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Abstract:We attribute threemajor insights toHegel:first, an understanding of the real
numbers as the paradigmatic kind of number (which also accords with their role in
physical measurement); second, a recognition that a quantitative relation has three
elements (the two things being related and the relation itself), which is embedded
in his conception of measure; and third, a recognition of the phenomenon of
divergence of measures such as in second‐order or continuous phase transitions in
which correlation length diverges (e.g., the critical point of water at which the
reciprocal size of the droplets diverges). For ease of exposition, we will refer to these
three insights as the R First Theory, Tripartite Relations, and Divergence ofMeasures.
Given the constraints of space, we emphasize the first and the third in this paper.

1. Introduction

In this essay, we will discuss the mathematical concepts analyzed by G. W. F. Hegel
in his Logic, particularly as presented in the Encyclopedia.1 In crucial respects, he is
foreshadowing many mathematical concepts around real numbers, relations, and
topology (which are in modern times described by set theory), predating by
several decades the usual foundations laid by Cantor and Dedekind and used
today. In this respect, we agree with Reinhold Baer:

For mathematicians of subsequent generations much in Hegel appears
fuzzy that was simply the highest wisdom of his time, but a closer look
reveals here and there that Hegel, had he not so staunchly believed his
contemporaries but rather thought his thoughts straight through to their
conclusions, would have anticipated many of the highest achievements
of the last 80 years (Baer 1932: 5).

What is even more striking is that Hegel does this not using symbolic notation
but rather conceptual thought, which proceeds by using ‘definitions whose content
is not accepted merely as something that we come across, but is recognized as
grounded in free thinking, and hence at the same time as grounded within itself’
(§99Z). Our goal is to match these lines of thought to mathematical concepts which
are current today. In this fashion, we hope to elucidate the complex thoughts that
Hegel presents to us in a more modern language. By interpreting this text in a more
formalized mathematical setting, we also wish, vice‐versa, to underscore his
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fundamental insights and intricate expression of these concepts in natural
language without symbolic notation. For the reader with a background in
mathematics, this presents a nice opportunity to gain insight into the thought
process which goes into these constructions, but which has been axiomatized away
by more modern mathematicians, leaving only the names (such as class or relation)
as a reminder. The astonishing outcome is that Hegel’s ideas represent formal
mathematical and physical notions concerning real numbers, arithmetic, phase
transitions, and their properties very well. He furthermore penetrates several
technical subtleties by pure reasoning.

With respect to this comparative background, we attribute three major insights
to Hegel: first, an understanding of the real numbers as the paradigmatic kind of
number (which also accords with their role in physical measurement); second, a
recognition that a quantitative relation has three elements (the two things being
related and the relation itself), which is embedded in his conception of measure;
and third, a recognition of the phenomenon of divergence of measures such as in
second‐order or continuous phase transitions in which correlation length diverges2

(e.g., the critical point of water at which the reciprocal size of the droplets
diverges). For ease of exposition, we will refer to these three insights as the R First
Theory, Tripartite Relations, and Divergence of Measures. Given constraints of
space, we emphasize the first and the third in this paper.

Concerning the R First Theory, Hegel foreshadows the development of real
numbers. Real numbers were only first rigorously defined in the early 1860s, so it
is not surprising that Hegel uses neither that terminology nor the specific
mathematical devices and notation that were developed later. But Hegel’s ‘quantity’
and its associated logical categories represent another terminology for describing
many of the mathematical features that since the 1860s have been taken to be
essential to analysis and number theory and to the theory of the reals in particular.
So, on our view, it is not just that Hegel’s conceptual analysis of quantity provides
insight into the significance of real numbers that is lost with axiomatization but also
that we can gain insight into the significance and importance of Hegel’s discussion
of quantity when we see him as attempting to conceptualize a logical object that
more modern mathematicians take to be the real numbers.3

Traditionally, real numbers are associated with a line L, and Hegel takes this as
a starting point. Actually, Hegel is more careful, since we do not encounter lines
directly but starts with space. On the contemporary mathematical understanding
of space, its key properties are that it is homogeneous and that we can measure
inside it. The measurement of the distance between two points then naturally
yields the restriction to a line following classical geometry. But to simplify the
exposition and highlight the intuitive stakes of the argument, we will treat Hegel
as beginning with L. From this starting point, we can map the train of thought in
the Encyclopedia Logic onto subsequent developments in mathematics after Hegel.
This double development can be summarized as a kind of progression in a U
shape moving from the geometric concept of a line L to the axiomatic
reconstruction of it as the real numbers or, with more technical precision, one‐
dimensional affine space:4
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(1) Start out with the line L, which has certain properties like homogeneity and
completeness.

(2) Identify it with numbers (let’s call them measurement numbers or Maßzahlen).
(3) Realize that by picking a unit, the natural numbers appear. These unit natural

numbers carry the natural arithmetic operations of addition, multiplication,
and their inverses, which makes them a measurement copy of the rationalsQ .5

(3’) Make the identification of the unit natural numbers with counting numbers
(Zählzahlen) and construct the rationals Q (Rechenzahlen) by the same
arithmetic operations thereby identifying the two versions of rationals (i.e.,
the measurement and counting rationals).6

(2’) Axiomatically introduce new numbers to Q in order to complete it to R.7

(1’) Show that these numbers are complete and homogeneous and hence
give a model for the line. Technically, one introduces the affine line.

If one just regard the ascending part of the ‘U’—i.e., 3’ ➔ 1’—the axiomatic
construction is independent of geometry and intuition, which is stressed by
Dedekind (1963: 37). Nevertheless the conceptual origin of the reals is geometric
(Dedekind 1963: 9, Dominguez 1999: 140), which is represented in Hegel in the
descending part of the ‘U’, i.e., 1 ➔3. Furthermore, in this transition from the
descending to the ascending side, we have ‘lost’ the actual nature of the line by
replacing it with an axiomatic mathematical concept. As Gauss puts it:

According tomy innermost conviction, the theory of space (Raumlehre) has a
priori a completely different position in our knowledge as the pure theory of
magnitudes (Grössenlehre); our cognizance of the former absolutely lacks that
complete conviction of its necessity (as well as its absolute truth) that is
proper to the latter. Wemust humbly admit that if number is a mere product
of our minds, space also has a reality outside our minds to which we cannot
completely prescribe its laws a priori (Gauss 1863/1929: Vol. 8, 201).8

Hegel sees the potential for this loss (though his understanding of the
difference between space and magnitude is different from Gauss). His strategy,
which we call the R First Theory, is to avoid it by elevating L to be the real
representative of numbers (Maßzahlen) and then following the descending part
of the ‘U’ to construct all the other numbers (Zählzahlen and Rechenzahlen).

The text is organized as follows. The main part of the text is the second section in
which we follow Hegel’s discussion in Encyclopedia Logic (as supplemented by the
Science of Logic) and represent his exposition in modern formal terms. Then, a brief
section follows which summarizes the philosophical significance of Hegel’s
understanding as reflected through the lens of contemporary developments. Finally,
we add a section about the mathematical concepts for the reader’s reference. In the
main text, we relegate more specific technical details to the footnotes.
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2. Interpretation of §§99—111 of the Encyclopedia Logic (Quantity andMeasure)

2.1. § 99

In order to measure something, we need to abstract from all other aspects except
for the quantity that we are measuring, and this abstraction is central to Hegel’s
definition of quantity in this section: ‘Quantity is pure being in which determinacy
is posited as no longer one with being itself, but as superseded or indifferent.’ In
doing so, we isolate and hence separate this quantity from the object. The object
needs to retain its identity regardless of the outcome of the measurement, viz.
the magnitude (see Hegel’s first remark to this section). As a concept, quantity
pertains to existing objects but disregard their qualitative identity. Moreover, in
obtaining a number or quantity, one has to disregard the differences of the
constituents one measures, sums, or integrates (the constituents are thus
considered as indifferent (‘gleichgültig’)).9

Thus, though Hegel clearly starts his discussion with neither measure nor
measurement, he nonetheless starts with a feature of quantity that is essential for
measurability. One basic premise that we encounter in today’s view of physics is
that observable quantities are measured by real numbers. Fixing such a quantity
(e.g., force, magnetic field, spin, and so on) by performing a measurement of it
on a given object yields its magnitude (Größe), which is a specific real number
(i.e., a ‘determinate quantity’).10 As Hegel puts it in his lectures, ‘when we employ
quantitative determinations in our observation of the objective world, it is in fact
always already measure that we keep in mind as the aim of such employment’
(EL§106Z). In the wider context of Hegel’s thinking about quantity, he makes the
R First Theory even more explicit in his discussion of mechanics in the philosophy
of nature: ‘The true philosophical science of mathematics as the theory of
magnitude (Größenlehre) would be the science of measure; but this presupposes
already the real particularity of things, which is first available in concrete nature.
But owing to the external nature of magnitude it would be perhaps the most
difficult science’ (EN§259R). In this respect, the broader argument from quantity
to measurement is to show that the determination of magnitudes is ultimately
parasitic on the determining of magnitude. One measures certain quantities and
obtains a real number that is a real quantity. Now, the result of the measurement
is the magnitude, which is a specific real number. The quantity that is measured
does not depend on the outcome of this particular measurement, thereby making
its existence and definition independent of the process and the outcome.11

Moreover, intrinsically, such a quantity may take on different values, as
determined by a measurement, without changing its identity. So, paradoxically,
the independence of quantity from any particular measurement is essential to the
role that quantity plays within measurement.

These two forms of indifference—of the measured object to its quantity and of
the quantity itself to its specific value at a given time—are emphasized by Hegel
(in reverse order) in an introductory paragraph added in the second edition of
the Science of Logic: ‘such a limit, the indifference of the limit as limit and the
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indifference of the something to the limit, constitutes the quantitative
determinateness of the something’ (WL 21:173). The indifference of the object to
its quantitative determination is primarily spelled out in this and the next section
of the Encyclopedia, on pure quantity; the second indifference of the quantity to
its own value is spelled out in the following discussion on quantum. In modern
mathematical language, the first indifference is homogeneity; the second is the
continuity of variation that is essential to completeness. Since these two features
are the crucial features of affine space, this shows Hegel has begun his discussion
of quantity with a logical structure that contemporary mathematicians would
consider a formal geometrical concept of L.

Hegel’s remark and much of the addition to this section can be thought of as
relating to the real numbers, since they deal with particular features that are
distinctive of the real numbers. So, for example, the fact that real numbers are
ordered and one can freely move to bigger or smaller values is deemed to be
crucial (‘was vermehrt oder vermindert werden kann’).12 And indeed, one of the
trademarks of real numbers is that they are an ordered field. This entails the
operations mentioned above, but additionally an order, that is the relation <, as
well as compatibility between the two, which means that the order preserves the
homogeneity.

