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An approach to implementing variational Bayesian inference in biological
systems is considered, under which the thermodynamic free energy of a
system directly encodes its variational free energy. In the case of the brain,
this assumption places constraints on the neuronal encoding of generative
and recognition densities, in particular requiring a stochastic population
code. The resulting relationship between thermodynamic and variational
free energies is prefigured in mind–brain identity theses in philosophy
and in the Gestalt hypothesis of psychophysical isomorphism.
1. Introduction
In machine learning and, increasingly, in cognitive neuroscience, it is widely
recognized that the bulk of the learning undergone during an organism’s life-
time is likely to be unsupervised—that is, to be based directly on the
modelling of streams of incoming sensory data, rather than on explicit
reinforcement of downstream performance. Theories of unsupervised learning
in the brain invariably appeal, in one way or another, to the iterative refinement
of a neuronally implemented, hierarchically organized generative model of the
sensory data. The cost function used to update this model, which measures the
difference between actual and predicted sensory inputs, is often formally ana-
logous, in some cases quite precisely, to descriptions of physical systems in
terms of their potential energy [1]. Variational methods, which formalize stat-
istical inference and learning in terms of the maximization of a lower bound
on the model evidence called (negative) variational free energy, are among
state-of-the-art approaches in this vein [2], and have a long history in the
theory of unsupervised learning in artificial neural networks [3,4].

In theoretical neuroscience, variational free energy (VFE) minimization has
been proposed as a unifying explanatory framework accounting in principle for
all psychologically significant aspects of cortical function, particularly those
underwriting perception and action [5–8]. This theoretical approach, sometimes
called the ‘free energy principle’ (FEP), has recently been extended from a
theory of the brain to a more general emerging framework that treats life in gen-
eral, at all spatio-temporal scales and developmental stages, in terms of a
gradient descent on free energy [9–13].1

In this paper, I consider a way of implementing variational inference in the
brain that is non-accidentally related to its thermodynamic description. The
implications of this perspective on variational inference, I argue, are similar
to those of positions taken in twentieth-century philosophy on the mind–
brain relation [14,15]. Smart’s [14] ‘topic-neutral’ analysis of mental state ascrip-
tions, for example, allowed for the possibility that mental states are (despite
initial appearances, perhaps) brain states. Similarly, on the present view, the
mathematics of variational inference delineates a set of formal relations that
obtain within a system whether it is described cognitively, in terms of the con-
tents of its computational states, or purely physically, in terms of the energy
dynamics governing the (neuronal) vehicles of its representations.

This theoretical stance is stronger than that adopted historically by propo-
nents of the FEP, who have in some cases underscored the model-relative
status of the free energy of approximate Bayesian inference [16,17] and its dis-
tinctness from thermodynamic free energy. Recent work on this topic by Karl
Friston and colleagues, however, confirms a systematic link between the VFE
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and thermodynamic potential energy. In [18] it is demon-
strated that changes in thermodynamic potential energy are
approximately equal to changes in the surprisal or self-infor-
mation of a system near its non-equilibrium steady states, and
[9] (see pp. 65–67) describes the minimization of thermodyn-
amic free energy as a system approaches non-equilibrium
steady state. Friston et al. [19] draws a conclusion similar to
that of the present work via a somewhat different route.2

Interestingly, this view was presaged not only by the
identity theorists in philosophy but also, quite precisely, by
the Gestalt psychologists, who supposed that perceptual
phenomena as subjectively experienced had structures iso-
morphic to their underlying physiological correlates (see
e.g. [20, p. 56], [21, p. 552] and [22]).3

The outline of this paper is as follows. In §2, I introduce
the variational approach to Bayesian inference, briefly discuss
its technical motivation, and describe its formal and concep-
tual relations to the notion of free energy from statistical
mechanics. In §3, I consider how probabilities (and state
updates) would need to be encoded in neuronal dynamics
such that the same mathematical description can be applied
to the former and to the latter, a necessary condition on the
truth of the identity thesis. In §4 I discuss how this thesis,
which is fundamentally a philosophical claim, may be
grounded in the mathematics via Lewisian functionalism. I
conclude by considering the scope and implications of the
thesis.
2. The formal equivalence
2.1. Free energy in optimization and in

thermodynamics
Free energy, in the context of variational Bayesian inference, is
a function(al) of a probability distribution or density Q used
to approximate the (in practice, typically intractable) joint
posterior distribution P(H, V ) of data V, together with the
(unobserved) cause(s) of those data, H, under a statistical
model whose parameters may also be unknown.4 In relevant
applications in cognitive science, variational inference has
been proposed as a mechanism whereby the inputs to a neur-
onal processing hierarchy, originating in sensory transducers,
are used to infer a set of neuronally encoded hypotheses
about the causes of the sensory input stream, given knowl-
edge only of the sensory inputs and an evolving empirical
prior over their causes. In this context, the approximating dis-
tribution5 is typically described as a ‘recognition’ model or
density (since it can be used to recognize causes given sen-
sory inputs) and the approximated distribution as a
‘generative model’ (since it can be used to generate states of
or predictions for the system’s input channel(s), a process
that mirrors the causation of sensory input by external
sources).

