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THE AUTOMATED DISCOVERY OF UNIVERSAL THEORIES
Kevin T. Kelly
University of-Pittsburgh

This thesis examines the prospects for mechanical procedures that can identify
true, complete, universal, first-order logical theories on the basis of a complete
enumeration of true atomic sentences. A sense of identification is defined that is
more general than those which are usually studied in the learning theoretic and
inductive inference iiterature. Some identification algorithms based on confirmation
relations familiar in the philosophy of science are presented. Each of these
algorithms .is shown to identify all purely universal theories without function symbols.
It is demonstrated that no procedure can solve this universal theory inference
problem in the more usual senses of identification. The question of efficiency for
theory inference systems is addressed, and some definitions of limiting complexity
are examined. It is shown that several aspects of obvious strategies for solving the
universal theory inference problem are NP-hard. Finally, some non~worst case
heuristic search strategies are examined in light of these NP-completeness results.
These strategieé are based upon an isomorphism between clausal entailiments of a
certain class and partition lattices, and are applicable to the improvement of earlier
work on language acquisition and logical inductive inference.
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Foreword

This document is an attempt to integrate work on discovery methods from such
diverse fields as philosophy of science, artificial intelligence, and recursion theoi'y. i
hope it partakes of the virtues of each of these discipiines: the motivational clarity
of philosophy, the powerful generality of recursion theory, and the practical appeal
of artificial intelligence. But there is no doubt that it partakes of their vices: the
tedious argumentative hammering of philosophy, the bewildering notation and arcane
results of recursion theory, and the myriad unmotivated choices made in artificial
intelligence programming. Although the combination of these - studies introduces so
many distinct faults, | hope that their admixture ameliorates them, and that the the
tedium of algorithm design, philosophical argument, and mathematical proof is
vindicated by a new perspective on the scopes and limits of automatic discovery
procedures.

For each thesis there is -some person other than the author who is more than
anyone else crucial for its completion. In my case, this person is Clark Glymour.
Glymour's commitment of time and energy to his graduate students is unusual. But
more important to me was is his willingness to immerse himself in my project and
to extend it as it progressed. His careful attention contributed materially to the
thesis, but it also did much to revive my enthusiasm for the topic when prospects
seemed dim. In fact, his only unreasonable habit was to refuse to listen to
mathematical proofs on the phone at night while washing his baby.

Ken Manders and Robert Daley were very helpful. Manders complemented Glymour
by listening to proofs on the telephone at night | was often surprised by his
patience and his facility to understand my vaguely expressed hunches during these
very long conversations.

Robert Daley's knowledge of computation theory, inductive inference, and
computational complexity was also quite useful. Special thanks are due him for
holding two consecutive seminars on the mathematical theory of inductive inference.
These seminars provided a lucky chance for me to survey and to understand some
of this new and difficult literature.

I would like to thank the balance of the committee, including Ken Schaffner,
Richmond Thomason, and Jaime Carbonell, for their supportive attitude, their
cooperation in arranging meetings promptly, and their interest in the topic.

I have also been assisted through conversations with Keith Wright, Richard Statman,
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Teddy Seidenfeld, Wilfried Sieg, Tim Maudlin, and Richard Scheines. Richard
Scheines and Martha Harty deserve thanks for providing about eighty percent of my
social life for the last six years. | am sure it was not easy, but somebody had to
do it '

Carnegie-Melion University deserves credit for providing a reasonable research
environment for the completion of this project In particular, { would never have
finished without the powerful and reliable computer network on campus.

t

Finally, | wish to thank the members of my family for their warmth and support,
despite.the infrequency of my calls and visits.



Introduction

‘A standard, philosophical approach to the theory of inductive inference is to definé
relations of confirmation, explanation, refutation, or evidential support that hoid
between evidence and hypotheses. Then given some evidence and an hypothesis,
one can tell whether the evidence supports or refutes the hypothesis. Never mind
where the hypothesis comes from. All that matters is that it bear a certain
relationship to the evidence. Or to put it another way, there is no /ogic for
discovering good hypotheses. The methodologists task is merely to evaluate
whatever conjectures people dream up.

It seems to me that this approach ignores much of what is interesting about
inquiry. The goal of inquiry is the generation of knowledge. So there is a serious
gap between a theory of hypothesis evaluation and a theory of inquiry. This gap
between defining what a good hypothesis is and providing a full theory of inquiry is
like the gap between knowing what a needle is and finding one in a haystack. in
both cases, the latter concern is not trivial

Moreover, it is false that there is nothing a methodologist could or should say
about hypothesis generation methods. If one method is known to arrive at a
suitable hypothesis in every world another one can——- and then some-—- then
ceteris paribus, the former method is better than the latter. Or if one can
determine that a method is much more costly to use than another, but does not
provide any better results, then the former method is worse than the latter one.
And in either case, choosing an inferior method over a better one is irrational.

The aim of this thesis is not to invent the One True Method sufficient for all
inquiry. There is no such thing. Nor is it to provide a normative theory in which
any two methods are comparable. | don't expect to find one of these, either. But
there are interesting methods that are not universally applicable, and there are norms
that permit us to say that some methods are better than others. The purpose of
this thesis is to explore some of these more limited norms and methods. Once we
lower our expectations from the outlandish to the possible, we will see that there is
a good deal to be said about the logic of discovery.



it would be unfair to sell a model kit whose "instructions” say only that one should
"make the thing look like the picture on the box". ~What is required is an
unambiguous, step—by-step procedure for.turning the parts of the kit into the
desired result The same is true of discovery methods. They should spécify
unambiguous procedures for constructing hypotheses on the basis of input evidence.

Since hypothesis generation methods are procedures, they should be studied and
evaluated as such. The science of procedures is computation theory. Outside thg
context of computation theory, there seems little to say about logics of discovery.
No doubt, this is the motivation behind the usual epistemological disdain for the
study. 'But from a computational point of view, there is far more to say than | am
able to say in this thesis. The important questions about discovery become as
pervasive, precise, and compeliing as those in any other branch of philosophy.

But while computation theory is central to the logic of discovery, other disciplines
are also important Related topics inciude mathematical logic, model theory,
probability and statistics, combinatorics, lattice theory, computational linguistics, the
philosophical theories of confirmation and explanation, and the traditional studies of
metaphysics and epistemology.

Overview

The traditional, philosophical consensus is that there is no logic of discovery and
that even if there were, it is of no epistemological interest In chapter one, | ciear
the ground by exposing these claims as the groundless dogmas that they are. |
diagnose the weakness of the position as resulting from a failure to recognize that
procedures must be evaluated from a computational point of view.

While philosophers were preoccupied with the pointlessness and impossibility of
the logic of discovery, mathematicians, statisticians, computer scientists, and linguists
were doing it In chapter two, | focus on how this literature evaluates the methods
it proposes. Ceteris Paribus, methods are better insofar as they are more general
and less costly to compute. And a method is more general insofar as it is able to
converge to an adequate hypothesis in a wider range of possible worids.

In the subsequent chapter, | shift the focus from criteria for evaluating hypothesis
generators to the generators themselves. In particular, we examine generation
algorithms proposed by Pao, Angluin, Horning and Shapiro. Some patterns emerge.
The object in designing a general hypothesis generator is to eliminate the test of
hypotheses whose consideration adds nothing to the system's generality. But it is



not enough to decide to withhold an hypothesis from test, for just considering
whether to test each hypothesis can take too long. Somehow, hypotheses that do
not contribute to the system's generality must be ignored altogether. Particular
algorithmic techniques for withholding tests and ignoring hypotheses altogether are
. examined in detail.

The first three chapters review the relevant literature and lay the general
groundwork for the thesis. The subsequent four chapters attempt to achieve
greater depth by narrowing the focus to a particular problem. The problem focused
upon is a novel one: that of converging to a theory that entails every true universal
sentence true in a given worid on the basis of true evidence about particular
individuals in this world. A generator is viewed as having converged to a world if
for each true, universal sentence, there is some time after which all the device's
conjectures entail it, and for each false universal sentence, there is a time after
which no conjecture entails it This is different from the usual sense of
convergence, in- which there must be some unique point after which all and only the
true universal sentences are entailed by each conjecture.

in chapter four, the problem just described is introduced and its motivation is
compared to that of similar problems. Then three solutions to the problem are
proposed, each of which is based on a particular, syntactic theory of confirmation.
One method, called HEMP, relies on C.G. Hempel's syntactic confirmation relation to
solve the problem. Another solution relies on a generalization of Jean Nicod's
instance confirmation condition. Finally, a third solution relies simply on the relation
of consistency with the evidence. Each of these confirmation relations can be
viewed pragmatically, as a cog in a general, inductive procedure.

In chapter five, | take up the question of what it is for an hypothesis generator to
be efficient The concept turns out not to be so simple as one might expect |
begin with a review of standard complexity theory. Then | examine some proposed
approaches to the complexity of inference, and then discuss their merits and
demerits. Next, | propose some theories of efficiency for solutions to the universal
theory inference problem proposed in the previous chapter, and again discuss their
formal merits and demerits. In the end, | must settle with something less than a
fully general theory. Finally, the chapter addresses some crucial differences
between the difficulty of generation problems and the difficulty of their
corresponding decision problems. | propose an account of the difficulty of the
former that explicates intuitions about good and bad solutions to problems that
require the generation of very large sets.



The methods proposed in chapter four make no claims to efficiency. In chapters
six and seven | undertake to shave the fat off of them. In chapter six | focus on
techniques to avoid the consideration of equivalent variants of the same proposition,
and in chapter seven | consider methods that rely on the entailment structure of the
hypothesis language to avoid the consideration of useless hypotheses. The outcome
of these two chapters is mixed. There are some easy ways to greatly improve
inductive efficiency. But what is more surprising is that there are some easily
characterized hypotheses that just can't be ignored without expending more effort
to expunge them than they would absorb by sitting around and getting in the way.

So what do we learn from all this? First of all, the logic of discovery is not
trivial. Nor need it be an assemblage of vague truisms. Nor need it be the study
of human psychology. It its proper, computational element, it is as subtle and
interesting as any other philosophical subject Indeed, the logic of discovery is so
rich with interesting, computational questions that this thesis should be viewed as no
more than a minor scratch on its surface.



Chapter 1
Why No Logic of Discovery?

The success of logic and set theory in providing a more unified view of
mathematical method encouraged the logical empiricists to apply the same formal
approach to the understanding of empirical methods. This led to the many well—-
known probabilistic and logical accounts of justification, corroborstion, and
explanation. The logical empiricists were amply aware of the long tradition of
philosophical attempts, beginning at least with Plato and Aristotle, to provide
normative principles for producing reasonable beliefs from given evidence. They
were also aware that their own accounts of verification, confirmation, and
explanation fail to provide such constructive principles. Their response was a
vigoroﬁs attack on the very philosophical /nterest of the "logic of discovery™ the
study of procedures guaranteed (or at least likely) to produce hypotheses that are
reasonable with respect to given evidence.

The last five years have seen a revival of interest in the logic of discovery among
philosophers of science [Nickles80], and there are still philosophers ready to raise
the traditional anti-generationist arguments against this new interest [Laudan80]." In
particular, they pose two familiar objections to the philosophical study of hypothesis
generating methods:

® The logic of discovery has no epistemological reievance.

e Even if it did, there are no adequate logics of discovery.

This chapter disputes the arguments for each of these claims. The reasons offered
for the first thesis are either uncompelling or dependent on equivocations and faulty
analogies. There are no arguments offered for the second thesis, only claims for it
I show that if the thesis is given a precise sense it is either obviously false or
extremely difficult to prove. Indeed, the very accounts of confirmation offered by

1"Generationism" denotes the view thet the logic of discovery, the enterprise of seeking procedures that reliably
generate interesting, useful, explanatory, or confirmed hypotheses on the basis of given evidence, is philosophically
relevant and interesting. Generetionism is distinct from “inductivism”, the view (opposed by Popper) that singuler
evidence can provide & resson to believe @ general claim. Csarnap, for exampie, was an inductivist but not o
generationist. Finally, anti-generationism is the position that the the thesis of generationism is false.



the logical empiricists can be used to produce adequate logics of discovery, in their
own sense of "adequacy".

The real moral of this essay is not, .however, that every version of anti-
generationism is untenable. It is rather that the philosophical investigation of the
interest and scope of the logic of discoVery raises substantive, computational
questions which cannot even be formulated sensibly in abstraction from a precise,
computation—theoretic setting.

1.1. On The Arguments that the Logic of Discovery is Philosophically Irrelevant

The contemporary popularity of the first objection is due in large part to its
appearance in the section entitled "Elimination of Psychologism” of Popper's The
Logic of Scientific Discovery. Popper argues in this passage that the title of his
book does not denote.

..[Tlhe act of conceiving or inventing a theory seems to me neither to
call for logical analysis nor to be susceptible of it The guestion how it
happens that a new idea, occurs to a man—--whether it is a musical
theme, a dramatic conflict, or a scientific theory—--may be of great
interest to empirical psychology; but it is irrelevant to the logical analysis
of scientific knowledge (Popper68); p. 31. '

Popper's rationale for the irrelevance of the manner in which a theory is "conceived
or invented” to "the logic of analysis of scientific knowledge” is that the latter study
concerns justification, while the former study is concerned with actual causes in
human cognitive processes.

[The logic of analysis of scientific knowledgel is concerned not with
guestions of fact (Kant's quid facti?), but only with questions of
Jjustification or validity (Kant's quid juris?} (p. 31).

But it is simply false that the logic of discovery is restricted to the study of
actual, causal processes underlying actual, human behavior. First, it is not confined
to the study of actua/, causal processes. Given a programming system, the
hypothesis generation procedures specifiable in that system exist abstractly in the
same sense that proofs in a given formal system exist So the logic of discovery
is an abstract study whose domain includes all possib/e procedures.

Second, the logic of discovery is concerned with the investigation of adequate
hypothesis generation procedures. What adequacy comes to is a normative
question. Desiderata include general applicability, rapid convergence, efficiency, and
an ability to generate simple, explanatory, confirmed hypotheses in the short run.
So the logic of discovery is a normative, abstract study.



Psychology, sociology, history, archeology, and anthropology, on the other hand,
investigate the actual causal principles regulating cognition, social interaction, and
bodily functioning  These empirical sciences are not about arbitrary, abstract
procedures; nor are they normative. Therefore, the logic of discovery is not a
sub~-discipline of any of these sciences any more than, say, proof theory is. Of
course, a psychologist may employ proof theory himself, or he may conjecture that
human behavior sometimes approximates the inferential standards of proof theory,
but proof theory is then his methodological tool rather than his principal object of
study. Similarly, a psychologist may conjecture that human behavior sometimes
approximates a given logic of discovery, but the logic of discovery per se is not
his object of study: actual human cognition is.

Larry Laudan [Laudan80] differs from most anti-generationists, for he actually
argues for the irrelevance thesis. One argument is that studies analogous to the
logic of discovery are of no philosophical interest, so the logic of discovery is of
no interest either.

-[Olne must ask what is specifically philosophical about studying the
genesis of theories. Simply put, a theory is an artifact, fashioned
perhaps by certain tools (e.g. implicit rules of 'search). The investigation
of the mode of manufacture of artifacts (whether clay pots, surgical
scalpels, or vitamin pilis}) is not normally viewed as a philosophical activity
(p.182).

But this analogy is not merely unsuccessful: it is self-defeating. The process of
"quality control” for artifacts like clay pots, surgical scalpels, or vitamin pills is just
as rarely viewed as a philosophical activity. But hypothesis generation is to artifact
manufacture as hypothesis testing is to "quality control’ for artifacts. Hence, the
logic of justification must not be a philosophical pursuit

If there is a difference between hypotheses and vitamin pills so that quality control
is philosophically interesting in the first case but not in the second, then this
difference may make a difference in the case of hypothesis generation as well. An
obvious candidate for the difference that makes a difference is that hypotheses are
the raw material for know/edge and epistemology is, after all, the study of
knowledge. Clay pots and vitamin pills, on the other hand, are not candidates for
knowledge, so their manufacture and quality contro/ do not constitute
epistemological concerns.

In a more specific analogy, Laudan claims that philosophers of law are uninterested
in "the mechanics of drafting a piece of legislation” {p.182). The intended analogy is
that the mechanics of drafting a piece of legislation is to its legal normative force



as the mechanics of generating an hypothesis is to the hypothesis’ justification.
Since philosophers of law do not study the mechanics of drafting (actual?)
legislation, but do consider the normative force of law, epistemologists should
ignore the generation of hypotheses and study only the normative (justificatory)
aspects of knowledge.

Admittedly, the study of the actual process of legislation is analogous to the study
of actual, human methods of hypothesis invention. For exampie, the fact tha:c
Benjamin Disraeli rarely came to Parliament during the debates over the Merchant
Shipping Act of 1876 is of no obvious philosophical interest But, once again, the
logic of discovery is not confined to the study of actua/ human discovery
processes. For Laudan's analogy to be fair, the philosopher cf law should be asked
to decide whether a method which generates laws guaranteed to possess some
property in which the philosopher of law is interested would be interesting. But
this is exactly the sort of issue at stake in discussions of Arrow's paradox and
other social choice problems. It is, in a more remote form, the sort of issue at
stake in Rawls’ account of the role of the original position in the justification of
social institutions [Rawls64], [Sen701], [Arrowb1].

The arguments considered so far all assume a falsehood: that the logic of
discovery is an empirical, descriptive science. Laudan aiso provides a more
interesting argument that does not involve this false assumption (p. 182). |
paraphrase the basic structure of his argument as follows:
e The logic of discovery is "redundant and gratuitous” to the task of
finding "a sound warrant for our claims about the world".
* What other epistemological relevance could it have? (i.e. it has none).
e (Hence, the logic of discovery is ‘redundant and gratuitous” to
epistemology in general).

Are the premises credible? -

1.1.1. Discovery and "E;Sistemic Warrant”

Laudan does not argue explicitly for the first thesis. He provides instead a
discussion of the historical events that led to the abandonment of the logic of
discovery in the Nineteenth Century. According to Laudan, epistemologists have
tended to divide into two camps.

.[Tlhe consequentialists.believed that theories or claims could be
justified by comparing (a subset of} their consequences with observation.



If an appropriatedly selected range of consequences proved to be true,
this was thought to provide an epistemic justification for asserting the
truth of the theory.

-

..[Tlhe generators.. believed that theories could be established only by
showing that they followed logically (using certain allegedly truth-
preserving algorithms) from statements which were directly gleaned from
observation (p. 176).

The logic of generation flourished prior to the Nineteenth Century because everyone
knew that hypothetico-deductivism is fallible, but the question of infaliibility for
generation procedures was open. '

.[1]Jf one seeks infallble knowledge and if one grants the
fallaciousness of affirming the consequent, then the only viable hope for
a logic of justification will reside in the quest for a truth—preserving
logic of discovery (p. 178).

But in the Nineteenth Century, complicated theories about unobservable objects were
common, infallibilism was rejected, and hypothetico-deductivism flourished (p. 178).
So the generationist program was abandoned because hypothetico—deductive tests
seemed more easily applicable to theories postulating unobservable structures, and
the demise of infallibilism undercut the motivation for seeking a generation method.
Laudan derives a philosophical lesson from this historical discussion.

The program for articulating an infallible logic of discovery never came
to fruition; but that failure only partially explains its abandonment Equally
crucial here was the joint emergence of epistemic fallibilism and of post
hoc logics of theory testing; developments which rendered redundant and
gratuitous the logic of discovery so far as the epistemological issue is
concerned. It remains redundant now (p. 182).

This passage seems to suggest that the logic of discovery is gratuitous because
the hypothetico—deductive method of Herschel, Compte and Whewell represents the
completion of epistemological inquiry, so the study of different methods of any
sort is gratuitous. But this position is implausible in light of the many standard
formal objections to hypothetico—deductive method [Glymour80].

So perhaps Laudan only intended that the logic of discovery is gratuitous to the
epistemological search for an adequate theory of epistemic warrant that has not yet
been found. Laudan describes the epistemological issue at stake as the problem of
"how to provide a sound warrant for our claims about the world” (p. 176). This
could mean that the task of the epistemologist is to provide a way to show that
our claims about the world are warranted by our evidencee Or perhaps the
epistemologist need only specify abstract conditions under which an hypothesis is
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warranted by evidence, whether or not we know how to find out that it is. In the
latter case, the proper object of epistemological study is an abstract relation of
epistemic warrant (confirmation) between theory and evidence. For any given theory
and any given evidence, this relation either holds or fails to hold whether or not
anyone knows that it does. But in the former case, the proper objects of
epistemological study are procedures for establishing that the abstract relation of
warrant holds in a particular case.’

i

Laudan's consistent use of the phrase "post hoc logics of theory testing” strongly
suggests that he is interested in test procedures rather than in abstract relations.
Laudan ‘admits that some discovery methods may be guaranteed to generate only
warranted hypotheses. Any such procedure establishes the warrant of the
hypotheses génerated and is therefore of relevance to epistemology. Nevertheless,
Laudan maintains that the logic of discovery is gratuitous to epistemological inquiry
because post hoc test procedures suffice to provide epistemic access to the
relation of epistemic warraht But the mere fact that the study of test procedures
would suffice does not imply that the study of discovery procedures is gratuitous.
Reductio proofs suffice to derive all derivable theorems, but it would be silly to
infer from this redundancy that direct proofs are gratuitous for purposes of
demonstration. They are no more gratuitous than reductio proofs are.

Laudan's position may be more sophisticated. Perhaps he assumes tacitly that each
adequate generation method consists of a test subroutine together with a procedure
‘that enumerates hypotheses and applies the test to them. Since the test procedure
already provides epistemic access to the underlying relation of epistemic warrant,
any further work required to convert the test into a generation procedure is
gratuitous to the practice of epistemology.

But although generation procedures can be written in this obvious manner, they
need not be. Indeed, there are abstract relations whose obvious test and generation
procedures are related in just the opposite manner: the test makes use of the
generator, but the generator makes no use of the test For a trivial example, let the
relation ®(x,y) be defined as y=x% The obvious generator is just a device that when
given x calculates x® Clearly, this calculation need not effectively enumerate the
natural numbers and compute a test ®(x,y) for each y in the enumeration until the
test says 'yves. It can be computed quickly and efficiently, as by a pocket
calculator. On the other hand, the obvious test for ®(x,y) calculates x? when given x

2 ; . . . . .
My sense of “procedure” is broad enough to include any formal system in which it cean be derived that the
relation. holds in & given case.
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and then checks to see whether the result of this calculation is identical with y. if
so it says 'yes. Otherwise it says 'no’. This test procedure uses the generation
procedure as a subroutine® Since generation procedures need not rely in an
obvious way on explicit tests for epistemic warrant, there is no "extra" work
involved in the logic of discovery that is gratuitous to the pursuit of epistemology.

My attack on Laudan's position exploits the computational symmetry between test
procedures and generation procedures. Just as Grue can be defined in terms of
Green and Green can be defined in terms of Grue, a generator can be built out of
a test procedure, but a test procedure can a/so be built out of a generator. When
the one sort of procedure squeezes through the door, the other is difficult to
exclude. So someone defending Laudan's thesis might retreat to the ascetic position
that the object of epistemological inquiry is just the abstract relation of epistemic
warrant simpliciter. On this view, any procedural considerations are rejected as
“merely pragmatic”. So the logic of post hoc tests is as gratuitous to the pursuit of
epistemology as the logic of discovery is.

But there is something unsettling about philosophical accounts of rationality that are
aimed at "ideal agents” who are not subject to "merely pragmatic’ computational
limitations.  After all, these accounts are clearly motivated by an attempt to show
that agents whose evidence is somehow limited can nonetheless be justified in
believing theories that greatly extend this evidence, even when these theories are
false. If the limitations of the agents subject to these norms were not of central
importance to their formulation, then epistemology would be trivially complete upon
the enunciation of the elegant principie "Thou shalt always believe all truths”. The
worry that fumbling, finite humans must measure miserably against such a standard is
the starting-point for all epistemological theorizing. But notice that finite
computational ability and limited evidence—gathering ability both arise from the same
general source. the bare finitude of the epistemic agent To make normative
concessions to limited evidence gathering ability while making no concessions
whatever to computational tractability lacks motivation. The situation is analogous to
that of a priest, who in compassion for a lame man, derives by long and tedious
arguments that it is acceptable for him not to walk to church-—- so long as he
walks to an equally distant one instead. One wonders whether the priest's exercise
is worth the effort

The absurdity of the ascetic position shows up in the philosophy of mathematics

3 X . . . . .
More generally, any underlying relstion that contains & total function that is computable in poiynomial time gives
rise to such en example.
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as well According to this view, the important, underlying property of mathematical
claims is mathematical truth, so this is all that concerns the epistemologist Proofs
are mere, pragmatic crutches for finding .out whether this property holds for a
given sentence. Worse, the set of proofs of a system is usually taken to be a
recursive set of finite strings so that mere, finite beings can check them in finite
time. This restriction is essential, for infinitary derivation systems can be shown to
be more powerful Hence, provability is of interest only to engineers and
psychologists. Since the scope of first-order logic is delimited by the notion of
finite, mechanically verifiable proofs, Goedel's completeness and incompleteness
theorems are of no epistemological interest either. In fact, not much of anything
that is.difficu|t or interesting about mathematics is of interest on this view. So
much the worse for the view.

1.1.2, Generation and Epistemoliogy

The second stage of Laudan's argument is his demand to know what the
epistemological ‘relevance of the logic of discovery is if it is not to provide
epistemic warrant for hypotheses. Some suggesfed answers follow, but an
exhaustive survey is not attempted.

Much of Reichenbach's careér was devoted to the "pragmatic vindication” of the
"straight rule” of induction [Reichenbach48]. Laudan acknowledges that the straight
rule is a logic of hypothesis generation. Reichenbach held on decision—theoretic
grounds that the selection of the straight rule as an inductive method is justified,
but he explicitly denied that belief in the hypotheses it produces is justified (pp.
373, 472). So even Reichenbach saw a crucial epistemic role for the logic of
discovery that is not parasitic on the justification of individual hypotheses.

Once foundationalism is abandoned, new possibilities open up for the logic of
discovery. Consider Quine's proposal for a naturalistic epistemology [Quine6S].
The examination of the causal processes whereby the "meager input’ of the human
apparatus causally determines its “"torrential output” is not only relevant to naturalistic
epistemology; it /s naturalistic epistemology (p. 83).

Perhaps no current epistemological theory is more vitally bound to the logic of
discovery than is Larry Laudan's. His account of rationality can be summarized in
two principles:

e ".[Tlhe choice of one tradition over its rivals is a progressive (and
thus a rational) choice precisely to the extent that the chosen tradition
is a better problem solver than its rivals” [Laudan77} p. 1089,
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o " [Ilt is always rational to pursue any research tradition which has a
higher rate of progress than its rivals (even if the former has a lower
problem-solving effectiveness)' (p. 111).

Laudan thoughtfully provides an explicit place for generation procedures in the
concept of a research tradition.

.[A] research ftradition is a set of general assumptions about the
entities and processes in a domain of study, and about the appropriate
methods to be used for investigating the prob'ems and constructing the
theories in that domain (p. 81; my emphasis). ’

It is not difficult to see the relevance of discovery issues to Laudan’'s theory of
rationality.  Imagine two traditions A and B, whose domains and metaphysical
assumptions are identical. The only difference between A and B is that the A has
bought sophisticated software guaranteed to generate only confirmed, explanatory
hypotheses while B casts its lot with "creative intuition”. The empirical probiem—
solving capacity of tradition A will accelerate until rationality compels both the
pursuit and acceptance of A. Hence, discovery procedures and their properties can
formally dictate the rational selection of a research tradition in Laudan's framework.*

Not only is the logic of discovery crucial in Laudan's framework; it reveals that his
criterion of rational pursuit is not a necessary condition. For assume that the
members of B, in a desperate attempt to catch up with A, purchase some "fifth
generation” software that can be proved to converge to a correct result over the
common problem domain ten orders of magnitude more quickly than A's software
can. Once this fact is known, one seems rationally compelled to pursue B even
though the actual rate of progress of B does surpass that of A until the new
software is installed on the B-computer, and the B-technicians learn how to use it
properly. One needn't wait until B actually surges ahead. The logic of discovery
guarantees @ priori that it will

1.2. On the Arguments against the Existence of Any Adequate Hypothesis
Generation Method

According to anti-generationists, the entire preceding defense of the philosophical
interest of the logic of discovery was in vain, for there are no such methods to
study. The significance of this opinion is difficult to assess, however, because the
anti-generationists have only vaguely specified what would count as an hypothesis

dThis scensrio does not resemble the exampies Laudan drews from the natursl. sciences, but it does reflect the
situation in more methodologically self-conscious disciplines. For exampie, some “research traditions” in sociology
insist on constructing statistical modeis by hand, while others apply computerized logics of discovery to the same
sorts of problems with an enhanced rete of progiess |Glymour841].
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generator; much less have they specified what an adequate generator might be.
Perhaps the clearest account is Carnap's, although it is not very clear:

C1: The question whether an inductive logic with exact rules is at all
possible is still controversial. But in one point the present opinions of
most philosophers and scientists seem to agree, namely, that the inductive
procedure is not, so to speak, a mechanical procedure prescribed by
fixed rules. If, for instance, a report. of observational results is given,
and we want to find a hypothesis that is well confirmed and furnishes a
good explanation for the events observed, then there is no set of fixed
rules which would lead us automatically to the best hypothesis or even a
good one. * # # The same point has sometimes been formulated by
saying that it is not possible to construct an inductive machine. The latter
is’ presumably meant as a mechanical contrivance that, when fed an
‘observational report, would furnish a suitable hypothesis, just as a
computing machine when supplied with two factors furnishes their
product | am completely in agreement that an inductive machine of this
kind is not possible [Carnap50].

The phrases "fixed rules”, "mechanical contrivance’, and "computing maching”
indicate that Carnap thinks of a method as a computer program. Notice that his
claim that no adequate generation method is possib/e means that no such program
exists as an abstract object This ex/stential thesis is much stronger than the mere
contingent hypothesis that we. will never find such a method, whether or not there
is one.

Carnap requires that the outputs of an adequate hypothesis generator be confirmed
and explanatory. The current lack of consensus over the nature of explanation and
confirmation might lead to doubts that Carnap's existential claim can be adjudicated
persuasively. But it is still possible to argue that Carnap's existential anti—
generationism is false (or at least unattractive) no matter what relations the relations
of explanation and confirmation are.

Accordingly, | call any relation involving hypotheses and any other relevant factors
a "suitability relation”. Suitability may involve only an hypothesis and an observation
report. It may also involve human interests, historical context, the success of
competing research programs, or other "external” factors. But since nothing is
assumed about these factors, think of n-tuples of factors as single objects. | call
each such sequence a "situation”. So even though suitability will be treated as a
binary relation, one of the relata is a situation coding all relevant factors.

The adequacy of an hypothesis generator depends upon more than a relation of
suitability for hypotheses, however. Carnap seems to require that an adequate
method generate a suitable hypothesis for any possible situation. But this necessary
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condition for adequacy is too unsympathetic to generationism to be taken seriously,
for there may be some situation for which no suitable hypothesis exists. In such a
situation, a method should be praised rather. than condemned for refusing to make a
conjecture.

A more sensible criterion of adequacy is that the device commit no errors of
omission or commission in any situation. M is guilty of an error of commission in
situation W according to suitability relation S if and only if M outputs h upon
receiving its appointed W as input and h does not bear S to W. M is guilty of an
error of omission in S—situation W according to S if and only if M produces no
output upon receiving its appointed sublist of W as input and there is an h such
that h bears S to W.

Hypothesis generation machine M is strongly adequate for suitability
relation S if and only if for every S-situation W, M is guilty of no error
in W according to S.

Since fewer algorithms satisfy a stronger criterion of adequacy, this extremely strict
condition is very generous to Carnap's case.

1.2.1. Anti-Generationism and Recursively Enumerable Hypothesis Suitability

The following easy result shows that the existential anti~generationist thesis is false
if suitability is a recursively enumerable relation.

Fact 7: For any recursively enumerable suitability relation S, there is
an hypothesis generation machine which is strongly adequate with respect
to S.

The mathematical shaliowness of Fact 1 belies its philosophical significance for
anti-generationism. For example, Carnap's ¢’ confirmation measure is computable
over the first—order monadic predicate calculus. For anv chosen confidence level k,
the test whether c'he) exceeds k is clearly computable. Hence, Carnap’s own
construal of "h is well-confirmed on €" is not only recursively enumerable, but
recursive as well. By the method of Fact 1, we can easily construct a strongly
adequate hypothesis generation machine for this sense of confirmation. Hempel
showed that his own "satisfaction” relation of confirmation is computable. By Fact
1, there is also a strongly adequate hypothesis generation machine for Hempel's
confirmation relation.

Strongly adequate machines for these relations could generate trivial hypotheses,
for tautologies are always highly confirmed. Carnap required, therefore, that the
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outputs of an adequate discovery device be explanatory as well as highly confirmed.
Hempel addressed this concern with his measure of "the systematic power of a
theory” [Hempel65]. The measure s(h.e) assigns some rational number in the interval
[0, 1] to any first order sentsnce h and any singular sentence e. Whether or not
slh.e) exceeds a certain level k is a recursively enumerable relation.

The intersection of any two recursively enumerable relations is itself recursively

enumerable. Hence Fact 1 guarantees the existence of a strongly adequate
hypothesis generation machine for each of the following recursively enumerable
suitability relations, where Hih,e) is Hempel's recursive confirmation relation:

e S.(he) if and only if c'the) > k and sth.e) > Kk

e S, he) if and only if Hihe) and sth.e) > k

If Carnap and Hempel believed what they were writing, then for any situation, these
machines accept evidence and output a well-confirmed and explanatory hypothesis in
this situation if and only if such an hypothesis exists. In a word, these two
distinguished antn—generatlomsts were either denying a simple matnematncal truth, or
they did not take the results of their own formal work on suitability relations
seriously.

There is reason to think that the latter possibility applies in Hempel's case. Hempel
worried a good deal about the significance and confirmation of hypotheses with
non—-logical vocabulary extending that of the evidence. Since his own confirmation
relation was not intended to handle such cases, any discovery procedure adequate
with respect to this relation would be inadequate with respect to the "true’
suitability relation, which must deal ‘With "theoretical” hypotheses as well as empirical
laws,

An adequate rule of induction would therefore have to provide, for
this and for every other conceivable case, mechanically applicable criteria
determining unambiguously, and without any reliance on the inventiveness
or additional scientific knowledge of its user, all those new abstract
concepts which need to be created for the formulation of the theory
that will account for the given evidence. Clearly, this requirement cannot
be satisfied by any set of rules, however ingeniously devised; there can
be no general rules of induction in the above sense; the demand for
them rests on a confusion of logical and psychological issues

[Hempel651].

The interesting claim here is that no hypothesis generation machine can generate
suitable hypotheses containing non-logical vocabulary not occurring in the input
evidence. But what if we were to build a machine which is strongly adequate with
respect to a proposed suitability relation for hypotheses with theoretical terms?
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Carnap's théory of reduction sentences in “Testability and Meaning”
[Carnap36] was intended as a theory of meaning, but it has been suggested
[Glymour80] that it be viewed as an account of confirmation for theoretical
hypotheses. The paper's leading idea is that the test of a theoretical hypothesis h
on given evidence e is performed by testing this hypothesis with respect to
sentences €' in the language of the hypothesis which are related to e in a particular
way. To render the idea a particular proposal, one requires four things:

1. An hypothesis language L, ’
2. An evidence language L.

3 A specific account of confirmation which is adequate for hypotheses
whose nonlogical vocabulary does not extend the evidential vocabulary.

4. A class R, which is a subset of {fPL) ——> PL)}

Without belaboring what could only be inadequate motivation, | choose the foliowing
ingredients:

1L, is the atomic sentences and negations of atomic sentences of a
first—order relational language with a finite set Pred, of predicates.

2.1, is the sentences of a full first-order relational language without
function symbols or identity, with a finite set Pred, of predicates, such
that Pred, properly includes Pred..

3. Our basis confirmation theory will be Hempel's, for simplicity. We shall
write "e confirms h on Hempel's criterion” as simply “Hie, h)"

4. A reduction pair for Lh and LE is the universal ciosure of Lh-formulae
O, ——=>1,-—-=>T

O, ——>(©, ——=> -7
where the O, are atomic formulas whose predicates are in Pred, and
the T, are atomic formulas whose predicates are in Pred —Pred. For
any finite consistent subset e of L, and any finite, consistent set of
such reduction pairs r, define

firrel=fle)={sel:eri-stUe
Then define

R= {fr: r is a finite, consistent set of reduction pairs}

Choice (4) just amounts to Carnap's scheme of reduction pairs in "Testability and

Meaning". Now we define the confirmation relation CT as:
CTir.eh) =, HIf (e)h)

for finite, consistent r, e, and Lh ‘sentence h.

Notice that |- is recursive for a prenex normal form language with strictly
universal quantifier prefixes and no function symbols. Since e and r are finite, f is
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a recursive function. Notice also that e, r can entail only finitely many atoms if e, r
are consistent Hence, f is recursive, so for any such r, f is as well Since H is a
recursive relation, it follows that CT is also a recursive relation.

Also, notice that the power set of the set of all reduction pairs for L and L is
finite, and hence RE. Of course, L is RE. in virtue of being a language. This leads
to the following program:

Read the given finite, consistent subset e of L. Enumerate all possible
pairs <rh> and test CT(f (e), h} for that pair. We can also recursively
check whether some predicate in Pred —Pred, occurs in h. If both tests
succeed, then output the current pair. Otherwise proceed to the next
pair <r'h> .

This program is guaranteed to "invent” a confirmed hypothesis with "theoretical”
predicates, if there is one. If explanatory hypotheses are desired, Hempel's theory
of systematic power can be dovetailed in, where r is included as part of the

hypothesis.

Nothing depends upon favored interpretations of the predicates in Pred —Pred.
These predicates are mere objects pushed about by the agent executing the
program. Hence, it would be hyperbole to claim that this machine is supplied
"theoretical concepts” in advance. The predicates in Pred —Pred  cannot be said to
correspond to "concepts” unti/ a particular pair <r, h> is inferred by the machine or
its user.> Of course, Hempel would dispute that Carnap had distilled the essence of
confirmation in "Testability and Meaning” [Hempel65) p. 188. Moreover, he might
have been skeptical that philosophers could ever do so. He certainly expressed
such doubts in closely related areas’® But methodological skepticism about
philosophical method is no evidence whatever for existential anti~generationism of
the sort expressed by Hempel in the above quotation. If suitability is recursively
enumerable {(whether we currently describe suitability correctly or not} then the
questioned machine exists.

5Even then, it is possible that where e” is the Lo dimgram of one’'s favorite structure, e U {h} U r has many
models which sgree with the {favored one on their assignments to Prede, but not on the theoretical predicates
occurring in h and r, That is, these predicates need not be implicitly defined by e U {h) U r, when the program
outputs «<r, h> on input e.

6”I fee! less confident, however, about the possibility of réslating the genera! idea in the form of precise and

genersal criteria which establish sharp dividing lines....”{Hempe! 1965; p. 102}
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1.2.2. Anti-Generationism and Unsolvable Hypothesis Suitability

The proofs of machine existence in thg previous section fail to apply when
suitability is not recursively enumerable, for then no program for enumerating the
suitability relation can be assumed in the construction of an adequate hypothesis
generator. Thus, an anti-generationist might claim that suitability is not a recursively
enumerable relation. But this maneuver yields small comfort, for lots of “very
uncomputable” suitability relations have adequate logics of discovery.

i

First, it can easily be shown that there is a non-recursively enumerable suitability
relation” for which there is a strongly adequate hypothesis generation machine.
relation R is said to be co-R.E. if and only if the relation is the universal
complement of some recursively enumerable relation. There exist sets which are
co—-RE, but which are not recursive. Such sets are not recursively enumerable.
Nevertheless, there are strongly adequate generation machines for some co-RE,
non-recursive suitability relations. Specifically,

Fact 2: There exists a co-RE. but not RE  suitability relation for
which there is a strongly adequate hypothesis generation machine.

Although the proof of Fact 2 relies upon an odd suitability relation, notice that
first order non—entailment is a co-RE., non-recursive relation. For Popper, it is a
necessary condition for corroboration that an hypothesis entail no known false fact
Hence, if all the other necessary conditions on suitability a Popperian might impose
are properly co-RE., their conjunction is as well Nonetheless, some entailment—
decidable fragment of the hypothesis language might still contain a suitable
hypothesis in any situation which has a suitable hypothesis in the expanded language.

Intuitively, Fact 2 reflects that even the program for a strongly adequate
hypothesis generation machine for S does not generally presuppose a program to
enumerate S. The following fact gives a necessary and sufficient condition for
sifting a strongly adequate hypothesis generator from an arbitrary suitability ‘relation
S.

Say that S is an hypothesis-extension of S if and only if S is a
subset of S and for any S-situation W, if there is an h in H such that h
bears S to W then there is an h' in H such that h' bears S' to W.

Fact 3: There is a strongly adequate hypothesis generation machine
for suitability relation S if and only if S is an hypothesis-extension of
some recursively enumerable relation S
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it is well known in the theory of computability that "unsolvability” does not stop
with co-RE. sets, but rather ascends in an infinite hierarchy of "degrees of
unsolvability”. If one begins with a recursive relation, successive projections and
complementations of this relation vyield relations of progressively greater
unsolvability. The co—RE. sets are merely one small step outside the bounds of any
intuitive notion of computability. The anti—generationist might be tempted to take
advantage of this fact and define suitability with many alternating negations and
existential quantifiers. Nevertheless, it is easy to show: '

Fact 4: For any nonempty unsolvability degree, there are infinitely
many suitability relations S properly of that degree for which there is a
strongiy adequate hypothesis generation machine.

Merely leaping up the unsolvability ordering will not guarantee the anti—generationist
his quarry. He must still argue that his arbitrarily unsolvable suitability relation is not
an hypothesis extension of some RE. relation. A combinatorial argument for this’
proposition would be that éuitability is both unsolvable and single valued (i.e. there is
at most one hypothesis suitable in any S-—situation). In this case, the relation could
not possibly be an h-extension of an RE relation, so by Fact 4, no strongly
adequate machine for this relation could exist But such a proposal would entail at
most one suitable hypothesis in any situation, which is implausible.

in short, the unsolvability degrees are teeming with suitability relations for which
there are adequate logics of discovery. These elementary facts do not conclusively
disprove existential anti~generationism, but they do show that this thesis is not the
safe, "throw away line” it was thought to be by Popper, Hempel, and Carnap. To
believe it without sophisticated reasons is to take a great risk. To assert it without
argument is not to philosophize, but to speculate.

1.3. Conclusion

Popper's arguments that the logic of discovery is psychology ignore the fact that
the former is an abstract, normative study. Laudan's arguments for the thesis that
the logic of discovery is philosophically gratuitous neglect the computational
symmetry of generation procedures and post hoc test procedures. Finally, Carnap's
formulation of the position that there is no adequate logic of discovery can be
shown by trivial recursion~theoretic constructions to contradict his own
epistemological theories. He seems to have failed even to consider the mathematical
audacity of his claim.
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The common cause underlying each of these failures is a cavalier inattention to the

mathematical, computational background of the logic of discovery. Any serious
discussion of the interest and feasibility- of possible discovery methods must
consider detailed and difficult questions concerning their power and complexity. The
study of computational complexity is quite young, but the question of the
fundamental limitations on the feasibility of inductive inference has aiready been
addressed in the computer science literature [Angluin78]. The study of the power
of inductive methods was originated, in a sense, by Hilary Putnam [Putnam63] and
has been greatly extended by computer scientists over the last two decades
[Angiuin82]. Even a cursory examination of the results of these computational
inquiries reveals a complicated pattern of successes and failures for the logic of
discovery. This complex pattern cannot be captured by the naive, traditional
pronouncements of anti—generationism.
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Chapter 2
Elements of the Logic of Discovery

2.1. Hypothesis Generation and Computation

The study of hypothesis generation methods has been a central concern of
philosophical speculation since the dawn of recorded thought  The “paradox”
recorded in the Meno, for example, asks how we could discover the true definition
of a Form without already knowing what the definition is. The paradox can be
restated in terms of heuristic search for an adequate hypothesiss how can any
search proceduf_e be sure to find an adequate hypothesis when the property of
adequacy is undecidable on the basis of the inputs to the procedure? That is, how
can the search be terminated without the risk of stopping toc soon or too late?’

Aristotle was also interested in methods that generate adequate hypotheses on the
basis of evidence. For example, he presented a formal method for generating
hypotheses about natures in his Posterior Analytics. His proposal was to employ a

partially specified syllogistic demonstration to constrain the search for a "middle
term” that completes it Bacon conceived of a sort of public industry of empirical
knowledge generation, and Descartes proposed a private, introspective approach to
the generation of knowledge. Later ages brought Newton's rules, Mills method's,
Reichenbach’'s straight rule of induction, and statistical estimation techniques. Every
one of these proposals describes a process for generating adequate hypotheses.

An important difference between philosophical theories of inquiry is that some
appeal to special, unanalyzed and unexplained mental faculties (e.g. Plato's
“recoliection” faculty and Descartes "natural light') while others are intended as
explicit, logical procedures to be studied, learned, and foliowed in a self-conscious
manner {e.g. Aristotle's logic, Bacon's Novum Organum, the logics of Newton, Mill

and Reichenbach, and statistical point estimation techniques). Only proposals of the

7NeweH and Simon distinguish “well-formed” from “iil-formed” search probiems. A well-formed seasrch probiem
consists of & search space and a2 procedure for deciding whether & given point in the space is 8 gosl state or not. If
no such decision procedure is available, then the problem is ill formed. So the Meno Paradox may be viewed 25 the
claim thet the search for an adequate hypothesis on the basis of evidence is an ill-formed probiem.
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latter sort deserve to be called "methods”, for it should be possible to foliow a
method without reliance on mysterious abilities. For example, the Cartesian formula

Begin -

Invoke the Natural Light; :

Conceive Clearly and Distinctly;

Assert the content of the resuiting conception
End.

fails to be an hypothesis generation method, for it is difficult both to figure out
how to execute it and to tell whether it has been executed correctly. And even if
one believes that he can execute Descartes’ formula at will, the ability to do so may
be arcane and unavailable to others. Any method worthy of the name should
analyze the problem to be solved into a multitude of trivial instructions that demand
no special faculties for their execution.

This concern for explicitness and determinacy is also found in the standard
motivations for the theory of computation [Rogers67]. The primitive abilities
demanded of an agent to follow the instructions of a computer program are trivial,
repeatable, and entirely non—mysterious. The fact that they can be simulated by
actual machines is the supreme demonstration of their explicitness and determinacy.
Accordingly, | restrict my attention to hypotﬁesis generation methods that are
computer programs or that can be reformulated as computer programs with only
minor effort

A computer language (LISP, PASCAL, Turing machines, random-access machines, C)
contains infinitely many distinct programs, each of which computes some input-
output function. Strictly speaking, every one of these programs can be described
as an hypothesis generation method. Some generate nothing, others lead to the
generation of silly or ill-formed hypotheses, and still others lead to the generation
of sensible ones. Some methods require astronomical resources to produce an
output, and others do so quickly. We are obviously not interested in all of these
methods. Rather, we are interested in the good ones.

2.2. Inductive Generality

Consider an ordinary, electric toaster. Now imagine that Einstein's field equations
are written on a piece of bread, which is inserted into one of the toaster's slots.
The method is started by writing one's available astronomical evidence on another
slice of bread, stuffing this slice into the toaster's free slot, and depressing the
lever. After a minute and a half, the toaster—-method is sure to "conjecture” a
slightly darkened version of the field equations "on the basis of" the evidence
provided.
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There is nothing unclear about how to foliow the toaster method for space-time
physics. Moreover, we believe the conjectured hypothesis is true, explanatory, and
downright ingenious. Finally, the toaster method is extremely fast—--— much faster
than poor Einstein was in generating the same hypothesis from the same data So
why don't scientists sit back and rely on toasters?

The toaster method is a farce, that's why. It makes the same conjecture no matter
what the evidence is, and in most cases, its conjecture is not warranted by or even
relevant to the sentences written on its "input’ slice of bread. Needless to say, if'
the toaster method had been started in a world in which the field equations are
false, its conjecture would have been false. And had it been run repeatedly on
increasing evidence true of that world, it would have conjectured falsehoods for
eternity. Or to put it another way, no matter how much evidence we provide the
toaster with, it will never come to discriminate between worids in which the field
equations hold and those in which they do not

The toaster eiample suggests two considerations relevant to the assessment of
discovery procedures. The first is that in 'ignoring its evidence, the device is
unlikely to produce an hypothesis suitable for the evidence provided, where
suitability is some relation like confirmation and explanation between evidence and
hypothesis. So to recall Carnap's demand, a good device might be expected to
produce confirmed, explanatory, hypotheses with respect to the evidence provided.
Ceteris paribus, a method is better insofar as its conjectures are more usually
suitable with respect to the evidence. And if we can measure suitability, a method
is better, ceteris paribus, insofar as its conjectures are more usually more suitable.

The other consideration raised by the toaster example is that the toaster's outputs
would have been forever false in any possibie circumstances in which the Einstein
field equations are false. Truth is not the only semantic standard of evaluation of
hypotheses we might consider. We may demand informativeness as well as truth.
Or we might lower our demands and permit false hypotheses to be adequate.
Popper's notion of verisimilitude or "near truth” in a world is an example of a
semantic standard of hypothesis evaluation that falls short of truth.

Recall that suitability relations are epistemic criteria of hypothesis evaluation in the
sense that the investigator has access to all the factors relevant to determining the
suitability of any given hypothesis (e.g. confirmation, explanatory power, simplicity,
consistency with background beliefs). But truth, verisimilitude, and informativeness
about a world are semantic relations rather than epistemic ones, in the sense that



25

they relate an hypothesis to a possible world, and the investigator usually has no
direct way to tell which possible world he is in. To distinguish them from suitability
‘relations, | refer to all semantic criteria. of hypothesis evaluation as adequacy
relations. '

In light of this terminology, a shortcoming of the toaster method is that it does
not eventually converge to an adequate hypothesis in a very wide range of worlds.
There are many ways to define eventual convergence to an adequate hypothesis, and
each such definition results in a distinct identification criterion. For example, a
device is said to EX -identify a world w just in case for each enumeration of the
total -evidence true in w, the device changes its mind only finitely many times in
reading this enumeration before it fixes upon an hypothesis adequate for w. This
sort of convergence interested Peirce in the nineteenth century, and is taken quite
seriously in contemporary discussions of scientific realism [McMullinB4] and in the
philosophy of mind [Dennett85]. Some users of inductive devices may not care
about posthumous discoveries. For them, we can place a finite ceiling n on number
of mind-changes before convergence to an adequate hypothesis to obtain what is
calied EX -identification. A device BC -identifies a world just in case for any
ordering of the evidence true in a world, the device conjectures only finitely many
hypotheses not adequate for the world BC -identification suggests a corresponding
notion of BC identification, which restricts the number of mind changes to no more
than n. If adequacy is measurable (as in the case of verisimilitude), rather than being
an ali-or—-nothing relation between worlds and hypotheses, then we can say that a
method identifies a world w just in case for each enumeration of the evidence true
in w, and for each ¢, there is a & such that after 6 many evidence sentences have
been read, every subsequent conjecture is adequate to degree 1-e.

If we can assume either that the evidence is sampled stochastically from a world
or that inductive methods are themselves stochastic processes, then a device
identifies a world if its probability of conjecturing an hypothesis adequate for the
world is unity. Or if the hypotheses conjectured by a device are parameterized by
real numbers, one might require merely that the expected value of the method
{considered as a random variable} is the parameter value of an adequate hypothesis.®
Finally, we might examine concepts of identification in which the evidence provided
to the procedure is not always true of the world to be identified. Such evidence is
often called noisy. In short, there are many precise explications of the notion of
eventual inductive success in a world.

This is the basic ides behind the concept of “unbiased estimators” in statistice! theory.
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Once we select a notion of identification, we can define, for any given method,
the set of all worids this method can identify. Intuitively, this set of possible
worids represents the method's range of success. One might also call this set the
method's inductive scope, generality, strength, or power. A method may be said to
be more general than another if its inductive scope includes the other's. Ceteris
paribus, a method is better insofar as it is more general.

If an investigator who professes to employ some methcd seems to have
converged to an adequate hypothesis we can explain his apparent success to some
degree by appeal to the inductive strength of his method. Ceteris Paribus, this
explanaiion is better insofar as his method is more general Indeed, if the
investigator's method is very weak (e.g. he relies on a toaster—method) it is tempting
to say that he is merely /ucky when he succeeds, or that the discovery is an
accident ( [Aristotle41], The Physics).

One can explain why an-investigator conjectures a given hypothesis without any
appeal to inductive scope. For example, one can demonstrate merely that the
investigator is caused by various social and physical factors to make the conjecture
" he does. But to explain why a particular system produces a particular conjecture is
not- to explain why the system seems to have converged to an adequate
hypothesis——— any more than to explain why a friend buys a car (he needs
transportation) is to explain why the car he buys is shaped like a banana. Inductive
scope helps to fill this explanatory gap.

It is difficult to avoid appeals to probabilistic language in discussions of the
explanation of inductive success. Such language is official if we assume that
inductive scopes are measurable sets of possible worlds. Then the measure vaiue
of the scope of a method is its probability of eventual success. Notice that the set
of worlds a method can identify is distinct from the set of worlds in which it
converges to some hypothesis. The probability of convergence to a particular
hypothesis may be very high even when the probability of success is very small
{recall the case of the toaster) Regardiess of the measure chosen, the probability
of success of a less general method cannot exceed the probability of success of a
more general one. But the probabilities of success of two methods, neither of
which is more general than the other, is measure—~dependent.
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2.3. Resource Consumption

Inductive scope is not the only factor crucial to the assessment of an hypothesis
generation method. For example, consider two methods that always produce the
same conjecture on the same evidence, such that the latter requires geologically
more time to produce its conjecture than the former does. Spending more time to
do the same thing is not as good as spending less, so the faster method is the
better one. A faster procedure also seems more intel//igent, for intelligence is, in
part, a kind of "quickness” or efficient organization of one's cognitive resources.

Also, if one could trace the sequence of computational states directed by the two
programs, one would detect a kind of "elegance” or “intelligence” in the computation
of the quick one that is lacking in the slow one. The slow one performs many
tests that insight into the mathematical structure of the problem it solves would
show to be unnecessary and short-sighted. So ceteris paribus, the faster, more
elegant program is the better one.

To recapitulaté: we prefer, all things being equal, methods that are more general,
that are less costly to pursue, and that more frequently produce suitable hypotheses.
But the situation is much more complicated when we lower the ceteris paribus
restriction. |

First of all, our background knowledge is sometimes so skimpy that no possible
method's scope includes all the possibilities we take to be serious ones. In such an
event, we must weigh scopes against one another even when neither inciudes the
other.

We may also be forced, on mathematical grounds, to put suitability in the balance
against inductive scope. Epistemologists like Pierce, Reichenbach and (at times)
Putnam justify suitability relations in terms of inductive scope, so no such conflict
can arise for them. That is, if the observance of a proposed relation of suitability
compromises inductive scope, then the relation is just no relation of suitability. But
a confirmation theorist might hold that confirmation is sui generis and need not be
"vindicated”" by considerations of inductive generality. For him, suitability can easily
be at odds with inductive scope, so there are difficult choices to be made when no
method that conjectures only suitable hypotheses is as general as some method that
does not For example, Osherson Stob and Weinstein have shown that there is an
inductive scope that can be attained by some effective discovery method, but that
cannot be attained by any effective discovery method that is also a Bayesian in the
short run [Osherson86]. In this case, a choice must be made between greater
inductive generality in the long run and Bayesianism in the short run.
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inductive generality may also interact with computational resource consumption in
the assessment of discovery methods. We can expect, for example, that no
method of a certain generality can be performed as quickly as some method of
reduced generality. This does not imply that the faster program is more elegant or
efficient than the slower one, for distinguishing among more possibilities on the
basis of evidence may be expected to require more effort than distinguishing among
fewer possibilities. As in high~diving contests, the degree of difficulty of the
inductive task must be weighed against the speed in which it is completed. In the
world of computation, this means that a slow solution to -a difficult problem can be
considered as efficient, elegant, and beautiful as a fast solution to an easy one.
Nobody; wants an inefficient procedure of any generality, but it is not at all obvious
that a fast procedure with a small scope should be preferred, in general, over a
siow one with a large inductive scope when both procedures are efficient.

2.4. The Methodologist as Product Designer

One response to the complicated interactions of the normative desiderata just
discussed is to formulate a theory that can weigh, for example, the value of a
certain decrease in inductive scope against the value of a certain increase in speed.
But | doubt that there is a general norm of this sort to be discovered. In some
situations speed is more valuable than inductive scope. For example, the possible,
natural languages may be a small subset of all possible languages. So a child need
not have a broad inductive scope to acquire the language of the culture he is
assigned by the luck of the draw. But he must be capable of learning any natural
language very quickly if he is to prosper in the society he finds himself in. So
Chomsky's famous ‘"rationalism” comes to no more than the thesis that speed is
more valuable than broad inductive scope in the task of language acquisition.

In others situations, however, the reverse is true. For example, a social scientist
must often face a staggering range of plausible hypotheses about the causes of
social phenomena, but social science, as a whole, is not under any absolute time
constraints to find a true hypothesis regarding such causes (grant proposals
notwithstanding)l. So inductive scope is valued more highly than speed in this case.
In the language acquisition case it can be argued that the space of possible
languages is constrained by the inductive scope of fhe language learning mechanism
children are supplied with from birth, so the small inductive scope of this learning
mechanism is guaranteed to be suited to its task by a sort of “preestablished
harmony”. In unrestricted scientific inquiry, however, there is no such guarantee—--
uniess one is willing to posit (along with Descartes, Spinoza, and Leibniz) that God
has created the world in a way perfectly suited to man's peculiar inteliectual abilities.
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In light of the natural variation in the respective values accorded to suitability,
inductive scope, and computational speed, | view the methodologist more as a
product designer than as a judge who .settles all conflicts among competing,
epistemic values. A product designer does not adjudicate among conflicting values
in the marketplace. Rather, he creates new markets by optimizing conflicting values
in different directions. For example, rapid acceleration, impressive fuel economy,
and high impact resistance cannot all be achieved in the same automobile. But one
can build a sports car that is as efficient and safe as possible, an economy car that
is as safe and sporty as possible, or a family sedan that is as sporty and efficient
as possible. Each product finds its own market niche, and no customer is the less
rational for buying the product best suited to his needs.

But if the market's desires are unsatisfiable (everybody wants a military tank that
can win a drag race——- without shooting or crushing the competition) the firm's
advertising shouid point this out so that customers can sort their unsatisfiable
demands into those they hbold most dear, and those they are willing to sacrifice. In
this way, each customer can reformulate his demands, and can be sold an item that
most nearly optimizes them. '

in keeping with the industrial design metaphor, the task of the methodologist is
twofold. First, he should expose unsatisfiable demands on discovery methods as
the confusions that they are. Everybody loses when the customer cannot possibly
be satisfied Second, for any satisfiable set of demands, the methodologist should
try to design a solution that optimizes them. For example, there may simply be no
procedure with a given inductive scope that always conjectures suitable hypotheses.
But if there is one, then the methodologist should find one that is near—optimal in
resource consumption. And if resource consumption must increase with inductive
scope, then the methodologist should develop fast and narrow (sports car) methods
as well as slow but secure (family sedan) methods. Neither sort of method is
intrinsically better than the other, any more than a sports car is intrinsically better
than a family sedan.

Shifting perspective from that of the High Priest to that of a product designer has
some advantages. Perhaps the greatest is that the methodologist's burden is
transformed thereby from an amorphous, hopeless task to a relatively clear,
mathematical one. But it is a mathematical task that still has a strong philosophical
motivation, for a demonstration that a norm cannot possibly be satisfied is a good
reason to junk it, along with all the vicious and outlandish demands of tyrants and
petty dictators.
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Needless to say, the kind of study | am proposing can also have significant
practical import Nor is this potential foggy and distant Al "expert systems’ are
finding real industrial applications analyzing chemical constitution, diagnosing soybean
diseases, searching for oil deposits, making medical diagnoses, optimizing computer
programs, and recommending custom lubrication blends for huge, industrial machines.
Many of these programs already employ a rUdimentary subroutine for inductive
inference. ‘Such programs can provide immediate and useful field applications for
advances in the logic of discovery.

