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New Logic and the Seeds of Analytic Philosophy
Boole, Frege

KEVIN C. KLEMENT

Introduction

Simplistic accounts of its history sometimes portray logic as having stagnated in the
West completely from its origins in the works of Aristotle all the way until the nine-
teenth century. This is of course nonsense. The Stoics and Megarians added proposi-
tional logic. Medievals brought greater unity and systematicity to Aristotle’s system
and improved our understanding of its underpinnings (see e.g., Henry 1972), and im-
portant writings on logic were composed by thinkers from Leibniz to Clarke to Arnauld
and Nicole. However, it cannot be denied that an unprecedented sea change occurred
in the nineteenth century, one that has completely transformed our understanding of
logic and themethods used in studying it. This revolution can be seen as proceeding in
two main stages. The first dates to the mid-nineteenth century and is owed most sig-
nally to theworkofGeorgeBoole (1815–1864). The seconddates to the latenineteenth
century and the works of Gottlob Frege (1848–1925). Both were mathematicians pri-
marily, and their work made it possible to bring mathematical and formal approaches
to logical research, paving theway for the significantmeta-logical results of the twenti-
eth century. Boolean algebra, the heart of Boole’s contributions to logic, has also come
to represent a cornerstone of modern computing. Frege had broad philosophical in-
terests, and his writings on the nature of logical form, meaning and truth remain the
subject of intense theoretical discussion, especially in the analytic tradition. Frege’s
works, and the powerful new logical calculi developed at the end of the nineteenth cen-
tury, influenced many of its most seminal figures, such as Bertrand Russell, Ludwig
Wittgenstein and Rudolf Carnap. Indeed, Frege is sometimes heralded as the “father”
of analytic philosophy, although he himself would not live to become aware of any such
movement.
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Boole’s Contributions to Logic

George Boole was a native of Lincolnshire, England, although he spent the later part
of his life as a mathematics professor at Queen’s University in Cork, Ireland. Although
now best remembered as a logician, he published more in other areas of mathemat-
ics, especially on differential equations, analysis, and probability theory. These writ-
ings were highly regarded at the time, and his books A Treatise on Differential Equa-
tions (1859) and A Treatise on the Calculus of Finite Differences (1860) were widely used
as textbooks. He wrote only three works on logic. The Mathematical Analysis of Logic
was published in 1847, followed a year later by the shorter article, “The Calculus of
Logic” (1848). The latter reached a larger audience, although the former was more
sophisticated andmore detailed. His techniques were refined and published in his best-
remembered work, An Investigation of the Laws of Thought, in 1854. He corresponded
with a number of highly respected mathematicians, and his friendship with Augustus
De Morgan (1806–1871) is likely what sparked his interest in logic.

At the core of Boole’s contributions to logic is the suggestion to treat it using al-
gebraic means. He used variables such as x, y, z for what he at first called “election
operators” (understood as operations that gathered thingsmatching some feature into
a class), and later simply for the classes themselves. Concatenation—usually used to
represent multiplication in algebra—was used for “logical multiplication”, or to form
what is in common (now called “intersection”) between two classes, xy. The sign “+”
was similarly used for the sum (or “union”) of two classes, or “logical addition”, x+ y.
The numeral “1” was employed to represent “the Universe”, the class of everything,
and “0” to mean “Nothing” or the null class. With these suggestions, we can interpret
such equations as the following:

x+ y = 1 (1)

xy = 0 (2)

Here, (1) asserts that when x and y are put together, they make everything, so that ev-
erything must be in either x or y. Similarly, (2) asserts that the common area between
x and y is empty, or that x and y are disjoint. The complement of a class x was repre-
sented as its “difference” from 1, i.e., 1− x. Boole stressed the similarities between the
laws of this algebra and regular arithmetical principles, such as the commutativity of
addition and multiplication, distributivity, and so on:

x+ y = y+ x (3)

xy = yx (4)

x(y+ z) = xy+ xz (5)

(1 − x) + x = 1 (6)
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Interpreted logically, (5), for example, asserts that what is in common between class x
and everything in either y or z is the class of things either in the commonality between
x and y or the commonality between x and z. Boole, however, also made note of dif-
ferences. In this system, the the commonality of a class and itself, xx or x2, is identical
with the class, so that unlike regular algebra we have:

x2 = x (7)

Among Boole’s goals was to show that all the rules of Aristotelain syllogistic logic
could be reduced to algebraic rules. This of course required capturing the four cate-
gories of judgment from the traditional square of opposition. Universal judgments can
be captured very naturally:

A : All X are Y : xy = x or x(1 − y) = 0
E : No X are Y : xy = 0 or x(1 − y) = x

To capture particular judgments, Boole introduced a special elective operator v, which
selected an arbitrarily chosen non-empty class. He then had:

I : Some X are Y : xy = v or xv = yv
O : Some X are not Y : x(1 − y) = v or xv = (1 − y)v

Then, by introducing algebraic rules for reduction and the elimination ofmiddle terms,
he showed how the system captured the syllogisms valid in Aristotelian logic. He saw
it as superior as it allowed for equations with more than two terms, and bypassed the
usual focus on “moods” and “figures”, which often required overly rigid principles for
ordering premises.

Boole also explained that the system was not only suitable for capturing categori-
cal logic, the logic of “primary propositions”, but also, through a suitable reinterpreta-
tion, it could capture the logic of “secondary propositions”, or what we would now call
“propositional logic”. Class terms could be interpreted as representing those circum-
stances (in his earlier work), or those times (in his later work) in which a given judg-
ment is true. One could then understand 1 as the class of all times or circumstances, 0
as the null class again, so that these values could go proxy for truth and falsity, respec-
tively. On this reinterpretation, logical multiplication comes to mean conjunction, and
logical addition comes tomean disjunction, and (1−x) can do for the negation of x. By
and large the same rules carry over. In that case, (3) above asserts the commutativity
of disjunction, or that X or Y is true if and only if Y or X is, and (6) the law of excluded
middle, or that either not-X or X is true.

The Influence and Continuation of Boole’s Work

Boole’smathematical approach andmethodology for studying logic dominated the dis-
cipline in the second half of the twentieth century. Many of themost important writers
on logic can be seen as elaborating upon and refining Boole’s work, including Jevons
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(e.g., 1864), MacColl (e.g., 1880), Venn (1881), Schröder (1905), Peirce (e.g., 1885)
and Whitehead (1898). Jevons in particular was responsible for doing away with cer-
tain idiosyncracies in Boole’s writings and bringing things in to line with what today
we consider standard “Boolean algebra”. For example, Boole considered a term of the
form “x + y” as “uninterpretable” if the classes x and y overlapped, which, in the sec-
ondary interpretation, alsomeant that he bypassed the decision between inclusive and
exclusive disjunction, as “x + y” would also be considered uninterpretable when both
are true. Jevons read “+” instead as the modern union operation, or as inclusive dis-
junction in the secondary interpretation, and adopted the law that x+ x = x. Boole’s
curious use of the sign “v” was rendered unnecessary by representing particular state-
ments instead as inequalities:

I : Some X are Y : xy ̸= 0
O : Some X are not Y : x(1 − y) ̸= 0

They similarly did away with the assumption that variables x, y, etc., must represent
non-empty classes, thereby replacing the traditional squareof oppositionwith themod-
ern square instead. They also clarified the notion of “logical division” (inverse of multi-
plication), which Boole employed without adequately explaining. With these changes
made, the result is more or less the form of Boolean algebra usually recognized and
employed today, which was finally axiomatized in the early twentieth century (Hunt-
ington 1904). (However, something closer to Boole’s original approachwas eventually
brought up to contemporary standards of rigor in Hailperin 1976.)

