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Abstract. This paper discusses certain problems arising within the treatment of the senses

of functions in Alonzo Church’s Logic of Sense and Denotation. Church understands such

senses themselves to be “sense-functions,” functions from sense to sense. However, the

conditions he lays out under which a sense-function is to be regarded as a sense presenting

another function as denotation allow for certain undesirable results given certain unusual

or “deviant” sense-functions. Certain absurdities result, e.g., an argument can be found for

equating any two senses of the same type. An alternative treatment of the senses of functions

is discussed, and is thought to do better justice to Frege’s original theory.
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undergoing a number of revisions at Church’s own hands and those of oth-
ers [2, 3, 4, 8, 9, 10, 11, 13, 36, 37]. In this paper, I focus on the treatment
of the senses of function expressions within these systems. Hitherto these
senses have almost always been treated as functions from sense to sense.
While greatly simplifying their syntax, this approach has generated signifi-
cant problems. My first aim in this paper is to make plain the extent of the
difficulties, especially those concerning the specification of the conditions
under which a function from sense to sense is itself to be regarded as a sense
having another function as denotation. My second aim is to describe a
rival understanding of the senses of functions, and sketch how the systems
could be restructured accordingly. It is argued that the rival understanding
solves some of the more difficult problems with the previous approach, is
in some ways philosophically superior, and perhaps closer to Frege’s own
understanding of such senses.

§2. Church’s Logic of Sense and Denotation: a recap. The Logic of Sense
and Denotation represents an attempt to translate Frege’s [18, 20] theory
of sense (Sinn) and denotation (Bedeutung) into a full-fledged and general
purpose intensional logic. While Church knowingly deviates from Frege’s
own views at a number of points, the logical theory underlying the systems is
still largely inspired by Frege. According to the functional logics favored by
bothFrege andChurch, “formulas” are understoodas terms for truth-values,
of which there are two, the True and the False. Predicates are understood as
standing for functions in the strictest sense, mapping individuals to truth-
values, and propositional connectives are taken as functions mapping truth-
values to truth-values. In addition to denoting an individual, truth-value or
function, each expression is also thought to be correlatedwith another entity:
a “sense” in Frege’s terminology or a “concept” inChurch’s terminology. (In
what follows, I use Frege’s terminology, to avoid the confusion of Church’s
“concept” with Frege’s term “Begriff ” which differs in meaning.) In certain
intensional contexts (propositional attitudes, modal contexts), these entities,
typically only expressed, are instead thought to be denoted. According to
the “direct discourse” method favored by Church (see [28, pp. 23–9]), the
same ordinary language expressions are transcribed using different signs in
the logical language when they appear in intensional contexts, making clear
that they there denote senses.
It is useful to introduce officially the vocabulary that will be used when
discussing the relationships between expressions, their senses, and their de-
notations. I shall use the word “express” for the relation between a part
of language, e.g., the name “Socrates,” and its sense or intensional mean-
ing: the name expresses the sense. I shall use the word “denote” for the
relation between the linguistic expression and the entity denoted: here the
name “Socrates” denotes the person Socrates. This terminology comports
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with common English translations of Frege’s own. I shall use the word
“presents” for the relation between the sense and the denotation; the sense
of the name “Socrates” presents Socrates. Frege had no official word for this
relation, but “presents” is used by at least some later commentators.
Churchbuilds his systemsupona functional calculus of lambda conversion
employing the simple theory of types. (In [13], ramified type-theory is
introduced to block certain intensional and semantic paradoxes; more on
this later.) The simple types are further divided according to the sense
hierarchy. The types of non-functions include two hierarchies, é0, é1, é2, . . .
and o0, o1, o2, . . . . Type é0 consists of individuals that are not senses, and
type én+1 consists of senses that (potentially) present entities of type én.
Type o0 consists of the two truth-values, the True and the False, and type
on+1 consists of senses that (potentially) present entities of type on. Frege’s
“thoughts” (Gedanken), as senses that present truth-values, fall into type o1.
For any types α and â , there exists a type (α 7→ â) consisting of functions
that take arguments of type α and yield values of type â .1 Thus, predicates
would have the type (é0 7→ o0), taking individuals as argument and yielding
truth-values as value. Relations and functions of multiple arguments are
treated with the method suggested by Schönfinkel [42] as functions with
one argument that yield functions as value. For example, the conditional
function has the type (o0 7→ (o0 7→ o0)): it is understood as a function that
takes one truth-value as argument and yields as value a function with one
remaining argument place and having a truth-value as result.
We adopt the conventions that a subscript on an index can be left off
when it is 0, and that parentheses can be dropped from compound types
with the convention of association to the right. Thus, the type symbol
“(o0 7→ (o0 7→ o0))” can be abbreviated simply “o 7→ o 7→ o”. Moreover,
unless another type symbol is explicitly included at their first occurrence,
the letters x, y, and z (without asterisks) are used as variables of type é,
the letters p, q, and r as variables of type o, and the letters f, g, and h
as variables or constants of type é 7→ o. (Apostrophes can be added to
ensure an infinite supply of such variables.) When written with asterisks,
the letters x∗, y∗, and z∗ should be taken as variables of type é1, the letters
p∗, q∗, and r∗ as variables or constants of type o1, and the letters f∗, g∗,
and h∗ as variables or constants of type é1 7→ o1. When giving informal
examples, the letters a, b, and c are used as constants of type é, and a∗,
b∗, and c∗ as constants of type é1. When a schematic letter such as α is
used for some arbitrary type symbol, α+1 is to be understood as the type
symbol obtained from α by adding one to each numerical subscript on the
primitive type symbols making up α. Boldface letters such asM and N are