The generative model, which in theories such as hierarch-
ical predictive coding [25] is hypothesized to be implemented
in top-down cortical connections, specifies the Umwelt of the
organism, the kinds of things and situations it believes in
independently of the current sensory data (in the literature
on active inference, states with high probability under the
generative model are sometimes called ‘phenotypic states’,
since they are the states that a creature of a given kind must
be in to remain viable [26]). Neuronal responses to sensory
inputs, as well as the organism’s ongoing interactions with
the environment, have the effect of increasing the goodness
of fit between the generative density and the inferred states
on average, both by changing the world to fit the generative
density over causes and by modifying the generative density
itself in response to observations [10].

Against this background, free energy captures the discre-
pancy between the organism’s generative model of the world
and the current environmental conditions, where the latter
are represented most immediately by the approximating rec-
ognition density. If we perform inference over the parameters
θ of the generative model as well as the latent variables or
‘hidden states’ H, subsuming both under a random variable
Z, the negative free energy, F, can be written in the following
form (closely following [24], but with the dependence of each
Q(z) on a particular observed variable v made explicit):

F ¼
X
z

Q(zjv)log P(v,z)
QðzjvÞ
� �

: ð2:1Þ

Note that the true joint probability of latent and observed
variables P(v,h) is parametrized by θ, so that F is a function
of Q and θ—and since the parameters θ are subsumed
under Z, implicitly represented here by Q(z|v), F depends
only on Q.

F is useful as an optimization target for several reasons
that have been widely discussed in relevant literature. Key
properties are summarized in equation (2.2), where L = log
P(v), the log probability of the data v under a generative
model of their causes, and the first term is DKL(Q(z|v)||
P(z|v)), the K-L divergence between Q and the posterior dis-
tribution over latent variables and generative parameters:

X
z

Q(zjv)log QðzjvÞ
PðzjvÞ

� �
þ F ¼ L: ð2:2Þ

The K-L divergence quantifies the difference between P
and Q, is zero when they are identical, and is otherwise posi-
tive. Thus, F acts as a lower bound on the log likelihood of the
data under P. Moreover, holding L fixed, maximizing F
necessarily minimizes DKL. These are two aspects of a
single optimization process in which the data alone are
used to infer the best possible model6 of it and its hidden
causes, making variational inference suitable as a method
for unsupervised learning.

As is often remarked in discussions of variational infer-
ence, F has almost precisely the form of a negative
(Helmholtz) free energy from statistical mechanics [1,3,4].
This energy may be written as F(T ) = 〈E(T )〉− TS, where
the first term on the right is the expectation, across alternative
possible states, of the energy stored in the system due to its
internal configuration (at temperature T ), and TS is the temp-
erature times the entropy S [27, p. 673]. To see the
equivalence, we rewrite equation (2.1) using an ‘energy’
term E(v,z) defined as the negative log joint probability of v
and z under the generative model (whose parameters are
again treated as stochastic variables). Reversing signs and
expanding the log expression gives the following (using the
label VFE for the (variational) free energy, as opposed to
the negative free energy, F ):

VFE ¼
X
z

Q(zjv)E(v,z)� �
X
z

Q(zjv) log (QðzjvÞ)
 !

: ð2:3Þ
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Here, the second term is the entropy of the distribution Q and
the first term is the expected ‘energy’ under Q. This has the
same form as F(T ) above assuming a temperature of 1 [4].

2.2. The role of internal energy
The present interest in VFE within theoretical neuroscience is
attributable to at least two historical influences. The first is
the application of algorithms for finding low-energy states of
matter to optimization problems [27,28], combined with the
assumption that the brain implements a multivariate statistical
model [29,30]. A second is Hopfield’s observation that the
probability of an action potential in a neuron is a smooth (sig-
moidal) function of the (short-term average) potential across
the cell’s membrane ([31], p. 2555—see fig. 1), which is a
measure of potential energy (per unit charge). Hopfield
showed that networks whose dynamics minimize a global
energy function, defined additively in terms of local
potentials, can exhibit spontaneously emerging self-organiz-
ational properties useful for the storage of memories. Later
work synthesized Hopfield’s approach with Bayesian inference
[32], ultimately yielding models like the Helmholtz machine
[33], in which online unsupervised learning is based explicitly
on the minimization of a variational free energy. More recently,
variational autoencoders [2] and a variety of energy-based
models [34–36] have made use of similar machinery.

Analogies are, almost by definition, partial. If the connec-
tion between statistical mechanics and statistical modelling
by the brain were merely one of analogy, it would be surpris-
ing to find that all the terms in the Helmholtz free energy play
useful and interlocking representational roles. This coinci-
dence between physical and representational descriptions is
to be expected, however, if the free energy simply measures
how much useful ‘representational work’ can be done by the
internal elements of a system, where ‘work’ has its physical
meaning. In the remainder of §2 I consider how the physical
interpretation of each term in the Helmholtz free energy can
be related to a corresponding facet of the optimization process.

A standard expression for the Helmholtz free energy is A =
U− TS. The internal energy U combines all the energy (poten-
tial and kinetic) residing in the system. As we have seen, the
energy of a system in statistical mechanics is cast as an average
energy over possible configurations, weighted by their prob-
ability. The Boltzmann distribution (equation (2.4)) relates the
energy of a state s to its probability at a given temperature:

P(s) ¼ e�ð E(s)=kBTÞP
s0 e�ð E(s0)=kBTÞ ð2:4Þ

where s is a particular state of the system with energy E(s), the
s0 are the other possible configurations of the system, kB is
Boltzmann’s constant, and T is temperature.7 Though the con-
trast is much more pronounced at lower temperatures, this
equation ensures that relatively low-energy states are higher
in probability.