Furthermore, in the remark, Hegel gives another example of the indifference or
Gleichgültigkeit of quantity in claiming that this is what we have in mind when we
understand the absolute as matter. In modern terms, this can be summarized in the
fact that the set of real numbers R is homogeneous with respect to addition—in
fact it is a principal homogeneous space for the operation of addition (see §4). This
pertains to the role of the real numbers as measuring inside time R and space,
which is R3.13 Non‐technically, ‘homogeneous’ means that ‘it is the same
everywhere’. Mathematically, this is given by invariance of structures under shifts,
called translations, and stretching, called dilations. Space is homogeneous under
the continuous action of addition or rather translation and multiplication or rather
dilation. One could call this feature of the reals the indifferent absolute, as Hegel
does (‘das Absolut‐Indifferente’).14 Hegel thus rightly realizes that there is a way to
‘find’ the reals starting from space (i.e., 1 ➔ 2 in the ‘U’). Interestingly enough,
the concept of magnitude in space involves assigning a real number to distances,
which is invariant under translation and rotation. This means that these
magnitudes disregard all differences between individual different points.
Nevertheless, there is a quantity given by two points, which is their difference.15

In Hegel’s words, this expresses that the reals themselves can be considered as
examples of quantity but only as pure quantity. It may be interesting to remark that
here, Hegel foreshadows the fact that if one generalizes (as Cantor did) the
quantity of natural numbers as the cardinality of finite sets to the cardinality of
the reals, one obtains a new concept not useful for measurement. The questions
occurring in measurement are not ‘How many points in an interval?’ or ‘How long
are the reals?’ but ‘How long is an interval?’16 Indeed, Hegel operates with a
provisional definition according to which the absolute is pure quantity. Translated
to this situation, one could say that the reals are not to be measured in a physical
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way, but they are underlying measurement: ‘Otherwise pure space, time, etc. could
be taken to be examples of quantity, insofar as the real is supposed to be grasped as
an indifferent filling of space or time [Sonst können der reine Raum, die Zeit usf. als
Beispiele der Quantität genommen warden …] (emphasis ours).’ Again, this makes
the point that Hegel’s argument has contemporary significance with respect to
the internal connection between measurement and real numbers, even though
the category of pure quantity itself is identical neither with measurement nor with
real numbers, each of which is a more concrete concept. In this opening section of
Hegel’s discussion, pure quantity is identifiable with homogeneity in the
contemporary mathematician’s sense.

2.2. § 100

Here, Hegel seems to struggle to combine the two faces of the reals that come out
in the two definitions reviewed in more technical detail in §4, below. First, the reals
are a continuum or the continuum, which is represented by drawing the real
number line. In mathematical terms, this feature is captured by the axiomatics of
Dedekind cuts as a method of constructing R. This, however, says nothing a priori
about their algebraic structure, such as addition and multiplication, which are
introduced in a rather complicated fashion. On the other hand, they can be
constructed as a completion of the rational numbers Q, which makes their
algebraic properties easier to understand.17 A basic feature of the algebraic
construction is that it starts with the natural numbers, which are discrete (so are
the rationals when viewed from an arithmetic angle).18 Hence in modern
axiomatics, we construct something continuous (R) from something discrete (Q).
The remnant of discreteness is apparent in the embedding of the natural numbers
into R and to its fullest extent given by viewing R simply as a set of points
underlining the line with arithmetic operations. Here is the apparent paradox. It
is appropriate that the paradox would come up at this point, because here Hegel
is attempting to understand the second form of indifference noted in the previous
section—i.e., the indifference of a quantity to its own determinate magnitude. This
mode of indifference tracks the modern mathematical characteristic of continuity
of variation (essential to the completeness of R) which is, in turn, precisely what
both constructions, methods of R discussed in this paragraph, attempt to
demonstrate.

These two aspects of R are similarly emphasized in the greater Logic: quantity is
at first ‘a limit which is just as much no limit … the repulsion of the many ones
which is immediate non‐repulsion, their continuity’ (WL 21:173) and in more detail
in the section on pure quantity: ‘Continuity is therefore simple, self‐same reference
to itself unbroken by any limit or exclusion – not, however, immediate unity but the
unity of ones which have existence for themselves. Still contained in it is the
outside‐one‐another of plurality, though at the same time as something without
distinctions, unbroken’ (WL 21: 176).

Hegel expresses the first aspect of the paradox in the greater Logic by saying that
we understand the very relation itself between continuity and discreteness first as
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a kind of continuity and then as a kind of discreteness. It is precisely by these
explicit modes of understanding that we generate magnitude rather than simple
quantity, which is a way of putting into pure thought the way that the two
construction methods outlined above (Dedekind cuts and algebraic construction
from Q) each generate a distinct conception of the concept of R that emphasizes
different aspects of R. The former emphasizes the continuous nature of R
presupposed by its role in physical measurement; the latter emphasizes the
conceptual relations between distinct numbers and therefore articulates the non‐
immediate aspect of number and arithmetic. But Hegel is at pains to say that both
sides are present in both continuous and discrete magnitude, with the difference
between the two lying in which is emphasized and which remains implicit (WL
21:189–90). Of course both constructions are isomorphic and in the end contain
both arithmetic operations of a field and a metric with respect to which they are
complete.19

Hegel resolves this nicely by calling these aspects rather than species of
magnitude.20 In modern terms, we could say that if we look at a natural number,
it is a multiple of 1 and hence made up out of units.21 On the other hand, when
embedding N into R, a natural number is just a real number and hence part of
the continuum and thus ‘infinitely divisible’. 22 Hegel’s example, in the Addition
of people in the room or the division of space into ‘Raumpunkte’ is right along this
line. Mathematically, this is captured by the embedding of Z3 (i.e., the points of R3

with integer coordinates) into the ambient R3
, (i.e., space).

23 In elaborating in the
greater Logic, Hegel says that in contrast to a false naturalism that would attempt
to build up reality by a process of ‘composition [Zusammensetzung]’ of many
exclusive points, ‘Mathematics, on the contrary, rejects a metaphysics that would
make time consist of points of time; space in general, or the line in the first instance,
of points of space … It gives no credit to such discontinuous ones’ (WL 21: 178).

To connect this distinction between continuous and discrete magnitudes to the
‘U’, we can say that it gets at one of the fundamental differences between (1) and
(1’). That is, another reason for the disparity between the real numbers just as a
set, say of Dedekind cuts (i.e., (1’)), and the number line L (i.e., (1)), is that the
latter is continuous and the former is without any extra data discrete. In order
to reintroduce this feature, one has to put a topology on R, and this is a choice
to be made by the mathematician. There are indeed two natural choices, the
discrete topology in which every number is separate from every other and the
metric topology, which captures the continuity. This construction is again courtesy
of a metric or a distance function, which are mathematical versions of
measurement. Hegel realizes that the possibility of what contemporary
mathematicians would describe as the choice of a topology (metric or discrete)
is contained in the concept of numbers and by making them aspects of numbers
hence foreshadows this development in topology as well. In Hegel’s terms, these
are the two sides of the same coin given by repulsion and attraction: ‘As the
proximate result of being‐for‐itself, quantity contains within itself as ideal
elements both sides of its process (repulsion and attraction); hence it is both
continuous and discrete’ (EL§100Z).
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2.3. §101

A nice mathematical version of quantum as ‘quantity essentially posited with the
excluding determinacy that it contains …; limited (begrenzte) quantity’ is as
follows. First, if we have a set X, then any posited subset A of X gives rise to the
complement X\A of A in X and A=X\(X\A), i.e., the ‘excluding determinacy’.
Now, in order to be ‘begrenzt’—that is bounded—one needs a notion of distance
or a metric on the set. Per Hegel, this should be an ordered one (‘was vermehrt
oder vermindert werden kann’). Typical bounded sets on the reals, as given by
their bound, are open and closed intervals [a,b] and (a,b). There are more bounded
sets, in the technical sense, but if one would use the bound as a defining property,
these are the natural ones.24 This dichotomy between open and closed intervals
and their boundaries foreshadows the difference between intensive and extensive
magnitudes and the need for a limit.

Following up on the need for a metric, we can understand Hegel’s quantum as
simply a unit of measurement, in the modern mathematical sense of that term. In
the greater Logic, he identifies it from the first sentence of the section with number
(Zahl) (WL 21: 193). In modern terms, this can be incorporated into the fact that the
reals viewed as the real line only are an affine space and hence admit a scaling and
translation action. In order to break the translation action, one uses a fixed point,
which is usually taken to be 0. In order to break this scaling action, one needs a
unit. Incidentally, the unit is usually taken to be 1, which has a certain arithmetic
property as mentioned above.

Though the discussion in the lesser Logic is very short, this basic idea is filled out
in Hegel’s expression in the greater Logic that quantum or number under the aspect
of unit (‘das Eins’) is ‘(α) self‐referring, (β) enclosing, and (γ) other‐excluding limit’
(WL 21:194). That is, the unit (α) characterizes its own extent qua continuous; (β)
ties all other natural numbers together in a determinate pattern in virtue of
attributing to them a determinate multiple of its own continuous extent; and (γ)
breaks the scaling action precisely by being different from other possible units
among those that it characterizes in its second aspect. 25

A good mathematical model of Hegel’s ‘unit’ is the subset of affine space which
is between two points, say O and P. Then, we can identify the line with R by
sending O to 0 and P to 1, fixing both the origin and the unit. Now the quantum
for Hegel is the unit interval [0,1]. As a subset of R, it is unit that is das Eins but also
a set, which is possibly the union of some other sets into which it can decompose
(‘zerfällt’). As we shall argue below, it is even more the unit vector, which can be
defined as the equivalence class of this interval under the action of translation
and the additional choice of an orientation, that is a magnitude and a direction.
Fixing this identification with R once and for all the other quanta can be thought
of as vectors, which can be represented by some interval [0,a].26 This then fits with
the notion of negative quanta, which are briefly—almost parenthetically—
introduced by Hegel; these are the same quanta, only with the opposite direction.

Philosophically speaking, this shows Hegel at work on a flat ontology in which
the category of significance is a unit with the same ontological status as those it is
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used to measure. Materially speaking, this unit could be something like the
standard meter bar in Paris or the subsequent re‐definitions of the meter in terms
of the wavelength and then speed of light. In these cases, something serves as a
standard for other things of the same sort (i.e., physical phenomenon). But what
is important is the way it shows how many complex and reflexive conceptual
relations have to be built into such a flat ontology, even prior to the introduction
of distinct levels such as essence/appearance, substance/accident or universal/
individual/particular. Paradoxically, the benefit of exploring such a flat ontology
is that it is precisely there that issues of units of significance must be dealt with
directly, as it were, rather than demoting them to considerations of appearances
or subjective takes on the objective. This brings out the way in which Hegel’s
philosophy of mathematics is also an internal criticism of materialism for
underestimating the magnitude of the challenge generated by its ontological
commitments.

Mathematically speaking, this connection between limit and unit is an
important one and helps to show why it is wrong to think that Hegel either
did27 or should have28 started from N on his way to R. The connection is
represented here by the fact that limit is essential to Dasein, and Hegel writes that
‘Quantum is the existence (Dasein) of quantity’ (§101Z) and that quantum is
‘limited quantity’. The term ‘begrenzt’ foreshadows the limiting thing, the limit or
‘Grenze’ which will be used in §103. Limits in general exist in R but not in N or
Q, and the existence of limits is the key characteristic of R, so here we find evidence
that Hegel is looking to find that conceptual structure that contemporary
mathematicians understand to be R.29 The limiting process is also, in turn,
presupposed by measurement. Following the explicit dialectic of Hegel’s text, we
come to quantity out of concern to determine the status of the limit that is
constitutive of quality, which is the ontological correlate of the physicist’s concern
to have existent limits for measurement.

2.4. §102

Here, Hegel draws out the aspect of number that was implicit in the description of
number as ‘(β) enclosing’, above, i.e., that there must be a multiplicity to be
enclosed. So whereas the unity (‘Einheit’) represents number under the aspect of
continuity and thus emphasizes those aspects of number also highlighted by the
construction of R by Dedekind cuts, amount ((‘Anzahl’) or, as di Giovanni
translates it ‘the how many times’) represents number under the aspect of
discreteness and thus emphasizes those aspects of number highlighted by the
constructions of R out of the completion of Q. These come out in his construction
of the different forms of calculation.