2.5. Related Disciplines

Now that the logic of discovery has been described in a positive manner, needless
confusion can be avoided by distinguishing it from more established disciplines that
have distinct, but overlapping, aims. Such disciplines include statistics, cognitive
psychology, the history of science, the philosophy of science, computational
linguistics, computation theory, and artificial intelligence.

2.5.1. Statistics

Statisticians evaluate hypothesis generation methods under the rubric of parameter
estimation. In parameter estimation problems, the possible worlds to be
distinguished may be thought of as distinct populations. The evidence consists of
sampies drawn randomly from the population according to an assumed sampling
distribution. The hypotheses are assumed to be parameterized by the real numbers.
An inductive device is taken to be a function from finite population samples to
particular parameter values. A standard criterion of identification assumed in the
parameter estimation literature is that the expected value (with respect to the
sampling distribution) of the parameter conjecturing device (considered as a random
variable) is the distribution's true parameter value. An estimator that identifies a
world in this sense is said to be wnbiased for the world.

There are also interesting philosophical questions regarding the relationship of
generative methodology to Bayesian epistemology. Bayesian norms provide
coherence constraints on an agents degrees of belief. But there are many
relationships a generated hypothesis could have to a rational system of beliefs. An
obvious aim would be to produce an hypothesis with a nearly maximal probability
conditional on the total evidence available.

J.J. Horning [HorningBS] has proposed a method that acheives just this aim in
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generating the grammar of a language from positive examples of well-formed
strings. He defines an effective a priori distribution over grammatical hypotheses,
as well as an explicit method for calculaﬁng the likelihood of a string from a
grammatical hypothesis that generates it His procedure always conjectures a
maximally probable hypothesis in light of the total evidence. But he also takes a
device to identify a language just in case its probability of conjecturing a maximally
probable, true hypothesis approaches unity .as the evidence increases. Finally, he
begins to address issues of efficiency by finding ways to avoid considering
hypotheses that cannot possibly carry maximum probability in light of the evidence.

Bayesian epistemology is a sophisticated, normative theory that provides a
compelling account of how a priori preference and hypothesis suitability with
respect to the evidence should interact But its interest would be enhanced through
the study of methods by which & finite system might use its degrees of belief to
construct a maximally probable hypothesis in light of new evidence. An ability to
construct probable hypotheses is crucial to the communication of scientific progress
even if an individua!l Bayesian could get along without it. Horning's thesis is a step
toward such a method. The details of his work will be examined in more detail in
the next chapter.’

2.5.2. Cognitive Psychology and "Concept Learning”

The logic of discovery, as | conceive it, is a normative, formal discipline.
Psychology, on the other hand, is the empirical science whose aim is the prediction
and explanation of human behavior. It is perfectly possible for a psychologist to
explain actual inferential behavior by appeal to causal mechanisms without ever
evaluating the performance of these mechanisms. But given the paucity of direct
evidence about how such inferences are actually produced, psychologists often
explain actual behavior by appeal to good methods that would lead to this behavior

[Bruner56]. A method is a good one if its generality and resource consumption
are suited to the inductive needs and computational limitations one might expect
humans to have. So the relationship between psychology and normative
methodology is tighter than one might expect This affinity does not imply that the
study of generation methods is psychology. Rather, one popular approach to

9Another question is whether generality is compromised by Basyesian method. As we have seen, Osherson, Stob and
Weinstein |Osherson86] have defined a set of worlds thet ere in the scope of some effective discovery method but
that sre not in the scope of sny Bayesien method. This proof may lead to e fertile investigation of the relationship
of inductive generality to Bayesian method es the definitions and proof techniques are further refined to yield more
informative and naturael resuits.
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psychology is normative.'®

Psychological interest in inductive inference is concentrated in the study of concept
learning. The concept learning literature flourished in the nineteen-—fifties. It is not
surprising, therefore, that the possession of a concept is "operationalized" as the
subject's ability to respond "yes” to examples of the concept and "no”" to
counterexamples. But even though the psychological criterion for having learned a
concept is somewhat crude, a respectable variety of learning tasks have beeq
considered. For example, Bruner, Goodnow, and Austin [Bruner56] entertain
problems in which the target concept is definable in terms of the evidence
vocabulary and problems in which it is not They consider problems in which many
features of the examples and counterexamples are irrelevant, and problems in which
they are not In some problems the order of presentation of an instance is relevant
to class membership and in others it is not They also consider problems in which
the simplest adequate hypothesis is a conjunction or a disjunction.

in some problems a payoff matrix for proper classification is appealed to in order
to explain apparent biases in classification. For example, someone told that a certain
kind of blip on a screen is an invading enemy bomber will tend to "recognfze" more
- blips as bombers than someone who is told that blips of this kind are enemy spy
planes and all other blips are friendly. planes. In the first case, missing a bomber is
much worse than sighting too many, while in the second case, the cost of sighting
too many or too few blips is the same.

Some of the concept learning literature is more explicitly computational. An
example of this sort of proposal is Earl Hunt's Concept Learning System [Hunt66].
Hunt's system reads descriptions in a monadic predicate language of objects that
have or do not have a certain "target” property, and then produces a quantifier—
free, monadic definiens in the vocabularyv of the instances as a conjectured
definition of the target property.

Hunt observed that his algorithm is guaranteed to conjecture a true definiens when
every possible state description has been read, either as a positive or as a negative
instance. So he was clearly interested in the breadth of scope of his method. He
also performed some experiments comparing human performance to that of his
program, but he was careful to point out that although his interests began with the
modeling of human cognition, they widened to a general, performance-oriented
interest in effective inductive methods.

10
Quine has recommended that epistemology is psychology--- the study of how the evidence causes conjectures in
humans. It is therefore ironic thet many psycholiogists explein conjecturing behavior by appea! to the rationality of
methods that might heve produced the actus! behavior.
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2.5.3. The History of Science

Many philosophers who claim interest in the logic of discovery these days are
interested in the history of science.'’ But according to my conception of the‘logic
of discovery, the study of past discoveries is hardly mandatory or even central to
the discipline.

On the other hand, the methods we employ do interest us just because we use
them, so there is a special reason to analyze their properties. One might alsé
expect that the past success of actual scientific practice is good evidence that
scientists’ methods are good ones. But caution is advisable, for individual scientists
may simply be lucky in particular cases. Although the methodological significance of
Kuhn's work on scientific revolutions has been overdrawn, his opinion that actual
scientific inquiry is fragmented into paradigms that die primarily through the deaths
of their proponents may not be. Actual scientists can carry rigid, a priori
commitments to an hypothesis to the grave, and may be more similar to toasters
than we would like to think.

Even if single instances of success in history are poor evidence for the generality
of the method actually employed, showing that a scientists method is general can
constitute an explanation of the actual scientist's success. In this way, the logic of
discovery can contribute to the force of explanations of discovery episodes in the
history of science.

Social scientists also attempt to explain actual discovery events, but in social,
rather than conceptual, terms. One social scientist has gone so far as to explain the
genesis of mechanics by appealing to the early breast-feeding habits of the infant
Newton and to his father's socio—economic status [Manuel68]. Conceptual
historians are often disappointed by such sociological explanations. Perhaps the
sociological explanation is disappointing because it explains only the fact that a
particular hypothesis is conjectured, rather than the fact that the conjecture
produced by the method is adeguate. For example, there is no obvious connection,
causal or logical, between the inverse square law and Newton's ability to breast
feed. It would be more satisfying to know that the social forces operating on
Newton caused him to behave as a relatively powerful and efficient discovery
system. Breast-feeding habits are not sort of stuff of which such an account is
made. Newton's vast familiarity with mathematics, along with his desire to beat the
Royal society at its own game, would seem more relevant to his eventual success.

1
For e representative sample of such papers, see [Nickies80).
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2.5.4. The Philosophy of Science

Chapter one reviewed the anti—g‘enerationi‘st position in philosophy, but it did not
discuss the positive work of Hans Reichenbach and Hilary Putnam in the logic of
discovery. Although some of their respective views are justifiably defunct, their
general approach to the evaluation of discovery methods is not In the following
paragraphs, | attempt to winnow the wheat from the chaff.

Reichenbach

Hans Reichenbach held that the paradigmatic task of the scientist is to assess the
probabilities of events of various types. Reichenbach assumed Von Mises'
frequentist theory of probability, according to which the probability of a type of
event is the limiting relative frequency of events of this type in a given, infinite
sequence of events. Since any limiting, relative frequency of a type of event is
consistent with any observed, finite sequence of events, the assessment of
objective probabilities is a non—trivial inductive problem.

Reichenbach addressed this problem by proposing the straight rule as a method
for discovering the probabilities of events of different types. On any observed,
finite sequence of events, the straight rule conjectures that the probability of event
type T is no further than k from the observed reiative frequency of events of type
T (where k is fixed over all conjectures). So for example, if nine out of eighteen
observed balls are black, then the straight rule conjectures that the limiting relative
frequency of black balls in an infinite sequence of trials lies somewhere in the
interval [0.5-k, 0.5+k].

Reichenbach's familiar "pragmatic vindication” of the straight rule is really an
argument about inductive scope. A rule is taken to be successful in a sequence if
all but finitely many of its conjectures are true. The inductive scope of the straight
rule is identical with the set of all sequences in which the type of event under
study has a limiting relative frequency. Moreover, no possible procedure whose
conjectures state that the limiting relative frequency of a sequence is in a certain
interval can identify a sequence that has no limit Hence, the scope of the straight
rule is maximal, given the hypothesis language assumed by Reichenbach. If one is
vindicated in selecting an inductive method that is as general as any other, one is
vindicated in choosing the straight rule as an inductive strategy.

One reason for the demise of the straight rule literature is an expectable
disappointment in pragmatic reductionism, an attempt to define hypothesis suitability
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in terms of maximal inductive scope. The proposal is that an hypothesis is suitable
on given evidence just in case it is generated from this evidence by a method
whose inductive scope includes that of anonther method [Salmon66] p.87. It is
easy to see that any hypothesis about limiting relative frequency is suitable in this
sense, for an arbitrary, finite period of insanity has no impact on the inductive
scope of a method: an unhealthy result

But the triviality of this version cf pragmatic reductionism does not imply that
there is no interesting relationship between inductive scope and hypothesis suitability
that a pragmatic reductionist might get his teeth into. For example, imagine two
proposéd suitability relations $ and R If it were to turn out that some method
whose conjectures all satisfy S with respect to the input evidence is more general
than any method whose conjectures all satisfy R with respect to the evidence, then
a more liberal pragmatic reductionist might say that S is a better norm of evidential
support than R'? And we can make such comparisons even if no method is more
general than every other.

More importantly, the idea that ceteris paribus, a more general method is a better
one, is entirely independent of pragmatic reductionism——= even in its more liberal
guise. One can value truth and beauty without reducing beauty to truth or truth to
beauty. Similarly, one can be interested in inductive generality and hypothesis
suitability without reducing suitability to generality or vice versa.

Another shortcoming of the straight rule literature is Reichenbach's implausible
attempt to distill the essence of empirical science as the problem of estimating
limiting relative frequencies. But this inductive problem is artificial even from his
own theoretical perspective. For example, Reichenbach thought the point of
knowing a probability value is to ensure more success than failure making
predictions. But if the target sequence is recursively enumerable, it would be far
more useful to know a program that generates the sequence than to know the
sequence's limiting relative frequency. The former knowledge leads to successful
prediction of the occurrence of events of the type in question in every instance,
while the latter guarantees only more success than failure after some finite time.
But Reichenbach entertains no method that conjectures programs for enumerating
sequences of events, and he offers no reason whatever for excluding them.

Furthermore, the straight rule's maximum generality (the property that "vindicates” it)

12 , . - P . e
Putnam sssumes this more relaxed, pragmetic reductionism in his atteck on Carnap’s theory of logical probability

{c.f. beiow).
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is an artificial consequence of the fact that every competing method is assumed to
conjecture only probability intervals. If we add one simple hypothesis to the
hypothesis language (i.e. "The probability of.event type T does not exist’) then there
is no nontrivially achievable inductive scope that includes every other such scope.™

But none of these objections to Reichenbach's frequentist epistemology constitutes
a2 general objection to the interest of inductive scope. We can be interested in
inductive generality without being pragmatic reductionists and without neglecting
other, independent desiderata such as hypothesis suitability and efficiency. We need
not assume that hypothesis generation problems are the only problems of interest
that arise in practice or that it is useful to reduce all such problems to hypothesis
generation problems. We need not study only a particular concept of identification.
Nor need we assume that discovery methods may only conjecture probability
intervals. Nor must we expect to find a method with a relatively rich hypothesis
language that is as general as any other method. In short, interest in inductive
scope need not.imply narrow-mindedness.

Putnam

Recall the thesis that a suitability relation is better insofar as discovery methods
that "rely on it'" are more general.  Putnam [Putnam83] assumes something
stronger in order to attack Carnap’s familiar theory of degrees of confirmation a
suitability relation is defective if there is a world (recursive set) that some method
can identify but that no method relying on this relation’® can identify. Since every
world can be identified by some method (the one that conjectures only hypotheses

1
3Ncni(:e thet for each sequence there is a method that identifies it. HMence, if no method identifies every
sequence, then there is no method that is more general than every other,

Methoos conjecture either that the limiting relstive frequency of # kind of event in an infinite sequence of events
is within plus or minus k or they conjecture that no limit exists. A method identifies & sequence just in case all but
finitely many of its conjectures are true (Ex' identification). 1t is non-trivial just in cese it does not conjecture the

whoie unit intervel.
Theorem: No nontrivial inductive rule cen identify &l sequences.

Proof: Suppose R can. Then R can identify any sequence in which the limiting relative frequency of K's is zero. So
we begin by defining esch place in ¢ as & non-K until R sees the light and conjectures en interval including zero.
tmmediately, we begin defining subsequent piaces in O s K-events. Since R can identify sll sequences, it eventuslly
sees the light and conjectures an interval including 1. Since R is nontrivial, this hypothesis is distinct from its
previous one. Continuing forever, we arrive st a sequence ¢ that R cannot BC. identify Q.E.D.

14
i.e. methods thet produce only hypotheses that are suitable with respect to the input evidence.

1E’Camap's theory has the odd consequence that the degree of confirmation of eny universzlly quantified sentence is
zero. If relience .on a c-messure were defined es conjecturing only hypotheses that have & certain measure vslue,
then no method relying on a c-measure in this sense would identify eny worlds. To give Carnsp half a chance,
Putnam defines “reliance” in an ettenusted way: if its conjecture entasils that the next event will be of a certain
kind, the hypothesis that the next event will be of this kind hes a sufficiently high degree of confirmation on the
evidence seen so far.
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adequate for this one world), the first requirement is trivial The second
requirement is not But Putnam discovered a way to construct, for any given
method that relies on Carnap's concept of suitability, a world that this method
cannot identify. This is the first case (| am aware of) in which a general, negative
result has been obtained about inductive scope in an epistemological context.

Putnam’'s negative result reveals an interesting interaction between a proposed
suitability relation and inductive scope even if one does not infer from it that
Carnap’'s theory is defective. But Putnam cannot resist.

...a good inductive judge can do things, provided he does not use
"degree of confirmation” that he could not /in principle accomplish if he
did use "degree of confirmation”. As soon as a scientist announces that
he is going to use a method based on a certain "c—function,”, we can
exhibit a hypothesis (in fact, one consistent with the data so far obtained,
and hence possibly true} such that we can say: if this is true, we shall
find it out; but you (unless you abandon your method) will never find it
out. [Putnam83] p.77.,

Putnam proceeds further. Carnap's theory is not defective because of some mere
flaw in design. Any theory remotely like it must be defective as well

it is easily seen that any method that shares with Carnap's the feature:
what one will predict "next” depends on/y on what has so far been
observed, will also share the defect either what one should predict will
not in practice be computable, or some law will elude the method
altogether (one is in princip/le forbidden to accept it, no matter how
long it has succeeded). (p. 773).

Actually, E. Mark Gold showed something stronger than this [Gold65]. Any method
that is a function of the evidence alone fails to BC —-identify the recursive sets,
which are exactly the worlds assumed in Putnam's construction. This resuilt covers
ineffective methods as well as effective ones, and methods that do not rely on
Carnap's method as well as those that do.

On the basis of his negative result, Putnam invents something most unusual. an

argument against the study of hypothesis generation methods. It runs like this.
Consider an hypothesis se/ection method.  Hypotheses are "suggested” to the
method, and each suggestion is placed at the end of a queue. The method
conjectures its oldest suggestion until this suggestion is inconsistent with the
evidence. Then the next hypothesis in the queue is conjectured, and so forth.

Notice that for every world, it is possib/e that the selection method identifies this
world. But as we have seen, for every generation method that is a function of the
evidence alone, there is a world that it cannot possibl/y identify. Therefore, the
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selection method dominates every generation method, so it is irrational to choose
any generation method over the selection method.

The anti-generationist import of this argument is obvious.

.we shouid take the view that science is a method or possibly a
collection of methods for se/ecting a hypothesis, assuming languages to
be given and hypotheses to be proposed. Such a view seems better to
accord with the importance of the hypothetico—deductive method in
science, which all investigators have come to stress more and more in '
recent years. (p. 783, my emphasis).

But this bomb is easily defused. Notice that the argument depends upon two
distinct modalities, possible worlds of investigation and the possibility of an
hypothesis being "suggested" in a given world  Putnam's dominance argument
depends on a specious emphasis on the former modality at the expense of the
latter. To expose this sophism, notice that the selection method can fail to identify
every world, while any gerieration method with a non-empty inductive scope cannot
fail to identify some worlds (in fact, it must identify every world in its scope, by
definition). That is, any generation method with a nonempty scope "dominates”
Putnam's selection method. And the extent of the domination increases as inductive
scope increases. So by parity of reasoning, use of the selection method is
irrational, and the sort of "hypothetico deductivism” urged by Putnam should be
abandoned. The whole point of using a discovery method is to increase the odds
of scientific success over those to be expected in sifting through the conjectures
of monkies banging on typewriters. Since Putnam ignores this point entirely, it is
not surprising that he sees little use for discovery methods.

2.5.5. Computational Linguistics and “Learnability Theory”

Noam Chomsky takes the object of linguistic theory to be the characterization of
the "nature” of natural language. It seems reasonable to suppose that a language
doesn't get to be a natural language unless the garden-variety human baby can learn
it in a few years without formal instruction. That is, natural language is learnable.
So any proposed characterization of natural language had better result in a class of
languages that can be be learned from examples, for examples are the only kind of
evidence the child receives.

in light of Chomsky's ambitions for linguistics, E. Mark Gold introduced a notion of
inductive scope based on limiting, syntactic convergence. On the basis of his
definition of inductive scope, he showed that if negative examples are excluded
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from the evidence language, no method can BC’-identify any class of languages that
includes all finite languages and at least one infinite one [Gold67].® On the other
hand, if negative examples are allowed, tﬁen the set of all primitive recursive
languages is syntactically identifiable in the limit'  Gold also showed that no
" method, effective or not, can identify every recursive set As we have seen, this
result generalizes Putnam'’s.

Gold's techniques are quite analogous to Putnam's, but they had a much greater
impact on linguists and computer scientists than Putnam's results had among
philosophers. Aithough Gold's results are mathematically simple, they were
electrif;ling. Here was a mathematical technique for demonstrating the inadequacy of
proposed definitions of natural language. The limiting criterion of identification is
extremely weak, but so long as the result is negative, the weakness of the criterion
of success only enhances the power of the result'®

Gold has, since then, extended his interest to complexity theory (c.f. chapter five
below). Gold's followers have studied numerous criteria of grammar adequacy and
convergence. Jerome Feldman has investigated the possibility of converging to
minimal-lengfh grammars adequate for a target language, along with generalized
concepts of convergence to be exploited later in this thesis. Horning's work,
alluded to above, is also devoted to the language acquisition problem. Kenneth
Wexler, a linguist, has recently written a large book on the subject of /earnability
theory, which is what the subject spawned by Gold is calied by those who pursue
it

1
6Let C be & class that includes every finite language and one infinite one. Now let M be a device that claims to

BC.-identify every lenguege in C. Let L be en infinite languege in C. We construct an enumeration of L on which M
mekes infinitely many inadequate conjectures. Enumerste L in any manner. Repestedly present the first string in L to
M. Since M can identify every finite language, it can identify the language conteining just the first string of L. So M
must must conjecture a grammar for this langusge. Immediately feed the next string of L to M and repesat it. Since
the first two sentences of L constitute & finite langusge, L must eventually conjecture & grammar for this lsnguage.
Now add the third sentence of L and repeat it, and so forth. M clearly conjectures infiniteiy meny gremmars for
distinct languages. But ™ is eventually fed 2 complete enumeration of the positive instences true of L. Therefore M

faiis to BC.-idemify L, end hence the scope of M does not include C.

17Enumerate the primitive recursive programs effectively. It is decidabie whether a string is accepted or rejected
by such a progrem. As each new instance is read, test the current program to see whether it accepts all positive
instances and rejects all negative ones. If the program fails the test, reject it. When &n adequate program is
reached in the enumerstion, conjecture it snd read & new instance. Repest the procedure.

If the target language is primitive recursive, there is some first program for it in the enumeration. Moreover,
since the enumerstion is complete, any program sahead of it in the enumeration is eventuelly refuted on some
evidence. So after seeing finitely many evidentia! instences, the correct program is conjectured, and never revoked
theresfter.

1 . L. . R

BA(:tually, this point is undercut by the stringency of Gold's requirement that the grammsr generate exactly the
lenguage.
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2.5.6. Computation Theory and "The Mathematical Theory of Inductive
inference”

-

in 1975, Manuel Blum wrote a seminal paper called A Mathematical Theory of
Inductive Inference [Blum75]. Blum's paper treats the identification of recursive
functions as opposed to languages, although all recursive languages can be thought
of as recursive characteristic functions. And instead of employing grammars as
hypotheses, Blum employs Goedel numbers of programs that compute the functiong
to be identified But aside from these largely notational substitutions, Blum's work
extends Gold's by introducing complexity measures into proofs of identifiability.
Blum's interest in discovery matters is understandable, given that Minsky was his
thesis advisor, and Minsky and Pappert wrote a book on the inductive scopes of
"perceptrons” [Minsky891, which are computational models of neural nets with
perceptual abilities.

The literature that has developed in light of Blum's paper is called the mathematical
theory of inductive inference by those familiar with it It differs from learnability
theory both in increased mathematical sophistication and in a2 corresponding decrease
in attention to applications and motivation,

Recent developments of this tradition include a systematic comparison of the
inductive scopes obtainable according to criteria of convergent success that vary
along several dimensions (e.g. probability p of converging to an adequate hypothesis,
convergence to an hypothesis with n errors, convergence in n steps to an adequate
hypothesis) [Case78], [Pitt84] as well as attempts to extend Bium's complexity
theory to convergent computations (c.f. chapter five) [Daley84].

Another recent development in the lineage of Blum's paper is Ehud Shapiro’s
system for inferring logical axiomatizations adequate (by a certain criterion) with
respect to a relational structure from sampled atoms true in the structure
[Shapiro81). His work unifies that of Gold and Blum with the extensive work on
mechanical theorem proving by the "resolution method”.  Shapiro’s work is the
starting point of my own positive work, and will be described in detail in the next
chapter.
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2.5.7. Artificial Intelligence and "Machine Learning”

in artificial intelligence, the study of generation methods is called machine /earning.
A famous example of this genre is PH Winston's paper Learning Structural
Descriptions from Examples [Winston75]. Winston's paper is something of an
enigma. On the one hand, he claims that "simulation of human intelligence is not a
primary goal of this work”, p. 160. On the other hand, the paper is devoid of any
sense of evaluation of the procedure presented. The hypotheses conjectured by
the device are "semantic networks” which are labeled, directed graphs whose arcs
represent relation symbols or copulas and whose vertices represent individuals or
monadic predicates. Since no clear, semantic theory is provided for the networks,
it is not obvious what inductive problem the machine has solved when it solves one.

The BACON project [Bradshaw80] is another familiar example of work in machine
learning. The inductive scope of the BACON program includes a significant class of
functions definable by short, polynomial expressions. Although their proposal is an
interesting discovery method, Langley and Simon tend to advertise it as a simulation
of actual human discoveries. They express the importance of computational
tractability, but are more reticent about scope. Instead, they appeal to particular
historical examples, and illustrate the steps their program undertakes in producing
actual physical laws.

The DENDRAL project is yet another example of a program that embodies machine
learning techniques. This project remains one of the few examples of an inductive
system that employs a substantive background theory to constrain inductive
inference over a theoretically interesting and practically useful class of alternatives.
The program receives a raw mass—spectrogram and a chemical formula as input, and
returns a conjectured class of stereo structures for the analyzed compound as
output A very clever feature of this program is Lederburg's graph enumeration
algorithm which heavily restricts the space of molecular structures considered a
priori without any danger of missing any live possibilities. Another interesting
feature of the system is its reliance on syntactic relations of confirmation and
explanation that are familiar in the philosophy of science literature.

There are too many different kinds of machine learning proposals to enumerate
here [Carbonell831. Like the traditional, philosophical literature on inductive
inference, papers in machine learning tend to promote particular programs or to
discuss difficulties encountered in attempting to design a program in a particular
way. Given this focus on particular procedures, the machine learning literature's
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strength lies in its attention to intuitively compelling applications for the procedures
proposed, and in the nuts-and-bolts issues that arise in implementing these
procedures. The corresponding weakness of the discipline is its inability to
demonstrate that a problem has no tractable solution, or to show that a probosed
program is optimal for the problem it solves. Both of these sorts of problems
require theorems that quantify over all possible programs, while the techniques of
workers in machine learning apply only to the design of particular programs.

4

Al in general and machine learning in particular has an ambiguous relationship with
cognitive psychology. lts practitioners sometimes claim to propose psychological
models” At other times, machine learning practitioners claim to be doing something
that looks much more like the logic of discovery as | have described it For
example, Carbonell and Michalski write

There is no reason to believe that human learning methods are the only
possible means of acquiring knowledge and skills. In fact, common sense
suggests that human ‘learning represents just one point in an uncharted
space of possible learning methods—- a point that through evolutionary
process is particularly well suited to cope with the general physical
environment in which we exist More theoretical work in machine
learning has centered on the creation, characterization, and analysis of
general learning methods, with the major emphasis on analyzing generality
and performance rather than psychological plausibility. [Carboneli83] p. 5.

This description of the machine learning literature is more reasonable, for the
psychological credentials of much of this work are dubious, and experimental
evidence is almost unheard of in the field But it also suggests a bit more attention
to "generality and performance” than is actually evident in the literature. At best, the
ambiguous aims of machine learning might inspire an interdisciplinary literature in
which considerations of generality and efficiency combine with genuine,
psychological observation to inspire new psychological theories. At worst, the
ambiguity may be {and has been) exploited to avoid both the formal evaluation of
machine learning procedures and their assessment as good, empirical hypotheses
about human cognition.

2.5.8. Miscellaneous

My enumeration of fields related to the logic of discovery is far from exhaustive.
For example, electrical engineers pursue a curious form of the logic of discovery
under the rubric of “"pattern matching”. The motivation for this work appears to
have been to learn to decipher pictures coded as formal grammars to enable
machines to process "bubble chamber” photographs produced at physical laboratories
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automatically [Fu75]. Aside from the novel application, this massive literature is
heavily indebted to learnability theory for theoretical insight Another large literature
concerns statistical “clustering” techniques for concept formation.

2.6. Problems of Inductive Generalization

From my discussion of the computational literature on the logic of discovery, it
should be evident that inductive procedures have been studied in light of very
different applications. The applications all share one characteristic, however. Some
evidencc.e is given about particular individuals and an hypothesis is demanded that
extends the evidence received. That is, the device is expected to perform an
inductive generalization. Inductive generalization is a kind of inductive inference,
but not every inductive inference is an inductive generalization. For example, one
may infer that whatever happens in a given system will happen analogously in an
analogous system. But such analogical inferences are not generalizations in my
sense of the term. Another inductive inference problem that is not obviously a
generalization problem is that of extending a mathematical system in a useful manner.
For exampie, consider the problem of extending the natural number system to the
real number system, or of inventing analytic geometry [Manders86].

The problems reviewed in the previous section concern language learning, concept
acquisition, discovering physical laws, automatic programming, and the induction of
logical theories. A natural question is whether these generalization problems are all
as different as they appear to be, or are mere notational variants of one another.
And insofar as they are similar, is the similarity the result of a deep insight into the
nature of inductive generalization, or is it merely a reflection of theoretical short-
sightedness?

The answer to the first question is that many of these problems do tend to fit
naturally into a single framework. The answer to the second question is that there
are deep similarities among many of these problems that do seem to lack
motivation. One point of the positive work in this dissertation is to help loosen up
intuitions about generalization problems by exhibiting a problem that breaks free of
the usual mold, but that may be analyzed by natural extensions of known techniques.
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2.6.1. An Analysis of Generalization Problems

Most of the problems addressed in the Jiterature on inductive inference can be
analyzed in a uniform manner. First, there is evidence. This evidence is true or
false of something, which | have already called a possib/e wor/d. In grammatical
inference problems, for example, the "possible worids” are simply distinct languages.
A string marked with a plus sign is calied a "positive instance” and a sting marked
with a minus sign is called a "negative instance”. A positive instance is true of a
language just in case the marked string is in the language, and a negative instance is
true of a language just in case the marked string is not in the language. Finally,
there may be a probability distribution over possible worlds. As was mentioned
eariier, this distribution would provide a notion of the probability of eventual
success for any given device. Intuitively, .such a distribution might reflect the
degrees of belief of an agent who is evaluating the performance of various
-methods."®

Given that we_have worlds and evidence about these worlds, there is a question
about how the evidence gets from the world into a given generation method. It is
often assumed in formal theories of generalization (e.g. Gold, Blum) that the evidence
fed to an inductive method is true and complete. But a moment's reflection on
inductive problems faced in practice reveals that such high—quality evidence is
encountered only rarely. Air resistance, stray cosmic rays, the power of suggestion
and fallible apparatus are all examples of factors that can riddle the evidence with
falsehood. And besides falsehood, evidence can remain incomplete, even in the limit
For exampie, due to the laws of general relativity, there are certain observations
crucial to distinguishing substantive hypotheses about the topology of the universe
that cannot be made in principle [Glymour77]. To learn the extent to which the ill
effects of noise and incompleteness can be minimized, we must add to the
generalization problem a sampling function that for any given world, produces a
relatively noisy or incomplete evidence sequence for this world And so that the
relationship between noise and inductive scope can be investigated, a measure of
the noise of an evidence sequence with respect to a world would be desirable.
Despite the interest of noisy evidence, | do not address this sort of problem in this
thesis.

But scientists are not always passive receptors of evidence. It would therefore be
nice to provide an inductive device with an ability to "perform experiments” (i.e. to

19, . . . . ; R e s
Curiously, | know of no such propossl of this sort in the computationa! litersture on induction, but it is perfectly
natural.
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query the world about the truth of a given evidence sentence) Of course, there is
no more guarantee that a question put to nature will receive 2 true answer than
there is that evidence resulting from passivé observations must be true. Whether
or not the inductive agent has control over the evidence acquisition mechanism, the
way the evidence is sampled in a given worild may well be stochastic. If the
inductive agent can perform experiments, the sampling distribution will be a
complicated function of inductive procedures and the evidence they have already
sampled. JJ. Horning has studied a simpler problem, in which each sampled
evidence instance is independent from every other and is independent of the method
receiving the evidence. There is obviously a lot of work to do to enhance the
realism of the data acquisition aspect of generation problems, but | do not address
these issues in this thesis.

in the Blum literature, the possible worlds are recursive functions, and the evidence
consists of ordered pairs marked as positive and negative instances. A positive
instance is true- of a function just in case it is in the graph of the function, and a
negative instance is true of a function just in case it is not in the graph of the
function. No oracle is considered, and the evidence is always assumed to be noise—
free. The BACON program solves a problem that falls approximately within the
Blum paradigm. The program receives as evidence ordered pairs drawn from the
graph of an n-ary polynomial function restricted to the rational numbers. An oracle
is assumed, and the oracle may be noisy.

In Shapiro’s setting for inferring logical theories, the possible worlds are first—
order relational structures and the evidence consists of true atoms or their
negations, with truth defined in the usual model—theoretic manner. Shapiro also
assumes an infallible oracle for the evidence language.

in the concept learning literature, the possible worlds are sets of state

descriptions, typically in @ monadic predicate language without function symbols. The
evidence consists of the same state descripﬁons, classified veridically as positive
and negative instances. A positive instance is true of a set or “concept’ just in
case it describes only elements of the target set, and a negative instance is true
just in case it describes only elements in the complement of the target set It is
assumed that no state description is satisfied by distinct objects that are,
respectively, in and out of the target set Some concept learners are supplied with
oracles and others are not

Now that we have worlds and evidence about them, it is time to consider worlds



46

and hypotheses adequate for them. Most of the problems in the computational
literature assume that an adequate hypothesis for any world can be found in a fixed
hypothesis language. In grammatical infereneé, hypotheses are formal grammars, and
a grammar is usuaily taken to be adequate for a language just in case all and only
strings in the language can be derived from the rules of the grammar.?® As if there
were not already enough plausible places to inject probabilities into generalization
problems, hypotheses may be probabilistic as well. Horning, for example, has
studied the inference of stochastic grammars for languages with assumed sampling
distributions.

in the Blum literature, hypotheses are Goedel number encodings of computer
programs.>’ A program (or its index) is adequate for a recursive function just in
case it computes the function. Although Simon sometimes speaks as though the
point of BACON is to do what human scientists would do, adequacy for a
polynomial expression could be defined naturally as satisfaction in the structure of
the real numbers by all and only the ordered pairs making up graph of the function
under investigation

In Shapiro's setting for inferring logical theories, an hypothesis is a finite set of
first-order sentences, and such an hypothesis is adequate for a first—order relational
structure just in case the hypothesis is true in the structure, and each element of
the diagram of the structure is derivable in "few enough steps” from the hypothesis.
So the hypothesis must be true and very informative about the structure.

In the concept learning literature, an hypothesis is a formula open in one variable
that is satisfied by all and only the elements of the target set in the assumed, fixed
relational structure. That is, the open formula must define the target set in the
language of the assumed structure.

Finally, a problem comes equipped with an identification criterion and a proposed
scope which is just some subset of the fixed universe of possible worlds. A
method solves a generalization problem just in case it identifies every world in the
problem's proposed scope by conjecturing sentences in the problem's hypothesis
language on the basis of evidence provided in the manner specified by the problem.

To recapitulate, an inductive problem specifies

20
For those readers who are unfamiliar with formal linguistics, the details are unimportant for the main point of
this discussion. It will suffice to think of » grammar as an uninterpreted proof system in which some uninterpreted
strings are derivabie but others are not. For a fine presentation of the details see [Hopcroft79;.

21 . R
Or indices for an acceptable numbering of the partiai recursive functions [Rogers67], to be more pedantic.



47

A universe of possible worlds

A proposed scope (i.e. a set of possible worlds)

-

A probability distribution over the proposed scope (optional)

An hypothesis language

A concept of hypothesis adequacy in a world

An evidence language
e A concept of evidential truth in a world

e A (possibly noisy or stochastic) process for sequentially sampling
evidence from a world

e A (possibly noisy) oracie for evidential truth (optional)

e A concept of the noise of an evidence sequence with respect to a
world (optional)

o A conceﬁ?t of identification defined in terms of hypothesis adequacy

It is easy to see that each of these parameters can be "wiggled” to generate a
broad range of variations of any given problem. For example, Goid examined the
significance of eliminating negative instances from the hypothesis language. The
proposed scope can be larger or smaller. In language acquisition probiems, for
example, smaller scopes are defined as those classes of languages generated by
grammars of restricted forms. The concept of adequacy can be varied in many
ways. Case and Smith [Case78], for example, have examined adequacy criteria for
which programs that compute no more than n values of a function incorrectly are
still adequate with respect to that function. Langley and Simon have investigated
error tolerance in an empirical way by supplying the device with a parameter that
makes the BACON program more or less responsive to sprinklings of noise. How
this phenomenon relates to inductive scope remains- to be seen.  Finally, many
different notions of identification have been investigated, including EX’, EX", BC’,
BC", and all of these criteria with errors. Probabilistic identification has also been
investigated in various ways by Horning [Horning68] and Pitt [Pitt84]. Pitt has
investigated the interaction of the probability of identification with the number of
errors consistent with hypothesis adequacy, with curious results.
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2.6.2. Artificial intelligence and Artificial Similarity

The analysis of inductive generalization problems highlights their similarities. They
are analogous, for example, in uniformly assuming that each evidence sentence
concerns only the properties of a unique individual. Another similarity is that each
problem. assumes that a possible world is a countable structure. A third similarity is
that adequacy is always defined in terms of truth and a lower bound on the amount
of information the hypothesis conveys. Finally, each of these problems is naturally
describable as a generalization problem, as opposed to being a problem of
hypothesis test, of choice among given hypotheses, of drawing an analogy, or of
extending a mathematical framework to one that is easier to investigate (as in the
progressive elaboration of the real number system) [Manders86].

Sometimes these similarities and limitations are urged as objections to the study of
such problems. Perhaps the objections result from a fear that anyone interested in
these problems must have a naively narrow and old-fashioned conception of
science. Admittedly, there is a long tradition in philosophy of overstating the
centrality of inductive generalization in scientific method. Plato, Aristotie, Bacon, Mill
and Reichenbach are all guilty, to a degree, of this mistake. But | advocate pluralism
rather than reductionism when it comes to types of methodological problems. After
all, | took pains in the second chapter of this work to refute the dogma that only
problems of hypothesis test are worthy of methodological investigation. It would be
counterproductive to enshrine my own dogma in place of the defeated one.

Another objection to the study of generalization problems is that they are too
simple to be worth considering, for the real//y difficult task is to "invent’” new
concepts that neither appear in the evidence nor are fixed in advance of the
inductive process. But some commonly studied generalization problems cannot be
solved without introducing what certainly seem to be novel theoretical concepts. In
grammatical inference problems, for example, the only predicate®? that either appears
in the evidence or is assigned a fixed extension by the inductive problem is "is-a-
sentence”. But most interesting languages cannot be axiomatized without introducing
further predicates like "is—a-noun-phrase” or ‘"is—a-verb" The form of an
introduced predicate is irrelevant. What is important is that the extension of the
predicate is fixed not by the problem to be solved but by the conjectures invented
by the inductive agent solving the problem. The grammatical concepts that must be
introduced are not mere toys. A casual acquaintance with grammatical theory

2 . . R . ,
Technically, | refer to the non-terminsl symbols in & context-free gremmar as “predicates”. This correspondence
is natural, and in the next section, | show how to make it precise.
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reveals that theoretical concepts like "noun—phrase”, “verb—phrase’, and "preposition”
are thought of as genuine features of natural language and are employed in serious
explanations of syntactic phenomena. .

A weakened version of the last objection is that one may be able to define non-
trivial generalization problems, but only the trivial, uninteresting ones are soluble. But
if identifying each of infinitely many infinite worlds that cannot be identified without
inventing arbitrarily many novel concepts is a non-trivial problem, then some familiar,
non—trivial generalization problems are indeed soluble. Even as Hempel doubted that
a machine could ever sensibly introduce theoretical terms, linguists and computer
scientists were proposing algorithms to solve grammatical inference problems of
exactly this sort [Feldman67], [Solomonoff64], [Horning69], [Pac781.2

Another objection to the interest of generalization problems is that they ignore the
importance of background knowledge in constraining inductive inference. But this
suspicion is mistaken in two ways. First, we can think of the worlds that are not in
the proposed scope of a problem as being those in which the background
knowledge of the evaluator of an inductive system is false. The worlds in the
proposed scope of his problem are exactly the worlds representing open
possibilities he takes seriously even in light of all he knows. Second, an inductive
device that somehow "knows" what the background knowledge implicit in an
inductive problem is will surely be better at solving it than a device that considers
hypotheses adequate only in worlds not in the problem's proposed scope. indeed,
we can represent the background knowledge of a procedure as the complement of
its inductive scope. The worlds in this set are those the machine does not take
seriously, and background knowledge may be described as our standard for serious
possibility [LeviB3].

So generalization problems are of genuine interest despite their restrictive
similarities, and despite the fact that their study needn't exhaust all methodological
concerns. But many of the problems reviewed earlier are similar in another manner.
Consider the following two properties of generalization problems:

1. Each hypothesis is adequate in at most one world.

2. Each hypothesis specifies a procedure for enumerating all and only the
positive instances true in the (unique) world in which it is adequate.

| do not wish to criticize Hempel's good will in examining the computational litersture. He was quite femiliar
with the meachine leerning litersture when he expressed his doubt. The problem, | suspect, is that he did not see how
similar gremmars are to the logical theories with which he wes familiar, And it is just an accident that no explicitly
logical program introduces theoretical terms in the sense required.
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A grammar, for example, specifies a procedure for enumerating the unique
language it "generates”, and thereby specifies a procedure for enumerating the
positive instances true of this language. .

A program index, as conjectured by Blum's inductive inference machines, specifies
a procedure for enumerating the graph of the (unique) function it computes, and the
positive instances true of a function are just the elements of the function's graph
A polynomial function is obviously computable over the rationals, so the same may
be said of the problem addressed by the BACON program.

Now recall the concept learning literature. If the hypothesis language is simple

enough, an open sentence provides a mechanism for enumerating the state
descriptions that satisfy it In most cases, "concepts” are taken to be quantifier—
free, in which this criterion is certainly met So these simple concept-learning
problems satisfy these conditions as well.

It is just a Bjt more involved to see that Shapiro’'s problems also satisfy these
conditions. First, he says that an evidence language and hypothesis language form
an admissible pair just in case for any structure, if an hypothesis is false in that
structure, it must entail some evidence sentence that is also false in the structure.
Then he refuses by fiat to consider any inductive problem whose evidence and
hypothesis languages do not constitute an admissible pair. (Notice that this
assumption excludes out of hand those problems in which the hypothesis includes
“theoretical predicates” that do not occur in the total evidence) So for any such
problem, the requirement that adequate hypotheses be true is vacuous. For consider
an admissible pair of languages. If the intersection of the deductive closure of an
hypothesis with the evidence language is the complete evidential theory of a
structure, then the hypothesis must be true in the structure®® The only remaining
requirement is that the hypothesis entail exactly the evidence sentences true in the
structure. But the completeness and consistency of first—order logic guarantees a
procedure that can, for any given sentence, enumerate all the consequences of this
sentence. So Shapiro's problems all satisfy the axiom in question.

245hapiro does not really want 10 require admissibility of the evidence and hypothesis {sngusges, however. In one
of his examples, the hypothesis language is & first-order language with non-logical vocebulary {+,s(),03. The
evidence lengusge consists of stomic sentences over the non-logical vocabulary of the hypothesis langusge. But this
pair is clearly inadmissible. Consider the hypothesis ‘(x}x+0=0) & (xMyNz){x+y=z ---» x+s{y)=s{z))’. Now consider a2
structure in which the usual nstural numbers ere sugmented by five eiements ab,c,de that are not successors of any
netural number, such that s(bl=d, sicl=e, at+bz¢, but a+d is not identical to e. The hypothesis entails every stomic
sentence true in the structure just described, but it is felse in this structure. What Shapiro really wants to require is
that for any structure in which every domain element is denoted by & closed term of the evidence language, if an
hypothesis entails exactly the evidence sentences true in & structure then the hypothesis is true in that structure.
According to this criterion, his example langusges ere evidently admissible.
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Finally, even the inductive problem assumed in Putnam's construction satisfies the
two axioms. Each hypothesis amounts to an open formula of number theory that
represents a recursive set .

It is striking that problems drawn from such different areas of application all
satisfy axioms (1) and (2). It is tempting, therefore, to assume that all other
generalization problems satisfy them as well But these axioms express a very
stringent lower bound on the predictive power of an adequate hypothesis. In logical
terms, these axioms require that an adequate hypothesis entail every positive
instance in the total evidence true of a world But an induced theory can be
interesting, explanatory, informative, and true without singling out a unique world or
providing an enumeration procedure for the total evidence. In fact it can achieve
these aims without entailing any of the true evidence.

For example, consider a problem in which the hypothesis language is a first—order
language and the evidence language consists of the atoms of the hypothesis
language. Assume that an hypothesis is adequate just if it is true, invalid, and of the
form of the universal closure of an open formula with at least one free variable.
So for example, "all ravens are black” would be an adequate hypothesis for a world
in which it is true. This is clearly a generalization problem but it fails to satisfy
both axiom (1) and axiom (2). First, an adequate hypothesis may be adequate for
many worlds, and second, an adequate hypothesis need not entail any evidence, let
alone all of it "All ravens are black” is such an hypothesis.®®

it might be objected that the problem just presented does not place stringent
enough lower bounds on the strength of adequate hypotheses. This objection has
some merit, but there are many ways to place non-trivial explanatory demands on
adequate hypotheses without assuming axioms (1) and (2. In chapter five, |
introduce a problem of this sort.

2.6.3. A Logical Perspective

Computer science flourishes in the proliferation of equivalent notations, and this
fact is evident in our representative sample of inductive problems. Hypotheses can
be grammars, open formulae, Goedel numbers, "semantic nets", logical theories, or
finite—state automata. Possible worlds may be functions, sets of strings, relational
structures, or sets of state descriptions. Evidence sentences may be ordered pairs
drawn from the graph of a function, strings in a language, or atomic sentences true
in a structure, or state descriptions of objects.

25 . L .
It entails only disjunctions of atoms, but never any atoms.



52

Different representational schemes can make a real difference to issues of
efficiency and control when employed as data structures in a program. But they
tend to obfuscate the comparison of problehs as contrasted with the procedures
that solve them. Moreover, when an expressively weak formalism suggests no more
powerful extension, there is a danger that its limitations will be missed. For
example, concept learning theorists who study the inference of boolean
combinations of ‘"attribute values” seem to have missed the possibility that a
concept's definition might require quantification, binary relations, and function
symbols.

Logical languages are powerful (they can express uncomputable problems) and
adaptable (the syntax and vocabulary can be adjusted in in a variety of ways)
Moreover, logical systems come equipped with a superabundance of metatheoretical
results from proof theory and model theory. Hence, there may be some interest in
formulating inductive problems in a logical framework.

Shapiro’'s problems are already presented logically, with relational structures as
possible, worlds, and with purely universal Horn clauses as hypotheses. Simon's
polynomial function definitions are also open first-order formulas, and the possible
worlds to be inferred can be thought of as the structure of the real numbers
augmented by the function defined. In the usual concept-learning problem, the
hypothesis language is tantamount to 2 monadic formula open in one free variable.

Now consider the inference of context-free grammars. A context-free grammar
may be expressed as a finite list of context-free production rules along with a
distinguished start symbol/, which is conventionally taken to be 'S. A context-free
production rule consists of the funny symbol :=' flanked by a capital letter on the
left side and an arbitrary, finite string of capital and lower—case letters on the
right-hand side. For example, the context— free production 'S:=aBc' is read "S
rewrites as aBc”. A grammatical derivation of a string of lower—case letters is
begun by writing down the start symbol. Thereafter, one writes down the result of
substituting the right-hand side of a rule for some occurrence of the rule's left-
hand side in the current last line of the derivation. The derivation is completed
when no capital letter occurs in the current last line of the derivation. The set of
all strings of lower case letters derivable from a grammar is the language generated
by the grammar.

There is an obvious translation of context-free grammars into first~order axioms
of a restricted sort. Consider the following example:
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S:=SBa XNy [(S(x) & Bly)——=>S((xmy*a)]
S:= Sib)

B:=bB (x)[B(x)—-'-‘ >Blb*x)]

B:=S (X [S(x)===>Bix}].

The translation works as follows. The capital letter on the left side of a context-
free rule becomes a monadic predicate on the right hand side of a universal
conditional. The concatenation of distinct capital and lower case letters on the
right-hand side of the rule corresponds to a term built up from an application of a
conCaténation functor '# to distinct variables and constants, respectively. The
constants are the translated lower case letters, themselves. The variables
correspond uniquely to the capital letters on the right-hand side of the rule. The
antecedent of the conditional is just the conjunction of the predication of each
capital letter in the right—hand side of the rule to its uniquely corresponding variable.
The last step is to take the universal closure of the resulting open formula. Notice
that if no capital letter occurs on the right—hand side of a rule, the corresponding
axiom has no antecedent (or equivalently, a tautologous one).

The sense in which a transiation has been provided is just this. A string ‘ab..z' is
derivable from a context-free grammar just in case the atom 'S(a*bx.*z) is entailed
by the corresponding transiation.?®

Since the consequent of the translation of any context-free rule is atomic, such
axioms are basic Horn sentences [Chang73], p. 328. But not every basic Horn
sentence is such a translation. First, all predicates must be monadic. Second, only
one function symbol is permitted, and this must be binary. Third, this function
symbol occurs only in the consequent Any Horn sentence that satisfies these three
properties may be called a context-free hypotheses to highlight the analogy to
context—-free productions.

Once grammars are viewed as logical theories, there is a natural, logical
reconstruction of the other elements of grammatical inference problems. The
evidence, for example, consists of instances of atoms and negated atoms of the
form 'S(axbxcxaxc), where S is the translation of the start symbol, and the closed
term corresponds to the formal string that results when the constants themselves
are concatenated.

6 . R . R . .
Indeed, there is an easy transformation of grammatical derivation tines into lines of 8 logical proof by refutation.
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Possible worlds correspond to relational structures <UL>, where U is the set of all
finite strings on an alphabet of lower—case letters, and L is a subset of this set,
which is assumed to interpret the predicate <S'

From this logical perspective, the grammatical inference problem raises familiar
epistemological issues. For example, grammatical inference problems can be viewed
realistically, instrumentalistically, or positivistically. The positivist version of the
problem is the one just described, where there is no "fact of the matter” in the
target “"world” about what constitutes a noun-phrase. The meaning of the
expression 'noun—phrase’ derives entirely from its employment in a conjectured
theory of the predicate 'is—a—-sentence. In the realist version of the problem, the
structure <U,L> is augmented by other phrasal categories, and each predicate in the
true grammar denotes its extension in the structure. In this case, there is a fact of
the matter about how a sentence is to be analyzed, and the realist requires of any
adequate hypothesis that it get these facts more or less right Finally, an
instrumentalist (e.g. [vanFraassen80]) may admit that there is a fact to the matter of
phrasal structure, but a theory is deemed by him to be adequate so long as it gives
the correct judgments of sentential well-formedness. Getting the "hidden” phrasal
categories right is not required.

The correspondence between grammars and theories also iliustrates epistemic
situations ignored by philosophers of science. For example, consider a realist
version of the grammatical inference problem in which the positive and negative
instances are not just strings, but bracketed strings. A bracketed string is
generated from a grammar by enclosing the right—-hand sides of all the grammar's
productions in parentheses, and by treating parentheses as lower—case letters in any

derivation. So for example, consider the simple grammar
S:=Sa
Si:=b,

The string 'baaaaa’ is derivable from this grammar. We can obtain the
corresponding, bracketed string ‘((l(blala)a)a) by writing down the corresponding,

bracketed grammar
S:=(Sa)
S:=(b)

and by deriving bracketed string from it, employing the same sequence of
production rule selections as in generating the unbracketed string.

The motivation for bracketed strings in the evidence is that a native speaker might
be able to employ pauses and emphasis to indicate the bracketing which would
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enhance the information available to a learner [Crespi-Reghizzi71]. In logical terms,
the outermost bracketed string provides an instance of the sentence predicate 'S’ as
always. But the bracketing of a substring of a positive instance says more than that
the string has some property. It says that the string is in some one of the finitely
many phrasal categories of the target language. Let R be a second—order predicate
whose extension is fixed as the set of all categories of the target language (e.g. the
extensions of the predicates relevant to its actual derivation). So for example, the

overall, logical transiation of the positive instance ;
(({bla)a)

is just”
S(b*axa)

EXI[RX) & X(bxa)]
EX[ARX) & Xibxa)]

As far as i am aware, philosophers of science have not examined inductive
problems with™ this strange kind of second-order evidence. But they are
commonplace in learnability theory. '

The point of this exercise was to illustrate the analogies and disanalogies of
problems by viewing them in a common, logical framework. We have seen that
most of the hypothesis languages studied in the computational literature can be
viewed very naturally as logical axiomatizations. Moreover, we have seen that
innocuous assumptions about problems expressed in other formalisms (eg
bracketed strings) can lead to interesting problems of inductive generalization that
might have been missed from the logical point of view had we not considered how
such problems are related to one another.

2.7. Chapter Summary

The purpose of the previous chapter was to dissolve the standard, philosophical
objections to the principled study of hypothesis generation procedures. The
purpose of this chapter was to portray the logic of discovery in a positive light In
this chapter, | sketched a normative study of hypothesis generation methods.
Factors relevant to a method's evaluation include the suitability of its conjectures, its
inductive generality, and the computational costs involved in its pursuit | am
pessimistic about any attempt to rank these desiderata across all applications.
Rather, the methodologist should identify unsatisfiable combinations of these norms,
and he should design a variety of optimal methods that may accentuate some virtues
at the expense of others.
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Next, the aims cf the logic of discovery were contrasted with those of related
disciplines. At the same time, the numerous contributions of these disciplines to our
understanding of generation methods were‘ discussed. The resulting survey of
methods and problems suggested some strong adalogies, which were reflected in an
anatomy of generalization problems. Various, standard objections to the study of
such problems were rejected, including the claim that such problems do not require
that novel concepts be invented Next, | showed that many problems in the
literature are artificially similar in their imposition of unrealistic lower bounds on the
strength of adequate hypotheses. Finally, | sketched the utility of model theory as a
tool for comparing - the difficulty of different generalization problems expressed in
different formalisms.

The various topics addressed in this chapter are unified by two important themes.
The first is pluralism. Generalization problems are not the only or even the most
important inductive problems encountered in practice. Among generalization
problems there- are myriad variations. There are various criteria for evaluating
inductive methods, and there need be no absolute adjudication among them or
reduction of one to the other.

The second theme is that pluralism is not anarchy.  Ceteris paribus, a faster and
more general method that tends more often to produce suitable hypotheses is a
better method. That no method is universal does not imply that no method is better
than any other. And the fact that different problems demand different solutions
does not imply that one method cannot be better than another for a given problem.
Such norms may not be the grandiose one-liners that have been sought by
philosophers for millennia  But they are precise, non-trivial, and best of all,
available.
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Chapter 3
How Discovery Methods Work

i

The previous chapter described the logic of discovery at a general level, and
discussed criteria for the comparison and evaluation of hypothesis generation
methods. But if nobody has any hunches how to design a good generation method,
there is little point in staking out a discipline devoted to their study. As with flying
saucers, we may as well wait until we run into a discovery method or think we can
design one ourselves before we spend time disputing how to study the things.

But as a matf_er of fact, precise, solutions have been found for some inductive
generalization problems, and the detailed examination of these methods suggests
some techniques for designing new ones. The purpose of this chapter is to
provide a taste of the kinds of nuts-and-bolts issues that arise in designing such
methods. This taste is provided through the dissection of four discovery
procedures that have been proposed in the computation—theoretic literature.

The methods to be examined are the automaton inference procedures of Pao
[Pao€8] and Angluin [Angluin81], the grammatical inference procedure of Horning
[HorningB8], and the mode! inference systems of Ehud Shapiro [Shapiro81].
Although these procedures address distinct problems in different ways, their
designers share an explicit concern for .inductive generality and efficiency. The
tension between the joint aims of inductive generality and computational ease is
what makes the logic of discovery interesting and difficuit

3.1. Trimming the Hypothesis Enumeration

Before proceeding to the methods of Pao, Angluin, Horning and Shapiro, it is
useful to examine some informal distinctions between approaches to the
improvement of a generation method's efficiency. To illustrate these distinctions, |
appeal to a very simple but general kind of method called an enumeration method
[Gold67]. An enumeration method generates a tape on which every possible
hypothesis eventually occurs. When each evidence sentence is received, it
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conjectures the first hypothesis on its tape that is consistent with the evidence it
has seen so far. Enumeration methods can be powerful (so far as EX'-identification
is concerned.?”’” But despite their inductive power, enumeration methods seem ugly
and inefficient '

The apparent ugliness of enumeration methods can be explained, in part, by the
fact that they make no use of the results of previous tests to guide the selection
of hypotheses for future tests. Control over the selection of the next hypothesis
to test against the evidence is abdicated to the arbitrary, fixed order of the
assumed enumeration. For example, there is no finite bound on the number of
equivalent formulations of a failed hypothesis?® that an enumeration method can test
before producing its conjecture on given evidence. An enumeration method can
also test arbitrarily many hypotheses entailing previously falsified hypotheses before
it arrives at a conjecture. In general, enumeration methods do not exploit the
semantic structure of the hypothesis language to restrict the test and consideration
of hypotheses whose consideration is a waste of time.

3.1.1. Kinds of Hypothesis Neglect -

While some hypotheses can be ignored in any circumstances without compromising
inductive scope, others may be ignored only in light of the evidence so far
received. For example, only one element of each equivalence class of hypotheses
need be considered in any circumstances.?® But hypotheses that entail a given
hypothesis may be ignored only after it is discovered that the given hypothesis is
refuted. Hence, it is natural to say that some hypotheses may be ignored a priori
(ie. no matter what) while others may be ignored only a posteriori, or in light of
the available evidence.

27Assume that esch world has an adeguate hypothesis in the enumeration, and each hypothesis inadequste for &
worid can be shown to be inadequete on the basis of & finite set of evidence. Then after some finite amount of
evidence is read, every inedegquate hypothesis preceding the first edequate hypothesis in the enumeration will have
been rejected. The first adequate hypothesis is never refuted, and is therefore conjectured forever after,

28 R . R ;
In general, two hypotheses are equivalent in & problem if they are adequate for exactly the same worlds in the
problem’s proposed scope.
stwo hypotheses sre teken to be equivaient in a probiem if they are sdequate for exsctly the same worlds in the
proposed scope of the problem.
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3.1.2. Hypothesis Test vs. Hypothesis Consideration

Notice that there is an important difference between withholding an hypothesis
from test and ignoring it altogether. ‘First, imagine a modified enumeration
procedure that works just as before, but prior to testing the next hypothesis, it
checks whether this hypothesis is in a fixed, normal form3° If the hypothesis turns
out not to be in normal form, it is rejected before it is tested against the evidence.
This procedure withholds any non-normal hypothesis in its enumeration from
empirical test @ priori, with no attendant loss in inductive generality. But thé
procedure obviously considers every non—normal hypothesis it decides not to test

Next, imagine an enumeration procedure that employs an enumeration of only the
hypotheses that are in normal form, rather than of the entire hypothesis language.
This procedure does not merely withhold non—normal sentences from test; it fails to
consider them at all, with no accompanying loss in inductive scope®' Not only does
“it save the time that would have been spent in testing hypotheses. It saves the time
and space that._.wouid have been involved in generating and storing them as well
Empirical tests can be very expensive®?’ so avoiding unnecessary tests is good. But
it is better (if feasible) to ignore hypotheses that need not be tested.

3.1.3. Description vs. Computation

It may seem simple to modify an enumeration method to ignore lots of hypotheses
with no attendant loss in inductive scope: ‘ignore every hypothesis that entails a
refuted one” But this proposal is no method in my sense, for it does not specify
how to ignore the hypotheses in question. To characterize the set of hypotheses
that may be ignored on given evidence is not to provide a general procedure that
ignores this set (ie. that enumerates the complement of the characterized set when
it is fed the evidence as input). And designing such a procedure may be difficult or
even impossible for computational reasons.*® Each of the methods to be discussed
below can be viewed as a genuine attempt to bridge the gap between merely
describing the hypotheses that need not be tested and specifying Aow to avoid
their test or consideration.

30
A “normal form” of a language is just & decidable, expressively complete sublanguege of this language.

310f course, it is assumed that the procedure that enumerstes the normal form hypothesis does so directiy, without
considering non-normal hypotheses. This cen certainly be done in some cases. For example, the sentences in
disjunctive normel form can be enumerated by a procedure thet does not enumerate ail possible sentences and then
delete the non-normal ones.

