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What’s New in Kepler’s New Astronomy?

Bernard R. Goldstein

Department of Religious Studies, University of Pittsburgh

Kepler’s achievements are well known and can be stated succinctly,
or so it seems. Yet he was a complex thinker who responded in unusual
ways to many intellectual currents in astronomy and other disciplines.
To set Kepler in his intellectual context I offer a few preliminary re-
marks on the historical development and the inner logic of the deriva-
tions of his laws of planetary motion and sketch some of his theologi-
cal and methodological commitments that affected his astronomical

arguments.

The Standard View of Kepler’s Achievements in Astronomy

1. Kepler’s contribution to astronomy consists in his three laws: the
first two laws (the ellipse and the Area Law) that were derived in the
Astronomia Nova (1609), and the third or Harmonic Law (relating
planetary periods and heliocentric distances) in the Harmonices Mundi
(1619). By introducing elliptical planetary orbits, Kepler “had over-
thrown for all time the 2000-year-old axiom . . . [of] uniform circular
motion” (see Caspar 1962, 140).

2. Kepler abandoned all previous astronomical theories because of
the discrepancy of 8 minutes of arc between Brahe’s observations of
Mars and values computed from the “best” equant model.

3. The ellipse and the third law were just lucky guesses or “approxi-
mations.”
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4. Kepler’s views on matters other than his three laws can be ignored
as “irrelevant to the progress of astronomy” (e.g., his introduction of
regular solids between the “planetary orbs”; his use of analogy be-
tween the heavens and the trinity; and his appeal to principles of har-
mony, astrology, and magnetism). For example, Dijksterhuis (1961,
322) wrote that “the story of the discovery of Kepler’s first two laws is
significant not only historically but psychologically, because it clearly
reveals the curious jumble of rational and irrational elements from
which great discoveries tend to spring.”

In addition to the anachronism of referring to Kepler’s three laws (to
which I have no objection insofar as they are understood as a summary
of his contributions), the standard view fails to take into account the
historical context and the conceptual framework in which Kepler oper-
ated. In other words, all four claims need to be nuanced.

Toward a Reevaluation of Kepler’s Astronomical Contributions

1. Between 1596 and 1621 Kepler produced a series of books on as-
tronomy, adhering to the program he had outlined in his first major
publication, the Mysterium Cosmographicum (Duncan 1981), and he
achieved his stated goal of finding what he took to be the physical
causes of planctary motion. The content of these books as well as the
rhetoric employed had many new features. For example, the full title of
the Astronomia Nova includes the expression “Physics of the Heav-
ens”: Kepler had invented a new genre of astronomical writing—a
technical treatise unifying astronomy and physics.

2. When Kepler wrote the Mysterium, he began by assuming that
Copernicus’s results were satisfactory and merely sought another way
to reach the same conclusions. Kepler described Copernicus’s method
as a posteriori (i.e., based on observational data), and hoped to find the
same results a priori (i.e., based on a set of first principles). Kepler’s
initial motivation for research in astronomy did not depend on obser-
vational data, and he only sought such data when he found an inade-
quate fit between his a priori reasoning and the Copernican distances
that his teacher, Maestlin, derived for him.

The intellectual context in which Kepler operated was set in Aristo-
telian physics as understood in the late sixteenth century. In the Myste-
rium, chap. 1 (Duncan 1981, 77), Kepler wrote, “Nor do I hesitate to
affirm that everything which Copernicus inferred a posteriori and de-
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rived from observations, on the basis of geometrical axioms, could be
derived to the satisfaction of Aristotle, if he were alive (which Rheticus
repeatedly wishes for), a priori without any evasions.” In chap. 2 he

added (ibid., 97):

For what could be said or imagined which would be more remarkable or more
convincing than that what Copernicus established by observation, from the
effects, a posteriori, by a lucky rather than a confident guess, like a blind man,
leaning on a stick as he walks (as Rheticus himself used to say) and believed to
be the case, all that, I say, is discovered to have been quite correctly established
by reasoning derived a priori, from the causes, from the archetype of creation?

We can compare this to what Rheticus had proposed in the Narratio
Prima, the first account of Copernican astronomy published in 1540
(Rosen [1939] 1959, 142): “Now in physics as in astronomy one pro-
ceeds as much as possible from effects and observations to principles”
(this seems to be what Kepler meant by a posteriori in Copernicus).
According to Buchdahl (1972, 275f), Kepler’s a priori reasoning al-
lowed him to convert the Copernican theory which only had the status
of a “guess” into an “actual truth.”