1In Church’s own notation, no arrow is used, and the type symbol for the value is written
first, and the type symbol of the argument is written second, thus the reverse of that used
here.
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used in the metalanguage schematically for arbitrary expressions. Following
Church, the notation |SAB M| is used in the metalanguage for the expression
that results when B is substituted for A throughoutM.
The extensional portion of the system is built upon the following function
constants: Co 7→o 7→o for material implication, ∼o 7→o for negation, Π(α 7→o) 7→o
for the universal quantifiers, and é(α 7→o) 7→α for description functions. (The
description functions take a function into truth-values as argument and
yield the sole argument for which that function yields the True as value if
there is such an argument, or yield a chosen member of the appropriate
type if not.) More usual notation for quantification, p(∀xα)Moq, is defined
as pΠ(α 7→o) 7→o(ëxαMo)q. The notation pAo ⊃ Boq is used to abbreviate
pCo 7→o 7→oAoBoq. In some formulations, Church did not take negation as
primitive, but defined p∼Aoq as pAo ⊃ (∀po)poq; little turns on this, how-
ever, and for the remainder of the paper, negation is taken as primitive solely
for the sake of ease of comparison with other systems. Other logical oper-
ators (&, ∨, ≡, ∃) are defined as usual from negation, material implication
and universal quantification. The notation pAα = Bαq is used to abbrevi-
ate p(∀fα 7→o)(fα 7→oAα ⊃ fα 7→oBα)q, where fα 7→o is the first variable of the
appropriate type that does not occur in either Aα or Bα . In addition to
standard inference rules (modus ponens, etc.), we also have three rules for
ë-conversion:

I. Innocuous change of bound variable: if Ao and Bo are well-formed ex-
pressions of type o, and Ao has a well-formed part Mα , then if xâ is
a variable of type â which has no free occurrence in Mα , and yâ is a
variable of type â which does not occur inMα , and Bo results from Ao
by replacing a particular occurrence ofMα by |Sxâyâ Mα|, then from Ao,
one may infer Bo.

II. Reduction: If Ao and Bo are well-formed expressions of type o and Ao
differs from Bo only by containing a well-formed part p((ëxâMα)Nâ)q
where Bo contains |SxâNâ Mα| and the bound variables ofMα are distinct
from both xâ and the free variables of Nâ , then from Ao, one may
infer Bo.

III. Expansion: If Ao and Bo are well-formed expressions of type o and Ao
differs from Bo only by containing a well-formed part p((ëxâMα)Nâ)q
where Bo contains |SxâNâ Mα| and the bound variables ofMα are distinct
from both xâ and the free variables of Nâ , then from Bo, one may
infer Ao.

The axioms of the various formulations divide into three groups. First, there
are the schemata needed for the core, extensional, portion of the logic. The
second group deals with the relationship between senses and their denota-
tions generally. The third group involves the identity conditions of senses,
and differs between rival “alternatives,” i.e., different theories about under
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what conditions senses are identical. Church develops three alternatives,
dubbed “Alternative (0),” “Alternative (1),” and “Alternative (2).”
Alternative (2) has the least stringent conditions for sense-identity. There-
in, two sentences are held to express the same thought if and only if they are
logically equivalent, and generally, two expressions are thought to express the
same sense if and only if the identity statement formed from them is a logical
truth. These conditions are suitable for developing a direct discourse form
of modal logic, but not for a logic dealing with other intensional contexts
such as propositional attitudes. My primary interest in what follows shall be
Alternatives (0) and (1). These two alternatives adopt criteria for the identity
conditions of senses based on a revision of Carnap’s [6] notion of intensional
isomorphism that Church [12] calls synonymous isomorphism. According to
this view, two complex expressions are thought to be synonymous (or to
express the same thought) if and only if one can be derived from the other
by a series of synonym replacements among the parts. Consequently, two
sentences can be synonymous only if they share a common form, and each
expression in one sentence is synonymous with (i.e., has the same sense as)
the corresponding expression in the other. Unless the language in question
has redundant primitives or contains constants introduced as synonymous
with pre-existing complex expressions, this means that distinct sentences are
nearly always regarded as having distinct senses. In Alternative (0), distinct
sentences are thought synonymous only if they can be obtained from one
another by inference rule I, i.e., differ from each other only by innocuous
change of bound variable. In Alternative (1), inference rules II and III
(the ë-reduction/expansion rules) are also thought to preserve the sense
expressed.
Let us consider first those that are invariant across the alternatives. Be-
cause different signs are used for sense and denotation, Church introduces
methods for capturing the relation between the two. The sign ∆α 7→α+1 7→o
stands for a two-place function whose value is the True if its second argu-
ment presents its first argument, and the False otherwise. (In what follows,
when this operator is followed by its arguments, its type symbol is left off as
it should be obvious from the context what it must be.) For example, if “a”
stands for Russell, and “a∗” stands for the sense of the name “Russell,” then
“∆aa∗” stands for the True, whereas if “b” stands for Frege, then “∆ba∗”
stands for the False.2 Intuitively, a sense presents at most one denotation,

2Those familiar with the notation for intensional logic adopted by Montague [34] may
be accustomed to working with an operator, “∨”, understood as standing for a function
mapping a sense (or intension) to the (unique) denotation (or extension) it presents (so that,
if “a∗” is a name of a sense, “∨a∗” would name the entity the sense presents). Such a sign can
be defined by making use of the description operator, i.e., ∨α+1 7→α =df (ëxα+1

é(ëyα ∆yx)).
With this definition in place, if ∆aa∗ then ∨a∗ = a. The primary danger in using this instead
of the relation sign “∆” involves the possibility of “empty senses,” those that present no
entity as denotation. With the above definition of “∨”, if b∗ is an empty sense, then ∨b∗
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Hence we have the following schema:

(∀xα) (∀yα) (∀x∗α+1)[∆xx
∗ ⊃ (∆yx∗ ⊃ x = y)].(Axiom 17α)

Most of the remaining schemata in the second group have to do with the
senses of functions. As mentioned above, Church treats the senses of func-
tions as functions from sense to sense. These functions are typically called
“sense-functions.” Let us first give an ordinary-language example. The
name “Socrates” denotes a certain person and expresses a sense. The whole
expression “Socrates is human,” is thought to denote the True, and to express
a certain thought or proposition. In it, the predicate “ . . . is human” denotes
a certain function, which has the True as value for Socrates as argument
(but the False as value for Boston as argument, and so on). According to
Church, the sense expressed by the predicate should also be taken as a func-
tion, in this case, as a sense-function taking the sense of the name “Socrates”
as argument and yielding the thought expressed by “Socrates is human” as
value. This sense-function would yield the thought that Aristotle is human
for the sense of the name “Aristotle” as argument, the thought that Boston
is human for the sense of the name “Boston” as argument, and so on. This
view leads to a nice parallel between the realms of sense and denotation;
just as the denotation of the predicate can be taken as a function of type
(é0 7→ o0), its sense can be understood as a function of type (é1 7→ o1). In the
Logic of Sense and Denotation, a constant of the former type would be used
to transcribe “ . . . is human” when it appears in a standard context, and a
constant of the latter type would be used to transcribe “ . . . is human” in an
intensional context.
In Frege’s [22] notation, a function expression’s argument place must al-
ways be filled somehow, so that when one function is taken as the argument
to a higher-type function, the higher-type function expression must be writ-
ten as a variable-binding operator, with the bound variable being used to fill
the argument position of the lower-type function, e.g., “Mâ(f(â))” forM
taking f as argument. In Church’s notation, however, function variables
and lambda abstracts may appear in subject position, that is, as arguments
to higher-type functions, without their own argument positions being filled,
provided the type-restrictions are obeyed. Therefore, he can use a formula
of the form p∆fαf∗α+1q to express that a certain sense-function presents a
function as its denotation. If we suppose that “h” stands for the function
denoted by the ordinary language predicate “ . . . is human” (type é 7→ o),

is some chosen object of type é. Some authors have advocated a simplifying assumption
whereby every sense is taken to have some denotation, in which case “∨” could be used
everywhere in place of “∆”, or even taken as primitive instead. However, this assumption
is philosophically undesirable. After all, Frege’s [20] suggestion that expressions such as
“Romulus” and “the least rapidly converging series” can be meaningful parts of sentences
because they express senses, despite lacking denotation, was part of the original motivation
for the sense/denotation distinction.
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and “h∗” stands for the sense of the same predicate, i.e., the sense-function
discussed above (type é1 7→ o1), then “∆hh

∗” stands for the True. How-
ever, this does not capture the relationship between the values of the two
functions. That relationship seems to be this: for any pair of sense, and
denotation presented by that sense, the value of the sense-function h∗ for
the sense as argument is a thought that presents the truth-value yielded
by the function h for the denotation as argument. For example, when
h∗ takes the sense of “Socrates” as argument, it yields the thought that
Socrates is human, and this thought presents the True, which is the value
of h for Socrates as argument. When h∗ takes the sense of “Boston” as
argument, it yields the thought that Boston is human, which presents the
False, i.e., the value of h for Boston as argument. To put it formally, we
have:

(∀x) (∀x∗)[∆xx∗ ⊃ ∆(hx)(h∗x∗)].(1)

Whenever it holds that (∀x) (∀x∗)[∆xx∗ ⊃ ∆(fx)(f∗x∗)] for a given f and
f∗, the sense-function f∗ is said to characterize the function f.
To capture the relation between characterization and presentation, Church
adds certain additional axioms to the Logic of Sense and Denotation. First,
he adds the following, relatively uncontroversial, axiom schema:

(∀fα 7→â) (∀f∗
α+1 7→â+1) (∀xα) (∀x

∗
α+1
){∆ff∗ ⊃ [∆xx∗ ⊃ ∆(fx)(f∗x∗)]}.

(Axiom 15αâ)

In other words, if f∗ presents f, then f∗ also characterizes f. More
controversially, Church also adds the converse of axioms 15:

(∀fα 7→â) (∀f∗
α+1 7→â+1){(∀xα) (∀x

∗
α+1
)[∆xx∗ ⊃ ∆(fx)(f∗x∗)] ⊃ ∆ff∗}.

(Axiom 16αâ)

If f∗ characterizes f, then f∗ presents f. These axioms have some initial
plausibility, but not as much as axioms 15, and they are not clearly an
essential assumption of the system. Theirmain use for Church seems to be in
the proof of what he calls “The Sense Relationship Theorem.” This theorem
involves the relationship between a given closed expression Mα and what
Church calls its “first ascendant,”Mα , which is another expression standing
for the sense expressed by the original expression. Every primitive constant
in the Logic of Sense and Denotation is introduced along with a hierarchy of
constants for senses. Thus, the sign for the conditional function, “Co 7→o 7→o”,
expresses a sense Co1 7→o1 7→o1 , and the sign “Co1 7→o1 7→o1” itself expresses a
sense, Co2 7→o2 7→o2 , and so on. Similar hierarchies of constants are introduced
for the other constants, including ∆α 7→α+1 7→o. Axiom schemata governing
these hierarchies of constants are also introduced:

(Axiom 11n) ∆Con 7→on 7→onCon+1 7→on+1 7→on+1 ,
(Axiom 12nα) ∆Π(α 7→on) 7→onΠ(α+1 7→on+1) 7→on+1 ,
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(Axiom 13nα) ∆ é(α 7→on) 7→α

é

(α+1 7→on+1) 7→α+1 ,
(Axiom 14nα) ∆∆α 7→α+1 7→on∆α+1 7→α+2 7→on+1 ,
(Axiom 18n) ∆∼on 7→on∼on+1 7→on+1 .
For any closed expression Mα , its first ascendant, Mα+1 , can be obtained
from it simply by raising the subscripts on all primitive type symbols by
one.3 The first ascendant of the expression

[ëyoΠ(o 7→o) 7→o(Co 7→(o 7→o)yo)]

is the expression

[ëyo1 Π(o1 7→o1) 7→o1(Co1 7→(o1 7→o1)yo1)].