Working within the same tradition, Schröder, De Morgan and Peirce all made at-
tempts to incorporate something like a logic of relationswithin the Boolean framework,
and by means of the notions of bounded (logical) addition and multiplication, Peirce
(1885) created something very similar to modern quantification theory, only slightly
after Frege’s independent advance. The logical notationofGiuseppePeano (e.g., 1894),
although it used different symbols, self-consciously emulated Boole’s “dual interpreta-
tion” model, and many of his symbols are still used today in symbolic logic, primarily
because of Peano’s influence on Russell and Whitehead’s Principia Mathematica.

Boole’s influence has also been great outside the purely academic study of logic.
The simplicity of the Boolean understanding of logical operations inspired the creation
of mechanical devices capable of performing logical calculations. Jevons himself con-
structed such a machine in 1869 (see Jevons 1870), and interest in electrical imple-
mentations of the same idea soon grew. Although these were not successfully built
until well into the twentieth century, such “logic circuits” are now a key concept in
electrical engineering and an essential component of computers and similar devices.
The theoretical understanding of such circuits has been important in the development
of twentieth century information theory (see, e.g., Shannon 1948). In typed program-
ming languages, variables representing truth or falsity are standardly said to be of the
“Boolean” data type.
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Frege’s Career

Gottlob Frege was born in Wismar, Germany and spent most of his academic career
teaching mathematics at the University of Jena. While a student at the University of
Göttingen, Frege also took classes in philosophy, especially from the Neo-Kantian phi-
losopher Hermann Lotze. The influence of Neo-Kantian philosophy can be seen in
his anti-psychologism, his apriorism, his esteem for Leibniz, and his general distrust
of philosophical naturalisms. He finished his doctoral dissertation in 1873 on planar
geometry, under the guidance of Ernst Schering.

Although theKantian influences onFrege’s philosophyareunmistakeable, his prin-
cipal lifelong intellectual project was to establish the un-Kantian thesis that the prin-
ciples of arithmetic can be understood as analytically true. In particular, he held that
they could be derived from a purely logical foundation, a position now known as logi-
cism in the philosophy of mathematics. His first major work,Begriffsschrift (1879), laid
out the core of his logical system. In thatwork, he also showedhow the notion of follow-
ing in a series could be analyzed purely logically, providing a logical basis for the princi-
ple of mathematical induction, which Kantians had long assumed required synthetic
intuition to justify. His next major work was 1884’s Die Grundlagen der Arithmetik.
Prompted by the advice of his colleagues, therein Frege argued informally for his logi-
cal conception of numbers, and criticized rival views in the philosophy ofmathematics.
In the early 1890s, he published important articles outlining new developments in his
views onmeaning and philosophical logic, including his best known paper, “Über Sinn
und Bedeutung” (“On Sense and Reference”), from 1892. These are perhaps best un-
derstood as prepatory studies for his magnum opus, Grundgesetze der Arithmetik, the
first volume of which appeared in 1893. It was in this work Frege sought to provide
complete demonstrations of themost important principles of arithmetic beginning only
with logical axioms and inference rules. The first volume contained a part devoted to
Frege’s logical system, to which he now added a theory of extensions of concepts, or
more broadly, value-ranges of functions. It also contained the beginning of his treat-
ment of cardinal numbers, both finite and infinite. This treatmentwas completed in the
second volume, published in 1902. The second volume also contained an unfinished
treatment of the arithmetic of real numbers, built around the notion of magnitude, as
well as polemical replies to alternative accounts, especially from the formalist school.
Frege had planned to publish a third volume of Grundgesetze, which was to complete
this treatment, and go on to more advanced arithmetic as well.

Unfortunately, while volume II was in the process of being printed in mid-1902,
Fregewas informed by Bertrand Russell that the theory of extensions added to the logic
of volume I was inconsistent, leading to the antinomy now known as “Russell’s para-
dox”. Frege hastily prepared an appendix to the second volume discussing the problem
and offering a tentative solution. Frege was in his own words, “thunderstruck” (Frege
1980, p. 132). He continued to do important work for a few more years, including
his debate with David Hilbert (e.g., 1899) and followers over the proper philosophi-
cal understanding of axiomatic systems in mathematics, published between 1903 and
1906 as “Über die Grundlagen der Geometrie”. However, he produced very little new
work between 1906 and his retirement. After retiring, he published a series of impor-
tant papers, including the influential paper on truth, “Der Gedanke” (“Thoughts”), in
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1918. These were likely new drafts of material dating back to the late 1890s which he
had once considered including in a planned textbook on logic (cf. Frege 1979, pp. 126–
51). In the final year of his life, he seems to have come to the conclusion that the logicist
thesis that arithmetic reduced to logic was untenable, and began to reconsider a more
Kantian foundation for arithmetic. However, only a few scantwritings from this period
exist, and none were published during his lifetime.

It appears that Frege was a shy and reservedman by nature. Hewas right-wing po-
litically, and diaries and correspondence found since his death reveal that hewas rather
anti-semitic and even expressed admiration for the young Adolf Hitler. These revela-
tions have disappointed many of us among his philosophical progeny. Despite his shy
personality, Frege was a harsh polemicist. He acknowledged his debts to past philo-
sophical thinkers only rarely, and evenmore seldomly to other mathematicians. These
factors are likely among the reasons Frege’s works were underappreciated during his
lifetime. His technical logical writings receivedmostly negative reviews, and hisGrund-
lagenwas largely ignored by German academics. Frege himself bemoaned the poor re-
ception of hiswork in a number of places, including the foreword toGrundgesetze (p. xi).
After Russell dedicated an appendix to Frege’s work in his 1903 The Principles ofMathe-
matics, Frege began to receive significant attention within the English-speaking world.
This tendency grew after Frege’s death, especially once his most important writings
were translated into English in the mid-twentieth century. Frege now is almost univer-
sally heralded as a significant philosopher and groundbreaking logician. He seems to
have had some foreknowledge of his eventual success. When bequeathing his Nachlaß
to his son, Alfred, Frege wrote, “I believe there are things here which will one day be
prized much more highly than they are now. Take care that nothing gets lost.” Alfred
gave the papers to Heinrich Scholz of the University of Münster for safe-keeping, where
unfortunately most were destroyed in a World War II bombing raid.

Frege’s Logical Symbolism and His Criticisms of Boole’s

Although it is difficult to imagine Frege’s own work having been possible without the
immensenew interest in symbolic andmathematical approaches to logic spurred largely
by Boole’s efforts a quarter century earlier, Frege himself offered nothing but criticisms
of the Boolean approach. While Frege did not single out Boole himself for attack on this
score, Frege would no doubt have objected to Boole’s characterization of logic as study-
ing “the laws of thought”, at least if this is interpreted to mean the laws of the ways in
which people in fact infer or reason. Frege insisted that the laws of logic would remain
the same even if in fact no one’s reasoning ever accorded with them. Frege would al-
low that they are laws of thinking only in a normative or prescriptive sense. They tell
us which chains of reasoning are truth-preserving, and hence which inferences can be
justified, not which inferences are in fact routinely made.

In a pair of essays published only posthumously (Frege 1979, pp. 7–52), Frege com-
paredhis own logical language toBoole’s logical calculuswith an eye towards assessing
which fared better in realizing Leibniz’s vision of a “logically ideal language”. His eval-
uation was that Boole’s system failed in realizing the goals of a “lingua characterica”—
a logically perspicuous language in which the meaning of each symbol is made fully
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precise—and only succeeded, and there imperfectly, in realizing a “calculus raticiona-
tor”, or a calculus in which precise rules can be set forth to determine what does, and
what does not, count as a legitimate inference. Frege found Boole’s approach wanting
for a variety of reasons. Firstly, it reused mathematical notation inconsistently with
its standard usage, which would greatly hinder its ability to represent the logic behind
proofs in mathematics fully and without ambiguity. Secondly, despite Boole’s interest
in this problem, it cannot easily capture statements of multiple generality, such as “ev-
ery person loves some city”, nor disambiguate between different possible readings of
such sentences. Thirdly, like all earlier approaches to logic, Boole’s work bifurcated the
logic of “primary propositions” (categorical logic) and the logic of “secondary propo-
sitions” (propositional logic) into distinct interpretations of the algebra, and thus was
incapable of representing complex inferences involving steps of both kinds together at
once. Frege claimed that his own logical language, which he called “concept-script”
(Begriffsschrift), did better on all these counts. He also suggested that his language re-
lied on fewer primitive symbols, and fewer basic inference rules.