3. Kepler’s debt to Tycho Brahe was not confined to observational
data, for he used Brahe’s models for the Sun (or the Earth, as Kep-
ler preferred) and Mars as preliminary hypotheses in the Astronomia
Nova. But Kepler also accepted Brahe’s arguments, based on consider-
ations of parallax, that the New Star of 1572 and the comet of 1577
were in the heavens rather than in the sublunary realm. Furthermore,
from the path of the comet Brahe argued in his treatise published in
1588 that there were no solid planetary orbs, and concluded that Aris-
totle’s distinction between the celestial and sublunary realms had to be
abandoned. Kepler drew the conclusion that models for planetary mo-
tion were inappropriate since it had been assumed that the planet lay
on a moving solid orb; for Kepler the planet was simply moving in a
fluid. For some time Kepler held to the view that the planets were self-
moved “like birds and fishes,” but then withdrew intelligence from
among the attributes of the planets and considered their motions as due
simply to forces. It is surprising that Kepler was the only professional
astronomer of the time to have noticed the consequence of Brahe’s
discovery, namely, that constructing planetary models no longer made
sense. Indeed, even later in the seventeenth century this point was not
understood by many members of the astronomical community.
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4. We now come to Kepler’s debt to his teacher, Michael Maestlin.
Of particular interest is Maestlin’s (1578) treatise on the comet of
1577-1578, ten years earlier than Brahe’s major treatise on the same
theme. Near the end of this treatise Maestlin presented a day by day
ephemeris of the comet from 5 November 1577 to 10 January 1578
where the last three columns list the longitude and latitude of the
comet followed by its distance in terrestrial radius from the center of
the earth (pp. 52-53; see Brahe’s treatment of the coordinates of the
same comet in his publication of 1588 in Dreyer 1922, iv:177-79).
Maestlin put the comet in a heliocentric orb just beyond Venus (i.e.,
between Venus and the Earth), but he did not suggest that such a three-
dimensional approach should be applied to planets —nor had anyone
else up to that time. (Note that Brahe’s orbit for the comet in his
publication of 1588 had many of the same features as that of Maestlin,
but in a geostatic, rather than a heliostatic, framework; see Dreyer
1922, iv:160.) Nevertheless, Kepler may have concluded that if it was
worth the effort to calculate the path in three dimensions of an ephem-
eral object (as a comet was thought to be), it would be reasonable to
give as much attention to planetary paths — including the distances. On
the title page of Maestlin’s treatise, a figure displays the path of the
comet in longitude and latitude against the background of the fixed
stars (reproduced in Jarrell 1989, 25); similar figures had already been
used by Apian for the comets of 1531 and 1532 (see Barker 1993). But
surprisingly little attention was given to planetary distances in the pe-
riod immediately preceding Kepler; this issue was not prominent in the
debates over the Copernican system (except for the vexed question of
the parallax of Mars). Yet here Maestlin treated a comet as if it were a
planet with a heliocentric orb. It has been claimed (Westman 1972a,
23-24; Jarrell 1989, 26) that Maestlin failed to understand the equiva-
lence of the Ptolemaic and Copernican models when he decided on a
heliocentric orb for this comet. But Maestlin would have been aware
that according to Ptolemy’s nesting hypothesis there would be no room
for a comet around the orb of Venus, whereas the Copernican orbs had
some space between them (as Rheticus had already noted; see Rosen
[1939] 1959, 147; Brahe’s 1578 German treatise on the comet of 1577
in Dreyer 1922, iv:388 [translated in Christianson 1979, 136, but this
passage seems to have been misunderstood]). In this sense the two
systems were not equivalent. Indeed, in the preface to the first edition
of the Mysterium (Duncan 1981, 63), Kepler considered adding a new
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and invisible planet between Jupiter and Mars, and another between
Venus and Mercury, taking advantage of the gaps in the Copernican
system. Maestlin’s discussion of the comet of 1577 was a key factor
leading to Kepler’s acceptance of the Copernican system, as he tells us
in chapter 1 of the Mysterium (ibid., 79), even though he later rejected
Maestlin’s view on the path of comets. (See notes to the Mysterium, ed.

1621, in Duncan 1981, 87.)

Methodological Considerations

1. Kepler used the term physics in two senses which Westman
(1972b, 247) has called “descriptive” and “causal” —1I consider them
both causal and distinguish between causes which for Kepler involve
forces acting on bodies and causes which depend on the cosmic plan of
creation. The failure to recognize the importance of this distinction has
led to many misunderstandings in Kepler’s arguments, since he does
not always draw the distinction clearly. Kepler’s appeal to a priori
reasoning is based on his conviction that he can derive the details of
planetary motion from an analysis of the plan of creation which is
governed by theological considerations concerning the nature of God
and His intervention in the world — for which no observational data
are needed. The data, which are the starting points for a posteriori
reasoning, only confirm Kepler’s a priori reasoning or require modi-
fications of it since, according to Kepler’s methodology, a priori and
a posteriori reasoning must agree.