32
Evidence for this claim is presented in chepter six.

33 . . . R . .
E.g. if the specified set is R.E. but non-recursive, then its complement cannot be enumersted recursively.
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3.2. Pao’s Method for Inferring Finite State Acceptors

3.2.1. The Regular Set Inference Problem *

The algorithm to be considered appears in Pao's PhD. dissertation [Pao68]. Pao's
hypothesis language is the set of all nondeterministic, finite state automata. A
nondeterministic, finite state (NFS) automaton is a finite, directed graph whose
vertices are called states and whose arcs are called state transitions. One state is
designated as the /nitial state and some states are designated as accepting states.
There is a set of /nput symbols, and each arc or state transition is marked with
exactly'one input symbol. An NFS automaton is said to accept a finite string of
input symbols just in case the input string is an edge label sequence of a path from
the initial state to some accepting state.

a

V.2

/

start

accepting
state

Figure 3-1. A Nondeterministic,
Finite—State Automaton

Pao takes possible worlds to be /anguages or arbitrary sets of finite strings of
input symbols. The /anguage of an automaton is just the set of all strings the
automaton accepts. Two automata are equival/ent just in case they accept the same
language. The problem's proposed scope is the class of all languages that are
accepted by deterministic, finite statz automata  These languages are called the
regular sets by computer scientists. The evidence language consists of the set of
all finite strings of input symbols. A veridical oracle for string membership in the
target language is assumed. That is, an inductive device has the prerogative to ask
the oracle about the membership of a given string in the target language, and it is
guaranteed to receive the correct answer.

A transition is said to be /ive if it occurs in some accepting path, and is dead
otherwise. A finite set of strings is representative of an automaton just in case the
automaton accepts each string in the set and for every //ve ftransition in the
automaton there is some string in the set such that the acceptance of this string
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exercises the transition. A set is a representative sample of a language if it is a
representative set for some acceptor of the language. Like a good work—out, a
representative sample forces an automaton to “exercise” each of its muscles—--
except for the "vestigial’ ones that are never involved in accepting strings.

Pao takes an inductive method to /dentify a language if and only if for every
automaton that accepts this language and for each sample of the language that is
representative of this automaton, the method can output a finite-state acceptor of
the target language in finite time after asking only finitely many questions of the
oracle®® So a method solves the problem just in case it identifies every regular set
in this sense.

There is a countable infinity of distinct regular sets, and infinitely many distinct
regular sets are themselves countably infinite. So there is nothing trivial about the
proposed scope of the problem so far as its cardinality is concerned. Notice that
Pao's identification criterion is not quite the same as EX'—identification. in
EX"~-identification, a proposed method need never stop making queries, so long as it
converges to an adequate hypothesis after making finitely many questions have been
asked. That is, the method need not "know that it knows" the correct answer. But
according to Pao's criterion, the method must "know that it knows" and must stop
making queries at this point On the other hand, Pao exempts a method from
failure if it has not been provided with a representative sample before it makes its
first query. So any method is free to assume that it has been given a
representative sample before it makes its first query. In EX'—identification, however,
the evidence must eventually be representative, but there is no point at which a
device may safely assume that it is.

Finite state automata correspond to context-free grammars of a special kind
[Hopcroft78].  In particular, the states of an automaton correspond to unique,
non-terminal symbols occurring in a grammar that generates the language the
automaton accepts. Recall that any context-free grammar can be thought of as a
universally quantified logical formula, such that the predicates in this formula
correspond to non—terminal symbols in the grammar. By composing translations, we
can also think of finite state automata as universally quantified logical sentences. As
it turns out, the initial state of a finite state machine corresponds to the "is-well-
formed” predicate and all the other states correspond to “theoretical’” monadic

34
Chomsky 2ppears to heve been among the first to propose this somewhat quirky identificstion criterion. it was
later adopted by Feidmen and Solomonoff. An ensiogous version is employed in Shapiro’'s logical inference system,
and the exact problem proposed by Pao is recently resurrected in 2 paper by Angluin, which we shall examine shortly,
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predicates defined contextually by the organization of the machine. So a procedure
that conjectures automata on the basis of input strings actually introduces new
"theoretical predicates” in the usual sense of Hempel! and Carnap.

3.2.2. A Clunky Solution

By Pao's definition of identification, it is clear that no inductive method is ever
penalized for assuming a priori that the original sample is representative of the
target language. This free assumption is very powerful, -for it places a finite bound
on the number of hypotheses that must be considered  The reason is simple
enough.' Let N be the sum of the lengths of the strings in a finite set that is
representative of the target language. If every live transition of some finite state
acceptor for the target language is exercised in accepting a finite set of finite
strings, then the number of live transitions in this acceptor cannot exceed
N. Moreover, the result of deleting any dead transition from an automaton accepts
the same language as the original automaton, for no accepting path is created or
disrupted by eliminating a transition that occurs in no accepting path. Therefore, the
language must be accepted by an automaton with no more than N transitions. But
no connected graph with N transitions has more than N-1 vertices. Therefore,
some acceptor of the target language has no more than N transitions and N-1
states. The set of all automata with no more than N transitions and N-1 states is
finite, and can be generated mechanically.

So the only task that remains is to to eliminate all inadequate hypotheses from our
finite set of alternatives on the basis of finitely many oracle queries. Since we
"know” that an adequate automaton is in our constructed set, we "know" we have
eliminated all inadequate automata when only equivalent automata remain in our set
It is decidable whether two automata are equivalent It is also decidable whether a
given automaton accepts a given string: just run the automaton.®®* So an obvious
method is to enumerate all possible finite input strings and to ask the oracle about
the status of each. Any time the oracle says 'yves, eliminate each automaton that
does not generate it, and any time the oracle says 'no’, eliminate each automaton that
generates it Eventually, every inadequate automaton must be eliminated, and only
equivalent automata remain. We can recognize this situation, for the equivalence of
finite—state automata is decidable. When all remaining automata are equivalent, we
choose one of them (perhaps the one with the shortest description) as our
conjecture. This procedure is clearly a general solution to the regular set inference
problem.

ft must stop either when the input string is used up, or we 2arrive 2t & state where there is no transition for the
currently scenned input symbol.
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3.2.3. Pao’s Solution

Pao’s solution improves on our clunky one both by withholding hypotheses from
test and by ignoring some hypotheses altogether. First of all, the obvious method
just presented made no use of the structure of the representative sample. Pao
corrects this oversight by means of what Feldman [Horning68]) calls an ad hoc
acceptor for a given, finite sample. The ad hoc acceptor for a finite set of strings
is constructed as follows. Assume an initial state. Now select a string from the
sample. Add a state to the ad hoc machine and connect the initial state to it by a
transition labeled with the first symbol occurring in the string selected. Add another
state, ahd connect the previous state to this one by an arc labeled with the second
symbol occurring in the selected string. Repeat this process until the end of the
string. is reached. Designate the last state added as an accepting state. The ad hoc
‘machine accepts the first string in the sample. Now select a distinct string from
the sample. Run the ad Aoc machine constructed so far on this string. If the string
is not accepted, then either the machine stops at some point before the string is
entirely read, or the machine reads the entire string and does not end up in an
accepting state. In the first case, repeat the above procedure, starting at the state
where the machine choked, using the unread portion of the string it choked on. In
the second case, label the state in which the machine finds itself when the input
string is read as an accepting state. Repeat the overall procedure until no strings
are left in the sample. In the end, the constructed machine must accept exactly the
strings in the sample. The accompanying figure depicts an example of a sample and
its corresponding, ad hoc acceptor.

Consider an arbitrary NFS automaton. Eliminate all dead transitions and then
eliminate each state that is not connected to the initial state. Call the resulting
automaton M. Consider a representative set for M, and form the ad hoc acceptor
for this set This ad hoc machine must be fomomorphic to M (e.g. M is isomorphic
to some result of identifying states in the ad hoc machine)l. Therefore, the ad hoc
acceptor of a representative sample of a language is homomorphic to some
acceptor for this language. So once the ad hoc acceptor of a representative
sample is constructed, we know that some result of identifying some of its states
is an acceptor for the target language. By testing only results of identifying states
in the ad hoc acceptor, Pao's procedure ignores a vast number of hypotheses that
were considered and tested by our clunky method.

But we must be careful not to hide a problem under the rug. Is it possible to
generate just the automata that result from identifying states in the ad hoc
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automaton without in some sense generating all the other automata of the same
number of states and sorting the result? In this case, the answer is yes. Think of
the set of states in the ad hoc acceptor. Any result of identifying states (and
dragging the transitions along) corresponds to a unique partition of the set of
states. The ad hoc automaton itself corresponds to the partition in which each state
is in a distinct cell. The result of identifying states q and p in this automaton
corresponds to the partition in which all states are in distinct cells except for g and
p. which are in the same cell So each result of identifying states in the ad hoc
acceptor corresponds uniquely to some partition of its set of states.

The algorithm adopted by Pao to generate the set of all partitions of a given,
finite set works as follows. Let S(n) be a set of integers from 1 to n, representing
n distinct automaton states. The recursive function PART(n) takes a positive integer
n as argument and is intended to take the partitions of S(n) as value. The definition
of PART(N is: |

e PART(1) = {{{1}}};
e PARTIN) = {P U {{n}}: PePARTIN-1)} U {P-{p} U {p U {n}}: peP and
P¢PART(N-1)}

So in the case of PART(3), we begin with {{1,2,3}} and {{1,2},{3}}. The first set
in the above expression evaluates to
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{{1.2},{3}}
{{11.{2}.{3}}

while the second evaluates to
{{1.,2,3}}

{{1,3%L1{2}}
{{1},{2,31}

By inspection, the union of these sets includes all the partitions of {1,2,3}. In a
sense,*®.this function generates exactly the set of automata resulting from collapsing
states in the ad hoc automaton, without wasting resources to consider other
automata So Pao's procedure can really be said to ignore lots of hypotheses
tested by our "clunky” procedure. And in a sense, it does so a posteriori, or as a
function of the particular sample provided.

But Pao does not stop here. She reaiizes that some results of identifying states in
‘the ad hoc automaton need not be tested against the evidence given that others are
known to have failed For imagine the result of identifying two states in a given
automaton. The collapsed automaton still has all the accepting paths the non-
collapsed automaton has, plus all the new ones that arise from the state
identification. So the language of the collapsed automaton includes the language of
the non-collapsed one. Therefore, if an automaton fails to accept a string the
oracie claims to be in the language, then any automaton that collapses into it fails as
well. And if an automaton accepts a string that is not in the language, any result of
collapsing its states must fail. So by deciding whether one automaton collapses into
another, Pao's procedure can avoid gratuitous tests. In Pao's own words,

‘Since we will use the above two principles, some f.s. [finite statel
machines in W [the set of results of identifying states in the ad hoc
machine]..will be eliminated before participating in any comparisons with
other f.s. machines in W. Therefore, actually, we do not have to
construct those f.s. machines.

[Paoc78], p. 12.

There is one final way in which Pao's system is better than our clunky one. Recall
that the clunky procedure queries the oracle about every string. Queries can be
very expensive. Computer peripheral devices are very slow compared to core
operations. More metaphorically, scientific experiments require expensive apparatus

361’0 be made precise leter, in chapter five.



€6

and time consuming observations. Therefore, it would be advantageous to make
every query count as an experimenturmn crucis between two "live" hypotheses
remaining in our finite set of possibilities.' Accordingly, Pao develops a clever
technique for constructing, for any given pair of inequivalent automata, a string that
is accepted by one but not by the other. The result of querying the oracie
regarding such a string must constitute a crucial experiment between the given
automata.

4

Let M, M' be inequivalent automata We can construct a crucial string for these
machines as follows. First, we form the direct product machine MM' from M and
M. The states of MM’ are the ordered pairs <q,q>, where q is a state of M and g
is a state of M. There is a transition labeled ¢ from <qq> to <p.p’> just in case
there is a transition labeled ¢ between q and p or between q and p'. Finally, the
start state of MM is just the ordered pair of the respective start states of M and
M. The rel/ative complement machine M~M' is just MM with every state <q.q>
such that q is an accepting state and g is not an accepting state declared to be an
accepting state.- M-M accepts a string just in case M accepts the string and M
does not. So to generate a crucial string for MM, all we need to do is to start at
an accepting state in M—M, and to proceed backwards until the start state is
reached. Reversing the sequence of transition labels passed along any such path
results in a crucial string for M and M.

Pao's system has three advantages over the clunky. procedure. First, it exploits the
structure of the input sample to ignore many automata that the clunky procedure
tests against the evidence. Second, it utilizes the "collapses into" relation to
withhold certain hypotheses from empirical test given that other hypotheses have
already been tested. And finally, it relies on the structure of the hypotheses to
construct crucial experiments, rather than blindly consulting nature about facts
irrelevant to its live alternatives.

Despite these successes, there is room for improvement. Pao's method generates
and stores the set of all partitions of a given, finite set of states. This is a smaller
set than was generated by the clunky algorithm, but it is not a small set For
example, if the given sample contains just one string with five symbols, there would
be fifty-two live hypotheses to generate and to decide among. For a string of
length 10, the number of live hypotheses rises to one hundred fifteen thousand,
nine hundred seventy-five. For a string of length fourteen, the algorithm would be
responsible for paying attention to one hundred ninety million, eight hundred ninety—
nine thousand, three hundred twenty—two partitions. Pao's algorithm blows its
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gasket on extremely small samples. An obvious question, then, is whether this kind
of effort is necessary to solve the problem, or is, rather, a contingent shortcoming
of Pao's approach. As it turns out, Angluin’s procedure is a significant improvement
over Pao's. ‘

3.3. Angluin’s System for Inferring Minimal Regular Set Acceptors

3.3.1. The Minimal, Deterministic, Automaton inference Problem !

Angluin's identification criterion is different than Pao's. According to Angluin, an
NFS aut'omaton is adequate for a regular set just in case it is deterministic and has
fewer states than any distinct (up to isomorphism), deterministic, finite state
acceptor of this set® A deterministic finite state (DFS) automaton is juét an NFS
automaton such that for each state and input symbol there is exactly one transition
labeled with this input symbol from the given state to another (not necessarily
distinct) state. So an NFS machine can differ from a DFS machine in two ways.
First, it may have two distinct transitions from the same state that are labeled with
the same input symbol. Second, some states may have no transition with a given
label. These additional restrictions do not alter the proposed scope of Pao's
problem, however, for any language accepted by a NFS automaton is also accepted
by a DFS automaton.

Given this construal of hypothesis adequacy, Angluin defines identification as
follows. A method can identify a regular set just in case for any sample of the
language that is representative of its minimal DFS acceptor, the method outputs an
adequate hypothesis after making at most finitely many queries to the oracle. In
short, Angluin's problem is more strict than Pao's, in that a successful method must
find not just any acceptor for the target language, but a minimal, deterministic one.

3.3.2. Angluin’s Solution

While Pao's method begins with an ad Ahoc automaton and searches the ways of
collapsing distinct states, Angluin's does just the opposite: it assumes that two states
in the ad hoc automaton are equivalent until it can be demonstrated by means of a
crucial test that they are not

Angluin's method is based on the concept of state equivalence. Two states are

37 . . . TR .
That there is such & unique minimal stste deterministic acceptor for each reguler set is » consequence of the

Myhili-Nerode theorem {Hopcroft791 p.67.
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equivalent just in case any possible string of input symbols that leads to an
accepting state from the one leads to an accepting state from the other, and
conversely. Notice that the language accepted by an automaton is unchanged if
equivalent states are identified. ‘

Consider an arbitrary, representative sample of a minimal, DFS automaton. Since
the acceptance of this set exercises every live transition in the machine, every live
state in the machine (e.g every state that lies in some accepting path) can be
reached by some prefix of a string in the sample. So we may think of thé
prefixes of strings in the sample as names for states in the minimal automaton we
seek, and we may be sure that every live state of the target automaton has such a
name.

Since we have redundant names for all the states in the minimal automaton we are
seeking, all we need to do is to determine which names denote the same state in
this automaton. One way to do this is to assume that two strings designate the
same state until we find a string that proves they are inequivalent. That is, strings o
and 7 are assumed to name distinct states if there is a string y such that the oracle
says oy is in the target language and ry is not, or vice versa. At first, one might
despair that we could ever be sure that there is no such discriminating extension
for two state names. After all, there are infinitely many possible extensions to
consider. But not every problem that appears to be inductive actually is.

For technical reasons, the first thing we do is to proliferate state names by
extending each of our given names with every possible input symbol. So for
example, if the string 'aaba’ is a state name, then we create the new names ‘aabab’,
'aabaa’, 'aabac’, and so forth, for each input symbol. For ease of reference, call the
original set the o/d set and call the augmented set the new set. Each name in the
new set is assigned a drawer into which we place strings that result in well-formed
strings when tacked onto the name. For example, if the string or is well-formed,
then the string 7 may be placed in the drawer of the string o.

To begin with, we query the oracle about each resuit of extending a state name
with the empty string. If the answer is yes, the empty string is piaced in the
appropriate state name's drawer. Otherwise, nothing is placed in the drawer. If the
extension of a state's name with the empty string is well formed, then the state's
name is well formed, and so a path ending at the state so named is an accepting
path. Therefore the state so named is an accepting state. On the other hand, if the
empty extension of a name is ill-formed, the state so named cannot be an
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accepting state. So after this step is completed, the state names are distinguished
into those that are accepting states and those that are not Accepting states have
the empty string in their drawers, and non-aécepting states do not

The next problem is to find an arbitrary string that cuts a new distinction among
state names by extending some of them to well-formed strings and others to ill-
formed strings. The trick is to look for two old names ¢ and 7 and some input
symbol b such that the drawers of ¢ and r have identical conten:s but the drawers
of ¢b and rb have distinct contents. (Recall that if ¢ and r are old names then ob
and 7b must be in the new set That's why we added the new names). Notice that
if y is'a string in ob's drawer that is not in rb's drawer, then by must be in ¢'s
drawer but not in r's drawer. Since the contents of the drawers of o and 7 were
identical, we have found a way to distinguish two previously undistinguished names,
so we have split an equivaience class of names.

All that remains is to find out which other names in the new set shouid also have
by added to their drawers. This can be done, as before, by extending each name
with the string by and then asking the oracle. Once this is done, we find another
distinguishing string, and so forth, until there is no pair of state names with identical
drawer contents that have successor states with distinct drawer contents. At this
point, all inequivalent states have been distinguished.®

An automaton equivalent to the minimal acceptor for the language is constructed
from the final contents of the drawers in the following manner. Two state names
are equivalent if their drawers have the same contents when the algorithm halts.
The states of the conjectured automaton are just the equivalence classes of state
names. ‘A state is a halting state if one of its names has the empty string in its
drawer, for this indicates that some accepting path terminates at this state. The
initial state is the (unique) state named by the empty string, for it is the only state
reachable by the empty string.’® Finally, there is a transition labeled b from one
state to another just in case some name of the latter state results from clamping b
onto the end of some name for the former state.

38
Actually, | have simplified Angluin’s procedure somewhat by not accounting for the possibility that the target
automaton has & deed state. The algorithm can eesily be modified to drag & dead state name along, but the added
tedium would have served no useful purpose in this discussion.

39 . . s . .
The empty string must be 2 stete name, for recall that the old names are just initiel segments of the strings in 2
representative set. The empty string is 2 prefix of any string, so it is en old name.
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3.3.3. A Comparative Assessment

The procedures of Pao and Angluin may both be thought of as searching the
space of all possible partitions of a set of state names implicit in a inen,
representative set of strings. The partitions of a given, finite set are partially
ordered by the relation of refinement. One partition is a refinement of another
just in case every cell of the former is included in some cell of the latter. If one
partition is a refinement of another, then it is more refined or /ess coarse than the
latter. As it turns out, the set of partitions of a finite set form a lattice under the
refinement relation (c.f. chapter seven).

Recall that Pao’'s procedure considers every pair of partitions of the states in the
ad hoc automaton. It is known that the number of partitions of a given set is an
exponential function of the set partitioned As we have seen, this explosive
relationship means that Pao's procedure must consider over one hundred ninety
million partitions when the sum of the iengths of the input strings is 14.

Angluin's procedure, on the other hand, starts with the coarsest possible partition
of states and refines it, successively, until the partition corresponding to the target
automaton is found. Since the procedure never backs up, it considers at worst just
one path from the top of the partition lattice to the bottom. That is, the number of
possible partitions considered by Angluin's procedure is at worst po/ynomial in the
sum of the lengths of the strings in the given, representative sample. The
accompanying diagram - underscores the dramatic degree to which Angiuin's
procedure ignores hypotheses that are considered by Pao's method.

Notice that Pao's procedure still seems to employ a "generate and test” strategy,
while it is tempting to describe Angluin's procedure as constructing its hypotheses
from the evidence. To a large extent, this intuition reflects the relative abilities of
the two procedures to ignore hypotheses on the basis of the input evidence with
no loss in inductive generality.

3.4. Horning's System for Inferring Context-Free Grammars

3.4.1. Horning's Context-Free Grammatical Inference Problem

The hypothesis language of this problem is the set of all stochastic, unambiguous,
context-free grammars. The context-free grammars were defined in the previous
chapter. Recall that they can be represented as finite sets of productions, each of
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Figure 3-4: Worst Case Searches of the
Procedures of Pao and Angluin

which consists of an upper case letter called a nonterminal symbol on the left,
separated by an arrow from an arbitrary, finite string of nonterminal symbols and
terminal symbols (i.e. lower—case letters).

Unambiguous, stochastic grammars were not discussed previously. A derivation is
canonical if at each step in the derivation, the first occurring non—terminal symbol is
the one to which a production rule is applied A context-free grammar is
unambiguous just in case no string has two distinct, canonical derivations with
respect to this grammar. Ambiguity is an undecidable property over context-free
grammars [Hopcroft78].

A- stochastic grammar is an unambiguous, context-free grammar whose rules are
labeled with rational numbers so that the numbers associated with rules that have
the same non-terminal on the left~hand side add up to unity. A stochastic,
unambiguous, context-free grammar specifies a unique probability for each string
derivable from it in the following manner. Since the grammar is unambiguous, any
derivable string has at most one canonical derivation. Recall that in a canonical
derivation, we must apply some rule to the left-most non-terminal symbol occurring
in the previous line. Hence, we can think of each canonical derivation as a finite
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sequence of rule selections, where the number attached to a rule is its probability
of being selected from the set of all rules with the appropriate non-terminal symbol
on the left—hand side. By replacing each line of the derivation with the probability
of selecting the rule applied to produce that line, we obtain a finite sequence of
selection probabilities. The probability of the string so derived is defined as the
product of the probabilities in this sequence. The probability of a string refiects,
therefore, the probability of the sequence of rule selections that results in the
construction of its canonical derivation (under the assumption that the probability of
selecting a rule at a later stage of the derivation is independent of all previous
choices).

Finally, Horning demonstrates that there are effective probability distributions over
the context-free grammars, and he assumes that one of these measures represents
a priori preference among possibie hypotheses. This preference may reflect
syntactic complexity, for example.

The proposed scope of Horning's problem is the set of all stochastic,
unambiguous, context-free, languages. A language is context-free just in case there
is a context-free grammar from which all and only the strings of the language are
derivable. A context-free language is wnambiguous if it is generated by some
unambiguous context—free grammar, and is ambiguous otherwise. A natural guestion
is whether ambiguous context-free languages exist As a matter of fact, they do

[Hopcroft78], p. 98, so Horning's restriction to unambiguous grammars is a
material one rather than being a mere notational restriction. Finally, a stochastic
language comes equipped with a probability distribution that can be specified by a
stochastic, unambiguous, context—free grammar.

The evidence true of a language is restricted to positive examples of strings in the
language. No negative examples are provided. There is no oracle, so the inductive
method cannot perform experiments, but the process that provides the method with
evidence is stochastic. In particular, the process can be viewed as an infinite
sequence of independent selections of sentences of the language according to the
language's probability distribution.

Horning assumes a stochastic criterion of identification. A method converges to a
grammar just in case for every e there is a & such that for every k>d the
probability (with respect to the sampling distribution of the target language) of the
set of all sample sequences of length k for which the method does not conjecture
G is less than ¢. That is, the probability of conjecturing G can be made as great as
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'you please by providing enough evidence. The best stochastic, unambiguous,
context-free grammar for the target language is just the a priori most preferable
one that specifies the target language's -actual distribution.  Finally, a method
identifies a stochastic, unambiguous, context-free language just in case it
converges to the best grammar for the language.

Like the problems addressed by Pao and Angiuin, Horning's problem demands
something like the invention of theoretical concepts for its solution. But now, the
learning device cannot afford to assume a finite bound on the number of theoretical
predicates it must introduce. This difference refiects the fact that the space of
possibilé worlds facing Horning's procedure is much richer and more interesting than
the space of worlds to be distinguished by the procedures of Pao and Angluin
While regular sets find few practical applications, most actual computer
programming languages are context-free. The task of inferring the grammar of a
programming language from examples of programs is not ftrivial at all, as an
inspection of the sophisticated grammar of ALGOL will attest It is also interesting
that the a priori distribution over hypotheses will favor some combinations of
theoretical concepts over others. So Horning's setting provides at least an attempt
to show how one might systematically select among different theoretical approaches
to the data.

3.4.2. Horning’s Enumeration Method

It is no accident that Horning's problem is set up perfectly for the application of
Bayesian conditionalization. Bayes' theorem states that the probability of an
hypothesis on given evidence is just the @ priori probability of the hypothesis times
the likelihood of the evidence on the hypothesis, all divided by the probability of the
evidence. The likelhood of a string with respect to a stochastic grammar can be
calculated by finding the canonical derivation of the string from the grammar,
associating the appropriate numbers with the lines of the distribution, and multiplying
the sequence of numbers that results. And We have assumed that the a priori
distribution is effective, so there is some procedure that computes it What is not
available is the probability of the evidence, but since Horning's technique maximizes
posterior probability over fixed evidence at each stage, the denominator of Bayes'
formula need not be computed.

It was assumed that the hypothesis language is effectively enumerable in
descending order of & priori probability, so his method can employ some such
enumeration procedure. On a given sample, Horning's procedure looks for the first
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grammar in this enumeration for which the likelihood of the current evidence
sequence is non—zero. Let this grammar be G, the nth grammar in the enumeration.
Next, the method calculates the value of f(G E}=P(GPEIG) with respect to the
current evidence sequence E. The procedure then runs through its enumeration until
it reaches an hypothesis whose a priori probability is less than the product just
calculated. Let the position of this hypothesis be n. Finally, it conjectures the
grammar occurring between positions n and n' in the enumeration whose value of f
is greatest with respect to the current evidence.

The method's conjecture must be the most probable hypothesis with respect to
the evitence, for no hypothesis before position n has a posterior probability greater
than zero, and every hypothesis occurring after position n' has an a priori
probability that is less than f(G E) so it cannot have a greater value of f with
respect to E than G does?® Since the denominator of Bayes rule is fixed
throughout this comparison, no hypothesis beyond n' in the enumeration can have a
higher posterior probability on the evidence than G_ does. Finally, Horning shows
that his method identifies every stochastic, unambiguous, context-free grammar in
the sense defined [p. 801

3.4.3. Bayesians who Consider Too Many Hypotheses

| have presented Horning's project in. a detailed way because it illustrates that
computational problems of control and hypothesis consideration do not disappear in
a Bayesian setting. This point became vivid to Horning when he impiemented his
enumeration method on a real computer to see how it would perform in practical
terms. it should come as no surprise that it didn't work very well at all.

The initial portion of the enumerative.procedure selected for
implementation was the enumeration itself. Although it was
straightforward to write a program which enumerated the grammars in a
given form, it soon became apparent that the enumeration process
represented a serious problem. The first program quickly consumed the
available memory for list structures.. pp 120-121.

Clearly, the considered segment of the enumeration had to be whittled down in light
of the evidence if the program was to get anywhere.

..[Flormally, there is no need to augment the inductive procedure with
a deductive procedure: all grammars which can be ruled out deductively
are automatically rejected by Bayes' theorem. In practice, however, there
may be substantial advantage to a procedure that eliminates as many
grammars as it can deductively, using the ..[Bayesian] procedure only to
discriminate among DA [unrefuted] grammars.

40
The product of two fractions less than one is less than either factor.
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The need for deductive preprocessing arises from the large number of
grammars with similar complexities. [Horning takes complexity as the
reciprocal of initial, @ priori probability. value.] # % » Before the correct
grammar can be guessed, the procedure must at least have considered all
other grammars of equal or lower complexity. We can use the number
of such grammars as a lower bound on the number considered in the
inference. But this number grows exponentially with complexity.

® ¥ *

Only the DA [unrefuted] grammars actually contribute in any way to
the solution; the others merely absorb computation, and (ideally) should be
rejected as soon as possible. Pp. 86-6.

3.4.4. Paring Down the Hypothesis Enumeration a Priori

Horning distinguishes clearly between techniques that pare down the enumeration 2
priori and those that do so a posteriori, or as a function of the current evidence
[p. 84]. Hypotheses are ignored a priori through the selection of a normal/
hypothesis language f(ie. a subset of the hypothesis language such that every
hypothesis is equivalent to some normal hypothesis).

Sometimes, every normal form equivalent to a given hypothesis is more complex
than this hypothesis. So the best normal hypothesis for a language may be far
worse than the best hypothesis for the language. But the problem is to attain an
arbitrarily high probability of conjecturing a best hypothesis for the target language.
So to examine only normal hypotheses of this sort is to fail to address the problem
at hand [p. 90].

But it is possible to define a normal form sublanguage such that every hypothesis
has a normal form of equal or smaller complexity. In particuler, there are many
ways to write down a grammar that make no difference to the language it
-generates. A grammar's production rules can be listed in various orders, for
example Enforcing a lexical order on the productions eliminates only equivalent
grammars of the same length. Also, any grammar that has an "erasing” production
(ie. a production with the empty string on the right—hand side that has the effect of
"erasing” a nonterminal symbol in the previous derivation line) can be replaced with
an equivalent, shorter grammar. Hence, all grammars with erasing productions are
excluded.

Now, consider the result of substituting unique non-terminals for unique non-
terminals in a given grammar. The resulting grammar must generate the same
language and is therefore equivalent to the original one. Call any grammar that
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results from another grammar by a 1-1 substitution of non-terminals for non-
terminals a renaming variant of the given grammar. Renaming variants are all
identical in length (by symbol count) and eqhivalent to one another. Therefore as
many should be eliminated from consideration as possible. Horning assumes an
enumeration of the the alphabet from which non-terminal symbols for grammars are
selected. The first symbol to occur in this enumeration is the start symbo/ S*' A
normal grammar is then required to mention the start symbol as well as every
predecessor of any mentioned non—terminal. This expedient eliminates many, but not
all, renaming variants. In chapter six, | present an efficient technique for selecting a
unique representative of each renaming—equivalence class that can be adapted to
Horning"s grammatical context

3.4.5. Eliminating Hypotheses a Posteriori

Next, Horning considers techniques for ignoring hypotheses a posteriori, or in light
of the evidence received. If G is a grammar, let G[B/A] denote the result of
substituting the non-terminal A for each occurrence of B in G The language
generated by G must be a subset of the language generated by GIB/A]** G is said
to cover G just in case there are non—terminals AB such that G'[B/A]l=G. So if G
covers G' and G fails to generate a string in the evidence sampie, G must fail to as
well.  Therefore, there is no point in considering any grammar covered by a
grammar that fails to generate a string in the sample.

Assume an enumeration of the non—terminal symbols. A substitution is said to be
canonical for grammar G just in case it replaces each occurrence of the greatest
non—-terminal symbol occurring in G with the start symbo/ S. Horning defines the
canonical splits of a normal grammar G to be the set of all normal grammars that
are transformable into G by means of a single canonical substitution. There are at
most finitely many canonical splits for any grammar. Every normal grammar with N
distinct non—-terminals is the canonical split of exactly one normal grammar with N-1
terminals. This organizes the hypothesis space into a finite set of trees in which
each daughter of a node substitutes (via a canonical substitution) into the node of
which it is a daughter.

41
Recall that the stert symbol is the unique non-terminal that constitutes the first tine of every derivation.
42 o o . . .
Let D be 2 derivation from the grammear G. Let DIB/A} be the derivation D with each string 0’ in D replaced by

C'1B/Al, and with redundant strings removed. I derivation line ai followed from aM in D in one step from &

production in G, then line g(s)i(BIA) follows from Ui_1IB/A1 in DIB/A)] in one step from & production in GIB/A). So
any sentence derivable from G is deriveble from G{B/A1l.
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Figure 3-5: The Splitting Tree

Every’ canonical split of a grammar is covered by that grammar. Therefore, if a
grammar fails to generate a string in the evidence, all of its canonical splits must as
well. Hence, as soon as a grammar fails to generate a string, we can just refuse to
split it any further, thereby ignoring all its inadequate daughters in one, simple act
Notice that this expedient accomplishes more than just withholding these daughters
from test They are not generated, represented, or considered in any serious sense.

But we might like to do better. Notice that not every normal grammar covered by
a given grammar is a canonical split of this grammar. For example, consider the

following grammars:

Gr1:
S:=A
A=Az
A:=B
B:=Bb
B:=b

G2:
S:=S
S:=Sa
S:=A
A:=Ab
Az=b
G3:
S:=A
Ai=Aa
A:=S
S:=Sb
S:=b

~ All three of these grammars are normal. Grammar G1 is covered by grammars G2
and G3, since G1[A/S]1[B/A1=G2 and G1[B/S]=G3. But although G1 is a canonical
split of G3, it is not a canonical split of G2, for [A/SI[B/A] is not a canonical
substitution. Now consider the evidence string 'baba. This string is derivable from
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G3, but not from G1 or G2 Ideally, we would like a procedure that would ignore
G1 as soon as G2 is tested and refuted. But since G1 is not a canonical split of
G2, Horning's procedure will test it in this situation.

In light of this discussion, an obvious design objective is to find a procedure that
ignores every normal hypothesis covered by a failed hypothesis. The question
whether there are such procedures is a crucial issue in the logic of discovery. In
chapter seven, | address this question again in the context of a different inductive
problem. ‘

3.5. Ehud Shapiro’s Model Inference Systems

3.5.1. Mode! Inference Problems

The problems addressed by Shapiro's implemented model inference systems are all
special cases of the following problem. The hypothesis language is the set of all
finite sets of c/suses on some first—order, non-logical vocabulary. A clause is just
a universally quantified disjunctions of atomic formulae or their negations. Possible
worlds are relational structures for the hypothesis language whose individuals are all
denoted by closed terms of the hypothesis language (c.f. note 18, Chapter 2 above).
The evidence language is the set of all atomic sentences or their negations over the
vocabulary of the hypothesis language.

An hypothesis is adequate for a structure just in case it is true in the target
structure and it entails each evidence sentence true in this structure. But given
Shapiro's special choice of languages and worlds, this criterion of adequacy is
equivalent to the requirement that the hypothesis entail all evidence sentences true in
the target structure and no evidence sentence false in this structure. Finally, the
assumed criterion of identification is EX'—identification. That is, an inference device
identifies a world just in case for every compiete evidence presentation in this
world, there is an adequate hypothesis that the device conjectures all but finitely
many times.

3.5.2. Resolution Theorem Proving

Shapiro's work can be thought of as an application of reso/ution proof theory to
Blum's general techniques for the study of inductive inference problems. The
following presentation of the resolution method follows [Robinson65] (but employs
more standard mathematical notation).
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Let L be an arbitrary first—order language and let V be the non-logical vocabulary
of L. To computer scientists, a clause is represented as a set of atoms or negated
atoms of L, but this set is interpreted as tbe universally quantified disjunction of its
elements. A substitution 6 is just a function whose domain is the variables of V
and whose range is a subset of the terms constructible from V. The application of
substitution 4§ to a string ¢ of L is written ¢8, and denotes the result of replacing
each variable x occurring in o by the corresponding term 6(x). Finally, if S is a set
of strings, then S8 denotes {s8: oS}

§

A substitution § is a unifier for a set S of atoms or their negations just if S8 is
a2 singléton. A most general unifier § of S is a unifier of S such that for any
other unifier X of S, there is a substitution y such that S\ = [[SAly). That is, 6
is 2 most general unifier of a set of atoms if the unique element of S8 is as
logically general as possible, short of preventing the unification. For example, the
set {Ply,x), P(figix,y)z)} is unified by substituting 'f(gix,y)lz) for 'y and 'z’ for 'x.
Since both substitutions aré necessary to unify the set, this substitution is also most
general.

if C is a clause, then C* is the set of all atoms in C and C is the set of all atoms
whose negations are elements of C. E is a reso/vent of the pair LR just if there is
a subset L' of L and a subset R of R* such that (1) there is a maximal unifier 8
for L' U R such that L'd=R'f={a}, where a is some atom, and {2) E=[{L-L) U
R-R)]6. The atom a is called the atom reso/lved upon. Resolution is any
procedure that produces a resolvent from two clauses.

For example, let L be the clause {-Pix,fly),~Qiz)} and let R be the clause {P(a z),-
Q(figlyl}. We choose L' as {P(x,flyl} and R as {P(a,z)}. A maximal unifier of L'UR’
is the substitution of a for x and of fly) for z. The atom resolved upon is
therefore Pla fly). The resolvent of L and R is is the clause {—Q(fly),~Qif(glym}.

Notice that E may be a resolvent of the pair LR without being a resolvent of the
pair RL, for the order of the given clauses determines the one from which we
select negated as opposed to non-negated atoms in seeking unification. If E is a
resolvent of LR, then L is the /eft component of the resolution and R is the right
component [Shapiro81]. Notice, also, that negated atoms from the left component
are unified with non—negated atoms from the right component.

if S is a set of clauses, R%S) is just S, and R"S) is the set resulting from all
possible applications of resolution to the elements of R™S) along with all the
elements of R™'(S). Resolution provides a sound, complete test of inconsistency for
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finite sets of clauses in the following sense: There is an n such that the empty
clause is an element of RYS) exactly if S is a set of clauses that is not satisfiable
[Robinson651. .

Any first—order sentence can be converted into a finite set of clauses by (a
putting the sentence into prenex normal form, (b) putting the propositional matrix of
the result into conjunctive normal form, (c) skolemizing all the existential quantifiers
in the prefix, and (d) taking each conjunct of the result to be a clause. The result
of this translation is satisfiable exactly if the original formula was. So if the empty
clause is derivable from the translation by resolution, the original formula was not
satisfiable. Hence, resolution, with the translation rules just mentioned tacked on the
front, is a sound, complete system for first—order validity. Since the transiation
process is effective, there can be no way to decide whether a given finite set of
clauses will lead to the empty clause by resolution, or else first—-order validity would
be generally decidable.*?

Intuitively, a single resolution application is a sequence of universal specifications
and disjunctive syllogisms, all rolled into one. Universal specification takes care of
quantifiers, and disjunctive syllogism takes care of propositional maneuvers. But
some sequences of universal specifications could amount to a substitution that is
not a maximal unifier with respect to the atoms unified and eliminated through
disjunctive syllogism. The completeness of resoiution shows that these sequences
of applications are not missed. So in a sense, the point of resolution is to avoid
considering irrelevant universal specifications in proofs just as intelligent inductive
inference systems are supposed to avoid considering refuted hypotheses, or chess
players are supposed to ignore pointless moves.

3.5.3. The General ldea

Since the problem for Shapiro is to provide an hypothesis from which a// and
only the true evidence is derivable, an hypothesis can be either too weak or too
strong for given evidence. That is, it can either entail too many evidence sentences
or too few. If it is discovered to be too strong it should be weakened, and if it is
discovered to be too weak, it should be strengthened. Shapiro's system begins with
an outrageously strong hypothesis (@ contradiction) and incrementally reads given
evidence strings. As each string is read, the current conjecture is tested for
sufficient strength and weakness with respect to the evidence read.

43 s
Even if the clauses are restricted to 2t most one negeted atom and one non-negated stom esch, the setisfiability
probiem for finite sets of clauses is stili undecidable (py a reduction of the Post-correspondence problem}
{Reynolds70]).
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Since the resolution proof system cannot always halt with an answer, an arbitrary,
effective resource bound f, which is a function of the evidence sentence to be
checked, is imposed on the test The resource measure is the number of resolution
steps required to reach the empty clause. So if no proof of evidence sentence e
from hypothesis h can be found in fle) steps, the effort is abandoned and it is
"assumed” that e is not derivable from h. Hence, for any bound f, there is a notion
of "too strong” and "too weak" relative to f. Hypothesis h is too f-strong if the
negalion —-e of a true evidence sentence e is derivable in f(~e) steps. h is too
f-weak if some true evidence sentence e is not derivable in fle) steps.

Relying on f-strength and f-weakness clearly introduces some risk. But there are
at least some structures in which no such risk is incurred. An hypothesis is f-easy
for a structure just if each evidence sentence true in the structure can be derived
in no more than fie) steps from this hypothesis®® A structure is said to be f-easy
just in case it has an f-easy hypothesis. Trivially, f-strength and f-weakness are
completely reliable indicators of strength and weakness for f-easy structures.

Given f, an hypothesis is strengthened if it is too f-weak, and it is - weakened if it
is too f-strong. The procedure for strengthening an overly weak hypothesis
involves a refinement operator, and the procedure for weakening an overly strong
hypothesis is called the contradiction backtracing algorithm. | review each of these
ideas in turn.

3.5.4. The Contradiction Backtracing Algorithm

Assume that a relational structure M is under investigation and that a finite set of
clauses h is too strong for the given evidence. Then some clause C in h must be
false in M. The problem is to find out which clause in h is false without working
too hard. Since Shapiro employs resolution to test the consistency of h with the
evidence, if it is found that h is too strong, then a resolution derivation of the
empty clause must have been constructed from h and the evidence. A resoiution
derivation is a labeled binary tree rooted at the empty clause, such that each vertex
that is not a leaf is labeled by a resolvent of the labels of its daughters. By
convention, the right component R of the resolvent C labeling vertex v labels the
right~hand daughter of v, and the left component L of C labels the left—hand
daughter of v. The leaves of the tree are labeled with elements of H and the
negations of evidence sentences received as inputs.

44 . R fomas . R o, s
Shapiro requires such a2 derivetion for “sll but finitely many” true evidence sentences, but no generality is lost
in the given definition, for a1 the finitely meny exceptions can be added 1o h and then are derivabie in one step.
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{P(z,y), -Qx) } {Q(a)}
{~-P(x,£(y))} {P(a,y)} -
{}

Figure 3-6: A Resolution Proof

Shapiro’'s backtracing algorithm receives such a resolution proof as input and has
access to an oracle over the evidence language that specifies whether any evidence
sentence is true in the structure under investigation. The oracle is a "laboratory” in
the world under investigation, as it were. The procedure constructs a single path
through the tré_e, beginning at the tree's root At the kth node visited, the
procedure has immediate access to

1. the clause Ck that labels k,

2. the ztom P, resolved upon to obtain C_ from its left and right
components L_and R, _in the tree.

3. the substitution X that is the maximal unifier leading to C_ from L and
R, and
K

4. a substitution 6, that it has "built up" along the path already traversed
in 2 manner that will be clear momentarily.

The procedure first finds an arbitrary substitution y so that P8,y is a closed atom
Then it queries the oracle to see whether or not P y is true in the structure under
investigation (ie. it "does an experiment in the lab"). Next, it sets 6 . to the
composition 66 y. If P y is true, then the algorithm moves to the node labeled by
L and sets k to k+1. Otherwise, it moves to the node labeled by R and and sets k

to k+1. When a leaf is reached, the leaf is output as a false hypothesis.

The algorithm's output is always false, and moreover, the conjunction of the atoms
gueried by stage k is always a counterinstance to the clause that labels the vertex
occupied at k. By convention, an empty set of atoms is a counterinstance of the
empty clause, and if a degenerate proof of the empty clause from itself is supplied,
the procedure will output the empty clause. Suppose, then, that the atoms tested
up to stage k form a counterexample to the label Ck of the vertex visited at stage
k. But a counterexample to C, is "almost’ a counterexample to to L [R] in the
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sense that for every basic formuia (atom or its negation) p in L [R] there is a basic
formula p' in C_ entailed by p——- except for the elements of L [R] that. are
identical to [the negation of] the atom -wresolved upon to obtain C, under the
maximal unifier applied to obtain C. So if we carefully substitute the atom resolved
upon consistently with all previous substitutions leading to the given counterexample
of C, and instantiate the result of this process to a closed atom, then adding this
- atom to the atoms forming the counterexample of C, must either be a
counterexample of L or a counterexample of R, depending on whether this atom is
true or not in the structure under study. But this careful collection of prior
substitutions is accomplished by the incrementally updated substitution Gk in Shapiro's
algorithm. Shapiro notes that the idea of coliecting such substitutions was
suggested by a proposal of Green [Green63] for answering questions from a
logical data base.

Once again, the metaphor of ignoring alternatives is suggestive. The most obvious
procedure to find a false clause in a set of clauses using an oracle for atomic
sentences would be to exhaustively instantiate the clauses and compute their boolean
valuations for each instantiation. Even given the resolution proof, a less elegant
procedure might cross~up its instantiations as it moves down each path so that it
would end up backtracking and searching through the resolution tree. By careful
attention to the structure of the resolution proof, Shapiro's device cuts a single,
decisive path to a false hypothesis, ignoring all mistaken substitutions.

3.5.5. Refinement Operators

Recall the main idea of Shapiro’s system: hypotheses found to be too strong are
made weaker, and hypotheses found to be too weak are made stronger. The
procedure weakens an overly strong hypothesis h by applying the backtracing
procedure and eliminating the false clause F found by this procedure from h. But
the result h' of this coarse maneuver may well be too weak. After all, F may have
carried most of the logical force of h. If, indeed, i is too weak, Shapiro's idea is
to "patch” h' by adding a clause F' properly entailed by F to h' to bolster its
strength to something near that of h. F is called a refinement of F, and the
procedure for producing it is a refinement operator. K U {F}, in turn, may be
either too weak or too strong. If it is too strong, another false clause is eliminated.
If it is too weak, yet another clause F' properly entsiled by F is added to h.
Hence, the system's conjecture oscillates between overly-strong, and overly- weak
hypotheses of increasing length until an unrefuted "equilibrium" is reached. Then
more evidence is read, and the reverberations due to its impact once again dampen
to equilibrium until new evidence ceases to have any impact.
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Let H be a set of clauses. Let miclauses—==>N, such that no more than finitely
many hypotheses are assigned the same number. For a clause ¢, m(c) is called the
size of ¢. For any set of clauses S, S[n] denotes {ceSmicikn}. For any c.c' in H,
c is a refinement of ¢ just if mic)dmic’) and ¢'i-c. Function p is a refinement
operator for H exactly if (1) p is a function from H to subsets of H, (2) each
element of pic) is a refinement of ¢, and (3) for each k, the set (plchlk] is
computable. For any c.c' in H, ¢ pc' exactly if c'eplc). Let polc) be {c} and let
phic) be p™'ic) U {c'eH: there is a c"e p™'(c) such that c'e plc”)}. Let p'(c) be the
closure of pc). Refinement operator p is compl/ete for H just if for every c in H
there is a ¢ in p #)=H such that c is logically equivalent to ¢’ and # denotes the
empty clause.*®

To fix ideas. consider the refinement graph H, <). Its "bottom” is #, and as one
proceeds from #, clauses become weaker and "bigger". This works because clauses
do tend to get weaker as they get longer, for adding function symbols and
disjuncts both weaken the clause they are added to. There are finitely many clauses
at each level, and there are more clauses at each level as one moves further from
#. Finally, there is no bound on the length of clauses, so the graph extends ever
upward. A useful image is that of a cone-shaped network extending infinitely
upward from the empty clause.*®

Although the notion of the "size" of a sentence is not specified in the above
definitions, Shapiro always employs the same function m such that mic) = the

number of occurrences of nonlogical vocabulary elements symbols in ¢ less the
number of distinct variables occurring in c¢. The latter requirement facilitates the
construction of a refinement operator, for formulas must become longer roughly as
5-2 = 3 but
mi{Px,x.fix)}) = B-1 = 4. Note that the number of occurrences of variables in a

they "become logically weaker. For example, m({P(x,xfly)})

formula is not the same as the number of distinct variables occurring in the formula.

Shapiro gives the following example of a refinement operator over clauses of
cardinality of at most one:

o If p={} then p.(p) = {{P(x ,..x )} P is an atom of arity n and x,,...x

i

are the first n unique variables in an assumed ordering of the
variables}

45 .
Actuslly, Shapiro requires the stronger condition that D (#) = H. But if he requires this, some of the functions he
cleims to be complete refinement operators are not.
46 . . . . . . .,
| am indebted 10 Keith Wright who suggested this metaphor in & seminar report on Shapiro’s psper at the
University of Pittsburgh.
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e If p = {a}, where a is an atom, then P, = {alx/y]: such that x and
y both occur in a} U {a[x/fly,..y)): f is a function symbol, x occurs
in a and y...y, are the first k variables not occurring in a}

So an initial segment of a path in the refinement graph of p is as follows:
Clause Size

{} 0
{P(vaz'xa} 4
{P(x1,x1,x3} 4-
{Plx,.x fix,,x N} 6
{Plx,x, fix,x N} 6

Notice that by the definition of P, if Qqep(p) then migi=1+mip) and pi=qg
Moreover, since the variables to be selected are bounded, p(p) is finite and
computable. So p. is a refinement operator. Finally, it is easy to see that a clause
of at most unit’ cardinality that is logically equivalent to any other such clause can be
obtained in some sequence of iterated refinements. Hence, p, is complete over
clauses of at most unit cardinality.*’

An obvious candidate for an operator complete for all clauses on a given
vocabulary V would be as follows, where h is any clause.*®

pthl =

1. {h U {Pix,...x }: P is a predicate in V of arity n and X, . X  8re
the first n distinct variables in V not occurring in h} U

2. {h[x/f(x,..x )]: x occurs in h, f is an n-ary function symbol in
V. and x,...x_are the first n distinct variables not occurring in h}
U

3. {h[x/y]: x,y both occur in h and }h! = {hIx/yl!}.
Notice that each element of pih) is exactly one unit longer than h. Case (1) adds an
atom with new distinct variables. If the arity of the atom is n, then n+1 symbols
are added, but n distinct variables are subtracted from this sum. The same can be
said of the case in which a new term is substituted for a variable in case (2).
Notice the requirement in case (3) that (h! = |h[x/y]l!. This is imposed to prevent
the following situation:

47This is not true for my definition of compieteness, not Shapiro’s. Shapiro requires that p;(#) be identical to
the hypothesis language. But unless the vocabulary has only finitely many varisbles, infinitely meny wvariable
renaming variants would be missing from p,l.(#). And if They were inciuded, the values of ,01 would not be finite
sets, so p1 would not be & refinerjnent operator,

4 . R R \ .
Shapiro does not actuelly propose this simple operator. His own operator raises issues best trested later.
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h={P(x,y.y), Ply,x,x)}
hix/y]l = {Plyy.y)}
mh) = 8-2 = 6

mih[x/yl) = 4-1 =3 < 6
If substitutions are permitted to identify atoms in h, then the size of an element of
plhl that is entailed by h is less than that of h, so p is not a refinement operator.
But given the restriction that the result of a substitution must be at least as long as
the clause to which the substitution is applied, each element of (3) is of size 1+mfh)
For example, consider the following path segment from the refinement graph of p.

Clause Size

{} 0]

{Plx,.x,)} 1 (1)

{P(f(xs),xz} 4-2=2 (2)

{P(f(xs),xz,Q(xJ} 6-3=3 (1)
6-2=4 (3)

{P(f(xz),xz,Q(x1)}

It is evident, then, that if ge plh) then mig) = m(hi+1 and hi—g. So p is a refinement
operator. It should aiso be evident that p is complete over the clauses on
vocabulary V.*° Shapiro does not adopt this simple, general refinement operator, but
it is perfectly adequate for understanding the rest of the presentation of his
algorithm.

Now consider how truth and falsity interact with the refinement graph. Let HM)
be the set of all clauses in the hypothesis vocabulary that are true in relational
structure M. If p is complete over these clauses, then H(M) will be a set that is
closed upward in the refinement graph.The remaining area in the cone is occupied
by clauses false in M. Let | be an upward [downward] closed subset in the
refinement graph. Clause ¢ is maxima/ in | if no ¢ in | has the property that c'<pc
[c'>pc). The source S} of a closed subset | of the refinement graph is the set of
all maximal elements of | The boundary Bll) of such a set is just the source of its
complement.

So for example, the source in the refinement graph of the H-diagram of a
structure for H can be pictured as a "surface” cutting the roughly conical graph
Infinitely many clauses must lie on this surface, for there must be a false clause of

49 .
in fect, for eny clsuse h, there is & clause h’ thet is a varieble-rensming varient of h in P (#).
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> Hlk,]

J

Figure 3-7: The Refinement Graph

each size for any structure. Pictorially, the boundary of the diagram of a structure
might be a plane cutting the cone parallel to one of the cone's elements, so that it
divides the interior of the cone into two infinite volumes. Clearly, if the refinement
operator p is complete for H, the source of the H~diagram of any structure M for
H is an (infinite) axiomatization of the complete H-theory for M. But notice that if
some finite subset h of H[k] is a true, finitely axiomatizable, E-complete hypothesis
h for M then the finite set S(HM))[k] is also a true, E-complete hypothesis for M.
Since h is true, it is above S(H(M)) in the refinement graph. Since h is in H[k], it is
below the horizontal section of the graph delimiting size k. Hence it is "trapped” in
the wedge between the horizontal plane representing size k and the surface
representing S(H(M). Since each clause in h must be descended from the empty
clause, each clause in h is on a path that passes through a clause in S{HHM)[k]J.
The situation should be intuitive in light of the accompanying figure.

Shapiro requires one more property of refinement operators, but its purpose
cannot be explained until the next subsection when his full inductive procedure is
developed. Let hh' be sets of clauses such that for each clause ¢ in h, there is a
clause ¢’ in h' such that c'€ pc. Then h) Ph’(h is above h' in the refinement graph).
Shapiro says that p is conservative for f just in case for each h, for each h' below
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Figure 3-8: If h is a true, E-complete subset of H[k], then so is SHM)[k]

h in the refinement graph of p, and for each evidence sentence e, if h derives e in
fle) steps, h' must do so as well That is, f-easiness must be closed downward in
the refinement graph. This might seem unlikely, for one could imagine that it would
require extra proof steps to "weaken" a strong hypothesis until it is as weak as one
below it in the refinement ordering, after which the same proof would go through.
But in the case of resolution theorem proving, substitutions of arbitrarily many
variables can occur in "one step”. So if a clause c subsumes another clause ¢ (ie.
if there is a ¢ such that cf is a subset of c) then no resolution proof involving ¢
as premise requires more steps than a proof involving ¢' as premise, for this
substitution can be incorporated into one of the steps of the proof involving ¢. As
it turns out, all the refinement operators employed by Shapiro as well as the general
one are such that the refinement of a clause is subsumed by the clause it is a
refinement of.

88
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3.5.6. Shapiro’s Algorithm

The operation of the algorithm is complicated, but it can be illuminated in terms of
the geometrical cone and surface metaphor introduced earlier. Since Shapiro
provides perfectly adequate proofs of his own, there is no need to be fussy about
rigor here.

In the following discussion, it is assumed that H is a language of clauses, E is the
set of basic sentences of H, p is a complete, conservative refinement operator for
H, and M is a2 structure for H The true evidence sentences form a scattered cloud
in the H-diagram of M, for thesir terms may be of arbitrary complexity. The plane
marked by k, is the source of Hlk,] in the refinement graph. k, is the least k
such that there is an adequate (ie. E-complete, f-easy) subset of H[k] for M. The
accompanying figure should assist in sorting out all the pieces.

SHMN K ]
° surface of pile

:a“nd evgnt;:ally is spider's current
ills agains hypothesi
this plane P ©

Figure 3-9: refinement graph and M

imagine a blind spider armed with (i) a program that computes p, (i) the resolution
proof procedure, (i) a program for f, and (iv) an arbitrary bound k on the size of
hypotheses it should consider. This spider begins at the vertex of the refinement
graph (ie. at the empty clause) and a compatriot shouts evidence at it from the



20

sidelines. At stage n, the spider tests its current, finite set of clauses hin) by
testing each clause ¢ in the set against the negations of all the basic sentences
shouted to it thus far by its compatriot . This test is performed by running its
resolution procedure for n steps. (Notice that the resource bound f is not used to
test for refutation). If a contradiction arises, it removes the offending clause by
means of the backtracing algorithm, places this clause into a set Refutedin), and adds
all the refinements of size less than or equal to k to its next conjecture hin+1).
That is, hin+1) is always the boundary set of Refutedin). Notice that once a clause
of size k is refuted, part of the boundary of Refuted(n) is no longer in H[k] so the
set h(n) will have a "hole” where Refuted(n) intersects the limit k.

hole!

no holes
against this
surface

Figure 3-10: A Hole in an Hypothesis

This hole is crucial in the operation of Shapiro's procedure.

If we think of the spider as placing a grain of sand on each hypothesis in
Refutedin), it would appear as though the spider were involved in building a small
heap of sand in the bottom of the cone in the figure. This pile can never violate
the confines of the two planes cutting the cone, although the spider has no way of
ever being sure whether it has reached the plane representing S(HIM) or not, for it
may not have evidence sufficient to refute all the clauses below this plane.

Consider the figure once more. Our spider is bound to be frustrated foliowing
the above procedure if his limit k is set lower than k, for the boundary of his pile
of sand restricted to clauses of size k will never be an adequate hypothesis. He
needs a way to raise the bound and patch the hole in his hypothesis (consult figure
3-11). As soon as this hole is patched, the hypothesis is much stronger, and may
once again be false. So indiscriminate raising of the ceiling can lead the spider to
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- - e .

over

Figure 3-11: Patching Holes in an
Hypothesis

conjecture an infinite sequence of adequate hypotheses interspersed with false ones.
But we want the spider to converge to an adequate hypothesis. Shapiro’s solution is
to increment k and to patch the hole in h for which k is responsible only when no
clause in h can be refuted in a proof of no more than n steps, and when some
given evidence sentence e cannot be derived in fle) steps from h. This is why the
conservatism of p is crucial for Shapiro's approach. For if p is conservative, then
any hypothesis h with no holes that is considered before StHM)[k ] must be h-
easy if S(H(M))[kol is. Hence, the ceiling k, will never be raised according to the
condition just described. Any lower ceiling k will be raised, however, for the spider
will build its sand-pile right up to the ceiling, and his hypothesis will be just
SH(M)[k], which by hypothesis, is not f-easy.

So finally, once the ceiling is bumped to k, the spider receives its nth bit of
evidence, increments its bound on refutation testing, and adds refuted hypotheses to
Refuted(n). Eventually (although the spider cannot tell when) its conjecture is exactly
the finite surface S(HIM)), which is adequate. Thereafter, all the spider's time is
spent in the futile task of incrementing the bound on the refutation test and reading
more evidence, but its adequate conjecture will never change--- assuming that M is
indeed f-easy. Otherwise, the spider will increment the ceiling forever and the

hole patched

kv
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procedure will never converge. The property of converging only in worlds one
identifies is called re/iability in the computational literature, and is considered an
epistemological asset  Shapiro nicely proves this property for his algorithm in
formal detail, but a sequence of diagrams animating the procedure is worth a

/]

thousand henscratches.

\ /N
A

Figure 3-12: How the Model
inference System Converges

More formally, the algorithm is:
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MIS(f):
SET k=0, Refute={#}, E={}, h=pl#);
REPEAT .
SET e=READ NEXT EVIDENCE,-E=(E U {e});
REPEAT
Comment: Weakening Loop
WHILE h |- the negation of some element
of E in no more than n steps DO
SET BACKTRACE(E)=cu/prit,
SET h = (h—{eu/prit}) U
pleul prit); ,
SET Refute = Refute U
{culprit},;
Comment: Strengthening Loop
WHILE NOT hin) {- some e in E(n)
in no more than fle) steps DO
SETh=hU
{glric): ceRefute and mic)=k+1};
SET k=k+1
UNTIL neither WHILE condition is satisfied;
OUTPUT hin)
FOREVER . .

in the first WHILE loop, if h is too strong, then the spider removes all the clauses
from h that are refuted in n steps on the evidence gathered so far by stage n, puts
them onto its "sandpile” and adds all hypotheses below length k that are in the
boundary of this pile into h. In the second WHILE loop, if h is too weak, then the
spider bumps the bound from k to k+1 and patches the hole in h that was caused
by the bound at k. If the current hypothesis is adequate, neither loop is entered,
and the system simply reads more and more evidence.

3.5.7. Strengths of Shapiro’s Proposal

Shapiro's method is well-presented, elegant, and metaphorically compelling. One
can just picture an automated scientist gathering data from an inexhaustible supply
of journals in the library, constantly strengthening and refining his current hypothesis
as he reads, and querying nature directly in his laboratory when he notices his
hypothesis is refuted. Moreover, for any f, H, and E, MIS(f) is a completely general
solution to any model inference problem whose proposed scope includes only f-
easy structures. Depending on the f chosen, MIS can address structures that border
on mathematical interest

When the structures in the problem addressed are not f-easy, the situation is
equally suggestive. If we have limited resources for constructing explanations of
given evidence from a given hypothesis, then our inductive failure in worlds that are
difficult to explain is determined. Number theorists have begun to take intrinsic
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limitations on the formal investigation of mathematical structures very seriously in
view of recent lower bound results regarding the lengths of proofs in decidable
fragments of number theory [Fischer74]. Shapiro invites us, from a very practical
and credible perspective, to share this real concern in the context of simple
empirical problems.