While the former expression stands for a function from truth-values to truth-
values, the latter stands for a sense-function from senses of truth-values to
senses of truth-values.
The “Sense Relationship Theorem” is the following desired result:

IfMα+1 is the first ascendant ofMα then ⊢ ∆MαMα+1 .(SRT)

For our example above, we should have:

⊢ ∆[ëyoΠ(o 7→o) 7→o(Co 7→(o 7→o)yo)][ëyo1 Π(o1 7→o1) 7→o1(Co1 7→(o1 7→o1)yo1)].(2)

The proof of this, however, makes use of axiom 16oo. Given axioms 11
and 12, it easily follows from axioms 15 and ë-conversion that:

(3) ⊢ (∀xo) (∀x∗o1)
(
∆xx∗ ⊃ ∆{[ëyoΠ(o 7→o) 7→o(Co 7→(o 7→o)yo)]x}

{[ëyo1 Π(o1 7→o1) 7→o1(Co1 7→(o1 7→o1)yo1)]x
∗}
)
.

Axiom 16oo is then used to derive (2) from (3). Indeed, with axioms 11–16,
we can easily prove (SRT) in its general form for all closed expressions by
induction on the length ofMα .
Nevertheless, there are at least two possible broad bases for doubt re-
garding Church’s approach to sense-functions in general and axioms 16 in
particular. One set of difficulties involves the Russell–Myhill antinomy and
worries regarding the cardinalities of the domains of certain types of senses.
These will be considered in section 4. My main interest in this paper is an-
other set of difficulties stemming from the core understanding of the senses
of functions as themselves being functions, and the problems that then arise
in the wake of axioms 16. To these I now turn.

3I am overlooking temporarily the complication in Alternative (0) that necessitates a
hierarchy of ë-operators, and would require also that the subscripts on the operators also be
raised. This is discussed later.
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§3. Problems regarding deviant sense-functions. The notion of a function
in Fregean logic, picked up by Church, is one essentially borrowed from
mathematics, but expanded to include entities other than numbers as argu-
ments and values (see, e.g., [19]). According to this approach, a function
exists for every determinate mapping of entities in the argument-type to en-
tities of the value-type. This understanding of functions, when carried over
to sense-functions, can create difficulties in the Logic of Sense and Deno-
tation given axioms 16. Earlier we considered a sense-function, h∗, which
maps senses presenting individuals to thoughts in a regular fashion. For the
sense of the name “Socrates” it yields the thought expressed by “Socrates is
human,” for the sense of the name “Aristotle” it yields the thought expressed
by “Aristotle is human,” and so on. In this case it seems harmless to regard
this sense-function as the sense of the predicate “ . . . is human,” a sense that
presents the function h mapping all humans to the True and non-humans to
the False. Here, there is no problem with axiom 16éo .
Axiom schema 16 makes f∗ characterizing f a sufficient condition for f∗

presenting f. The problem is that this is suspect in the case of more un-
usual or what I call “deviant” sense-functions, i.e., those mapping argument
senses to values in a less than regular fashion. One case has been discussed
by Terence Parsons [37].4 There are, so it would seem, senses without deno-
tation, such as those expressed by such names as “Odysseus,” “Superman,”
and “Excalibur.” However, whether or not a given sense-function char-
acterizes something depends entirely on its behavior with regard to senses
that do have denotation. Consider the sense-function h∗′ that has the same
value as h∗ for all arguments, with one exception. Instead of yielding the
thought that Excalibur is human for the sense of “Excalibur” as argument,
it yields as value the thought that snow is white. Using “e∗” as a constant
(type é1) for the sense of the name “Excalibur,” and “q

∗” as a constant
(type o1) for the thought that snow is white, h

∗′ can be defined in terms of h∗

thusly:

h∗′ =df
(
ëx∗ é{ëp∗[(x∗ 6= e∗) & (p∗ = h∗x∗)] ∨ [(x∗ = e∗) & (p∗ = q∗)]}

)
.

Notice that h∗′ also characterizes h, i.e., the following formula holds:

(∀x) (∀x∗)[∆xx∗ ⊃ ∆(hx)(h∗′x∗)].(1′)

The deviant sense-function h∗′ differs from h∗ only with regard to one value
of x∗, and for this value, the antecedent of the conditional is false for
all values of x. It then follows by axiom 16éo that ∆hh∗′, i.e., that h∗′ is
also a sense presenting h. However, h∗′ seems to be a very strange sense-
function to regard as a sense. Indeed, as Parsons has explained, if we were
to imagine there to exist a predicate expressing h∗′, we would arrive at an