2. Let us now turn to Kepler’s view of God’s plan of creation, which
forms part of the groundwork for his astronomy. Though I have not
found an explicit statement by Kepler of his indebtedness to Melanch-
thon, a leading theologian who worked with Luther, I suspect that
Melanchthon’s view of the Bible, directly or indirectly, had a serious
impact on Kepler as a student of theology in a Lutheran seminary (see
Kusukawa 1992, 44 and Westman 1975; 1980, 121, 142). According
to Melanchthon, the Bible is a coherent document, and all its parts are
equally authoritative as the word of God. Melanchthon was prepared
to exclude the apocryphal books from the Bible because, in his view,
they were incompatible with the coherence of the Bible (although he
allowed such books to be studied in the same way that other non-
Christian classics were studied). Moreover, Melanchthon accepted the
view that God reveals himself in nature. Indeed, the pagan Greeks had
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come to the knowledge of moral order from contemplating the order in
nature, and from this order they arrived at knowledge of God, even if
that knowledge was partial and inadequate (see, for example, Schnei-
der 1990, 103f, 119f, 244). Kepler went further by asserting that the
world, created in the image of God is also a coherent whole, just as
Scripture is coherent as the word of God, and that the two are comple-
mentary. Kepler’s conviction, that applying theological reasoning to
the study of the natural world is appropriate, is not at all surprising in
his intellectual environment. Although others at the time advocated
such a fusion of disciplines, Kepler was the only one to seek quantita-
tive results from it.

Kepler’s image of the trinity in the plan of creation can be seen in the
following passage from chapter 2 of the Mysterium, “The image of
God the Three in One [is found] in a spherical surface, that is of the
Father in the center, the Son in the surface and the Spirit in the reg-
ularity of the relationship between the point and the circumference.
For what Nicholas of Cusa attributed to the circle . . . I reserve solely
for a spherical surface” (Duncan 1981, 93). Although Kepler referred
only to Cusa here, the application of this image to the heavens may bea
response to Rheticus’s Narratio Prima:

First, . . . [Copernicus] established by hypothesis that the sphere of the fixed
stars, which we commonly call the eighth sphere, was created by God to be the
region which would enclose within its confines the entire realm of nature, and
hence that it was created fixed and immovable as the place of the universe.
Now motion is perceived only by comparison with something fixed. . . . Then
in harmony with these arrangements, God stationed in the center of the stage
His governor of nature, king of the entire universe . . . the sun. (Rosen [1939]
1959, 143)

As we shall see, Kepler also grounded astronomy in theology.

In the Paralipomena or the Optical Part of Astronomy of 1604,
Kepler explicitly related the created world to God, “The creator in his
great wisdom found nothing more perfect or more beautiful or more
excellent than himself. This is why, thinking of the corporeal world, He
gave it the form most like Himself” (Chevalley 1980, 107). This form
rurns out to be the sphere: defined by a surface, a center, and the
interval between them which is everywhere symmetric and filled by
straight lines. Later, in the Harmonices Mundi of 1619, Kepler re-
placed the sphere by the circle, but the correspondence remained. Kep-
ler conceived of constructible polygons inscribed in an archetypal cir-
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cle whose vertices define a set of arcs; harmonies are then defined by
the ratios of those arcs. In this way Kepler succeeded in basing arithme-
tic ratios or harmonies on geometric figures.

This three-in-one-some is the “archetype” of the world, where there
is also a “trinity” that serves as the background against which the
planetary motions take place. In the preface to the 1596 edition of the
Mysterium Kepler proclaimed “the splendid harmony of those things
that are at rest, [namely], the Sun, the fixed stars, and the intermediate
[space], with God, the Father, and the Son, and the Holy Spirit” (Dun-
can 1981, 63). The trinity is represented by the motionless parts of the
heavens in contrast to the moving planets. In this context it is impor-
tant for Kepler to reconcile Scripture with science:

Certainly God has a tongue, but he also has a finger. . . . Therefore, in matters
which are quite plain, everyone with religious scruples will take the greatest
care not to twist the tongue of God so that it refutes the finger of God in
nature. (Notes to the Mysterium, chap. 1, ed. 1621, in Duncan 1981, 85)

3. For Kepler the job of the astronomer was to study the path of a
planet in space, not to construct models (called “hypotheses” at the
time) from which the path might be determined. This path was to be
understood in three dimensions: heliocentric longitude, latitude, and
distance (which could then be transformed to geocentric coordinates,
if desired). In contrast, the observations discussed by previous astron-
omers were episodic, and they were used for determining the param-
eters of models, not paths.