Another interesting feature of Shapiro's procedure is that it is best described as
searching a space of parts of hypotheses rather than of entire hypotheses, for
recall that an hypothesis is a "surface” in a refinement graph whose vertices are
single clauses. For example, whenever a clause is rejected as false, every
hypothésis containing the clause is ignored without being explicitly considered and
rejected as a separate entity. The usefulness of this perspective is evident when
one considers an enumeration method whose enumeration includes every possible,
consistent subset of clauses in a refinement graph. Consider all such surfaces
bounded by k, in the refinement graph. Even if Shapiro's system does raise its
bound to k, it considers’ only those surfaces it conjectures, and these are a
microscopic fraction of the set of all finite subsets of clauses bounded in length by
ke '

3.5.8. Room for improvement

There are lingering concerns about Shapiro's systems, however. From the prior
discussion of the algorithm there is no reason to expect that the clauses in the
procedure's conjecture at a given stage are logically independent As in the case of
Horning's “splitting” procedure (which is essentially a complete refinement operator
with respect to a grammatical size measure that counts non—terminal symbols and an
"entailment” relation defined by inclusion over the language generated), two distinct
clauses can share equivalent or logically dependent refinements. For example,
consider the simple operator p discussed earlier. lIts refinement graph wouild
contain the following paths, (and many more) all leading to equivalent resuilts.

{} {}

{P(x1,x2,x3)} {P(x1,x2,x3)}
{P(x1,x2,fx4} {P(xz,xz,xs)}
{P(xz,xz,fxd} {P(xz,xz,f[x1]}

Clearly, there is a2 model in which all clauses prior to the last one in each column
are refuted And once both of these clauses are represented in the current
conjecture, each-one is refined to spawn new redundancies, which again spawn new
ones, and so forth. If logical dependence in the clauses of & conjectured
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hypothesis is not controlled, refinements of redundant clauses can lead to testing
and maintenance problems that quickly soak up all available resources. As the
refinement operator becomes richer, as with the general operator p sketched above,
we confront a snowballing of non-independent clauses in the boundary of the set
of hypotheses currently refuted. '

Shapiro’s response to this difficulty is to compromise the inductive generality of
the procedure by employing radically incomplete refinement operators. Consider the
predicate Pl/usixy,z) interpreted to hold just when x+y=z. Now consider the
standard recursive definition of Plus in terms of the successor operation in
standard and clausal form:

Standard notation:
(x)[Plus(0,%x,x)]
(x)yH2) [ Plus(x,y,z})—==>Plus(s(x),y,s(2)} ]

clausal notation:
{Plus{0,x,x)}
{-Plus(x,y,z), Plus(s(x),y,s(z)}

It would be difficult, in general, to sift such an axiomatization out of an arbitrary
clausal language whose vocabulary includes 'Pius, 'O’ and s(_) But Shapiro's
implemented program did not have to do much sifting. First of all, it is provided
with exactly the vocabulary 'Pius’, ‘O’ and 's(_). This situation is a bit unrealistic, for
sifting out irrelevant vocabulary is often a crucial aspect of addressing an interesting
inductive inference problem. Nonetheless, sifting the adequate axiomatization from
among all finite sets of arbitrary clauses on this vocabulary would still be an
amazing feat But the actual implementation did not have to do this either. Rather,
it made use of a very incomplete refinement operator defined as follows:

ge p{p) just in case
1. qep.p) or

2. p={Plt,..t)} and g = p U {-Pix,,..x_ }, where x, oceurs in t.
Notice that p. is the operator for clauses with at most one atom. Notice also that
no refinement of a clause can ever have more than one non-negated atom and one
atom. Nor can any clause of unit cardinality have just one negated atom. Nor can
there be any complex terms in the negated atom, or even any variables that do not
occur in the non-negated atom and in the same position. Finally, notice that both
atoms share the same predicate. In general, such clauses have the form

{—P(x1,x2), P(f(f(f(x1), f(xz)}



96

Such clauses are called context-free transformations by Shapiro.*® Given this heavily
restricted refinement operator, the search for the P/us axioms begins to seem much
easier. .

The refinement operator p, begins with the only clause of length O, namely {}.
{} is false in arithmetic, so the refinements of {} are generated. There is only
one, namely Plus(x,y,z). This clause is also false in arithmetic, so its refinements are
generated. At level 2 the real search begins, for the refinement operator does not
constrain the position or composition depth of the functor s(_) or the position of
0 a priori. So the refinements of Pl/usix,y,z) are exactly the clauses

specialization
{Plus(x,x,z}}
{Plus(x,y,x)}
{Plusly,y.2)}
{Plus(x,y,y)}#
{Plus(z,y,z)}
{Plusix,z,z}}

term subst.
{Plus(s(u),y,z)}#
{Pilusix,s(u),z}}
{Plus(x,y,s(z)} *
{Plus(0,y,z)}*
{Plus(x,0,z)}
{Plus(x,y,0)}

tacking on an atom
{Plus(x,y,z), =Plus{x,y,z)}

These clauses are all false, except for the last one which is a tautology, and hence
will remain in the convergent conjecture. The divisions in the table refiect the cases
under which each clause was generated from Plusixy.z), and should be
self-explanatory.®" '

Each of the starred clauses is on a path to a clause that will be in the hypothesis
converged to. The rest will be refined unsuccessfully until all their paths run into
the size ceiling that is fixed when the first adequate hypothesis (ie. the usual
definition of P/us) is reached. For reasons of space, | trace only the progress of
the four starred hypotheses. At level 3, the refinements of {P/usix,y,yl} include
{Plus(0,y,y)}, which is true in the standard model of arithmetic, so it will remain in

50
Cisuses with &t most one negsted and one non-negsted atom are cailed transformations by Reynolds
IReynolds703. Deciding consistency for finite sets of transformations cen be shown to be undecideble. Reynold’s
proof does not determine whether Shapiro’s more restricted case is decidable or not.

1 . . eed
Note thet constents sre O-ary functions, so the constant instantistions are special cases of new term substitution.



97

the system's conjecture forever. The refinements of {P/usl0,y,z)} include
{Plus(O,y,y)} and {P/usl0,z,z)}, both of which are true, and which remain in the
system's conjecture forever. .

The 13 refinements of {P/usis(uly,z)} include
{Plus(s(u),y,s(w}}

which leads to a true clause, and similarly, the 13 refinements of {Plus(x,y,su)}'
include

{P'lus(s(w),y,s(u)}

which also leads to a true clause. In either case, the paths of the other 12 clauses
bump into the final size ceiling and die in the convergent conjecture's "hole". Finally,
at level 4, both of these clauses have a true refinement and the procedure’s
convergence point is reached. Specifically, we have

{Plus(s(u),y,é(w))} refines to
{Plusis(u),y,stw)), —Plus{u,y.w)} and

{Plus(siw),y,s(u)} refines to
{Plus(s(w),y.slu)), ~Plus(w,y,u}}

Notice that the added atoms are uniquely determined, for their predicates and their
variable patterns are fixed by rule (2} of Shapiro's implemented refinement operator.
This strong restriction on refinement makes it very easy to find the desired addition
postulates, which happen to be considered in every possible worid at the expense
of an infinity of alternatives which are considered in no circumstances. But the
speedup represents no improvement in efficiency, for the problem solved is now a
much easier one. The speed advantage is the infamous toaster's speed advantage,
for it is won at the expense of a radical decrease in inductive scope.

To finish the story, the conjecture to which the algorithm converges is

(xNy)z)[Plus(x,y,z) v =Plus(x,y.2)1;

(y)[Plus(O,y,y)];
(y)[Plus(O,y.y)];
(z)[Plus(0,2,2)];
(ulydw)[Plus{u,y,w) —==> Plus(s{ul,y,stw))};
(Wiydul [ Plustw,y,u) ===> Plus(siw),y,s(u))]

Notice that even with the great a priori limitations on the refinement operator
employed, redundancies are still considered in the inductive process. They do not
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seem serious in this case, for the target hypothesis was tailored to the incompiete
refinement operator employed and very little search was involved. But it is easy to
imagine the impact of such redundant clauses if the search were not -arbitrarily
constrained. So the implementation just described not only robs its own inductive
scope for speed; it fails to exploit opportunities to ignore hypotheses that might
have been ignored without compromising inductive scope®? There is nothing wrong
with studying solutions to easy inductive problems. In Chapter Two, | argued that
efficient solutions to easy problems are no less important than efficient soiutions to
difficult ones. But we must be very careful not to confuse sensible solutions to
easy inductive problems with spectacular solutions to- difficuit ones.

Shapiro's system is perhaps the most sophisticated and practical procedure for
effective, logical inductive inference that has yet been proposed. But it would be
even better than it is if it could /gnore these redundant clauses without the sort of
radical compromise in inductive scope we have noticed in Shapiro's impiemented
systems. The problem of ‘ignoring some of these clauses is addressed in chapters
six and seven below.

3.6. Conclusion

The purpose of this chapter was to illustrate in a positive way what the logic of
discovery, as | have characterized it, might look like. Of particular interest is the
great attention to detail that is apparent in the work of computer scientists in this
area.  This attention is not gratuitous, for efficiency is at stake, and sloppy
descriptions of procedures can easily obscure their intractability and wastefulness.

The systems examined in this chapter suggest several obvious strategies to
improve the performance of a general soiution to a given inductive probiem without
affecting its inductive generality. For example, one can alter the procedure to
withhold hypotheses from unnecessary empirical tests. Or one can design 2 method
that ignores some hypotheses altogether. The set of hypotheses withheld from test

5 . . . .
2Shapin:: does address the problem of redundant clauses in conjectures when he considers practical
implementetions of his algorithm employing more general refinement operators.

Optimizing the number of hypotheses in the conjecture is another
problem to be solved. The model inference algorithm is guaranteed to
minimize the maximal size of the hypotheses in the conjecture. The
conjecture may contain many superfiuous hypotheses that do not increase
its logical power. This behavior may also influence the efficiency of the
algorithm, since the complexity of the tests in the condition of the whi/e
loops grows with the number of hypotheses [clauses] in the conjecture
[hypothesis]. [Shapiro81], p. 35. '
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or ignored may be a function of the evidence at hand, or may be fixed over all
possible worids. That is, hypotheses may be ignored a posteriori or a priori,
respectively. .

The usual technidue for ignoring hypotheses a priori is to define a normal form
for hypotheses such that the set of all normal hypotheses is simple to enumerate.
But if hypothesis adequacy has anything to do with syntactic complexity, the normal
language must be sure to catch at least some minimally complex element of every
equivalence class of hypotheses. Otherwise, inductive scope is compromised, as we
saw in the discussion of Horning's procedure.

The standard technique for avoiding hypothesis tests a posteriori is to arrange the
hypothesis language in a tree, and to cut off sub-trees when their respective roots
are refuted. This technique was employed, for example, by Paoc and Horning. As
we have seen in the systems of Horning and Shapiro, however, this method fails to
ignore equivalent formulations of an hypothesis that occur in distinct subtrees whose
roots are unrefuted.

in the next chapter | introduce a logical generalization problem of a sort not yet
addressed in the computational literature. In developing some solutions for it, |
return to the techniques for improving efficiency that were reviewed in this chapter.
As it turns out, there are some fundamental theoretical limitations the applicability of
these approaches.
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Chapter 4

The Induction of Universal Theories:
Problem and Solutions ,

Until ‘'now, my intention has been to characterize the study of hypothesis
generators at a very general level But at some point, talking about the study must
give way to the study itself. In the balance of the thesis, | introduce a logical
generalization problem and propose a variety of solutions to it In the subsequent
chapter | discuss what it would mean for a solution to such a problem to be
efficient Chapters six and seven present ways to make the discovery methods of
this chapter more efficient, as well as some strong reasons to expect that some
plausible approaches to improving their efficiency will never succeed.

4.1. A Logical Generalization Problem

4.1.1. Shapiro's Model Inference Problems Revisited

Since Shapiro has already studied a logical generalization problem, let us review
some of its features. Recall {from chapter two) that in the inductive inference
problems addressed by Shapiro's actual methods, the hypothesis language is some
subset of the purely universal fragment of an arbitrary first order language. The
evidence language consists of the atomic sentences of the hypothesis language or
their negations. The possible worlds considered by Shapiro are just those in which
each element is denoted by some closed term of the hypothesis language.

For Shapiro, an hypothesis h is adequate for possible world w just in case h is
true in w and h entails every evidence sentence true in w. But recall that for the
problem just described, this condition is equivalent to requiring an adequate
hypothesis to entail all and only the evidence sentences true in the target structure.
To contrast this adequacy criterion with other proposals later in the chapter, let us
call it evidence-complete adequacy or or C-adequacy for short

The goal of finding C-adequate hypotheses makes perfect sense in view of
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Shapiro's goal to develop an automated computer programmer, for such an
hypothesis is essentialy a PROLOG program for computing the relations that are
mentioned in the evidence. But as a ggneral, intuitive criterion of hypothesis
adequacy, C-adequacy is both too weak and too strong. '

It is too strong, for none of our most highly revered empirical theories measure
up to it These theories require particular "initial conditions” to be specified before
any atomic predictions can be derived. But according to C-adequacy, no such initial
conditions should be required to get predictions out of an adequate theory. lr;
terms of state spaces, an C—adequate theory of a system must select a unique state
trajectory for the system, rather than merely restrict the possible trajectories of the
system. For example, it is not enough to know that if an apple is dropped at time
t it will be on the ground at time t. A C-adequate theory must entai/ that the
apple is dropped at time t and that it is on the ground at time t, if it actually is.
Physics would look much different than it does if this norm were taken seriously.
For example, relativity theory would be compelled (on pain of jnadequacy) to entail a
particular value .for the stress-energy tensor at every space—time point causally
connected to our own. But there is no evidence of any desire for such a revision
of the theory among theoretical physicists.

At a simpler level, imagine a world in which there are black ravens, non-black
non-ravens, and black non-ravens, but no non-black ravens. Moreover, imagine that
we are interested in truths about "blackness” and "ravenhood”. The generalization "all
ravens are black” seems perfectly adequate for this world, given our interest in
blackness and ravenhood. But since this hypothesis does not specify the blackness
and ravenhood status of each object describable in the evidence language, it is not
C-adequate even if it is true.

But if C~adequacy seems too strict in its rejection of our favorite examples of

empirical theories, it is also too weak. For example,
X)[0+x=x]

XY [=(x+y=2) v six}+y=s(z)]
is an C~adequate hypothesis for the structure <N,+>.°®* In fact we saw in Chapter 3
that Shapiro's program, equipped with a rather ad hoc refinement operator, quickly
converges to exactly this hypothesis (with some redundant clauses thrown in) when
supplied with basic facts about addition. But this hypothesis does not imply:

1. (XHy) [ x+y=y+x]

ssl.e., the natural numbers with addition.
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2. (xNyNz) [ (x+y)+z=x+(y+2)]

(ie. the associativity and commutativity of addition [Boolos801, p. 168) The
problem is that there are extensions of _the structure <N,+> possessing domain
elements not denoted by any closed term of the hypothesis language that satisfy
each evidence sentence true in <N,+> but that do not satisfy either (1) or (2). But
commutativity and associativity are such obvious, general truths about addition on the
natural numbers, that every schoolboy can recite them. So obvious and general are
these truths that a theory of addition that does not entail them is in some sense
inadequate.

C-adequacy is concerned with the usefulness of a theory as a predictive machine.
My objection to this criterion is not that one never wants to find such a theory. In
the task of automatic computer programming, one obviously does. But there is
another, distinct aim for inquiry that is not captured by the criterion of C-adequacy.
This aim is to find general truths about one's world, whether or not they specify a
perfect prédictive machine.” Inquiry can aim to be edifying and informative as well
as useful, and these aims are not always the same.

4.1.2. Logical Inference as the Construction of a Universal Theory

It is almost a cliche that an aim of empiriéal science is to discover true
generalizations. To what extent can this cliche be formally addressed in the logic of
discovery? The rest of this chapter is devoted to a study of proposed solutions to
logical inductive inference problems involving the following adequacy criterion for
purely universal theories:

A purely universal theory is universally adequate (U-adequate) for a
structure just in case it is true in the structure and it entails every purely
universal sentence true in the structure.

This definition alters the notion of an inductive inference problem slightly in that it
treats theories rather than individual sentences as the proper objects of adequacy.
Hence, infinite sets of sentences that are not finitely axiomatizable (or even
axiomatizable) are potential candidates for adequacy. This alteration generalizes our
previous framework, for if a finitely axiomatizable theory is adequate, any single
sentence that axiomatizes this theory may also be said to be adequate.

It is evident that U-adequacy addresses what was taken as the undue leniency of
C-adequacy, for the commutativity and associativity of addition must be entailed by
any U-adequate theory of the structure of addition on the natural numbers. On the
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other hand, for languages and worlds of the sort entertained by Shapiro, each U-
adequate theory must be C-adequate as well, for a basic sentence is purely
universal in a trivial sense. '

-

The additional stringency of U-adequacy can be diminished by dropping Shapiro's
requirement that the hypothesis language include the evidence language, and by
considering an hypothesis language H such that not every domain element is named
by a closed term of H For example, an ornithologist interested in bird color may
denote the fifth raven to fly past by the expression 'ririr(r(rO)))). But his
background knowledge may strongly suggest that the color of birds has nothing to
do with the order in which he sees them. Therefore, he would not consider

intricate hypotheses involving the function r, such as
B(O} & R(0)

XY [ B(x) & Rix)} ===> Biririx))} & Rir(r(xI], _

which says that every even numbered thing is a black raven. But this function
symbo! would occur in each evidence report as a notational device. A student of
addition could similarly view the successor function symbol in the language of
arithmetic as a mere notational device for naming numbers and concern himself only
with universal truths expressed in the non—logical vocabulary {0,+}. In this case, an
adequate theory would be required to entail the commutativity and associativity of
* addition along with the fact that O is the additive identity element, without being
required to entail each basic statement true in <N,+>. This seems a reasonable
requirement for an adequate hypothesis about the structure of addition.

it might be objected that U—-adequacy is too weak because it fails to hold the

inductive agent responsible for laws of more general logical forms. On the one
hand, this objection is indisputable. The restriction to universal sentences without
function symbols results in a radical limitation on the expressive power of the
hypothesis language. On the other hand, the study of an inductive problem is more
interesting if there is at least some hope of developing a practical solution for it
The undecidability of first—order relational logic with arbitrary quantifier structure
promises a very rough road for the logic of discovery in any problem defined over
such a broad, expressive language. Purely universal theories, on the other hand,
have a simpler structure that can be exploited computationally. Other decidable
fragments of first—order logic involving existential quantification are also decidable,
but the terrain of universal languages is more familiar from a computational
perspective.®

54_ . Sy . . .
This familiarity arises from tne extensive litereture on “resofution theorem proving’.
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It is also important to remember that "expert systems” like MYCIN and DENDRAL,
which rival human experts in some domains, generally rely on purely universal
theories in their operétion. Hence, the restriction to universal theoriés should not be
assumed to be practically trivial, even if it is computationally and logically trivial
compared to the unlimited, first-order probiem.

4.1.3. Inductive Generality and Convergence to Theories

t

Now that a criterion of theory adequacy has been settled upon, it remains to
characterize inductive generality for methods with finite outputs when the objects
over which adequacy is defined may be infinite theories. Figuratively, a very large
buffalo must be pulled out of a very small hat Recall that inductive generality is
defined in terms of inductive scope, inductive scope is defined in terms of
structure identifiability in the limit, and identifiability in the limit is defined in terms
of convergence of a device to an hypothesis on an infinite sequence of inputs. So
the basic problem is to define a theoretically interesting sense in which a device
whose conjectures are all of finite length can be said to converge to an infinite
theory. -

If a theory is axiomatizable, it can be specified by a program for deciding some
set of axioms whose deductive closure is the theory. So axiomatizable theories can
be conjectured “all at once” just by conjecturing a procedure for deciding some
axiom set for the theory. Then it is easy to define convergence to such a
procedure, convergence to an axiom set (so that convergence is consistent with
infinite variation in the conjectured procedures) or convergence to a theory (so that
convergence is consistent with infinite variation in the sets decided by the
conjectured procedures). These criteria are all of the form that after some finite
time each conjecture entails a// and only the sentences in the theory converged to.
Therefore, these notions will be referred to collectively as EA-convergence criteria
for theories, where EA reflects the order of the quantifiers over times and
sentences, respectively.

Identification of a structure can be defined as EA-convergence (in one of these
senses) to an axiomatization of a theory adequate for the structure on any
presentation of the total evidence for the structure. Depending on the adequacy
criterion chosen, we may speak of EA-C-convergence or EA-U-convergence. In
dreaming up names for identification criteria, | shall always put the abbreviation for
the convergence criterion first, and the abbreviation for the adequacy criterion
second. By convention, either abbreviation can be deleted when it is specified by
context or irrelevant.
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But there is also a more liberal approach, considered by Feldman ( [Feldman72], p.
34) and proposed independently by Glymour [Glymour84], that is general enough to
permit convergence to unaxiomatizable theorjes:

Method D AFf-converges to theory T on infinite sequence e of
evidence just in case for each t in T there is a stage after which the
conjectures of D all entail t, and for each t not in T there is a stage
after which the conjectures of D do not entail t

Unlike the EA-convergence criteria just discussed, AE-convergence does not require
that there be some point after which each conjecture entails a// and only the right
sentences. Rather, for each sentence, there is some time after which it is eternally
settied in the right way by subsequent conjectures. in fact, D can AE-converge to
T without ever conjecturing T. Hence, the appropriateness of the  label 'AE-
convergence’, for this criterion essentially permutes two of the quantifiers in the
prefix of the definition of EA-convergence. D can AE-identify structure M just in
case D AE-converges to an adequate theory of M on each complete sequence of
the evidence true in M, and AE-scope and AE-generality are both defined as usual
in terms of AE-identification.

AE-convergence is, admittedly, a lenient convergence criterion, but it does have an
attractive property not shared by some criteria that have been proposed in the
literature.®® '

Fact:

If M AE-converges to some T on e, T is unique.®®
Hence, AE-convergence can be thought of as an alternative output convention for
Turing machines by which a machine can take an infinite object as input (an infinite
evidence sequence) and can output an infinite object (a2 theory), just as in the case
of H-convergence. So AE-convergence associates each Turing machine with a
unique function frem infinite evidence sequences to theories, just as the standard
convention associates each Turing machine with a partial recursive function.

It is clear (even by the names of the criteria in question} that an ability to EA-
identify a structure implies an ability to AE-identify it. so the class of AE-
identifiable sets of structures includes the class of strictly identifiable structures.

55
A device is said to hyper-converge to sn output just in case it conjectures this output infinitely often [Kuge!773.

it is ciear that & procedure can converge in this sense to infinitely many distinct outputs on the same infinite input
sequence.

56 s ; . \ . . .
Let T' be e theory distinct from T. Then there is an h that is not entailed by the intersection of T,T' but that is
entailed by T or by T'. But then there is some point after which ho conjecture entails h and there is aiso some
point after which every conjecture entails h, which is sbsurd.
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Also, assuming C~-adequacy, a basic-statement evidence language, and an hypothesis
language including the evidence languags, every structure is AE-C-identifiable by a
simple device that conjectures the conjungtion of the evidence read so far, for
such a device must AE-converge to exactly the basic statements true in the given
structure, and this theory must be true regardless of Shapiro's admissibility
requirement on structures and languages. But such a ftrivial, "skeptical” method
cannot AE£-U-identify every structure, for no finite set of such evidence entails a
universal sentence.  Therefore, AE-U-identification still requires a method to
formulate conjectures that are not entailed by the available evidence.

Of course, it would be strange to get something of value for nothing just by
weakening input—output conventions. it should therefore be mentioned that
possessing a device that can AE-U-identify the actual world need not be as useful
as having a device that can EA-U-identify the actual world. Consider a finite,
immortal system, like the Greek goddess Athena Athena can ask only finitely many
questions in a finite amount of time. Therefore, if she relies on the conjectures of
a device that can EA-U-identify the actual world, she can receive at most finitely
many incorrect answers in her infinite career of inquiry. On the other hand, if she
relies on a device that AE-U-identifies the actual world, she may receive infinitely
many incorrect answers in her infinite career, for each conjecture of such a device
may be false. Also, if Athena relies on such a device, then there may be no time at
which she "possesses” the adequate theory the device converges to, even if there is
a finitely axiomatizable theory that is adequate for her world.

On the other hand, if Athena is particularly interested in an arbitrary, finite set I’
of hypotheses, AE-U-identification is as useful as EA-U-identification, for in either
case there comes a time after which each element h of I' is entailed by each
subsequent conjecture just in case h is true.

4.2. A Discovery Method Based on Hempel’s Confirmation Relation

4.2.1. Hempelian Confirmation and Theory ldentification

Hempel's familiar confirmation relation for an hypothesis language H without
function symbols or identity amounts roughly to a sort of “strengen implikation"
from the evidence to the confirmed hypothesis, in which the class of possibie
worlds is a function of the evidence. That is, e confirms h just in case for every
structure M in class Ofe), if M|=e then M|=h. Structure M for H is in Ole) just in
case for every element d of M's domain, there is a constant ¢ occurring
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nonvacuously in e that denotes d The number of constants occurring nonvacuously
in e provides an upper bound on the cardinality of the structures in Ofe), so the
relation is decidable by enumerating these  structures and performing the recursive
satisfaction test for each. Finally, e disconfirms h on Hempel's proposal jdst in
case e confirms =—h, and in keeping with the motivation in Hempel's article
[Hempel43], we can say that e /s irrelevant to h just in case e neither confirms
nor disconfirms h.

Intuitively, e confirms h just in case the truth of e implies the truth of h under thé
assumption that the objects mentioned in the evidence are the only objects in the
structure under investigation. This is stronger than the requirement that there be no
-more objects in the world than there are objects described in the evidence, for Ofe)
could then inciude struétures for H with no more than this number of objects, but
which still leave individuals un—named by evidential constants.

Hempel's relation may aiso be conceived of syntactically. Let T[e] be a first—
order sentence that says every object is named in the evidence. That is, if occle}l =

the set of all constants occurring non-vacuously in e, and occle) = (c,,..c ), then
Tlel = '[x=c, v x=¢c, v..v x=¢ T’

Evidently, e confirms h just in case T[ele!=h®” Let C denote Hempels
confirmation relation, and let D denote his disconfirmation relation. Notice that since
Cleh) is equivalent to T[el,e|{=h, the properties of C should be quite similar to the
general properties of entailment in a first~order theory. Indeed, all the properties
mentioned by Hempe! in his well-known article "A purely Syntactical Definition of
Confirmation” [Hempeld3]. (as well as a few others) are properties of just this
kind.

87
Note that there are no occurrences of the identity relation in e or in h.
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Hempel’s "entailment condition”.

If e!l=h then Cle.h) .
if e!l=—h then Die,h} . -

Hempel’'s "consequence condition”.

If T is a set of hypotheses,
=k, and for each h in T", Cle,h),
then Cleh’)

If T is a set of hypotheses,
I'l==h, and for each h in T, Die,h),
then Die.h)

Hempel’s "consistency condition”.

If e is consistent, Cle,h) and Cle,h’)
then h, h' and e are mutually consistent

If e is consistent, D(e,h) and D(e,h)
- then —h, —h" and e are mutually consistent.

confirmation of a negation

If Cle.~A) then not Cle,A), but not conversely.
If Die,~A) then not Die,A), but not conversely.

confirmation of a conjunction

Cle.A&B) if and only if Cle,A) and Cle,B).
D(e,AvB) if and only if Dle A} and Die,B).

confirmation of a disjunction

If Cle,A) or Cle,B) then Cle,AvB) but not conversely.
If Die,A) or Die,B) then Die,A&B) but not conversely.

Hempel's confirmation theory suffers from some devastating objections as an
intuitive norm of evidential relevance. The most common of these is the "raven
paradox”, which arises because —Ra confirms (x)[Rx—-->Bx] according to Hempe!'s
theory, but not intuitively. Hempel's reply is that -Ra is positively relevant to
(X)[Rx—==>Bx], but perhaps not as strongly as Ra and Ba would be. Since a
qualitative explication of confirmation is intended to capture positive evidential
relevance and not its degree, there is no probiem.

Another well-known difficulty with Hempel's account is that any hypothesis that
implies that there are k objects is disconfirmed when fewer than k constants occur
non-vacuously in the evidence, for such an hypothesis contradicts Tle], and so
Tlel.ei=-h. For example, Peano’s infinity postulates
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(XNEYXP(x,y))
(x)-Pxx
(xMy)z)Pxy & Pyz ——-> Pxz)

cannot be confirmed by any finite set of evidence. Under a very charitable reading
one could consider this result to be a way in which Hempel's confirmation theory
enforces the observance of "Ockham's Razor” if one hasn't seen more than n
objects, then one ought not to believe an hypothesis entailing the existence of more
than n objects. But since the entire point of confirmation theory is to provide an
account of evidence for claims that apply to unobserved as well as to observed
events, this stringency accords poorly with Hempel's insistence that his relation of
confirmation holds whenever evidence is even minutely supportive of a given
hypothesis.

Deductive logic is monotonic in the following sense: one never loses a theorem by
adding a premise. Hempel's confirmation theory is highly non—-monotonic in this
sense, for any epistemic relation (confirmation, disconfirmation or irrelevance) can be
the result of adding a single evidence sentence to evidence currently bearing any
given epistemic‘relaﬁon to a given hypothesis. Any reasonable confirmation theory
must be non-monotonic, but the non-monotonicity of Hempel's criterion is
hopelessly unreasonable. There can be a purely universal, function free hypothesis h
confirmed by an arbitrarily large body E of evidence such that there is a single
evidence sentence e consistent with E that by itself confirms h, but such that E U
{e} is irrelevant to h. For exampie, the platitude "everything is related to everything
else” is confirmed by the single sentence "Frank is related to himself” but not by
nine hundred—-ninety—-nine sentences asserting the relation of all but one pair of
names from a set of one hundred names. If the relation is to explicate the notion
of positive evidential relevance, it is difficult to imagine how nine hundred, ninety—
nine instances could be irrelevant to an hypothesis when each of these instances is
relevant by itself.°® And as the number of names in the evidence increases, this
absurdity increases exponentially.

Hempel criticized Nicod for taking confirmation to be a semantic relation between
an hypothesis and observed objects. But ironically, if we think of adding new
evidence as adding everything there is to know about a newly observed individual,
the counterexample just described disappears, for

Fact: If e is the diagram of some finite structure for a purely universal
hypothesis language H, then for any h in H, Cleh) just in case Mi=h.

58 R R . el . .
| do not intend to suggest that such & consequence is always undesirsble. In & sophisticated confirmation

theory, the evidence sentence “the previous evidence is mistaken” could cancel the positive relevence of alt prior
evidence. But the snomsly under discussion erises from no such consideration and is merely a technical artifect.
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Since a purely universal, function—free hypothesis is true in a structure M just in
case it is true in each substructure M' of M, the set of such confirmed hypotheses
is non-increasing as the evidence increases.

A dual result clearly hoids for purely existential hypotheses. That is, the set of

confirmed, purely existential, function-free hypotheses is non-decreasing as the
evidence increases. Each of these properties is fairly natural, for as evidence
increases, one finds both more counterexamples to universal claims and more
objects. that vindicate existential claims.

If constants are admitted into the hypothesis language M, then not every restriction
of a realization M of H to some subset of the domain of H is a substructure of M:
for any such restriction whose domain excludes a distinguished element of M is not
a substructure of M. The analogous result for hypothesis languages with constants is
that once all the hypothesis language constants occur essentially in the evidence
the set of hypotheses confirmed on this evidence is non—increasing as the evidence
increases.  Until all the constants occur in the evidence, the set of confirmed
hypotheses may increase®® So if there are only finitely many constants in the
hypothesis language, there is only a finite initial segment of exceptions to the above
result If there are infinitely many constants, however, there is no finite initial
segment of evidence after which the set of confirmed hypotheses is nonincreasing
in the evidence.

Despite the fatal intuitive difficulties facing Hempel's confirmation theory, the idea
of instance or satisfaction based confirmation relations is common in Al
applications. DENDRAL, for example, rates hypotheses by counting their positive
instances in the data And all the various "concept learning” systems (e.g. Hunt's CLS

[Hunt68]) can be viewed as generating universal, monadic biconditionals confirmed
on Hempel's criterion. Hence, there is some independent motivation for the study
of the usefulness of Hempel's theory as a cog the AE-U-identification problem
posed in the previous section. Happily, the fact that the set of confirmed, purely
universal hypotheses is non-increasing as more individuals are "inspected” provides
an idea for a Hempelian logic of discovery that solves this identification problem
quite generally. Such a system is presented in the next section.

ngor example, P2 does not confirm Pa&Pb, but PePb does.
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4.2.2. A Hempelian Procedure

Let L be an arbitrary, first-order language without function symbols of arity 1 or
more that has no more than finitely many constant symbols. Let the hypothesis
language H be the set of all elements of L in prenex normal form in which no
existential quantifiers occur. Let L' be the augmentation of L with a countable
infinity of constants, and let the evidence language E be the atomic sentences of L'
or their negations. Let the possible worlds be structures for L, each of whose
domain elements is named by some constant of L'®° The evidence presented to ar'\
inductive method is assumed to be an enumeration of the set of all evidence
sentences true in the target world. The operative identification criterion is AE-U-
identifiction.

The question is whether the generalization problem just defined can be solved by a
method that relies on Hempel's confirmation relation in the short run. In fact, it can
be, as the foliowing procedure shows.

e Choose an arbitrary, effective ordering of H®'

o Let Hypsli) be a subroutine that can generate, for any i, the set of all
hypotheses occurring no earlier than i in the assumed enumeration of
H. :

e let e be a finite set of evidence and let h be a finite set of
hypotheses. Let Sortle,h) return the set of all hypotheses in h that are
confirmed by e in light of Hempel's confirmation relation.

e Let subroutine Subevie) output for any finite set e of evidence
sentences some maximal subset of this evidence that is the diagram of
a finite structure for L.

PROCEDURE HEMP:

BEGIN
Evi={};
Stage:=0;
REPEAT forever
BEGIN
Evi= Ev U READ(Stage)
Conjecture(Sort[ Subev(Ev),Hyps(Stage)l)
Stage:=Stage+1;
END
END.

At stage n, this procedure adds the nth evidence sentence to its stored evidence
(Ev) and calls Subev to solve for the greatest subset of this evidence that is the
diagram of some finite realization of L. For example, if the noniogical vocabulary of
L is {P,Q}, and the given set is

60_ . . . o inans
This requirement has the same force as Shapire’'s admissibility requirement.

61 .
Of course, there is one for the prenex normal sentences.
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P(a,b)

Pib,a)

P(b,b) _
Pla,a) .
Pla,c)

Qfa)

Q)

Q(d)

then the output of Subev is
Pla,b)
Pb.a)
P(b.b)
Pla,a)
Qla)
Q(b)

Next, the procedure uses Hypin) to find the first n hypotheses in H Then Sort
returns those hypotheses in this set that are confirmed on the reduced evidence,
and the output of Sort is conjectured. Finally, the level is incremented, and all the
preceding steps are repeated for the next evidence sentence.

It is easy to see that HEMP is a general solution to the inductive inference problem
in question. That is,

Fact: HEMP can AE-U-identify any structure in O.

Proof: Let M be in O, and let heH be true in M. Then there is some
stage n' at which h is in Hypin). Since the evidence presentation
provided to HEMP in the limit is complete, there is a stage n after which
which Subev(e) is always the diagram of a finite restriction M' of M to a
domain that includes each of the finitely many distinguished elements of
M. Since h is true in M and h is purely universal, h is true in any
substructure of M. But any restriction of M to a subdomain that includes
all (finitely many) distinguished elements of M is a substructure of
M. Hence h is true in M. So by the previous fact, h is confirmed by
Subevie). Then h is in the conjecture of HEMP at every stage after stage
MAX{n,n'}, so the conjecture at each of these stages trivially entails h.

Now let heH be false in M. It must be shown that after some finite
stage n, the conjecture of HEMP never entails h. Since h is in H and
hence is purely universal with no function symbols, if there are k distinct
variables occurring in h, and k constants in the language H, then h is false
in some substructure M' of M of cardinality k+j. Since the evidence
presentation is complete, there is a stage n after which Subevie) is
always the diagram of a structure M" of which M is a substructure.
Since h is false in M and hence in M", h is disconfirmed by Subevie).
Each conjecture of HEMP is a finite set of confirmed hypotheses, and
the conjunction of these hypotheses must be confirmed, for a
conjunction is confirmed if and only if each conjunct is. But every
logical consequence of a confirmed hypothesis is confirmed, by the fact
that C satisfies Hempel's' "consequence condition”. Since h is not
confirmed, h is therefore not entailed by any conjecture of HEMP after
stage n.
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Notice that there is no reason to expect HEMP to EA-U-identify O, for the
incrementation of Hypin) can always lead to yet another false conjecture before the
evidence refuting the added hypothesis _is~ encountered. Hence, even if HEMP
conjectures an adequate theory at some point, there is nothing to prevent it from
strengthening this conjecture and re—weakening it infinitely many times. On the
other hand, if HEMP does not explore conjectures stronger than its current one, it
will necessarily fail to identify the structures for which only stronger hypotheses are
adequate. It is natural to wonder whether this epistemological dilemma results from
a design flaw in HEMP or from an intrinsic feature of the inductive problem
addressed. For example, one might reasonably suspect that allowing HEMP to
conject'ure infinite axiomatizations would permit it to achieve stronger identification
properties, for it is trivial that a device that cannot conjecture an infinite
axiomatization cannot EA-U-identify a structure whose H-truths are not finitely
axiomatizable.

it is also tempting to expect that the class of structures for H with finitely
axiomatizable adequate theories is EA-U-identifiable, for entailment is decidable over
H. One might expect to EA-U-identify any structures with an adequate, finitely
axiomatizable theory by successively testing the sentences in an effective
enumeration of H that is everywhere non-increasing with respect to entailment %2
Given such an enumeration, one could EA-U-identify O by waiting until Subevl(e) is
not empty and then by conjecturing the first hypothesis in the order that is
confirmed on this evidence. There must be one, so this search would take finite
time. Moreover, any false hypothesis would be rejected after reading some finite
amount of evidence, so the system could not converge to a false hypothesis.
Finally, the device would converge to the first true hypothesis, and by our assumed
ordering, this hypothesis would entail all the true hypotheses in the structure (if any
hypothesis does) for no true hypothesis could be properly stronger than it is.

But there can be no such ordering, effective or not; for the proposed
identification task is impossible for any method that is a function of the current
evidence, be it effective, intellectual, or even magical.

Theorem: Let V be a non-logical vocabulary including at least one
predicate of arbitrary arity and equality, but no function symbols and no
more than finitely many constants. Let H be the purely universal
sentences on vocabulary V. Let C be an enumerable collection of
constants, and let E be the atomic sentences on the vocabulary V U
C. Finally, let O be the set of all structures for H whose objects are all
named by constants in C.

€2 . R G s
l.e., nO sentence occurs in the enumerstion before any sentence that entails it.
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Then no method can EA-U-identify even that subset F of O whose H-
theories are finitely axiomatizable by sentences in H.

Coroll/ary: No method can EA-U-identify O.

The idea is quite simple, for consider the following ordered set of sentences:

([Pxy & (x=y)]
(O[Pxy & {x=y v x=z v y=2)]
()[Pxy & {x=y v x=2 v x=w v y=z v y=w)]

OIPxyl

The nth element of this order says that everything is P-related to everything else
and there are at most n things. The minimal element of the set drops the cardinality
restriction and merely says that everything is P-related to everything else. Notice
that if h is "higher” in the order than ', then h entails h' proper/y. Moreover, each
sentence in this set is an adequate hypothesis for some structure.®® Hence, there is
no complete sequence of universal complete (i.e. possibly U-adequate) hypotheses
that is that is non-increasing with respect to proper entailment

The point is that we can easily provide evidence about the structure for which the
terminus of the order is adequate that would force any proposed method into the
following, epistemic dilemma either the method must skip some hypothesis in the
order on arbitrarily much evidence consistent with it (and hence fail to identify its
associated structure) or the method attempts to traverse the entire infinity of
hypotheses between the endpoints of the order, and hence never "arrives at’ the
terminal hypothesis in the order, so it fails to identify the structure for which this
terminal hypothesis is adequate. More precisely,

Proof: Let PP be all the predicates of H Let U be the sentence
that says every object is related by each of these relations to any other
object Let C[n] be the purely universal sentence that says there are at
most n things, as in the sequence just iliustrated.

Let D be a method that can identify F. Let ¢ be a complete sequence
of the atoms of E. We begin by repeatedly feeding o to D. Since D can
identify F, it can identify any structure for which U & C[1] is adequate,
so after some finite presentation of non-negated atoms, D must
conjecture U & C[1]. Once D conjectures U & C[1])., we casually
continue feeding evidence to D as before untif some atom a=b turns up

63
The nth element hn of the set is k-categorical for each k<n. Let M be & mode! of hn of cardinality n. Let h be
true in M, Since hn and h are both purely universal, they sre satisfied in each substructure of M. But hn is satisfied
only in structures isomorphic 10 substructures of M. Hence hn:th.
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in ¢ such that either a or b does not occur in any identity statement fed
to D previously. Since o is complete, this must happen in some finite
amount of time. Once a=b occurs in o, we feed =-(a=b) to D. We
continue once again to feed o to D, except that any identity whose.
negation is entailed by —(a=b) and identities fed to D is negated before
being fed to D. This evidence, if continued indefinitely, would be the
complete presentation of the diagram of a structure for which U & C[2]
is adequate. Since D can EA-U-identify F, it conjectures U & C[2] after
some finite time. Then we once again wait for an identity with .a new
constant, and continue as before, and so forth.

Since D can can identify F, it eventually changes its mind after
receiving each negated identity in which a new constant occurs. Hence,
infinitely many such negated identities will be read, so D will change its
mind infinitely many times. Hence, the total evidence fed to D in the limit
will be the diagram of an enumerable structure M that satisfies U. U is
aleph—null categorical, for the only countable structures for H that satisfy
U are those whose relations are all universal, and each of these
structures is isomorphic to any other. Hence U is adequate for any such
structure. But D does not converge to M on a complete presentation of
the diagram of M. Hence, D does not identify F, contrary to assumption.

Therefore, HEMP is not to be despised for failing to EA-U- identify the structures
for which a finitely axiomatizable theory is adequate, for this inductive scope is
unattainable by any method. So it is unattainable a fortiori by any effective method.

4.3. A Discovery Method Based on Consistency with the Evidence

Although Hempel's confirmation criterion suffers from severe objections as a
theory of confirmation, it has been shown to function as a useful cog in a general
solution to a particular kind of inductive inference problem. This fact constitutes
some reason for interest in Hempels relation as a heuristic tool rather than as a
confirmation relation. But just as the interest of an hypothesis as an explanation of
a given phenomenon depends upon the availability of other equally good
explanations, the interest of a confirmation relation as a general heuristic tool
depends upon the performance other available methods—-- and methods that rely
on very different “confirmation relations” can have the same inductive scope. For
example, HEMP's inductive scope would remain unaltered even if the evidence were
ignored for an arbitrary finite amount of time before being fed to Subev for the
purposes of confirmation testing. And a procedure that conjectures several million
hypotheses that are obviously refuted by the given evidence before it invokes HEMP
as a subroutine would aiso have the same inductive scope as HEMP.

Consistency with the evidence is an outlandish proposal for a genei'al relation of
hypothesis suitability, for no one believes that an arbitrary sentence confirms every
sentence that is logically independent of it Nonetheless, it will be shown presently
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that an algorithm relying merely on consistency with the evidence can also AE-U-
identify O. Moreover, this method can begin to conjecture an hypothesis in the
adequate theory of a structure M arbitrarily more quickly than HEMP can.

As an epistémic relation, consistency with the evidence does satisfy Hempel's
equivalence condition, but it is very different in most respects. For example,
consistency does not satisfy Hempel's entailment, consequence, and consistency
conditions, even for a purely universal hypothesis language H that excludes constants
and function symbols.® Gone also are the irregular non-monotonicities of Hempel's
criterion. The class of hypotheses consistent with some evidence is non-increasing
as the evidence increases. '

On the other hand, when we also assume that the evidence is the diagram of a
finite realization of H, then if h is an element of H, and the constants occurring
non-vacuously in h occur non-vacuously in evidence e, e confirms h just in case e
is consistent with h*® The requirement that H be purely universal is not vacuous,
for the hypothesis that there is a white raven is consistent with any number of
observations of black ravens, but may nonetheless be false in the world from which
these observations are drawn.

This simple fact has an important consequence for HEMP. Since Hempels
confirmation criterion amounts to mere consistency with the evidence when the
evidence is the diagram of some finite structure, and since HEMP applies the test
only to such evidence, HEMP may as well simply conjecture all the elements of
Hypsin) that are consistent with the tota/ evidence read by stage n. Hence, the
bothersome period during which HEMP waits to find a finite structure diagram in the
evidence before making a conjecture is eliminated. To solidify this suggestion,
consider the procedure CONSIST, and its proof of adequacy with respect to AE-U-
identification. The subroutine Hyps is just as described earlier. Sort2 is like Sort,
except it produces the hypotheses in a given set that are consistent with the given
evidence rather than those that are confirmed by Hempel's criterion. Finally, the
subroutine Subev, which HEMP employs in order to stall until the presented evidence
‘ comprises the diagram of a finite structure, is appropriately missing.

64 . . . . . . ; . . R
When consistency is being discussed as 8 “confirmation relation”, it will be denoted C’, and when inconsistency

is viewed ss & “disconfirmation relation” it is denoted D'. (1) If e is inconsistent then e entails h but h is not
consistent with e, so not C'le,h).. (2} Let e be 'Pa&Ba’, let h1 be ‘Px--->Qx‘, let h2 be 'Ox-+->-Bx’ and let h3 be hi
& h2. Then C'(e,h1) and C’(e,h2) and h1,h2 {= h3, but not C'le,h3). (3) Let €, h1, h2 be as before. C’le,h1) and C’le.h2)
but h1,h2 ere inconsistent with e.

€5
==x) is just Hempel's consistency condition, which C sstisfies in general, «=== Let e be the disgram of M, and
let h€H. Since h is purely universal, e is consistent with h just in case Mi=h. Hence, by the sbove fact, Cleh).
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PROCEDURE CONSIST:

BEGIN
Ev.i={} -
Stage:=0; .
REPEAT
BEGIN
Evi= Ev U READ(Stage)
Conjecture(Sort2 [ Ev,Hyps(Stage)])
Stage:=Stage+1; )
END
FOREVER,; '
END.%®

v

CONSIST has an advantage over HEMP, in that it is capable of eliminating refuted
hypotheses immediately, without waiting for a substructure diagram to appear in the
evidence. This "speed-up” is not bounded by any finite quantity, for the time
consumed in waiting for the first finite structure diagram to appear in the evidence
is unbounded.®”’

4.4. A Logic of Discovery Based on a Modification of Nicod’s Criterion

Although HEMP and CONSIST are equally general solutions to the universal inductive
inference problem, the performance of these methods in the short run will be quite
different. HEMP can spend an arbitrary amount of time conjecturing a refuted
hypothesis, while CONSIST is capable of conjecturing -an hypothesis that has no
vocabulary in common with the evidence and that seems therefore to have nothing
to do with the evidence provided. These performance characteristics can be traced
directly to the suitability criteria upon which the respective methods rely. Hempel's
confirmation relation enforces some appearance of relevance between a confirmed
hypothesis and its evidence, but is highly non-monotonic in the face of increasing
evidence. Consistency with the evidence, on the other hand, is monotonic in the
face of increasing evidence, but it does not ensure any reasonabie degree of
relevance between a confirmed hypothesis and its evidence.

66Tn see that for any constent, function-free H, CONSIST cen AE-U-identify O(H), consider an arbitrary structure M
in O(H). Now consider an arbitrary h in H that is true in O(H). There is a stage n efter which h is slweys in Hypsin).
Moreover, since h is true in M, h never contradicts the evidence, and hence remeins in each subsequent conjecture.
Now consider an h that is fslse in M. There is & finite substructure M’ of M in which h is faise, for h is purely
universal, and H has no function symbols. After some stage n, the diagrem of M’ is included in e¢. Each element of
each conjecture h' after stage n is consistent with e and hence is true in M’. Therefore, the entire conjecture h' is
true in M‘. Then any logical consequence of h’ is true in M’ after stage n. Since h is false in M’, h is not a
consequence of any conjecture of CONSIST sfter stage n.

67 . R ; . . . R
Imagine that the evidence begins with '-Pab’, end withhold the instance +'Pea’ until position n in the evidence
presentation, where n is arbitrary. HEMP wouid idly wait until stage n before rejecting the hypothesis ‘(xily)iPxyl’,
even though this hypothesis is obviously refuted by the first evidence sentence encountered.
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It would be desirable, therefore, to formulate a suitability relation that leads to the
same inductive generality in the long run, but that steers an even course in the short
run between the radical non—monotonicity.éf Hempel's criterion and the evidential
leniency of consistency. Consider the following suitability relation,®® which may be
called the modified Nicod’s criterion, or Nigh) for short

Definition: Nleh) just in case e entails some instance of h and h is
consistent with e,

where an instance of an hypothesis h is some result of uniformly substituting
constants for variables in h and eliminating all the quantifiers occurring in h. So for
example, an instance of (x)y)[Pax v {(Ez)Qbz] would be [Pac v Qbd]. Notice that if
e is consistent, then e confirms h on the modified Nicod's criterion just if e
confirms the result of replacing each occurrence of a universal quantifier with an
existential quantifier according to Hempel's criterion. So the modified Nicod's
criterion is more stringent than the consistency criterion in that it requires the
evidence to entail some instance of h, and it is more lenient than Hempel's criterion
in not requiriﬁg the evidence to entail every instance of h when h is purely
universal. Hence we have that C'(e,h) ===> N(e,h) ===> Cleh}, but not conversely.

Like consistency with the evidence, the modified Nicod's criterion does not satisfy
the entailment, consequence, or consistency conditions.®® But unlike consistency with
the evidence, the modified Nicod's condition does not even satisfy the equivalence
condition.”

Another difference between mere consistency with the evidence and the modified
Nicod's condition is that the class of hypotheses consistent with the evidence is
non-increasing as the evidence increases, but the class of Nicod-confirmed
sentences does not always decrease as the evidence increases.’”'’ On the other
hand, if the evidence presentation is complete, then for any hypothesis h, there is
some point in the presentation after which the evidence entails an instance of h, and
once this instance appears, h remains confirmed until it is refuted by further
evidence. So while increasing evidence can alternately confirm and not confirm the

GsThis relstion was suggested to me by Glymour.

69(1) if e is inconsistent, e entails h, but h is inconsistent with e so not Nie,hl. (2} Let A=(x){Px--->Qx) and let
B=(xHQx--->Rx). Let C=A&B. Let e={-Ps,~Qs,Pb,-Rb). Then Nie,A) and Nie,B) end AB!=C but not Nie,Cl. (3) The
previous exsmple is also & counterexsmple to the consistency condition, for Nie,A} end NieB) but (AB) is
inconsistent with e.
7°Let e={Pab). Let h=(x{Pxx), and let h'=(xMy}[Pxx v Pxy). Evidence & is consistent with both h and h', and e
entails an instance Peas v Pab of h’. But e does not entail en instence of h. So Nieh’) but not N{e,h}.

71Fcar &n hypothesis is not confirmed on the modified Nicod's criterion until some instance of it is entailed by the
evidence.
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same hypothesis infinitely often on Hempel's criterion, the modified Nicod's criterion
permits only two alternations of status for any given hypothesis as the total
evidence is received. Every hypothesis h bégins its career non-confirmed on null
evidence. Then it is possible that the evidence at some point entails some instance
of h, but does not contradict h, in which case h is confirmed.  Finally, a
counterexample may .arise in the evidence, in which case h remains eternally dis-
confirmed and hence non-confirmed thereafter. The possible alternations of status
of a given hypothesis with respect to increasing evidence are summarized in the
accompanying table.

Consistency Criterion:
confirmed forever.

confirmed, then disconfirmed and disconfirmed thereafter.

Modified Nicod's Criterion:
non—-confirmed, then confirmed,
and confirmed thereafter.

non-confirmed, then disconfirmed,
and disconfirmed thereafter.

non—confirmed, then confirmed, then disconfirmed,
and disconfirmed thereafter.

Hempel’s Criterion:
non—-confirmed, confirmed, non-confirmed, confirmed...etc...then
disconfirmed and disconfirmed thereafter.

non-confirmed, confirmed, non—confirmed...etc.., in unending
alternations.

Figure 4-1: The course of inquiry under different
suitability relations

Let NICOD be a procedure just like CONSIST, except that NICOD employs the
modified Nicod's criterion just where CONSIST applies a consistency test NICOD
can evidently AE-U-identify the set of all structures for H' whose individuals are all
named by constants of H.’2 On the other hand, NICOD will not conjecture
hypotheses that share no vocabulary with the evidence, which is a an intuitive
improvement over the short—term performance of CONSIST. Moreover, NICOD will
never conjecture an hypothesis that is inconsistent with its current evidence, which
is a rudimentary but nonetheiess significant improvement over the short-term
performance of HEMP, as well.

72, . R . - . . . .
For if h is true, then some evidence entailing an instance of h will appear in the evidence sooner or later and h

will be conjectured forever theresfter. In cese h is false, things work just as in the proof of sdequacy of CONSIST.
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Hempel, along with most other confirmation theorists, has insisted that any
adequate concept of confirmation must satisfy the equivalence condition. The
intuition is that evidence bears on what a sentence expresses rather than on a
sentence itself. Sentences express propositions, and any two logically equivalent
sentences express the same proposition. So evidence bears on one expression of
the proposition just in case it bears on the other. It is interesting, then, that the
performance of NICOD seems none the worse for relying on a criterion of
suitability that violates this requirement In fact, it seems to yield more sensible
results than either HEMP or CONSIST. This fact illustrates how issues that seem
crucial in conventional confirmation theory are diminished in importance when
confirmation relations are viewed pragmatically as cogs in an overall discovery
procedure.

From the discussion of the limiting performance of NICOD, it is evident that any
syntactic relation R can be required in conjunction with consistency with the
evidence without dep!eting. the inductive scope of CONSIST, just so long as for
each true hypothesis h, there is a finite set of true evidence e such that h bears R
to each true set of evidence including e. That e entails an instance of h is, of
course, only one such property. We could require, for example, that e entail an
arbitrary, fixed number n of distinct instances of h. Or we could require that e
entail some fixed number of maximally general instances of h, where a maximally
general instance is one in which distinct constants are substituted for distinct
variables occurring in h.  This latter requirement is desirable, for it places a
reasonable bound on the short-term optimism of the associated discovery method
without damaging its inductive scope in the long run. Moreover, as we tune n
higher, the apparent "tightness of fit' of the hypothesis to the available evidence can
be adjusted to suit the user's short-term temperament We cannot, on the other
hand, require some number of instances that is an increasing function of the input
evidence, for this sort of requirement, iike Hempel's confirmation relation, opens the
possibility of eternal vacillation on a true hypothesis as the evidence increases.

4.5. Some Obvious Questions about Enriched Hypothesis Languages

If the hypothesis language H is purely universal and has at most fihitely many
constants then HEMP, CONSIST and the various NICODs can AE-U-identify the class
of O all structures, each domain element of which is named by one of countably
many constants of the evidence language. Moreover, no method can EA-U-identify
O, or even that subset of O whose elements all have H-theories finitely
axiomatizable in H But it remains to be seen what the situation is when H is
enriched with function symbols.
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It is easy to see that HEMP fails to identify some element of O if even one unary
function .symbol is added to H. For consider the structure M = <N<,s> ¢ O, where
N is the set of all natural numbers, and < i§ the usual, strict order on N. Consider
the following, universal hypotheses true in M:

1. () [x<six)]
2. My x<y ——=> —-y<x]

3. XUy x<y & y<z —-——> x<z] )
Finally, let e be any finite set of basic statements true in the structure. Let M be
any structure for the hypothesis language that satisfies e and whose domain
elements are all named by constants in occlel The function s of M’ that interprets
s must be total and closed on the domain of M, by the definition of a relational
structure. Since the domain is finite, the finite, directed graph of s must have a
"circuit’. That is, for some n¢loccle)] and for some object a in the domain of M,
applying s for n times to a brings us back to a again. The circuit, itself, is the
sequence <ab,..b_.a> where b is the value of i applications of s to a To
satisfy hypothesis (1), the structure must be such that a<b.<.<b .<a So if the
structure satisfies the third hypothesis (transitivity of <), then a<a But then the
structure does not satisfy hypothesis 2, for a<a is a counterinstance. So for any e
true in M, e fails to confirm these three truths about M. So there is no point at
which they will be included in HEMP's conjectures. Hence, HEMP cannot AE-U-
identify M, which is an element of O.

While HEMP can fail to eventually conjecture some universal truth, CONSIST and
NICOD can fail to eventually reject, once for all, some universal falsehood. When
the hypothesis language has function symbols, the relation of consistency is
undecidable.’”> CONSIST and NICOD must always try to strengthen their current
conjectures by adding sentences to Hyps(n), on pain of not eventually sticking with
some general truth. But each time CONSIST or NICOD. adds a sentence to Hypsin), it
runs the risk of having added a sentence refuted by the available evidence, for
CONSIST and NICOD cannot wait forever to make another conjecture. But CONSIST
and NICOD cannot even enumerate the sentences consistent with the evidence in an
effective manner.’® Moreover, any bound imposed on this test will lead to the
possibility of conjecturing a falsehood. Since there are infinitely many hypotheses
equivalent to any given hypothesis, the possibility of adding a sentence equivalent to

73
For if consistency were decidable, then by skolemization, general first order velidity would be decidabie, which
contradicts Church's theorem.

74 . . s .
if there were such an effective enumerstion, it could be used in siong with 2 complete, consistent proof theory

to decide consistency, which is sbsurd.



122

a sentence already in h can arise infinitely often, and if the refutation proofs for
these equivalent formulations exceed the resource bound infinitely often, CONSIST
and NICOD will both fail to eventually reject-a false h.’®

But the knowledge that three procedures do not solve a problem (however
suggestive it may be) falls infinitely short of knowledge that no procedure can solve
the problem--- just as two fallacious proofs do not establish the negation of the
intended result So it would be interesting to discover whether it is possible to
AE-U-identify the set of structures whose individuals are named by evidential
constants when the hypothesis language includes function symbols. | leave this
questioﬁ open, although | expect a negative resuit

75
Ot course, this scenario is not the only possible one. !f we try to weed out equivalent formuiations, there is
stili the possibility that sdding » sentence logically independent to the false h to the rest of the previous conjecture
will result in @ conjecture that entails h,
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Chapter 5
The Complexity of Discovery

4

in the previous chapter, the procedures HEMP, CONSIST, and NICOD were ali
shown to be general solutions to the problem of AE-converging to a theory that is
complete over the purely universal, function-free sentences true in a a structure.
But recall from chapter two that generality is only one criterion by which to judge a
discovery method. Another concern is computational efficiency. And it is clear that
the simple—minded "enumerate-and-test’ procedures of the previous chapter are in
some sense very inefficient:

But while the inefficiency of the previous chapter's proposed algorithms seems
fairly obvious, the design of more efficient methods demands that we be more
explicit about what efficiency is. Currently, there is no formal theory of the
efficiency of general solutions to the AE-inference problem posed in the previous
chapter. There is, however, a powerful and successful theory of the computational
complexity of standard (terminating) computations. Robert Daley and Carl Smith have
also developed a precise theory of the complexity of EA-convergent computations.
In light of these proposals, | attempt to develop a new theory of complexity for
the more general case of AE-convergent computation. | do not entirely succeed,
but it is interesting to see how some plausible attempts fail. These failures counsel
caution in speaking about the efficiency of convergent discovery procedures.