Breaking the symmetry of the translation action by picking an origin and a unit
one can identify the continuum as a line with the real numbers.30 Now as numbers,
the reals have certain properties. A quick mathematical construction starts from
the natural numbers. Hegel conceptualizes the arithmetic operations on the natural
numbers that are passed on to the reals in 3’ ➔ 2’ in modern (axiomatic) terms by
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using counting as the basic operation. This counting can be viewed as counting
under a concept which can be viewed as an early version of arithmetic of sets.
Indeed, this is the route that Cantor would go. The natural numbers can be taken
to be the cardinalities for finite sets. The operations on numbers then correspond to
operations on sets. Addition corresponds to the disjoint union, while
multiplication is achieved by taking the Cartesian product. Finally, and this differs
slightly from Hegel’s description, powers can be computed as the cardinality of the
set of maps.

It is interesting to see that Hegel constructs the natural numbers as one would
still do in set theory today.31 The presented argument is that as soon as we have
a unit, we have the set containing this unit u={1}. In order to count up one number,
we add a disjoint union with this set u. The number two is the set u⊔u, three is
u⊔u⊔u, and so on. This is precisely ‘Numerieren (numbering)’ as Hegel describes
it. This operation turns the unit into multiples of itself. In terms of the equivalence
classes of intervals, this corresponds to taking the union of copies of these by
putting them next to each other. Interestingly enough, Hegel does not use this
geometric version but rather makes the transition from (2) to Zählzahlen (counting
numbers), or (3’) in our ‘U’.32

This is then the way to understand a curious feature of Hegel’s treatment of
quantity noted by Terry Pinkard, which is his use of both das Eins and the usual
die Eins (1981, 456–7).33 Furthermore, even ‘die Eins’ is used in an unusual way,
i.e., as a plural rather than a feminine singular. Das Eins develops out of Hegel’s
previous discussion of quality and represents the qualitative standard implicit in
quantity that is ultimately made manifest and comprehensible through the idea
that quantities are measurements. Die Eins is a quantitative unit only in virtue of
being the plurality of something repeated, which Hegel emphasizes with the plural
verb forms. This is to run in reverse the identity statement Hegel quotes from Zeno
in EL§104R: ‘it is the same thing to say something once and to be saying it always.’
Thus, Hegel’s plural ‘die Eins’ names the same concept as the modern
mathematician’s singular feminine ‘die Eins’; only by saying a quantitative unit
always is it even said once. Perhaps, the clearest statement of this conceptual
connection comes from the greater Logic’s transition between quality and quantity:
‘Plurality is not at first posited otherness; limit is only the void, only that in which
the ones [die Eins] are not. But in the limit they also are; they are in the void, or their
repulsion is their common connecting reference’ (WL 12:158). Because the plurality of
the one is equal to its repetition, saying ‘die Eins’ in the plural is equivalent to
saying ‘die Eins’ in the singular, which is the unit.34

More to the current point, the set theoretical interpretation of Numerieren brings
out the ancient insight that once you have one—even in just a qualitative sense
(i.e., das Eins)—you are close to two and therefore N. So Numerieren as the
progressive disjoint union of units is the mechanism by which quality turns into
quantity. Thus, the fact that the element of discreteness tracks the construction of
R out of N is connected to Hegel’s unique way of framing the problem of
understanding quantity in terms of the nature of the limit, as was discussed above
in §1.3. Counting becomes counting in terms of a measured unit. This is the
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transition from 2 ➔ 3, i.e., picking a unit from Rm (measurement numbers or
Maßzahlen) defines a copy of N inside Rm. Here, the copy is just given by u,
2u, 3u, … with nu + mu = (n + m)u. For this step, the unit u is arbitrary. It
could be 1, or it could be 2π, which would be useful for measuring sin, cosin,
and angles. More precisely, the choice of u defines 1, which is made explicit in
the move from 3 ➔ 3’. In 3’, whatever unit was picked in 2 ➔ 3 becomes 1,
which is used essentially in 3’ ➔ 2’.35 Hegel is building into his notion of
quantity a flexibility of different units for different kinds of investigations that
nonetheless still demarcate real limits (e.g., phase transitions). This is connected
to Hegel’s claim that quantity represents ‘the ubiquitous real possibility of the
one’ (WL 21: 177) rather than either a fixed unit or the merely logical
possibility of the subjective division of the number line, a point that he
emphasizes in his discussion of Kant’s second antinomy and Aristotle’s
superior resolution (WL 21: 179–189).36

Often one considers the set n = {1,2,…,n} as a set theoretic incarnation of the
number n which is indeed a representation of the above disjoint union. Indeed,
the set n has the cardinality n.37 The standard construction of set theory then gives
the arithmetic operations exactly as Hegel proceeds. Addition is disjoint union
(‘Zusammenzählen’). Here, there is a subtlety in the definition of disjoint union,
which Hegel grasps when he writes that ‘numbers are immediately and at first
completely undetermined numbers in general, and therefore unequal in general’
(bold emphasis ours). Mathematically speaking, if we would take the simple
union, we would not arrive at counting, since u∪u= {1, 1} = {1} =u. Before putting
the two elements 1 into a common set, we have to distinguish them—this is exactly
the definition of the disjoint union.

The multiplication of two numbers in this setting is given by the cardinality
of Cartesian product: n × m=Card(n × m). As an example, take 2 × 3=Card
(2×3) = Card({(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3)}) = 6. This makes the
commutativity of the operation obvious. Hegel realizes that this product can
be viewed in two different ways. Card(2×3) = Card({(1, 1), (1, 2), (1, 3)}⊔ {(2, 1),
(2, 2), (2, 3)}) = Card(3 ⊔ 3), where now we have two as ‘Anzahl’ and 3 as ‘Einheit’
or Card(2 × 3) = Card({(1, 1), (2, 1)}∪ {(1, 2), (2, 2)}∪ {(1, 3), (2, 3)}) = Card(2 ⊔ 2⊔ 2),
where now the roles are reversed. This becomes particularly apparent if one uses
a matrix array to enumerate the elements,

1; ; 1ð Þ 1; ; 2ð Þ 1; ; 3ð Þ;
2; ; 1ð Þ 2; ; 2ð Þ 2; ; 3ð Þ;

where now one has the choice to view the rows as ‘Anzahl’ and the columns
‘Einheit’ or vice versa. In the greater Logic, Hegel uses this convertibility to explain
the phenomenon we noted just above, i.e., the possibility of different units of
counting: ‘Since the limit is external, the breaking off point, how much is to be
taken, is something contingent [Zufälliges], arbitrary [Beliebiges]. – The difference
between amount [Anzahl] and unit [Einheit] that emerges in each species of
calculation grounds a system of numbers (dyadic, decadic, and so forth); any such
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system rests totally on arbitrariness, on which amount is taken to count as the
constant unit’ (WL 21, 198).

In order to obtain the squaring operation, Hegel suggests resolving this
dichotomy by taking the ‘Anzahl’ and ‘Einheit’ to be equal, these yielding squares.
The further power operations are then derived by iteration. The modern way to
realize power operations nm is to take the cardinality of the set of maps from the
finite cardinal n to the finite cardinal m Map(n, m)=: nm as explained in §3 This
does exhibit the equality or sameness of the factors in the power operations, but
it also introduces a new ‘Anzahl’ and type of ‘Einheit’, namely the enumeration of
the factors.38

The rest of §102 introduces the inverse operations. Here, one should be careful.
Inverting addition yields the integers, and then, further inverting the
multiplication, one constructs the rational numbers. Now there is a slight
deviation, since there is no general inversion of taking roots, and furthermore,
taking all possible roots leads to the algebraic closure of Q rather than R.
Nonetheless, this shows that, beginning from R, Hegel has produced N, and Q,
obtained by negative operation, by development of aspects of R (i.e., 2 ➔ 3). One
deficiency at this point is the precise analysis of these inverse operations. The main
complication is that for division, unlike for subtraction, there is no way of getting
around looking at fractions as equivalence classes (although of course negative
numbers are clandestinely also classes). Hegel does take up the complication of
equivalence classes in §105–107, which can be used to explain how the result of
adding negative operations is a copy of Q: since the copy of the natural numbers
depended on the choice of a unit inside Rm so will the copy of the rationals. At this
point, Hegel could have alternatively introduced the denominators as new units.
That is, ¾ is 3 times the unit ¼, where ¼ is the unit into which 1 decomposes, as
is allowed by the formalism. In fact, we still call the pieces of the fraction
numerator and denominator. This however would necessitate a further argument
about changing units while retaining the underlying quanta. This change may
actually not only to be to fractions of the original but to any arbitrary other unit,
i.e., any dilatation of R. This is postponed, due to its deeper philosophical
implications, to the later paragraphs.

Another important aspect for Hegel hidden in these short lines is that he now
actually introduces all of what we now think of as R by introducing a negative
quantum. Up to this point, one could have objected that the result of measurement
or the quanta are always positive so that we are only looking at the non‐negative
reals.39

2.4.1. Zusatz

The Addition to this section can be read as distinguishing between the affine space
given by space or the continuum and its discrete structure as a group. But since
number qualifies both given its twin aspect, there is further evidence that what
contemporary mathematicians see as two different ways of defining R Hegel sees
as two different aspects of number,which is necessary to close the U from 3 to 3’. 40
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In the greater Logic, he address this by objecting to the idea that geometry and
arithmetic deal with fundamentally different objects rather than the same objects
in different ways (WL 21, 196–7), and the subsequent development of a discrete
topology would appear to confirm Hegel’s position here.

2.4.2. Summary

At this point, let us pause to summarize the development in terms of the U shape
that we introduced at the beginning of the paper. In the terms of contemporary
mathematics, there are three basic thoughts that run from the initial positing of
quantity to the development of Q:

(1) Start out with the real line. This Hegel does in §99.
(2) Identify it with R by choosing a distance function (measurement in the

modern mathematical sense of the term is what Hegel uses in §100) and
discover abstract properties from it, most importantly homogeneity and
continuity. This Hegel does in §100 through the introduction of the twin
aspects of continuous and discrete quantity and in §101 through the excluding
limit of quantum. This is to posit measuring numbers or Maßzahlen. As will
become apparent in §§106–107 (discussed below), these quantities explicitly
become Maß (measure) in Hegel’s sense of the term when regarded as
qualitative quanta.

(3) Realize that Q is contained in it by picking a unit and applying arithmetic
operations to it. This Hegel does in §102 through the development of the
arithmetical operations. We arrive here at calculating numbers or Rechenzahlen.
At this point, Hegel has a unit‐based copy of N and, by adding negative
quanta, a copy of Z, and finally a copy of Q (by adding the negative operation
of division). Mathematically, this is best described as the field of fractions of the
ring Z—the set of integer numbers with the operations of addition and
multiplication (i.e., with the negative quanta and operations formally added
to it; see §3 for the mathematical details).

This, we think, Hegel shows quite admirably in pure thoughts without the use
of symbolic notation. But Hegel does not yet show in §102 that the Q given by
adding the negative operations is naturally again a subset of R, and thus he has
not yet shown that calculating numbers (Rechenzahlen, i.e., what comes out of the
arithmetic of counting numbers (Zählzahlen)) are measuring numbers (Maßzahlen)
and vice versa. This is accomplished by the arguments in §§105–107.