Kepler claimed on the verso of the title page of the Astronomia
Nova that he had met the challenge proclaimed by Ramus (d. 1572):
to construct an astronomy without hypotheses (i.e., models). On the
other hand, Brahe thought this challenge was meaningless because
astronomers were supposed to construct hypotheses to account for
planetary motions (see Blair 1990, 368). Already, in the Mysterium,
Kepler paid special attention to the planetary paths, arguing that the
planet’s linear velocity along its path varies, as is the case in Ptolemy’s
equant model (considered by Copernicus to be a fault of that model).
In the Astronomia Nova, chap. 1, Kepler illustrated the complexity of
the geocentric path of Mars from 1580~1596 (see figure 1.1), display-
ing this trajectory in “depth” in the plane of the ecliptic—no such
figure can be found in the previous astronomical literature (though it
became a commonplace subsequently). By contrast, the heliocentric
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DE MOTI1B. STELLZE MARTIS

Figure 1.1 Kepler’s figure to illustrate the geocentric trajectory of Mars for the
period 1580—1596; Astronomia Nova ([1609] 1968, chap. 1).

path of a planet is an eccentric circle (or an oval) which is much sim-
pler. In this way Kepler suggested a new reason to prefer a heliocentric
over a geocentric system: on the basis of the planetary paths that are
entailed by them.

4. In the Apologia (1600; see Jardine 1984), Kepler distinguished
three tasks of an astronomer: (1) to record the apparent paths of the
planets and their motions: the practical and mechanical part of astron-
omy; (2) to determine the true and genuine paths: the contemplative
part of astronomy; and (3) to decide by what circles and lines certain
images of these true motions may be depicted: the inferior tribunal of
geometers. Again we see the crucial role of paths for Kepler (e.g., the
apparent path is the “history” of a planet). Geometers provide tools for
astronomers, and this is the role that Apollonius filled according to

Kepler:
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Apollonius was not an astronomer by profession, but a geometer. And he
did not himself, as the office of astronomer requires, apply in practice what
he demonstrated from a problem derived from astronomy in order, having
adopted this hypothesis, to infer and demonstrate from observation the mo-
tion of some planet. Rather, he handed over to astronomers a merely geometri-
cal demonstration, as a retailer hands over keys or an axe to an architect in
case someone should need these things for his work. (Jardine 1984, 191f)

This was precisely the role that Viete (d. 1603) saw for himself as the
“Apollonius Gallus” (see Swerdlow 1975).

S. Kepler also made a sharp distinction between astronomical and
geometrical hypotheses in astronomy. He claimed, for example, that
an oval shape for the moon’s path would be an astronomical hypothe-
sis — but when an astronomer shows by what circles this oval can be
constructed he uses geometrical hypotheses (Jardine 1984, 153). Kep-
ler presumably was referring to the oval shape of Ptolemy’s deferent for
the Moon; this fact was not mentioned by Ptolemy but it had already
been noted in Reinhold’s commentary on Peurbach’s Theoricae novae
(first ed. 1542; 1 consulted the 1557 Paris ed., fol. 38b-39a), a work
that Kepler cited in a letter to Herwart von Hohenberg in 1599 (see
Jardine 1984, 62) and in the Astronomia Nova, chap. 46 (see Donahue
1992, 467); Reinhold in turn probably depended on Brudzewo’s com-
mentary on Peurbach’s Theoricae novae (dated 1482, printed 1495;
ed. Birkenmajer 1900, 124, “Similiter etiam centrum epicycli Lunae
infra unum mensem non circularem, sed etiam fere ovalem, propter
descensum et ascensum suum, describit figuram”; this reference was
kindly given to me by J. L. Mancha, Seville). Kepler was also aware
that Copernicus’s double epicycle for the Moon produced an oval (As-
tronomia Nova, chaps. 4 and 43), but he did not recognize that this
oval is an ellipse (see Swerdlow and Neugebauer 1984, 197).