5.1. Standard {Short-Run} Complexity Theory

The point of standard complexity theory is to mathematically characterize the
computational difficulty of effectively soluble problems. But the difficulty of a
problem is a matter of the cost of computing its solution. An easy problem is one
. that is solved by a program that consumes few resources. A difficult problem has
no easy soiution. Program efficiency is a matter both of the amount of resources
consumed and the difficulty of the problem solved. That is, a program is efficient
if the problem it solves admits of no solution that is far less costly to compute.
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Formally, let {g¢: ieN} be an acceptable numbering of the Turing computabie
functions from input strings to output strings.’® In standard complexity theory, a
problem is a partial recursive function f and a so/ution to problem f is any index j
such that f=¢_. Indices can be thought of as Goedel numbers for combuter
programs. Hence, a solution to a problem is a program that computes it An
instance of a problem is any finite string of symbols over the fixed input
vocabulary.

The computation of program P, on a given problem instance ¢ expends somé
resources. For example, a Turing machine that halts on a given input must execute
some rumber k of state transitions. This measure is called Turing time. Turing
Space is the number of distinct tape squares visited at least once during the
computation.

Consider Turing time. It can be computed for a given Turing machine T on input
o as follows: "Simulate T, on input o, and add one to a counter c for each
simulated step. ._ When T (o) halts, return c". Notice that this procedure returns a
value on n just in case T, does. A similar construction can be given for Turing
space. It is also decidable, for any i,n and k, whether the time or space consumed
by machine T, on input o is no- greater than k. Just modify the above construction
to check at each stage whether c=k+1. If so, return 'no’ immediately. If the halting
state is reached before c=k+1, return 'yes'

Every proposed resource measure for computer languages can be computed by
simulating the computation of the measured program in the manner just described.
Accordingly, Manuel Blum takes this relationship to be axiomatic of the very notion
of a complexity measure. That is, let {g: i¢eN} be an acceptable programming
system. Let {g: ieN} be a recursive enumeration of partial recursive functions.

{g: ieN} is a complexity measure for {g: ieN} just in case
® (o) is defined if and only if ¢ (o) is

$.(ol<k is a computable predicate oveé alt i.o.k.
No one really believes that these postulates are sufficient conditions for an
intuitively adequate complexity measure.”” But under the more plausible assumption
that they are necessary conditions, they provide a convenient way to prove
surprising facts about all possible complexity measures at once.”®

6. . . Lo
i.e.,, there is an index u for the universal machine end the numbering satisfies the s-m-n theorem. C.f.
IMechtey78] for detaiis.

7
For obvious counterexemples, see [Machtey78], p. 143.

78
C.f. {Machtey78) for proofs of the “gep”, “compression”, and "speedup” theorems.
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Standard complexity theory also assumes a natural valued size function {c| over
all possible input strings o. In applications, the size of a string is always taken to
be the number of symbols occurring in it .The worst-case complexity measure is a

function defined on the natural numbers such that
Wi‘”)= MAX{éi(a): o) i=n}

That is, the worst case complexity of a program for a given input size is just the
maximum complexity over all input strings of that size. By taking the mean rather
than maximizing, one obtains what is called the expected complexity of a program
with respect to ¢ and .

Program P_is as easy to compute as program Pj just if for all but finitely many x,
<I>i(x)g<l>j(x). One might therefore expect the complexity of a prob/em ¢ to be
definable as the ¥, such that P is the easiest solution to ¢. But Manuel Blum has
shown that for any measure satisfying his two axioms there is a probiem such that
for any solution to this problem there is an easier solution according to the
measure.”® That is, for each measure there is a problem with no maximally easy
solutions. So the complexity of a problem is not definable in terms of maximally
quick soiutions.

Even if there is no easiest solution for a problem, upper and lower asymptotic
bounds on the complexities of its solutions can be sought This fact has led to
interest in complexity c/asses of problems. A problem ¢ is said to be in complexity
class Cg just in case the worst case complexity of some solution to ¢ is bounded
almost everywhere by g It is typical to study unions of such classes rather than
the classes themselves. For example, a problem is said to be linear (polynomial,
exponential, etc) if its compiexity is bounded almost everywhere by some linear
(polynomial, exponential, etc) function. 'By establishing asymptotic lower bounds, we
can discover that a given problem is not in one of these classes.

5.1.1. P, NP-completeness, and Tractability

The current consensus among computer scientists is that polynomial problems are
tractable, while non-polynomial problems are intractable. Therefore most practical
applications of the theory center on the question of membership in the class P of
polynomial probiems. Hence, it is of interest to find non-polynomial iower bounds,
which imply non-membership in the class, or polynomial upper bounds which imply
membership in the class.

8
? {Machtey78], p. 185.
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In the case of many problems of importance to industry, combinatorics, and
number theory, it is difficult to show whether the problem is polynomial or not
Many such problems seem to require "intracigble search”. That is, every proposed
algorithm is forced, for infinitely many inputs of different sizes, to apply a fast
(polynomial) test to each element of an search space whose size increases
exponentially as the size of the input increases.

This intuitive picture of "easy test, hard search” is captured elegantly in the
computational formalism of nondeterministic computation Such a problem can be
solved in polynomial time by a device that can non—deterministically "guess” the
correct’ element of the space and then verify its guess in polynomial time with the
easily computed test So “search problems” of this sort are all in the class NP of
probiems that are soluble in polynomial time by a non-deterministic device.

Roughly, a problem is complete for a class if its easy solution would imply the
easy solution of every problem in the class. Technically, a problem f reduces
polynomially to a problem ' just in case there is a polynomially computable function
g such that for each input o, flgle) = flo). That is, given a fast (polynomial)
program GIn] for g and a fast (polynomial) program F[n] for f, the cost of
program G[F[n]] is the composition of two polynomially bounded functions and
hence is itself polynomial (ie. "fast’).

A problem is said to be NP-complete just in case every problem in NP is
polynomially reducibie to it So intuitively, an NP-complete problem is as "hard" as
any problem in NP. Hence, if any problem that seems to require intractable search
really does require it, all NP-complete problems do. Unfortunately, one of the
major open questions in the foundations of mathematics and computation theory is
whether any problem that seems to require intractable search in its solution actually
does require it (ie. whether P is not identical to NP) But so many difficult and
counterintuitive propositions have been shown to follow from the supposition that
P=NP that many computation theorists suspect its falsity.

Regardiess of the truth of this proposition, to show that a problem is NP-
complete is to show in a very robust sense that no known technique will solve it in
polynomial time, for as soon as any NP complete problem falls to such a technique,
they all do at once. And this has not yet happened, although many hundreds of
familiar and practical problems have been shown to be NP-complete [Garey79].]
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5.2. Limiting Complexity

Our primary interest is in the complexity. of AE-convergent computations. AE-
convergent computational devices needn't be any different than standard ones. 'AE-
convergence is, rather, a novel input-output convention for the same sorts of
devices. On the standard view, a Turing machine’s input is a finite string written to
the left of its read-write head on an otherwise blank tape, and its output is
whatever is in this position on an otherwise blank tape when the device is in its
halting state. According to the convention of AE-convergence, on the other hand:
the output of a device can be an infinite, non-RE. set, and its input can be an
infinite, "non-RE.  sequence. So while the standard convention associates each
Turing machine with a (finitary) function, AE-convergence associates each such
machine with a map from infinite sequences to infinite theories.

Unfortunately, standard complexity theory makes sense only with respect to the
standard input-output conwention, under which a device can expend only finitely
many rescurces before producing an output Limiting computations, on the other
hand, are always infinite in duration. Since the adequacy of HEMP, NICOD, and
CONSIST is assessed in the limit according to the convention of AE-convergence,
their elegance cannot be assessed directly within the standard "short-run theory of
complexity. '

What is required, then, is a theory of the complexity of AE-convergent
computation that is sufficiently "like" the standard theory to be of interest
Unfortunately, | am aware of no attempt in the literature to formulate such a theory.
But the issue of characterizing the compiexity of EA-convergent computation has
already been addressed by computer scientists interested in inductive inference.

Feldman seems to have been among the first computer scientists to be concerned
with complexity in inductive inference, but his notion of complexity is restricted to
the syntactic complexity of conjectures. He seems not to have addressed the
question of the computational cost of arriving at a2 conjecture. Much less does he
raise the issue of characterizing the complexity of EA-convergence itself. But his
student, J.J. Horning, raised the latter question quite explicitly.

A more realistic theory of inference should include computational cost
[in addition to the complexity of the grammar converged to] in its
definition of optimality, reflecting the fact that in most applications there
are trade—offs among the cost of computation, the cost of further
sampling, and the cost of guessing incorrectly.

Short of developing a general theory of the cost of inference, one
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might test various heuristics which lead to nearly optimal solutions at
substantially lower cost® [1969, p. 152].

While Horning simply raised the question, other computer scientists have attempted
to address it In this section, | discuss some of this literature on the complexity of
inductive inference.

5.2.1. Short-Run vs. Long-Run Complexity

in standard computation theory, the first order of business is to distinguish a
problem (ie. a function) from its solutions (ie. the programs that compute it). That
there is a real distinction to be made is evident from the fact that uncountably many
problems have no solutions, while all soluble probiems have infinitely many distinct
solutions® In the case of limiting computation, there are at least three sorts of
entities to keep straight First, there are identification problems, as described in
chapter two. Second, there are conjecturing behaviors (functions from finite
evidence sequences to hypotheses) that soive these problems. Third, there are the
methods (progréms) that compute these conjecturing functions. There may be no
conjecturing behavior that solves a given identification problem. But if there is one,
there are infinitely many distinct ones.®? Some conjecturing behaviors are
uncomputable, and the computable ones are computable by infinitely many distinct
programs.

One way to bring complexity theory to bear on the study of an EA-identification
problem is to investigate the complexities of particular conjecturing behaviors that
solve the problem. Since a conjecturing behavior is just a computable function, we
can investigate its complexity in light of the standard theory of complexity that was
reviewed in the preceding section. For example, Gold [gold78] and Angluin

[angluin78] study the minimal automaton inference problem in just this way.
Angluin also assesses the complexity of a particular conjecturing behavior that
solves the problem of inferring "pattern languages” in the limit [Angluin8C].

Such results are of interest in their own right. It is not a trivial matter to discover
that a2 popular or obvious approach to the solution of an inductive problem is NP-

BoThe repder may well wonder what Horning means when he says that a heuristic could “lead to nearly optimal
solutions with substentially lower cost” in the absence of a general theory of the cost of EA-convergent
computations. This question is particulerly acute given that the heuristic admittedly has 2 different limiting and
hence short-run complexity from the exhaustive procedures to which it is compared.

81
As usuel, 1 am essuming that the programs belong to an acceptable programming system.

82 . - . . .
Notice thet any finite variant of 8 behevior that soives an EA or AE-convergent inference problem eiso soives
the probiem.
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complete. This knowledge can save much wasted effort that might have been
expended in applying ordinary techniques to find a worst-case polynomial
implementation of the approach. L |
But on the face of it, such results are about the short-run complexities of
particular approaches to solving the EA-identification problem in the limit It is part
of common wisdom that one can always take a wrong—headed or inefficient
approach to a task that is intrinsically ezsy. So despite the power and interest of
complexity results concerning particular conjecturing behaviors, there remains é
further question. what do they tell us about the /ntrinsic difficulty of the limiting
identification problem whose solution is our ultimate objective?

Perhaps the most straightforward answer to this question is that an EA-
identification problem is tractable if and only if there is a tractable conjecturing
behavior that solves it If we formalize the tractability of conjecturing behaviors in
the standard way as polynomial computability, we have a clear definition of
tractability for :_EA—identif'ication problems. Under this definition, a proof that a
limiting problem has a polynomially computable solution provides an upper bound on
the intrinsic complexity of the limiting problem. But a lower—-bound proof for a
particular conjecturing behavior is not a proof of a lower bound on the intrinsic
.complexity of the limiting inference problem the behavior solves——- any more than
a proof that my favorite sorting algorithm is siow is a proof that sorting is an
intractable problem.

But this simple and natural definition is subject to a serious formal difficulty. For
according to it, a// soluble EA-identification problems are tractable. This fact can
be seen by means of what is often called a "padding” argument. Let M be a
method that solves EA-identification problem P in time bounded by an exponential,
computable function f, but by no polynomial function. Now define the
f-Fabianization of M as the following program. Given evidence e, set n := the size
of e. Set k := the least natural number greater than or equal to f'(n. Next, set
e'= the initial evidence segment of length k. Finally, simulate M on input €. We
must assume that the length of the evidence can be found in time polynomial in the
size of the evidence, but it is hard to imagine a sensible input size measure that
does not have this property. Then k can be computed in polynomial time using a
log table and some arithmetic. Finally, when M is simulated on an input of size f'(n)
it uses resources only polynomial in n, for M uses only f(n) resources on an input
of size n. The f-Fabianization of M is a polynomial procedure that solves any EA-
identification problem solved by M. Since M is arbitrary, the same construction



130

works for any exponential function, so every exponential EA-identification problem
is indeed polynomial.

it is easy to see that all problems are poiy;womial in this sense. All that is required
is to find, for each bound f, an upper bound on f whose inverse is computable in
polynomial time. So we have the result that all soluble EA-identification problems
are tractable. Since the major point of a complexity theory is to assess the
inherent difficulties of distinct problems, this result is fatal to our definition of

tractability for EA-identification problems.

The Fabianization of M is named after Fabius Cunctator, who conquered Hannibal by
delaying. The name is appropriate, for the more the Fabian methods delay, the more
efficient they are deemed in light of the complexity concept under discussion The
difficulty is easy to spot An arbitrary delay in the point of convergence is not
penalized if we measure only the resources consumed in generating each conjecture.
But these conjectures can be made arbitrarily easy to produce by a sufficient delay
in the point of i_:onvergence. So all EA-identification problems are easy.

One way to forestall this trivialization is to impcse a bound on the amount of
evidence that may be seen before converging to an hypothesis on each presentation
of each world® Since Fabian strategies must see much more evidence before
converging than more sensible strategies, any bound on the amount of evidence that
may be seen before converging must bound the extent to which a Fabian strategy
may delay its convergence point, and hence precludes the ftrivial, arbitrary speedup
attainable by appeal to such methods. According to this account, problems with
tighter bounds are intrinsically more difficult than those with lenient bounds, which
seems sensible. On the other hand, it is not easy to see how to go about selecting
such bounds to study.

A related approach is to augment each EA-identification problem with a suitability
relation. A method solves such a problem if and only if it can identify every world
in the problem's proposed scope and each of its conjectures is suitable for the
input evidence for which the method generates it® For example, we may think of
‘the minimal automaton inference problem as the problem of inferring a minimal state
acceptor for an arbitrary regular set with the added, short-run constraint that each
conjecture must be a minimal state acceptor consistent with the current sample. No

3 . . :

There is no reason to assume thet the same nsatural number must bound the amount of evidence seen in each
world or in each ordering of the evidence from a given worid. Rsther, the bounding function g may be & function
from infinite evidence presentetions to natural numbers. :

84
This proposal was essentially suggested to me by R. P. Daiey in & private conversation.
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solution to this problem can afford to ignore evidence in the short run, so the
Fabian behaviors are excluded from the complexity assessment  This limiting
problem may therefore be said to be NP-complete in light of the results of‘Gold
and Angluin alluded to above.

Notice that the limiting part of such a composite, long-run/short-run problem need
not be a silent partner to the suitability relation it is paired with. There is no reason
to assume that every conjecturing behavior that abides by the assumed suitability
constraint must solve the identification problem in question. Problems such that
every conjecturing behavior that accords with the suitability relation solves the
identification problem in the limit are simply special cases.®®

| began this section with the opinion that it is a confusion to define the complexity
of an identification problem as the complexity of a conjecturing behavior or class
of conjecturing behaviors that solves it This opinion was based on the observation
that there might have been-an easier way to solve the problem than the one chosen
But the Fabian methods show that there is something trivial about this observation:
one can a/ways find an easy solution to such problems, in the straightforward sense
of "easy” that we have been considering.

Our two responses to this trivialization amount to a proposal to consider only a
limited range of conjeciuring behaviors that solve an identification problem in the
assessment of its complexity. One way to restrict the class of solutions to a
limiting problem is to place a bound on the amount of evidence that may be read in
.each world on each presentation of that world But we observed that it is not
obvious which such bounds to study. Another way to restrict the range of
behaviors to be considered is to propose a suitability relation and to require that
each conjecture be suitable. Notice that this is just what Gold and Angluin do when
they prove that finding a minimal-state acceptor consistent with a given sample is
an NP-complete problem. | will present similar results myself, in chapters six and
seven. Perhaps such results are the best that can be done in the absence of more
reliable intuitions about what limiting complexity is.

-]
For exampie one can fail to EX.-idemify & minimal acceptor for a regular set even if one conjectures a minimal

2cceptor consistent with the sample et each stage. The conjectured scceptors may ail be rensming variants of one
another so thet EX-convergence is never achieved. On the other hand, any procedure that produces such hypotheses is
guaranteed to BC. identify @ minimal acceptor for eny regular set.
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5.2.2. The Daley/Smith Approach

Recall the difficulty of the previous sectiopr if an EA-identification problem is in a
complexity class if and only if it has a conjecturing behavior that is in that class (in
the standard, short-run sense), then every EA-identification probiem is tractable.
The difficulty stems from the fact that the effort required by an arbitrary device to
converge to a correct hypothesis can be smeared out to an arbitrarily low growth
rate as the evidence size increases. An obvious observation at this point is that
although the conjectures of a Fabian method are easier to produce at each stage, it;
overall convergence is much delayed. So if we measure the tota/ effort spent
before "converging rather than just the effort spent in producing each conjecture,
the Fabian gambit is defeated. This is because the Fabian machine must do at least
as much as the method it simulates would have done to achieve convergence. In
fact, it does far more.®®

Daley and Smith [Daley84] study measures of this kind and call them area under
the curve (AUCZ_) measures. More precisely, let {$:ie¢N} be a Blum compiexity
measure, and the let the problem be to EX ~identify each function in some subset F
of the partial recursive functions. Let fin denote the restriction of function f to
the natural numbers from one to n. Define the modulus pM.f) of M on f to be
the length of the graph of f seen by M at the time M converges to an hypothesis.
We assume that the graph of the target function is presented sequentially, in the
order of its domain. Finally, we we can define the area under the curve (AUC)
measure of M on function f to be the sum of ¢ (fin) for n=1 to xMf. The
figure illustrates why "area under the curve” is an apt name for measures of this
sort.

Does this sort of measure provide an adequate, general assessment of AE-
convergent complexity? Unfortunately, the very feature that defeats the Fabian
gambit also leads to an intuitive objection. In the standard theory of complexity, the
effort spent before the halting stage is reached is measured. Analogously, the AUC
measure counts only the effort expended before the convergence point is reached.
This attention to the point of convergence ensures that the Fabian methods are
billed for their foot-dragging. But in the standard theory, there is no objection to
ignoring effort expended after the halting state is reached because, intuitively, there
is no such effort to ignore. When the haiting state is reached, the machine is
viewed as having stopped. But in EA-convergent computation, there is infinitely
- much effort expended after the convergence point is reached, rather than none at

86
l.e., it must simulete M and repeat M's actions by a “large” factor of f,
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resources consumed
to produce output

| il mum . o * »> .
e, e, -convergence point

Figure 5-1: Area under the Curve Measures
all. There would be no intuitive difficulty if the user of an IIM could, intuitively, tell
when it has converged so ‘as to turn it off. But there is no effective manner for
doing so, or limiting computation would be no more powerful than ordinary
computation. We can imagine that one IIM could expend less effort than another
before converging, but much more at each stage thereafter. !f the user cannot tell
when to turn off the device, then there seems some justification in his choice of a
machine that uses fewer resources a/most everywhere rather than one that uses
fewer resources only finitely often. This intuition is underscored by the fact that

recursion theorists typically focus on properties that hold almost everywhere rather
than on those that hold only finitely often.

It should be mentioned that Daley and Smith do not require that every measure of
EA-convergent complexity ignore the effort expended after the convergence point.
They require only that such a measure converge to a value in-a world if and only if
the measured method does, and that it be decidable in the limit whether the measure
takes on a given value on a given function. These axioms permit the measure to
converge later than the measured method, and therefore to change its mind some
finite time after the measured method converges. So the measure's assessment can
take into account some of what the method does after the point of convergence.

Recall that the total effort expended to converge to a conjecture is relative to the
order in which the evidence is presented. It is a matter of common sense that one
can fool a method arbitrarily long by withholding crucial information. And insofar as
a method's convergence is delayed, the AUC measure of the method's resource
consumption increases. This raises a philosophical objection to such measures when
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possibie worlds are sets and the evidence consists of finite samples of these sets
(as in many language acquisition problems).?’” A complexity measure should guide us
in our choice of one method over anothgr at the outset of inquiry. But AUC
tneasures are essentially relative to a canonical presentation order for the evidence.
Hence, we cannot compare the relative efficiencies of methods unless we can
discover the order in which we would have encountered the total evidence in each
possible world--- a hopeless inductive problem in its own right But if we do
know the canonical presentation order for the evidence antecedently, then we have
tacit negative evidence at our disposal after all (ie. if an expected string does not
come up in its appointed position, it is not in the language). As Goid has shown,
such pFoblems are much easier to solve. So either we are choosing a method for
a problem much harder than the one we actually face, or we can't choose the
applicable AUC measure to evaluate candidate methods until we solve a harder
inductive problem than the one we are choosing a method to solve. Either horn of
the dilemma raises questions about the motivation of AUC measures in the case of
language acquisition from positive evidence.

Finally, there is a serious philosophical question about how to define tractabil/ity in
terms of Daley/Smith complexity measures. In standard complexity theory, a
problem is tractable only if its worst case complexity is bounded by some
polynomial function. In this theory, a problem instance is a finite string that has a
finite size, and only finitely many distinct problem instances have the same size.
Since the sizes are natural numbers, we can speak of the greatest resource
consumption of a program over all inputs of this size, and then we can speak of a
bounding function over this worst—case resource consumption for all but finitely
many problem instance sizes. This polynomial growth rate in resource consumption
is essential to the standard explication of computational tractability.

Now consider the limiting case. Daley and Smith name their complexity classes
with functionals rather than functions, so that an identification problem C (ie. a class
of functions) is in complexity class y just in case there is a method M such that
for all but finitely many functions f in C, the Daley/Smith complexity of M on
function f is no greater than y(f). In this case, problem instances are infinite
functions on an enumerable domain. But it makes no sense to speak of y as
"polynomial” unless each function can be associated with a natural number
representing its "size”, as in the standard theory. Intuitively, there ought to be some
reason to expect a "bigger” function to require more effort (according to the AUC
measure) to identify. It is not obvious how such a measure might be defined.

7
| am indebted to R. P. Daley for what | understood as the foliowing srgument.
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Indeed, Daley and Smith have shown that if there is such a notion of function size,
it is radically ineffective. That is, there is no effective device that converges to a
size value for every partial recursive function such that only finitely many functions
are assigned the same size in the limit (p. 25). This result shows that if function
sizes behave anything like the usual problem instance sizes familiar in the theory of
‘NP-completeness, the assignment of a size to a function must be hopeless by
mechanical means, even in the limit But there remains the question whether there is
some other way to obtain a definition of tractability in terms of Daley/Smith
measures. The next section discusses four 'possible approaches.

5.2.3. Four Approaches to Defining Tractability
First ‘Approach

Cne way to obtain an analogue to the usual complexity class hierarchy in terms of
a Daley/Smith measure is 'to define complexity classes independently of any size
ordering on problem instances. Let S be the range of a functional that names a
Daley/Smith complexity class. So S is a set of natural numbers. Say that S is
linear (polynomial, exponential, etc) just in case S is the range of a linear
{polynomial, exponential, etc) bijection on the natural numbers. The 'resulting
hierarchy is not trivial For example, consider the class of polynomial sets.
Evidently, the set of natural numbers is polynomial, for the identity function is a
bijection with the natural numbers as range that is bounded by a polynomial function.
Now let S be the range of the function An(2". No bijection with S as range can
be bounded almost everywhere by any polynomial function.

Although the resulting hierarchy is not trivial, it does promise to be very coarse.
For example, if an enumerably infinite set S is linear (polynomial, etc) then for any
non-linear (non-polynomial, etc) set S, SUS' is linear (polynomial, etc). This is in
sharp contrast to the standard, short-run approach, in which any problem that
"interleaves” two problems in different complexity classes has the complexity of the
more complex constituent®®

Second Approach

Another obvious approach is to define sizes for functions, but to abandon any
hope of computing the size of a given function, even in the limit Given a fixed

88That is, let fini=n if n is even and 2" otherwise. This probiem is non-polynomisl, but the problem whose domein

is restricted to even numbers is linear,
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programming system, each such function has a program of least size, where the
size of a program is arrived at by counting its symbols. So we could let the size
of a function be the size of the smallest prpogram that computes it

This proposal agrees nicely with the apparent aim of Daley and Smith to make the
theory of EA-convergent complexity as analogous to the standard theory as
possible. As in the standard theory, for example, there are only finitely many
distinct functions of any given size. Hence, the worst~case complexity of .a
machine with respect to problem size n is defined exactly when the ma'chiné
converges on each problem instance of this size®® But this fact also tells us (in
light of the result of Daley and Smith cited earlier) that the size of a function
cannot be assigned by any effective procedure, even in the limit.

Another difficulty with this approach is that there is no obvious connection
between the minimum program size of a function and the work required to identify
it In the standard theory, a larger instance of a graph search problem means more
arcs and nodes, and exponentially more paths to search. Adding larger numbers
means comparing and carrying more digits. Checking larger numbers for the
property of being prime implies more tests of possible factors. Now consider the
obvious method for identifying the primitive recursive functions in the limit |t
employs an enumeration of primitive recursive indices and always conjectures the
least index consistent with the given evidence. The Daley/Smith complexity of
identifying a function of size n will depend, then, primarily on the position in which
its first program appears in the enumeration and on the computational resources
expended in testing each hypothesis up to this point. There seems little reason to
suspect that either of these quantities should depend upon program size.

A possible response runs as follows. Let M be the usual enumeration method
empioying some, complete non-redundant enumeration o of the primitive recursive
functions. Regardless of the order of o, we know that for each n there is an n'>n
such that o <o . It is plausible to take the effort expended by stage n to be the
number of hypotheses considered by stage n. Hence, any asymptotic bound on the
worst-case complexity of an arbitrary enumeration method must rise with function
size after all.

But it is still the case that the size of a function has nothing to do with anything
like the size of the "input’ an inductive procedure receives when attempting to

Daiey and Smith assume canonical function presentations, so | shail not distinguish & function from its canonical
presentation.



137

identify the function. In the standard theory, the size of an instance is usually taken
to be the number of symbols occurring in the machine's input The intuitive
connection between increased computation fime and increased input size is that it
takes longer to "chomp on" a bigger input because there is more input to "chomp

on”. In the limiting complexity theory just proposed, there is no such intuition to
favor one "size” function over another. Therefore, if complexity classes are not
preserved under the arbitrary bijective transformation of function sizes, the theory

just proposed would be too arbitrary to explicate intuitions of inductive efficiency. ‘
Third Approach

In the last approach, the assumed size measure on functions seemed arbitrary
because it did not reflect the input received by a program attempting to learn a
given function. An obvious candidate for the size of the input to an inductive
device with respect to an evidence sequence is the length of the initial segment of
the sequence the device reads before converging to a conjecture. So a natural
measure of the._size 1f.M! of a function f (with respect to an IIM M) is the amount
of evidence M reads when faced with a canonical enumeration of the evidence for.
£%° Next, let {g: ieN} be a Daley/Smith measure for lIMs. Let S be a set of
functions, and let M identify S in the limit Then define the worst-case complexity

of M on S at stage n as
W, S.n) = MAX{® (fl|fMi=n}.

Define complexity classes as follows: Sng just in case there is an M that
identifies S such that for all but finitely many n>0, W,,(S.ni<gin).

This theory exploits the intuition that the resources required to identify a function
that requires more evidence to identify will increase asymptotically. Hence, one
might expect a complexity hierarchy as in the standard theory.

But unfortunately, the hierarchy is threatened with trivial collapse in light of the
"Fabian strategy” discussed earlier. Recall that the scope of the Fabianization of a
machine is identical to that of the machine Fabianized. Moreover, we have seen that
the modulus of g with respect to the f-Fabianization of M is greater than
gMod(f M)). That is, the f—Fabianization of M "inflates” problem size by more than a
factor of f, without doing significantly more work than M, which it simulates on a
cut—-down evidence sst in order to produce its conjecture. But an inflation of input
size by a factor g(x) is the same as a deflation of complexity by the same factor.

o L R .
This basic idea wes suggested to me by Clark Glymour in a telephone conversation.
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So for any problem S, it seems that there is a radically Fabianized strategy that is
"easy” to compute according to this theory.

Fourth Approach

The fatal defect in the previous theory is that each machine is permitted to assess
the size of the task it faces——- and like people, some machines are prone to
exaggerate the difficulty of their undertakings. A response to this defect is to put
all the machines on a common standard by defining |fi to be MIN{|Mfi: M can
identify S}, for each feS.

But this cure is worse than the disease. For example, let S be the set of all
primitive recursive functions. Then for each f in S, (fi=1. For recall that S can be
identified by an "enumeration method” that tests each primitive recursive index
against the data until the index fails and the method conjectures the next index in
the enumeration. To obtain a device that identifies § for which the modulus of f is
unity, just construct an enumeration method whose first conjecture is an index for
f. Clearly, a size measure under which all problem instances are of size one will
not support an interesting hierarchy of asymptotic complexity classes.

£.2.4. Section Summary

We would like a theory of the complexity of EA-convergent complexity that
permits us to define tractability non-trivially, that is invariant under the order of
presentation of the evidence, that permits us to compare the intrinsic difficulties of
all sorts of inductive problems, that can be applied @ priori to help us evaluate
inductive methods before using them, and that does not seem entirely arbitrary or
conventional in providing these assessments.

So far, no single proposal has even remotely delivered all of this. The obvious
concept of tractability with which we began was trivialized by Fabian methods.
Bounds can be placed on the amount of evidence a method may read before
converging to a correct hypothesis, but it is difficult to motivate the study of any
particular such bound. The AUC measure seems like a way to counter this
trivialization, but at the expense of being sensitive to the order in which the
evidence is presented and providing no intuitive concept of tractability.

We began by pointing out that to prove that a conjecturing behavior that solves a
problem is difficult is not to show that the problem Jtse/f is difficult. But given the
difficulties that arise from our intuitions about what the intrinsic complexity of a
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limiting inference problem is, the best course for the present may be to investigate
-the relatively clearer short-run complexity of particular conjecturing behaviors that
solve the problem. .

5.3. The Complexity of AE~convergent Computation

In seeking a theory of AE-convergent complexity, it is natural to ask first whether
any one of the theories of EA-convergent complexity considered above applies to
the more general case of AE-convergent computation. First, recall that the AUC
measures are defined in terms of a unique conjecture at which point the device may
be said to have converged, once for all, to an hypothesis. But a device can AE-
identify a theory without doing so at a unique point in its conjecture sequence.
indeed, there can be a distinct "convergence point” for each equivalence class of
-sentences in the hypothesis language. Therefore, even if these measures were
entirely unobjectionable on other grounds, none of them is applicable to AE-
convergent computation.®’

The simpler approach discussed at the beginning of the previous section would
indeed apply to the case of AE-convergent computation without alteration. But,
alas, it is ftrivislized by the Fabian methods. We can skirt this trivialization by
studying beefed—up problems, but this is really just a way of changing the subject
The account of tractability is still trivial regarding the problems we wanted to study
originally.

Since these approaches are representative of the literature on the question, AE-
convergent computation still lacks anything like an adequate complexity theory. The
purpose of this section is to examine some proposals for such a theory. We can
always fall back on the study of augmented probiems, just as in the EA-convergent
case. But we ought to take a stab at a more general perspective, if only to see
what sorts of new issues arise in characterizing tractability in the novel context of
AE-convergent computation.

5.3.1. Computational Mode!

To begin with, we must settle the computational model for which the desired
complexity measure is to be defined. A theory identification machine (TIM) is an
oracle Turing machine that queries for evidence sentences and that conjectures finite
sets of purely universal, function free sentences in a given hypothesis language.

91 R ' ,
Not all Daley/Smith measures are defined in terms of the modulus of convergence.
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HEMP, NICOD and CONSIST were presented as functions that take a finite set of
evidence as input and that output some finite set of universal sentences. There is
no conflict here, for any such procedure M.can be converted into 2 TIM by tacking
on a querying "front-end” and a buffer that saves all the evidence read so far and
passes it as an input to M.

5.3.2. The “Milestone” Theory of AE-convergent Complexity

The Daley/Smith theory does not apply to AE-convergent computatidn because the
modulus function is undefined in this more generai setting. But a TIM must, in some
sense, forever "approach” the theory (deductively closed set) to which it converges.
This observation suggests that asymptotic complexity bounds should be sought over
the resources consumed in achieving "milestones” of approximation to the theory
converged to. Then instead of seeking a "size" for infinite inputs from which we
can inherit asymptotic resource bounds on AE-convergent computations, we can
instead base the asymptotes on the effort spent in achieving milestones of
approximation of the theory convei’ged to. Since a better degree of approximation
to a given target theory is intuitively more difficult to achieve, such bounds would
be quite naturally motivated.

To explicate the notion of "achieving milestones”, a formalization of the notion of
"achievement” is required. More precisely, say that '

TIM M achieves theory T at stage n on evidence presentation ¢ just in
case for each n'>n, the conjecture of M on reading o, is consistent and
entails T.

Notice that if M's conjectures are always consistent, M achieves every tautologous
theory at every stage. Also, achievement by M at stage n is closed under logical
consequence. If T is achieved by M at stage n and T|=T, then T is achieved by M
at stage n. Now we can define an obvious analog to the concept of the modulus
of EA~convergence.

The achievement modulus of M with respect to T and ¢ is n just in
case n is the least n' such that M achieves T at stage n' on presentation
g.

The general idea is to measure the resources consumed in achieving each of
infinitely many degrees of approximation to the theory AE-converged to, such that
each method that AE-converges to T achieves, eo /pso, each degree of
approximation in the sequence. But to characterize this notion precisely, a concept
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of degrees of approximation of a theory is required so that there is an infinite
sequence of ever better approximations to any given theory. That is, we need a
function m such that for each pair of theories T,T' in the hypothesis language H,
m(T,T) is called the degree of approximation of T' to T. To be technically useful m
should satisfy the following axioms:

1. If T=T" then m(T.T)=w
2. Otherwise, m(T,T)ew

3. If M[o] AE-converges to consistent theory T then for each new there
is @ k such that the achievement modulus of T by M on ¢ is k and
m(T,T)=n.

where « is the set of all natural numbers. First, each theory approximates itself
"infinitely well". Second, any theory is approximated by a distinct theory to some
finite (possibly zero) degree. Finally, If M AE-converges to T then each degree of
approximation to T is achieved by M after some finite number of conjectures. The
first two requirements ensure that there will be a totally ordered, countable infinity
cf milestones so that the total effort required to achieve each one can support an
asymptotic bounding function of the sort familiar in standard complexity theory. The
third postulate ensures that these milestones are not vacuous. That is, no device
can AE-converge to T without achieving each finite milestone at some finite time. It
would clearly be undesirable for a device to be capable of AE-converging to T
while remaining stuck forever at some finite "approximation” of T.

Given‘ that we have a notion of achieving a theory and a way to characterize the
degree to which one theory approximates another, it remains to measure the
resources expended in achieving some theory that approximates the one converged
to by a given degree. Accordingly, let <I>M(T) be like a Daley/Smith measure, only
with the the modulus of M on ¢ replaced by the achievernent modulus of M with
respect to T and o. Call such a measure an achievement measure for M. Intuitively,
® measures the "total effort” expended by M in coming to achieve T on input o,
just as a Daley/Smith measure reflects the total effort expended by M in EA-
converging to an hypothesis on o. Like the Daley/Smith measure, this one is order
dependent with respect to o.

Given these pieces, the complexity of TIM M at milestone n on presentation o is
defined as follows:
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- MIN{® (T)m(T,T)=n}
if M[o] AE-converges to T.

CM(n,a)= N

undefined otherwise.

That is, the complexity of M on sequence o at stage n is the amount of resources
consumed in achieving the nth milestone of approximation to the theory AE-
converged to by M on sequence o, if there is one. '

An inductive inference problem is a set S of enumerable structures for H. For
each structure R in S, let TR) be the complete H-theory of R Assume that the
evidence presentation for each structure R is some canonical sequence p(R). This is
analogous to the Daley/Smith assumption that function presentations are in canonical
order.

Finally, we can. introduce & hierarchy of complexity classes as follows:

Problem S is linear (polynomial, exponential, etc) just in case there is a
linear (polynomial, exponential, etc) function p and a TIM M that AE-
identifies S such that for all but finitely many n, MAX{C (n pRIReS} is

defined and no greater than pin).
Notice that if any C value is undefined at n, the MAX expression is undefined as
well.  But the MAX can also be undefined even if C is defined for each ReS. This
happens when for each problem instance R in S whese nth milestone takes k steps,
there is an R’ in S whose nth milestone takes k'>k steps.

This theory is complicated, but its motivation is straightforward and it has some
advantages. As in standard complexity theory, the complexity of a device is defined
independently of whether the device so/ves the problem. And unlike the Daley/Smith
account, this theory requires no "natural’ boncept of the "size" of a problem
instance. Asymptotic bounds are based, rather, on the difficulty of achieving better
approximations to the theory converged to. Notice that this feature also thwarts
the Fabian machines that collapse the Gold/Angluin approach. Milestone size depends
only on the structure of a conjecture and on the theory converged to, and Fabian
tactics affect neither of these factors. Finally, unlike the second proposed revision
of the Daley/Smith theory presented earlier, this account holids the potential of non-
trivial complexity for finite problems (sets of structures).
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5.3.3. Approximation and Verisimilitude

So far it has been assumed that there is an approximation function m such that
mT,T)=w if T=T and mT,T)ew otherwise. The intuitive interest of the milestone
theory of complexity rides heaviy on how naturally this function reflects the
"degree to which T' approximates T."

Notice that in assessing the complexity of prob/ems, we are interested only in
values of m(T,T} for which T is the H~complete theory of some structure R for
H So we may speak interchangeably of m{T,T) and m(RT) when T=TR). The
restriction of m to complete theories in its first argument can therefore be thought
of as a "measure” of the "truth-likeness” or verisimilitude of T with respect to R,
for it is intended to reflect the degree to which T' "fits" world R.

The notion of verisimilitude was introduced by Karl Popper in one of his many
quarrels with what he took to be the methodological dictates of probability theory
[1865, pp. 233-4]. Un;‘ortunately, Popper's theory and its successors all take
degrees of verisimilitude to be rational numbers in the unit interval. Hence, such
theories do not satisfy the three axioms on approximation degrees laid down in the
previous section. But following definition of m® does satisfy these axioms.®?

MAX{k: kew and T'|k = Tk}
if a natural maximum exists;
m({T,T)=
.. w otherwise;

Intuitively, the nth milestone faced by a TIM that converges to T on this theory is
to get each subsequent conjecture to be consistent and to entail all the
consequences of T of length n. Or semantically speaking, the nth milestone is to
get each subsequent conjecture to be consistent and to entail the set of all
sentences of length n that are true in structure R.

This measure places a premium on accounting for short, informative hypotheses as

2 R
This definition was suggested by Glymour in & private conversation.

53(1) Assume T=T'. Then T!k=T' |k for eech k. Hence no maximum such natural number k exists. Therefore
mT,Tl=w. (2} Assume T is not identical to T‘. Then there is some sentence s of minimail length that is in S but
noet §' or vice versa. Let the length of s be k. Then m(T,T')sk-1€ @. (3) Finally, suppose M AE-converges to
consistent theory T on O. Then for each s in T, there is 2 j such that s is entasiled by all conjectures after the kth
one, and for each s’ not in T, there is & j° such that s’ is not enteiled by any conjecture after the kth one, Since T
is consistent, there must also be some least stage j“ after which esch of M’s conjectures is consistent (or else i’
does not existh. M achieves Tin at stage n just in case all subsequent conjectures are consistent with Tin and
entail Tin. Since Tin is finite, there is slweys some stage jn by which each conjecture of M enteils each sentence s

in Tin (nemely, janAX(j: s€Tin and j is the first stage such that for afl subsequent stages, the conjecture of M
entails s}.) Hence, MAX(j",jn) is the {inite achievement modulus of T!n.
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soon as possible.  Also, to figure out one's eternal commitment to longer
hypotheses seems intuitively to require more work than determining one's eternal
commitment to short, syntactically simple hypotheses, especially considering that the
number of hypotheses of size n rises exponentially in n. ‘

There is also an important objection. No amount of improvement in the agreement
of T's long consequences with the facts about R can possibly raise m(R,T) until each
shorter sentence is accounted for. But intuitively, enough such improvements ought‘
to increase the verisimilitude of a theory at least a little, even if some small
consequence is yet unaccounted for. So this definition of m seems to unfairly
penalize’ methods that prefer to examine big sentences long before considering
some short one.

If the hypothesis language is closed under conjunction, then the last criticism is
somewhat ameliorated by the fact that if a short sentence is not accounted for, all
the longer conjunctions in-which this sentence occurs as a conjunct fail to be
accounted for. So not achieving earlier milestones can prevent the achievement of
infinitely many later ones. But this consideration does not always preclude the
previous objection, for if milestone n is not achieved, there may not be
conjunctions of missing sentences of size n that are of every size greater than n.

A natural way to attempt to avoid counter—intuitive reliance on "artificial’ syntactic
features of hypotheses in the assessment of the complexity of inductive inference
is to define m in terms of semantic concepts only. So what is desired is a
definition of m(D,T) that satisfies axioms similar in spirit to those presented earlier,
but that is defined in terms of a verisimilitude relation (whose first argument is &
structure) rather than an approximation relation (whose first argument is a theory)
The revised axioms are as follows:

1. If TD)=T then mD,T=w

2. Otherwise, miD,Tew

3. If Mlo] AE-converges to T(D) then for each new there is a k such
that the achievement modulus of T by M on ¢ is k and m({D,T)=n.

it is readily seen that these axioms enforce the spirit of the previous ones when
the first relatum is a structure rather than a theory.

But to find an intuitive definition of verisimilitude that satisfies these axioms is not
so simpie. For example, consider the following measure. Assume H has no



145

function symbols. Then every substructure of a structure for H is a structure for
H For any enumerable structure R for H, let Sub(R,n) be the set of all restrictions
of R to structures of cardinality no greater .than n. Then we can define

(~ MAX{n: for all R in Sub(R.n), R'{=T} if it exists;

mR,T)=
0 if there is no n such that for all R' in Sub(R,n), R'!=T:

L_ w othe_rwise.

.

Roughly speaking, the nth milestone facing an inference device is to settle on a
theory that is true in each substructure of R whose cardinality does not exceed n.

Unfortunately, this definition does not satisfy the third axiom if the function-free
hypothesis language H can express existential quantification and has some non-
logical predicaté_. Let D be a finitely axiomatizable structure in which there is but
one domain element with property P. Let A be a finite axiomatization of TD). A
device that always conjectures A EA-converges and hence AE-converges to T(D)
But each conjecture must entail the sentence (Ex)(Px), which is true in D. But for
each k, (Ex)Px) is false in some substructure of D of size k (eg in those
substructures from which the unique object with property P is eliminated)
Therefore, M AE-converges to T(D) without achieving any milestones of
"approximation” to T(D) on this account This is exactly the vacuous situation the
third axiom is intended to prevent

The difficulty is apparently associated with existential quantification. But HEMP,
NICOD, and CONSIST do not conjecture existential hypotheses anyway. So there is
stil a strong motivation to see how naturally this account works for purely
universal, function—free hypotheses. But unfortunately, the third axiom still fails.
Intuitively, the difficulty is this: AE-convergence to the purely universal theory for a
structure D does not imply that for each n there is some finite point after which
each conjecture fails to entail any sentence faise in a substructure of D of size n
And if there are infinitely many points at which such sentences are rejected by M,
the nth milestone is never achieved, even though M AE-converges to T(D)
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5.4. Revised Ambitions

The milestone theory of AE—convergent complexity (based on the syntactic concept
of theory approximation) may be formally nontrivial, but it is not free from
objections.

First of all, the milestone theory, like the Daley/Smith approach, is relative to a
canonical order for the evidence. So it suffers from equally serious objections

when the problem is to infer a set from positive examples only.

Second, it is intuitively biased against AE-convergent devices that consider large
hypotheses first The semantic approach would alleviate the sensea of syntactic bias,
but | have discovered no formally adequate example of a semantically defined
verisimilitude function. In short, the question is open whether the "milestone”
approach to a hierarchy of asymptotic complexity classes is viable. The failure of
two obvious attempts should not be taken as persuasive evidence that it is not

Even if no plausible approximation measure can be found for the milestone theory
just presented, the considerations that motivated this theory must be addressed by
any adequate glternative. The first consideration is that AE-convergent complexity
must somehow reflect the resources consumed in producing suitable conjectures in
the short run. The second is that the notion of complexity must avoid trivialization
by Fabian strategies that are easy to compute in the short run, but that take much
longer to achieve any degree of approximation of the theory AE-converged to in
the long run. The milestone theory is perhaps the most obvious way to try to
balance these considerations, but it need not be the only way.

In the meanwhile, life must be faced without an explicit, universal theory of AE~
convergent complexity. And it can be, so long as our theoretical aims are not too
ambitious. Recall that in standard, short run complexity theory, complexity classes
of problems (computable functions) are defined in terms of the resource
consumption of programs that compute them. There is no interesting standpoint
that is less general than that of the problem and yet more general than that of
particular programs. But in each of the limiting complexity theories reviewed in this
chapter, the situation is different Between inductive problems and their solutions
are confecturing behaviors. More precisely, a conjecturing behavior is a total
function from finite evidence sequences to finite sets of clauses. In standard
complexity theory many programs solve the same problem. In the limiting theory,
many programs compute the same conjecturing behavior, and many distinct
conjecturing behaviors lead to a solution of the same inference problem. So in the
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study of limiting complexity, we can take a .natural, general perspective (of
conjecturing behaviors) without taking the fu//y general perspective (of probiems).

-

in the special case of TIMs, there is yet another natural, intermediate perspective
more general than that of individual conjecturing behaviors but less general than that
of problems. For any two conjecturing behaviors f,g, f is equivalent to g just if
for any evidence sequence o, flo) is logically equivalent to glo). Clearly, any device
whose conjecturing behavior is equivalent to f has the same inductive scope as any
device that has behavior f, but not conversely.®® Now define a short-run strateg};
to be an equivalence class of conjecturing behaviors. Many conjecturing behaviors
realize the same strategy, and many strategies solve the same inductive probiem.

These relationships are sketched in the following table:
Standard complexity theory:

problems
{functions)

solutions -
(programs)}-

AE-convergent complexity theory:

problems
{sets of structures)

short-run strategies
{equivalence classes of equivalent conjecturing functions)

conjecturing behaviors
(functions)

solutions
(programs)

For example, recall the procedure CONSIST. It is defined with respect to some
enumeration {Hypsin)} of nested subsets of the hypothesis language. At each stage
n, it conjectures the set of all clauses in Hyps(n} that are consistent with the first n
evidence sentences in the given evidence presentation. So its conjecturing behavior
is

floel= {seHyps(ni:s is consistent with the set of all evidence sentences
appearing.in o}
Hence, the strategy of CONSIST is:

94
Recall the Febian conjecturing behaviors.
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For each finite evidence sequence o, to conjecture some subset of
‘Hypsin) that is equivalent to the set of all s in Hypsin) such that s is
consistent with the set of all evidence sentences appearing in o.

So although we are in no position to compare the efficiencies of all possible
programs that solve a given AE-identification problem, we can at least compare the
relative efficiencies of programs that pursue the same strategy in solving such a
problem. That is, '

M is as efficient an implementation of strategy [f] as M is just in
case ¢, ¢, are equivalent to f, and for all but finitely many finite input

sequences o, ¥, (o) _<_<I>M,(¢r).95
Moreover, one can say that

a strategy is linear (polynomial, etc) just in case some conjecturing
behavior that accords with this strategy is linear (polynomial, etc.)

This definition permits us to speak of the NP-completeness of a strategy, for
example. As we saw earliér, such a result implies nothing about the intractability of
the overall inference probiem addressed by this strategy. But it does tell us
something very general and useful about the practical project of designing an
elegant algorithm that implements the strategy under study. any known approach will
involve an ugly search in infinitely many cases. Such a result can serve as ample
warning that it will be hard to find an algorithm for the strategy that avoids the ugly
search.

But it is also important to remember what this sort of analysis cannot do. We are
not entitled on this approach to compare the relative efficiencies of programs that
pursue distinct strategies (i.e. that compute inequivalent conjecturing behaviors). And
the programs HEMP, NICOD, and CONSIST all pursue distinct strategies. Moreover,
devices that rely on distinct suitability relations in formulating their conjectures will
typically pursue distinct strategies, and hence be incomparable. Therefore, we have
no general, theoretically sound basis for saying that one suitability relation is "better
than” another for a particular theory inference problem.

-1 . .
Where ¢ is an sssumed Bium compiexity measure.
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5.5. Complexity and Efficient Generation

It is reasonable to expect to find a device far more efficient than CONSIST in
accordance with the sufficient condition just discussed. That is, some device with a
conjecturing behavior equivalent to that of CONSIST must surely use fewer
resources on each input At stage n, CONSIST tests every sentence in Hyps
against the evidence. But as we shall see in the next chapter (c.f. section 6.7.1), this
consistency test is likely to be intractable in the size of the hypothesis tested.
Hypothesis size increases linearly with the size of the input (for a TiIM reads oné
evidence instance at each stage, and hence has read n instances when it tests
hypothéses of length n). Therefore, testing hypotheses gratuitously is extremely
wasteful. And nothing prevents CONSIST from testing logically equivalent clauses.
Hence, a device that does not test all logical variants of the same hypothesis could
be expected to be more efficient, provided that its management of the equivalence
check does not offset the effort saved in empirical testing. It would be better still
if all sentences in Hyps_ logically equivalent to a given sentence in Hyps_ could be
efficiently excluded from consideration a priori (eg without considering the
evidence). Also, any h that entails a refuted hypothesis or that is entailed by an
hypothesis that passes the relevant test may be ignored safely a posteriori (ie. as a
function of the current evidence). If these sentences need not be tested against the
evidence, it is also clear that they need not be considered for any other reason.

From these considerations, it is clear that improvements of HEMP, NICOD, and
CONSIST will have much to do with finding more elegant ways to generate certain
restricted subsets of Hyps in the short run. But standard complexity theory has
evolved with particular emphasis on the tractability of decision problems rather than
on the tractabilty of generastion problems [Garey78]. The philosophical
preoccupation with tests (as opposed to generators) that was encountered in
Chapter One has to this extent infected computation theory as well But does the
computational complexity of the decision problem tell us anything of interest about
the corresponding generation problem? This question has a general computational
significance that transcends its particular application to the logic of discovery. Or
rather, it would have such significance if it were a well-posed question. To pose it
mathematically demands a formal characterization of finite set generation problems
as well as a non-trivial, intuitively informative account of the resource consumption
of their solutions.
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5.5.1. The Problem of Generating Finite Sets

In formulating a theory of generational complexity, the first step is to characterize
generation problems mathematically. It would not do to conceive of a generation
problem as a single, finite set which we would like to generate, for this sort of
problem can be solved with trivial ease by a device that "memorizes” the set in
question and then prints it out on demand. But a less trivial situation is actually
encountered in applications: given some arbitrary natural number k (and perhap§
some -other inputs of different types), the problem is to generate a some finite
subset P of some infinite, RE. universe U. So a generation problem {P } is just a
functioh from natural numbers to finite sets. Since this sort of "parameterized”
generation problem is infinite, no trivial "lookup table" solution is generally available.
Such problems arise naturally in the design of efficient AE—identification procedures.
For example, P, might be a result of removing all logically redundant sentences from
Hyps, in the procedure CONSIST. Or it might be one of Shapiro’s "refinement

operators”, where P _ is the set of all sentences at ievel k of the refinement graph

kO
that are refinements of sentence ¢. Or finally, it might be a subroutine that

generates a subset of Hyps, that is free of of logical redundancies.

Next, explicit conditions must be provided under which an arbitrary Turing machine
is taken to have solved a generation problem. Assume that the machines in question
have separate, write—only output tapes and a finite output alphabet X. Also assume
a coding scheme that associates each element of the universe U with some finite
string of characters in £ A machine is taken to have generated subset P of U just
when it is in its halting state, and the write—only head is immediately to the right of
a finite sequence of codings for elements of U, separated by singie blanks. So a
set is represented by a list (possibly redundant) of code strings for its elements.
Such a machine is given a number n as input just in case it is placed in its initial
state with its read-write head immediately to the left of a binary numeral for n. A
machine solves {P } just in case it outputs P, in finitely many steps after receiving
k as input, for any natural number k.

The major point buried in these technical conventions is that a machine has not
made an output until it is in its halting state. Therefore, it must "know” that it has
written down every element of P_in finite time. It does not count, for example, if
a machine goes on an infinite search and eventually writes down each element of
the target set without terminating its search explicitly by entering the halting state.
The motivation for this requirement is simple: a general logic of discovery must
generate conjectures in finite time. Hence, any generator serving as a subroutine to
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the overall conjecturing process must complete its computation in finite time and
explicitly signal the main routine that it is finished.

-

5.,5.2. The Complexity of Generating Finite Sets

Since a generation problem is merely a function with finite sets as values, one
approach to a formal theory of generational complexity is to take the standard,
worst—-case Turing time measure over programs that compute the function.

4

Recall that the standard, worst case measure is based on the "size” of the input
A methodological convention in complexity theory is that input encodings should not
"pad” input size so as to make a problem seem easier than it ‘really’ is

[Garey78] p. 10. Hence, it is considered unfair to take the size of an input
natural number to be the number itself, for each number n can be coded in a binary
numeral system by a string whose length is on the order of log,(n). Let f(x) be any
function on the natural numbers that represents a value based resource consumption
measure. To switch to a numeral-length based measure is just to adopt a measure
bounded below by the functional composition rix)=fllog,x). Since the log function
has an inverse, this is equivalent to

fix)  =rliog™ )

=r(2%).

The composition of any monotonic, increasing polynomial function with an
exponential function is non—polynomial. So basing the complexity measure on input
iength has drastic consequences for complexity theory. Indeed, problems that are
NP complete on the numeral-based measure would be polynomial on the value-
based measure.®®

Each generation problem {P } is associated naturally with a decision problem Alx,s),
where A(x,s) holds of natural number x and element s of U just in case s is an
element of P . The problem is to decide for any given x and s whether Alx,s). A
solution to such a problem is a machine that computes its characteristic function.
The same worst~case complexity measure applies to such solutions.

With one account of generational complexity in hand, what does the easiness of a
generation problem say about the easiness of the corresponding decision problem
(and vice versa?) To begin with, it is at not clear that there is a general procedure
to convert a fast test procedure into a generation procedure that solves the

96E.g. the PARTITION problem. [Garey79), p. 91.
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corrésponding generation problem. An obvious attempt, for example, would be to
enumerate the universe U effectively and to successively test each item in the
enumeration. But this procedure lacks an effective criterion by which it can
terminate its search of U without failing in some case to consider some element of
the set to be generated And it is not obvious how such a criterion might be
obtained from an arbitrary test procedure and an enumerator for U.

It is certain, however, that the existence of an easy test does not guarantee the
existence of an easy generator. For there exists a difficult generation problem
whose corresponding test problem is easy. Let P, be the set of strings of length k
on some finite alphabet X Clearly, the decision problem A(x,y) corresponding to P,
can be solved in time linear in the length of the inputs®’ But any machine that
solves the generation problem must print the answer. Hence, its resource
consumption must be at least super—exponential in the input length.

But the converse is true: - if a generation problem is easy, then its corresponding
test problem is as well. A generator cannot operate in polynomial time unless (P, |
grows polynomially in logkk). And if a given program generates P, in polynomial
time, it requires only polynomially more time to check the membership of x in P
for in the worst case, only polynomially many comparisons need be made.

Each of these results is a shallow and relatively uninteresting refiection of the fact
that if [P_{ rises exponentially in log,x, then any solution to the problem uses more
than polynomial time just to print its answer. There is a legitimate sense in which
any procedure that generates intractably large sets is intractable. But there is also 2
sense in which such a procedure can seem efficient; and the standard approach to
the theory of complexity tends to obscure this fact It is one thing to be required
to generate a large set It is quite another to dawdle in generating some of the
elements of that set And it is the degree of unnecessary dawdling that is relevant
to assessments of elegance and efficiency. Therefore, it would be desirable to
have an account of generator complexity that does not penalize a generator for the
sheer size of the set to be generated.

An obvious response to these concerns is to "factor out” the expense of writing
down the answer from our assessment of generational complexity. That is, we can
let the generational complexity of a finite set generator be its standard complexity
divided by the size of the output set as a function of the input size.

97 . . Lo Lo
Just count the string to check its length, and then check to ensure that each symbol occurring in the string is an
eiement of L.
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. Generation problem {P } is in generational complexity class pfx) just
in case there is a program P that solves {P_} such that for each natural

number n, the greatest resource consumption of P on an input of size n
is less than or equal to pin)iPin)i,

where |P(n)! is the size of P(n.?® Notice that the size of the set generated, rather
than the size of the machine’'s output, serves as the denominator in the quotient
Hence, a2 machine is penalized for listing its output set in a highly redundant manner.

An obvious candidate for output size is the cardinality of the set generated. But
the matter is flexible, and in some applications (e.g. when the e/ements of the set to
be generated are intractably large with respect to the input size) it might be of
interest to measure the size of the output set as the sum of the sizes of its
elements. The size of an element may be any natural, syntactic measure such as

string length. So for example, the output string
<112 212 345 445 213 123 123 123 123

would have size 5 on the cardinality measure but size 15 on the summed string
length measure.

Consider two generators that conjecture at stage i some subset of Hypsii) that
bears relation S to the given evidence e, at stage i Assume also that the first
device generates an elegant, independent axiomatization at each stage, while the
latter operates like HEMP, NICOD, and CONSIST (ie. by "sifting” Hyps(i} by means of
some (expensive) test procedure for S). Ceteris Paribus, a procedure P that
generates an elegant, independent set seems more efficient than a procedure P,
whose conjecture is highly redundant But assume that the size of a generated set
of sentences is just the sum of the lengths of the sentences in the set Then the
inelegance of the "sloppy” procedure P' does not show up in its generational
complexity. This anomaly results from the division of the resource consumption of
P by by the size of the gratuitously large set it generates. Such a measure

n99

confuses bureaucratic "red tape"®” with productivity.

But the difficulty is easily corrected. Let the /ogical size of a set I' of sentences
be the size (in the previous sense) of the smallest subset K of I' that is logically

8

There is an alternative approach in the iitersture that takes the compiexity of & generstion problem to be the
complexity of the probiem of deciding the graph of the generation function. That is, given & pair <n, S>, where n is
& number and § is & finite set, the mechine must decide whether San. { heve no quarrel with this approach, but
since mine applies directly to generstion procedures without converting them into decision procedures, | find it more
convenient. | thank Ken Manders for pointing out the alternative theory to me.

8
9This has nothing to do with Turing tape.
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equivalent to I''°  Assuming this size measure, devices with heavily redundant
conjectures are indeed penalized by generational complexity. Now, a device that
tests too many hypotheses cannot "hide” behind the bloated size of the redundant
set it conjectures.

The importance of this proposed approach to generational complexity theory is to
provide a formal explication for pre—theoretic intuitions whether a given generator is

elegant Since almost every inductive inference system in Al invoives some sort of

generate—and-test architecture,’®’

2

there is indeed a healthy source for ‘such
intuitioqs.’° By way of illustration, consider the following two examples. The first
example illustrates how an intuitively elegant generator has a low generational
complexity, and how an intuitively inelegant generator has a high generational
complexity. First, consider the easy problem.

p =3
2={1,0}.

IP | grows as 2* and x grows at least as fast as 2", where n is numeral length
So (P | grows at least as fast as the elementary function

27
Nevertheless, it seems as though each set P, can be generated without thinking very
hard about how to build any individual element of the set This intuition is indeed

confirmed by the proposed complexity measure. For consider the following,

recursive description of the function GEN(x) = P :
GEN(n) {A} if n=0
U{o*k: o e¢GEN(n-1) and k=0 or k=1} otherwise.

The set brackets and union signs are suspicious, but they will only be empioyed in
unproblematic situations in which the sets to be joined are disjoint, so that union
amounts to list concatenation. The above function can be thought of as fed to an
"interpreter” that computes it as though it specified the following, more explicit
procedure in an ALGOL-like language:

100
This measure mey or may not be effective, depending on the expressive power of the hypothesis langusage.

101
Two notabie exceptions are Langley and Simon‘s BACON, and the procedures for inferring regular sets that have

been presented by Chomsky and Feidman.