4My example is slightly different from Parsons’s, but the main line of his argument is
preserved.
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absurdity. Suppose that h∗′ were expressed by some predicate, “ . . . is
such-and-such.” Consider the sentence, “Excalibur is such-and-such.” The
thought expressed by this sentence is the value of the sense of “ . . . is
such-and-such,” i.e., h∗′, for the sense of “Excalibur,” e∗, as argument, i.e.,
the thought that snow is white. Since this thought is true, the sentence
“Excalibur is such-and-such” is a true sentence. However notice that the
predicate “ . . . is such-and-such” expresses a sense that presents the same
denotation as the sense expressed by the predicate “ . . . is human.” By
the basic Fregean principle that two expressions with the same denotation
can be substituted for each other salva veritate, we get as a result that the
sentence “Excalibur is human” is also true, which is absurd. (There may be
disagreement about why it is absurd. Frege’s own attitude towards sentences
containing empty names was that they were neither true nor false, i.e., they
express thoughts that do not present any truth-value. Others may want
to hold this sentence to be false. The result that it is true is absurd either
way.)
Parsons’s diagnosis of this problem is that there is a problemwith axioms 16
because they do not adequately consider what sense-functions do with senses
that lack denotation. He suggests a patch in which we first revise our
understanding of the sense/denotation relation so that all senses are to be
understood technically as presenting a denotation, but in the case of so-
called empty senses, they are all to be understood as, technically speaking,
presenting some chosen object of the appropriate type, called a zip. Hence,
the sense of “Excalibur” is to be regarded as presenting the zip of type é. The
zip of type o would be some third truth-value, and the function h must be
regarded as having this zip of type o as value for the zip of type é as argument.
On this new understanding, while the argument that h∗ characterizes h goes
through, the argument that h∗′ characterizes h does not, since the value of
h∗′ for the sense of “Excalibur” as argument would have to present the zip
of type o, which it does not.5

I think Parsons has misdiagnosed the problem. Deviant sense-functions
cause trouble for axioms 16 due to aberrant behavior with regard to senses
that do present a denotation as well. Consider another deviant sense-
function, h∗′′, having the same value as h∗ for every argument, except that
instead of yielding the thought that Russell is human for the sense of the
name “Russell” as argument, it yields the thought that snow is white. Again
using “a∗” as a constant for the sense of the name “Russell,” this function
could be defined as follows:

h∗′′=df
(
ëx∗ é{ëp∗[(x∗ 6= a∗) & (p∗ = h∗x∗)] ∨ [(x∗ = a∗) & (p∗ = q∗)]}

)
.

5Parsons says quite a bit more on this topic than I can discuss here. It should be noted that
in an “afterwords” to [37, p. 537], he claims that after composing it that he became aware
of problems with his position that need patching, and it may very well be that he no longer
holds the views outlined here.
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Again we get the result that h∗′′ characterizes h:

(∀x) (∀x∗)[∆xx∗ ⊃ ∆(hx)(h∗′′x∗)].(1′′)

In the problematic case, that in which x is Russell and x∗ is the sense of the
name “Russell,” the consequent of (1′′), ∆(hx)(h∗′′x∗), still holds. Here, hx
is the True (since Russell is human), and h∗′′x′ is the thought that snow is
white. This thought does present the True, and so the appropriate relation
holds. Again, by axiom 16éo , we have the unexpected result that ∆hh∗′′, i.e.,
the deviant sense-function h∗′′, is still to be regarded as a sense presenting h.
No finagling with zips would provide help here, since the sense of “Russell”
presents Russell, not a zip.
However, it might be thought that, in this case, no absurdity results.
Certainly we do not face precisely the same problem as we did with the
Excalibur case. Suppose that the h∗′′ is expressed by some predicate “ . . .
is thus-and-so.” By an argument parallel to the previous example, we again
get that “ . . . is thus-and-so” is codenotative with “ . . . is human.” Hence,
“Russell is thus-and-so” must denote the same truth-value as “Russell is
human.” The former sentence expresses the thought that snow is white,
and the latter the thought that Russell is human; these have the same truth-
value, so there is no violation here of the Fregean substitutivity principles
for codenotative expressions.
This response, however, misses the heart of the matter. It simply accepts
that the sentence “Russell is thus-and-so,” where the name “Russell” ex-
presses the same sense it normally does, could express the thought that snow
is white, a thought that has nothing to do with Russell. This is intuitively
suspect. It does not seem that there could be any such predicate as “ . . . is
thus-and-so,” which, when predicated of Russell, expresses the thought that
snow is white. One must take care not to confuse the strange predicate
“ . . . is thus-and-so” with the unobjectionable predicate “ . . . is an entity
such that, there is some sense presenting it, which, when taken as argument
to the sense-function h∗′′, the result is a thought presenting the True.” The
latter predicate does not express h∗′′, but instead expresses a much more
complex sense involving some sense even higher in the sense-hierarchy that
has h∗′′ as denotation. If we were to attribute this latter predicate to Russell,
the result would not be the thought that snow is white, but another more
complex thought that is true because the thought that snow is white is true.
The predicate “ . . . is thus-and-so” is much more strange. To claim that
“Russell is thus-and-so” somehow is to claim that snow is white (and only
that).
Consider an even more deviant sense-function g∗ whose values are differ-
ent from the values of h∗ for all arguments, and have no common form or
similarities except that each has the same truth-value as the corresponding
value of h∗. The value of g∗ might be the thought that Barack Obama is the
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44th President of the United States for the sense of “Russell,” the thought
that Stockholm is in Sweden for the sense of “Socrates,” and the thought
that 2 + 2 = 5 for the sense of “Boston,” etc. It would still hold that g∗

characterizes h, and hence, by axiom 16éo that g∗ is a sense presenting h.
Suppose there were some predicate “ . . . is thingamajiggy” expressing g∗.
This predicate would be codenotative with the predicate “ . . . is human,”
and yet, to predicate it of Socrates would be to claim that Stockholm is in
Sweden, to predicate it of Boston would be to claim that 2 + 2 = 5, and
so on. Again, this seems bizarre. The connection between g∗ and h seems
much more remote than the relation between sense and denotation, and g∗