6. For Kepler the fundamental principle that governs planetary mo-
tion is the distance-velocity relation, that is, that the linear velocity of a
planet varies inversely with its distance from the center of motion. This
principle was not new with Kepler, indeed, Kepler cited Aristotle’s De
Caelo (see Duncan 1981, 197), and Copernicus (1543, 7v) referred to
Euclid’s Optics for it. But Kepler used it in a new way. It first served to
support Ptolemy’s equant models against Copernicus’s models based
on uniform circular motions, and then to support an equant model for
the Earth. In Ptolemy’s solar model (and correspondingly in Coper-
nicus’s terrestrial model), the variation in angular velocity is an optical



12 Bernard R. Goldstein

effect, due to the observer’s location at a point eccentric to the center of
motion. But Kepler insisted that the linear velocity of the Earth should
vary with its distance from the Sun and that it is not an optical effect.
Kepler drew an important distinction between angular velocity, a fa-
miliar concept in astronomy, and linear velocity along the path of a
planet. For measuring angular velocity Kepler used angles per unit
time, whereas for linear velocity he preferred times (morae) per unit
distance (instead of distance per unit time, as we might expect). Indeed,
for Kepler distance is prior to motion, and the distance-velocity rela-
tionship came as a natural consequence of this commitment. In the
Astronomia Nova ([1609] 1968, chap. 33, 168; see Donahue 1992,
377), Kepler remarked:

Distance from the center is prior both in thought and in nature to motion over
an interval. Indeed, motion over an interval is never independent of distance
from the center, since it requires a space in which to be performed, while
distance from the center can be conceived without motion. Therefore, distance
will be the cause of intensity of motion (causa vigoris in motu), and a greater
or lesser distance will result in a greater or lesser amount of time (morae).

It seems to me that Kepler’s claim that the period of a planet varies with
its distance from the Sun (which ultimately led to his Third Law) is also
related to this commitment.

7. In sum, Kepler’s basic tools for finding the laws of planetary
motion in agreement with the observational data understood as the
paths of the planets through space were (1) the plan of creation and the
notion of archetypal reasoning associated with it, and (2) the distance-
velocity relationship along with the priority of distance over motion.

Kepler’s Laws of Planetary Motion

1. This section deals with the inner logic of Kepler’s derivations of
his three laws rather than the precise way he reached them. Several
scholars have argued that Kepler misled many of his readers by intro-
ducing in some of his works (including the Astronomia Nova), for
rhetorical purposes, a fictional order of discovery. Therefore, recon-
structing the actual steps in his discoveries depends on a careful read-
ing of his correspondence and manuscripts (see Donahue 1993, 1994).
However, that reconstruction will not be discussed here because, in my
view, Kepler’s conceptual framework is sufficiently accessible through
his published works.
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Figure 1.2a Figure 1.2b

2. As is well known, in the early chapters of the Astronomia Nova
Kepler showed the inadequacy of all three alternative planetary models
that were worthy of consideration: the models of Ptolemy, Copernicus,
and Brahe. Instead, Kepler’s “vicarious hypothesis” which was based
on Ptolemy’s equant model, the very model that Copernicus had found
so objectionable, best reproduced the observational data. Let us first
consider Ptolemy’s equant model for the deferent of the outer planets
(Mars, Jupiter, and Saturn): Let C be the center of the deferent circle
AP, E the equant point, and O the observer, such that EC = CO (see
figure 1.2a). Uniform motion takes place about E; hence the linear
velocity on the circle is not uniform, as Ptolemy realized. In the Astro-
nomia Nova, Kepler modified this model by replacing O with S (for the
Sun), and allowing EC # CS. The models he derived from observations
of Mars were two equant models: (1) where EC = CS that accounted
for the observed latitudes (see figure 1.2b), and (2) where EC # CS that
accounted well for the observed longitudes (to within 2 of arc). No
single equant model could account for all the observed data; the equant
model with bisected eccentricity led to a discrepancy of 8’ of arc be-
tween theory and observations at the octant points, but it represented
the distances from the Sun to the planet reasonably well (see Stephen-
son 1987, 42ff). The equant model with nonbisected eccentricity be-
came Kepler’s “vicarious hypothesis” (i.e., a substitute for the true
theory yet to be discovered) because it was useful in computing the
longitudes of Mars even though it was wrong in other respects.
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Figure 1.3 Kepler’s figure to illustrate his derivation of the area law; Astronomia
Nova ([1609] 1968, chap. 40, 193). The sun is located at point 4, and the planet
travels along circle cedf about center b.

3. Kepler’s first derivation of the Area Law comes in the Astronomia
Nowva, chap. 40 (see Donahue 1992, 417ff), and his central argument
referred to an eccentric circular orbit (see figure 1.3). Curiously, this
derivation follows a chapter in which Kepler argued against the circu-
lar path for planetary motion.