The logical systemFregedeveloped is inmanyways similar to contemporary second-
order predicate logic, so much so that he is often credited as having invented predicate
logic. Strictly speaking, however, the language Frege developed is a “function calcu-
lus”. He claimed the function/argument analysis of mathematical terms was richer
andmore exact than the subject/predicate analysis found in traditional logic. Consider
the mathematical expression “5+ 7”. This expression stands for the value of the addi-
tion function for the arguments five and seven. Frege thought of a function expression
as being in a certain sense “incomplete” or “gappy” in that it affords a place or places
for its arguments to be written. Hence we can think of the sign for addition not merely
as “+” but as “( ) + [ ]” or “ξ + ζ”, with the ξ and ζ here marking empty spots to be
filled with arguments. In order to apply this kind of analysis to complex expressions
more generally, Frege expanded the kinds of functional expressions he countenanced
in his language to include those representing functions with arguments and values
other than numbers. He understood concepts as a special kind of function. If the func-
tor “H(ξ)” stands for the concept being human, and “s” stands for Socrates, then when
the latter fills the argument spot of the former, we get the truth, “H(s)”. Relations were
understood as similar sorts of functions, only with multiple arguments; e.g., “ξ ≤ ζ”
represents the relation of being less-than-or-equal-to.

In his early work (e.g., Frege 1879, §2), Frege leaves it a bit unclear what sorts of
objects he takes the values of concepts and relations to be, speaking only of such things
as “the circumstance that A” (e.g., the circumstance that Socrates is human). By the
1890s, however, once he had adopted the sense/reference distinction, he took their
values to beoneof the two special objects, theTrue, and theFalse, called “truth-values”.
Hence, we might have:

H(x) =

{
the True, if x is human,

the False, otherwise.

Just as “5 + 7” by itself is just a complex name of a number, “H(s)” by itself is simply
a name of one of the truth-values, the True or the False. To transform a name of a
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truth-value into something that represents an actual judgment, or to actually make a
genuine assertion, Frege begins the expression with the sign “ ”. Thus:

H(s)

actually asserts that the concept H(ξ) maps s to the True, or that Socrates is human.
Frege calls the vertical line at the far left the “judgment stroke”. If this is removed, leav-
ing only the horizontal part, what remains, “ H(s)”, is still only the name of a cir-
cumstance (earlier) or truth-value (later). This horizontal line was called the “content
stroke”, since it prefigures and is used to name the content which, once the judgment
stroke is added, is asserted as true.

Frege’s notation also made use of a “negation stroke” (somewhat analogous to the
contemporary “¬” or “∼”) and a “conditional stroke” (somewhat analogous to “→” or
“⊃”). These were used in the language by marking or branching the horizontal line
to which they were always attached. The two-dimensional nature of the conditional
stroke,with the antecedent termwritten below the consequent,makes Frege’s notation
somewhat unique, but he himself suggested that using all the dimensions available on
a page was an advantage of his style. We might put their semantics in Frege’s mature
work as follows:

x =

{
the True, if x is the True,

the False, otherwise.
(horizontal/content stroke)

x =

{
the False, if x is the True,

the True, otherwise.
(negation stroke)

y

x
=


the False, if x is the True and

y is other than the True,

the True, otherwise.

(conditional stroke)

By combining these symbols, more complex propositional forms, including disjunc-
tions, conjunctions and the like, could be represented:

r

q

p

(analogue of p → ¬(q → ¬r) or p → (q ∧ r))

p

q

q

p

(analogue of ¬((p → q) → (q → p)) or (p → q) ∨ (q → p))

Frege understood variables (or as he called them, “Roman letters”) as expressing
generalities. Just as the mathematical formula

f(x) = x2 + 1
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can be taken to assert that function f(ξ)’s value is one more than the square of its ar-
gument for every possible argument, Frege would understand

M(x)
H(x)

as asserting that it is true for every value of x that if it is human, then it is mortal (or
that all humans aremortal). However, if the scope of the generality needed to be smaller
than the entire proposition, Frege made use of Gothic (Fraktur) variables instead (al-
ways vowels), and marked the beginning of their scope with a concavity. This allowed
him to distinguish between a H(a) (“not everything is human”or “¬∀xHx”) and

a H(a) (“everything is not human” or “∀x¬Hx”). Fregewas thereby the first to un-
derstandquantifiers as scoped variable-bindingoperators, and the instigator ofmodern
quantification theory. This represents perhaps the most important advance in his log-
ical work. Existential quantification could be captured using universal quantification
and negation. Among other things, by using different variables with different possible
scopes, he was able to capture statements of multiple generality and correctly disam-
biguate their different readings, e.g.:

a e L(a, e)

C(e)

P(a)

(every person loves some city or other)

e a L(a, e)

P(a)

C(e)

(every person loves some one city)

Frege understood quantifiers as second-order or second-level concepts. A first-order con-
cept, such asH(ξ) is understood as taking an object as argument and yielding a truth-
value as value. A second-level concept takes a first-level concept (or other function) as
argument instead, and also yields a truth-value as value. We have:

a ϕ(a) =

{
the True, if function ϕ(ξ) yields the True as value for all arguments,

the False, otherwise.

Frege’s logicwas second-order, and so he also employed variables f, F, g,G, etc., for first-
level functions (including concepts), aswell as quantifiers,written, e.g., “ f . . . f . . .”.
Both early and late, Frege’s logical language also contained a sign for identity, at first
written “ξ ≡ ζ” and later changed to the usual mathematical equality sign “ξ = ζ”.
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Frege’s Logical Systems

While rival axiomatic systems for geometry (Euclidian, and non-Euclidian) were a sub-
ject of great intellectual curiosity in the nineteenth century, the logical basis of the
demonstrations in them were typically taken for granted. They did not make what log-
ical transformations they considered justified fully explicit. Frege hoped to remedy this
in his logical language, and insist that proofs in it be “gapless”, with every step made
exact and precise so that no unnoticed assumption could sneak in. The result was the
first rigorously axiomatized system of logic, where not only logical axioms were iden-
tified, but even the transformation and inference rules formulated exactly. The system
of his 1879 Begriffsschrift contained nine axioms. Here I present each along with a
contemporary near-equivalent and English gloss:

a

b

a

p → (q → p)

If A then B (materially) implies A.

(A1)

c

a

b

a

c

b

a

[p → (q → r)] → [(p → q) → (p → r)]

If A implies that B implies C, then if A implies B, then
A implies C.

(A2)

c

a

b

c

b

a

[p → (q → r)] → [q → (p → r)]

If A implies that B implies C, then B implies that A
implies C.

(A3)

a

b

b

a

(p → q) → (¬q → ¬p)

If A implies B, then not-B implies not-A.

(A4)
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a

a

¬¬p → p

If not-not-A then A.

(A5)

a

a

p → ¬¬p

If A then not-not-A.

(A6)

F(b)

F(a)

a ≡ b

x = y → (Fx → Fy)

If a is b then any concept holding of a also holds of b.

(A7)

a ≡ a x = x / a is a. (A8)

F(c)

a F(a)

(∀xFx) → Fy

A concept holding of all objects holds of any particu-
lar object.