In parallel but opposite logic, in contemporary mathematics, there is a
corresponding axiomatic ascent:

(3’) Algebraically construct the rationals Q.
(2’) Axiomatically introduce new numbers to complete it to R.
(1’) Show that these numbers are complete and homogeneous and hence
give a model for the line.
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At this point, Hegel diverges fundamentally from the course that was taken by
mathematics beginning in the 1860s. Rather than proceeding up the right side of
the U to (1’), Hegel returns up the left side of the U, back through (2) to (1). Though
a speculative point, obviously, it seems more than likely that Hegel would have
had severe doubts about the possibility of success of (1’), i.e., of the ability of
axiomatized mathematics to demonstrate that the R so constructed is the same
measurable continuum with which one began. Even Gauß had his doubts here
as evidenced by the quoted text. In Hegel’s text, the grounds for this speculative
point can be seen in his repeated insistence that the true nature of quantitative
variability requires the inclusion within it of a qualitative criterion of significance.
To give a brief roadmap of what follows in Hegel’s discussion, he attempts to
model this qualitative significance first within the notion of degree, then within
the notion of relation but finally within the notion of measurement itself. Briefly,
in each of these notions, more is allowed to vary and so one has a greater scope
of arbitrary differentiation. More importantly, each notion adds new aspects to
the mathematical objects already developed in the move from (1) to (3), thus
revealing the fine structure of those objects but without the methods of
axiomatization, which introduce new objects from (3’) ➔ (1’) which are now
separate from the L of (1). By such means, Hegel is able to get R as the points on
L in (1), which are naturally cohesive points (this you do not get in (1’), since
without additionally adding the metric topology, it is discrete).

Though we will not attempt in any detail to correlate Hegel’s moves to the
axomatized progression from (3’) to (1’), we will still offer models using symbolic
notation for the stages of Hegel’s own return journey from (3) to (1). Obviously,
Hegel neither had nor wanted the resources of symbolic notation to describe either
his own route of development nor that of the (as yet still potential) development to
which he would have objected, but we hope nonetheless to make clear the sense in
which his rejection of that development would be a principled decision to
understand the paradoxical significance of the very arbitrariness of quantitative
variation. Nonetheless, what is striking and motivating for us is the degree and
depth of the match produced by casting his arguments into the modern symbolic
notation, thus showing that some mathematical developments since Hegel’s time
can be seen as solutions to problems that are nicely articulated in his purely
conceptual exposition.

2.5. §103

The differentiation of ‘intensive’ and ‘extensive’ magnitude can be interpreted in a
mathematical fashion as follows. If we agree that a magnitude, which is the result
of a measurement, is a real number, then there are two ways of thinking about it.
The real number r is either simply an element of the real line r ∈ R (intensive), or
it represents the size of the interval [0,r], which in itself is extended—the set as
the collection of its members (extensive) and infinitely divisible. The latter
conception brings out the discrete character of number as amount, but as Hegel
puts it, ‘the amount of one and the same unit’ (WL 21, 209). The upper boundary
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of the interval [0,r] is r, which as a point is not extended but as a real number
nevertheless represents a magnitude (‘Größe’).41 One member is made the name
of the class (a potiori fit denominatio). These points of view are dual to each other
(i.e., a determinate function connects the two) and indeed are how one today
identifies R with its affine counterpart, the line (2’ ➔ 1’). Thus, Hegel says in the
Zusatz that the intensive/extensive distinction characterizes the limit specifically,
whereas the continuous/discrete distinction characterizes quantity in general (also
WL 21: 208–9).

This idea of limit characterizing the number but not being the actual concept
itself can be found in Dedekind cuts, where the real numbers are technically a
partition of Q pair of subsets which are taken to represent their limit, as explained
in the Appendix. 42

2.5.1. Zusatz

In Hegel’s time, it is indeed an astute observation that the analog measuring
instruments do measure intensive magnitudes with extensive ones.43 Modern
science in the form of quantization has somewhat mediated and confounded
Hegel’s analysis; the paradigms here are the wave/particle duality and the
positioning of momentum. Nonetheless, the example of temperature given here
is a good image for degree (Grad) and further for measure (Maß). The thermometer
measures the degrees of temperature, but in order to get a number, we have to fix a
measure (say Celsius or Fahrenheit), and then, the measurement transforms an
intensive magnitude into an extensive magnitude by using the column of mercury
(or gas), for example. To read off, we take the limit of this extensive magnitude,
which is the height of the column. In this way, one needs both a degree and a scale
(measure), as one can even see in the ordinary notation, e.g., 5°C.44 As an
operational definition, we can say that Dedekind cuts are the limit which is
produced by reading off measurements (e.g., the temperature from the
thermometer).

2.6. §104

Going back to the degree (Grad) being the upper bound of the interval, one could ask
whether or not one is discussing the open (0,r) or the closed interval [0,r]. The upper
bound exists in the latter and not in the former. To reach it or determine it as such,
one needs a limiting process.45 The fact that this limit exists in the reals follows from
the fundamental property of the reals to be complete. Thinking of r, which is the
degree or the intensive representative of the (extensive) quantum [0,r] as the upper
bound, the degree is a limit. Indeed, taking the supremum means that we need to
look at increasing sequences, whence Hegel’s claim that the quantum needs to be
able to be augmented or decreased. This yields one reading of Hegel’s claim that
the degree as the concept of quantum already contains the infinite regress, and
explains why, in the attempt to understand the way in which the multiplicity of
number can be represented in the single limit as simple in the greater Logic, intensive

Math by Pure Thinking 999

© 2017 John Wiley & Sons Ltd



magnitude is taken to be a degree (WL 21: 210). In this step, Hegel realizes the
discrete aspect of numbers as points but importantly cohesive points.

In order to take the limit to infinity, one would have to invoke further
mathematical tools. There is a direct relationship between the interval (0,r) and
the real line. These two sets are in one‐to‐one correspondence or in bijection to each
other and moreover are even homeomorphic, which means that there is an
invertible map between them and both the map and its inverse are continuous.
This preserves both the order and the topology. This means that taking the limit
as t! r in (0,r) and t!∞ in R are really the same type of process. This gives a
mathematical model for understanding Hegel’s claim that degree makes clear the
way in which the ‘indifference [Gleichgültigkeit] of the [quantitative]
determinateness constitutes its quality, i.e., the determinateness which is in itself
as determinateness external to itself [die an ihr selbst als die sich äusserliche
Bestimmtheit ist]’ (WL 21: 211).

The same point can be made in a way that is perhaps a bit closer to the text as
follows: the process of adding a quantum to itself repetitively leads to the limit
t!∞ by alternating between taking the limit and adding a new extensive
quantum. That is to take the limits t! r in [0,r] yielding the intensive r, adding
the quantum to itself by simply repeating it gives rise to the extensive [r,2r] then
the limit t! 2r in [r,2r] and so on. Here, the lower bound becomes the old degree,
and to get to the upper bound, we need to use a limit on the extensive quantum.
This mathematical model makes good sense of Hegel’s otherwise puzzling claim
that ‘not only can every determinateness of magnitude be transcended, not only
can it be altered: that it must alter is now posited. The determination of magnitude
continues into its otherness in such a way that it has its being only in this
continuity with an other; it is not just a limit that exists but one that becomes’ (WL
21: 217). Here, the process of taking limits provides an interpretation of the notion
of a becoming or processual limit that is definitional of the magnitude specified by
that limit. Here, the variability of this inner processual limit is tied to the possible
outer variability of transition to a lower or higher degree.46 There are two more
remarkable features. Hegel realizes that the alternating process is necessary to
‘reach’ or better define infinity. For a finite multiple, one could first add the interval
finitely many times and then take the limit. This does not make sense in the infinite
case right away, and this is discussed in the Zusatz, in particular, quoting the poem
of Haller. The second point is that Hegel articulates the Archimedean property of
the reals (i.e., that there is neither an infinitely large nor infinitely small member
of R), since this adding process should surpass any given real. It is also interesting
to note that in this limit definition indeed the limit does not depend on the original
quantum, which is very important.

2.7. §105

Hegel’s discussion of ratio is very close to the modern notion of rational numbers
but is not quite the same. A mathematical construction of rational numbers defines
them as pairs (r,s) modulo the equivalence relation that (r,s) is equivalent to (p,q) if
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rq − ps = 0. This means that we regard equivalence classes [r,s] which are
represented by pairs; this is why 2/4 = 1/2. It is not that the representatives are
the same, they are merely equivalent, but the classes are indeed equal. Hegel views
r and s as the two quanta, which are posited next to each other or the quantum
posited upon itself (‘an ihm selbst gesetzt.’). This is the perfect description of the pair.
The rational number defined by the ratio then is the class given by these two
quanta. This is what Hegel calls the exponent. He rightly identifies that in order
to give a rational number, one actually uses three quantities, the numerator, the
denominator, and the rational number they represent. (This is the insight we
referred to in our introduction as Tripartite Relations.) He moreover realizes that
the exponent is the equivalence class of all the numbers that are in the same
relationship, and indeed an equivalence relation on a set X is given by a relation
which is a subset of X x X. In our case, X = R × R, and the subset is given by pairs
of pairs ((r,s),(p,q)) such that rq − ps = 0, which means that r:s and p:q are in the same
relation or Verhältnis.

Hegel’s verbal presentation of this schema is given in the greater Logic:

the two moments limit themselves inside the exponent and each is the
negative of the other, for the exponent is their determinate unit [Einheit];
the one moment becomes as many times smaller as the other becomes
greater; each possesses a magnitude of its own to the extent that this
magnitude is in it that of their other, that is, is the magnitude that the other
lacks. The magnitude of each in this way contributes to the other
negatively; how much it is in amount [Anzahl], that much it supersedes in
the other as amount and is what it is only through this negation or limit
which is posited in it by the other (WL 21, 315).

In this schema, r, s, p, and q are whole numbers, and the rational numbers are
present implicitly in the background as the structure of the relation between the
classes of whole numbers. Here, we see already—in the return from (3) to (2) in
the ‘U’—a building towards the two levels of ontology of Hegel’s Doctrine of
Essence, and so it is not surprising that the variability present in the relation is both
wider in scope and more deeply grounded in the nature of quantity than was the
case in degree: both terms of the relation can change, but the exponent is itself held
constant. Moving from Verhältnis to the exponent, Hegel has given the fine
structure needed for rational numbers by adding negative operations. The
relations are the basic negative operations, the exponent is the number. Up to this
point, the exponents are not yet elements of L—one needs measure to achieve the
latter.47 The next two paragraphs yield this crucial step.

2.8. §106

Measurements usually occur in units. This means that any magnitude will actually
be a multiple of a standard quantity that is a ratio, the denominator being the unit.
Fixing this unit, that is, one side of the ratio fixes a measure. This happens for
instance when measuring length in feet or meters, but also for the real numbers,
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one may choose to measure them in units of 1 or 2π.48 Notice that here there is a
difference between pure ratio and measure. Fixing the denominator fixes a unique
representative for the ratio. In this sense, the denominator has a new quality to it,
besides just being a number. Once we have this unit, we get a copy Nu of the
natural numbers and a copy Qu rationals, which are now a subset of L. We have
used the subscript ‘u’ to indicate the embedding of these numbers which depends
on the choice of unit.

Thus, Hegel’s new argument here is not just that what mathematicians now call the
real numbers are best understood against the background of our use of them in practices
of measurement but rather that they can themselves be understood as measures, which
is made explicit in the following section. That in terms of which we measure can be
thought of as the relevant quality, even if that measure can itself be given a numerical
form. Thus in the greater Logic, Hegel writes that ‘Qualitative quantity … in relating
itself to another, becomes a quantitative specifying [Specificieren]’ (WL 21: 329). In this
sense, the quality articulates the aspect of significance of the measured thing that is
picked out as motivating the quantitative determination. But Hegel makes the
interesting point that only this introduction of the qualitative element first provides
the resources to distinguish quantity from quality:

it can seem at first as if magnitude were merely that which is alterable in
general … But if that is the case, then magnitude would not be distinct
from Dasein (i.e., the second stage of quality) since according to its concept
it is equally alterable and the content of that definition would then have to
be made complete in such a way that in quantity we have something
alterable that despite its alteration remains the same (§106Z).