simply doesn’t seem like it could be a sense at all.
This issue cannot be fully addressed without delving further into the na-
ture of senses generally, their relationship with language, and their identity
conditions. However, if two sentences express the same thought if and only if
they are synonymously isomorphic (as explained earlier), obviously “Russell
is thus-and-so” and “snow is white” cannot plausibly be taken to express
the same thought, for that would suggest that “Russell” is synonymous with
“snow” and “ . . . is thus-and-so” is synonymous with “ . . . is white.” Hence,
it might be argued that the result that h∗′′ and g∗ are senses is inconsistent
with the guiding principles of Alternatives (0) and (1).6 One might respond
to these concerns by noting that just because h∗′′ and g∗ are senses does
not necessarily mean that there could be predicates expressing them. How-
ever, this would leave us in the dark about exactly what senses are, or at
least, about what sort of “senses” our deviant sense-functions h∗′′ and g∗

are supposed to be.
Worse, for present purposes, the results of axioms 16 regarding deviant
sense-functions threaten to make it impossible to add principles in line with
certain otherwise plausible conditions regarding the identity conditions of
senses to the Logic of Sense and Denotation without disaster.
To see this, it is worth noting that on any fine-grained understanding of
the identity conditions of senses, such as those involved in Alternatives (0)
and (1), those sense-functions which are most plausibly regarded as the
senses of primitive function signswould be one-one functions. Two sentences

6Axioms 16 in their stronger form are inconsistent with the basic principles of Church’s
other alternative understanding of the identity conditions of senses, Alternative (2), as well.
On this alternative, senses are identified when they are necessarily codenotative. However,
David Kaplan and A. F. Bausch, apparently independently, discovered that axioms 16 lead to
a proof in Alternative (2) that there are is only one true thought/proposition, and one false
thought/proposition (see [37, p. 515f]). Church attempts to rectify this in [10] by modifying
Alternative (2) using a device meant for Alternative (0), where it is clearly out of place and
somewhat ad hoc. I do not discuss Alternative (2) at length in this paper. However, although
I have not explored this option myself, I believe it possible that my alternative approach,
outlined in sec. 6, could also be made to provide a different solution to the Kaplan/Bausch
problem.
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of the form pn is humanq and pm is humanq express different thoughts if the
names n and m have different senses. Consequently, the sense function h∗,
considered earlier, would appear to yield distinct values for distinct senses as
argument. Indeed, in Alternative (0), it is plausible to suppose that all sense-
functions that are themselves senses having functions as denotation would
be one-one. In Alternative (1), for reasons explained later, this cannot be
held for all types, but it is at least plausible for the simplest types. Consider
then the following axiom for given types α and â :

(Axiom 64αâ) (∀fα 7→â) (∀f∗
α+1 7→â+1) (∀xα) (∀x

∗
α+1
) (∀yα) (∀y∗α+1)

[
∆ff∗ ⊃(

∆xx∗ ⊃ {∆yy∗ ⊃ [(f∗x∗ = f∗y∗) ⊃ (x∗ = y∗)]}
)]
.

In other words, those sense-functions that are senses yield different senses
as value for different senses as argument. Church [11, pp. 151–52] adds this
principle and other axioms capturing the identity conditions of senses to
his formulation of Alternative (0).7 While he did not add the principle in
a general form in his first formulation of Alternative (1) [13, pp. 23–24], he
included a similar principle for each primitive sense-function constant.
Something like axiom 64éo is arguably the lesson to be learned from the
Fregean solution to the belief puzzles. In “oblique” contexts, words shift
from having their usual sense and denotation to having their customary sense
as denotation. Hence in the sentences “Elizabeth believes that Hesperus is a
planet” and “Elizabeth believes that Phosphorus is a planet,” the embedded
clauses “Hesperus is a planet” and “Phosphorus is a planet” denote thoughts
rather than truth-values. For this to solve the belief puzzle, they must
be different thoughts. The reason they are different thoughts is that the
customary sense of “ . . . is a planet”—the denotation of “ . . . is a planet”
in these contexts—yields different thoughts for different argument senses.
Indeed, Frege [21, pp. 255–56] explicitly makes such claims as that when
one name in a sentence is replaced with another having a different sense, the
sentence as a whole changes sense as well, and this provides rationale for
axioms 64.
However, such principles cannot be added to a system containing ax-
ioms 16 in unmodified form without catastrophe. To see this, consider now
our previous example of h and h∗, and a deviant sense-function h∗′′′, similar
to h∗ and the others except that its value for the sense of “Russell” as argu-
ment is the thought expressed by “Frege is human.” If we use “b∗” to stand
for the sense of the name “Frege,” we can define h∗′′′ as follows:

h∗′′′ =df
(
ëx∗ é{ëp∗[(x∗ 6= a∗) & (p∗ = h∗x∗)] ∨

[(x∗ = a∗) & (p∗ = h∗b∗)]}
)
.

7I ignore for present purposes the superscripts on the ∆-relation Church placed on this
axiom schema in line with his 1974 tack for solving the semantical paradoxes.
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For reasons that should already be clear from the above discussion, we still
have:

(∀x) (∀x∗)[∆xx∗ ⊃ ∆(hx)(h∗′′′x∗)](1′′′)

and hence, by axiom 16éo:

∆hh∗′′′.(4)

In conjunction with axiom 64éo , this leads to:

(5) (∀xα) (∀x∗α+1) (∀yα) (∀y
∗
α+1
)
(
∆xx∗ ⊃ {∆yy∗ ⊃
[(h∗′′′x∗ = h∗′′′y∗) ⊃ (x∗ = y∗)]}

)
.