(A9)

Frege also included versions of (A9) for higher-order quantifiers. The inference rules of
the systemweremodus ponens or detachment, universal generalization, and an implicit
rule of substitution or replacement for free variables (which became explicit inGrundge-
setze). Together (A1)–(A6) provide a complete axiomatization of propositional logic, in
the sense that every truth-functionally tautologous form can be derived from them,
although (A3) was later shown to be redundant. With the other axioms, this system
is a consistent and Henkin-complete axiomatization of second-order logic with iden-
tity. Henkin-completeness is weaker than standard completeness. It is now known as
a corollary of Gödel’s incompleteness results that no finite or recursive axiomatization
of second-order logic with standard semantics can be complete in the sense of captur-
ing all logical truths, where these are understood as statements true in all models in
which the range of the second-order quantifiers includes concepts for all subsets of the
domain of the first-order quantifiers. (The notion of a finite or recursive axiom system
is explained more below.) Henkin completeness requires only capturing those logical
truths that are true in all domains where there are enough concepts to satisfy the com-
prehension principle (discussed below; see Henkin 1955). This is as complete as any
second-order logic can be expected to be. That Frege managed to devise one without
any knowledge of later logicalmeta-theory is a remarkable accomplishment, especially
given that this is the first work even to employ quantifiers in the modern sense. The
publication of Begriffsschrift alone makes 1879 one of the most significant years in the
history of logic.

Frege believed that the axioms of logic were analytic, and that hence, so too were
the theorems, including the basic principles of mathematics derivable from them.
Nonetheless, unlike Kant and his followers, he denied that this meant that logic was
purely formal and incapable of extending our knowledge in any substantive way.
Frege understood the constants of his logical language as standing for functions,
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including concepts and relations, no less real than themeaning of “… is human”. Logic
has as its subject matter those functions and relations which bear a special relation to
truth, which Frege thought was the guiding concept for logic, just as goodness was the
guiding concept for ethics, or beauty the guiding concept for aesthetics (Frege 1984,
p. 325). What’s more is that Frege believed that we could recognize the existence of
new concepts, relations and logical functions by taking a complex expression and re-
moving one ormore names from it. Frege’s replacement rule for free function variables
allows the substitution of any open expression, which makes it equivalent to the mod-
ern (impredicative) comprehension principle. In contemporary notation, this reads as
follows, where “… x…” is any open sentence containing “x” but not “F” free:

∃F∀x(Fx ↔ . . . x . . . )

Frege regarded this recognition of new concepts as the secret to the potential informa-
tivity of logic. Even when the axioms of logic are self-evident, and the inference rules
obviously truth-preserving, the ability to recognize new concepts allows ampliative in-
ference. As he put it, the true conclusions thereby reached are in one sense “contained
within” the axioms, but only “as plants are contained in their seeds, not as beams are
contained in a house” (Frege 1884, §88).

By the time of 1893’sGrundgesetze, Frege had become convinced that logic provides
uswithknowledgenot just of logical functions, concepts and relations, but through this
means, also knowledge of certain logical objects with a special relationship to them.
Mathematicians commonly speak of the “graph” of a function: for the sine function,
it is a wave, for x2 + 2x + 1, it is a parabola, etc. One of the words used by German
mathematicians for a graph, “Werthverlauf” (translated as “value-range” or “course-
of-values”), was adapted by Frege to speak of abstract objects which functions have in
common when they have the same value for every argument, the same “graph”, as
it were, considered as an abstract object. In the case of concepts, i.e., functions from
objects to truth-values, Frege identified their value-ranges with their extensions, as co-
extensive concepts yield the same truth-values for the same arguments in every case.

The logical system of his Grundgesetze differed from that of Begriffsschrift by using
fewer axioms but more inference rules. The logical cores of the systems were very sim-
ilar. However, Frege added two new primitives. The first was a notation consisting of
a Greek vowel written with a smooth-breathing accent followed by a function expres-
sion into the argument places of which the vowel was inserted. Frege understood this
as a second-level function mapping a first-level function to its value-range. Another
functor was introduced to be used along with it:

–αϕ(α) = the value-range of function ϕ(ξ).

Kx =


the sole object falling under the
concept,

if x is the value range of a concept
under which only one object falls,

x itself, otherwise.
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Frege dubbed the second functor as “the substitute for the definite article”, as under the
appropriate circumstances, “K–αF(α)”might be read “theF”. Frege added the following
axioms:

(–ϵf(ϵ) = –αg(α)) = ( a f(a) = g(a)) (Basic Law V)

a = K–ϵ(a = ϵ) (Basic Law VI)

The second, harmless, principle here asserts that a is the thing identical with a. Basic
Law V, however, is not so innocuous, and has come to be a focal point in discussions
of Frege’s logic. It asserts that the truth-value of f and g having the same value-range
is the same as the truth-value of f and g having the same value for every argument.
Given what Frege understands value-ranges to be, this seems straightforward. In con-
temporary discussions, where the usual term/formula distinction is observed, using
the set-theoretic notation {x|Fx} for the extension of F, something similar to Frege’s
law might be put:

∀F∀G
[
{x|Fx} = {x|Gx} ↔ ∀x(Fx ↔ Gx)

]
(BLV-modern)

This asserts that F and G have the same extension just in case they are coextensive,
which too seems self-evident.

Despite this, however, the presence of Basic LawV in a system inwhich the impred-
icative comprehension principle holds leads to inconsistency due to the contradiction
fromRussell’s paradox. Extensions (and value-ranges generally) are objects, so some of
them fall under the concepts ofwhich they are the extensions, and somedonot. The ex-
tension of the concept extension falls under its defining concept, whereas the extension
of the concept cat is not a cat, and hence does not. Consider then the concept extension
that does not fall under its defining concept. This concept has an extension, but does it fall
under that very concept? It does just in case it does not. Let us useW(ξ) to abbreviate:

f f(ξ)
ξ = –ϵf(ϵ)

(in contemporary notation ∃F(ξ = {x|Fx} ∧ ¬F(ξ)))

An object falls underW(ξ) just in case it does not fall under every concept of which it
is the extension, or equivalently, just in case there is some concept of which it is the ex-
tension it does not fall under. This concept has an extension –αW(α). Does it fall under
W? Suppose it does. Then there is a concept F of which it is the extension such that it
is not true that it falls under F. Since –ϵF(ϵ) = –αW(α), by Basic Law V, F and W are
coextensive, and so –αW(α) does not fall underW. Since assuming it does leads to the
conclusion that it does not, –αW(α)must not fall underW. But then it must in fact fall
under every concept of which it is the extension, includingW itself, and sowe again ar-
rive at the opposite result. Contradiction. In classical logic, everything can be proven
from a contradiction, and so while it is possible to derive the basic principles of mathe-
matics within Frege’s Grundgesetze system, it is also possible to derive the negations of
those very results: clearly a disaster.
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After learning of the contradiction fromRussell, Frege’s own diagnosiswas that Ba-
sic Law V was faulty. While many agree, it is also possible to blame the contradiction
on impredicative comprehension. Notice that W(ξ) above is defined using a second-
order quantifier. If such quantifiers are not allowed within substituends for the f and g
variables in Basic Law V, no contradiction results. Consistent fragments of Frege’s sys-
tem relying onweaker comprehension principles have been studied (Wehmeier 2004).
Nonetheless, if Basic Law V is removed, and impredicative comprehension remains,
one is again leftwith a consistent andHenkin-complete axiomatization of second-order
logic. However, as such, the resulting system is tooweak to derive the basic principles of
arithmetic as Frege conceived them. Therefore, in the appendix dedicated to the prob-
lem in the1902 second volumeofGrundgesetze, Frege suggestedusing aweaker version
of Basic Law V instead. The weaker version was later also shown to be flawed (Quine
1955; Landini 2006). It is not knownwhether or not Frege himself ever discovered the
flaw in the revision, but in any case, the proposed third volume of Grundgesetze never
appeared.