102
Recell, for exempie, the discussions of Morning and Pao regarding efficient hypothesis generation.
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Procedure GENI(n):

begin
set out=¢(>; ‘
if n=0 then output A .
else
begin
set I'=GENI(n—-1);
for each x in T" do
begin
set out=out U {1#x};
set out=out U {O#x} .
end
output out
end
end.

For example, consider the case of computing this function for the case of n=2.

GEN(©O) = {(}
GEN(1) = {(»0, (%1}
= {{0).{1)}
GEN(2) {00, (01, (1)%0, (1)1}

{(0,0), (0,1, (1,0), (1,1}

The concatenations performed in the computation of GEN can be thought of as
forming the following tree:
GEN (0)

A
GEN(1) o/ \1
GEN (2) o/ 1 o/ \1

where each path in the tree is an element of the generated set

Let the cost. of computing GEN on input number x be defined as the number of
times the variable 'out’ is reset on input x. In light of the tree, it is obvious that
c(x) =0+2X 1)+(2X2)+(2X4)+..+(2X2%)

=2[% (211.

iz0 to x

But the output cardinality is 2. Dividing the resource consumption by this quantity
yields

2[X (1/2)1.

i=0 to x

Switching from input quantities to the lengths of input numerals requires that the
quantity 2" be substituted uniformly for x.
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2[ (1723

i=0 to0 2

The sequence of values of this function is

-

2(1+3/4), 2(1+15/16)..., 2(1+[(22 -1/27")

which is bounded above everywhere by the constant function fix}=4, so the
generational compiexity of procedure Gen is constant even though the cardinalities
of the generated sets expand super—exponentially in input length. The new measure
captures the intuition that although the set to be generated is ungainly in size, it can
be generated completely with very little effort expended on search or in
constructing a description for any particular element

Not every generation problem can be shown to have a small generational
complexity so easily. For example, consider the generation problem {P }, such that
P, is the set of all first order formulas in the language of addition that are true in
the standard model. It is known that deciding truth over the unrestricted language
of addition requires at least super—exponential time [Fischer74].

The obvious generation procedure is to enumerate the set of all wffs of length k
in the alphabet of addition, and to apply the super—exponential test to each wff.
The total complexity of this procedure will be the test complexity times the number
of wffs over the cardinality of the generated set The denominator is less than the
number of wffs of length k, so the generational complexity of this procedure is at
least as great as the test complexity. So the high cost of the test drops straight
through the calculation.

If the number of truths of length n of the language of addition grows slowly in n,
the generational complexity of the problem cannot be less than super—exponential
For if it were less, the problem of deciding whether an arbitrary first—order formula
of addition is true could be carried out in less than super— exponential time using
such a procedure. Given an arbitrary sentence, one could calculate its length
quickly, pass this length to the generator, and then check whether the given
sentence is in the (small) generated set

We have seen a problem whose generational complexity is low, and one whose
generational complexity is not obviously low. How does generational complexity
compare to the complexity of the corresponding test problem on this account? Our
previous proof that a fast test does not yield a fast generator now falls through,
for it depended on the fact that on the standard theory, it is always hard to
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generate a big set But it is still not obvious how a fast test guarantees a fast
generator on the new account of generational complexity. But now the converse is
not obvious either. Any test procedure that works by generating P, and performing
a membership test will have to inspect all of P, in the worst case. And if P, is not
polynomial in the size of the given object, this test will also fail to be polynomial in
input size in the worst case.

Although this discussion is inconclusive, it does suggest that the quotient measure
pushes aside some glib trivialities in the relationship between the difficulty of test
and the difficulty of generation. For example, a finite set generator must "discover”
in finite” time that its output set is comp/ete (i.e. not missing any elements). As we
have seen, a solution to the corresponding test problem need not embody such an
ability. So perhaps there is a generation problem in which an intractable search of
some large subset of U is necessary to ensure that no elements of the target set
P have been skipped. Such a generation problem might be intractable and yet
correspond to a tractable decision problem. So it may be that there are special
problems in generator design that do not arise in the analysis of the corresponding
decision problem. But it would be far better to convert these speculations into a
mathematical determination of the question. Unfortunately, it is not settled in this
thesis.
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Chapter 6
Equivalent Hypotheses and Inductive Efficiency

in the previous chapter, several theories of AE-convergent complexity were
reviewed. None of them was found to be intuitively adequate. But even without
such a theory, it was observed that the inductive efficiency of different procedures
employing the same strategy can be compared So it makes sense to speak of
"improvements” in our crude (but very general) strategies HEMP, CONSIST and
NICOD, as long as the alleged "improvement” pursues the same strategy.

Recall that HE_MP, CONSIST, and NICOD are defined in terms of an arbitrary,
effective enumeration of nested, finite subsets of the hypothesis language {Hypsin)}.
At each stage n, each of these procedures conjectures the set of all sentences in
Hypsin) that are suitable with respect to the evidence read so far. Therefore, the
strategy pursued by each of these procedures depends upon which enumeration is
assumed. Since our investigation of inductive efficiency will be strategy-relative, the
choice of an enumeration merits some special attention. This choice will be made in
the next section.

With the inductive strategies of HEMP, NICOD, and CONSIST fixed, the investigation
of improving their efficiencies can be addressed. The main purpose of this chapter
is to investigate the extent to which performance can be improved (without
compromising inductive generélity) by ignoring equivalent hypotheses a priori. The
more difficult question of ignoring further hypotheses in light of the evidence given
is undertaken in the next chapter.

It should be pointed out, however, that the techniques of this chapter may be of
help to any inductive procedure that infers universal hypotheses. Such procedures
include Shapiro’'s model inference system and the Meta-DENDRAL program that
seeks universal conditionals linking mass spectra and molecule bond breakages. Iin
either case, the repeated test of equivalent hypotheses is costly dead-weight that
ought to be cut out of the system if possible.
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6.1. The Hypothesis Enumeration

The two properties of {Hyps} upon which the methods HEMP, NICOD, and
CONSIST rely are: '

P1: Hyps, is a finite subset of Hyps  , and

P2: for every h in H there is a k such that h is in Hyps,.

The second property is unnecessarily strong. In fact, each of the enumeration
procedures proposed in chapter four retains its inductive scope even if the second
property is replaced by

P2 for every h in H there is a k such that some finite subset G of
Hyps, is logically equivalent to h.

Since any sentence in a purely universal hypothesis language H is logically
equivalent to a finite set of clauses, P2' is satisfied even if U{Hyps } is just the set
CLH) of clauses on the vocabulary of H So the discussion can be simplified by
letting H be the set of clauses on a function-free vocabulary. Admittedly, this
maneuver to eliminate many truth—functional variants of the same proposition from
consideration has its dark side. Some sentences in which n disjoined conjunctions
of length m occur are expressible in clausal form only by a set of clauses whose
cardinality is m". But clauses are structures familiar to computer scientists, and we
can draw upon and add to this familiarity without any loss in the inductive scope of
our methods by choosing them as our hypothesis ianguage.

We have now decided that U{Hypsin)}=CL(H). But it remains to define each finite
set Hyps(n} in a manner consistent with this requirement This choice will not affect
inductive scope in any way, but it will affect the respective inductive strategies
pursued by HEMP, NICOD and CONSIST dramatically.

There is some merit in considering syntactically simple, logically strong clauses
first, saving long, weak, detailed ones for later. Then if we are lucky, we receive a
jackpot of strong., simple truths early in our inquiry, saving the weak, complicated,
special cases for later. But in the end, this choice of an hypothesis enumeration is
one among many, and | make it only to proceed to more interesting computational
issues that demand that some choice be made.

!

Since adding disjuncts to a given clause can only weaken it, logical strength seems
happily wedded to syntactic shortness for clauses. But the marriage is not quite so
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simple, for longer clauses can entail shorter ones, as the following, elementary
_example shows.

(.)[Px1x2 v szxa v Px3x1]
UIPx.x.J

So there is no sequence of clauses non—decreasing in length that is non-increasing
in logical strength. We might still hope to be able to order such a simple class of
sentences by logical strength, even if some long sentences precede shorter ones.
Unfortunately, this is also impossible, for consider the following schema

C(n)='(.)[Px1x2 v szx3 V.V Pxnx1]'

C='(.)[Px1x1]'

Ciearly, for any n, CIn] properly entails C. So infinitely many distinct clauses
properly entail C. Hence, no enumeration {Hyps(n)} of finite, nested subsets of CL{H)
can be defined such if that if n>n' then no element of Hypsin) entails any element of
Hypsin').'®3
representative of each logical equivalence class of clauses to be in U{Hypsl(i)}. But

One might attempt to remedy this difficulty by requiring only one

notice that none of the Cli) are logically equivalent to one another. So the desired
non-increasing class {Hypsin)} does not exist in this case either.

Since logic does not cooperate with the aim of finding a clausal enumeration that
is non—increasing with respect to entailment, it makes sense to focus on syntactic
complexity instead. An obvious (but certainly not the only) measure of syntactic
complexity of a clause is the number of literals (atoms or negated atoms) occurring
in it. Call this quantity the /ength of the clause.

The obvious step would be to define Hyps(n) as the set of all clauses in H of
length n or less. But unfortunately, this set is infinite, because H has infinitely many
variables, and any substitution of variables for variabies in a clause of length n
yields a clause of length n. But variable~renaming variants are logically equivalent
So the respective strategies of HEMP, NICOD and CONSIST are not altered if all but
finitely many variable-renaming variants are eliminated from each set Hyps(h). One
computationally trivial way to do so is as follows: Let a be the arity of the
predicate of greatest arity in the vocabulary of H. Let Varin} be the set {x1,...,xcn} of
the first cn variables in the vocabulary of H. Then

103
For any n, r(n)= UtHyps(il:0<O<n) is finite. Also, there is an m such that Cé€Hypsiml. But {Cinkn€ @) is
infinite, and hence cannot be & subset of 1 (m).
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Hypsink= {c: ceCL{H), {ci<n and if variable x occurs in ¢ then
x e Var(n}}. .

Now {Hypslil} satisfies P1 and P2, but each Hypsin) is finite.  This is the
enumeration that will be assumed in the balance of the thesis.

6.2. Equivalent Clauses, Complexity, and Efficient Generation

The clauses in Hyps(n} can stili be logically equivaient to one another. In this
section, a simple syntactic condition for clause—to-clause entailment is given it
follows from this condition that there is no known method that could easily decide
such entailments in general (i.e. that the limited entaiiment problem in question is NP-
hard). But there are enough easy, special cases to significantly improve the
performance of the naive enumeration techniques of chapter four.

6.2.1. Clause-to-Clause Entailment
Let C,C' be function—free clauses.

Definition: C collapses into C' if and only if there is a substitution 8
of variables for variabies such that each literal L occurring in C8 occurs
in C.

Fact C1: |=C if and only if for some atom A, both A and -A occur in
C.104

Fact C2: If C collapses into C' then C |= C.'%®

Fact C3: If no predicate P and its negation both occur in C, then
Ci=C if and only if C coliapses into C.

Proof; Fact C3: The side (=== of C3 is a trivial consequence of C2.
So consider the side ===) of C3. Let C.C be two clauses without
function symbols such that not |=C. Also assume that there is no
such that each literal occurring in C8 occurs in C. We must show that
C does not entail C. Let dg(C) be the result of removing all the
occurrences of quantifiers from C. If some predicate occurs in C but not
in C' then there is some structure M for the language of C' and an
interpretation i such that M,i do not satisfy dqg(C). And since some P

104
Let C be & cleuse such thst no estom and its negation both occur in C. Let V be the set of variables occurring

in C. For esch n-ery predicete Q occurring in C, construct the relation R°=Vn-(06\ln: QO occurs in £}, By
assumption, for no Q, O is it the case that QO and -QO both occur in C. Hence <V,R°1,...,R°n>, id do not sstisfy
the open matrix of C, where id:AE--->V is the identity function. So C is not 2 tautology.

1
t’sThi:; fact is trivial,
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occurs in C but not in C, we can extend M with the universal relation to
interpret P if P occurs in C non—-negated, or the empty relation if P
occurs in C negated. Therefore, C does not entail C, and we are done.
So we need only consider the case in which each predicate that occurs
in C occurs in C' as well. Then by the fact hypothesis, either () some
predicate Q occurring in C occurs with the opposite sign in C' and only
with the opposite sign in C, or (I} every predicate occurring in C occurs
with the same sign in C' and only with the same sign in C. Assume case
(. Let VARIC) be the set of all variables that occur in C. Choose some
Q that occurs in C and (only) with the opposite sign in C. If Q occurs
non-negated in C, let R(Q) be VAR(C)" If Q occurs negated in C, let
R(Q) be the empty set For each predicate P of arity n occurring in C
that is not identical to Q, let the relation R(P)=VAR(C)"-{s: Ps occurs in
C' non—negated}. Let <M,f> be the structure whose domain is VARIC)
and such that f(P)=R{P), for each predicate in the language of C. Let i be
the identity interpretation function iVar(C)--->Var(C') that takes each
variable in VARIC') to itself. There are four possibilities for each atom A
occurring in C. {a) Q occurs in A and A is negated; (b) Q occurs in A
and A is non-negated (c) some predicate R distinct from Q occurs in A
and A is negated; and finally (d) some predicate R distinct from Q occurs
in A and A is non-negated. (a) Suppose A is —Q¢. Then by the case
assumption, Q occurs non-negated in C. Hence, f(Q) = Var(C)", so -Qo is
not satisfied in M under any interpretation. (b) Suppose A = Qo. Then
by dual argument, Q¢ is not satisfied in M under any interpretation. (c)
Suppose A is —P_, where P is not identical with Q. Since C' is not a
tautology by the fact hypothesis and fact C1, the atom P_ does not
occur in C. Hence, the variable 'sequence o was never deleted from
f(P)=R(P). So M, do not satisfy —P_. (d} Suppose A is P, where P is
not identical to Q. By construction M,i do not satisfy P, for o is deleted
from the relation f(P)=R(P). Since no atom A occurring in C' is satisfied
by M., M, do not satisfy C. But M,i do satisfy C, for some atom
occurring in C in which Q occurs is satisfied in M under any
interpretation, by the construction of f(Q). Hence, C does not entail C.

Case (Il Suppose that every predicate occurring in C also occurs in C
with the same sign. For each n-~ary predicate P occurring in C' form
R(P)=Var"-{o: Ps occurs non-negated in C'} if P occurs non—negated in
C. and form R(P)={o:Pc occurs negated in C'} otherwise. This is possible
because no predicate occurs both negated and non—negated in C' by
hypothesis. Finally, let <M,f> be the structure with domain Var{C} such
that f(P) is R(P) for each P occurring in C. Let i be the identity
interpretation. Let Po be a non—negated atom occurring in C. Then by
construction, ¢ is not in R(P), so M, do not satisfy Po. Let -Po be a
negated atom occurring in C. Then ¢ is in R(P), so M, do not satisfy
~Pg. Hence, M does not satisfy C. Now assume that there is a j such
that M,j do not satisfy dqlC)l. Hence, for each negated atom -Pe, jlo) is
an element of R(P), and for each non-negated atom Po, jlo} is not an
element of R(P). Consider an arbitrary —Po occurring negated in C. if j(o)
is in R(P), then by construction, there is an atom -Pr occurring in C' such
that jo=r. Next consider an arbitrary Po occurring non-negated in C. If
jle} is not in R(P), then there is an atom Pr occurring in C' such that
jle)=7. Hence, j maps every atom of C to some atom occurring in C,
contrary to hypothesis. So C is satisfied in M on every interpretation,
and hence does not entail C. QED.
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Notice that the antecedent of fact C3 is not vacuous, for consider the following
two clauses:

1. OIPxy v Pyz] | .

2. J[Pyy v -Pzz].

Now examine the question whether clause (1) entails clause (2). In this case, the
antecedent of fact C3 is violated and the consequent of C3 is false. For notice that
clause (1) does entail clause (2).'°° So although the coliapsing condition is an elegant
characterization of -entailment over a special class of clauses, relying on it
exclusively will lead us to miss some redundancies in an expanded clausal language.

The very simple structure of function—-free clauses might suggest that clausal
entailment is easy to decide. But even when the clauses involved are assumed to
be homogeneous (ie. all atoms occurring in the two premise and conclusion have the
same predicate and sign) the clausal entailment decision problem it is
NP-complete.'®’

Theorem NPI1:

-

If C,C are arbitrary, homogeneous clauses in a predicaté Q (whose
arity is greater than 1) then to decide whether C entails C' is an NP-
complete problem.

Corollary:

The problem to decide for any two clauses C,C' whether C{=C, is
NP-=hard.

Proof of theorem:'°®

Recall that C{=C if and only if there is a § such that each literal
occurring in CH also occurs in C. So the problem is in NP, for a
nondeterministic machine can guess an appropriate 6 and verify that Cé's
literals are all in C' in polynomial time.

The problem of deciding whether an arbitrary, finite, non-directed
graph is 3-colorable is NP-complete [Stockmeyer73]. A graph G is a
pair <V,R> where R is a set of unordered pairs drawn from V. G is 3~
colorable if and only if there is an fV——->{1,2,3} such that for any xy
in V, f(x)=fly} only if {xy}eR Let GG be two graphs <V,R>, <V'R>,
respectively. Say that G co//apses into G if and only if there is a

106| am indebted to Ken Manders for this example.

107 .
The size of 8 problem instance is taken to be the sum of the lengths of the clauses involved. Notice that in
the strategies pursued by NICOD, HEMP, and CONSIST, this quantity is linesrly relsted to the input sequence size. So
the NP-completeness of this decision problem may show up significantly in the complexity of this strategy.
108
The outline of this reduction is suggested in [Levin73) and was brought to my attention by Richard Stestmen.

I3
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function f from V to V' such that for each xy ¢ V, if {x,y}eR then
{f(x).fly)} eR. Finally, let K3 be the graph <V"R">, where V'={1,2,3} and
R'={{1,2},{1,3}1.{2,3}}. .

Lermma: G is 3-colorable if and only if G collapses into K3.

===) Suppose G = <V,R> is 3-colorable. Then there is an f:V-—->V"
such that for each x,yeV, if {xy}eV then f(x} is not identical to fly)
For reductio, suppose that there are x,yeV such that {xy}eR but
{f(x).fly)} is not an element of R". Since the range of f is a subset of
V", and for each ab in V" such that a is not identical to b, {ab} ¢ R" it
follows that fix)=fly) So f is not a 3-coloring, which is absurd.
Therefore, for every xyeV, if {xy} ¢ R then {fix).fly)le R. So G
collapses into K3.

=== Suppose G collapses into K3. Then there is an f such that for
all xyeV, if {xyleR then {f(x)flylleR" For reductio, assume that
{x.y} eR but f(x} = flyl. But since no pair {xx} is in R", for any xeV", it
follows that {f(x),f(y)} is not in R", which is absurd. Therefore f is a 3~
coloring, which proves the lemma.

Now it suffices to show that for any pair of graphs <GK3>, we can
produce in polynomial time a pair of clauses <C_C, > each of which is
homogeneous in Q, such that C_ i=C_, if and only if G collapses into K3.
Let G=<V,R>. Enumerate V. For each edge {x,y} of G, put the literal
Qxy into C_ if x<y in the enumeration, and put Qyx into C_ otherwise.
Clearly, this can be done in polynomial time. Carry out the same
encoding for K3, and call the result C .. Notice that the results of this

transiation satisfy the conditions of fact C3 above. So by this fact,
C.i=C,, if and only if C_ collapses into C . But it is evident from the

construction that C_ collapses into C, if and only if G collapses into K3.
‘So by the lemma, C_{=C_, if and only if G is 3-colorable. QED.

This result is indicative of the mathematical power of computational complexity
theory. To put the matter intuitively, no known algorithmic approach can decide
whether one clause entails another without becoming enmeshed in an intractable
search.

Notice, this does not imply that for every given pair of clauses, deciding whether

one entails the other must involve a hopeless search. It shows only that for
infinitely many distinct problem sizes, for each known approach, some problem
instance of this size will involve the method in a hopeless (exponential) search.
Therefore, there may be interesting, easily decidable special cases of clausal
equivalence. Moreover, | have not shown that the problem of deciding clausal
equivalence is itself intractable. It is hard to see what would make this probiem
easier than the entailment problem, but strictly speaking, our argument that entaiiment
is difficult to decide does not show that deciding equivalence is.
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The following sections examine some special cases of clausal equivalence, and
propose some efficient techniques for ignoring redundant hypotheses of several
types. But first, we must reap a further odnsequence of the present theorem. It
puts teeth in our claim that testing clausal hypotheses is difficult and should be
avoided if possible. That is,

Theorem NP2:

The problem of deciding whether a given homogeneous clause ¢ is
inconsistent with a homogeneous conjunction of three negated atoms in
the same predicate that occurs in ¢ is NP-complete.’®

»

Corollary 1:

The problem of deciding whether a given clause is inconsistent with a
finite set of basic statements (e.g. "evidence’) is NP—hard.

Corollary 2:

Deciding whether a given homogeneous clause is not satisfied in a
given, finite structure is NP—complete.'®

So we know that if P is not equal to NP, then there is no known algorithm that can
decide the suitability relation of CONSIST without being caught in an intractable
search in the worst case. And coroliary 2 shows that HEMP's satisfaction strategy
is no piece of cake either. If P is distinct from NP, then theorem NP2 and its
corollaries show that there is something intrinsically difficult about searching through
possible counterexamples to a universal hypothesis, and both HEMP and CONSIST
face this task.

Recall that on any given evidence, HEMP must find a maximal subset of this
evidence that is the diagram of some relational structure for the hypothesis
language. This cutting down on the input evidence may offset the difficulty of
performing the required satisfaction test But unfortunately, simply chopping down
the evidence in an appropriate way is already an intractable task, as we see in the
following theorem.

109
The homogeneous clausal enteziiment problem with 2 3-cleuse conclusion is NP-complete. Consider an arbitrary

instance «<c,c’> of this problem. Negating the conclusion ¢’ yields the conjunction ¢ of the negstions of the atoms
in ¢’. This conjunction is inconsistent with the premise if and only if c}=¢c’. Cilearly, driving the negation into the
conciusion can be done in polynomial time. So the problem is NP-hard. And the inconsistency problem is in NP
because, by the fact just mentioned and our limited compieteness theorem, the problem can be decided quickly by &
device that guesses a substitution end then checks whether colispses ¢ onto the negation of ¢’, which can be
done in polynomial time.

noThink of the structure as encoded by its diagram. Aill we need do is essume that the structure is K3. So the
result follows directly from the construction of theorem NP2.
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Let L be a first-~order language with no function symbols. The
Maximal Diagram Search (MDS) problem is the problem of deciding
whether a finite subset S of atoms of L contains a diagram of a
structure of cardinality no less than k.

Theorem NP3:

The MDS problem is NP-complete.'"

¥

This result underscores the point that hypothesis tests should be avoided whenever
possible, whether the strategy is that of HEMP or of CONSIST. In light of these
results, we return to the task of effectively eliminating the repeated test of many
variants of the same hypothesis.

6.2.2. Variable-Renaming Redundancies

Clause c is a variable renaming variant of clause c¢' if and only if there exists
some substitution § of variables for variables such that c=c'd. Any two clauses
that are variable renaming variants of one another are logically equivalent One way
to avoid considering renaming variants of the same clause is to choose a unique
clause from among each class of renaming variants as canonical. A convenient
selection is:

Clause ¢ is canonical if and only if the first variable to occur in ¢ is

x,. and for any variable x that occurs in ¢, variable x . occurs before

x_ in C.
So for example,
OIPXx,,x,) v =Qlx ,x,)]

is canonical but its renaming variant

11 .
First of &ll, it is easy to see thst the problem is in NP, for all one need do is to guess & subset C of the
constants occurring in S and then to check in polynomial time whether every predicate occurring in § is either
asserted ‘or denied of every sequence of constants of appropriate arity.

The CLIQUE problem is known to be NP-complete |Garey78) p.54. The problem is to decide for an arbitrary graph
G and positive integer k whether some subgraph of G is the complete graph on k vertices. So let <Gk> be an
erbitrery instance of CLIQUE. We construct & cotresponding instance <Ek> of the Maximel Diagram Search probiem
s follows. The hypothesis ianguage L will have but one binsry predicete P and & distinct constant for each vertex
in G. Add the atoms Pab, Pba to E if either & is sdjacent to b in (undirected) graph G, or azb. This construction can
clearly be esccomplished in poiynomial time, for sl we need do is to run through the edges of G for eech peir of
vertices in G. Since there is no negative evidence in E, the only diagrem that E might possibly contain is one for
which the denotstion of P is 2 universal relation on some subset of the constants occurring in E. Notice that seif
loops will not interfere, for every self-loop is added. So there is a diagram of & structure of cardinelity k in the
evidence if and only if there is & complete graph of this cardinality in the given greph. Hence, the Maximal Diagram
Seerch probiem is NP-hard.
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OIPx,x.) v -Qlx,x,)]
is hot
Even if we require canonical variable patterns in clauses, commuting predicates can
lead to logically equivalent clauses with canonical variable patterns, as in the
following exampile:

(.)[P(x1,x2) v Q(x1,x2)]

UIQix, x,) v Pix_x.)].
Such redundancies can be eliminated readily by enforcing a canonical order on the
first oécurrences of the occurring predicates. An analogous consideration motivates
the requirement that each occurrence of a negated predicate P be preceded by all
non-negated occurrences of P. Henceforth, a canonical clause is taken to have a
canonical predicate pattern as well as a canonical variable pattern.

The following notation will be useful in the balance of the thesis. Consider clause
c ‘

UIPOx . x, ), Qix,)]
This clause is comprised cf what we may call a c¢/ausa/ blank
B=(P,%), Qx>

along with a sequence of variable subscripts ¢=¢1,2,2>, which we may call a
variable pattern. Evidently, clause ¢ is specified uniquely by B and ¢. It is then
natural to speak of c as the specification of B corresponding to .

Variable patterns are arbitrary sequences of natural numbers. When the
specification of a blank corresponding to variable pattern ¢ is canonical, then we
can say that o is a canonical sequence and B is a canonical blank. Hence, ¢ is a
canonical sequence if and only if

1. o, = 1 and

2. for all m>1, the first occurrence of m in o is preceded by an
occurrence of m-1 in o.

Also, B is a canonical blank if and only if for any i, j>i, P, occurs before Pi in B.
Call the set of all canonical sequences of length n Canoninl. Each element of
Canonin) corresponds to a unique canonical specification of a canonical blank with n
occurrences of '#.
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Consider the procedure CONSIST. If CONSIST were to make use of the
enumeration {Hyps'(i)} such that Hyps'(n) is the set of canonical clauses in Hypsin), its
strategy would be the same as it is when all of {Hypsli)} is examined. The same
observation holds of HEMP, NICOD, and many obvious variants of these procedures.
Moreover, for each canonical clause C of length n in which k distinct variables
occur, there are on the order of (cn) variants of C in Hypsin), where ¢ is the arity
of the predicate of greatest arity in the vocabulary of ‘H''?, and for any i,j, fi is the
falling factorial of i with respect to j''® By Stirling's approximation, |Hypsin)! is
greater than [Hyps'(n){ by an exponential factor.

Given that there are exponentially fewer canonical clauses of size n than there are
elements of Hyps(n), it would clearly be useful to find an elegant way to consider
only Hyps'(n) instead of all of Hypsin} at each stage n. One way to avoid
considering these variants is to have a generation procedure for Hyps(n) that has
only polynomial generational complexity, and to employ this procedure to enumerats
the elements of Hyps(n) that must be tested against the evidence. The next
subsection presents such a procedure.

6.2.3. Generating Canonical Clauses

It is easily decidable whether a given clause has a canonical variable pattern.'' it
is even easier to ensure that the occurring predicates occur in canonical order. But
there remains the problem cof efficiently generating just the canonical subset of
Hyps(n), for any n. This problem is a finite—set generation problem, of the sort
defined previously.

The question would not be of much interest if Hypsin) did not grow much more
quickly than its canonical subset But in fact, it grows more quickly by at least a
falling factorial factor, as we have seen in the previous section. Therefore, the
naive procedure of generating Hyps(n) and testing each element to see if it is
canonical would have exponential generationa/l complexity, even though the
corresponding decision procedure is linear in the length of the given clause. So the
practical interest of the generation problem is not obviated by the possession of a
fast test for canonical variable patterns.

1
! zc.f. the definition of Hyps(n) in the previous section.

T34y <ivitiojh.
§

11453\ k=1, and look &t the first occurring verisble. !f its subscript is not 1, sey 'No’. Otherwise go to the next

verisble. At the nth variable, if the subscript is grester than k+1, say '‘No‘. |f the subscript is equal to k+1, set k

to k+1 and go to the next varisble. Otherwise, just go to the next veriable. [f there are no more variables, say

‘Yes’. This procedure uses resources linear in the length of the given clause and returns 'Yes’ if and only if the

given clause hes 8 canonical varigble pattern.
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Fortunately, the following, simple recursive function is a computationally elegant
generation procedure for the canonical sequences specifying any given clausal blank,
and hence for the entire canonical subset of Hypsin.'"®

CANON(O)={A}

CANONI(n+1) = {o*k: ce CANON(n) and 1<k<iai+1}
where !o! denotes the number of distinct numbers occurring in ¢ and A denotes
the empty sequence. '

For example, CANON(4) yields the following computation.

CANON(O) = {A}

CANON(1) = {A*1}
= {(1)}
CANON(2) = {(1p1, (1‘)*5}
= {(1,1), (1,2)}
CANON(3) = {{1,1%1, (1,12,
(1,21, {1,2%2, (1,23}
= (1,10, (1,1,2),
(1.2,1), (1,2,2), (1,2,3)}
CANON@) = {(1,1,1%1, (1,1,1)%2,

(1,121, (1,1.21%2, (1,1,2)%3,
(1.2,1%1, (1,2,1)%2, (1,2,1)%3,
(1,2,2%1, (1,2,2%2, (1,3,2)%3,
(1,2,3%1, (1,2,3%2, (1,2,3%3, (1,2,34}

= {(1,1,1,1), (1,1,1,2),
(1,1,2,1), (1,1,2,2), {1,1,2,3),
(1,2,1,1), (1,2,1,2), (1,2,1,3),
(1,2.2,1), (1,2,2,2), (1,2,2,3),
(1,2,3.1), (1,2,3,2), (1,2,3,3), {1.2,3,4)}

If we think of each canonical sequence in CANONik} as a path in a tree whose
vertices are labeled with the natural numbers occurring in these sequences, then the
function CANON directs exactly one concatenation for each vertex in the tree. For
example, the figure depicts the tree whose paths are the elements of CANON(4).
Notice that each "level" in the tree corresponds to a recursive call of the function

115
Hyps'{n), the set in question, is just the disjoint union of the canonicel specifications of esch canonical blank of

length n.
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Figure 6-1: A Canonical Tree

CANONdLet cln) be the effort required to compute CANON(n). Notice that each
recursive call of CANON involves a concatenation. Hence cin) can be estimated
fairly as the number of concatenations performed in computing CANON(n). By
inspecting the tree, it is evident that cin) is bounded above by the quantity
niCANONM}|, for there are n concatenations involved in each canonical string of
length n. If the size of -the output set is measured as its cardinality, then the
generational corﬁplexity in n is linear. But remember that the "size” of the input
number n is on the order of log,nl. Hence, the proper generational compiexity of
CANON is on the order of 2" But if the size of the output set is measured as the
sum of the lengths of the strings in the set, size of the set is n{CANON(n)!{, so the
generational complexity of CANONIn) is constant This assessment helps capture the
intuition that CANON is a very efficient generator of a large set

6.2.4. Tautological Redundancies

The simple restrictions on clausal form introduced so far suffice to eliminate all
equivalences among specifications of a given clausai blank in which no predicate
occurs more than once. But when a predicate occurs two or more times in a
canonical clause, this clause may be tauto/ogous or non-reduced (i.e. equivalent to a
sub~-clause of itself).

By fact C1, a clause ¢ is tautologous if and only if some atom and its negation
both occur in ¢ Tautologies are entirely useless in an inductive system, but once
they are considered for empirical test, they are as costly to "handie” as empirically
interesting clauses. And there are very many distinct tautologies in Hypsin).
Therefore, tautologies are eliminated from the class of canonical clauses. The test
whether a given canonical clause is a tautology is once again easy, but not so easy

as the. test for canonical variable patterns.''

116
for each psir of occurring literals, check whether one is exactly the negastion of the other. For a ciause of

fength n, the complexity of this procedure is merely on the order of n".
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6.2.5. Non-Reduced Redundancies

All but finitely many clauses have the property that some predicate occurs more
than once with the same sign. Such clauses are susceptible to yet another type of
redundancy. For example, consider:

1= (XNy}{Pxy v Pxz) <=—=> (x)y)Pxy)

1= (xXNy)2)Pxy v Pxz v P2x) {=-=> {x){z)iPxz v Pzx)

One might expect that these redundancies are all special cases of the following
simple fact of propositional logic:

if Pi=Q then =P v QK--->Q

But it must be kept in mind that clauses are universally quantified. in the case of
clauses, we have instead the following relations:

1.1 I=(A v BIK===>(}A) then (}B)|=()}(A) but not conversely.'’

2. If Al=B then |=()}B v AK--=>()(B} but not conversely."'®

where AB are arbitrary open formulas and (NA) denotes the universal closure of
open formula A

If C has no function symbols, then a corollary of fact C3 is:

Corol/ary to C3:

If no predicate occurs both negated and non—negated in C, then C is
non-reduced (i.e. equivalent to a sub-—clause of itself) if and only if there
is a substitution 8 of variables for variables such that cf is a proper
sub-clause of c.

The obvious way to test whether a clause is reduced is to look at its subclauses
and to see whether any subclause is entailed by the original clause. Since such
entailment checking is NP-hard by theorem NP1, we might expect that the problem
of deciding reducedness is intractabie as well. "But theorem NP1 does not imply the
NP-hardness of deciding that a clause is reduced. From the point of view of the
reduction in NP1, there is some reason to expect that the problem of deciding

”7Assume {.}B} does not entsil (HA). Then there is an M such that for each i, M,i}=B but M does not satisfy
(MA). So there is an M such that Mi=(}(A v B} but M does not satisfy (MA). For the negstion of the converse,
{(MPxy) 1 =(}{Pyx) but (JPxy v Pyx) is not equivalent to (NPxy).

HsAssurne Al:B. So for any M end eny interpretation i, if M,i!=A then M,i!=B. Suppose M’ does not satisfy ()B)
Then there is en i, M’,i’ do not satisfy B. Hence M',i’ do not satisfy A either, and so M',i’ do not satisfy A v B, The
other cese is trivial. For the negation of the converse, (J(Pxy v Pzw} is equivalent to {}{Pxy), but P2zw does not entail
Pxy as an open formula.
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whether a clause is reduced is easier than deciding arbitrary entailments. The
difficulty with the clausal entailment problem is that the premise may be arbitrarily
bigger than the conclusion, and hence can represent any graph whose three-
colorability we would like to decide. But in deciding reducedness, the only
entailments we need to decide are those in which the conclusion is always the
result of deleting some atom or negated atom from the premise. And not every 3-
colorability problem instance corresponds (in the sense of the reduction in the proof
of NP1) to a clausal entailment problem instance of this limited sort On the other
hand, there may be some other reduction that works. Obvious approaches to
solving the problem do seem to run into intractable searches through possible
variable substitutions. | leave the NP status of this important decision problem open
in this thesis.

It may be easier to see that the problem of generating or recognizing the reduced
form of a given, function—free clause is intractable. In this case, the reduced form
sought may be arbitrarily “shorter than the non-reduced form, so the obvious
strategy for -solving the problem involves us in entailment checks in which the
premise can be arbitrarily longer than the conclusion. This heuristic observation is
vindicated by the following theorem: ‘

Theorem NP4:

Given two homogeneous clauses C,C', the problem of deciding whether
C is a reduced form of C is NP~hard.'"®

Corollary:

For arbitrary, function-free clauses C,C, the problem to decide
whether C' is a reduced form of C is NP-hard.

The strategy of the proof of this theorem is to show that hard entailment tests
cannot be avoided in deciding whether C' is a reduced form of C. Hence, the proof

11
9Let G=<V,R> be an arbitrary instance of the graph 3-colorability problem. Now form G'=(G U K3}, renaming

vertices, if necessary, to ensure that G and K3 are disjoint. Next, construct CG’ and CKB just as before. Recal! from
the proof of NP1 that G is 3-colorable just in case G coliapses into K3. Notice also that (¢} G collapses into K3 if
and only if G'= G U K3 coliapses into K3. For suppose G collapses into K3. Then the subgreph of K3 onto which G
collapses aiso collapses into K3. So G’ coliepses into K3, which itself collepses into K3 (i.e. itseif), Now suppose
G’ collepses into K3. Then any subgraph of G’ coliapses into K3, including subgraph G. This establishes (+}. Now
construct CG' and CKa, in polynomiai time, just as in the proof of NP1. By construction, CK3 is a subctause of CG,.

And by fact C3, G’ collapses into K3 if and only if CG' i CK

e i C

o So we have that (+¢) G is 3-colorable if and oniy if
K3
) . . y . . . . . :
Since CKS is 8 sub-clause © CG” CK3 is equivaient to CG' if and only if CG' s CKB Observe slso that CK3 is
reduced. So given (*+}, we heve that G is 3-colorable if and oniy if CK3 is & reduced form of CG" It is clear that

the construction cen be undertsken in time polynomis! in G, according to eny standard measure of graph size. Since
the graph 3-colorability problem is NP-hard, deciding whether C’ is & reduced form of C is must aiso be NP-hard.
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tells us very little about how difficult it is to decide whether C' is reduced. But it
does suggest that any test procedure that throws non-reduced clauses into reduced
form before testing them is intractable. For all | have said here, it may be possible
to elude this intractability by generating only non-reduced clauses in the first place.
There are many questions to be investigated here, but in order to move on to cther
issues, | leave most of them unsettied.

6.2.6. Predicate Permutation Redundancies !
Even reduced, canonical clauses can be logically equivalent. For consider:

(.)[P(x1,x2) Y P(xz,xs) \ P(xs,x4)]

WIPx,x) v Plx,x,) v Pix,x )]

That the two clauses are variable—renaming variants can be seen by permuting the
first and second conjuncts of the second clause. The problem is that the canonical
order on distinct predicates is of no assistance when all the predicates occurring in
a clause are identical and of the same sign. But this case can be handled by
lexically ordering the variable patterns of the atoms occurring in a clause and by
requiring of clause C that for any atoms P,P' of the same sign and predicate such
that P precedes P' in C, the variable pattern of P is lexically prior to the variable
pattern of P. This rule excludes the second clause in the above pair, for 24 < 31
but P(x,x,) occurs after Pix, x). And permuting the second and third disjuncts
results in a clause whose variable pattern violates the first constraint on canonical
variable patterns. Notice that this requirement is a relation between variable patterns
and clausal blanks rather than a property of variable patterns alone. Any pattern that
satisfies it with respect to a given blank B is said to be suited to B.

It is easy to decide for a given clause whether its variable pattern is suited to its
clausal blank, for the lexical order on variable patterns can be decided for two
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patterns of the same length in time linear in their lengths. Given this procedure, it

is easy to decide whether a clause has its atoms in the correct order.'?’

There is also an efficient generator of the set of all canonical specifications of a
given clausal blank that satisfy this additional constraint. Recaii that all the non-
negated occurrences of a predicate come together in a block, followed by the

120
Given O, 7, begin at the left and check for esch whether o’n_>_'rn. Whenever this condition fails, return ‘No’.

Otherwise, return ‘Yes’,
121 R . . . .
begin at the left, and perform the first procedure for the first two atoms of the same predicste and sign. Then

proceed to the second end third etom, and so forth. As soon as & violation of the order is discovered, report ‘No’.
Otherwise report ‘Yes’ at the end of the clause.
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negated occurrences. All the generator in question needs to know, however, is the
size of the block and the arity of the signed predicate occurring in the block. This
can be accomplished with a list of ordered pairs <x,y> such that x is the length of
the block of signed predicates and y is the arity of the predicate in question. Call
this sequence a segmentation of the blank of the original clause and let any
specification of this blank be called a specification of the segmentation as well.

So for example, the blank
(Pwx Prx —Pax, Quus, —R¥)
corresp;mds to the following segmentation:
<£2,2>,€1,2>,<1,3>,<1,1>>

CANONIB) has 203 elements. The 88 elements of CANON(B) that are not suited to
the segmentation <<2,3>> are displayed in the following table:

111211 111212 112111 112112 112121
112211 112212 112213 112221 112222
112311 112312 112313 112314 112321
112322 112323 111211 121111 121112
121113 121121 121122 121123 122111
122112 122113 122121 122211 122212
122213 122221 122222 122311 122312
122313 122314 122321 122322 122323
123111 123112 123113 123114 123121
123122 123123 123124 123131 123211
123212 123213 123214 123221 123222
123223 123224 123231 123232 123311
123312 123313 123314 123321 123322
123311 123312 123313 123314 123321
123322 123323 123324 123331 123332
123333 123411 123412 123413 123414
123421 123422 123423 123424 123431
123432 123433 123434

In the case of the segmentation <<2,4>>, the list would not even fit on the page.
Since each of these sequences corresponds to a redundant clause whose test is
irrelevant to inductive scope, the importance of a generator that ignores them
should be evident

Indeed, there is such a generator. Procedure CANONZ2 takes an arbitrary
segmentation as input, and returns just the set of all specifications suited to this
segmentation. The method is quite similar to CANON, but instead of adding single
symbols to the specifications under construction, these specifications are
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constructed by adding sequences that correspond to the variable patterns of literals.
First we consider two procedures, ATOM and ATOM2, that generate just the correct
atom specifications to add to the segmen‘miion specification under construction by
CANON2. Then the procedure CANON2 is defined in terms of the component
procedures ATOM and ATOM2.

The function ATOM takes two natural numbers y and r as inputs and returns the
-set of all sequences g of length y such that if |oi=r then o*8 is a canonical
sequence.

’ {AYify=0
ATOM(y,r)

{o*k: o e ATOM(y,max{k,r)} and 1<k<&r+1}
otherwise.

The only trick to this definition is that whenever a number k is concatenated to a
sequence under construction that is larger than r, any number no greater than n+1
may be added.: Hence, ATOM “updates” r (the parameter that keeps track of the
upper bound on the size of the numbers that may be added) by maximizing over r
and k at each recurrence. For example, consider the case of ATOM(2,3):

ATOM(0,3) = {<}
ATOM(1,3) = {1, <O=%x2, O3, {(OH=x4})

= {<1>, <2>, <35, <&}
CATOM(2,3) = {<1>%1, <1>=x2, <1>*3, <1>=4,

<2>*x1, <2>*2, <2>*3, (2>*4,
{3>x1, £3>%2, <3>*3, (3>%4,
<4>*1, <4>x2, <4>#3, <4>x4, <4>*5}
{K11>, <12>, <K13>, (14>,
23>, <€22>, <£23>, <24,
{31>, <32>, .<33>, <343,
<41>, <42>, <43>, <44>, <453}

The aspirations of ATOM2 are similar, but there are a few additional complications.



176

ATOM2((c).r,7.b):

1. ={r} .
if o=A .

2. =U{ATOM2(c,max(k,r), 7#k, 1:n<k<r+1}
if b=0 and o=n%*A;

3. ={ATOMZ2(o, maxin,r), r*n0)} U

U{ATOM2(c,maxik,r), 7#k, 1in<k<r+1}
if b=0, o=n*r and not r=A; '

4. =U{ATOM2(c,max(k.r), 7#k, 1) 1<k&r+1}
otherwise.

ATOMZ2 takes as arguments an arbitrary n—tuple ¢ and a natural number r. The
parameter .7 is always "initialized” to the empty string A and the boolean parameter
b is always ‘initialized” to 0. We have no interest in the values of ATOM2 for
other values of these parameters.

If k is the length of o, then the vaiue of ATOM2(c,r,A Q) is just the set of all
elements of ATOMI,r) that are lexically greater than o. That is, ATOM2 is the set
of all n-tuples y such that y is lexically greater than ¢ and for any canonical
sequence g in which r ocecurs, u¥*y is a canonical sequence. So the extra
complication of ATOM2 results from the fact that ATOM2 must in a strong sense
ignore those sequences that are lexically less than o.

Consider first some general, architectural considerations. Parameter r functions as
a place to hold the sequence currently under construction, and b serves as a "flag"
to indicate whether it is already certain that the sequence under construction is
lexically greater than o. If b is not yet guaranteed to be lexically greater than o,
then b=0, but as soon as the situation changes, b is changed to 1. The sequence
under construction grows as ¢ is successively shortened, so o disappears just when
7 is completed. The parameter r is always taken to be the previous value of r or
the number just added to 7, whichever is greater.

Now consider case 1. If ¢ is empty, r is finished, so return it The curly
brackets are required because the ultimate output set is formed recursively as a
disjoint union of singletons. In case 2, b = 0 and ¢ is some unit list <n>. Since b
is 0, 7 is not yet lexically greater than the original . On the other hand, so long
as b is O, the number o, is the /east number that can be added to r (cf. 2,3) so 7
is never properly less than ¢ in lexical order. Hence, 7 is so far just iike the given
o, so to avoid generating a copy of ¢, we are compelled to add only numbers
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greater than n. But on the other hand, canonicity demands that no number greater
than r+1 be added So each number greater than n and no greater than r+1 is
added to r. Since each result is now lexicauy greater than the original o, b is
changed from O to 1 (for purposes of clarity and symmetry only, for this does not
alter the output in any way). In the third case, b is still O, but we have not yet run
out of time to ensure that r be greater in lexical order than ¢. Hence, we take the
disjoint union of two sets: one set contains all the results of adding n<k<r+1, to r,
and since each of these sequences is properly greater than the original o, b is
switched from O to 1. The other set contains just the result of copying whatever
number ¢ has in this position and leaving b=0. Again, when b=0, no number less
than thé number ¢ has in this position is ever added to r, or » would be less than
o in the lexical order. Finally, there is the case 4 in which b=1. In this case, it
does not matter what is added, so long as it is less than r+1, for r is already
lexically greater than o.

For exampie, consider the computation of ATOM2(<11>,2,A,0k

ATOM2(<11,2,<>.0) [case 3]
ATOM2(<15,2,£1>,0) [case 2]
ATOM2(<>,2,<12>,1) [case 1]
<12>
ATOM2(<>,3,<13>,1) [case 1]
<13>
ATOM2{<1>,2,<2>,1) [case 4]
ATOM2(<>,2,<21>,1) [case 1]
<21
R -~ ATOM2(<>,2,422>,1) [case 1]
£22>
ATOM2(<>,2,<23>,1) [case 1]
23>
ATOM2(<1>,3,<3>,1) [case 2]
ATOM2{<>,2,<31>,1) [case 1]
31>
ATOM2(<>,2,<32>,1) [case 1]
32>
ATOM2(<>,2,<33>,1) [case 1]
<33
ATOM2(<>,2,<34>,1) [case 1]
<34> '

Notice that the pair <11> is missing from the list, for it is the only element of
ATOM(2,2) to be lexically less than or equal to the given pair <(11>. Also of
interest are the places in which the value of b is switched from 0 to 1. This takes
place when 2 is added to r7=<1> and when 2 and 3 are added to r=<)>. This is
proper, for <1> and <> are subsequences of o=<11), but <2>, <12), and <13) are
not
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Finally, consider CANON2.

CANON2(3, 7,7} .
1. = {r}
if & = A;
2. = CANONZ2(e.A,7)
if 6=<0,y>%c;
3. = U{CANON2(s,8,y*f8): e ATOMly, |y}

if 7=A, §=<{x,y>*c, and
neither 6 = A nor x=0;

4. = U{CANON2(o#<x~1,y>, B.y*B) and
BeATOM2(7, | v 1,A.0)}
if 6=<x,y>*¢ and
neither o=A nor §=A nor x=0
(i.e. otherwise).

where (A} is O and |y is the greatest integer occurring in y if y is not A

Technically, CANON2 has three input parameters. & is an arbitrary "segmentation”
or finite list of ordered pairs of natural numbers. The parameters » and -7,
however, are always initialized to the empty sequence A Inductively, r holds some
output sequence "under construction’, and 7 holds the variable specification for
signed predicate +P that was added to .

The first case covered in the definition of CANON2 is that in which § is empty.
The segmentation § gets shorter just as the sequence under construction gets
larger, so that § disappears just when » is completed. Hence, when § is empty, it
is time to return ». The singleton brackets are required because the output set is
inductively the disjoint union of these singletons. The next case is that in which &
is not empty, and the first pair occurring in ¢ is <0y>. If the first pair in § is
<x,y>, CANONZ2 recursively decrements x until it is zero, adding the variable
specification of an atom at each decrementation. When zero is reached, all the
variable specifications for y-ary atoms of the type accounted for by the current
pair <x,y> have been added, so it is time to look at the next pair <xy'> in 6. This
is accomplished by decrementing 6. Moreover, the decrementation of § means that
CANON2 is now specifying atoms with a distinct signed predicate. Hence, the
previous r is irrelevant and is re-initialized to A Sequence r is not altered. In the
third case, = is the empty string, §=<x,y>*¢ and neither §=A nor x=0. Since 7z=A,
we are just beginning to add variable patterns for a new signed predicate of arity y.
Hence, any variable pattern of length y that when added to r results in a canonical
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sequence may be added to 7. And this is just the set of y-sequences
ATOMly,i71). Otherwise, §=<(x,y>*o0 and neither o=A nor §=A nor x=0. In this
case, every variable specification of length y' that is lexically greater than r is added
to r, and x is decremented by one.

Consider, for example, the case of the segmentation <<2,2>>.

CANON2(<<2,2>>,¢>,¢>) [case 3]
CANONZ2(<<1,23>,<11>,<11>) [case 4] f
CANONZ2(<<0,2>>.<12>,<11125) [case 2]
CANON2(<>,<>,<1112>) [case 1]
{<1112>}
CANON2(<<0,2>>,€21>.1121)) [case 2]
CANON2(<>,<>.<1121>) [case 1]
{<1121>} '
CANON2(<<0,2>,¢225,<1122>) [case 2]
CANON2{<>,¢>,<1122>) [case 1]
{<1122>}
CANON2(<<0,2>>,¢23>,<1123>) [case 2]
CANON2(<>,£>,<1123>) [case 1]
{<1123>}
CANON2(<<1,2>,412>,€12>) [case 4]
CANON2(<<0,2>>,13>,£1213>} [case 2]
CANON2(<>,¢>,€1213>) [case 1]
{<1213>}
CANON2(<<0,2>>,<14>,<1214>) [case 2]
CANON2(<>,¢>,€1214>) [case 1]
{€1214>1}
CANON2(<<0,2>>,421>,1221>) [case 21
CANON2(<>,<>,<1221>) [case 1]
{<1221>}
CANONZ2(<<0,25>,422>,¢1222>) [case 2]
CANON2(<>,<>,¢1222>) [case 1]
{<1222>}
CANON2(<<0,2>>,¢235,41223>) [case 2]
CANON2(<>,¢>,£1223>) [case 1]
{<1223>}
CANON2(<<0,2>>,<31>,<1231>) [case 2]
CANON2(<>,<>,<1231>) [case 1]
{<1231>}
CANON2(<<0,2>>,432>,1232>) [case 2]
CANON2(<>,¢>,1232>) [case 1]
{€1232>1}
CANONZ2(<<0,25>,433>,<1233>) [case 2]
CANON2(<>,¢>,€1233>) [case 1]
{<1233>1}
CANONZ2(£<0,2>>,434>,1234>) [case 2]
CANON2(<>,¢>,<1234>) [case 1]
{<1234>}

The set generated and the subset of CANON(4) ignored are as folldws:

generated ignored
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1112 1211

1121 1212

1122 ,
1123 ‘
1213

1214

1221

1222

1223

1231

1232 :
1233

1234

Notice that CANON2, ATOM, and ATOM2 do essentially nothing but build the output
strings. No mistaken concatenation is ever performed, and no "search” is required
to prevent such mistzkes. Little more could be asked of a finite set generator.
Neediess to say, the generational complexity of CANON2 is constant if the size of
the output is measured as the sum of the lengths of the generated output

An obvious next step would be to incorporate principles that eliminate tautologies
into CANON2. This would require that a clausal blank rather than a segmentation be
" fed as input, for segmentations provide no information as to which pair <x,y>
corresponds to which predicate or sign. The obvious procedure would be to check

each element of ATOM or ATOM2 proposed to specify the negation of P against

each specification aiready given for P.'#?

6.2.7. Loose Ends
Recall the set CANON2{<<2,2>3,$,)

1112%
1121%
1122#
1123#
1213#%
12 14#%
1221

1222
1223

1231

1232#%
1233%
1234#

122
recall that each occurrence of -P foliows each occurrence of +P in 2 cenonical clause.
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The sequences marked with an asterisk are those that specify non-reduced clauses
with respect to <<2,2>>. For example, 1222 specifies

-«

(.)[Px1x2 v szxz]
which is logically equivalent to

(.)[szle.

Hence, there remains significant motivation to find an elegant generator that ignores
non-reduced clauses. Unfortunately, it is not obvious how this might be
accomp'lished. Unlike sequences suited to a segmentation, it is not the case that a
clause is reduced if and only if each finite initial segment of the clause is reduced.
For example,

(.)[Px1x2 v Px3x4]
is non-reduced, but its extension to
(.)[F’x1x2 v Px3x4 \Y szszl

is reduced. So the complete set of these clauses cannot be generated by starting
-with the empty clause and by adding all the atoms that result in a reduced clause at
each addition, or the latter clause wouid be missed. Hence, any adequate, elegant
generator must somehow add at each stage all the atoms that cou/d resuit in a
reduced clause if the right atoms are added later on. This probiem illustrates the
sorts of concrete programming issues that the previous discussion of generational
complexity was intended to capture formally.

6.3. Taking Inventory

We can now imagine an improved version of CONSIST called CONSIST2 that reads
the nth evidence sentence at each stage n, employs CANONZ2 to generate exactly
the specifications suited to each canonical blank of length no greater than n, and
finally tests each resulting clause against the evidence read so far. In a strong
sense, this improved version of CONSIST safely ignores a priori all clauses that
have non-canonical blanks or whose variable patterns are unsuited to their blanks.
The redundant clauses are ignored safe/y, for the inductive strategy pursued by
CONSIST2 is identical to that pursued by CONSIST. Hence, their inductive scopes
are the same a fortiori, and it is possible to speak of the latter as being more
efficient than the former. The redundant clauses are ignored in a strong sense
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because the generational complexity of CANONZ2 is constant in log,Inl. Hence, it
cannot be said that CANON2 in any sense performs a "search’ of a space larger
than the set generated by CANON2 by an exponential factor. And finally, the
clauses are ignored @ priori because the procedure CANON2 that fails to consider
them does not receive the evidence against which the generated clauses are tested
as an input

CONSIST2 represents an obvious improvement in inductive efficiency over
CONSIST. But no one is yet tempted to call CONSIST2 efficient For one thing, we
have already seen that the consistency test applied to each clause generated by
CANON2 must solve an NP-complete problem, and hence may be expected to
"explode” in difficulty as n increases. So it is of the utmost practical importance
that some simple method be found to prevent the empirical test of any clause
whose test can be avoided without altering the inductive strategy.

Second, even if some method is developed to withhold test from clauses that do
not require it, just considering whether to test all these clauses is unrealistically
expensive. Ideally, more clauses should be ignored. But the quest of ignoring
hypotheses & priori has been pursued to the point of diminishing returns in this
chapter. Further improvements in efficiency that do not alter the inductive strategy
employed must make use of the given evidence. That is, further hypotheses must
be ignored a posteriori. This vital topic is addressed:in the next chapter.
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Chapter 7
Hypothesis Entailment and Inductive Efficiency

7.1, Entailment and Useless Hypotheses

in the previous chapter, a procedure was developed that can efficiently generate 2
canonical subset of the set of all clauses of length n that contains, nonetheless, a
canonical representative of every logical equivalence class of such clauses. If this
smallef, canonical set is exhaustively searched for suitable hypotheses at stage n,
then significantly fewer hypotheses are considered or tested at each stage. in fact,
the number of hypotheses is reduced by an exponential factor. And this reduction

.in cost is achieved without altering the inductive strategy employed; and hence with
no compromise in inductive generaiity.

But in light of the evidence, it may be possible to ignore canonical as well as non—
canonical elements of H without altering the inductive strategy or compromising
inductive generality. Consider a simple analogy. Assume that the problem is to
compute f(x)=2x over the natural numbers. No odd number need ever be
considered by a procedure that computes this function, no matter what the input
So the odd numbers may be ignored a priori by a method for solving this problem.
But for any given input n, the even numbers that are not identical to 2n may also be
ignored a posteriori by such a procedure. In fact, any good algorithm for doubling
a number should ignore ignore all possibie outputs except for the actual one.

The purpose of this chapter is to investigate the prospects for exploiting the
available evidence in order to ignore sentences that do not ultimately appear in the
output conjecture. It would constitute a significant improvement over HEMP, NICOD
and CONSIST merely to withhold the expensive suitability test from some canonical
clauses. But it would be far better to avoid any consideration or representation of
the clauses that need not be tested.
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7.1.1. lgnoring Suitable Hypotheses

Recall that two conjecturing behaviors are’ equivalent just in case on each input
their outputs are logically equivalent  Devices that pursue the same strategy
obviously have identical limiting scopes. Therefore, the inductive strategy is
unzitered if any element of Hyps(n) that is properly entailed by some suitabl/e
element of Hyps(n) is deleted from the nth conjecture. That is, only the set of
logically maximal elements of the set of suitable clauses in Hyps(n) need be
conjectured at stage n. So we have the following principle for restricting thé
search for a conjecture in Hypsin)

Principle /: If h is suitable given e then ignore any h' such that h{=h'
That is, the -property of failing to be maximally suitable in Hypsin) is closed
downward in the entailment ordering on the logical equivalence classes of Hyps(n).

7.1.2. Ignoring Unsuitable Hypotheses

If unsuitability >is closed upward over Hyps(n) with respect to entaiiment, then we
are also free to ignore upward closed sets in Hypsin. The upward closure of
unsuitability is, of course, just the contrapositive of the downward closure of
suitability under entailment

If hi=h" and confle,h) then confieh’).

Hempel calls this property the special consequence condition, to distinguish it from
the stronger consequence condition, which requires that any consequence of an
arbitrary set of suitable hypotheses must be suitable. The consequence condition
entails the special consequence condition, but not conversely, and the special
consequence condition entails the equivalence condition, but not conversely. Since
Hempel's confirmation criterion satisfies the consequence condition for arbitrary
function—free languages it also satisfies the special consequence condition for these
languages (and hence over Hypsin). The relation of consistency with the evidence
fails to satisfy the the consequence condition, but does satisfy the special
consequence condition for arbitrary first~order languages.'®”® Finally, we saw that
the modified Nicod's criterion violates the equivalence condition, even for function-
free clauses, and hence must violate the special consequence and consequence
conditions over these languages.

So at least in the case of consistency with the evidence and Hempel's criterion,

123
If e,h ere consistent they share & model M. if hi=h’ then M is & model of h', so e,h’ are consistent.
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there is also a useful heuristic for avoiding the consideration of unsuitable
hypotheses.

Principle I1: If ~S{eh) then ignore any W such that h'|=h

7.2. The Entailment Structure of Canonical Clauses

We now have two principles that may enable us “0 design a general procedure
that ignores gratuitous hypotheses on the basis of the evidence given. The first is
to ignore any consequence of an hypothesis known to be suitable, and the second
is to ignore any hypothesis with a consequence known to be unsuitable. From a
logical perspective, these principles are obvious. But as was emphasized in chapter
three, knowing which hypotheses not to consider is just a small step toward
knowing how not to consider them. The trick is not to characterize what to ignhore,
but to provide a method that ignores it And in some cases (e.g. when the problem
is provably intractable) there may simply be no method with the desired input-output
behavior that does so.

Principles (I} and (I} imply that upward and downward closed sets in the entailment
ordering on canonical clauses may be ignored in light of the evidence. Whether
there is a general inductive procedure that can ignore these sets depends on the
mathematical structure of entailment on canonical clauses. As it turns out, central
aspects of the algebraic and combinatoric properties of these structures are quite
familiar to mathematicians. The purpose of this section is to explore some of these
properties, with emphasis on those that may be of computational interest.