This inverse relationship between probability and energy
is exploited in most uses of ‘energy’ as a cost function in
optimization problems. By construction, low energies are
associated with ‘good’ or desired configurations of the
system, which are often interpretable as assigning high prob-
ability to what they represent. In certain types of stochastic
network, the analogy to physics is closer still: the energy
can be directly related to the probability of an internal state
of the network occurring, as in the Helmholtz machine
trained using the stochastic wake–sleep algorithm [4,33],
where the probability of a given hidden-layer representation
h, given a data point v, is given by the Boltzmann distribution
at the free energy minimum.

2.3. The roles of entropy and temperature
The free energy is defined by Helmholtz as that portion of a
system’s available energy ‘convertible without limit into
other work-equivalents’ [37, p. 43]. This excludes the
‘bound’ portion of the energy associated with heat, rep-
resented as the product of the system’s entropy S and its
temperature T. An intuitive explanation of the −TS term is
that, insofar as the properties of the particles in a system
are uncertain, their kinetic energy constitutes ‘irregular
motion’, so the impact on the free energy of entropy, a
‘measure of the irregularity’ [37, p. 56], is scaled by temperature
(roughly, average molecular kinetic energy).

Later formulations of entropy in statistical mechanics use
a formula identical to Shannon entropy in information theory,
apart from the scale introduced by the Boltzmann constant.
Jaynes [38] proposes an influential interpretation of statistical
mechanics according to which thermodynamic and infor-
mation-theoretic entropy in fact ‘appear as the same concept’
(p. 621), and shows that the Boltzmann distribution falls
out as a special case of the principle that the least biased dis-
tribution compatible with current knowledge is the one with
maximum entropy.

Geoffrey Hinton and colleagues [1,4,39] have argued that
it is preferable to use the full Helmholtz free energy as a cost
function for learning a recognition distribution Q in a sto-
chastic neural network, rather than simply setting Q to
maximize the probability of picking the lowest-cost code
(i.e. configuration of the hidden units) for an input vector v.
This is because the entropy of the distribution over codes,
which appears as ‘free choice’ from the point of view of an
information source, can be leveraged to communicate surplus
information (i.e. beyond that needed to encode v). If we have
two equally efficient codes for v and use them with equal
probability, our choice of code communicates one ‘extra’ bit
of information for free. This is of course consistent with the
more general argument considered above [38].

The meaning of temperature within statistical modelling
is illustrated in the example of simulated annealing, where
increasing the temperature increases the variance of the dis-
tribution over configurations of the system, and lowering it
collapses the distribution to a small range of states near the
ground state. Controlling the variance of a distribution is
useful in many applications. Language models, for example,
can produce much more creative and amusing, if not always
grammatically correct, samples at high temperatures.8

One can of course decrease the Helmholtz free energy
simply by cranking up the heat. Doing so would, however,
in the limit destroy the traces of whatever forces were exerted
on the system in the first place to create the internal (poten-
tial) energy usefully exploitable as work. As just discussed,
‘cooking’ a model decreases its precision, diluting it in the
direction of a flat distribution. Decreasing precision also
increases entropy, but not necessarily in a way that preserves
prior knowledge encoded in the model.

2.4. The role of equilibrium
Free energy minimization has been used to explain how
organisms manage to keep themselves away from
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thermodynamic equilibrium with respect to the external
environment, i.e. how they maintain themselves in non-equi-
librium steady state or homeostasis [10]. Descent into
thermodynamic equilibrium, for an organism, is death, and
entails a state of maximum entropy or disorganization rela-
tive to its phenotypically expected states [26]. By contrast, a
relatively low-entropy distribution over its states has been
used by many researchers as a criterion for a system’s being
alive [11,40] or ‘viable’ [41]. It may thus seem obvious that
finding the ‘equilibrium’ states of a generative model (as in,
e.g., [32]) cannot be coextensive with a thermodynamic
energy-minimization process.

A first step toward addressing this concern is to adopt a
certain tripartite taxonomy of states. First, a steady state in
the relevant sense is one in which ongoing internal processes
with cyclical effects upon one another have evolved to a con-
dition in which concentrations (and thus gradients) of
relevant resources are stable—that is to say, net flows of
forces into and out of the system’s substates are in balance.
Maintaining steady state requires ongoing addition of
energy from external sources to counter the dissipation of
energy to the environment.

A thermodynamic equilibrium state, such as the hypothetical
heat-death of the universe, on the other hand, is only one
very unusual type of steady state in which energy is maxi-
mally dispersed and activity all but ceases, because every
microscopic exchange is perfectly balanced by another
(‘detailed balance’). A third relevant type of state, which I’ll
call ‘excited’ or ‘perturbed’, results when one begins with a
steady state and adds energy in excess of that required to
maintain homeostasis.