So the ratio discussed in this section is a first, distinctively quantitative way of
framing the relation between quantity and quality as between that which is
alterable as related to that which remains the same, where the numerator
represents the alterable quantity and the denominator the stable quality or
measure. But the true distinction between quantity and quality requires thinking
of quantity itself as both changing and staying the same, which requires the
internalization of the qualitative aspect within the quantitative. Put another way,
the true distinction between quantity and quality requires that it be an internal
distinction within quantity. So, as Hegel puts it in the next section, ‘Measure is
the qualitative quantum …’. It is this measure which explicitly lifts the pure
numbers to their rightful status as results of measurement and in mathematical
terms gives the embedding of the abstract Q given by the exponents in the
measurement reals Rm: ‘By contrast, mere numerical findings as such, apart from
the guiding interest which we have discussed here, rightly count as empty
curiosities that satisfy neither a theoretical nor a practical concern.’

2.9. §107

Here, Hegel looks at the more abstract structure of the concept of measure. It need
not be that the unit or the measure is a natural number. In the physical setup, it
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would be a real number, so let us stay in this context. One way to look at the
entities involved in forming a ratio (now of real numbers) is that this is a function
f: R × R ! R which sends a pair (r,s) to the ratio r/s. Fixing one side as the measure
l, we obtain a function fl: R ! R by sending r to fl(r):=f(r,l) = r/l.49

We wish to use this formalism to express that the measure as ‘qualitative
quantity’ can be viewed as this function fl. Now, the measure is not only the
exponent (‘zunächst als unmittelbares, ein Quantum’) but also a function indexed
by it. The index l is a quality of the function; without it, it ceases to exist. In this
fashion, measure attains ‘Dasein’ and ‘quality,’ since for Hegel, the very definition
of quality is that its determinacy simply is its being (§90). In the greater Logic,
Hegel reaches back to the notion of the exponent to articulate this qualitative
quantity as a double move: ‘In specifying measure … the quantum is taken in
one instance in its immediate magnitude, but through the exponent of the ratio
is taken in a second instance in another amount [Anzahl]’ (WL 21:334). In the
function formalism, the immediate magnitude is represented by its first
manifestation as the variable r and the second instance by its manifestation in
the ratio r/l.

Besides introducing Dasein and quality into the picture, which is very important
for the physical and other applications that follow, this theory of changes of
measure then completes the return to (1) in the ‘U’. Here, for each unit u, we get
all the exponent’s relations with this unit, we get a copy Qu of Q, and thinking
of the exponent in a real situation as the result of a measurement, we obtain the
embedding into the measurement reals. Varying the unit and hence the index of
the function above, we obtain the method to go from one copy of the rationals to
another which are all equally valid. This establishes the homogeneity of the line.
By the use of degree to understand points, the step from (2) back to (1) secures
the cohesion of the points in L thought of as the degrees of a measurement in units
and so making good on the aspect of continuity or attraction found in the notion of
pure quantity in §100.

2.10. §108

In the above model, we can change the index l thereby changing fl. If we change l to
some other l’, this will give a change of scale much like Hegel discusses in the
addition to §107. The effect is that fl is changed to fl’, which is a different function
thus altering quality. The possibility of changing l is inherent in it being a real
number (quantum). Although the two functions do not coincide, they are
fabricated by the same rule, which is fixing the second variable of f. The subscript
notation commonly used in mathematics pays tribute to exactly this fact. The
second variable is considered to be a parameter and thus fixed. But of course this
parameter can be varied. One would say that the different fl belong to a family of
functions. Eachmember of this family is formed by the same rule and changing from
one to another does not change the general rule. In the greater Logic, Hegel uses
temperature as an example of such a family in noting that temperature variations
have to be understood in terms of the relation between the changes in temperature
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of different materials in the environment, each of which has its own specifying
quantum or rule that defines their ‘thermal capacities [Wärme‐Capacitäten]’ (WL
21:335). Thus, e.g., to understand the change in the temperature of the table in
relation to the change in the temperature of the air requires grasping the relation
as a ‘relation of two qualities which are themselves measures’ (WL 21:336).

2.10.1. Zusatz

Leaving pure mathematics and passing to physics, one sees that certain
phenomena are intimately related to the scale of the system. Here, Hegel makes
an astute observation that is still valid today. Fixing a system, one fixes a rough
scale. If one goes to the fringes of this scale, the observations lose their validity
in as far as one will be observing different phenomena than one originally set
out to do. Thus, the notion of scale is the idea that objects dictate their own
measure, which thus constitutes a quality of the object. This feature of measure
fixes the asymmetry required for measurement according to which one quantum
counts as the amount that varies and another quantum counts as the unit by
which the varying amount is measured, a point Hegel emphasizes in the greater
Logic by distinguishing between immediate and realized measure (WL 21:336‐9
and 341–4).

An excellent example invoked by Hegel is that by varying some parameters
such as pressure or temperature, one can induce phase transitions. There are two
types of this transition. In the first‐order transition, there is an actual discontinuity
in a quantity. In a second order or continuous phase transition, there is no
discontinuity in the function measuring a particular quantity but rather in its
derivative. It is in these continuous phase transitions that some form of measure
breaks down. In modern theory, one likes to describe critical phenomena in terms
of certain parameters called correlation lengths. This is the correct scale for the
system. When this system becomes critical, this length diverges. A typical example
is water vapor near the critical point. Here, the length can be taken as the reciprocal
size of the droplets. Increasing pressure, the vapor becomes gas, and as the size of
the droplets goes to zero, its reciprocal diverges. It is this type of situation that
Hegel analyzes in the next paragraph.

2.11. §109

The next paragraphs move in spirit from the purely mathematical to the physical.
This is signaled in the greater Logic by Hegel’s entitling of the corresponding
section ‘Real measure’ and the extended discussions there of specific physical
and chemical relations. Tying together a measure with an entity it measures, one
can make quantitative changes which at a certain point may change the quality
of the entity. Hegel makes this transition to real objects precisely from the notion
captured above by the family of functions: ‘Measure is now determined as a
connection of measures that make up the quality of distinct self‐subsisting
somethings, or, in more common language, things’ (WL 21:345). The strength of
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Hegel’s claim here should not be missed. He is not merely claiming that physical
objects serve as nice examples for the category of real measure nor even that
physical objects have a nature which is uniquely though contingently suited for
understanding through practices of measuring but rather that having the kind of
measure we have designated by the index of a function or the scale of a system
in fact constitutes the nature of such real objects: ‘By measures we no longer mean
now merely immediate measures, but measures that are self‐subsistent because
they become within themselves relations which are specified, and in this being‐
for‐self are thus a something, things that are physical and at first material’ (WL
21:346). Here, the sense in which the multiplied quantitative relations build up into
something approaching an essence is quite clear.

A good model for this part of Hegel’s analysis is a continuous phase transition
as mentioned above and used by Hegel himself in the Zusatz. Here, the basic
underlying question is what exactly happens at the critical point of a continuous
transition and how to explain the passage through this point. What happens is a
change of measure: at the critical point, the old measure diverges, and this is the
measureless (‘das Maßlose’). Nevertheless, it should be possible to cross the phase
line. For this, there should be some change of quantity, which induces this
transition. Indeed, a mathematical description of a second‐order phase transition
is characterized by a discontinuity in the derivative. This means that there is a limit
from both sides, but the limits may not match up in all aspects. Hence, as Hegel
puts it, there is a limit of an ‘infinite process’ which leads to the singular
discontinuous point (‘das Maßlose’), but ‘on the other side’, there is another well‐
defined phase or measure. If a derivative function, in this case the measure, is
discontinuous at a point, then at every other point, there is a little neighborhood
where the measure is continuous (basically by definition). This means one can
change the quantity without diverging. Nevertheless, one can take a limit to find
out that at that particular point, the function is not continuous. As Hegel puts it
in the greater Logic, ‘the preceding quantitative relation, though infinitely near to
the succeeding one, is still another qualitative existence [Dasein]’ (WL 21:365–6).

2.12. §110

At this critical point, something special happens, and here, there is a discussion of
nodes and focal points (‘Knoten’). In fact, in the greater Logic, Hegel uses the
natural numbers as an example of such a nodal line: ‘The system of natural
numbers [Das natürliche Zahlensystem] already exhibits a nodal line of qualitative
moments which issue in a merely external progression. In one respect, this
progression is a merely quantitative running back and forth, a constant adding
and subtracting, each number standing in the same arithmetical relation to the
one preceding or following it as this last stands to the one preceding or following
it in turn, and so on. But the numbers that thus arise also stand to the others that
either precede or follow them in some specific relation, whether as a multiple of
one of them expressed in the form of a whole number, or as a power or root’
(WL 21:366).
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In an optical node, the parallel rays converge so that the image at that particular
point seems to vanish, but the diverging rays on the other side do yield an image.
Also given a standing wave, such as in an organ, at the nodes, the waves cancel
each other, and there is no movement. Nevertheless, these points are part of the
wave. Since these are individual points, there is no intrinsic measure but a certain
collapse.50 This collapse is the unity of quantity and quality.

The node picture also reaffirms that Hegel thinks of the natural numbers as
embedded in what mathematicians now call R and that their properties as
counting numbers (Zählzahlen) and calculating numbers (Rechenzahlen) are derived
from their position in R. It is through this embedding that the discrete has
continuous properties, and these can be found in any neighborhood. An isolation
of the discrete numbers results from focusing only on the critical point, but this
is an abstraction from the fuller picture that includes the neighborhood.51

2.13. §111

Reanalyzing the critical point, one can say that it contains in its neighborhood
several aspects, phases, or qualities and hence is the unit of these. In the simple
model of the discontinuous function, one has two limits, which do not coincide.
At the limit point, one could take either definition as natural or both. There is
another important aspect that Hegel understands and that is that one cannot just
restrict oneself to the singular point. One needs to understand a neighborhood of
it. There is a branch of mathematics called singularity theory, whose goal it is to
analyze the just this type of situation. In Hegel’s words, this is the point that the
infinite process is in the nature of quantity. Keeping this in mind and focusing on
critical points leads to the essence: different phases of matter (e.g., water) are in
its essence, since these all would be present at the same time at the triple point.
In the greater Logic, Hegel emphasizes the way in which this isolation of an essence
independent of any exclusive qualitative state continues the independence of
quantity from the quantified object discussed above in our §1.1: ‘What we have
here is … one and the same substantial matter which is posited as the perennial
substrate of its differentiations. This detaching of being from its determinateness
already begins in quantum in general … This reciprocal transition into the other
of the qualitative and the quantitative moments occurs on the basis of their unity,
and the meaning of this process is only the existence which is the demonstration or
the positing that such a substrate does underlie the process and is the unity of its
moments’ (WL 21:370).

Here, we have Hegel’s return to (1) but a return to a deeper level in which the
line L looks like an abstraction from a more complexly qualitative continuum,
one in which discontinuity is more deeply embedded than was realized at the
outset. At this point, the completed detaching of determinateness from being
suggests that ontological continuity must be understood as something that holds
together quantitative and qualitative discontinuity, which is at first Hegel’s notion
of essence.
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3. Philosophical Results

We conclude with a brief summary of the philosophical significance of the two
primary themes we identified at the beginning.