7.2.1. Variable Patterns and Entailment

Fecall that clauses were analyzed in the previous chapter into c¢/ausa/ b/anks and
variable patterns. A clausal blank is just some clause with its variable occurrences
replaced by asterisks. A variable pattern is just a finite sequence of natural
numbers. A variable pattern s is for a blank B just in case its length is identical to
the number of asterisk occurrences in B is identical to the length of ¢. Clause c is
the specification of B corresponding to o just in case ¢ is the result of substituting
X, for the ith asterisk occurrence in B.

Variable pattern o was said to be canonical just ¢,=1 and ¢ =k only if k-1 occurs
in some position n'<n. A clausal blank is canonical just in case its predicates all
occur in ascending order according to their subscripts. A clause is canonical just in
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case it is the specification of a canonical blank that corresponds to a canonical
variable pattern. The set of all canonical specifications of a given blank is called
Canon(B), and the set of canonical variable patterns of length n is called Canonin).

Recall that the procedure CANON2 restricts the class of clauses considered - still
further, to eliminate what were called 'predicate permutation redundancies. For
reasons of mathematical simplicity, | shall abstract from these further considerations
in the following discussion.

If o,r are finite sequences of natural numbers, then we say that r is more
general- than o just in case there is a substitution @ such that o=r. This relation
will be written as o<, and is a quasi—order.'®® Also, ¢ is equivalent to r just in
case oc{r and co)r. Notice that there is exactly one canonical sequence in each
equivalence class of such sequences. Hence, the relation { is a partial order over
the set of canonical variable patterns of any given size.

Let c be the é_pecification of B corresponding to r and et ¢’ be the specification
of B corresponding to ¢. Then ¢'20 just in case c'i=c, and that ¢ is equivalent to
o' just in case c¢,c' are logically equivalent So the entaiiments among different
results of specifying‘ the same clausal blank B can be characterized entirely in terms

of the < relation over variable patterns for B.

7.2.2. Finite Set Partitions and Canonical Sequences

Happily, it turns out that the entaiiment order of the set of specifications of a
given clausal blank with canonical variable patterns is isomorphic to a structure
familiar in lattice theory, combinatorics, and computer science applications. A
partition of a finite set S is just a set of mutually disjoint sets, the union of which
is S. Define Partin) as the set of all partition of the interval [1,n] of the natural
numbers.

For any =,n'ePartn), » is a refinement of »' just in case each cell in » is a subset
of a cell of »'. Refinement is a partial order and may be written . Then we have:

Fact L1:

<Partin),<{> is isomorphic to <Canonin},<>,

where the isomorphism is simply
For any ¢ eCanonin), ®(cl=ker{o)

124
i.e. the order relation is trensitive and reflexive.
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and where ker(sc) denotes the kernel of oNin)--->Nin.'*®  For example, let
0=(1,2,2,1). oeCanon(4). Viewed as a finite map, o can be described as

i o, .
]

PWN =
- NN

The kernel of & is just {{1,4}, {2,3}}.

in view of this simple isomorphism, the number of distinct numbers occurring in
canonical sequence o is just the cardinality of ®(¢). To highlight the analogy, | let
lo! stand for the number of distinct numbers occurring in canonical sequence o as
well as for the cardinality of the corresponding partition. Similarly, the length len(s)
of canonical sequence o corresponds to the cardinality of the disjoint union of the
partition $(s}. So | also let len(r) denote the cardinality of the disjoint union of
partition #. '

7.2.3. The Mathematical Structure of Partition Lattices

Since refinement over Part(n) has the same structure as entailment over the clauses
corresponding to canonical sequences, we can learn about our logical probiem by
reviewing what is known about partition lattices.

First of all, for any n, <Partin),<> is a finite, semi—-modular, relatively complemented
lattice with unique maximal and minimal elements 1 and O, respectively. For n=1,2,3,
Part(n) is also modular. If n>3, it is not [Donnellan66] p.197 f£.'%°
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Let f:A--->B. Then for any g,8° in A, & is f-equivalent to & just in czse fla)=fia’). The kernel of f is the
partition of A induced by this relation. It is now easy to see thet is an isomorphism between Canonin) and Partin).
First &

Lemma () Let 0.0’ be strings of length n. Then ker(i<ker(g’} just in cese O < O'. Proof: Assume

ker(Oicker(o’). If i,j are O'-equiveient then they sre siso ¢ equivalent. So for any positions i,j, if d'isd'j then

0'i=dj. Hence O¢< O'. Reversing the steps of this argument yieids the converse.

We must show that Q is (A} surjective, (B) injective, and (C} structure preserving, (A) 4’ is surjective: Let
77 € Part(n). Choose any bijective f:r---3N(| 7 !). There is one because the cardinalities of the sets are the same.
Define (y(ﬂ))i= the value of f for the cell of # containing i. Therefore y(fi) is & string of length n whose kerne! is

7. Let ¢Orsthe (unique} ceanonicel sequence equivalent to y(ﬂ). ker(g) = ker(y(ﬂ)), by iemme () and the equivaience
of 0 to y(¥). By definition, O is canonical. So there is & canonical string of length n whose kernel is 7. (B)
is injective: Assume two canonical strings of the same iength are not identical. Then they are inequivaient, for
exactly one such string is in esch equivalence cless of strings of length n. By lemmea (¢}, the respective kerneis of
these strings are inequivalent. (C) is structure preserving: Assume that 0,0’ € Canonin) end 0'<C’. By iemma (),
ker(T)cker{o ).

1",sln the diagrem of Cenon{4), note that the sublattice {1111, 11112, 1123, 1234, 12227 of Canon{d) is the
pentagonal isttice, which cannot be & sublattice of any modular iattice,
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Lev 1 11
12

Lev 2 12
1-2

Figure 7-1: Canon(2), Part(2)

Lev 1 111
123 !
Lev 2 112 121 122
12-3 13-2 1-23

AN

Lev 3 123
1-2-3
Figure 7-2: Canon(3), Part(3)
Lev 1 ’ 1111
/l 234\\
Lev 2 1112 1121 1122 1211 1212 1221 1222

123-4 124-3_12-34 134-1 13-24 14-23 1-234
1 7/ p A Iv’
/ "~

Lev 3 1123 1213 1223 1231 1232 1233
12-3-4 13-2-4 1-23-4 14-2-3 1-24-3 1-2-34

//

Lev 4 ' 1232
1-2-3-4

Figure 7-3: Canon{4), Part(4)

The /mmediate descendant relation n<{<=' holds just in case =<z’ and there is no

7" such that #n<{=z"<x'. A path of length n from » to ' is just a sequence
ﬂ<<ﬂ1<<...((ﬂn<<ﬂ'.

Then each path from 1 (0) to = is identical in length to any other path from 1 (0)
to ». Moreover, the length of the path from 1 to = is just the cardinality of =
minus one, for if #<{<»' then the cardinality of » is one less than the cardinality of

.
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Let Levink), the kth level of Partn), be the set of all » in Partin) such that | |=k
Hence Levink) is also the set of all elements of Part(n) that are reachable from 0 by
a path of length k—-1. In virtue of the isehorphism between canonical sequences
and partitions, the level of a canonical sequence is just the number of distinct
numbers occurring in that sequence. The levels show up clearly in the respective
figures of Part(2), Part(3), and Part(4), in which each level actually constitutes a
"level” on the page.

7.2.4. Sizing Up Partition Lattices

Now that we have a characterization of our potential search space at each stage n,
it is desirable to find out how large this space is. The values of the function
B, = iPartin)] = {Canonin)}
are calied the Be// numbers, and are fundamental quantities in combinatorial theory.
Moreover, the values of the binary function
S, = iLevinkii .
are called the Stirling numbers of the second kind, and are equally central to

combinatorial theory.

It is immediate that
B =X

n igien n,i

for a partition lattice is clearly the disjoint union of its levels, and the cardinality of
a disjoint union is the sum of the cardinalities of the arguments to the disjoint union

That the size of a partition lattice level is unacceptably large for exhaustive search
to be feasible is evident from the following recurrence relation:

.S =1
nn
2. SnO = 0 for n>0
- 127
3. sn,k - Sn-1,k-1 + ksn-'l,k'

Consider just the first addend of (3). Notice that if n>k>0, then k will be multiplied
by itself n—k times before the right-hand term "bottoms out’ to S, =1 as in the
accompanying figure.Therefore, for fixed k, a lower bound on S  is

127
The adequacy of the recursion may be seen as follows. (1) Clearly, there is one canonical tuple of length n in

which n distinct numbers occur, namely <1,2,...n>. (2) There is no canonical O-tupie in which more than 0 distinct
natural numbers occur, for no numbers occur in the empty tuple. (3) Finally, iet O €Levink), and let O’ be the result
of truncating the nth position off of . Either dn oceurs in O or not. If so, then O €Levin-1kl. 1f not, then

O € (Levin-1k-1). Assume 7 €Llevin-1k-1. Then there is only one cenonical extension ¢ of 7 such that !¢ sk,
nemely, Tek. Moreover, this extension is distinct from the extension of any other element of Levin-1k-1). So

Levin-1,k-1) contributes Sn_”(_,| elements to snk' Now assume 7T €levin-1,k. Since ! 7 !=k already, there are

exactly k extensions 0 of 7 such that |0 =k, namely, 7+1..7*k, #nd esch of these extensions is unique. So
Levin-1,k} contributes ksn-‘l K eiements to levink). But Levin-1k} is obviously disjoint from Levin-1k-1), so Sn =

k
s kS

+ .
n-1,k-1 n-1k
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0 S
n, Kk
/ +\
1 ? kS
n-1,k
+\
2 ? kS
h-2,.k
n-xk . ? kS =k
ne{n-k), &

Figure 7-4: Exponential Lower Bound on Sn .
Snk > k"'k'
so the size of Levink) is- exponential in n. This suffices to illustrate that exhaustive
search is infeasible. A standard,'®® more precise expression for S | is
S = 1/KI[Z(-1)k choose ili"]

nk

The accompanying three figures

k\n 1234 5 6 7 8 8 10 11 12
1 1111 1 1 1 1 1 1 1 1
2 1371531 63 127 255 511 1023 2047
3 1 6 25 90 301 966 3025 9330 28501 86526
4 1 10 65 350 1701 7770 34105 145750 611501
5 1 15 140 1050 6951 42525 246730 1379400
6 1 21 266 2646 22827 179487 1323652
7 1 28 462 5880 63987 627396
8 1 36 750 11880 159027
9 1 45 1155 22275
10 1 55 1705
11 1 66
12 1

Figure 7-5: Value Table for S _,

1
28 1Aigner791, p. 97.
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10 115975 '
"11 678570

12 27644437

13 19p8838322

Figure 7-6: Value Table for B

hopeless

!
!
\
\
!

y 25,000,000

¢ 10,000,000

' 5,000,000

=~
1,000,000 .7/ -

®
=
-
—”

Figure 7-7: Plot of S |

provide some practical perspective on the impressive explosion of the search
space as n increases.

Admittedly, if a predicate occurs more than once in a clausal blank, many of the
points in the corresponding partition lattice will be redundancies weeded out by the
procedure CANON2. But when each predicate is distinct, each point in the lattice is
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e \

Figure 7-8: The First Eight Partition Lattices Drawn to Scale
generated even by CANON2. And a blank with seven distinct binary predicates, for
example, would have 180,898,322 distinct, canonical specifications. The need for a
- method that ignores upsets and downsets in a partition lattice is therefore quite
serious.

7.2.5. Upward and Downward Closed Sets in Partition Lattices

Let <R <> be an arbitrary, partially ordered set or poset for short Let S be a
subset of R S is an upset (downset) of R just in case for each »m¢R and for any
n'eS, if nlr' (7)n) then 7'e¢S. For any subset § of R, the upset (downset)
generated by S is just the upward (downward) closure of S in R These sets are
denoted up(S) and down(S), respectively. In the special case when S is a singleton
{a}, we dispense with the curly brackets by convention and simply write uplal
(down(a)). An upset cr downset that is generated by a singleton is called principal,
in analogy to principal ideals and filters in lattice theory.

in light of these definitions, and of principles (I} and (ll} for ignoring clauses, a
significant component of inductive intelligence is the ability to ignore upsets and
downsets in partition lattices, which are posets of a particular kind. That is to say,
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we want to generate only elements of complements of upsets and downsets in a
partition lattice, and to do so in such a manner that we never fail to generate one
when there is one. And we want to do so without tacitly considering elements of
the upsets and downsets to be avoided.

But for any poset R, it is simply a matter of logic that if S is an upset (downset)
then the complement of S in R is a downset (upset.'”® So ignoring an upset
{downset) amounts to generating exactly some downset {upset} that is the
complement of the given upset (downset).

Since -computational elegance can be thought of as the result of allowing general
mathematical truths about structure to stand in for repeated, expensive decisions, it
is of the utmost importance to our project to examine what structure there is in
upsets and downsets in partition lattices.

An arbitrary upset {(downset) is just the union of a set of principal upsets
(downsets). In particular, Up(S) (Down(S)) is just the union of Upla) (Down(a)) for all
aeS. And prinéipal upsets and downsets of partition lattices have a well-known,
elegant, and computationally useful characterization [Aigner791].

Principal Upsets
Consider first the case of principal upsets, for it is simplest Let = ePartin. Then

Fact L2:

up(r) is isomorphic to Part(|x !},

The argument for Fact L2 is simple. Each ancestor of » can be thought of as the
result of taking the disjoint union of some cells in ». But the space of possible
disjoint unions of ¢ sets is isomorphic to the space of possible disjoint unions of ¢
singletons. But a partition consisting entirely of |»| singletons is just the bottom
of a partition lattice of size |#|. This result shows that partition lattices have a
sort of "upward-nested” structure, depicted in the accompanying figure.

For example, consider the lattice generated by the up(121131). Although 121131
is an element of a lattice with 203 elements, we can easily calculate its principal
upset to be the lattice in the accompanying figure.

128
Just take the contraposjtive of the definition of an upset (downset).



194

Figure 7-9: The Nested Principal Upsets of a Partition Lattice
111111

RN

111121 121111 121121
112 121 122

121131
123

Figure 7-10: up(121131)

Principal Downsets

To formulate the corresponding characterization for principal downsets the /attice
product operation must first be introduced. The lattice product (S X T) of lattices
$=4¢S,{> and T=<T. > is given as the structure <{S X T}, <">, where (S X T) is the
Cartesian cross of S and T, and (xyiK{X.y) just in case x<x' and y<y. | shall not
distinguish AX(BXC) from (AXBJXC, so | may write L XL X.XL . Finally, the class of
lattices is closed under finite lattice products. Now it can be stated that
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Fact L3: [Aigner79]

down(r) is isomorphic to Il __Part{ic!).

where Il is the generalized /attice product operation. The isomorphism f s from
down(r) to Part(i{n |} works as follows. Let » be a partition {c,..c .} of Nim). Any
refinement of # is the result of removing some ¢, from =z, forming a partition
r={s,..s,} of ¢, and taking the union »Ur. Therefore, to each such r we can
assign a unique m-tuple o of partitions—~— one partition for each c,——= such that
[7r-cJUoc=7r. This map is clearly an isomorphism between the structures in
questior.\.

This result is illustrated in the accompanying figure, in which the first label of each
vertex is a sequence of canonical tuples representing an element of Part(3}XPart(2)
and whose second label is an element of down(11212), where 11212 is taken to
represent the partition that is its kernel

Lev 1: . 111 11
11212
Lev 2: 112 11 121 11 122 11 111 12
11232 12313 12323 11232

™~
~

/

T~

/

T~

Lev 3: 123 11 112 12 121 12 122 12
12343 11234 12314 12324

/

/

Lev 4: 123 12

. 12345
Figure 7-11:  The Lattices Canon(3} X Canon(2) and down{11212)

/

Curiously, down({s}} is isomorphic to a finite, non-trivial Boolean algebra if each
number occurring in ¢ occurs in o exactly two times, since the n—-element Boolean
algebra is is isomorphic to the n—fold lattice product of Canon(2), the one element
Boolean algebra For example, consider the canonical sequence ¢=(121233)
down(os) is then the boolean algebra on 3 elements. In the figure, the first vertex
label corresponds to Canon(2), the second corresponds to the three—element
boolean algebra and the third corresponds to down(121233).
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Lev 1: 11 11 11
{al b, c}
121233
Lev 2: 12 11 11 11 12 11 11 11 12
{p,c} {a, {a,b}
123244 121344 121234
Lev 3: 12 12 11 12 11 12 11 12 12
{c} {b} {a}
123455 123245 121345
Lev 4: - 12 12 12
{}
. 123456

Figure 7-12:  Canon{2)?, the three element Boolean algebra, and down(121233)

Now we know that each principal downset of a partition lattice is a lattice product
of partition lattices. A natural question to ask at this point is whether every
product of partition lattices is a principal ideal in some partition lattice. indeed, we

have that
Fact L4:

Part(n}XPart(m) is isomorphically embeddabie in Partin+m).

The embedding function is
fiKm,7'>) = 7Ulz'+n).

where = is in Partin), »' is in Partlm) and =+n denotes the result of adding n to
each element of each cell of ».°° (For example, {{1.3},{2}}+4={{5,7},{6}}).

This embedding function f can be generaiized easily to arbitrary n-tuples of

partitions.
ey )= ’
U‘Iu<m”| Z 'en(ﬂj)'

For example,

130Function f is clearly from Partin)XPartim) to Partin+m), for the value of f is slweys a partition of Nin+m). § is

injective, due to the fact thst the partitions over which the union is taken are of disjoint sets. Moreover, structure
is preserved, for suppose that (7,7}, (p, P') ere in Partin)XPartim) and that (7,77 )c(p, pr), but that {7 7 hf(p, pol.
Then np and ﬂ'_«_,o', but FU(r'+n} > pU(p'+n). So each cell of U7 +n) is included in some cell of ,OU(p'*n),
and at ieast one of these inclusions is proper. Then either ﬂ)/) or ﬂ'¢n>/)‘+n. In either event, the hypothesis
contradicted.
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f(<{{1,3}1,{2,41}, {{1.2},{3}}, {{1}1.{2}.{3}1D>)=
{{1,31{2,41} U {{1+4, 2+4}, {3+4}} U {{1+7}, {247}, {3+7}}=
{{1,31.{2,4},{5,6},{7}.{8},{8},{10}}

minor modification of the previous argument yields the more general result
Fact L5:

I, Part() is embeddable in Part(Z )

where the embedding is the generalized version of f.

7.3. Concise Data Structures for Partition Lattice Search

A rose is a rose by any other name-~- so far as meaning is concerned. But it is

widely acknowledged by computer scientists that the choice of a language or
representational system in_ writing a program can have a significant impact on
computational efficiency.

In this section, | propose data structures called PEXPRs ('Partition EXPRessions”)
for representing useful subsets of a partition latticee. PEXPRs express constraints
on partitions. Intuitively, the PEXPR '1134' describes or is satisfied by any.of the

following eiements of Part(4):

{{1,2},{3},{4}}
{{1},13,2},{4}}
1{1},{3},{2,4}}
{{1}1{2},{3}{41}}.

The PEXPR notation ‘12314’ is taken to be neutral regarding the equivalence of 12,
and 3. When we really want to say that these numbers are equivalent, we can
write '{123}}4, where numerals enclosed in parentheses are taken to be in the same
partition cell. So, for example, ‘12314’ is satisfied by the following five elements

of Part(4)

{{1.2,3},{4}}
{{1}.{2,3},{4}}
{{1,2},{3},{4}}
{{1,31.{2},{4}}
{{11.{2}.{3}.{4}}

while (123)}4' is satisfied only by the 4-partition {{1,2,.3},{4}}.

It prevents confusion in applications to take the "satisfaction” metaphor seriously
and to treat PEXPRs modei-theoretically, where relational structures correspond to
finite set partitions and PEXPRs are axiomatizations of sets of these structures.
This formal development is accomplished in the following two subsections.
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7.3.1. PEXPR Syntax

Let CON be an arbitrary, finite set | shall always employ small numerals as CONs.
A CEXPR is any finite, non—-empty string of CONs surrounded by parentheses. " For
example, (123) is a CEXPR. A TERM is any finite, non—empty string of CONs and
CEXPRs. For example, '5(123)4' is a TERM. A Proper PEXPR is either a TERM or a
finite sequence of TERMs separated by vertical bars. So '6!5(123)4!9 is a Proper
PEXPR. A Composite PEXPR is some formula in which proper PEXPRs are
connected in the usual manner by sentential connectives. So '-[614(12){(3) v
51(831)) is a Composite PEXPR. We shall be interested in looking at rather large
PEXPRs. Reasonably small problem instances can lead to PEXPRs with over four
hundred disjuncts. Hence, a useful convention to keep them on the page is to
denote disjunction by stacking the disjuncts vertically, and to denote conjunction by
placing two PEXPRs side by side with just a space separating them. So for
example the composite PEXPR,

(1213 (23)
245 214
(24) :
(45)8

217

is a notational variant of
{[(12)!13 v 245 v (24)] & [{23) v 214]] v [14B8 v 2]7]

Finally, it is useful to speak of Atomic PEXPRs, which are PEXPRs of the form (ij)
or the form iij

7.3.2. PEXPR Semantics

A partition structure is a relational structure <S,=>, where S is a set and = is an
equivalence relation on S. Evidently, each such structure corresponds to the finite
partition of S induced by =. So we can speak as well of a partition satisfying a
PEXPR. A structure M is said to be for CON when it is paired with a map & that
takes each CON to some element of S. Now, for satisfaction:

If P is a Proper PEXPR then M p-satisfies P (M |= P} just if for each
CON ¢ occurring in P, no CON ¢’ separated from ¢ in P by dashes is
such that d(c)=é(c’), and for each CEXPR C occurring in P, for each c.c
occurring in C, d(cl=d{c).

Iif P is a Composite PEXPR, then the usual truth conditions for
sentential connectives apply.
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Now we can define p-satisfiability, p-validity, p-entailment and p-equivalence
in terms of p-satisfaction in the usual, model-theoretic manner. So for example,
the PEXPR '1] 1" is p-unsatisfiable, for 1 is ‘equivalent to itself. The PEXPR ‘(1) is
p-tautologous, for the same reason. The PEXPR '12' is p-valid because it trivializes
the antecedent of the definition of satisfaction. So it turns out that '=12' is a
strange sort of p-contradiction, which says "it is not the case that either 1 is
equivalent to 2 or 1 is not equivalent to 2" PEXPR 12}31(45) p—entails PEXPR
1(2)1345 and is p-equivalent to the PEXPR (1)213 & 1245 & 3}(45).

The computational utility of PEXPRs as data structures can now be illustrated. For

examplé, let P be the Proper PEXPR
1121314151617:8i9.

According to the definition of p-satisfaction just given, P is p-satisfied in just the

same partition structures that satisfy the following, standard, logical expression:
-R(1,2)& -R(1,3)& -R(1,4)& -R(1,5)& -R(1,6)& -R(1,7)& —R(1,8& —-R(1,9&
-R(2,3)& -R(2,4)& -R(2,5)& -R(2,6)& —-R(2,7)& -R(2,8)& —R(2,9)&
-R(3,4)& -R(3,5)& -R(3.6)& -R(3,7)& -R(3,8)& —R(3,9)&
~-Ri4,5)& -R(4,6)& -R(4,7)& ~R({4,8)& ~R(4,9&
-R(5,6)& -R(5,7)& -R(5,8)& -R(5,9)&
~R(6,7)& -Ri6,8)& —R(6,9)&
~-R(7.,8)& -RI(7,9)&
~-R(8.9).

Evidently, the length of the standard expression is on the order of the length of P
choose 2, which is on the order of the square of the length of P. So PEXPRs can
reduce by a square factor the space required to axiomatize the same set of
partition structures. Moreover, for most applications, the PEXPR representation
requires no more time to use than the equivalent logical formula does. For example,
to decide whether the above PEXPR entails that i is not equivalent to j, one
searches, at worst, each pair of constants in the PEXPR to see if they are
separated by at least one bar. In the case of the logical formula, however, the
worst case would be that in which the desired atom is the last one inspected. In
either case, the same number of pairs of constants would be inspected.

7.3.3. PEXPR Normal Forms

Since we have defined atomic PEXPRs, we can speak of CNF (conjunctive normal
form) PEXPRs in the usual manner. For example, the following PEXPR is in CNF:
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112\2]4\(54)

2i13\31!5

(15N\314 ’ .
311 .

The next example- is a logically equivalent DNF (disjunctive normal form) PEXPR,

obtained by taking the cross product of the columns in the CNF form.

112, 214, (54)
112, 3!5, (54)
112, 314, (54)
213, 214, (54)
213, 3!5, (54)
213, 314, (54)
(15), 214, (54)
(15), 315, (54)
(15), 314, (54)
311, 214, (54)
3!1, 3/5, (54)
31, 314, (54)

Ancther normal form for PEXPRs is PNF, or partition normal form. A PEXPR P
is called a state description just if it is of the foliowing form: '1{(23){(45). That
is, P is a Proper PEXPR (no semicolons or line breaks), every CON occurs in P
exactly once, and each constituent TERM of P is a single CEXPR. A PEXPR P is in
PNF just if it is a column of state descriptions. Also, a PNF PEXPR P is minimal
just if no two state descriptions occurring in P are logically equivalent For
example:

PEXPR:
121{34)5
Equivalent Minimal PNF PEXPR;

(12)1(345)
(1}1(2)1(345)
(12)1(34)1(5)
(1)1(2)1(34)1(5)

Notice that if P is a state description and |CON|=k then EC, (P} is a unit set Hence,
the appeliation "state description” is appropriate, for a state description says, once
for all, everything about some partition in Partkk). Moreover, every consistent PEXPR
is equivalent to a PEXPR in PNF."*' So it is appropriate to call PNF a “normal form".

A normal form of computational interest is disjoint normal form or DJINF. A
PEXPR in DJNF is a column of Proper PEXPRs such that no two PEXPRs in the

131 . . L Lo \
I exactly k CONs occur in P, just disjoin the state descriptions corresponding 1o esch eiement of Eck(P).
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column are mutually consistent The advantage of such a representation for a
closed set in a partition lattice is evident If we had a method for generating EC, (P)
for any proper PEXPR P, then if a subset S of Partk) were represented by a DJNF
PEXPR R, applying this method to each disjunct of R would yield a non-redundant
list of S.

7.3.4. PEXPR Facts

B

The following is a representative sample of useful PEXPR tautology—-schemata
(where x,y,z are metatheoretic variables ranging over elements of CONS, and AB.C
are metatheoretic variables ranging over CONS', and XY,Z range over CEXPR U
CONS®).

1. 1= (xx) [reflexivity]
. 1= (ABCD) —--> (ACBD) [symmetry]

. 1= [(AB) & (BC)] <—==> (ABC) [union (entails transitivity)]

2
3
4. {= (ABBC) <~--> (ABC) [cancellation]
5. |= ={xy) <===> x|y [bar introduction]
6. i= XIYIZIW (—-> XIZIY|W [permutation]
7. i= X!Y <-==> X!x v Y!x [non—omnipresence]'*?
8 = [XlY & X}Z] <——-> X|YZ [merge]
A less obvious principle is the following:
i= IX1Y & x{y] <——=> [Xx|Yy v Xy|Yx] [combination]
Proof: <(—-- Suppose partition structure M satisfies Xx|Yy v Xy!¥Yx

Then Mi=[X]Y & Xly & Yix & xjyl v [X]Y & X{x & Yly & xiyl
Then MI=IX|Y & xly] & [[Xly & Y!x] v [Yly & X!x1]. So Mi=X!Y

& xiy. ==-> Suppose M{=[X|Y & xiy]l. But by non-omnipresence,
X1Y implies [Xix v Yix] and [Xly v Yiyl, so [X|Y,xiy] is p—equivalent
to P=

XY & xly & Xix & X}y

XY & xjy & Xix & Y}y

XY & xjy & Yix & Xly

XY & xiy & Yiy & Y}y

recall that by convention, each row is a disjunct. But by non-
omnipresence, XY implies [Xiy v Yjy] and [X{x v X{y]l. So [X|Y &
xiy & Xix & Xyl is p—equivalent to

132(:omrapositive of transitivity: (Xy) & (yZ) ---> (XZ), and bar introduction.



XY & xly & Xix & Xly & Xy
XY & xjy & X{x & Xy & Yy
and [XlY & x|y & Yiy & Yiy] is p~eQuivalent to
XY & xly & Yly & Yiy & Xix
XY & xjy & Yiy & Yly & Xly.

Substituting p—equivalents for p—equivalents in P, we find that X|Y,xly is
p-equivalent to

0 Qo @ Qo Qo o
< < < X X X

But notice that the first and second disjuncts entail the third, and the
fifth and sixth disjuncts entail the fourth. So the XY & xly is p-
equivalent to [X!Y & xly & Xix & Yiy] v [X}Y & x]y & Yix & Xlyl,
which is p-equivalent to Xx{Yy v XyiYx. QED.

The importance of the combination principle is that it provides, along with the merge
principle, a procedure for converting a disjunction of Proper PEXPRs and a
disjunction of paren-free atomic PEXPRs into a Proper PEXPR  For example,

consider the PEXPR
517 (12)415
67 341(15)

Notice that distributing conjunction over disjunction just amounts to taking the
cartesian cross of columns in our notation. Taking this cross product yields a

logically equivalent PEXPR
57,1245
517.341(15)
617.(12)415
617.34:(15)

Finally, the result of applying the combination or merge principle (depending on
which applies) to each disjunct is

(12)4715 [mergel
347i(15) [mergel
(12)46157 [ combination]
{(12)47 56

346(15)7 [ combination]
347:(15)6

Similarly, the union principle provides a way to convert any disjunction of bar—free,
Proper PEXPRs and disjunction of bar—free atomic PEXPRs into a disjunction of
Proper PEXPRs. For example, consider
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27)  (12)i45)
57)  (34)15)

which is equivalent to

(27)(12)(45)
(57),(12)45)
(27),(34)15)
(57).(34)X15)

By the union principle, we have

(127)(45)
(12)457)
(27)(34)(15)
(34)X157).

Soon, we shall see applications of these principles in various lattice search
algorithms.

7.3.5. PEXPRs and Partition Lattices

Recall that our interest in PEXPRs arises from an interest in partition lattices. Let
CON(n) be the numerals '1..'n’, and let § be the usual interpretation of these
numerals. Then the set of all partition structures whose domain elements are named
by numerals in CON(k) according to & is just the partition lattice Part(n).

The set of all elements of Part(n) that satisfy a PEXPR P whose constants are all
members of CON(n) may be called the n-e/ementary class of P, or EC (P) for short
in this manner, each PEXPR is associated with some subset of Partin), for any n.

If P is parenthesis-free, then EC (P) is a2 downset in Partin) for a parenthesis—free
PEXPR can assert that objects are in distinct partition cells, but not that any objects
are in the same cell. Therefore, splitting any cell of a model of a paren—free
PEXPR yields a model of this PEXPR. Similarly, if P is bar—free, then EC,(P) is an
upset in Partk) since such a PEXPR cannot assert that any two objects are in
distinct celis. Hence, fusing together any two cells of a model of P yields a model
of P. Herein lies the utility of PEXPRs in representing partition lattice upsets and
downsets.

These considerations lead to a fact that is crucial to the application of standard
complexity theory to problems involving upsets and downsets in partition lattices.
An upset (downset) R in Partin) can also be specified by the smallest subset S of
Part(n) such that R=Up(S) (Down(S). Call this set S the max/mal generating set of
R. One might imagine that maximal generating sets are also a rather efficient way to
code upsets and downsets in Partln). But
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Theorem P1: In the worst case, the cardinality of the maximal
generating set of the k-elementary .class of a bar—free (paren-free)
PEXPR of length k is on the order of 2%2'3

So PEXPRs can encode upsets and downsets in a partition lattice with exponentially
fewer symbols than are required to encode the set by means of a list of its
maximal generators. This is theoretically important, for recall that the complexity
class to which a problem is assigned depends on how “"bulky” its encoding is.
Hence, encoding a problem involving partition lattice upsets and downsets in termé
of maximal generators may make the problem seem exponentially easier than when
the upsets and downsets are encoded by PEXPRs. We shall encounter this issue
again very soon. -

7.4. The Trouble with Partition Lattice Search

Recall the CONSIST strategy. At stage n, we must conjecture an axiomatization of
all and only the clauses in which there are n or fewer variable occurrences that are
consistent with the evidence received by stage n, where the evidence is a finite set
of atoms or negations of atoms true in some unknown structure.

For the sake of simplicity in presentation, let us restrict attention to the lattice of
canonical specifications of a single clausal blank B in which no predicate occurs
more than once. As we have seen, the entailment structure on this set is
isomorphic to Partin), where '¥ occurs n times in B.

7.4.1. Avoiding Upsets and Downsets

Recall that we are free to ignore any hypothesis entailed by a hypothesis
consistent with the evidence, and that we are free to ignore any hypothesis that
entails an hypothesis inconsistent with the evidence. So we can imagine an
intermediate stage of empirical test in which some subset R=(S U F} of Part(n) has
already been inspected, where S is the set of all "successes” or variable patterns of
specifications of B that are consistent with the evidence, and F is the set of
"failures”, or variable patterns of specifications of B that are inconsistent with the
evidence.

1
33Pmof sketch: Consider the composite PEXPR P=11!2 & 314 &..& k-1!k]. 1112 & 341 is logically equivaient

to Q=113!24 v 14!23] by the combinstion principie. But 10 & 5!6} is logicelly equivalent to 135{246 v 136,245 v
1451236 v 146:235 by # second application of the combination principle, When this recursive application of the
combination principle is completed, we heve & disjunction with 2 logically independent Proper PEXPRs as disjuncts,
in which each numeral from 1 to k occurs exactly once, which is equivalent to the given PEXPR. State descriptions
for the meximal elements of its eiementary ciess can be obtained merely by plecing parentheses asround the terms
between bars. Since there is exsctly one element of Partik! that setisfies each k-state description so obteined, the

k/
maximeal generating set of the elementary ciass of the given PEXPR has cardinelity on the order of 2 2
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successes

anybody uncovered?

failures

Figure 7-13: Avoiding Upsets and Downsets. Simultaneously

The obvious next step is to find a new specification I1 of B to test But II should
not be a refinement of any element of F, and II should not refine into any element
of S. That is, I should be in Partin}-{Up(S) U DowniFll. So the problem is,

Given S and F, to find an element I1 of Part(n)—({Up(S) U Down(F) if
there is one, and to say there is no such Il if there is no such partition.

Recall that Up(S), Down{f} can in many cases be encoded with exponentially fewer
symbols as PEXPRs. It would therefore seem sensible to encode Upi(S),Down(F) by
such expressions. Accordingly, let P be a bar-free PEXPR whose elementary class
is Up(S), and let P, be a paren-free PEXPR whose elementary class is Down(F).

134

Recall that such PEXPRs must exist if S,F are non-empty. So the problem may

now be restated:

The PEXPR Elementary Class Complement Search (PECCS) Problem

134 . . . .
3 In cese § or F is empty, its corresponding PEXPR can be an srbitrery contradiction.
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Given:
A natural number n;

P is a consistent, DNF, bar—-free PEXPR
whose constants are drawn from set CON={c1,...,cn};

N is a consistent, DNF, paren-free PEXPR
whose constants are also drawn from CON.

To Decide:
there is a M ePart(n) such that '
rnot I1!=P and not II}|=N.

There is no reason to expect a general, tractable solution to this simply stated
problem, for:

Theorem NP5:

The PEXPR Elementary Class Complement Search Problem is NP-
complete.

Proof:

First, the PECCS problem is easily seen to be in NP. Let M be a non—-
deterministic machine that guesses a partition I1 in Partin) and that verifies
whether II fails to satisfy P and fails to satisfy N. This verification
amounts to finding pairs of constants in I and computing propositional
truth values on the basis of a given assignment, both of which tasks are
easily seen to require time only polynomial in the size of the input
formula.

it remains to show that the PECCS problem is NP-hard. This is
accomplished by showing that a special case of the clausal satisfiability
problem that is known to be NP-complete reduces to PECCS in
polynomial time.

The 3-Satisfiability of Sign-Homogeneous Clauses (3-
HSAT) Problem

Given: A set T of clauses on the propositional variables
{q1,...,qk} such that each clause contains no more than 3
disjuncts and for each clause C, either all disjuncts occurring
in C are negated or all disjuncts occurring in C are non-
negated.

To Decide: Is there a satisfying truth—assignment for T?
The 3-HSAT problem is shown to be NP-complete in [Gold78].

Now we need to define a polynomial reduction function f such that
f(T)=<P.N,n>, where <P,N,n> is an instance of the PECCS problem whose
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answer is 'yes' just in case the answer to T is 'yes. Let T be an
arbitrary instance of 3-HSAT, where T=(P'U N), P' is a set of clauses
whose propositional variables all occur. non—negated, and N is a set of
clauses whose propositional variables+all occur negated. Let Occ(T) be,
the set of all propositional variables occurring in T. For each g ¢Ocel(T),
define glq)='2i-1,2i’ and gi~q)="2i-1}{2" If F is a propositional formula
on the vocabulary of T, then let g(F) be the result of applying g to each
propositional variable occurring in F. For any finite set of clauses T,
Define NEG(T) to be the result of disjoining the conjunctions that result
from negating each clause and driving the negation in using the DeMorgan
and double negation rules. Finally, define

fP'U N) = <gINEGIN)], gINEGP')], 2i0cclP'U N)i> = <P.N,n>

if* T=PU N is a finite set of sign—homogeneous 3-clauses, then
g[NEGIP)], gINEGIN)] are each DNF PEXPRs such that the former is
paren—free and the latter is slash—free. So f(T) is indeed an instance of
the PECCS problem.

f is evidently -easy to compute. NEG can be computed in time
constant in the size of T, as can g And to compute n requires only
counting propositional variables and muitiplying by 2, which can be done
in time polynomial in the size of T as well.

Now, let T= (P U N) be an arbitrary instance of 3-HSAT, and let
<N,Pk> = f(T). All that remains is to show that T is satisfiable if and
only if there is a partition in Partlk) that does not p-satisfy either N or P.

—-—=> Suppose T = (P U N) is satisfiable. Then there is a satisfying
truth assignment ¢:Occ(T)--=>{t,f} for T. Define II[s]ePartim} such that
for each i and j>i from 1 to 2m, i,j are in the same cell of M[s] if and
only if there is a k from 1 to m such that j=2k and i=2k-1 and osq =t
We show that II[¢] does not p—satisfy either P or N. Consider P first
Recall that P=g(NEGIN')). Recall also that ¢|=N. Since N is a finite set
of disjunctions whose disjuncts are negated atoms, for each disjunction
D in N' there is a sentential variable g, that occurs in D such that o does
not satisfy q. So for each disjunction D' occurring in NEGIN) there is a
q, that occurs in D' such that o does not satisfy q. Note that g, does
not occur negated in NEGIN). Hence, giq) = '(2i-1,2i), by the definition
of g So by the definition of I[¢], 2i—1, 2i are in distinct cells of
Nl{s]. So N[es] does not p-satisfy '(2i-1, 2if. Hence, for each disjunct
occurring in P there is an atomic PEXPR (nm) such that {(nm} is not p—
satisfied by lI[¢]). Hence, P is not p—satisfied by Il[¢]. | omit the dual
argument for the case of N.

{--- Suppose there is a partition I in Partkk) that fails to p-—satisfy
either P or N. By the definition of f, recall that k=2m, where m=|0cc(T}!.
Now define #[II] so that for all i between 1 and m, oi=q_if and only if
2i, 2i~1 are in the same cell of II. We show that ¢[Il] satisfies both P
and N. Take the case of N. Since II does not p-satisfy P, we know
that for each disjunct D occurring in P, there is an i from 1 to
210cc(T)! such that the atomic PEXPR '(2i—1,2i} is not p-satisfied by IL
Hence, 2i-1, 2i are not in the same cell of II. Hence, ¢[I1] does not
satisfy q, by definition. Since P=giNEGIN)), o does not satisfy NEGIN).
So o does satisfy N. | omit the dual argument for the case of P. QED.
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7.4.2. Avoiding Upsets Only

The proof that the PECCS problem is NP-hard relies on a reduction of a
satisfiability problem to the PECCS problem. So perhaps the difficulty of the
problem resides in the fact that the PEXPRs involved can express nhegation, and
hence can be mutually inconsistent This line of thought leads naturally to the
suggestion that a partitidn lattice be searched by avoiding onfy downsets or upsets,
but never both at once. In this way, negation could be avoided, and perhaps a
polynomial algorithm could be found.

Consider the strategy of avoiding only upsets. First, we assume that some points
in the lattice have somehow been tested and have passed this test Call the set of
all such partitions S. No partition in Up(S) need be considered, for its corresponding
clause is entailed by somé tested, successful clause, and hence its addition to the
current successes would be logically gratuitous.

uncovered
partition
above level k

Figure 7-14: Avoiding Upsets
So our task is to generate some partition in the lattice that is not in the upset of
S. A moment's reflection reveals that as the cardinality of a partition goes down, its



208

chance of being covered goes up. That is, an arbitrary upset in Partn} always
covers a higher percentage of a shallow level than it covers of a deep level So if
we are interested in testing as few lattice péints as possible, a sensible heuristic is
to start testing deep in the lattice, so that any empirical success will cover as large
a portion of the uninvestigated part of the lattice as possibie. But once one is
finishgd testing all uncovered partitions at a level deep in the lattice, one must find
some point at a higher level in the lattice that is not yet covered by a success
already discovered lower in the lattice. That is, given an arbitrary cloud of points
lower in the lattice along with the specification of a level, the job is to generate
some point at a higher level in the lattice that is not in the upset of the given cloud
just in case there is one. But if one could solve this generation problem quickly,

the generator would provide a fast solution to the following decision problem:
The Partition Lattice Upset Complement Search (UCS) Problem

Given:
a subset S of Partin);
a natural number k between 1 and n.

To Decide:
there is IlePartin) such that {T1i<k & not ITeUp(S).

But sadly enough, this plausible approach is met with a stronger negative result
than that which faced the previous approach——- a fact which is not so obvious on
the face of it

Theorem NPE:

The partition lattice upset complement search (UCS) problem is NP-
complete.

Proof: First UCS is in NP, for consider a nondeterministic machine
that guesses a partition II in Canon(n), and then checks whether (IIi<k
and whether Il1 is in the compiement of Up(S. The cardinality check
requires but one pass through I1. And checking whether no element of
S is a refinement of Il can be performed in time polynomial in the size
of S and 1. For let ILII' be elements of Partin). II is a refinement of II'
just in case there is no pair i,j of natural numbers between 1 and n such
that i,j are in the same cell of II' but are not in the same cell of IL
Hence, we need only to generate each such pair i,j (there are n choose 2
of them) and to locate the cells of II and II' of which they are
respective elements. Locating i and j in IT and II' require at worst two
passes through each partition, or 4n steps. But the function 4nin choose
2) is just 4n°-n, which is polynomial in the sizes of the input partitions.

The non-trivial part is to show that UCS is NP-hard  This is
accomplished by showing that The Minimal Set Cover (MSC) Problem
reduces to the UCS problem in polynomial time.
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The Minimal Set Cover {MSC) Problem

Given: .
a finite set R; ¢
a subset I' of the power set of R;
a natural number c.

To Decide:
there is a subset I'' of I" such that |I"{<c and UI'=R

The MSC problem is known to be NP-complete [Garey79].

The MSC problem can be transformed polynomially into a form MSC
that iliuminates the analogy between set cover minimization and the UCS
problem. Let <RI'.,c> be an arbitrary instance of this problem, where
I'={G,...G_}. so that |I'\=m and so that [Ri=p. It reduces tedium in
what foliows to establish the convention that i,j range from 1 to m and
i,j range from 1 to 2m. Now define,

for each reR,
Sir) = {i reG eI’}

gRI=R'={S(r): reR}
gKRT,e>) = <gRlc>

Notice that since R' encodes both the cardinality of R and the structure
of I, there is no point retaining I So an instance of MSC' is just a pair
<R,c>, where R’ is n arbitrary set of sets of numbers from 1 to m, for
any given m. The corresponding question for MSC' is whether

(®) there exists some subset $' of numbers from 1 to m such

that [S'}<c and for each Se¢R' there is an i¢S' such that ieS.

Observe that g can be computed in polynomial time. So all we need to
know is that

Lemma: there is a subset I'" of T" such that |I"i<¢c and UI'=R if and
only if there exists some subset §' of natural numbers from 1 to m such
that {S'i<c and for each S¢R' there is an ie¢S' such that ieS. That is,
<RT,c> ¢ MSC if and only if flKRI'.c>) (=<R',c>) ¢ MSC.

~—=> Let (RT.c> be an instance of MSC. Suppose there is a subset
I" of T such that |IT"{<c and UI"=R. Define S[I"] so that for all i from
1 to m, ieS[I"] if and only if GeI'. So IS[I"]1i=iI"i<c. Suppose
SeR. Then by the definition of g, there is an aeR such that S={ia¢G}.
Since UI'=R, there is a G ¢I" such that aeG. So by the definition of
SII'], ieS[T]).

<--- Let <R'c> (=f(KRTI.c>)) be an instance of MSC. Suppose that
there is a subset §' of natural numbers from 1 to m such that |S'i<c
and for each SeR' there is an i¢S' such that ieS. Define I'[S'] so that
G,eI'[S'] if and only if ieS. So [I'[S']i={I"i<c Let a be an arbitrary
element of R. Then by the definition of g, S(aleR. Then by hypothesis,
there is @ k such that keS(a) and keS. So by the definition of I'[S'],
G, ¢ I'lS']. So UI'{S']=R, which completes the proof of the lemma
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Let <R.c> be an arbitrary instance of MSC', where {U[R]i=m. We can
think of each Se¢R as uniquely coded by a binary m-tuple o such that for
each i from 1 to m, ¢=1 if i¢S, and ¢=0 otherwise. Rephrasing the

question for sets coded as Boolean séquences yields

There is an m-tuple o' such that there are as few as ¢
distinct occurrences of 'l in ¢ and for each o e¢R there is an
i from 1 to m such that a'i=ai=1.

For convenience, let |o! denote the number of occurrences of 'l' in ¢
and let sUc’ denote the m-tuple o" such that o" is the characteristic
function of the union of the sets S,S, where o is the characteristic
function of S and ¢' is the characteristic function of S.

"Now we define a reduction function f(<R.c>) = <Sk>, where <R.c> is
an instance of MSC' (with sets coded as Boolean sequences) such that
MAXUR)=m and <S,k> is an instance of UCS.

Notice that the partitions of a set correspond uniquely to the
equivalence relations on that set Hence, | shall employ the name of a
partition as an equivalence relation. That is, illj just in case there is a
cell cell such that i,jec.

The principal intuition behind the reduction f is that "covering” each
element of a finite set in the MSC problem is analogous to "avoiding
refinement” into any element of a set of partitions in the UCS problem.
Hence, each element of the set R should correspond to some partition in
S. We have already assisted the analogy by transforming the elements of
this set into Boolean m-tuples. So the next step is to encode an
arbitrary Boolean m~tuple o« with a partition IT in Part(2m).

The trick is to represent a 'O’ in position i of ¢ as the inequivalence
of 2i and 2i-1 according to II, and to represent a ‘1’ in position i of ¢
as the equivalence of 2i and 2i~1 according to I. So we can think of
each pair 2i, 2i-1 from 1 to 2m as encoding the ith "bit" of o. Finally,
we want [l to be the most refined partition that satisfies these
constraints.

Now, for each ¢¢R, define H(c) so that
for each i, i'¢j, iMllg)j just if ‘75'/2=1 and i'=j-1.

CodesR)={ll[ s ]:c eR}

Codes(R) is therefore exactly the set of partition—codes for the Boolean
sequences in R. Notice, in particular, that any pairs not of the form 2i,
2i-1 are inequivalent according to each element of Codes(R).. This implies
that each element of Codes(R) is a refinement of the partition

nm = {{1,2},{3,4},{5,6}..,{2m=-1,2m}}.
Hence, for each ITeCodesR);, (I i>m.

Next define:
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for each 1{x<y<{m,
for each i,j>i, ill{x.y)j just if x=i and y=j

Axiomsim)={Il(i,jinot [j is divisible by 2 and i=j-1]}.

Finally, define
f(K<R.c>) =
<{Axioms(2!U[R]!) U CodesiR)), ((U[R]!+c)> =
<Sk>

This completes the definition of f.

"First, f can be computed within time polynomial in the size of the
input string encoding of <R,c>. By construction, [U[R]| = MAX(UIR]I).
The MAX can be found by starting with X=0, and by setting X to the
next element of U[R] if this element is greater than X thereafter. This
process is clearly linear in the size of R And addition over natural
numbers can be performed in polynomial time. Moreover, Codes(R) can
be generated in polynomial time by constructing I, and by splitting the
cell {2i-1, 2i} just in"case o =0. Finally, |Axioms(2m)i is bounded above

by the quantity (2m choose 2), or 4m?+2m. All unordered pairs drawn
from a given set can be generated in polynomial time, and for each such
pair {x,y}, II{x,y} can be generated in time polynomial in R by placing x,y
in the same celi, and by separating every other i and j.

Two auxiliary definitions are required in the course of the proof.
Intuitively, one converts a Boolean sequence that covers R into a partition
that avoids refinement into f(R), and the other converts a partition that
avoids refinement into S into a sequence that covers f 1(S).

For each i,

1 if not (2iL(2i-1)
ar[l'I]i=
0 otherwise

For each i,j>1, ill[ o] just in case
there is an i such that i'=2i-1, j=2i, and aj,,2=0

Llemma:

Let <Sk>=f(<R,c>). Then there is. a IlePartin) such that {Il|<k & not
MeUp(S) just in case there is a Boolean m-tuple o' such that there are no
more than c distinct occurrences of 't in ¢' and for each «¢R' there is
an i such that o' =0 =1

-—=> Assume that there is a llePartin) such that {I1i<k & not IeUp(S).
Call this partition II', and let m=|U[R]|. Since II' is not in Up(S), we
have that {a) no element of Axioms(2m) is a refinement of II' and (b) no
element of Codes(R) is a refinement of II.
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(a) implies, by the definition of refinement, that for each Ile¢ Axioms(2m)
there are i,j such that illj but not iTI'f. So by the definition of
Axioms{2m), we have that for each x,y>x between 1 and 2m such that
either y is not divisible evenly by 2 or x is not y—1, there are i,j'>i' such.
that iTl{x,y})j but not iTI'j. But by the definition of Ilixy), iTlix,y)j' just in
case i=x and j=y. Hence, for each i,j>' such that | is not divisible
evenly by 2 or i is not j—1, it is not the case that iTl'j. So for each
i,j>i, fII'j only if | is divisible evenly by 2 and i=j-1. So II' is a
refinement of M (m = {{1,2},{3,4}...{2m-1.2m}}. Notice that
I m)i=m.  Any refinement of II (m} is the result of splitting some of
the cells of II (m. So there is some subset Q of {1,2,...m} such that
for each ieQ, not 2i-1II'2i. Notice that [IIi=;Q{+ll (mi={Qi+m, for
each "splitting” of a cell in II (m) raises the cardinality of II' over that of
H;(m) by one. But by hypothesis, |II'i<k=m+c. Hence, &) 1Qi<c.

(b) implies, by the definitions of Codes(R) and of refinement, that for
‘each ceR there are i,j>' such that iTl{c}j but not II'j. But since iMl'j
only if there is an i such that j=2i and i=2i-1, and since each such i is
an element of Q, we have that for each o¢R there is an ieCQ such that
2i- 1I{s)2i but not 2i—-1I'2i. This implies, by the definitions of «{II'] and
Il(o) that for each o'¢R, there is an ieQ such that ¢ =1 and o[II']=1.
Since (by (&) [QiLc, there is a ¢’ (namely o(I) such that there are no
more than ¢ distinct occurrences of 1 in o', and for each o¢R there is
an i such that o'=o=1.

{——-- Assume there is a Boolean m-tuple o« such that '1' occurs no
more than ¢ times in ¢ and for each o¢R there is an i such that
o' =g =1 Call this m-tuple o' Let Q be the set of all i such that ¢'=1.
By the definitions of Ilis) and IM[¢'], it follows that (%) for each seR,
there is an ieQ such that 2ill{¢)2i—-1 but not 2ilI[¢']12i-1. Moreover, the
definition of M[o'] guarantees that IlI[¢'] is a refinement of II (m).
Hence, (1) no element of Axiomsim) is a refinement of Ill{¢’). Moreover,
the definition of leo'] implies that (2)
lﬂ[a']l=lﬂo(m)5+10{=m+!Q§$M+C-

And (% implies, along with the definition of Codes(R) that Il[¢'] is a
refinement of no element of CodesR. So (3) N[¢'] is not in
Up(Codes(R). So by (1), (2), and (3). we have that there is a II' (namely
M[o']) such that [I1|<{m+c=k and no eiement of Axioms(m)UCodes(R) (=S)
is a refinement of II. QED.

The chain of polynomial reductions defined in this proof is complicated, so a
simple, intuitive example of its operation is in order. Let our original instance
<RTI,c> of MSC (the "Minimal Set Cover" problem) be
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R={ab,cd}
I'={G, G, G,

G,={ab}
Gz={c,d}
Ga={a,c}

c=2

The object is to find whether the union of some c=2 or fewer elements of T is
identical to R. By inspection, the answer is 'ves', for {ab} U {c.d} = {ab,cd}l.

The corresponding instance <R',c> of MSC looks like this:
R'= {S(a), S(b), S(c), Sld)}

Sla)={1,3}
Sb)={1}
S{c)={2,3}
Sid={2}

c=3

The problem is to decide whether there is subset S’ of of the set {1,2,3} such
that the cardinaiity of S§' is no greater than ¢ and for each SeR there is an ie¥
such that i is also an element of S.

Next, we encode the Sir) as boolean sequences representing their characteristic

functions over the universe {1,2,3}.
R = {S{a), S(b), S(c}, Sid}

Sla) = <1,0,1>
S) = <1,0,0>
S{c) = <0,1,1>
Sid) = <1,1,0>
c=2

The corresponding question is whether there are c=2 or fewer distinct positions
between 1 and 3 such that for each Boolean triple in R, a '1" occurs in one of
these positions. Again, the answer in this case is 'yes', for if we choose positions
1 and 2, then a and b each have a '1" in position 1, and ¢ and d each have a '1' in
position 2. Evidently, this is just a notational variant of the original problem.

Finally, R’ transforms into the following set S=(Codes U Axioms) of partitions and c
transforms into k=m+c¢:
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Codes: 1 2 3

a {{12} {3}{4} . {56}}
b: {{12} {3}{4} * {5}{6}}
c {{1}{2} {34} {56}}
d {{12} {34} {5}{6}}
Axioms:

{{13} {2}{4}{5}{6}} .
{{14} {2}{3}{5}{6}} =
{{15} {2}{3}{4}{6}}
{{16} {2}{3}{41{5}}
{{23} {1}{4}{51{6}}
{{24} {11{3}{5}{6}}
1{25} {1}{31}{4}{6}}
{{26} {1}{3}{4}{5}]
{{35} {1}{2}{4}{6}}
{{36} {1}{2}{4}{5}}
{{45} {1}{2}{3}{6}}
{{46} {1}{2}{3}{5}}

k=3+2

Notice that Codes does in fact code R so that the code of b has 2i-1 and 2i in
the same cell just in case b has a '1" in position i. The gquestion now is the one in
which we are interested, namely, is there a partition IeParti2m) such that
iTi<k=3+2=5 and II is not in Up(S). Notice that the answer is again 'yes' (as it had
better bel), and the desired partition is {{1}{2}{3}{4}{56}.

This result is much stronger than the previous one because the input consists of
an arbitrary subset of the lattice rather than of a PEXPR description. Hence the
theorem addresses exactly the "bottom up” lattice search we were contemplating.
Interestingly, this stronger result corresponds to the observation that, unlike the case
of paren—-free PEXPRs, the cardinality of the maximal generating set of the
elementary class of a bar and negation free PEXPR is not exponential in the length
of the PEXPR. In other words, there is no "masking” of the difficulty of this
problem by an exponential expansion of the generating set of the elementary class
of a bar-free PEXPR as there was in the previous problem which involved paren-—
free PEXPRs. The present result therefore strengthens the suspicion that avoiding
upsets and downsets of subsets of a partition lattice (regardiess of level) is
intractable as well. But | haven't settled the question.
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7.4.3. Avoiding Downsets Only

Although we have seen that avoiding upsets and downsets is likely to be difficutt,
and that avoiding upsets alone is more likely to be difficult, perhaps avdidin_g
downsets is easy. After all, we know that the structure of partition lattices is not
symmetric from top to bottom.

On this proposal, one has at some stage a set F of partitions corresponding to
clauses tested and found to be empirically unsuitable. It makes some intuitive sensé
to begin such a search high in the lattice, for any failure found at a high level
covers 'more partitions than any failed point at any other level. But once all the
points at a level have been tested, one must generate a partition at a lower levsl
that is not covered by any failure found at a higher level, and it is possibie that all
such partitions are covered. So the task, then, is to-find some untested clause II at
or below a given level, that is not in the downset generated by F. Since there is an
exponential difference in size between maximal generating sets and paren—free
PEXPRs representing the same downset, we should (in good faithh employ the
“unpadded” PEXPR notation.

failures

Figure 7-15: Avoiding
Downsets Only

That is, we want to generate a partition below a given level that does not satisfy a
given, paren—free PEXPR.
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If we had a fast generator of this sort, we would have eo /pso a fast decision

procedure for the following decision problem:

The Paren-Free PEXPR Elementary -C/lass Compl/ement Search (SFPCS)
Problem

Given:
A Paren—-Free DNF PEXPR P;

Natural numbers k,n)>k.
To Decide:

there is a IlePart(n) such that [I1|>k and
Il does not satisfy P.

The reader may well have anticipated as much, but it is not entirely obvious that

Theorem NFP7:

The paren—free PEXPR elementary class complement search (SFPCS)
problem is- NP-complete.

Proof: That SFPCS is in NP is evident from the fact that counting the
cells of a guessed partition can be done in time linear in the partition
size, and testing whether II|=P is polynomial, by the argument in the
proof that is in NP.

it remains to show that SFPCS is NP-hard. We show that there is a
polynomial reduction of MSC' to SFPCS, in a manner quite analogous to
that of the proof that UCS is NP~hard Let <R,c> be an instance of
MSC', as described in the proof that UCS is NP-hard and let m=|R!.

As before, let i',j range from 1 to 2m and let i,j range from 1 to m

Now define the paren-free PEXPR P(s) for each Boolean m-tuple o, as
follows:

D(s)[0]=the empty string.
Dig)[i]l¥& 2i+1}2i+2' if o=1

Dig)li+1]=
Die}[i] otherwise

D{e)=D(o}[m].

Next, let
Code(R)= Disjunction o erPlo)

Finally, we define the reduction function
f(KR.c>)=<Code(R), 21UIR]|-c>=<Pk>.
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Code(R) can be computed in time polynomial in the size of R, for the
definition of Qo) is essentially a polynomial algorithm for generating Q(os)
from ¢. And 2|U[R]|-c is evidently easy to compute. So f is
computable in time polynomial in the size of <R.c).

Let <R,c> be an instance of MSC' (where elements of R are viewed as
Boolean sequences. Let [U[R]li=m, and let <Pk> = <CodeRlm-c> =
f(<R.c>). It remains to show that there is a MePartim) such that [II1i)k
and II does not satisfy P just in case there is a o' such that |oi<c and
for each o¢R there is an i such that o' =0 =1.

——=> Assume that there is a Ile¢Partim) such that {I1}>k and II does
not satisfy P. Call the guaranteed partition II. Hence, for each disjunct D
occurring in P, there is an i such that 2i-1}2i occurs in D but 2i-1I'2i
Hence, (a) there is some subset Q of {1,2..m} such that for each
disjunct D occurring in P there is an ieQ such that 2i~1}2i occurs in D
but 2i-1II'2i. Since the result of identifying 2i—-1 with 2i in II' has
cardinality one less than the cardinality of II', we have that [II'|=2m-|Q]1.
But {II}>k=2m-c, by hypothesis. Hence, |Qi<c. By (a) and the definition
of Code(R) we have that for each oeR there is an ieQ such that 2i-1}2i
occurs in Dio) and 2j-1II'2i. So by the definition of D(s} we have that
for all oeR there is an ieQ such that o =1 and 2i-1II'2i. Now, define

c[I'] so- that for each i, a[l’l’]i=1 if (2i-1)ﬂi2i; and =0 otherwise.
Hence, for all ceR, there is an ieQ such that vi=¢[n’]i=1. But since

1Qi<c, we have that there is a o' (hamely ¢[I']} such that {oi<c and
for each oeR there is an i such that o' =0 =1.