According to our definition, the value of h∗′′′ for the sense of “Russell” as
argument (a∗) is the thought that “Frege is human” (h∗b∗); the same thought
results for the sense of “Frege” as argument (b∗). If now, in the above, we
take x as a (Russell), x∗ as a∗ (the sense of “Russell”), y as b (Frege),
and y∗ as b∗ (the sense of “Frege”), we arrive at the absurd result that the
sense of “Russell” is the same as the sense of “Frege” (a∗ = b∗), because
these yield the same thought as value when taken as arguments to the same
deviant sense-function. Innumerable other difficulties follow, such as that the
thought expressed by “Frege isGerman” is the same as the thought expressed
by “Russell is German,” and hence, that these have the same truth-value,
etc. Worse, given the determinacy of senses, captured in Church’s system by
axioms 17 listed earlier, the above results entail that Russell is Frege. The
problem, in sum, is that axioms 64 entail that all those sense-functions that
are senses must be one-one, but axioms 16 entail otherwise.
The point can be stated in general terms as follows. Suppose a∗α+1 and b

∗
α+1

are different senses of the same type presenting different denotations, aα
and bα , respectively. Further suppose that fα 7→o is a function such that
fα 7→oaα andfα 7→obα are the same truth-value. Letf∗

α+1 7→o1 be a non-deviant
sense-function that is a sense presenting fα 7→o. Then, f∗

α+1 7→o1a
∗
α+1
and

f∗
α+1 7→o1b

∗
α+1
are senses presenting the same truth value, fα 7→oaα . However,

one can define a sense-function f∗′
α+1 7→o1 , whose value is the same as f

∗
α+1 7→o1

for all arguments except a∗α+1 , for which its value isf
∗
α+1 7→o1b

∗
α+1
. Axiom 16αo

entails that f∗′
α+1 7→o1 is also a sense of fα 7→o, despite that f

∗′
α+1 7→o1a

∗
α+1
is a

thought that, intuitively, has nothing to do with the value of fα 7→o for a as
argument. Outright absurdities follow when certain principles governing the
identity conditions of thoughts are adopted. Note that f∗′

α+1 7→o1b
∗
α+1
is the

same thought as f∗′
α+1 7→o1a

∗
α+1
, because both are defined as f∗

α+1 7→o1b
∗
α+1
. If

we accept axiom 64αo, we get that a∗α+1 and b
∗
α+1
are the same sense, and that

aα and bα are the same entity, contrary to what was assumed. We have just
given an argument for equating any two senses of the type α+1, regardless of
their denotations, and with axiom 17α , this leads to an argument equating
any two entities of the type α.
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The above general proof scheme works even for type o1, senses presenting
truth-values, which threatens the consistency of the system, because one
could thereby demonstrate that the True is the False. For a simple for-
mulation of this last problem, let j∗o1 7→o1 be a constant sense-function that
maps every thought to the same tautological thought, t∗o1 . By axiom 16

oo ,
this sense-function presents the truth-function (ëp p ⊃ p) that maps both
the True and the False to the True. Now let s∗ be some self-contradictory
thought. By axiom 64oo , since j∗t∗ = j∗s∗, we get t∗ = s∗, and thus that
their denotations, the True and the False, respectively, are identical. This
demonstrates that if care is not taken with the set-up of the system, the result
would be outright inconsistency. It also shows us that the problems arise not
only for what I have called “deviant” sense-functions, but also for constant
sense-functions.
No easy fix can be found for the problems by a modal restriction on
axioms 16. If we focus our attention too much on examples similar to
the one involving h and h∗′′′, it might seem that the difficulties could be
blocked by weakening axioms 16 to claim that a sense-function f∗ is a
sense of a function f whenever f∗ characterizes f necessarily (rather than
whenever f∗ characterizes f simply contingently). The example of h∗′′′

considered earlier only leads to the conclusion that the sense of “Frege”
is the same as the sense of “Russell,” because the thoughts that “Russell
is human” and “Frege is human” happen to have the same truth-value.
It is not clear that these thoughts necessarily have the same truth-value.
However, this suggestion is insufficient to block the problems. It is not
difficult to give a different example in which the characterization is neces-
sary. For example, let a∗ be the sense of “2”, b∗ the sense of “3”, f the
function denoted by “ . . . is prime,” and f∗ the sense of “ . . . is prime.”
Define f∗′ so that its value is the same as f∗ for all arguments save a∗,
for which its value is f∗b∗. It then holds that f∗′ characterizes f nec-
essarily. Similar comments apply to the problem just sketched for type
o1, which was given entirely in terms of tautological and self-contradictory
thoughts.8

8Moreover, a modal restriction on axiom 16 would be difficult to formulate for other
reasons. Modal operators, as intensional operators, in a direct discourse system such as
the Logic of Sense and Denotation, would be understood as function signs applying to
expressions of type o1 rather than of type o0. So rather than applying such an operator
directly to (1), one wouldmake use of different expressions, and so, one would need otherwise
to capture the relation between those new expressions and those appearing in the consequent,
which might not be altogether easy without presupposing something like axioms 16 in the
original form.
Additionally, the modal restriction would likely not be satisfied in the desired cases for the