Frege’s Philosophy of Mathematics

Although he is rightly best remembered for his positive arguments in favor of logi-
cism, Frege also presented powerful and influential arguments against rival views. He
soundly rejected psychologistic positions in both logic and mathematics. Numbers
cannot be equated with mental images. Logical and mathematical truths are objec-
tive, and hence not dependent on the subjective states of any mind (Frege 1884, §26,
Frege 1902, xviii–xxv). Both Mill’s view that arithmetic consists of empirical truths
based on observation as well as the Kantian view that arithmetic is grounded in the
forms of experience (pure intuitions of space or time)were also dismissed as inadequate.
Such positions cannot make sense, for example, of our knowledge of zero, as we have
never had an experience of zero things, nor is there even the form of such an experi-
ence. These positions also fare poorly for large numbers, which are not sharply distin-
guished from small numbers, nor uniquely encountered in actual experience. He re-
served his harshest criticisms for the formalist view that arithmetic can be understood
as the study of uninterpreted formal systems, as advanced by figures such as Heine
(1872), Frege’s Jena colleague Thomae (1880), and, later, David Hilbert (1899). At its
worst, he thought formalismwas guilty of conflating symbols withwhat theymean, so
that, for example, “5 + 7 = 12” in Arabic numerals would be considered a different
truth from “V+VII = XII” in Roman numerals (Frege 1902, §100). At best, formalism
involved a confusion of concepts and objects. By laying out a mathematical theory as
a formal system, and suggesting that its subject matter is implicitly defined by the ax-
ioms of the system, one is merely defining a concept (“object satisfying the axioms” or
similar). One, many, or even no, conglomerations of objectsmight fall under these con-
cepts (Frege 1884, §97, Frege 1984, pp. 120–21). If the system of axioms is not given
a specific interpretation, it has no specific content, and expresses no actual thoughts,
true or false.

Frege put special emphasis on certain precepts as important when considering the
nature of abstract objects such as numbers. One is his famous “context principle”:
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“never … ask for the meaning of a word in isolation, but only in the context of a propo-
sition” (Frege 1884, p. x). Frege thought the best way to understand what number
words mean, i.e., what numbers are, is to think about the truth-conditions of complete
statements in which these words appear. He made special note that ascriptions of (car-
dinal) numbers in everyday use require the mentioning of a concept, or type of thing,
being counted. Numbers cannot be ascribed to physical complexes outright: the same
physical aggregate could be described either as one deck of playing cards, fifty two cards,
four bridge hands, or as goodness-knows-how-many atoms. He accuses rival views about
the nature of number as ignoring this fact. A sentence such as “Jupiter has 67 moons”
seems to say how many times the conceptmoon of Jupiter is instantiated. In his Grund-
lagen he reaches the conclusion that an ascription of number contains a assertion about a
concept, and insists strenuously that any adequate account of numbers must do justice
to this.

Frege considered the view that numbers simply are second-order concepts, or con-
cepts applicable to concepts. On this approach, zero would simply be the quantifier
nothing is…, and onewould be the concept applicable to concepts instantiateduniquely,
and so on. Frege rejected this view on the grounds that it provides no interpretation of
a numeral such as “3” by itself, but only of such phrases as “there are three ϕs”. We
would not be able to speak of numbers on their own, ormake sense of such questions as
to whether or not two numbers are the same, or whether or not the number 3 is iden-
tical with Julius Caesar. According to Frege’s division of functions and objects, numer-
als as used in arithmetic have the syntax appropriate to name objects. Frege concludes
that numbers must be objects. Nonetheless, we must consider the meaningfulness of
number words in the context of propositions, which leads Frege to consider the truth-
conditions of identity statements between numbers. Bearing in mind the connection
between number ascriptions and concepts, and taking a cue from a passage in Hume,
Fregemakes note of the following principle—now commonly calledHume’s Principle—
governing numerical identity:

The number of Fs = The number of Gs if and only if the Fs and the Gs
can be put in 1–1 correspondence with each other.

(HP)

The notion of 1–1 correspondence can be defined purely logically in second-order logic.
It means that there is a relation that pairs up each Fwith exactly one G, and each G is
paired up with exactly one F. In contemporary notation this can be put thus:

F(x) ∼=x G(x) =df ∃R
(
∀x

(
Fx → ∃y(Gy ∧ Rxy)

)
∧ ∀y

(
Gy → ∃x(Fx ∧ Rxy)

)
∧

∀x∀y∀z∀w
(
Fxy ∧ Fzw → (x = z ↔ y = w)

))
Using “#x : Fx” for “the number of x such that Fx”, wemight restate Hume’s Principle
as follows:

#x : Fx = #y : Gy ↔ F(x) ∼=x G(x) (HP′)

Hume’s principle takes the formof an abstraction principle. It introduces a functor, in this
case the second-level functor “#x : ϕx”, by specifyingunderwhat conditions thevalues
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the function it represents yields are the same by citing a certain equivalence relation
(symmetric, transitive and reflexive relation) holding between the arguments. Num-
bers applicable to concepts are the same when they are equinumerous: i.e., stand in
1–1 correspondence with each other. It should be noted that Frege’s infamous Basic
LawV also takes the form of an abstraction principle: value-ranges of functions are the
samewhen those functions have the same value for every argument. Abstraction prin-
ciples have been a subject of interest amongmathematicians at least since Leibniz, and
were also widely discussed by other nineteenth century figures including Grassmann
and Peano, some of whom saw them as a kind of implicit definition. Frege considered
the possibility that Hume’s Principle might be considered as a kind of definition of car-
dinal numbers.

In the end, Frege rejected this suggestion. (HP′) does not provide an explicit defini-
tion of the notation “#x : Fx”, nor allow us to resolve it into primitive logical notation.
It only fixes the truth conditions for some identity statements about numbers, not all.
It does not tell us under what conditions “#x : Fx = q” is true if “q” is not given in
the form “#y : Gy”. So again, we cannot tell whether or not a number is identical
with Julius Caesar. Yet, Frege did hold that Hume’s Principle showed a way forward.
Any correct definition of cardinal numbers must yield Hume’s Principle as an analytic
result. As we have seen, the mature Frege believed that logic could provide knowledge
of certain logical objects: extensions of concepts most notably. In the Grundlagen, he
therefore suggests defining “the number of Fs” as the extension of the concept concept
equinumerouswithF. Since equinumerosity is an equivalence relation, itwould then fol-
low that concepts F and Gwould have the same number just in case they were equinu-
merous, validating Hume’s Principle. In the Grundgesetze, Frege allows the extensions
of concepts to take over the role of concepts as themembers of such extensions. (It is un-
clear how substantive this change is; see Klement 2012.) Frege then defined a function
”(ξ), which, when applied to the extension of a concept F, would yield the extension
of the concept extension of a concept equinumerous with F, and hence, ”(–αF(α)) became
his version of “#x : Fx”. If we take Frege’s talk of “extensions” as interchangeable with
talk of “classes”, then this definition makes numbers out to be classes of classes all of
which have the same cardinality. After this definition was independently rediscovered
by Russell, it has come to be known as the Frege-Russell definition of number. Using it,
Frege was able to derive his version of Hume’s Principle as a theorem from Basic LawV.
Unfortunately, however, this wedded his theory of numbers to his (inconsistent) theory
of extensions.