After a perturbation, a system will, ceteris paribus, follow a
trajectory from the perturbed state back to a steady state. On
the other hand, steady states will begin to devolve toward
equilibrium states if not enough energy is added to the
system.9 The crucial point for present purposes is that the
descent from a perturbed state to a steady state, and from a
steady state to an equilibrium state, share the same rough
trajectory: this series of transitions entails the system’s
exhausting increasingly more of its potential energy,
descending a free energy gradient.

Thus, moving toward steady state is, qualitatively speak-
ing, no different from moving toward equilibrium. There is
still a potential problem for the identity thesis, however, in
that energy minimization algorithms used for optimization
often model physical processes in which the energy is taken
right down to the lowest-energy or ‘ground’ states of the
system (which occur only at the lowest temperatures). Brains
and other biological systems operate in high-temperature
regimes by comparison.

Fortunately, statistical learning does not require that the
VFE reach a global minimum. In absolute terms, free
energy can be minimized not only during perception and
perceptual learning but on ontogenetic and phylogenetic
timescales as well [10,42]. Algorithms simulating only partial
reductions in free energy are at the heart of many proven
optimization techniques—see for example [4], in which the
E-M algorithm is recast as a matter of incremental free
energy minimization, so as to justify partial applications of
the E and M steps, or contrastive divergence learning [43],
in which the equilibrium distribution of a restricted Boltz-
mann machine is replaced by the distribution after just a
few steps of Gibbs sampling. In this case, the contrast
between the energy induced by an input vector and the
energy after a few steps of the Markov chain induces a gradi-
ent sufficient for learning.

The target thesis of this paper is the claim that biological
systems, whose internal states come to encode statistical
models as a result of spontaneous self-organization in
response to environmental pressures [44], learn and make
use of these models by minimizing their physical free ener-
gies. The identity thesis does not specify precisely which
approach to variational inference is thereby implemented,
or the minimum value the VFE must take. It may be, for
example, that biological systems run an algorithm closer to
contrastive divergence than to simulated annealing.
3. A transparent code
3.1. Stochastic encoding and variational inference
In order for the thesis of this paper to make sense, it must be
kept in view that the generative and recognition densities of
variational inference are densities over (possible) external
causes of the sensory input. That is to say, in the parlance of
most philosophers and nearly all cognitive scientists, they
are representations, and it is their representational function
that defines them as statistical models. Fixing the encoding
of the recognition and generative densities allows us to
directly relate the ‘representational work’ done as the diver-
gence between the densities is decreased to physical work [45].

In the most general formulation of the free energy prin-
ciple, the generative model is not assumed to be directly
encoded in a system’s internal states, but rather specifies
which of the system’s states are expected under its non-
equilibrium steady state distribution [9,26,46]. Sophisticated
forms of representation and control, however, require ‘deep’
hierarchical models in which explicit markings of statistical
regularities at each level play the role of ‘sensory input’ for
the next [47]. I will therefore assume in the remainder that
a generative model is at least implicitly encoded in a system’s
internal states.

It is typically taken for granted in discussions of predic-
tive coding in the brain [25] that hierarchical generative
(and recognition) models correspond to the hierarchical func-
tional organization and directionality of cortical networks.
For example, ‘backward’ or top-down connections are sup-
posed to parametrize the generative model, while the
‘forward’ or bottom-up connections mediate recognition or
fast approximate posterior inference [4,5].

Friston’s influential exposition of predictive coding [5,48]
assumes a deterministic representation in which densities are
encoded by variables representing their sufficient statistics.
This approach has the important consequence that, as noted
in [9, p. 118], the variational free energy is a property of the
current state of a system—while the thermodynamic free
energy is defined in terms of an expectation over an ensemble
(or set of possible alternative states). This would seem to pre-
clude a strict identity claim. A further reason to doubt that
the VFE can be directly encoded in the Helmholtz free
energy of a system is that the latter involves a single distri-
bution over states, whereas the VFE is characterized in
terms of a recognition density that approximates an under-
lying ‘true’ generative posterior.

An identity thesis could be defended, however, if the VFE
is encoded stochastically in a single thermodynamic free
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energy functional that combines the influence of the genera-
tive and recognition densities. Many early connectionist
models, including the Bayesian Hopfield-style network ana-
lysed in [32], the Helmholtz machine, and the restricted
Boltzmann machine [49], lend themselves to a simple and
natural encoding scheme under which the objective prob-
ability of a unit’s being in a given state represents the
subjective (Bayesian, model-relative) probability assigned to
the event represented by that state. This representation
could provide the basis for a ‘transparent’ encoding of vari-
ational free energy.

To consider a system whose analysis is tractable, we may
begin with the stochastic wake–sleep algorithm, in which the
activities of a single set of units representing the hidden
causes of observations (a ‘total representation’ in the terms
of [4]) are driven bottom-up by the recognition weights
during a ‘wake’ phase of the algorithm and top-down by
the generative weights during the ‘sleep’ phase. If ‘wake’
and ‘sleep’ phases occur with probabilities S(wake) and
S(sleep)=1− S(wake) respectively,10 we can use the recog-
nition and generative densities to define a single density R
over configurations of the system, factored into ‘wake’ and
‘sleep’ cycles:

R(si ¼ 1) ¼ S(wake)Q(si ¼ 1)þ (1� S(wake))P(si ¼ 1): ð3:1Þ

Using this model, the identity thesis can be formulated as
the claim that the VFE is equal to FER, the (thermodynamic)
Helmholtz free energy of the system when the probabilities of
the configurations are as given by R of equation (3.2), which
specifies the (marginal) probabilities Ri of each unit si’s firing,
regardless of direction of influence. This equivalence is easily
seen to hold when the VFE is minimized, since the recog-
nition and generative densities will in that case be equal
and probabilities in the network will conform to a Boltzmann
distribution.