3.1. R First

Hegel’s presentation of the discussion of quantity in pure thoughts rather than
symbolic notation has some advantages that might be envied by contemporary
philosophers of mathematics, particularly when it comes to the real numbers.
Consider the following contemporary description of developments since Hegel’s
time:

Perhaps one of the chief items of pride of mathematical philosophy in the
last century and a half is the insight that mathematics is the science of
formal structures; as opposed to the traditional view, that ‘the proper
and exclusive subject matter of mathematics is … quantity.’ … But the
admirable doctrine of freedom of choice constrained only by consistency
gives by itself no help in making choices, no hint of which structures,
such as the Real numbers, are of central importance; indeed,
contemporary mathematical philosophy tends to regard all such choices
and distinctions as ‘pragmatic,’ beyond the pale of serious epistemology
(Manders 1986: 253).

For all of the difficulties in its presentation, Hegel’s view does have the virtue of
explaining the paradigmatic or at any rate, central status of real numbers in a way
that is consistent with our use of them to understand material nature through
measurement but which nonetheless does not reduce to being a matter of utility
or subjective need.52 Showing that he does so has required us to make use of
mathematical concepts and terminology that were not, of course, used by Hegel
himself but this is not surprising given that he was writing roughly a half century
before the first rigorous definition of R; what is more surprising is that he should
have anything at all to say about this topic under these circumstances.

Another way of getting at this point is to return to our schema of the descent
from (1) to (3) in thoughts and corresponding axiomatic ascent back to (1’). In
(1), the line L is posited, or R lacking certain fundamental mathematical properties;
in (1’) is posited R in all of its mathematical glory but no longer as the line (§1.4.2).
As the intuitive picture of the number line and the presupposition of the continuity
of the reals by measurement shows, there is a natural tendency to identify the L
and R; this is precisely what Descartes does in the Discourse on the Method (see note
4). and Hegel in §102Z. But it is not obvious that there is any deeply mathematical
reason to say that this is so, and thus to say that Maßzahlen (L) are the same as
Rechenzahlen (R of (1’)), and Dedekind himself wants to deny this (1963: 37). What
we see in Hegel’s version of the ascent (in thoughts rather than axioms) is a
principled reason to say that this is so, though this comes at the cost of both lack
of precision and the lack of explicit construction of the completeness of R out of
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Q as it is found in the return to (1’). Neither does he quite get the construction of R
via Dedekind cuts, though he comes quite close to it in the transition from
extensive to intensive magnitudes (as we discuss in our §1.5). In the end, Hegel
has presupposed completeness in his beginning with L but never quite offered a
principled reconstruction of it. The compensating gain for the lack of explicit
construction is that he still has the concrete line as a model—thus a route towards
the way in which the elaboration of the model generates physical, material things.
In contrast, even with Dedekind cuts, real numbers become pairs of subsets of Q,
not intuitive numbers or points on a real line. Hegel’s version comes to fruition
precisely in the discussion of measure in §§107–8 that we have interpreted using
the modern notation fl and the related conception of a family of functions.

The connection between the R first theory and the divergence of measures is
found in the idea of N as nodes in the continuum of R. This basic idea is fleshed
out by the idea that such nodes are not just simple points but critical points at
which there is a collapse of measure, such as the points at which standing waves
cancel each other out:

So though Hegel has not come to (1’)—R as axiomatized—he does come back to
(1)—here, R as the x‐axis of the standing wave—with a much‐expanded sense of
its shape and of the qualitative variation within it. One could of course say that
because Hegel does not use the term ‘real number ’ or even get R as axiomatized
by modern mathematics, he doesn’t have a notion of real number at all. But this
strikes us as putting too fine a point on the issue, since underneath the
terminological absence is a detailed grappling with precisely the characteristics
of what we now call the real numbers that make them distinctive and significant.
And since precisely that significance is obscured by axiomatization but articulated
by Hegel’s conceptual thinking, such an interpretive thesis seems doubly
unfortunate.

3.2. Divergence of Measures

This function reading of Hegel on this point helps a great deal more than the
traditional knotted‐rope analogy to reveal the origins of the transition from an
ontology of being to an ontology of essence in Hegel’s Logic. The knotted rope
retains the linear and one‐dimensional quality that attends to being in Hegel’s
understanding. But the consideration of the relation between essence and
appearance introduces the relevance of many different dimensions of patterns
and their relations to each other. In this basic sense, a family of functions could
be an essence that appears in particular functions, just as a particular function
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could itself be an essence relative to specific values it can take on. This insight is
connected with the fact that R are higher‐order operations (sequences or Dedekind
cuts) fromwhichN are a kind of abstraction, which is why Hegel thinks thatN can
be represented as the set of nodes. Furthermore, the idea of nodes as critical points
where measure collapses gives a positive content to that collapse as related to its
surrounding neighborhood, which helps to explain how the conceptual resources
of the Doctrine of Being are maintained and further developed in the Doctrine of
Essence rather than the latter simply starting afresh after the exhaustion of the
former.

Thus, even though Hegel claims that logic is wasted on the youth because they
have not yet had the requisite experience of the investigation of the world to see
the significance of logical categories such as quantity, one needn’t appeal to higher
order phenomena of semantics or theory construction (both of which more
properly belong in Hegel’s Realphilosophie) to make sense of Hegel’s discovery of
a quality within quantity.53 This follows on a point we noted in §2.3, which is
the great internal complexity required by the flat ontology developed by Hegel
in the Doctrine of Being precisely in virtue of the absence of either an underlying
essence or an overlying subject.

Again, this may be seen as a virtue of Hegel’s view in comparison with the
contemporary approach. To quote Manders following up on the point made in
§3.1:

Closely associated with this insight is the distinction between pure
mathematics, the beneficiary of the freedom conferred by the new status,
and applied mathematics (in the philosopher ’s rather than the
mathematician’s sense of the word), which has been sent into philosophical
limbo, supposedly under the care of philosophy of empirical science… As
to [this] second ‘insight,’ the way the distinction between pure and applied
math is drawn neglects the fact that ‘applications’ of mathematics (in the
philosopher ’s sense) are typically to other mathematics, not to empirical
science … Taking applications to empirical science as paradigmatic has
blocked the idea that theories can be motivated by intended applications
in an epistemologically significant way (Manders 1986: 253).

We find a deeper view in this aspect of Hegel’s theory, and one can see it
embedded in the double meaning of his dominant term for the characterization
of quantitative differences, i.e., ‘gleichgültig’. On the one hand, this is usually
translated as ‘indifferent’, and we have used it in this sense earlier. But on the
other hand, it also has the etymological structure of ‘equally valid’, and it is in
this sense that the internal complexity of the flat ontology is to be taken. The
pragmatic appeals to which Manders objects make the motivation of theory
something essentially arbitrary from the epistemological perspective and thus
make different theoretical constructs equally invalid rather than equally valid.
But on Hegel’s view, quantifiable being is a structured plurality of valid
constructs, each of which may be used to define the perspective from which the
whole is considered.54
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To take the example of affine space discussed in our §2.1, it is of course true
that there is no single coordinate system that defines it, but it is nonetheless true
that the space is defined by the rules of the translation actions that define the
non‐arbitrary and non‐optional relations between different coordinate systems.
That the reals are produced by the invariants of these homogeneous actions
means that the reals themselves have a foundational role to play precisely as
the structure of these relations, i.e., as specifying precisely the sense in which
they are equally valid. Thus, there is at least one conception of quantity—what
we now call R—that is not itself of equal validity as other conceptions of
quantity (such as Q or N) precisely because it articulates the equal validity of
different quantitative units of measures. So R is first not merely arbitrarily or
pragmatically but necessarily and conceptually, precisely because it accounts
for the arbitrary or pragmatic choice of units of measure in specific contexts.
Arbitrariness itself has a conceptual structure, which is a conceptual point we
are used to Hegel making in the philosophy of spirit’s discussions of Willkür.
But here, this is what it means for number to be ‘thought as a being that is
completely external to itself’ (EL§104R) and why mathematics is the most
difficult science (EN§259R).

4. Mathematical concepts

4.1. Real Numbers

The real numbers R can be introduced basically in two fashions: Either as a
completion of the rational numbers Q, or via an axiomatic system given by
Dedekind cuts. In both cases, the starting point is Q, which can be algebraically
constructed from the natural numbers, N. Mathematically, Q is the quotient field
of the ring of integer numbers Z, and Z is the group completion of N.

There are several facts about the real number R that Hegel uses in his text.

(1) The natural numbers N are contained in R.
(2) R is a field that is we have the usual operations of addition and multiplication

together with their inverses. There are also two special elements 0 and 1, which
are the neutral elements for the addition and the multiplication, respectively.In
particular, R is an Abelian group under addition, and R\{0} is also an Abelian
group under multiplication. Here, a group is a set together with an operation
(usually called +), which is associative, has a unit, and inverses. If the
operation is commutative, the group is called Abelian.Not postulating inverses
for a group, one arrives at a monoid.

(3) N is the submonoid generated by 1 that is all finite sums 1 + … + 1.
(4) R has an order <. That is for any two elements a, b ∈ R, a < b, a = b or a > b and

moreover if a < b then a + c < b + c and ac < bc if c > 0.
(5) R is homogeneous. This can be viewed on several different levels, the most

practical here would be to say that R with its additive structure is a Lie group.
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This for instance means that the action of R on itself by addition is continuous.
Here, the action is given by λ(a)(r):=r + a. Here, one views λ as a map R!Map
(R, R). This means to any a ∈ R, one associates a function. This function is λ(a),
and the value of this function on r ∈ R is r + a.

(6) R has an action of the affine group Aff1 = R*⋊ R, which acts by x! ax+ b, for
invertible a and any b. I.e. translation by b and dilatation or scaling by a.

(7) R has a distance function or metric d(a,b) = |b − a|.
(8) R is an ordered field, i.e., if a ≤ b then a + c ≤ b + c and if 0 ≤ a and 0 ≤ b then

0 ≤ ab.
(9) R is an Archimidian field, i.e., it satisfies that axiom of Archimedes. For any

real number x, there is a natural number such that n > x. This distinguishes
it from all the p‐adic completions.

4.1.1. Affine space

The main difference between the affine spaceAn and the real n–space Rn is that one
considers Rn to have a special point 0 and sometimes units in all directions.
Technically, one would speak of a vector space or a vector space with a basis. If
we forget 0, we are in the Euclidean geometry situation. We can for instance
measure only distances. But we can translate by vectors. In fact, we can translate
any point to any other point.

By definition, a principal homogeneous set for a group G is a set S together with
an action of G which is a map t: G × S ! S 55, such that for any two elements s and
s’ of S there is a unique G such that t(g,s) = s’.

If G and S are spaces, one says that one has a homogeneous space if the action is
continuous. Now A1 is a principle homogeneous for R. Fix two points O and U on
the line A1. Then, there is a unique one‐to‐one correspondence preserving
distances that sends these points to 0 and 1, respectively. I.e. choose an origin
and a unit. Now, R acts on itself by translation t(a)(r):=r + a. This action can be
lifted to A1 by using the chosen bijection and then it is transitive. That is for any
point A of A1, there is a unique r in R such that O gets sent to A by translation
by r. In fact the whole action of Aff1 can be lifted.