In his Grundlagen, Frege sketched informally how much of the core vocabulary of
arithmetic could be defined logically, and how many of the basic principles—including
a set of results equivalent to the Peano-Dedekind axioms for number theory—could be
proven. Complete demonstrations of these principles were given in Grundgesetze.
Roughly, 0 (zero) can be defined as the number of the null concept, non-self-identity,
”–α (α = α). The successor function could be defined as yielding, for a given number n,
the class of all extensions of conceptsF such that for some x such thatF(x), the number
belonging to the concept being an F which is not x is n. Speaking instead of classes, this
will yield the class of all classes having onemoremember than themembers of n. Using
the logical notion of series introduced already in the Begriffsschrift, the concept of nat-
ural number could be defined as the class of all z in the series generated by the successor
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relationship starting with 0, or the class of all z falling under every concept held by
0 and always held by the successor of any n of which it holds. Importantly, Frege is
able to prove that every natural number is non-empty by noting that for every natural
number n, the subseries of natural numbers up to and including n has n+ 1 members.
There is one number up to and including 0, two numbers up to and including 1 (0 and
1), three numbers up to including 2, and so on. Frege thereby established that there
are infinitely many natural numbers, a key step to obtaining results equivalent to the
Peano-Dedekind axioms. Frege went beyond the arithmetic of finite numbers, pointing
out that some concepts, including the concept natural number itself, apply to infinitely
many things, and hence that there are infinite cardinals. As noted, he began to outline
a treatment for real numbers as well before it was derailed by Russell’s paradox.

In light of its inconsistency, Frege’s logicist project cannot be considered an unqual-
ified success, as he himself admitted. Yet, many key aspects of Frege’s mathematical
logic could perhaps be salvaged, and there have been many in the twentieth century
who have attempted revisions, some of whom took themselves to be advancing their
own form of logicism, others of whom took themselves to be offering a non-logicist
but otherwise quasi-Fregean framework. For example, Whitehead and Russell offered
a ramified theory of types (Whitehead and Russell 1914), and later, Ramsey offered
a simpler theory of types (Ramsey 1925), which solved the logical paradoxes. Type
theory, when combined with Russell’s “no class” theory, applies something similar to
Frege’s hierarchy of levels (discussed below) to discourse about classes. It is then not
possible to ask whether or not a class is a member of itself, only whether or not it is a
member of a higher-type class. However, such systems require some non-obviously-
logical principles such as an axiom of infinity to recover Peano arithmetic in its usual
form. Quine (1937) offered us a Frege-inspiredweaker, but still non-well-founded, the-
ory of classes sufficient for arithmetic, though its consistency is still unproven. Boolos
(1986) takes up Frege’s suggestion from the Appendix to Grundgesetze, and offers a dif-
ferent, but consistent, modification of Basic Law V, called “New V”. Recently a lot of
attention has been paid to the fact that Frege’s proofs of his equivalents to the Peano-
Dedekind axioms only make essential use of Basic Law V in proving Hume’s Principle,
and that, once it is established, it plays the important role in the proofs. If notation
such as “#x : Fx” is taken as primitive, then (HP′) by itself as the sole addition to the
usual axioms of second-order logic suffices for a consistent recapturing of all of Peano
arithmetic. This result has been called “Frege’s theorem”, andmany regard it as one of
Frege’s chief contributions to the foundations of mathematics. Indeed, Crispin Wright
and Bob Hale (Wright 1983; Hale and Wright 2001) have advocated an “abstraction-
ist” or “neo-Fregean” position that advocates postulating (HP′) and similar principles
as analytic truths suitable for a kind of logicist treatment of mathematics, whether or
not they are derivable from anything like set or class theory.

Another cause for concern for Frege’s project camewhenKurt Gödel (1931) proved
that no finite or recursively axiomatizable system for mathematics that is expressively
adequate to represent all recursive functions, canbeboth consistent and complete. Any
such systemswill be able to expressmathematical truths not provable from the axioms.
A recursively axiomatizable system is one in which there is a recursive procedure, or
equivalently, a Turing-machine computable procedure, for determiningwhat does and
what does not count as a legitimate deduction in that system. One could add axioms to
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a system formathematics, but if only a finite number are added, or an evena recursively
decidable infinite number, there will still be unprovable truths. Only an inconsistent
system, or one inwhich there is no recursive or Turing-machine computable algorithm
for separating out good from bad deductions, can possibly provide a complete axiom-
atization of arithmetic. The extent to which this undermines Frege’s logicist thesis de-
pends greatly on how strong that thesis is taken to be. While it may be that no single
recursive logical calculus suffices to derive all of mathematics, this does not obviously
show that any portion of arithmetic is non-logical or non-analytic. Indeed, if Frege
had been successful in providing a logical basis for all of standard Peano arithmetic—
which encompasses nearly all the mathematics the average person learns in his or her
lifetime—it would seem odd to suggest that mathematics as a whole has a non-logical
metaphysical or epistemological foundation despite the fact that this portion does not.
Nonetheless, Gödel’s results surely complicate arguments in favor of logicism.

Frege on Objects and the Hierarchy of Concepts

We have seen that Frege modeled the syntax of his logical notation on the function/
argument analysis of complexmathematical expressions. He believed that, despite cer-
tain complications, the same kind of segmentation could be applied to ordinary lan-
guage. The phrase “the capital of Sweden” could be divided into a function expression
“the capital of ξ” and a phrase for its argument, “Sweden”. The proposition “Jupiter
is larger than Mars” can be divided into function and argument in multiple ways, e.g.,
into the name “Jupiter” and the concept expression “ξ is larger than Mars”, or into the
name “Mars” and the distinct concept expression, “Jupiter is larger than ζ”, or into
the two names “Jupiter”, “Mars” and the relational expression, “ξ is larger than ζ”.
The hallmark of a function expression is its having a spot (or spots) ready to receive
the expression for its argument(s). The hallmark of the name of an object—including
complete sentenceswhich Frege understood as names of truth-values, onlywith added
assertoric force (the natural language substitute for his judgment stroke)—lies in its
lack of any such gap or incompleteness. Frege believed that this syntactic distinction
reflected a real difference between the things the different expressions stood for. Not
only are concept expressions gappy, but concepts themselves are unsaturated or have
a predicative nature. In contrast, objects are self-subsistent or complete. It is the un-
saturated nature of concepts that makes them suitable to be the references of concept
expressions, and the saturated nature of objects that makes them suitable to be the
references of names. In any complex expression, at least one phrase must represent
a function: a series of names by itself cannot form a coherent whole. Complete names
can only refer to objects, and incomplete expressions can only refer to concepts or other
functions.

Frege also believed that functions differed depending on the nature of their argu-
ments, forming a hierarchy. A monadic first-level function, such as H(ξ), has a single
argument spotwhichmust be completed byanobject.Apolyadic or relational first-level
function would have multiple arguments, e.g., R(ξ, ζ), but it would still take objects as
argument. A monadic second-level function would be a function whose argument is a
first-level function. A second-level concept is a second-level function whose value is al-
ways a truth-value, such as the quantifier a ϕ(a). For Frege, the difference between
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first- and second-level functions is just as thoroughgoingas the difference betweenfirst-
level functions and objects. A second-level concept cannot be predicated of an object
or another second-level function. This is shown by the fact that the gap in the expres-
sion “ a ϕ(a)” must be replaced by something itself gappy, so that it has a place to
receive the bound object variable “a”, but only a sign for a first-level function has the
right form. When they come together, the first- and second-level functions “mutually
saturate”. A third-level function would be a function taking a second-level function as
argument. Consider the higher-order quantifier f µβ(f(β)). Its argument spot is
represented by the portion µβ(. . . β . . .). Only a symbol such as “ a . . . a . . .” can fit
here, because bymeans of its boundvariable, it could complete the argument spot of the
variable bound by the higher-order quantifier, in this case resulting in f a f(a).