With respect to non-equilibrium states, we may still
expect FER to scale with the VFE: to the extent that there is
non-zero K-L divergence between P and Q, the bottom-up
and top-down drives will favour different configurations of
the system, and the entropy of R and thus the surprisal of
the internal states will be greater. Moreover, lowering the
entropy of R (and thus the VFE) as FER is simultaneously
minimized entails lowering the internal energy, assuming a
constant temperature.11

3.2. The free energy identity thesis
The preceding argument is useful as a first approximation,
but the phases of the wake–sleep algorithm are biologically
unmotivated [39], and, perhaps more importantly, the algor-
ithm is doubly an approximation to Bayesian inference in that
the update procedure for the recognition model does not
exactly minimize the free energy used to define the cost
[50, p. 17].12

As discussed in the latter reference, the wake–sleep algor-
ithm can be viewed as an approximation to the E-M
algorithm, which in [3] is given an interpretation in terms
of VFE minimization.13 The predictive coding model of [5]
offers an exact implementation of E-M in which the ‘expec-
tation’ step corresponds to approximate inference of hidden
causes from sensory input and the ‘maximization’ step
adjusts (reciprocal) synaptic weights to fit both generative
and recognition densities to the estimated states, and thereby
to the sensory input. In this model, the top-down influences
of state or representation units at one level on error units in the
level below (mediated by top-down synaptic weights)
‘instantiate the forward model’ (p. 823), while the bottom-
up connections from error units to higher-level state units
implement a ‘recognition’ term, which doubles as the likeli-
hood under the generative density. Minimizing the VFE is
equivalent to minimizing the prediction error (p. 821).

As noted above, this representation entails that the VFE
depends only on the current state of the system. The reason-
ing of the previous section could, however, be extended to a
model that has the virtues of predictive coding (as described
in [5]) over wake–sleep (e.g. tied forward and backward
weights and, if desired, lateral connections and explicitly rep-
resented prediction errors) while using a stochastic encoding
of the variances, so that the representation of the VFE is dis-
tributed over alternative configurations of the system and it is
thus converted into an ensemble property.

The arguments given above may be bolstered by examin-
ing an alternative way of writing the variational lower bound
(negative free energy) F, considered in connection with vari-
ational autoencoders [2]. A similar analysis occurs in the
literature on the FEP and active inference [46], where it
appears as the relation free energy = complexity− accuracy
[51].14 In terms of −F or free energy:

� F ¼ DKLðQðhjvÞjjPðhÞÞ �
X
h

Q(hjv) logPðvjhÞ: ð3:2Þ

Maximizing the sum in the second right-hand term in
(3.2) ensures accurate reconstruction of the inputs, and thus
minimizes the prediction error incurred when hidden states
are inferred from observations and then used for prediction.
Minimizing the first term ensures that the network will,
absent external prompting, tend to occupy the same states
that are sampled from the recognition density when the net-
work is driven by sensory input. Together, these terms
maximize the expected similarity between states determined
by the network’s internal dynamics and those induced by sen-
sory input, minimizing perturbations caused by the inputs.

Parr et al. [18] show that under certain assumptions,
changes in free energy are approximately equal to changes
in the joint surprisal of the states inside the system’s defining
Markov blanket as well as the ‘active’ and ‘sensory’ states
comprising the blanket.15 These quantities also track the
amount of heat dissipated due to a corresponding change
in free energy.16 The approximation ignores the entropy
over the recognition density, which (under the assumption
that the density is Gaussian near its mode) can be expected
not to change much near non-equilibrium steady state, but
otherwise this result agrees with that of the reasoning just
rehearsed.

Since the identity thesis requires a more far-ranging
equivalence, we might attempt to bring the recognition
entropy into the picture as follows. An overarching principle
linking thermodynamics to variational inference, implicit in
the arguments above, is that the degree of Bayesian updating
required to maximize the inferential coherence among beliefs
will (given our modelling assumptions) be reflected in pro-
portional expenditures of energy in the physical sense. In
Friston’s words, ‘statistical and thermodynamic efficiency
go hand-in-hand’ [9, p. 120]. Learning will reduce the average
size of belief updates by minimizing the divergence between
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generative and recognition densities, but it will also maximize
the recognition entropy, subject to the constraint that the two
densities converge. This provides an independent way of redu-
cing the size of the updates, and so the thermodynamic energy
expenditure: holding the model evidence constant, a ‘softer’,
higher-entropy stochastic code requires less physical energy
per code to represent input v using states of hidden units h
than a ‘hard’ code in which p(h|v) tends to be closer to
0 or 1, requiring stronger excitatory or inhibitory signalling.
/journal/rsif
J.R.Soc.Interface

17:20200370
4. The identity thesis: discussion
4.1. From isomorphism to identity
One way of attempting to express the content of the identity
thesis is with the formula VFE =A, or in terms of dynamics,
DVFE ¼ DA, where A is the thermodynamic Helmholtz free
energy. However, the arguments given above license only a
mathematical interpretation of these equalities, not a logical
interpretation in terms of strict identity. Securing the identity
thesis proper requires more philosophical heavy machinery.