To clarify Kepler’s discussion we introduce figure 1.4: Consider the
area A, defined by lines drawn from the Sun to the ends of a small arcs,
representing the motion of a planet. Note that the Sun is not at the
center of the circle on which the planet is supposed to move. Then, at
aphelion and perihelion, where the motion of the planet is perpendicu-
lar to the radius vector drawn from the Sun, the area of this small
triangle A, will be proportional to the product of the arc s and the
length of the radius vector d,. Strictly this relation will be valid only at
the aphelion and perihelion (as Kepler was aware).

Next construct the motion of the planet around a portion of its orbit
by adding small segments like that already defined (see figure 1.5). We
then have i arcs of length s, and we seek the variable time intervals that
correspond to each of these equal arc-lengths. Kepler calls these time
intervals morae; in effect, they represent the time it takes a planet to
move a unit distance along its trajectory. Following the proportionality
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already established, the sum of the areas A, A,, A;, ... A, will be
proportional to the sum of sd,, sd,, sd, . . . sd,, where d|, d,, d;, ... d,,
are the lengths of the corresponding radius vectors; that is:

A+ A, +.. . +A xcsd, +sd, +...+ sd,. (1.1)

It follows from expression (1.1) that the proportionality holds with-
out the quantity s on the right side; we shall discuss the consequences
of eliminating s later in this section. Now Kepler believed that the
linear velocity of a planet is inversely proportional to its distance from
the Sun. Hence, in each term in the above series we may replace the
distance d; (where 1 =< j = i) by the reciprocal of the corresponding
velocity v;, producing a quotient s/v;. Each of these quotients repre-
sents the distance travelled by the planet along a small portion of its
orbit divided by the velocity with which it traverses that portion of
the orbit, and thus defines the time taken to traverse that portion of
the orbit. That is:

N S S
At g+t A L D (1.2)
<ttt t ...t (1.3)

Therefore, the ratio of the sum of the areas A, making up a given
segment of the orbit to the area of the whole orbit (A) will be equal to
the ratio of the sum of the corresponding times ¢; to the time required

s

A

Figure 1.4 Figure 1.5
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for the planet to complete one orbit that is the period of the planet (T).
That is:

A1+A2;...+Ai___t1+t2+...+t,~ (1.4)

Now let us define
a,.=A1+A2+...+A,-
and

=ttt + ...+

1
Then, we can rewrite equation (1.4) as

=3 (1.5)
The correlation established here between areas and time intervals is the
same one we recognize, for the case of an elliptical orbit with the Sun at
one focus, as the second law of planetary motion.

The derivation in chapter 40 suffers from a number of defects, some
real, others alleged. The first defect is that the basis on which the small
areas are calculated gives a good approximation only when the arc
along which the planet is moving, and hence its velocity, is perpendicu-
lar to the radius vector drawn from the Sun. This condition is only
satisfied at the apses, as Kepler recognized. Indeed, he gave an exten-
sive analysis of the error introduced by this consideration, including a
graphical representation of an exact solution. As Aiton (1969, 90),
among others, has pointed out, Kepler presented a correction to the
distance-velocity relation some years later in the Epitome of 1621:
“The component of the velocity perpendicular to the radius vector is
inversely proportional to the distance from the sun” (Aiton’s para-
phrase of the text in Kepler, GW 7:377).

A second defect is that Kepler seems to be appealing to infinitesimal
values of s and summing an infinite number of radius vectors. Indeed,
Kepler’s language suggests this to be the case, and virtually all previous
commentators on this chapter have pointed to this difficulty. But Kep-
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ler here explicitly appeals to Archimedes for his use of infinitesimals,
and Archimedes took infinitesimals like s to be very small but still
finite. In his only example, Kepler in fact took s to be 1°, far from an
infinitesimal quantity. Moreover, when recasting this argument in the
Epitome of 1621 (GW 7:377), Kepler was more careful and said that
the orbit is to be divided into “the most minute equal parts” (“in par-
ticulas minutissimas aequales”). The difficulty in chapter 40 arises
from Kepler’s omission of some steps in his procedure whereby s could
be eliminated altogether. Let us divide the entire circumference of the
circle into 7 equal arcs of length s. Then, according to expressions (1.1)
and (1.4),

A+ A+ .+ A sdy + sd, + ...+ sd,
A sd, +sd, +...+sd,+...+sd,
s(d, +d, +...+d)
sdy+d, +...+d, +...+4d,)
_ d,+d,+...+4d,
Td +d,+...+d.+...+d,

(1.6)

Thus s has been eliminated by a proper procedure. We then combine
equations (1.5) and (1.6) with the following result:

d,+d, +...+d, (1.7)
d+d,+...+d + ... +dn ’

T
T

In chapter 40 Kepler divided the circle into 360 equal parts and
considered evaluating equation (1.7) for each value of i. Then, instead
of pursuing this “tedious” method, he returned to equation (1.5), and
took this as the principal result in Part III of the Astrornomia Nova.