Frege maintained that conflating concepts and objects, or functions of various lev-
els, was a frequent source of confusion. We have already seen that he criticized certain
formalist positions on such grounds. For Frege, the fundamental meaning of existence
is given by the existential quantifier a ϕ(a), which is a second-level concept, not a
first-level one, giving a concrete interpretation to the Kantian dictum that “existence
is not a predicate”. Frege diagnosed the problemwith the ontological argument for the
existence of God as wrongly treating existence as a first-level concept. This quantifi-
cational account of existence was taken up in the twentieth century by Russell (e.g.,
1905) and Quine (1948), and represents the main alternative to the position found in
the works of Alexius Meinong (e.g., 1899), which admits both objects which have and
which lack existence.

This view is not without its difficulties or puzzles. Pressed by Benno Kerry (1887),
for example, Frege was compelled to admit that the phrase “the concept horse”, since it
has no gap for an argument, cannot refer to a concept. Frege concluded that there is a
special object for every concept (or other function) which goes proxy for it when such
locutions are used. “The concept horse” refers to an object, not a concept. But then
can Frege even coherently state the distinction without violating his own principles?
Consider the predicate “… is an object”. If it stands for a first-level concept, it is true of
all arguments; if something else, then it is true of none. Is itmeaningful, by Frege’s own
lights, then, to speak of a distinction between concepts and objects, or postulate entities
which are not objects? Frege admits the difficulty, claiming that the very nature of the
distinction forces him to speak imprecisely, adding that he hoped readers “would meet
me halfway” and “not bedrudge of pinch of salt” (Frege 1984, p. 193). This puzzle is
sometimes thought to prefigure the discussion of “ineffable truths” in Wittgenstein’s
Tractatus, i.e., those that can only be “shown” not “said”.

Frege on Meaning and Truth

A perhaps even more influential distinction made by Frege is that between the sense
(Sinn) and reference (Bedeutung) of expressions. Frege introduced this distinction in his
mature work to resolve what he considered a puzzle about identity. Consider:

the morning star = the morning star (8)

the morning star = the evening star (9)
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These are both true, but (8) seems trivial in a way that (9) does not. However, the ex-
pressions flanking “=” in (9) have the same content, both with each other and with
the corresponding parts of (8). So what accounts for the difference in cognitive signifi-
cance? In his early work, when he employed the sign “≡” for “identity of content”, he
assumed itmust be understood not as a genuine relation between objects, but rather as
a relation between expressions. It must always be trivial to be told that a thing is itself,
but it could be informative to be told two expressions have the same content ((Frege,
1879, §8)). However, in his mature work, he realizes that (9) must be understood as
informing us something about the morning star itself, not merely about language. He
therefore bifurcates his earlier notion of content into the notions of sense and refer-
ence. The reference is the actual object a name stands for. “The morning star” and
“the evening star” have the same reference: the planet Venus. The sense of an expres-
sion is its “mode of presentation”, or the way in which the reference is picked out. The
expressions “themorning star” and “the evening star” differ in sense because they pick
out Venus in virtue of different properties it has. (8) and (9) differ in sense, which ex-
plains their difference in cognitive significance.

Frege puts this distinction to a variety of uses. In earlier work, he had worried that
in a mathematical equation such as “5 + 7 = 4 × 3” the two sides cannot in all ways
be considered “the same”: one is a sum, the other a product, etc. Once adopting the
sense-reference distinction, however, he saw no reason to differentiate between math-
ematical equality and identity. The distinction also made it possible for him to regard
concepts and relations as functionswith truth-values as values. In hismature logic, all
true propositions consist of the judgment stroke preceding a name of the True. Obvi-
ously, it would be absurd to hold that all true propositions have the same meaning, full
stop. Frege now held that although the references of all true (and of all false) propo-
sitions are alike, they differ in the senses they express, which he called thoughts. Al-
though Frege considered it as a defect of ordinary language to be avoided in a logically
rigorous language, Frege thought some expressions expressed a sense but nonetheless
lacked a reference, such as in fiction, e.g., “Odysseus” or “Sherlock Holmes”, or even
in mathematics and science, e.g., “the least rapidly converging series”. Because these
expressions lack reference, so do any propositions in which they appear. Since Frege
regards the reference of a complete proposition to be its truth-value, this would mean
that such sentences as “Sherlock Holmes lived at 221B Baker Street in London” are
neither true nor false.

Lastly, Frege used the distinction to account for why it is not always possible to sub-
stitute apparently co-referring expressions in a sentence while preserving the truth-
value. Consider:

Ptolemy believes the morning star = the morning star (10)

Ptolemy believes the morning star = the evening star (11)

These differ from each other only by the substitution of one term referring to Venus for
another. Since Frege thinks that the reference of an expression is a function of the ref-
erences of its parts, it is difficult to see how (10) could differ in truth-value from (11).
But clearly this is at least possible. Frege’s solution is to insist that in certain contexts,
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such as in what we now call “propositional attitude reports” (beliefs, desires), words
shift from having the usual or “direct” references to having their “indirect” references,
which are their customary senses. Since (8) and (9) have different senses, when they
are embedded in theunderlined contexts in (10) and (11), they refer todifferent thoughts.
Belief is a relation between a believer and a thought, not a believer and a truth-value.
It is possible for Ptolemy to believe one thought and not the other. To be substitutable
in such “indirect” contexts, words would have to share not only their customary ref-
erences, but their customary senses as well. Frege’s writing on this subject marks the
starting point for most contemporary discussion in analytic philosophy about identity
puzzles and the logic of propositional attitude reports (e.g., Salmon 1986).

Frege does not tell us much about the precise nature of senses. Some passages sug-
gest that he thinks of a sense as containing a property or set of descriptive information,
and the reference is the object which uniquely satisfies that property, if there is one.
(This reading is presupposed, e.g., in Kripke 1980.) It is unclear, however, if this ac-
count covers all senses. Frege seems to think that each person can think about him or
herself in a uniqueway, using a unique sense not fully graspable by others. This prefig-
ures the contemporary discussion of the unique nature of de se, or self-directed, mental
attitudes (Perry 1977). Frege applies the distinction also to other kinds of expressions,
such as those for functions and concepts of different levels. Frege considers the iden-
tity relation to be a first-level relation that can only hold between objects. However,
in posthumously published remarks (Frege 1979, pp. 118–25), he suggests that there
is an analogous relation of “coinciding” which holds between functions that have the
same value for every argument. Coextensive concepts such as ξ has a heart and ξ has
a kidney would coincide, since they would map all the same objects to the same truth-
values. Clearly, however, the phrases “ξ has a heart” and “ξ has a kidney” are not
synonymous in every respect. Frege concludes that these too differ in sense, but not
reference, noting that his sense/reference distinction plays a role similar to the more
traditional distinction between the intension and the extension of a predicate. Frege
regards the sense of a complete proposition as in some metaphorical way a complex or
whole containing the senses of the parts. Thoughts have a kind of unity to them pro-
vided by the senses of the function expressions, which Frege too regards as unsaturated
or incomplete. Exactly how the “unsaturatedness” of these senses is to be understood,
and whether or not it differs from the kind of unsaturatedness that the functions that
are their references have is a thorny issue (see e.g., Klement 2002, chap. 3).

Frege’s contention that the reference of a proposition is its truth-value strikesmany
as idiosyncratic. Frege gave two sorts of reasons for it. The first involves a kind of parity
of interests. We seem to be interested in or concerned with whether or not the subex-
pressions of a proposition have reference in precisely those situations in which we are
concernedwith their truth. If a story is told for fun, we are indifferent aboutwhether or
not the character names actually refer. However, when investigating the truth of a his-
torical legend, itwillmatter to uswhether or not the names refer to actual historical fig-
ures. The other reason, less emphasized by Frege but subsequently more influential, is
based on his assumption that the reference of the wholemust be determined by the ref-
erences of the parts. He asks, rhetorically, “what feature except the truth-value can be
found that … remains unchanged by substitutions” in which “a part of the proposition
is replaced by an expression with the same reference” (Frege 1984, p. 164)? A more
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fleshed-out argument was later given by Alonzo Church (1956, p. 25). If we assume
that the reference of the whole is unchanged both by such substitutions and by rela-
tively innocuous-seemingmodifications to grammatical form, then all the propositions
in the following series would seem to have the same reference:

Sir Walter Scott is the author of Waverly.
Sir Walter Scott is the writer of twenty nine Waverly novels.
The number of Waverly novels written by Sir Walter Scott is twenty nine.
The number of counties in Utah is twenty nine.