Smart’s argument for the identity thesis [14] was essen-
tially an appeal to Ockham’s razor: assuming we have
evidence for compelling correlations between mental states
and brain states, we should assume them to be identical bar-
ring specific reason not to do so. The bulk of Smart’s paper is
dedicated to convincing the reader that there are no such
defeating reasons.

This kind of argument can be made more rigorous by
appeal to David Lewis’s brand of functionalism in the philos-
ophy of mind [15]. Lewis begins by considering a hypothetical
collection of ‘platitudes’ or truisms about mental states such as
beliefs, desires, and sensations—generalizations about which
combinations of such states are likely to lead to which
others, which states are likely to follow upon certain sensory
stimuli and eventuate in certain kinds of behaviour, and so
on, as well as statements about which state types subsume
other types, such as ‘seeing red is an instance of perceiving’.
Taken together, these truisms plausibly capture the content
of the intuitive or ‘folk’ psychological theory that we bring
to bear when we explain and predict human behaviour in
terms of inner states in everyday contexts.

Beginning with the logical conjunction17 of the ‘plati-
tudes’, we may replace the mental-state terms by variables
x,y,z, etc. and prepend appropriate existential quantifiers,
obtaining a lengthy statement to the effect that a certain col-
lection of things, related to one another in the ways specified
by the platitudes, exists—technically, a formula in first-order
predicate logic (a Ramsey sentence) of the form (∃x)T(x).18

This sentence captures the relations among the inner states
described by the folk theory without explicitly referring to
them (see [15], p. 253).

Since commonsense psychology posits definite collections
of inner states (‘Smith’s beliefs’, i.e. ‘the beliefs of Smith’),
rather than simply stating that at least one such collection
of states exists, we can supplement the Ramsey sentence
above with a (Russellian) uniqueness condition, yielding a
modified Ramsey sentence declaring that the roles specified by
the predicate T are uniquely realized by the values of x:

ð9xÞð8yÞ½T(y) ; x ¼ y�:

Here, ‘≡’ denotes the material biconditional and ‘=’
denotes the identity relation.
This sentence implicitly defines the mental states in terms
of the causal roles they occupy with respect to one another
(and with respect to observable behaviour and stimuli).19 If
mature neuroscience discerns brain states that in fact
occupy these causal roles, Lewis argues, we have found the
mental states, since in order to be a mental state it is (by defi-
nition) sufficient for something to play the causal/functional
role described in the Ramsey sentence. The identity of psy-
chologically and neuroscientifically described states then
follows as a matter of logic.

We are now in almost precisely the position Lewis envi-
sioned, but in place of folk-psychological platitudes, we
have a sophisticated, quantitatively expressed cognitive
theory (i.e. the description of a system in terms of variational
Bayesian inference over a collection of hypotheses), in which
the equations governing hypothesis updates and the evol-
ution of their conditional probabilities specify the relevant
causal roles. This theory yields the left-hand side of the
equation DVFE ¼ DA. On the right-hand side, we appeal
not so much to neuroscience per se as to the underlying phy-
sics, which we can relate sensibly to brain states thanks to
theoretical advances in neural network modelling, the
theory of self-organization and control theory [44], and
non-equilibrium steady state physics [53].

The normative (Bayesian) as opposed to descriptive char-
acter of the cognitive theory does not signal as deep a
difference from Lewis’s original programme as it may
initially appear to—the relevant assumption is that systems
of the right sort will predictably exhibit internal processes iso-
morphic to (approximate) Bayesian computations, not that
they ought to do so.20 Nor is it suspicious that the cognitive
theory in question was originally derived in part via an
abstraction from neuroscience itself. Indeed, if the mind just
is the brain (and vice versa!), this convergence between cog-
nitive and physical descriptions, once both are maximally
informed, is precisely what one would expect.

In assuming that mental states are the internal states
responsible for causing action, and a fortiori that they are
internal states of organisms, we beg the question against a
radical mind–body dualism, according to which mental
states lack spatio-temporal locations. What is exciting about
an identity thesis in 2020, however, is not so much its opposi-
tion to Cartesian dualism (many these days are committed
functionalists or identity theorists in any case), but (i) the
fact that the connection between mind and body is drawn
at the level of physics, undercutting even neuroscience as a
reduction base, (ii) that the reasons for which, and the precise
way in which, the identity is realized can be discerned, at
least in broad strokes, on the basis of current science, and
(iii) that the theory is, accordingly, expressed in quantitative
terms.
4.2. Scope of the thesis
The free energy principle applies very broadly to any phys-
ical system that can be understood as possessing a Markov
blanket, including brains but also simple self-regulating
systems such as cells, larger systems such as animal popu-
lations and entire ecosystems, and presumably most
everything in between, including, perhaps, human social insti-
tutions [11,13]. Although the arguments above focused on the
case of the brain, they include in their scope any system in
which a generative model can be regarded as stochastically
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encoded in the dynamics of the internal elements. This seems
to imply something close to panpsychism21 if one takes the
sort of statistical inference in question to be sufficient for
mentality (see [54] for discussion).

