duplicates of empirical 
facts, for instance, by running agent-based simulations on similar scenarios, or more 
abstractly by some thought experiments that are set in the context of causal explana-
tions. To vary mathematical facts does not allow us to do this. Entertaining a math-
ematical impossibility such as the non-primeness of 13, viz.  a varied ‘mathematical 
fact’, does not provide us with such potential benefits.

This problem of no explanatory benefit, in particular, questions whether the 
steps ( iii′ ) and ( iii′′ ) of the evaluation recipe for countermathematicals, namely the 
determination of the influence of the variation of antecedent on the consequent, are 
attainable.

So far, I have proposed three challenges to the current proposals for understand-
ing mathematical explanations based on counterfactuals. But what should we make 
of mathematical explanations? I suggest an easy answer for extra-mathematical 
explanations in the next section. An answer for intra-mathematical explanations is 
more intricate and must be given elsewhere.
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4  Towards an Alternative Approach

One promising account for analyzing extra-mathematical explanations is a hybrid, 
integrated account of causal counterfactuals and constraint-based explanations. 
Recall that extra-mathematical explanations include some mathematical facts and 
some empirical facts in the collection of their explanantia. The empirical facts can 
be twiddled according to causal counterfactual accounts. On the other hand, as 
Lange (2013, 2016) defends this in relation to various examples, the mathemati-
cal facts can be taken as necessary constraints, having a modal force stronger than 
the laws of nature. These facts dictate what can be and cannot be otherwise. For 
instance, 13’s primeness explains the life-cycle length of certain cicadas because, if 
cicadas have evolved in an optimal way (and given all empirical facts driven from 
evolutionary biology), it cannot be otherwise.

On standard counterfactual accounts of causal explanation, we can vary an empir-
ical fact while keeping mathematical facts fixed. Consider the counterfactual: 

 (VII) If ecological constraints restricted the life-cycle length of cicadas to 14–16 
years, the cicadas would not have 13-year life cycles.

Here, the empirical fact about the ecological constraints is varied. This possibility 
gives us what BCR hope to achieve by varying 13’s primeness. For instance, if the 
possible fact that the cicadas have 14-year life cycles were true, they would overlap 
with predators having 1-, 2-, 7-, and 14-year life cycles. In this case, the cicadas 
would not avoid predators optimally. The antecedent of (VII) suggests an empiri-
cal variation from the actual biological constraint to a merely possible biological 
constraint that does the job in counterfactual thinking. Variation of the empirical 
fact, viz.  that ecological constraints restrict the life-cycle length of cicadas to 14–16 
years, can be done while keeping the mathematical facts fixed: that 13 and 17 are 
prime numbers. Hence, the empirical variation can be done by assuming that they 
would have, for instance, 14-year, 15-year, or 16-year life cycles. But this is very dif-
ferent from assuming that 13 were 12, or the like.

In light of the counterfactual explanation of (VII), it appears questionable whether 
the counterfactual account of causal explanations needs any extension to accommo-
date extra-mathematical explanations. BCR aim to explain certain empirical facts by 
varying mathematical facts. However, their enterprise to cover extra-mathematical 
explanations is redundant if the empirical facts can be counterfactually explained 
without varying mathematical facts. On this picture, mathematical explanantia just 
play a constraining role.12

Acquiring a general account for analyzing intra-mathematical explanations, 
however, is more challenging, and it seems to me to remain an open question. In 
the literature, some general accounts for accommodating (some) intra-mathemati-
cal explanations are already offered. Two prominent accounts are Steiner’s (1978) 
explanatory proofs and Kitcher’s (1989) explanatory unification. The scope and 

12 For details about the modal characteristics of mathematical facts as compared to empirical facts, see 
Lange (2016).
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validity of these accounts remains a matter of criticism. For instance, drawing on 
mathematical practice, Lehet (2021) and D’Alessandro (2020) discuss examples 
of intra-mathematical explanations that go beyond explanatory proofs. In addition, 
Mancosu and Hafner (2008) show that Kitcher’s model makes predictions about 
explanatoriness that go against specific cases in mathematical practice.