Let us return to the procedure in chapter 40. Kepler’s goal at the
outset was to approximate the motion on a circular orbit about an
eccentric Sun according to the distance-velocity principle which he
took to follow from physical causes. By the end of the chapter, this
principle had been replaced by the Area Law as an approximation to it.
Along the way, he proposed a method for taking the ratio of sums of
radius vectors (see equation 1.7, above) to approximate the Area Law
and then abandoned it as too cumbersome even though it appears to be
much closer to the original distance-velocity relationship.
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4, An argument similar to the one for the Area Law yields Kepler’s
third law (first presented in Harmonices mundi of 1619 and elaborated
in the Epitome and in the notes to the Mysterium of 1621 [see Duncan
1981]). Let us begin by recalling thatina Copernican model, the length
of the path of a planet about the Sun is simple to calculate, whereas in
the Ptolemaic or Tychonic models the length of the planet’s path about
the Earth is no simple matter. The path of a planetin a circular orbit
about the Sun is 2R, where R is its mean distance from the Sun. Let T

be its period. Then its linear velocity

v = 2wR/T. (1.8)
For two planets, P, and P,, where P, is farther from the Sun than Py,

v, _ Ti* R,y
7, TR, (1.9)

_ T, _R,
If v, = v,, then T, R/’ (1.10)

thatis, T« R. Now let v, <v (i.e.,a planet farther from the Sun moves
more slowly in linear velocity), and T « f(R). For example, let T « R%.
Since both R and T are known, one can check whether this relationship
holds. It is then easy to determine that T does not increase so rapidly.
Hence the compromise is T « R*? (Kepler’s third law), which can be
verified directly from the data.

It has been suggested that Kepler proceeded by trial and error (see
Koyré 1961, 341), but that does not do justice to his method. Already
in the Mysterium (ed. 1596, chap. 20), Kepler expressed his conviction
that T varied with R and, realizing that the proportionality was not
linear, he proposed a relationship based on the arithmetic mean. Then
in the Astronomia Nova, chap. 39 ([1609] 1968, 186), he proposed
that T varied with the square of R: “supposing the same planet to be in
turn at two distances from the sun, remaining there for one whole
circuit, the periodic times will be in the duplicate ratio [i.e., square] of
the distances or magnitudes of the circle” (Donahue 1992, 407). In
1618 (the precise date is recorded in the Harmonices Mundi V,3),
Kepler discovered the third law, but the notice about it in the Harmo-
nices Mundi is brief. A fuller account appears in the notes to the Myste-
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rium of 1621 (ad chap. 20; Duncan 1981, 205): “from the princi-
ples adopted [in chap. 20 of the Mysterium, ed. 1596] the geometric
mean was the legitimate conclusion . . . but the arithmetic mean came
closer to the mean according to the 3/2 power than the geometric
mean, or that according to the square” (see Duncan 1981, 249-50,
where it is shown that the substitution of a geometric mean for an
arithmetic mean leads immediately to the law: T o« R2). In this way
Kepler linked his arguments in the treatises of 1596, 1609, and 1619.
It is clear that from the very beginning he sought a rule such that
T would vary with R; he did not have to consider all possible ex-
ponents of R since information was gained after each trial. His reason-
ing was based on the distance-velocity relationship, and was confirmed
by the data. This reasoning is “archetypal,” which is “physical” for
Kepler, for it depends on the plan of creation as the cause of plane-
tary motion.

In the Epitome (IV, Part 2,4) Kepler attempted to produce another
kind of physical argument to justify this rule, based on forces, and to
some it has seemed ad hoc. But this view needs to be nuanced. In the
Astronomia Nova, Kepler stated that the solar force diminishes lin-
early with the distance from the Sun; as the force diminishes, the linear
velocity of a planet diminishes and hence its period increases. But the
period must also increase as the orbit increases in length (which also
depends on R). Therefore, combining both effects, T « R? (as in the
Astronomia Nova, chap. 39). So far no account has been taken of
the effect of the planetary body. Kepler believed that the density of the
planets varied inversely with the square root of their distances from the
Sun (which he took to be the densest of the heavenly bodies: Epitorme,
IV, Part 1,4; GW, 7:486ff); the denser a planet, the more “sluggish” it
is; and the more “sluggish,” the greater its period. This, together with
the previous relationships, yields the third law:

T « R*R/VR; (1.11)
o R32, (1.12)

Kepler gave a priori reasons for the density to vary inversely with the
distance, but the third law of planetary motion led to the introduction
of the square root. Only in this restricted sense may his argument be

called ad hoc.
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Kepler also considered the volume of a planet (moles) and the
amount of its matter (copia) separately: the volume (rather than the
diameter or the surface) of a planet varies directly with its distance from
the Sun; and the amount of its matter varies directly with the square
root of that distance. The greater the volume (V), the greater is the effect
of the solar force and the shorter the period —an inverse proportion-
ality; while the greater the amount of matter (M), the stronger is the
resistance to motion and the greater the period —a direct proportion-
ality (see Gingerich 1975). Again, we reach the third law:

R*R*M

Tx=—; (1.13)
or
T « R*R*VEK (1.14)
R
Thus
T o R32 (1.15)
as before.

5. The derivation of the ellipse is the most complicated case, and the
one for which Kepler provided the most information concerning the
path that led him to discover it. But this wealth of information and
calculation has tended to obscure the principles that underlie his pro-
cedure. At a very early stage Kepler was prepared to accept ovals, for
he already mentioned an oval for the deferent of the Moon in the
Apologia written in 1600, and there was a long tradition among Ptole-
maic astronomers concerning the oval deferents of the Moon and Mer-
cury. Brahe had even considered an oval path for the comet of 1577
(see Dreyer [1906] 1953, 366). Moreover, in the Astronomia Nova,
chap. 4, Kepler remarked that in De Rev. V, 4, Copernicus indicated
that the path of a planet is not circular but “goes outside the circle at
the sides,” whereas for Kepler the planetary ovals should go “inside”
the circle at the sides (Donahue 1992, 136f). On the other hand, no
mention of an ellipse is made in Kepler’s early astronomical writings,
or in the works on which he depended for planetary theory. Yet, we
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would be wrong to conclude that only Kepler was capable of making
such a “conceptual leap,” for an unpublished manuscript by Viete
includes a mathematical discussion of an ellipse in a planetary model.
Kepler did not cite this work (though he does allude to a published
work by Viete; see Donahue 1992, 256), and there is no reason to
suppose that Kepler was aware of it. Moreover, Viéte made no attempt
to produce physical arguments in favor of his ellipses, and he did not
seek observational evidence to confirm his insights. In sum, Viéte ap-
proached planetary theory from the point of view of a geometer who
could show astronomers (particularly Copernicus) how to construct
elegant mathematical models (see Swerdlow 1975).

In his derivation of the elliptical orbit of Mars, Kepler seems to sug-
gest that this result came as a surprise to him in the course of investigat-
ing various preliminary hypotheses that were later discarded. Despite
the difficulties involved in reconstructing Kepler’s procedures in arriv-
ing at the ellipse (see, e.g., Wilson 1968), I believe that he was guided
once again by the cosmic plan of creation and the distance-velocity
relation, but detailed analysis must be left for another occasion.

Conclusion

Finally, we may note that Kepler’s use of archetypal reasoning seems to
have given more trouble to his modern readers than the complexity of
his mathematical arguments. There is a related difficulty in interpreting
his use of physical analogy which also deserves extensive treatment.
Moreover, Kepler often interspersed archetypal reasoning with reason-
ing based on forces, adding to the confusion.

I have attempted to indicate that Kepler’s religious and methodo-
logical commitments —as well as those that directly concern mathe-
matics and natural philosophy —need to be exposed in order for us to
appreciate fully his mode of thinking and to avoid anachronistic inter-
pretations of his work. In the absence of such a global treatment of
Kepler, even his technical achievements will remain unintelligible.

NOTES

This research was supported, in part, by grants from the National Science
Foundation and the National Endowment for the Humanities, and it was under-
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taken in collaboration with Peter Barker. This paper was first presented at a work-
shop, “Kepler’s Unification of Physics and Astronomy,” held at the University of
Groningen (The Netherlands) in June 1992 and, with some modifications, at the
Center for Philosophy of Science (University of Pittsburgh), Annual Lecture Series,
September 1992; the Joint City University of New York and Courant Institute—
NYU History of Mathematical Sciences Seminar, May 1993; and the annual meet-
ing of the History of Science Society (Santa Fe), November 1993. An earlier ver-
sion was incorporated in “Distance and Velocity in Kepler’s Astronomy,” Annals
of Science 51 (1994): 59-73 (with Peter Barker).
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