4.1.2. Dedekind Cuts

In the definition of the reals according to Dedekind, a real number is a pair of
subsets (L,R) of Q such that they are disjoint, their union is Q, and every element
of L is to the left (i.e., less than) of every element of R. In the original version, the
numbers q in Q are those partitions where either q is the smallest element of R or
the greatest element of L. If there is no such element, then the pair is taken to
represent the number in R that would be the putative supremum of L. Nowadays,
one chooses just one set L that is downward closed and contains no largest
element. This has the advantage that the rational numbers are represented by just
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one cut. Also going along with Hegel, R is determined by L as R = Q\L. The
arithmetic of these cuts is far from obvious.

4.1.3. Cauchy sequences

The other way to construct the reals is to look at sequences (ri)i ∈N such that for
any positive ε in Q, there is some natural number N such that for all n,m > N:
|rn − rm| < ε. These sequences are called Cauchy sequences. And these
sequences should converge in the to be constructed R. Complete means that
all Cauchy sequences converge. By adding and multiplying etc. on the
elements, one gets the operations on the sequences. Now the reals are not
just Cauchy sequences, but classes of Cauchy sequences modulo so‐called
null sequences. That is, sequences that converge to 0, i.e., for any ε in Q,
there is some natural number N such that for all |rn| < ε. The reasoning
being that adding such a sequence would not change the putative limit.
Formally, two sequences are equivalent if their difference is a null sequence.
The usual example is that the constant sequence 1 is equal as a real number
to the sequence 0, 0.9, 0.99, 0.999 ….

4.2. Inverse Operations

4.2.1. Negatives

The technical term is semi‐group completion. Say one has a set with addition +, to
be concrete fix the natural numbers. We can then look at pairs (m,n) modulo the
equivalence that (m,n)~(k,l) if that m + l = n + k. If we denote a class by [m,n], we
do addition on this set by [m,n]+[k,l]=[m + k,n + l], which does not depend on
the choice of representative. Notice that the integers are given by [m,0] and what
is usually denoted by −n is just the class [0,n]. Hegel’s negative quanta are well
modeled by this. In this calculus, m − n becomes [m,0] + [0,m] = [m,n]. However,
if m > n, then [m,n] = [0,m − n] and if m<n then [m,n]=[0,m − n]. Note that in the
general setting, one should make the equivalence relation read that there exists
some s such that m +l + s = n + k + s.

4.2.2. Fractions

This is the same procedure now starting with either the natural numbers N and
multiplication or the integer numbers Z with multiplication. Hence, fractions are
equivalence classes of pairs (p,q), with (p,q)~(r,t) if pt = rq.

4.3. Cardinalities of sets and arithmetic

For illustrative purposes, we remain in naïve set theory, this is of course not strictly
correct, but serves us well for illustrative purposes. In this setup, a cardinal is an
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equivalence class of sets under the relation of bijection. That is, two sets have the
same cardinality if there is a bijection between them. The natural numbers are
the cardinalities of finite sets.

The union of two sets is the set containing elements from both sets S∪T= {x :
x∈S or x∈T}.

Given two sets, their disjoint union roughly is a set, which contains the elements
of both sets separately. If two sets S and T are indeed disjoint, their union S∪ T is a
good representative. If, however, these sets have common elements, one has to
make a slightly more technical definition. One sets S⊔T= {(s, 0) : s∈S}∪ {(t, 1) :
t∈T}, which has the effect of first passing to sets which are disjoint but bijective
to the original ones and then taking their union. For instance, if S = {u}, then
S∪S=S and S⊔S= {(u, 0), (u, 1)}. It is easily seen that the cardinality of the disjoint
union is the sum of the cardinalities. Note that the cardinality is actually
independent of the particular choice of disjoint sets.

The cross or Cartesian product of two sets is given by the set of pairs of
elements. S×T= {(s, t) : s∈S, t∈T}. The cardinality of the product is the product of
the cardinalities.

Finally, the sets Map(S,T) =TS is the set of maps f: S ! T, that is, rules to
associate an element t = f(s) of T to any given element s of S. The cardinality of
Map(S,T) is |T||S|, where | | denotes the cardinality.

A relevant example is |T|2 which Hegel characterizes as |T × T|. By the
previous arguments, this should also be |T2|=|T {0,1}|. The elements in this set
are maps f from {0,1} to T. Such a map is given by the pair of its values (f(0),f(1)).
Vice versa and pair (t0,t1) ∈ T × T defines such a function.

4.4. Relations

A relation on a set X is a subset R of the Catesian product of X with itself X×X.
One writes x~y, if (x,y) is an element of R. An equivalence relation is a relation that
is (a) reflexive x~x for all x in X, (b) symmetric x~y implies x~y, and (c) transitive
x~y and y~z implies x~z. Given such an equivalence relation, there on can define
the equivalence class of x written [x] as the set of all y such that (x,y) is in R. Any
element of this set is called a representative. There is moreover a set X/~ whose
elements are the equivalence classes and a map from X to X/~, which sends x to
[x]. Any preimage of [x], is a representative.

4.5. Topology

A topology on a set X is the datum of a collection of sets that are called open sets.
This collection has to satisfy (a) that the whole set and the empty set are open,

viz. in the collection; (b) that arbitrary unions of open sets are open; and (c) that
finite intersection of open sets are open. A topological space is a set with a
topology. A function between two topological spaces is continuous if the inverse
images of open sets are open.
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4.5.1. Metric topology

A metric on a set X is a function d :X×X!R≥0, i.e., that takes pairs of points to the
positive reals, such that (a) d(x,y) = 0 is equivalent to x = y; (b) d(x,y) = d(y,x); and (c)
d(x, y) +d(y, z)≤ d(x, z). If a set has such a metric, for any point x, let Bx(r) = {y: d(x,y)
<r}, these are called balls or basic open sets. Then, the set of open sets are all the
sets that are arbitrary unions of these basic open sets.

For the reals, d(a,b) = |a − b| and the balls are simply open intervals (x − r,x + r).
With this topology, continuous functions are what you would get out of the usual
limit or ε‐δ criterion.

4.5.2. Discrete toplogy, trivial topology

On any set, one can choose the set of open sets to be all subsets. This is called the
discrete topology. In particular, points are open. This is the natural topology for N
and for Z. On any set, the trivial topology is the other extreme, namely only the set
itself and the empty set are open. These two topologies are the only ones that one
can write down without further input, i.e., selecting open sets by some criterium.

4.5.3. Natural topologies on R and Hegel.

Without a metric on R, the discrete topology would be natural, which is the
discreteness of the points as elements of a set. Also, the trivial topology could be
chosen, in which one could find ‘reine Quantität’. Finally, due to the fact that we
want to measure and this is done with the distance function, we get the metric
topology which gives the continuous nature of the reals.56
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NOTES

1 We take the two versions of the Logic to present a single theory, and we will refer to
that theory by the capitalized ‘Logic’ when we are not discussing particular texts.
Parenthetical references are as follows: (a) by section number to Hegel’s Enzyklopädie der
philosophischen Wissenschaften, Teil I, Band 8 in Werke, ed. E. Moldenhauer and K.M. Michel
(Frankfurt: Suhrkamp, 1970)—an ‘R’ after the section number indicates the published
remark to the section and a ‘Z’ the addition or Zusatz; (b) by volume and page to the two
editions of Hegel’s Wissenschaft der Logik in Gessamelete Werke (Hamburg: Meiner, 1978 and
1985); (c) by section number to Hegel’s Naturphilosophie (Werke, Band 9), with ‘EN’ before
the § sign.
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2 In physics, a quantity is said to diverge in a given limit, if it tends to infinity. The
limit in a phase transition is given by approaching the phase line, say by varying
temperature or pressure for example.

3 But it should be emphasized that mathematics is not logic, in Hegel’s sense, and
thus the kinds of arguments made by mathematicians cannot be the same as the kinds of
arguments made by Hegel, even in his discussion of quantity. Thus, we should not be taken
to suggest that Hegel’s arguments for specific moves in the Logic (i.e., the dialectical
development) could be given a formal mathematical translation that would show that
contemporary mathematicians and Hegel are thinking in the same mode about real
numbers. In fact, the reciprocal insight of mathematics and Hegel’s Logic that we attempt
to demonstrate depends on that not being the case.

4 One might think that our claim here fails to track Hegel’s vocabulary, which puts off
until the Philosophy of Nature the introduction of space. Since this is a fundamental
terminological question, it may well be worthwhile to say something about it here to clear
the ground for the following specific argument. The first and most important thing to point
out is Hegel’s own explicit connecting of space and quantity. Specifically, Hegel holds that
pure quantity gives the general logical structure of space: ‘After all, [space] is pure quantity,
though no longer this same as logical determination but rather as immediately and
externally existent’ (EN§254R). Thus, it is not surprising that the introduction of space is
via the two features that Hegel develops out of pure quantity, viz continuity and
discreteness (EN§254 & EL§§99–100). As long we abstract away from the ‘immediately
and externally existent’ nature of space as contemporary geometry does and as is licensed
by Hegel’s own denial of the Kantian interpretation of space as essentially a form of
intuition, there is a formal conception of space that exists in Hegel’s text that tracks the
modern mathematical understanding and can be legitimately used to interpret the category
of pure quantity. Second, since the Philosophy of Nature is post‐conceptual, as it were, in the
developmental track of Hegel’s system, Hegel claims further that it is a conceptual truth
about space that it is three dimensional (tracking the three aspects of the concept (Begriff)).
But this questionable conceptual limitation to three dimensions is absent from the
contemporary mathematical understanding of geometric space (and a fortiori from that of
the line in particular) that we are here using to interpret Hegel’s category of pure quantity.
Hegel himself provides an attempted conceptual deduction both of the three dimensional
nature of space and of the necessary features of point, line, and plane—but he is clear that
geometry itself is free from both the ability and obligation to demonstrate these necessities
(EN§§255R & 256R). Perhaps the overall point is best put by saying that Hegel begins with
space in the contemporary mathematician’s sense of ‘space’, which then serves as the logical
core of the intuitive sense of ‘space’ that is presented in the Philosophy of Nature. This is the
sense in which he differs from Gauss as briefly suggested above.

5 Note that this is subtle, since fractions use pairs and equivalence classes; Hegel
realizes this through the notion of Verhältnis and Maß. This is thus a two step process, first
realizing that each unit gives an abstract copy of Q and then identifying this copy with a
subset of the reals to get the measurement copy.

6 The identification via the realization that there is arithmetic on both sides of 3 and 3’
goes back to Descartes 1902 (Discourse on the Method, Part II (AT VI. 20). Hegel deduces his
own version of this postulate in EL§202Z.

7 There are two modern ways of doing this conceived around 1860 by Dedkind using
cuts and by Cantor using Cauchy sequences, both of which are given axiomatically.
Dedekind’s definition however more heavily draws from the geometric intuition of the line.
See our §3 for a summary.
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8 For a discussion of Hegel’s relation to Gauss, see Beach 2006.
9 Although different numbers can have different properties (e.g., being prime), as

Stekeler‐Weithofer correctly sees these are secondary properties (1992: 156 and 2005: 207).
In our reconstruction, these are properties that only show up in steps 3, 3’, and 2’ but not
in 1 or even in 1’.

10 Strictly speaking, we always get a positive real number, but translation of the scale
might result in negative numbers. A good example here is temperature measured in Kelvin,
Centigrade, or Fahrenheit. The negative reals are introduced by Hegel using the negative of
quantum in §102Z. This fits with the idea of negative charges.

11 We do know that at the quantum level, this ceases to be a completely true
description. Here a particle, say a fermion, may for instance have the quality of having spin.
Measuring its value however does change the particle state fundamentally, although one
still has to assume a continuity of the system before and after the measurement.
Nonetheless, even in quantum theory, the outcome of measurement is a real number, which
is why operators need to be Hermitian. This is a technical condition for operators over the
complex numbers that guarantees that one gets real numbers as so‐called eigenvalues,
which are the possible results of measurements.