However, the last seems to have nothing interesting in common with the first apart
from its truth-value, confirming Frege’s suggestion that only the truth-value could be
the reference. This argument has come to be called “the Frege-Church slingshot”.

Thoughts, the senses of propositions, are the bearers of truth. However, Frege ar-
gues that the relationship of a thought to its truth-value must be understood as one of
sense and reference, not of a thing and its attribute. Frege points out that “it is true
that …” adds nothing to the sense of a proposition it is applied to, and so truth can-
not be a genuine property. Frege argues against the possibility of defining truth in a
non-circular way. Truth cannot be correspondence in a strong sense, as nothing com-
pletely corresponds with anything except itself. If truth relies on a weaker, or partial,
notion of correspondence in a certain respect, we would be led back to the question as
to whether or not it was true that there was such a correspondence, creating a vicious
regress. Frege thinks the same reasoning undermines any other way of defining truth.
Rather, Frege thinks that the activity of forming judgments and making logical infer-
ences indirectly revealswhat truth is: “themeaning of theword true is spelled out in the
laws of truth”, i.e., the laws of logic (Frege 1984, p. 352). Frege claims that thoughts
are timeless, objective abstract entities existing in a “third realm” distinct from both
the physical, concrete world, and the subjective realm of ideas. Thoughts must be finer
grained than the entities they are about, and so cannot be made up of these entities.
He remarks, “Mont Blanc with its masses of snow and ice is no part of the thought
that Mont Blanc is over 4000m high” (Frege 1980, p. 187). Moreover, unlike ideas,
thoughts are not private to the individual. They can be shared. Thoughts and their
relationship to truth and falsity are not created by our acts of thinking nor destroyed
by their cessation. Although thoughts affect the physical world only through acts of
cognition, one must not conflate the act of thinking with its content, the thought.

Analytic Philosophy and the Impact of the New Logic

Analytic philosophy has been perhaps the most successful philosophical movement of
the twentieth century. While there is no one doctrine that defines it, one of the most
salient features of analytic philosophy is its reliance on contemporary logic, the logic
that had its origin in the works of Boole and Frege and others in the mid-to-late nine-
teenth century. The works of many key figures in the movement are only fully intel-
ligible when taken together with their works on formal logic. Kripke’s and Marcus’s
views on names and essence must be considered in relation to their work on modal
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logic, David Lewis’smodal realism in relation to his counterpart theory, David Kaplan’s
theories of language in relation to his logic of demonstratives, and the list goes on.

Analytic philosophy is sometimes also called “Anglo-Americanphilosophy”. The la-
bel is misleading given both the many contributions from Continental Europeans, and
the spread of themovement tomany other parts of the globe. However, no one didmore
to promote the “new logic” in the philosophical communities of the English-speaking
world than Bertrand Russell. Along with his Cambridge colleague, G. E. Moore, Rus-
sell had broken from the idealisticmonismprevalent in late-nineteenth century Britain
such as found in the writings of F. H. Bradley (see e.g., Hylton 1990). Although he
already respected Boole, Russell first appreciated the philosophical significance of the
“new logic” when he met Peano at the International Congress of Philosophy in 1900.
Peano’s symbolismwas based largely on Boole’s, but with certain changesmore in line
with Frege’s approach. Russell found that Peano’s logic made possible a new mode of
philosophical analysis (see Levine 2016), and put the final pieces in place for him to
complete his ongoing research on the foundations of mathematics. Russell indepen-
dently came to hold an even stronger form of logicism than Frege’s. He only read Frege
closely when The Principles of Mathematics was near completion in 1902, though he
immediately recognized the greater importance and profundity of Frege’s approach to
logic. Despite discovering the inconsistency in the Grundgesetze system, he expressed
nothing but effusive praise and respect for Frege from then on. Russell once wrote,
“when I think about acts of integrity and grace, I realise that there is nothing in my
knowledge to comparewithFrege’s dedication to truth” (quoted invanHeijenoort1967,
p. 127). Russell’s championship ofmodern logic in something like the Fregean formhas
had an effect on the history of philosophy the full extent of which we cannot yet fully
gauge.

Austrian thinker LudwigWittgensteinwas led away from engineering towards phi-
losophywhenhediscoveredRussell’sThePrinciples ofMathematicswhile anengineering
student at the University ofManchester. Hewas particularly interested in the appendix
on Frege, and the discussion of Russell’s paradox. In 1911, hewent to speakwith Frege
in Jena about a possible solution. Wittgenstein later recalled that Frege “wiped the
floor” with him in their discussion (see Drury 1984, p. 110), but nonetheless Frege
recommended that Wittgenstein go to Cambridge to study with Russell, which he did.
Frege and Wittgenstein corresponded and had a few additional meetings. In the pref-
ace to his enormously influential Tractatus Logico-Philosophicus, Wittgenstein singles
out only Russell and “the great works of Frege” as stimulation for his thoughts.

The Tractatus and its account of logical truth was influential on another group of
thinkers formed aroundMoritz Schlick in the1920s, the so-called “ViennaCircle”, pro-
ponents of logical positivism. Perhaps the most philosophically sophisticated among
them, Rudolf Carnap, had been a student of Frege’s while an undergraduate at Jena,
and his notes from Frege’s 1911–13 lectures have survived. Carnap describes Frege’s
influence as “themost fruitful inspiration I received fromuniversity lectures” (Reck and
Awodey 2004, p. 18). The strictly formal and syntactic understanding Carnap had of
not only logic but, for parts of his career, all of philosophy, could only have been possi-
ble due to the mathematization and formalization of logic brought on by the works of
Boole, Frege and others in the late nineteenth century. Both Boole and Frege are men-
tioned in the Vienna Circle’s unofficial manifesto (Hahn, Neurath, and Carnap 1929).
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Frege was praised by similar groups in Germany and Poland. Polish logician Stanisław
Leśniewski is the first known to have discovered the formal flaw in the revised version of
LawVpublished in the appendix to volume II ofGrundgesetze (Sobociński 1949–1950).
While the logical system of Grundgesetze could not be accepted as is, a rich variety of
ways of “fixing Frege” have been researched, and will continue to be.

Despite the initial underappreciationFrege complainedof, hiswork isnowextremely
widely read. His influence on contemporary philosophies of mathematics, on debates
in the theory of meaning, the nature of truth, the logic of propositional attitudes and
de se attitudes, have already been mentioned. More than 125 years after their publica-
tion, Frege’s Grundlagen is now probably the most widely read book on the philosophy
of mathematics, and his “Über Sinn und Bedeutung” one of the most widely read ar-
ticles in the philosophy of language. The logical systems made possible by the work of
Boole, Frege, and others of the late nineteenth century have changed philosophy and
computing forever. Seeds evenof twenty-first century analytic philosophywere planted
in the rich logical soil of the nineteenth century. For example, the earlier nineteenth
century works of Bernard Bolzano (especially Bolzano 1837) include anticipations of
Tarski’s work on the concept of logical consequence (Tarski 1936), and the recent hot
topic of metaphysical grounding (e.g., Fine 2012). Bolzano’s writings have only re-
cently gained the attention of analytic philosophers, but now that they have, they will
no doubt become more influential. The seeds of nineteenth century logic will continue
to be reaped for years to come.
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