{-—- Suppose there is a Boolean m-tuple o such that |¢i<c and for
each ceR there is an i such that o'=c =1. Call it ¢. Let Q be the set
of all i such that =1 So {Qi<c, by hypothesis. Hence, for each c¢R
there is an i¢Q such that ¢'=1 and o =1. By the definition of D{s), for
each oeR, there is an ieQ such that ¢',=1 and 2i~1i2i occurs in D(s) and
o'=1. Define lI[s] so that for all 1,j>i, iMlelj just in case there is an
i such that j=2i, i=2i-1, and ¢ =1. Then we have that for all o€R, there
is an ieQ such that 2i—-1]2i occurs in D{o) and 2i—-1ll[o']12i Then
=2m-{Q1}, for {II {=2m and two distinct cells in II, are merged for
each ieQ. But since {Qi<c, we have that {IIi>2m-c. So by the
definition of Code(R), there is a II' (namely NI{¢']) such that [II|>2m-c
{=k) and for each disjunct D occurring in Code(R) (=S) II' does not satisfy
D. QED.

7.4.4. The Silver Lining

Since the days of logical positivism, the "sophisticated” money has been bet against
positive results in the logic of discovery. Such sophisticates may take the above
results as superfluous confirmation of what they aiready knew. But these results
are hardly devastating to the general project of finding useful hypothesis generators.
The following discussion reviews some of their limitations.
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To begin with, NP5 and NP7 apply only to problems in which the given upward
and downward closed sets are coded as PEXPRs. And my proofs of these results
cannot be extended to the case in which tHe given upward and downward closed
sets are presented in terms of their maximal generating partitions. This is because
the maximal generating set for an upset encoded by a bar-free PEXPR can be
exponential in the size of the PEXPR. Since the "output’ of the transformation
function is too big, the function cannot be computed in polynomial time.

Nothing just said implies that some other proof of NP—completeness could not be
found for the upset complement search problem when the upset is encoded by its
maximal generating set But for all that has been shown, the entire difficulty of the
PEXPR version of the problem may just be a result of the fact that the maximal
generating set for the elementary class of a PEXPR can be ex’ponentially iarger than
the PEXPR itself. Perhaps the maximal generating set already encodes (in some
mysterious manner) all the difficult search that must be performed in the PECCS
problem. Or perhaps not Aside from the interest of the question to this thesis, its
resolution would be of independent, mathematical interest in its own right

Second, intractability and uncomputability theorems are not very robust in
supporting broad, intuitive, philosophical claims. in particular, the theory of NP-
éomplet'eness is but a species of worst-case complexity theory. So there may be
infinitely many instance sizes for which each instance of this size is "easy”, and it is
also possible that most instances of every size are easy. The upper bound skims
like a light canopy over the worst problem instances of each size without telling us
anything about the deeper topography of the problem. 5

-7 T ¢ '} \'.' X t { T : 1 /
~ - iz€
— oreasing instance °

e

Figure 7-16: Worst-Case Complexity
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An obvious step, then, is to isolate difficult and easy restrictions of the original
problem.'*® When push comes to shove, we may decide that a restricted problem
is all we really wanted to solve anyway. One way to find out whether "most” of a
problem is easy is to study the problem's expected complexity. Imagine a problem
P with a restriction P' such for some polynomial function p, all but p(n) instances of
size n of P are instances of size n of P. Imagine further that a program that
solves P can solve P’ in polynomial 'time. Then for each instance size, the easy
instances "wash out” the hard instances in the average resource consumption of the
program over all instances of this size. Hence, the expected complexity of P is
polynomial even though its worst—-case complexity is not So a proof that an NP-
cOmple{e problem has polynomial expected complexity tells us that some “slight”
{polynomial) restriction of the problem yields a tractable problem.

In addition to restricting the problem to be solved, altering the criteria for having
solved it can elude the intuitive impact of an intractability result For example, it
might be easy to solve a problem correctly ninety percent of the time but costly to
solve it correctly in every case. For practical purposes, being right ninety percent
of the time may be more than sufficient.

But these recipes for evading the /ntuitive impact of an NP-completeness
theorem should not be taken to undermine its forma/ significance.v if one really
wants to find a search—free way to solve a problem, then an NP-completeness
result is devastating to the project Such results provide a mathematical explanation
of sorts for one's repeated failure to find a search—free method. The explanation
is this. Nobody else who has sought such a solution for an NP-complete probliem
has ever met with success. But if you had found one for your problem, you would
ipso facto have found a search-free sofution to everybedy else's NP-complete
problems as well So unless you have a cute approach to your problem that
nobody else has applied to their own problems, there is little point even trying to
find a search—free solution to yours by means of the usual repertoire of procedural
tricks.

But the formal generality of these results is more of a help than a hindrance to
the logic of discovery. They tell us where not to waste valuable time trying to find
search—free solutions that will be very difficult to find even if they exist Instead,
NP-completeness theorems focus .our attention on smaller gains in restricted
problems, where success is more likely to be encountered. It may just turn out that

138 e . . C gt R . e e
P’ is & restriction of P just in case the characteristic function of P is e restriction of the characteristic

function of P to & smaller instance universe. | do not mean that P’ is a subset of P over the same universe, for this
would be 8 different problem rather than & restriction of the same problem [Garey79), p. 63.
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inductive intelligence lies hidden in one of the dark, mathematical corners the
theorem leaves unexplored. An intractability proof can suggest where these corners
are by is.olating a particular aspect of the* problem that is difficuit So an. NP-
completeness theorem in a problem domain is not an invitation for brooding and
dismay. Rather, it serves to focus inquiry where easy progress can still be
expected.

7.5. Test-Oriented Procedures for Partition Lattice Search

It is time to examine some procedures that seem, in many cases, to ignore
hypotheses a posteriori in light of the evidence without compromising the inductive
strategy of CONSIST. in this section, | present some "generate and test” approaches
in which suitabiiity testing is treated as an isolated subroutine that does not interact
with clausal generation in any way except to say for any given clause whether that
clause is suitable or not on the given evidence. An immediate consequence of this
orientation is that the test i:rocedure must solve an NP-complete problem (Theorem
NP2) and so any known implementation will be hopelessly slow in some cases due

to hypothesis test alone.'®

But rather than being a signal to give up, the
intractability of hypothesis test is a keen motivation to try to minimize the number

of tests performed and the number of hypotheses considered.

An obvious generate~and-test approach to computing the CONSIST strategy is to
choose an arbitrary element of Partin), and to test it If the partition passes the
test, place it in S. Otherwise, place the partition in F. Next, generate some other
element of Partin) that is in neither Down(F) nor Up(S). Test this partition, assign it
to S or to F, and continue, until no partition can be found that is neither in Down(F)
nor in Up(S). More precisely,

SEARCHI(n)
begin
set H=S:={};
while there is an hePartin)—{Up(S) U Downl(F)) do
begin
choose some hePartin)—({Up(S) U Down(F));
test h;
if h passes test then set S:=(S U {h})
else set F:=(F U {h})
end
end.

Notice that the command "choose” is vague. In fact, how the choice is defined can

1
36Recall that in the inductive strategy CONSIST, hypothesis size grows with evidence size. Since the size of 2

consistency problem is the size of the given hypothesis end the given evidence, the overali procedure just described
is likely intractable in the size of the input evidence.
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have a significant impact on the complexity of the overall procedure. For exampie,
suppose that the choice is a function of n, S, and F, and is defined to be one of
the most refined partitions in Partin)-{Up(S)*U Down(F)l. in a sense, this is exactly
the criterion embodied in Shapiro's "refinement operators”. In the worst case for
this procedure, every clause in the lattice is false, so every clause in the lattice is
tested-—— even though no clause that entails a failure is tested and no clause
entailed by a success is tested. There is an obvious, dual disaster for the approach
that searches the lattice from bottom to top. '

Computer science has developed a technique for coping with these simple, worst-
case séarch disasters. For example, consider an arbitrary, totally ordered finite set
<Q.,<> and given, "black box" decision procedure for property R on Q such that R is
closed downward in Q according to £ Think of Q as a very simple, finite lattice
of hypotheses, and of R as a test procedure defined on Q. The problem is to find
the greatest element of R in Q according to <

A naive method is to start at one end-point of Q and to traverse Q in descending
order until some element of Q passes the test Notice that the method just outlined
does have the property of never testing a hypothesis lower than a successful
hypothesis or higher than a failed hypothesis. But no computer scientist would
search Q this way, for such a search must test every element of Q in the worst
case when the lowest element of Q is the only element of R A more sensible
approach follows, where [x,y] is an arbitrary interval of Q such that x<y, and the
midpoint of [x,y] is the first z in [x,y] such that the number of w>z in [x,y] is

no more than one greater than the number of w' less than z in [x,y].

ChainSearch([x,y1);
if |[xyli=2 then

begin
if y passes test then return y
else if x does not pass test then return 'R is empty’
eise return x

end

else if the midpoint p of [x,y] passes test
then ChainSearchi[p,y])
else ChainSearch{[x,p]).

ChainSearch, with its balanced, "halving” strategy, finds the maximal element of R
without ever considering more than on the order of log(iQ}) points in Q, and
without ever testing a point lower than a successful point or higher than a failed
point. This exponential reduction of effort in the worst case is not to be scorned.
But on the other hand, the best case for the naive procedure requires only constant
time (e.g. two tests: one for the least failure and one for the greatest success)
while the best case for ChainSearch is, again, log(n).
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Since the worst—case complexity of the "halving” strategy of ChainSearch does not
dominate the worst-case complexity of the obvious, serial search in all cases, it is
sensible to compare the expected complexities of the procedures. Since the
complexity of ChainSearch is login) no matter where the maximal element of R is in
Q, its expected complexity is also login). Now consider the naive, rote search.
There are n possible positions for the maximal element p of R If p is the ith point
in the order, then i tests are performed by the procedure that starts at the bottom
of the order and moves up, by rote. Assuming that each position is equiprobable;
the expected complexity of this approach (in terms of tests performed) is therefore
(1+2+._4n)/n=nin—-1}/n=n—-1. But fin}J=n—1 is not polynomially related to gini=log(n).
So the halving policy of ChainSearch has an exponential expected advantage—--
which is a good reason to employ it, if possible.

Between any two connected points x,y in a lattice L there is a sublattice [x,yl,
which consists of the set of all points in the intersection of Uply) and Downix).
This sublattice is called the interval between x and y in L. An obvious question is
whether the efficient ChainSearch method just presented can be extended in a
useful manner to intervals in a lattice, as a generalization of its application to
intervals in simply ordered sets only.

Since each path from the top of the lattice to the bottom is a chain, nothing
prevents us from applying ChainSearch to each such path. The set of all the results
of these searches then has every suitable point in the lattice in its upward closure.
For exampie, consider the lattice Canon(10). We begin by testing the clause
specified by the partition I1.=(12)((34)/(56)(78)i{30). Suppose it passes the test
Then we search the interval of Canon(10) between I1 and the lattice bottom. A
‘midpoint in this interval is I,=(1)1(2)](3)1(4)1(56){(78}i(30). Suppose II, fails. Then
we look at the interval [II JI,], and generate a midpoint,  say
I1,=(12)}314(56)1(78){(80). Suppose Il passes the test Since }[HZ,H3]:=2 and
since both endpoints pass the test, II, is a maximal suitable specification of B with
respect to the given evidence. So for a single path, ChainSearch works just fine.

But the new complication that arises in sets that are not simply ordered is this:
once a maximal success is found on one such path in Partin), this success will
cover the initial segments of very many other paths, so it would be foolish to
search all possible paths independently, using ChainSearch. Indeed,the degree of
overlap is so large compared to n that the problem of generating an element Il of
the compiement of (Up(S) U Down(F)) is the more critical matter by far.
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But suppose we had a way to find, for any disjoint subsets S,F of Part(n), two
connected points in the lattice that are not in Up(S) U Down(F) that are maximal
with respect to S,F in the following sense:«the upper point does not refine a point
not in Up(S) and the lower point has no point not in Down(F) as a refinement in
effect, such a procedure wouid locate the endpoints of entirely unsearched intervals
in Partin). The usual ChainSearch algorithm can be applied to such an interval by
selecting an arbitrary midpoint, testing, selecting an arbitrary midpoint of the
resulting interval, and so forth. '

More formally, the procedure SEARCH selects endpoints for an uncovered lattice
interval and then calls the analogue of ChainSearch just described on the result
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SEARCHI(n)
begin
set conjecture:=S:=F.={}; .
while there is a Il¢Partin))-({UptS) U Down(F)

begin
choose some minimally refined IT'
in Part(n}~({Up(S) U Downl(F));
choose some maximally refined II"
in Down(IT''~{Up(S) U Down(F));
ChainSearch([IT',11"])
end; ‘

output conjecture
end.

ChainSearch([IT',1T"1);
if 1[ILN"11 = 2 then

begin
if y passes test then set conjecture:=conjecture U {y}
else if x does not pass test then do nothing
eise set conjecture:=conjecture U {x}
end
eise
begin
choose a Il such that
IT is 2 midpoint of [II'11"];
if 11 passes the test then
begin
ChainSearch([I1I1"]);
set S:=(S U {I1})
end
end
else
begin
choose a Il such that
Il is a midpoint of [II,1I"];
if II fails the test then
begin
ChainSearch([IT',I1]);
set F=F U {II})
end
end

end. -

The procedure works as follows. When S,F are empty, the top of the lattice is the
(unigue) maximally coarse partition not covered by S or F, and the bottom of the
lattice is the maximally coarse partition covered by the top of the lattice but not by
S or F. So the top and the bottom of the lattice are sent to ChainSearch.
Chainsearch chooses an arbitrary element of the middie level of Partin) and tests it
If the selected point passes muster, it is placed in S, and ChainSearch recurs in the
usual way on the sublattice between this point and the bottom of Partin). If it fails,
the point is placed in F and Chainsearch recurs on the sublattice between this point
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and the top of Partin). This "halving” search continues until a sublattice that consists
only of two connected points is reached, one of which must be a maximal suitable
point This point is placed in the conjectupé, and control passes again to SEARCH.
Now the top and bottom of Part(n) are no longer, respectively, the most refined and
least refined elements of Part(n) not in Up(S)'U Down(F). Hence, new endpoints are
chosen and some path disjoint with Up(S) U Down(F) is tested by ChainSearch.'>

Figure 7-17: The Operation of SEARCH

This continues until Up(S) U Down(F) = Partin), at which time the conjecture is

exactly the maximal suitable subset of Part(n).

One might suspect that there is some difficulty in selecting a midpoint of a given
pair of connected points in Partin), as is required in ChainSearch. But this probiem
is computationally trivial. For example, consider the partitions II=(12)}{34567890)
II'=(12){(34}1(5)1167)1(8)1(9}1(0). Any element of Down{ll) satisfies 1234567830
and any element of Up(ll') satisfies (12)}(34)(5)}67)(8)S)0). Hence, any element of the
intersection satisfies (12){(34){5K67)8)S)0). Since Il is at level 2 and II' is at level
7. their midpoints are at 5. Any such midpoint is the result of adding three slashes

37There must be such & path, for suppose there is not. Notice thet the bottom endpoint is connected by some
peth to the upper endpoint, for it is chosen 10 be in the downset of the first endpoint. So every peth must intersect
with Up(S) U DowntF). But then one of the endpoints is in Up(S) U Down(F), contrary to the conditions under which
they were chosen.
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between CEXPRs in the expression (12)}(34)(5)(67)}(8)O)N0). A simple choice rule is
to add each slash as far to the left as possible. The result of this process is
(12)1(34)!(5)}(67)|(BHONO). Since these are «ll the slashes permissible at level 5, we
may take combine the last three CEXPRs to obtain (12)}(34)}(5)}(67)!(890). It is
easy to see that each of these steps can be performed in time squared in the input
size. And the process is no more difficult if the upward and downward closed
sets in which the sought partition must be found are encoded as PEXPRs.

7.5.1. Finding an Element at a Level of Part{n}-{Up{S) U Down(F))

The crucial sub-problem for SEARCH is to find some minimally refined element II
of Partin}-(Up(S) U Downl(F)) such that I} =k, for any given subsets S,F of Part(n)
and k<n. Since this problem includes the special case in which F is empty, we
know that it is NP-complete, for deciding whether there is a partition at or below
level k in Partin) that is not an element of Up(S) has been shown to be an NP-
complete problem. If we ‘could quickly decide for any given level whether such a
partition exists at that level, then we could decide quickly whether there is one at
that level or lower by iterating the procedure over each lower level'*® Hence, any
known technique for solving this problem will involve a hopeless search in some
cases. Nonetheless, we can seek heuristics for the non-worst cases and still call
the result elegant, even if it is not polynomial in the worst case.

An obvious approach is to enumerate the kth level of Partin), and for each
partition II in this level, to check whether II is a refinement of an element of F or
is coarser than an element of S. These checks are linear in the size of S and F, so
the only real difficulty is generating Levink). But since the cardinality of Levink) is
the Stirling number S, of the second kind, this quantity is exponential in n when k
is fixed at n/2. And when there exists no partition at level k that is not covered
by S or K all of Levink) will be generated and tested So if we fix the
cardinalities of S and F, but sample them from larger and larger partition lattices, the
time required for this method grows exponentially in the worst case {e.g. when no
partition of the sort sought exists). And, of course, increasing n is one way to
increase the size of the input, so the resource consumption of this obvious
procedure must grow exponentially in the input size in the worst case.

Due to the NP-completeness of the problem we are attempting to solve, such
hopeless search is likely to be encountered on some problem instance for any

138 R .
The number of levels is at worst iinear in n,
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approach. But there is reason to suspect that the naive level search is a bit more
naive than is necessary, for the enumeration of Levink) is not dependent on the
constitution of S and F. We may be able to do far better than this in many cases
by "constructing” the partition sought in light of S and F. The hope is that paying
attention to the constraints imposed by S and F earlier rather than later will, in many
cases, eliminate the gratuitous consideration of partitions that cannot possibly satisfy
these constraints.

Consider a concrete example. Suppose we are searching Part(10) for a partition at
level B that is coarser than no element of S and that is a refinement of no element

of F, where F and S are given as follows.

F:

(123456789)(0)

(12345678){(90)

{123)1(4567880)

(45)1{12367890)

S: -
11(23)14151617181(90)
1121314]5161(78910
1121(34)/5161(78)1810
11213145)1(67)1181910

For a sense of the magnitude of the search space involved, the cardinality of
Part{(10) is one hundred fifteen thousand nine hundred seventy five, and the
cardinality of Lev(10,5) is forty—-two thousand five hundred twenty-five. If we can
find a way to solve the problem without inspecting over forty-two thousand
partitions in the worst case, then we shall have made some progress.

One way to “construct” the desired partition out of S and F is to think of the
descriptions of elements of F and S as PEXPRs, and to transform the disjunction of
these PEXPRs into a state description of a partition at the target level that is not
connected to any element of S or of F. More specifically, Downl(F) is just the 10-
elementary class of the result F' of removing parentheses from F, while Up(S) is the
10-elementary class of the result S’ of removing bars from S.
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F

1234567890

1234567890 .
12314567890 .
45112367890

s

1(23)45678(30)

123456(789)0

12(34)56(78)90

123(45)(67)890 .

All the constants in S' that are not within parentheses can be eliminated without

altering what S' says in any way. So we have
F:
12345678810
12345678190
12314567830
45112367890

S
(23)90)
(789)

(34)(78)
(45)(67)

The task now is to find some Il of cardinality five that does not satisfy (F v S
So IT must satisfy -S' & -F. That is, [1 must satisfy the CNF PEXPR
P

(10) (19) (14) (14) 213 718 3i4 415
20) (10) (15) (24) 90 7:i8 718 6i7
(30) (29) (16)  (34) 79
40) {20 (17) (46)
(50) (39) (18) (47)
80) (30} (19  (48)
(70)  (48) (10) (49)
80y  (40) (24) (40)
80)  (59) (25)  (15)
(50) (26) (25)
(69 27) (35)
(60) (28) (56)
(79) (29) (57)
(70) (20) (58)
(89) (34) (58)
(80) {35) (50)
(36)
(37)
(38)
(39)
(30
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In this case, it is fairly easy to find a desired partition. Notice that a partition
satisfies P just in case it satisfies at least one element of each column of
P. Consider the conjunction of the first atom of each column:

(10}, (19), (14), (14), 2{3, 718, 3i4, 4}5
By the union principle, this conjunction is p—equivalent to
(1490), 213, 718, 314, 415 ‘
By the merge principle, we have
(1490), 213, 7i8, 3514
which is satisfied by the 10-partition of cardinality five described uniquely by
(1480} 1(35)1(27)/(86)

In a sense, a satisfying partition was in the first place we looked But a little
reflection reveals a good deal of luck in this computation. For example, the
foliowing element of the cartesian cross of the columns of P is not satisfiable, for
the atoms (80) and 910 both occur in it

(90).(69),(25),(15,910,718,314,415

And if P were not satisfiable, each such conjunction wouild fail to be satisfiable.
But there are one million, one hundred sixty—one thousand two hundred sixteen such
conjunctions in the full Cartesian cross product of the columns of P. This number
far exceeds the cardinality of Lev(10,5), and even exceeds the cardinality of the
entire lattice Part(10). Hence, examining each element of the Cartesian cross
product of the columns in P until a satisfiable conjunction is found is, in this case,
dismally worse than the exhaustive search of Lev(10,5) upon which we are
attempting to improve.

But a rote search through all possible elements of the cross product of the
columns of P is not the only way to ensure that a satisfying partition will be found
if there is one. Perhaps there exist general heuristics that keep the explosion under
feasible control. Consider the first two columns of P. Notice that the only atom
that occurs in the first column but not in the second is (90). Since (a v b) & (a v ¢)
is logically equivalent to a v (b & c¢), each of these atoms can be removed from the
two columns before the cross product is taken. So the conjunction of the first
two columns is logically equivalent to:
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(10} .
(20) ‘
(30

(40)

(50)

(60)

(70)

(80)

{80), (19) ‘
(80), (29)

(80), (39)

(90), {49)

(80), (689

(80), (69)

(S0), (79)

(80), (89)
By the union principle, we have

(10)
(20)
(30)
{40)
(50)
(60)
(70)
(80)
(190)
(290)
(390)
(490)
(590)
(890)
(790)
(890)

But notice that each of the ternary CEXPRS in this column entails some binary
CEXPR in the column. Hence, the entire column (disjunction) is logically equivalent to

(10)
(20)
(30
(40)
(50)
(60)
(70)
(80)

So in this case, at least, the result of combining two columns is shorter than either
of the columns combined. So even if every subsequent pairing must be examined,
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we have reduced the number of conjunctions to be examined from ninety-six
thousand seven hundred sixty—eight to six thousand five hundred fifty—two.

Now consider the third column and the column we have just obtaine& by
distributing columns one and two. It is ominous that the columns to be combined
this time share only three atoms, (10), (20), and (30), in common. This leaves S0
pairs of atoms to consider in crossing the next two columns. The reader can easily
verify, however, that once the cross product is taken and disjuncts that entail other,
disjuncts are eliminated, the result is a PEXPR Q with seventy—eight rather than with
ninety—three disjuncts.

{10)

(20)

(30}

(15)40) (14)50) (14)80) (14)70) (14)80)
(16)(40) (16)50) ! (15)(60) (15)(70) (15)80)
(17)40) (17)(560) (17)80) {16)70) (16180}
(18)(40) {18)50) _ {18)60) (18)(70) {17)(80)
(19)40) {19)(50) (19)60) (19)(70) (19)80)
(25)(40) (24){50) (24)60) (24)70) (24)(80)
(26)(40) (26)50) (2B)60) {25)470) (25)80)
(27)(40) ' {27)(50) (27)(60) (26)(70) (26)(80)
(28)40) (28)(50) (28)(60) {28)70) {27)(80)
{29)(40) (28)(50) (29)60) (29)(70) (29)80)
{35)(40) {34)(50) {34)(60) (34)70) {34)(80)
(36)40) (36)(50) {35)60) (35)70) (35)80)
(37)(40) {37)(50) (37)60) (36)(70) {36)(80)
(38)(40) {38)(50) (38)(60) (38)(70) {37)80)
(38)40) (38)50) {39)(60) {39)70) {391(80)
cont. cont. cont. . cont. end.
next next next next

column column column column

The prospect of crossihg this disjunction with the fourth column of P is frightening,
for the result contains twelve hundred forty—eight elements. But once again, a
simple heuristic intercedes——— to an extent For exampie, notice that the atom '(40)
occurs in the fourth column of P. Therefore, any such disjunct is already guaranteed
not to be a refinement of (45)}(12367890), and hence need not be extended to
ensure this fact Such disjuncts may simply be added to the result of érossing the
rest of the disjuncts of Q with the fourth column of P. The same point can be
made regarding '(50),'(14),(15),(24),'(25),(34), and '(35). Eliminating the disjuncts in
Q in which any one of these atoms occurs results in a disjunction with only thirty
disjuncts. Crossing these remaining disjuncts with the sixteen atoms of the fourth
column of P yields a disjunction Q' with at worst five hundred forty disjuncts. So
by relying on our two, simple heuristics, we end up with a disjunction of five
hundred forty, rather than forty—eight thousand three hundred eighty—four disjuncts,
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which is what the cardinality of the naive cross product of the columns of P would
have been.

Now consider the remaining columns, which correspond to the elements of S.

Notice that the first and third columns share the atom '7{9. By the same reasoning
as before, this atom may be removed from each column and may be added to the
result of taking the Cartesian cross of the remaining atoms, to yield:

Now consider the third column. Just as before, any disjunct D of the result C of
combining columns 1 and 2 in which an atom of column 3 occurs may be added to
the result of crossing the result of deleting D from C with column 3. In this case,
‘718 occurs in column 3 as well as in the second and third disjuncts of D. Hence,
the result of combining columns 1,2, and 3 is just ‘

213718
8i0,718
78,314
7:89

There are no atoms shared between this disjunction and column four, so the result
is:

, 718, 415
. 718, 4|5
, 314, 415
S, 45

. 718, 617
. 718, 617
314, 617

2
S
7
7
2
9
718,
7:89, 617

13
10
18
'8
13
10
9
18

So we have only eight disjuncts instead of 3x2x2=24 disjuncts to cross with the
five hundred forty disjuncts that result from combining the columns corresponding
to elements of n. When these eight disjuncts are crossed with the five hundred
forty disjuncts of the expression for Down(F) developed previously, the result has
four thousand two hundred forty disjuncts as opposed to the one million, one
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hundred sixty—one thousand two hundred sixteen disjuncts in the full Cartesian cross
product of the columns of P. Even if the overall algorithm is intractable, it is clear
that many interesting instances have been br.ought within the light of feasibility by
the application of some simple, safe, search—bounding heuristics. '

Each of the four thousand disjuncts generated must be checked for satisfiability by
an element of Lev(10,5). Since this satisfiability check is easy (each disjunct is a
simple conjunction of atoms or “"negated” atoms) we have in this case a
improvement over checking each of element of the forty-two thousand five
hundred twenty-five elements of Lev(10,5) refinement from F or into S. And if the
cardinaiities of S and F had been smaller, the advantage would have been
correspondingly more dramatic.

A natural concern arises when the cardinality of S U F approaches that of the
lattice from which they are drawn. Perhaps in this case the more naive, exhaustive
search of the entire lattice level is favorable to the heuristic cross product method.
We can gain a feel for this by examining the operation of the latter method in a
small lattice, where S,F are very large subsets of this lattice. Accordingly, let the
lattice be Part(4), and let S,F be given as follows:

S

(123)1(4)
{12)1(34)
(1)1(234)
(2)1(134)
(13)1(24)
(124)1(3)

S:

(11(2)1{34)
(1123)114)
(12)1(3)1(4)
(13}1{2)1(4)
(1}1(24)1(3).

S U F includes all but four points of Part(4). Converting F to an expression whose
elementary class is Downl(F} yields

(TANI3INT2\ 12\ (121\(13)
(4N (14N (1323 (14)\(23)
(34N 23N\ 14)\(24)\(23)\(34)
\(24N\\\(34)

Combining the first and second columns yields
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(14)
(24).

Combining this with the third column yields )

(14)
(13)24)

Combining this with the fourth column results in

(124)
(14)23)
(13)24)

The next cross leads to

(124)
(14)23).

The final cross 'results in
(14), 23) *

which is satisfied by the top of the lattice and by the one partition at level two that
was not included in F, namely (14}}(23).

Now for the set S. Its upward closure is expressed by
314 213 112 113 214

or by the p-equivalent expression '3{2}|14. Conjoining the result for S with the
previous result for P yields

(14},{23).3121 14

There is no intuitive hint of "exponential explosion” in this example. To optimistic
eyes, this example suggests that although there are many cross products to perform
when S U F is a large portion of Part(n), the heuristics are more effective in
reducing the number of disjuncts to cross at each stage. And even if the heuristics
are weak or ineffectual when S U F is a small portion of P, there are fewer cross
products to perform than points to inspect at the target level of the lattice.

This optimism is extremely tenuous, and demands a much more careful and detailed
analysis. Merely simulating the algorithms on particular problem instances tells us
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nothing at all about how the resource consumption of the two methods is related
over arbitrary problem instances, or even over some interesting, infinite subset of
these instances. In particular, it would be in"ceresting to know whether there exists
a problem instance of each size such that the resource consumption of the level
search procedure grows exponentially more quickly than that of the logical
algorithm. And if the PEXPR crossing algorithm presented in this chapter does not
dominate the naive level search algorithm, it may still be possible to isolate
conditions under which one strategy dominates the other and vice versa. These
conditions, if easily decidable in S,F, and k, could be empioyed to choose effectively
betweer_w the level search and heuristic cross product strategies. A procedure that
could select the best strategy for the prevailing conditions would then be more
efficient than either of these strategies could be by itself. | have not yet settled
any of these issues.

7.6. “"Constructive” Procedures for Partition Lattice Search

in the previous section, | proposed two “generate—and-test’ approaches to
computing the inductive strategy of CONSIST. The popular image of a generate—
and-test procedure is that hypotheses pop out of one unit, as in an automobiie
factory, and are shunted on a conveyer belt to another unit that sorts them as
suitable or unsuitable in light of the evidence available.

An immediate consequence of this picture is that the selection of the next
hypothesis to test is unaltered if evidence not relevant to the acceptance or
rejection of a previously tested hypothesis is materially altered. Or to restate the
point, no evidence irrelevant to the acceptance or rejection of any previously
considered hypothesis can serve to guide or to restrict the search among alternative
hypotheses. Hence, there is a prima facie sense in which a generate—and-—test
method seems needlessly hobbled. If the goal is to generate the maximal, suitable
subset of Hyps(n) at stage n, then it would seem sensible to bring the evidence in
to constrain the search for such a set as early as possible. Indeed, as the evidence
is brcught more intimately into the picture, discovery tends to look less like
-conjecture and refutation and more like "constructing” an hypothesis out of the
evidence provided. Moreover, the NP-completeness theorems presented earlier
applied only to generate-and-test approaches to computing the strategy of
CONSIST. There may be new intractability theorems to be found for the
constructive approach, but at least | am not yet certain that this approach must
solve an NP-complete problem.
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So how might the maximal, suitable subset of the lattice of specifications of a
given clausal blank be constructed from the given evidence? Recall that in this
discussion, suitability is just consistency -with the evidence. Notice that the

counterexamples to specifications of a blank involving p atoms are p-tuples of
atoms or negated atoms in the evidence, where the ith atom in the tuple has the
same predicate but opposite sign as the ith predicate in the blank. |If there are no
such p-tuples in the evidence, every element of the specification lattice is suitable
and we are done.

Now suppose that we can build sequences of atoms of the sort just described
from the evidence provided ~We know immediately that some elements of the
lattice under search must be rejected Moreover, the weakest such clause (there
must be exactly one} can be constructed directly from the p—tuple so obtained by
substituting variables uniformly for constants, by changing the signs on all the atoms
occurring in the tuple, and by disjoining the basic formulas that resuit So for
example, suppose we are searching the specifications of the blank B= (Psx,—Qumsd,
Moreover, assume we are supplied with the evidence

Pab, —Qabc, Qada, —Pcc

Notice that 'Pab’ is irrelevant to any specification of B, as is '~Qabc’, for they can
never be involved in a counterexample to any specification of B. Hence, we may
delete them from the evidence so far as B is concerned Now we can form the
pair

<-Pcc, Qada>

This sequence forms a counterexample to the specification
Px.x, v -Qxx.x)

or to the partition
(12)1(35)1(4),

which is uniquely associated with this specification. But there are evidently no more
counterexamples tovspecifications of B available in the given evidence. So the
problem becomes simply to find the maximal generators of the compiement of the
downset of II=(12}}(35)!(4).

Once again, it is tempting to employ PEXPRs. Down(ll) is just the 5-elementary
class of the PEXPR
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1213514

so Part(5)-Down{ll) is just the S5-elementary class of the negation of '12)3514.
That is, the complement is the 5—elementary class of

(13)
(15)
(14} ‘
(23)
(25)
(24)
(34)
(45)

Now it is easy to read off the most refined partitions (ie. the logically strongest
clauses) that satisfy this expression: just extend each disjunct in the most refined
manner by adding any constant not mentioned in the given disjunct as a distinct, unit
cell. In this case we have

(13)1{2)1(4)1(5)
(15)12)1(3)1(4)
(14)12)1(3)1(B)
(23)1(1)i(4)1(5)
(2511} 3114
(34)1(1)1(2)1(5)
(45)1{1)1(2)1(3).

So much for the innocent joy of considering easy cases. Notice that the implicit
strategy employed here is as follows:

1. Formulate all counterexamples to specifications of B that can be found
in the evidence.

2. Convert each counterexample into the unique partition that corresponds
uniquely to the pattern of its constants in the usual manner.

3. Convert these counterexamples into paren—free PEXPRs.
4. Negate the disjunction of the results.

B. Solve for a p—equivalent DJNF PEXPR P.

6.

Solve for the maximal generators of the n-—elementary class of P by
placing any constant not mentioned in a disjunct into a distinct unit ceil.

Notice also that the strategy is to find the maximal elements of the complement of
a set of failures. In the theory of NP-completeness, maximization problems are
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typically studied as decision problems. If the maximization problem is to find a
maximal such and such, the corresponding decision problem is to decide whether
there is a such and such whose measure i6 bounded below by a parameter k. If
such a decision problem is difficult then the maximization problem is as well, for a
fast solution to the maximization problem would provide a fast solution to the
corresponding decision problem. Now recall that it has aiready been shown that to
discover whether there is a partition at or below Levink) that does not satisfy some
paren-free PEXPR P is NP-complete. Once again, it is frustrating that our
intractability theorem concerns only the problem in which a given downset is
encoded by a PEXPR, while the problem at hand encodes the downset to be
avoided by the maximal, generating set of the downset which may be exponentially
larger. But there is at least some reason to worry that the constructive strategy
faces an NP-hard probiem.

Another difficulty is inherent in the constructive technique's consideration of
counterexamples in the evidence. If B is a p-tuple, and if there are m evidential
instances of the correct sign for each predicate occurring in B, then there will
evidently be mP counterexamples to consider, which quantity can evidently be
exponential in the size of the evidence in the worst case. Hence, the method is
intractable even if the maximization problem just discussed is not NP-complete.

We can conceive of a malicious case in which the compiled evidence leads our
constructive method on a “grand tour” of the entire lattice to be searched when
every hypothesis in the lattice is refuted.  This would happen when the first
counterexampie to be found is the bottom of the lattice, the next to be found are
all on the penuitimate level of the lattice and so forth. An obvious remedy is to
eliminate any counterexample P formed in the evidence such that there is a
substitution # and another counterexampie P' in the evidence such that P=P. That
is, any counterexample to a clause that entails a clause for which there is a
counterexample should be deleted from the evidence (so far as blank B is
concerned). Since the tests involved are linear, and there are only polynomially many
pairs of p-tuples once the p-tuples are considered, this expedient would be
tractable and beneficial when there are few counterexamples in the evidence
compared to the size of the lattice. But of course there can be many
counterexamples for each point in the lattice, in which case this method would be
as bad as considering every point in the lattice to be searched.

So once again, there is the possibility of isolating the point of diminishing returns
when it would make sense to revert to a generate—and-test strategy or to an



240

exhaustive search. Such a decision could be made as soon as it is determined how
many atoms of the appropriate sign occur in the evidence for each predicate
occurring in B. If the product of these cardinalities is on the order of the size of
the lattice to be searched, the constructive approach could be abandoned in favor
of a generate and test approach.
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Chapter 8
Conclusion

]

While the first half of the thesis was intended to sketch the logic of discovery
quite br:oadly, the latter half should be thought of more as a narrow "core sample”
into the topic. | began the technical second half of the thesis by narrowing the
focus to a particular, logically oriented inductive inference problem. A procedure M
was taken to AE-U-identify world w just in case for each purely universal
hypothesis h true in w there is some point in reading its evidence after which each
of M's conjectures entails h, and for each hypothesis h' false in w, there is a point
after which no conjecture of M entails h. The problem is to AE-U-identify every
world whose domain elements are describable in the evidence. This problem
contrasts with the inductive inference problems studied by computer scientists, in
which the method is required to converge “all at once” to an adequate conjecture.

Next, | proposed three suitability relations familiar in philosophy of science to see
whether relying on them in the short run results in inductively general behavior in
the sort of problem under consideration, with respect t¢ AE identification. It turns
out that a variant of a Hempelian method, a method based loosely on Nicod's
criterion, and a method that relies merely on consistency with the evidence, all
constitute general solutions to the problem. And lest it be thought that these
methods could be improved to converge "all at once” to an adequate theory, |
proved that no possib/e method that is a function of the evidence, be it effective
or otherwise, can have this property.

In the following chapter, the issue of inductive efficiency is raised, for the
methods just described are patently inelegant. But upon reflection, it is not obvious
what efficiency means for AE-convergent computations. To investigate this notion, |
presented the standard (short-run} theory of complexity, and proceeded to discuss
the efforts of Angluin, Gold, Daley, and Smith to apply complexity-theoretic
concepts to problems of AE or “all at once” identification. First, | examined the
significance of NP-completeness results for conjecturing behaviors in light of the
view that an identification problem is in a complexity class if and only if it is solved
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by some behavior that is in this class (in the short run. Lower complexity bounds
on particular conjecturing behaviors are not of very general significance in light of
such a theory, for the question always arises whether a more easily computed
conjecturing behavior solves the same problem. But then it turns out that there is a
fast solution for every EA-identification problem in this sense. We can obtain more
intuitive results by augmenting a limiting inference problem with a suitability relation
that must be satisfied by each of a method's conjectures. From this point of view,
NP-completeness theorems like those of Gold and Angluin take on a greater
interest, for they are about a limiting inference problem augmented by the
requirement that a given suitability relation be satisfied by one's conjectures in the
short run.

Next, the Daley/Smith theory was criticized for its relativization to the input order
of the evidence and its want of a substitute for the usual asymptotic complexity
classes of the short-run theory, due to the fact that resource bounds are defined
on functions rather than natural numbers in this theory. Without a natural notion of
size for functions, there is no natural way to speak of an inference problem as
being "polynomial® or "exponential”. Four potential solutions to this technical
difficulty were proposed, with mixed resuits.

Next, | turned to the more general setting of AE-identification problems. A
“milestone” theory of AE complexity was introduced, which presupposes a concept
of verisimilitude. Such a concept was proposed, but the resulting complexity theory
is counterintuitive. Ultimately, | retrenched to the position of comparing the short—
run complexities of inductive strategies, which are equivalence classes of
computable functions in the usual sense. Finally, | addressed the relationship
between the complexity of deciding a test relation as opposed to the generational
complexity of a conjecturing device that observes this relation.

The next chapter proposes a particular strategy for the procedure CONSIST,
whose conjectures are always consistent with the evidence. Then, we proceeded to
investigate procedures that compute this strategy more efficiently by ignoring
redundant hypotheses, regardiess of the evidence at hand (i.e. & prior/). | noted two
aims. The first is to avoid unnecessary empirical tests, but the second is to avoid
even considering hypotheses that needn't be tested. In pursuit of these goals, the
problem of variable-renaming variants was confronted, and a method for ignoring
exponentially many such redundancies was proposed. Next | addressed the probiem
of predicate permutation redundancies, with equal success. These techniques are
applicable not only to HEMP, NICOD and CONSIST, but to Shapiro's model inference
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systems as well in fact, these techniques apply to any program that searches
among clausal hypotheses.

Finally, the problem of non-reduced clauses was considered. A clause ‘is non-
reduced just in case it is logically equivalent to a sub—clause of itself. Here,
success was not so easy to obtain. It was demonstrated that an apparently simple
case of clausal entailment is NP—hard, and that deciding whether a given clause is a
reduced form of another given clause is NP-hard  These facts do not in
themselves prove that it is hard to generate all the reduced clauses of a given class
or that deciding whether a given clause is reduced is intractable. But they do tell us
that mafwy obvious approaches to solving the problem are likely intractabie.

An interesting spin—off of the entaiiment theorem is that deciding clausal
consistency with the evidence is NP-hard, even for the very simple clauses
considered in this thesis. So consistency tests are to be avoided if possible, which
underscores the importance of finding ways to withhold unnecessary tests. It was
also noted that.the problem of finding some maximal diagram for a structure for
the hypothesis language in a given set of evidence is NP-hard Hence, HEMP's
strategy of cutting down the evidence before testing its hypotheses does not eiude
the intractability of satisfaction testing.

in chapter seven, | investigated the exploitation of entaiiment structure among
hypotheses to eliminate the consideration of redundant ones. It turns out that in our
setting (but not necessarily in every setting) any logical consequence of a successful
hypothesis may be ignored with no attendant loss in generality, as may any
hypothesis that entails a failed hypothesis. So the hypotheses to be ignored are in
upward and downward closed sets under the entailment order.

Since the hypotheses to be ignored are in closed sets, it makes sense to
investigate the mathematical structure of such sets. | therefore presented some
generai mathematical facts about partition lattices, which are isomorphic to the
structure of entailment over the specifications of a clausal blank. Then | introduced
the PEXPR language whose sentences are useful data structures for encoding
subsets of a partition lattice, and showed that such an expression can encode a
closed set in exponentially less space than is required to list the maximal generators
for this set

Next, | turned to three obvious approaches for computing the strategy of
CONSIST, and showed that each one of them has a subrfoutine that must solve an
NP-complete problem or a problem so closely related to an NP-complete probiem
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as to be suspicious. A careful consideration of these worst-case results still leaves
open many ways to achieve tractable performance in a broad range of special
cases. Therefore, | proceeded to develop some methods that would be feasible in
many cases, but ineluctably intractable on some. The proposed generate—and-test
procedures employ a strategy that has logarithmic complexity when applied to
chains. But to apply this strategy we ran squarely into one of the NP-completeness
results of the previous section. A PEXPR based strategy that seemed to be feasible
in many cases was presented and simulated through a non-—triviai example in a lattice
with over a hundred thousand points. Finally, a constructive procedure that attempts
to "build” its conjecture up out of the evidence was presented. Despite plausible
considerations to the contrary, this obvious procedure falls prey to just the sorts of
difficulties that plague the generate—-and-test methods already reviewed. Which
brings us to the present

The story just reviewed is a mixed bag of positive and negative results. Several
key themes emerge. The first is that computational complexity is not a
mathematician's dream. It is real; and aimost tangiblee. We attempted to search
lattices of clausal hypotheses from top to bottom, from bottom to top, by
successively halving their intervals, by performing logical operations, and by
searching their levels exhaustively. We considered constructing the hypothesis from
the data, as well as testing hypotheses only after they are proposed We thought
of hypotheses as formulas, closed sets, partitions, and sequences of numbers. But
the elegant sort of generation algorithm suggested by the early successes with
variable-renaming variants and predicate permutation redundancies eluded us at every
turn. Computational complexity is real and it is of the keenest significance to the
logic of discovery, both practically and theoretically.

The next. theme is that the logic of discovery is not trivial The possibility of an
elegant solution to an inductive problem cannot be dismissed & /a2 Popper and the
Positivists, with a2 wave of the hand. Negative claims and positive claims in the logic
of discovery are equally claims, and mathematical ones at that Indeed, an important
feature of the logic of discovery that is illustrated in this thesis is our utter
ignorance of it | submit to the reader: is the inductive strategy of CONSIST an
NP-hard problem or worse? This is a clear, mathematical question that has an
answer. But it is not trivial to answer. And if the answer is yes, which restrictions
of these problems are hard and which are easy? Are these restrictions intuitively as
interesting as the original, intractable problem for the purposes of discovery? What
modifications of the output conventions for Turing machines render the hard
problems easy? There are also questions about inductive scope. For example, what
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is an example of a class of first-order theories that is not AE-identifiable? How
simple a vocabulary will support such a theorem? Are there hierarchies of AE-
identifiable classes? And so forth. AIong-With the myriad mathematical questions,
we also encounter some non-trivial philosophical questions. For example, what is
efficiency for AE-convergent computations?

If the unpopularity of the logic of discovery among philosophers and
methodologists derives from the fact that epistemologists don't know what to do
with it, then this worry should be dispelied by now. There is plenty to do, for so

139

little has been done. And ignorance is only bliss while one is ignorant of one's

ignorance.

In short, | wish to leave the impression that there is really something here to
investigate. It is generally interesting, sometimes maddening, rarely trivial, and
occasionally of significant practical utility.

1 ] R .
39I in no way intend to demean such efforts as computer scientists snd philosophers hesve expended on the logic

of discovery. Rsther, | intend to emphesize how lerge the void in our knowledge of the subject remains.
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Appendix: Proofs for Chapter One

1. Proof of Fact 1

Let S be our n+i1-ary RE relation of suitability. Let P, be the program which
returns 'yes' in finitely many steps on an input n+1-tuple if and only if the tuple is
in S. Since our programming language is acceptable, there exists a universal program
U, such that when U is supplied program P, an input i for P, and some integer j
as inputs, it simulates Pl for exactly j steps, so that

P,ih) if P ih returns an
UP, i h j) = ~ . answer in j steps.

'nothing yet' otherwise.

Recall that the hypothesis language H is recursive. This implies that H is recursively
enumerable. Any recursively enumerable set can eventually be listed on a tape by
some machine. Call Hs listing—-machine P, Now we define a third machine M,
which takes an S-situation as input as follows:

Stage 0:

Read the input S-situation. Call it [;
Set HYPS = {};

Go to stage 1;

Stage m:

Set k = 1

Generate hypothesis h_ of H using P, and add it to HYPS;

UNTIL EITHER ANS is not 'nothing yet OR k = m + 1 DO
SET ANS = UP, <, h_>, ki

IF ANS is not 'nothing yet THEN RETURN ANS;

ELSE DO Stage m+1.

This construction is commonly referred to as "dovetailing” in the recursion theoretic
literature. The program will test S for 1 step on the first hypothesis in the
enumeration, for 2 steps on the first two hypotheses, .., for n times for the first n
hypotheses, and so forth.

Note that if there is an hypothesis h which bears S to |, then P, h = 'yes' in
some number k of steps of execution. Suppose h, is such an h. Without loss of
generality, we can also suppose that for no h,. for x < w, is it true that Ps(l, h) =
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'ves' in p or fewer steps (for if there is an h such that i R h, some h' has this
property). Since there is a stage s of M in which s > w and s > m, h_ will
eventually be output by M at stage s. Furthermore, it is clear by the fact that M
has only one OUTPUT statement, that no hypothesis is ever output under any other
circumstances. Hence M is strongly adequate with respect to S.

2. Proof of Fact 2

Let R = {<{x,y,2>: z = 1 and the program with Goedel index x does not return an
output on input y}. Let R = {<x,y,z> such that z = xy+2} Let suitability relation S
= R UR. R is co-RE. but non-recursive because R is the complement of the
halting problem, which is recursively enumerable but non-recursive. Moreover, R’ is
recursive. Any recursive set is both RE. and co-RE. Moreover, the intersection of
any two RE. sets is again RE, so by the DeMorgan law, the union of any two co-
RE sets is co-RE. It is important to show that S is not RE Notice that if S were
RE., R would be RE. as well, by enumerating S, and picking off tuples whose third
elements are '1' (no element of R has '1’' as third element, so the distinction can be
made by simple matching. But R is not RE., so S is not Finally, we use Fact 1 to
produce the strongly adequate hypothesis generator for relation R and hence for
relation R U R.

3. Proof of Fact 3

===) Use the construction of Fact 1 on relation §' to yield a strongly adequate
hypothesis generator M for S. Since S' is a subset of S, M makes no errors of
commission in any S-—situation according to S. Since for any S-situation W, §' thinks
at least one of the hypotheses bearing S to W is suitable, M is guilty of no errors
of omission with respect to S. <=== Since M makes no error in any situation, the
set {<w_,..w_Mw . wJ> <w,.w?> is an S-situation} is the desired subrelation s
of S. Moreover, S' is RE, for there is a machine M which when fed any tuple

which case M' returns 'yes'.

4. Proof of Fact 4

Let S be an arbitrarily "hard" suitability relation for hypotheses in H Code H by
Goedel numbers, and consider the relation S" just like S except h bears S to S-
situation W if and only if h", whose Goede! number is twice that of h, bears $" to
W. A program for S" would, with the addition of the coding machine, result in a
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program for S, so S" is just as hard as S. Moreover, S" does not count infinitely
many hypotheses ({those with odd Goedel numbers) as suitable in any situation.
Those H's ‘with odd Goedel numbers form a recursive set ODD, for oddness is
recursive and Goedel numbering is computable. (All that is required is an arbitrary
1-1 effective map of H into the complement of an arbitrary recursive subset of
H. The above construction shows there is ong.) There is an RE. suitability relation &
which counts the hypothesis 1 as suitable in any possible S-situation. As long as
there is one such relation, there are all its infinitely many finite variants S, which
have a suitable hypothesis for every S-situation and which allow only hypotheses in
ODD to be suitable. Now consider the relations S" U §', §" U §,... Each of these
is as unsolvable as S, for a machine which decides tuples in S" U $', can easily be
turned into a machine to decide S. Let the machine M, for S take an arbitrary tuple
T of the correct type. First, it looks at the last element h of T, and runs the
characteristic machine of ODD on it If the result is 'No', then M, returns ‘No'
Otherwise, M, codes h, divides the code number by two, and decodes the result to
get h". Finally, h" is substituted for h in T to form T. Now M, runs the assumed
machine,M_, on T, and returns whatever the result of this computation is. Finally,
Fact 3 guarantees the strongly adequate hypothesis generation rmachine for each S”
U S’ of which there are infinitely many.






[Aigner 791
[Angluin 78]
[Angluin 801

[Angluin 811

[Angluin 82]
[Aristotle 411
[Arrow 51]
[Blum 75]
[Boolos 801]

[Bradshaw 80]

[Bruner 56]
[Carnap 36]

[Carnap 501

249

REFERENCES

Martin Aigner. .
Combinatorial Theory. -
Springer Verlag, New York, 1879.

Dana Angiuin.
On the Complexity of Minimum Inference of Regular Sets.
/nformation and Control 39:337-350, 1978.

Dana Angluin.
Finding Patterns Common to a Set of Strings.
Journal of Computer and System Sciences 21:46-62, 1880.

Dana Angluin.

A Note on the Number of Queries Required to identify Regular
Languages.

Information and Control 51:76-87, 1881.

Dana Angluin and Carl H. Smith.
A Survey of Inductive [nference Method's.
Technical Report 250, Yale University, October, 1882.

Richard McKeon (editor).
The Basic Works of Aristotle.
Random House, New York, 1841.

K J. Arrow.
Social Choice and Individual Values.
Wiley and Sons, New York, 1951. -

Lenore and Manuel Blum.
Towards a Mathematical Theory of Inductive Inference.
Information and Control 28:125-55, June, 1975.

George S. Boolos and Richard C. Jeffrey.
Computability and Logic.
Cambridge University Press, Cambridge, 1980.

Gary L. Bradshaw, Pat Langley, and Herbert A. Simon.

BACON.4: The Discovery of Intrinsic Properties.

In Proceedings of the Third National Conference of the
Canadian Society for Computational Studies of Intelligence,
pages 18-25. 1980.

Jerome S. Bruner, Jaqueline J. Goodnow, and George A. Austin.
A Study of Thinking.
John Wiley and Sons, New York, 1956.

Rudolph Carnap.
Testability and Meaning.
Philosophy of Science 3:418-471, 1936.

Rudolph Carnap.
Logical Foundations of Probability.
University of Chicago Press, Chicago, 1950.



[Case 78]

[Chang 73]

250

J. Case and C. Smith.

Anomaly Hierarchies of Mechanized Inductive Inference.

In Proceedings of the Tenth ACM Symp. on Theory of
Computing, pages 314-318. 1978

C. C. Chang and H. J. Keisler.
Model Theory.
North-Holland, Amsterdam, 1973.

[Crespi~Reghizzi 71]

[Daley 841

[Dennett 85]

[Donnelian 6617 -

[Feidman 67]

[Feidman 72]

[Fischer 74]

[Fu 75]

[Garey 791

[Glymour 77]

[Glymour 80]

Stefano Crespi—Reghizzi.

Reduction of Enumeration in Grammar Acquisition.

in Proc. of the Second Int. Joint Conf. A/, pages 546-552.
1971.

Robert P. Daley and Carl H Smith.
On the Complexity of Inductive [nference.
Technical Report, University of Maryland, September, 1984.

Daniel C. Dennett.
Brainstorms: Philosophical Essays on Mond and Psychology.
MIT Press, Cambridge, Massechusetts, 1985.

Thomas Donnellan.
Lattice Theory.
Pergamon Press, Oxford, 1966.

Jerome Feldman.

First Thoughts on Grammatical |nference.

Technical Report 55, Stanford University Artificial Intelligence
Memo, 1867.

AW. Biermann and JA. Feldman.

A Survey of Grammatical inference.

In Frontiers of Pattern Recognition, pages 31-54. Academic
Press, New York, 1972

M. J. Fischer and M. O. Rabin.
Super—exponential Complexity of Presburger Arithmetic.
S/IAM-AMS Proceedings 7:27-41, 1874.

KS. Fu
Syntactic Methods in Pattern Recognition.
Academic Press, New York, 1975.

Michael R. Garey and David S. Johnson.

Computers and [ntractability: A Guide to the Theory of
NP-Completeness.

WH. Freeman and Company, New York, 1879

Clark Glymour.

Indistinguishable Space-Times and the Fundamental Group.

Minnesota Studies in the Philosophy of Science 850-60,
1877.

Clark Giymour.
Theory and Evidence.
Princeton University Press, Princeton, New Jersey, 1980.



[Glymour 84]
[Goid 65]
[Gold 671
[Gold 78]

[Green 69]

[Hempel 43]
[Hempel 65]
[Hopcroft 791
[Horning 69]
[Hunt 66]
[Kuge! 77]
[Laudan 77]

[Laudan 80]

[Levi 83]

[Levin 73]

251

Clark Glymour.
Inductive inference in the Limit
Erkenntnis 21:.00-00, 1984.

E. Mark Goid.
Limiting Recursion.
J.S.L. 30:28-48, 1965.

E. Mark Gold.
Language Identification in the Limit
Information and Contro/ 10:447-474, 1967.

E. Mark Gold.
Complexity of Automaton identification from Given Data.
Information and Contro/ 10:447-474, 1978.

C. Cordell Green.

Theorem Proving by Resolution as a Basis for Question
Answering.

Machine Intelligence 4:183-205, 1869.

C. G. Hempel
A Purely Syntactical Definition of Confirmation.
Journal” of Symbolic Logic 54:00-00, 1943.

C. G. Hempel.
Aspects of Scientific Explanation.
Coliier Macmillan, London, 1965.

John E. Hopcroft and Jeffrey D. Uliman.
Introduction to Automata Theory, Languages, and Computation.
Addison-Wesley, Reading, Mass., 1978.

J.J. Horning.
A Study of Grammatical [nference.
PhD thesis, Stanford University, August,” 1968.

Earl Hunt, Janet Marin, and Philop J. Stone.
Experiments in Induction.
Academic Press, New York, 1866.

P. Kugel.
Induction, Pure and Simple.
Inform. Contr. 35:276-336, 1977.

Larry Laudan.
Progress and its Problems.
University of California Press, Berkeley, 1977.

Larry Laudan.

Why was the Logic of Discovery Abandoned?

In Scientific Discovery, Logic, and Rationality. D.Reidel,
Dordrecht, 1980.

Isaac Levi.
The Enterprise of Knowl/edge.
MLT. Press, Cambridge, Mass, 1983.

L. A Levin
Universal Sorting Problems.
Problemy Peredaci Informacii 9:115-116, 1873.



[Machtey 78]

[{Manders 881
[Manue!l 681

[McMullin 841]

[Michalski 83]

[Minsky 691
[Nickies 801]
fOsherson 861

[Pao 69]

[Pao 78}

[Pitt 84]

[Putnam 63]

[Quine 68]

252

Patrick C. Fischer (editor).

The Computer Science Library. An Introduction to the General

Theory of Algorithms.
North Holland, Amsterdam, 1878.

Kenneth Manders.

Epistemological Aspects of Conceptual Innovation in° Mathematics.

1886.

Frank E. Manuel.
A Portrait of Newton.
MIT Press, Cambridge, Mass., 1968.

Ernan McMullin.

A Case for Scientific Realism.

in Jarrett Leplin (editor), Scientific Realism. University of
California Press, Berkeley, 1984.

Ryszard S. Michalski, Jaime G. Carbonell, Tom M. Mitchell
{editors).

Machine Learning: An Artificial Intelligence Approach.
Tioga Publishing Co., Paio Alto, Ca, 1883.

Marvin Minsky and Seymour Pappert
Perceptrons: An [ntroduction to Computational Geometry.
MIT Press, Cambridge Mass., 1969.

Thomas Nickles {editor). ‘
Scientific Discovery, Logic, and Rationality.
D.Reidel, Dordrecht, 1980.

D.N. Osherson, M. Stob, and S. Weinstein.
Mechanical Learners Pay a Price for Bayesianism.
1886.

T. S. Pao.

A Solution of the Syntactical [nduction-I/nference Problem for

a Non-Trivial Subset of Context-Free Languages.
Technical Report, Moore School of Electrical Engineering,
University of Pennsylvania, August, 1969.

TW.Pao and JW. Carr, Il

A Solution of the Syntactical Induction—inference Problem for
Regular Lantuages.

Comput. Lang. 353-64, 1978.

Leonard Pitt
A Characterization of Probabilistic [nference.
Technical Report 319, Yale University, June, 1984.

Hilary Putnam.

‘Degree of Confirmation' and Inductive Logic.

In Arthur Schilpp (editor), The Philosophy of Rudol/ph Carnap.
Open Court, LaSalle, lliinois, 1963.

Willard Van Orman Quine.
Ontological Relativity & Other Essays.
Columbia University Press, New York, 1968.



[Rawls 64]

[Reichenbach 49]

EReynolds 701

[Robins_on 651]

[Rogers 67]

[Salmon 661

[Sen 70]

[Shapiro 81]

[Solomonoff 64]

[Stockmeyer 73]

[van Fraassen 80]

[Winston 75]

253

J. Rawils,

Legal Obligation and the Duty of Fair Play.

In J. Murphy (editor), Civi/ Disobedience and Violence. University
of California Press, Belmont, California, 1964. ,

Hans Reichenbach.
The Theory of Probability.
University of California Press, Berkeley, 1949.

J. C. Reynolds.

Transformational Systems and the Algebric Structure of Atomic
Formulas. :

Machine [ntelligence 5:135-153, 1970.

J.A. Robinson.

A Machine Oriented Logic Based on the Resolution Principle.
JACM 12, January, 18965.

Hartley Rogers.
Theory of Recursive Functions and Effective Computability.
McGraw—Hill, New York, 1967.

Wesley C. Saimon.
The Foundations of Scientific [nference.
University of Pittsburgh Press, Pittsburgh, 1966.

A K Sen
Col/ective Choice and Social Welfare.
Holden-Day, San Francisco, 1870.

Ehud Y. Shapiro.

/nductive Inference of Theories from Facts.

Research Report 182, Yale University: Department of Computer
Science, February, 1981.

R. Solomonoff.
A formal theory of inductive inference.
Inform. Contr. 7:1-22,224-254, 1964.

L. J. Stockmeyer.
Planar 3-Colorability is NP-Complete.
S/IGACT News 5.3:19-25, 1873

B. C. van Fraassen.
The Scientific Image.
Clarendon Press, Oxford, 1980.

Patrick Henry Winston,

Learning Structural Descriptions from Examples.

In The Psychology of Computer Vision. McGraw-Hill, New York,
1975.






	3379_001.pdf
	3379_130.pdf
	3380_001.pdf