Terms of art such as ‘Bayesian belief’ are sometimes used
to frame hypotheses in cognitive science without commit-
ment to such radical conclusions (cf. the subpersonal
representations [55], low-grade forms of intentionality [56]
and mere computational states of previous eras). One may
wish to restrict the extension of the term ‘mind’ to those sys-
tems that possess generative models of some specified degree
of complexity, capable of supporting certain special classes of
beliefs [13,18,19,30,57].22 It is not clear, however, that this
strategy provides more than verbal comfort: if the ‘Bayesian
beliefs’ encoded in the stochastic thermodynamics of the
human brain provide a compelling explanation of human
cognition and behaviour, they do so simply in virtue of
their status as subjective probability distributions over exter-
nal states, a status shared by the ‘beliefs’ of protozoa.
However this argument goes, mind–brain identity will fall
out as an entailment of the (potentially broader) VFE/A
identity thesis.

Deeper than the joint in nature between complex, human-
like agents and simpler ones, however, is that between
systems whose internal models are implemented transparently
by local interactions among their physical parts (where such
interactions have typically been sculpted by self-organization
in response to external pressures—see [59]), and those in
which this is not the case. Ensembles of neurons in biological
systems provide one example of the former sort of self-organ-
ization. Simulated neural networks may exhibit the requisite
computational dynamics, which can be expected to some
extent to be reflected in their thermodynamics (as exhibited
in the overheating of a laptop used to train a deep learning
model), but to the extent that software–hardware relations
in digital computers involve arbitrary conventions or ineffi-
cient use of the physical resources, there will be a mismatch
between physical and variational energetic descriptions that
voids application of the identity thesis.

As an example, compare the digital simulation of neural
networks to neuromorphic analogue computation.23 To con-
sider just one particularly salient difference, the (potential)
energy required to store the state (e.g. instantaneous firing
rate) of a single neuron or subpopulation, usually represented
numerically in a simulation as a real value greater than zero,
will in many digital representations be constant for all values,
within some allowable range determined in advance by
various modelling and implementation choices. Under the
stochastic encoding of probabilities discussed in §3, the
same amount of energy will thus be required to represent
any positive probability that figures in the variational free
energy. In real neuronal networks or physically analogous
computers, by contrast, the energy used so to encode a prob-
ability scales with the probability.24 The identity thesis may
then provide a criterion for distinguishing minds from rela-
tively crude simulations of them, ruling out many systems
whose mentality would offend intuition most, like current
software implementations of autoencoders, or corporations—
though not prokaryotes or galaxies.

An intimately related route to transparency appeals to the
scale-free nature of variational free energy dynamics. As
suggested in [11,12,13], the relations between global and
local free energy minimization in a supersystem can be
understood in terms of subsystems themselves undergoing
the same type of energy minimization/inference process at
their own scales, yielding hierarchies of embedded systems
all of which obey the FEP, and in which the dynamics of
superordinate systems constrain those of the subsystems
[13]25 (see [62] for an application to neuronal ensembles).
Since the thermodynamic potential energies of a complex
system and of its subsystems are constitutively related, the
identity thesis naturally yields such mutual constraints on
inferential dynamics across levels of organization.

5. Conclusion
In this paper, I’ve canvassed the prospects for the hypothesis
that brains and other living systems implement variational
inference as a necessary consequence of potential energy
minimization in the thermodynamic sense. A close parallel
from the history of science is the identification of inertial
and gravitational mass, whose establishment on empirical
grounds long antedated its theoretical explanation, thanks
to the a priori distinctness of the relevant concepts.26 In con-
trast to that case, I have given no axiomatic proof of the
equivalence of thermodynamic and informational free
energy, but have attempted rather to describe conditions
under which such an identification is plausible.

The more formal treatments in [9] and [18] demonstrate
an approximate identity or constraint between thermodyn-
amic potential energy and VFE near non-equilibrium steady
state. Friston et al. [19] defends a position similar to the
view sketched in this paper, but with differences of detail
and interpretation. Most significantly perhaps, the isomorph-
ism or identity advanced in the latter concerns the ‘intrinsic’
and ‘extrinsic’ information geometries of the internal states of
a system, which together specify how changes in internal
states over time map to changes in belief. The present
argument is meant to support a slightly less abstract iso-
morphism or identity, directly between variational and
thermodynamic free-energy descriptions. This argument is
consistent with the detailed treatment of the metabolic
efficiency of variational inference given in [45].