In my view, a more promising proposal is a ‘bottom up’ approach (Mancosu, 
2008) which requires investigating several case studies that are deemed explanatory 
in mathematical practice. When enough case studies across various areas of math-
ematics are done, we might be able to provide a general account for intra-mathemat-
ical explanations. This remains a task to be done elsewhere.

5  Conclusion

Recently, several philosophers such as Reutlinger (2016), Baron et  al. (2017), 
Woodward (2018), Baron et al. (2020), and Reutlinger et al. (2020) have attempted 
to extend the counterfactual theory of causal explanations to mathematical expla-
nation. These attempts have had resounding impacts on theorizing about scientific 
explanation, metaphysical explanation, metaphysical causation, and logical explana-
tion. According to these attempts, roughly, we can apply a standard way of thinking 
about causal counterfactuals to countermathematicals.

Among these, Baron et  al. (2017, 2020) offer the most elaborate and influen-
tial endeavor. Some defenders of countermathematical explanations simply presup-
pose the validity of BCR’s account. For example, Reutlinger et al. (2020) argue for 
a necessary condition—called a dependency condition—common to counterfactual 
theories of explanation. This condition states that ‘The explanandum counterfactually 
depends on certain possible changes in the conditions described by the explanans (i.e. 
if the explanans conditions were different, then the explanandum would be different 
as well)’. How to evaluate such countermathematical conditionals? Reutlinger et  al. 
(2020) take the semantic procedure for the evaluation of countermathematical expla-
nations as proposed by Baron et al. (2020) as a premise of their account. Others require 
arguments very much along the lines of BCR to defend their account of countermathe-
matical explanations. For instance, a difference-making account of countermathemati-
cal explanation such as one along the lines of Woodward (2018) requires answering 
to what-if-things-had-been-different questions in the sense that if the conditions in the 
explanans had been different, what the explanandum expresses would have been dif-
ferent. If these conditions are purely mathematical (in the case of intra-mathematical 
explanations), then we run into very similar issues as the ones that trouble BCR.

By providing a detailed criticism of BCR’s account, I have argued against those 
contemporary attempts which claim that the features of the counterfactual account 
of causal explanation carry over to mathematical explanations.

I have discussed three main problems which pertain to the current counterfactual 
theories of mathematical explanations. In light of these problems, I have shown that 
the steps of the common recipe for evaluating countermathematical explanations are 
not satisfactory enough. As a result, we do not have—as of yet—a plausible coun-
terfactual theory for mathematical explanations. I agree that some theoretical virtues 
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might dictate searching for a general theory of explanation. However, I have shown 
that the current accounts fail in providing a satisfactory counterfactual account of 
mathematical explanations. Only a significant modification of the current accounts 
might rescue the search for a fully general counterfactual theory of explanation. 
Hence, without resolving the issues raised in this paper, the current proposals ought 
to be rejected. I have also claimed that a hybrid account integrating the virtues of 
the causal counterfactual approach and constraint-based approach to mathematical 
explanations can accommodate extra-mathematical explanations. A general account 
for intra-mathematical explanations, however, remains to be developed.

Finally, I would like to point to a potential approach which would resist (some 
of) the criticisms I raised in this paper. This approach requires to identify proposi-
tions with sets of possibilities, and then interpret possibilities not in a mathematical 
way, but in terms of what you consider to be possible or impossible (Huber, 2021, 
Ch. 6). This interpretation remains open to full investigation, and I do not tackle it 
in details here. If so, any exploration of this account, however, requires to justify 
the ways in which an individual’s belief about the truth or falsity of a countermath-
ematical statement gives rise to countermathematical explanations. It seems (to me) 
that explanations require more than mere belief: they require truth.
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