12 Stekeler‐Weithofer claims here that Hegel is misquoting mathematicians (1992:
158). But in fact, Hegel has correctly understood mathematical reasoning here. For
something to be increased or decreased does not require addition and subtraction but rather
ordering (>). Furthermore, with addition and subtraction but without ordering, one cannot
get the continuity or completeness of R as opposed toQ. Order doesn’t presuppose addition
and subtraction and is more basic. In our reconstruction, there is order in 1 and 1’ but
addition and subtraction first in 2 and 2’. This is also apparent in the construction of R via
Dedekind cuts, where arithmetic operations are introduced after using < to define real
numbers.

13 Actually, in modern terms, Hegel is considering affine space and the affine line for
time, which are identifiable with R and R3, but there are several such identifications; see the
appendix. This is picked up by Hegel using the notion of quantum.

14 See also EN§254, R: ‘The initial or immediate determination of nature is the
abstract universality of its being external to itself (Außersichseins), whose immediate
indifference is space … [Space] is pure quantity in general, no longer merely as a logical
determination, but as immediately and externally existent.’

15 In modern terminology, if one has a function of two points that is invariant under
the affine action of translation and rotation, then it will be a function of the Euclidean
distance between these two points. But there are many such choices which are all obtained
from one another by scaling, the last part of the affine action. This choice amounts to picking
a quantum which is consequently done by Hegel in the next section.

16 By Cantor, we know the answer to the first question is 2ℵ0, while for the second, it is
simply undefined ∫∞−∞dx; for the third, it is (using integration or measure theory)
∫badx = b − a if a < b.

17 Actually, there are many ways to make Q complete. There is one for every prime
number p, the result is calledQp. These are arithmetically on par with R. The only advantage
of R, the completion with respect to the absolute value, being its connection to geometry—
which per Hegel is an input.

18 This discreteness passes to the rational numbers Q if they are viewed as a quotient
space of Z × Z, that is of pairs (p,q). It is also captured by Q being countable.

19 The interesting thing is that the field axioms are today separate from the
topological condition of completeness. This means that the discrete and the continuous
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are just aspects. There is the underlying field which is a (discrete) set with arithmetic
operations and the continuous nature is an additional structure. To single out the reals
however, one should also preserve the Archimidean property of the rationals (see §3).

20 He seems to make the opposite claim at WL 21: 191, but a closer examination
shows that he is making the same point about the presence of both aspects in each
manifestation of number.

21 Note that 1 is indeed the unit of the multiplication.
22 Mathematically speaking, for instance 1 = N/N and we can let N tend to infinity

1 ¼ lim
N→∞

N
N
.

23 It is interesting to note that for this, we actually need to fix an origin first. Without
this, we only have an affine space and we can and the lattice of integer points can be moved
continuously.

24 Technically, the open and closed intervals are basic to the topology of the reals as
explained in §3. They are given by Br(p) = {x: |p − x| < r} for the open interval, or ‘less or
equal’ to r for the closed ones. In fact, these Br(p) are a basis for the topology of R which
is used for analysis and continuity in the usual sense

25 One might think that the interpretation offered of this brief sentence involves a
fallacy of misplaced concreteness, but the context (not quoted here) makes it clear that
packed into these three basic characterizations is real structural complexity. So, for example,
one might think that ‘self‐referring’ means nothing more than empty self‐relating—but it is
actually Hegel’s own paraphrase of the feature of quantity that it is ‘continuous…a unity’
(WL 21.194). Unless ‘continuous’ is taken to be merely metaphorical (a disastrous
interpretive move given its centrality to Hegel’s entire discussion of quantity), this kind of
self‐reference must have an extension of some sort. Similarly, one might think of the
‘enclosing’ as simply a collecting of bare ones rather than being contrastive. But Hegel’s
insight is that the very notion of a ‘bare’ one and thus a ‘natural’ number is contrastive (in
a sense analogous to that in which indeterminacy is understood by Hegel to be contrasted
with determinacy and thus as a kind of determinacy itself). Furthermore, it is of the very
nature of this logical category that it is recursive (i.e., that both units and the numbers that
are multiples of units can be characterized by its means). These two points are tied together
because the internal continuity or unity of a quantum requires assimilating other quanta and
thus replacing their units of continuity with that of the first. This connection between
internal units and external quanta is required for all arithmetical operations—if each
quantum had its own units that could not be transformed into the units of other quanta,
the whole system of numbers would fall apart. Nonetheless, this has to be compatible with
the breaking of scaling action as suggested in (γ); otherwise, numbers cannot be
distinguished from each other.

26 To be precise, the interval plus an orientation, which also explains negative Größe.
27 Stekeler‐Weithofer 1992 (but cf. Stekeler‐Weithofer 2005: 206), Paterson, 1997.
28 Pinkard 1981.
29 It is interesting to note that in the definition of the reals using Cauchy sequences,

any number represents a limit of some sequence, also the natural numbers. It is to the credit
of Cantor that he realized that limits of arbitrary Cauchy sequences can be used in the
definition of the reals, as discussed in the appendix. This is in parallel with Hegel’s intensive
Größe.

30 What a line actually is was of course a historically difficult thing. What we mean is
that the real numbers can serve as a model as it satisfies all the necessary axioms. Indeed,

Math by Pure Thinking 1017

© 2017 John Wiley & Sons Ltd



what is meant when we talk about The Real Line or The Number Line is this standard model
for the geometric Euclidean line.

31 In the Zermelo–Frenkel axioms, the natural numbers are basically guaranteed by
an axiom.

32 These unit‐based natural numbers and the rationals extracted from then are
reconciled with the line though Exponent (EL§105) and Maß (EL§106).

33 There is a misprint on 456, where ‘das Eins’ and ‘das Eins’ are contrasted, but the
context and the following page clarify Pinkard’s thought here.

34 There is an inherent analog of Hegel’s discussion of das and die Eins with open
intervals, their closure and integers (which is intimately linked by analysis to the wave
picture—see our §2.1). Namely, the real number line can be covered by the closed intervals
[n, n + 1]. However, this is not a good representation by individuals as the integers each lie
in two intervals. Another almost cover is given by the open intervals (n, n + 1):

These are repeated units and a good representation of die Eins, but now, the integers do not
appear at all. They are, however, just a discrete subset of ‘measure zero’ (this is a technical
term meaning that this is not detected by, say, integrals). This is what one could call Hegel’s
‘die Grenze ist nur das Leere’. On the other hand, the closure of the intervals are precisely the
limit point, die Grenze and die intensive Größe. (One can even note that now each integer
appears only once, because we take the right limit n + 1 as die Grenze of (n, n + 1):

Taking die intensive Größse of the open interval in Hegel’s sense gives the upper limit. (The
process of taking the limit is indicated by the arrow.) The limit point then becomes the
identifier. This can be seen as the half open interval (n, n + 1] which is uniquely identified
by n + 1. This limit comes from within the interval itself.

35 Contra Stekeler‐Weithofer (1992: 162), √2 and 2π do appear as natural units (√2 for
diagonals and 2π for trigonometry).

36 For a treatment of this latter discussion, see Sedgwick 1991.
37 This presupposes that the numbers themselves have already been constructed. For

the construction of the natural numbers—again as sets—one proceeds as follows: One starts
at 0 =∅ and then iteratively defines n + 1 = {1,…,n}. This is a cleaner construction, but a little
harder to parse. Indeed, this representation from Neuman is equivalent to taking disjoint
unions 0 = ∅, 1 = {∅}, 2 = {∅,{∅}},3 = {∅,{∅},{∅,{∅}}},…

38 One could then iterate this construction equating units and enumerators

algebraically yielding power operations of the type 33
3
; 44

44

, and so on. Hegel however does
not go down this road, and one usually does stop at the third operation, since this operation

is not associative—i.e., 33
� �3≠3 33ð Þ—and hence, there would be many possible iterations. All

the higher operations can be encoded into spaces of maps between sets. Where then one has
an iteration of spaces of maps from spaces of maps and so on. One of the interesting things,
which comes from this is a construction of the reals as sequences of 0 and 1 and the famous
continuum hypothesis.

39 A purely algebraic version of negative quanta is made explicit in our §3. Another
modern or physical way to describe negative quanta is in terms of vectors. In order to give
a vector, one usually draws an arrow. The shaft of the arrow is the interval, and the tip
points to the right if it is positive and to the left if it is negative. Now, the geometric addition
of these vectors corresponds to addition and subtraction in R. Even today, one uses the
notion of units that is commensurate with the view. By definition, these are all invertible
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elements. For instance, the integers have the units 1, −1, and Gauss integers have units 1, −1,
i, −i, and R has units R\{0}. This goes back to Kronecker.

40 For addition and subtraction, the given arguments fully suffice, especially when
interpreted in terms of vectors. For the multiplication, this is a bit more difficult, since one
needs some sort of postulate that the unit square is the new unit. Without explicit mention
of units, this is technically achieved by Fubini’s theorem on integration in higher
dimensions. One could argue with Hegel, however, that in the matrix counting argument
given above, one is counting entries which do represent squares.

41 Cf. Stekeler‐Weithofer, 1992: 163.
42 The only difference from Hegel is that the two subsets are ‘infinite’. This can be

made commensurate with Hegel’s vision in two ways. First, by keeping only one set, it
determines the second set as the complement, just as in §101. Second, if one wants to have
a bounded version, one can first construct positive reals, as partitions of positive rationals
and then add the negatives, as Hegel does.

43 It might be worthwhile adding that quantum phenomena tell us that such
continuous nature might not be as clear as we thought. The famous relation E = hν show that
the energy of electromagnetic waves is indeed counted by quanta.

44 Cf. Stekeler‐Weithofer 1992: 227.
45 In standard calculus, this particular process is called supremum and denoted as

such as r ¼ sup
t∈ 0;rð Þ

t.

46 Particularly in the greater Logic, there is at this point a very extended discussion of
differentials, infinitesimals, and approximation. For reasons of space, we cannot here enter
into a detailed discussion of this material, but it appears to us that contemporary
mathematics largely confirms Hegel’s view that ‘dx’ is not a number.

47 Cf. Michell 1994.
48 Hegel insists on the arbitrariness of external standards of measurement at WL

21:330–1 and 333.
49 Historically, there is a parallel development between our understanding of what R

is and what a function is. Cf. Paterson 1997.
50 As an aside, a common aspect is that these phenomena happen at points or at least

in positive co‐dimension, such as a line in a plane, so that the special points are of measure 0.
This means that a generic point is not critical.

51 It is interesting to remark that this realization of the discrete as nodes exactly
foreshadows the later development of quantization. Here, the quanta are precisely nodes,
say in the quantization of a box potential which is one way to understand Planck’s
quanta.

52 For an analogous claim of the advantages of a substantive Hegelian approach in
comparison with the mathematical logic of formal systems, see Patterson 1997 and 2010.

53 Cf. Stekeler‐Weithofer 1992, for whom the qualitative element (invariance) is ‘a
norm posited by us or ideal form, admittedly one such that its practical satisfiability depends
not only on our techniques but also on our knowledge in terms of content and thereby also
on the world’ (153). Also Stekeler‐Weithofer 2005: 202–4.

54 See Paterson, 1997: 145 for an analogous criticism of Gödel’s realism in comparison
with a Hegelian approach.

55 This action should of course be compatible with the group operation and
associative.

56 The authors would like to thank this journal’s referee for extraordinarily detailed
and helpful comments on two earlier drafts of this paper.
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