A key test for the identity thesis is whether a stochastic
code of the kind discussed in §3.1 turns out to be empirically
plausible. This constraint on a choice of encoding for statisti-
cal models demonstrates one respect in which the identity
thesis is theoretically useful: the conjunction of the latter
with the FEP is a falsifiable hypothesis, even if the FEP
itself is not [63]. Of course, the argument may run in the
other direction: strong empirical evidence for the right type
of encoding, together with a formulation of cognitive
dynamics in terms of variational Bayesian inference, supports
the case for ‘variational psychophysical identity’.
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Endnotes
1These twin developments are of course intimately related, as model-
ling in computational neuroscience has come increasingly to be
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informed by progress in those branches of machine learning that
themselves take ongoing inspiration from neuroscience (i.e. deep
learning/connectionism).
2The thesis presented in this paper was developed independently of
Friston et al.’s work in [19], though the two approaches are clearly
complementary.
3The Gestalt theorists argued for this isomorphism from the holistic
(‘molar’) nature of both perceptual experience and physical pro-
cesses, supposing the brain to behave more or less as a unified
electrostatic field in which modification of one part necessarily mod-
ifies all the others. Later in his career, Köhler shifted to a version of
the view rooted in synaptic potentials, which seems not to be falsified
by the experiments historically used to reject the isomorphism thesis
[23]. In any case, the present considerations amount to an alternative
argument for a similar conclusion to the Gestaltists’.
4Throughout, I have adopted the convention from connectionist mod-
elling of using ‘v’ for an observed or ‘visible’ variable, and ‘h’ for a
‘hidden’ or unobserved one.
5As noted in [24, p. 463], variational inference may be used to find
exact solutions. However, by restricting the form of Q (for example
to a factorial distribution), one gains tractability (and in the present
context, biological plausibility) at the expense of accuracy.
6One criterion for the goodness of a model is its simplicity, which can
be quantified in terms of its Shannon description length [1,4]. Cru-
cially, this is equal to the surprisal associated with the latent
variables of the model.
7The denominator

P
s0e�E(s0)=kBT is the partition function Z. The Helm-

holtz free energy is equal to −kBT log Z, which is minimized when the
partition function sums to 1. At this point, the probability of a given
state is just an exponential function of its (negative, scaled) energy.
8See for example Andrej Karpathy’s well known essay on recurrent
neural networks at http://karpathy.github.io/2015/05/21/rnn-
effectiveness/.
9In practice, of course, living systems will never be in perfectly steady
states, but rather recovering toward such states from a relative
‘excess’ or ‘deficiency’ of energy.
10Here the form of the distribution S is not important. In practice,
S(sleep) = S(wake) = 0.5.
11Of course, some of the internal energy will be lost as heat and
excluded from the Helmholtz free energy. The argument given here
assumes that this ‘bound’ portion of the energy is also the represen-
tationally ‘meaningless’ portion. For example, it ought to be the case
that less of the total energy input to a processing layer is squandered,
to the extent that units with stochastic sigmoid activation functions
are further from their saturation points.
12One problem lies in the ‘sleep’ phase updates, which in fact mini-
mize the K-L divergence between P and Q, rather than the
divergence between Q and P (not necessarily equal) that appears in
the free energy. Wake–sleep is fairly effective despite this and other
approximations, but approximate VFE minimization obviously will
not do for our purposes.
13E-M may be viewed as an alternative to full variational Bayes in
which a point estimate is computed for the parameter values.
14Action can modify the accuracy by selectively sampling states with
high likelihood under the generative model. Thus, not surprisingly,
the identity thesis proposed here extends implicitly to action as
well as perception and cognition. Thanks to Jakob Hohwy for draw-
ing my attention to this connection.
15For present purposes, the ‘active’ and ‘internal’ states in the sense
relevant to Markov blankets can be grouped together as ‘hidden’
states.
16Parr et al. [18] includes a precise analysis of the relationship
between heat and surprisal or self-information, which trades on the
fact that spontaneous processes that involve increases in entropy
are irreversible, and thus a system will not spontaneously follow
the reverse path in its phase space. ‘Roughly, the amount of heat dis-
sipated…along a given path is an expression of how surprising it
would be to observe a system following the same path backwards
relative to forwards’ (p. 9).
17What Lewis suggests is in fact not taking the conjunction of all folk-
psychological platitudes as our implicit definition but rather ‘the con-
junction of most disjunctions of most of them’, so that a few false
platitudes will not falsify the identity.
18Here, x is a vector of bound variables x1, x2, etc., and T is a predicate
expression semantically equivalent to the conjunction of the open
sentences corresponding to the individual platitudes.
19If the content of a representation (for instance, seeing red as
opposed to seeing in general) is determined by its functional role
(as argued in the context of generative models in [52]), then con-
tent-individuation of mental states is seen to be a fine-grained way
of functionally individuating states, and thus falls out of Lewis’s
approach to psychophysical identification as well.
20The rationality of Bayesian inference does of course furnish part of
the argument as to why we should expect adaptively successful sys-
tems to exhibit this internal structure, but is no part of the
structure itself.
21In the sense that psychological properties would be universal or
very widespread, in contrast to a contemporary usage of this term
to refer specifically to a thesis about consciousness.
22See [58] for a more deflationary take on minds.
23Many thanks to Thomas Parr for suggesting this example.
24Of course, under minimal assumptions, any physical system
including a digital computer has a Markov blanket, and thus an
associated ‘extrinsic’ description in terms of variational inference
[9,19]. The relevant point is that this interpretation of the physical
system (the hardware) need not match the cognitive description con-
ventionally associated with the software level (i.e. the simulated
network).
25This perspective recalls the ‘homuncular functionalism’ defended in
philosophy by William Lycan [60], as well as Leibniz’s remark that
‘the organic body of each living being is a kind of divine machine
or natural automaton, which infinitely surpasses all artificial auto-
mata. For a machine made by the skill of man is not a machine in
each of its parts’ ([61], §64).
26Thanks very much to Maxwell Ramstead for suggesting this
comparison.
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