application of axioms 16. After all, most senses present different individuals as denotation
in different possible worlds, and so, the same sense-function presents different functions in
different possible worlds.
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§4. The Russell–Myhill antinomy and related problems. The above prob-
lems are not the only difficulties plaguing axioms 16, especially when con-
joined with something like axioms 64. Another set of potential problems
involve difficulties regarding the cardinalities of certain sense types. In [35],
JohnMyhill showed that the original formulation of one of Church’s alterna-
tive systems for the Logic of Sense and Denotation was inconsistent, due to
a violation of Cantor’s theorem and a resulting antinomy similar to the para-
dox discussed by Russell in §500 of [41]. Consider functions of type o1 7→ o;
crudely these can be thought of as properties of thoughts or propositions.
By Cantorian reasoning, there must be more such functions than there are
thoughts. However, assuming that every function of this type is presented
by a sense (of type o2 7→ o1), it would seem possible to generate a different
thought for each such function, e.g., by making use of the sense-function
Π(o2 7→o1) 7→o1 , which has as values universally quantified thoughts. The con-
stant “Π(o2 7→o1) 7→o1” represents the sense of the quantifier “Π(o1 7→o) 7→o”, and
for reasons already considered, it is plausible to regard this sense-function as
yielding distinct thoughts for distinct senses as argument. This corresponds
to the natural language fact that sentences of the form pevery thought is fq
and pevery thought is gq are synonymously isomorphic only if f and g are
synonymously isomorphic. This supports the following principle:

(∀k∗o2 7→o1) (∀l
∗
o2 7→o1)[(Π(o2 7→o1) 7→o1k

∗ = Π(o2 7→o1) 7→o1 l
∗) ⊃ (k∗ = l∗)].(6)

Church included this as an axiom in his first formulation of Alternative (1),
and something very similar results from axiom 64(o1 7→o)o in Alternative (0).
However, this leads to positing as many thoughts as senses of type o2 7→ o1,
and, therefore, if such a sense is posited for each function of type o1 7→ o,
one gets a violation of Cantor’s theorem.
This leads to outright inconsistency due to the following paradox. Some
universal thoughts about thoughts fall under the property they generalize
upon, others do not. The thought that all thoughts are true is not itself true,
whereas the thought that all thoughts are self-identical is itself self-identical.
Consider the property a thought has iff it is a universal thought that does not
fall under the property it generalizes upon, e.g., consider the functionwo1 7→o:

wo1 7→o =df
(
ëp∗ (∃ko1 7→o) (∃k∗o2 7→o1){[∆kk

∗

& (p∗ = Π(o2 7→o1) 7→o1k
∗)] &∼ kp∗}

)
.

Abbreviating the ascendant of the above expression as w∗
o2 7→o1 , by (SRT) we

have the result that ⊢ ∆ww∗. We can then consider the thought
Π(o2 7→o1) 7→o1w

∗ (i.e., the thought that all thoughts are w), which we can abbre-
viate as r∗. We then have the impossible result, however, that wr∗ ≡ ∼wr∗.
This contradiction (and its ilk) has come to be known as the Russell–Myhill
antinomy.
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In response to this problem and other semantic antinomies, in 1974,
Church suggested that the ∆-constants be affixed with superscripts to form
the hierarchy ∆l ,∆l+1,∆l+2, . . . , with l, l+1, l+2, etc., indicating a Tarskian
hierarchy of languages. The system was modified in such a way that ifMα
is an expression containing a ∆-constant with superscript m, and Mα+1
is its ascendant, it would hold only that ⊢ ∆m+1MαMα+1 and not that
⊢ ∆mMαMα+1 . Applying this to the above case, if m is the superscript that
appears on the “∆” in the definition of w, we get only that ⊢ ∆m+1ww∗

and not ⊢ ∆mww∗, and from this no contradiction is forthcoming when we
consider wr∗. However, Anderson [2] soon discovered that the antinomy
remained unsolved, due to the consequence of axioms 16 that every object
and every function has at least one sense presenting it, a result that holds
even within every language when a language-hierarchy is imposed. Hence,
while wemay not have ⊢ ∆mww∗, we do have ⊢ (∃k∗) ∆mwk∗. The antinomy
can be formulated using the sense-function posited by this theorem without
making use of w∗.
Indeed, Anderson has generalized upon the lesson of the Russell–Myhill.
By Cantor’s theorem, if the domain of type â has at least two members
and the domain of type α+1 is non-empty, the cardinality of the domain
(α+1 7→ â) must be greater than that of typeα+1. However, given axioms 16,
we get the result that every function in the domain of (α+1 7→ â) is presented
by a sense of type (α+2 7→ â+1). Because senses have unique denotations,
this means that the cardinality of type (α+2 7→ â+1) is at least as great
as that of type (α+1 7→ â). The presence, then, of any one-one sense-
function of type (α+2 7→ â+1) 7→ α+1 violates Cantor’s theorem. This poses
a definite problem, since the most plausible candidates for the senses of
primitive function signs, when construed as sense-functions, would appear
to be one-one in Alternatives (0) and (1), and some would fall into a type of
the form (α+2 7→ â+1) 7→ α+1. In his own work, Anderson has advocated
dropping axioms 16, thereby blocking the result that every individual and
every function is presented by at least one sense.
However, it does not seem tome that the source of the difficulties regarding
the cardinalities of certain types and the failure of Church’s initial proposed
solution to the Russell–Myhill antinomy needs to be located with axioms 16.
The result that every object and every function is presented by at least
one sense is not in and of itself absurd, and indeed, has some intuitive
plausibility of its own, as I have argued elsewhere [31, pp. 309–312]. Indeed,
Church himself was at times attracted to taking that result as axiomatic
(see, e.g., [26, 13]). If making good on Church’s quasi-Tarskian solution
to the Russell–Myhill antinomy necessitates blocking this result, this seems
if anything to show that this is not the best way to go. Indeed, eventually,
this seems to have been Church’s own conclusion, and in [13] we find him
advocating a richer form of ramification as a solution to semantic paradoxes
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instead of his earlier quasi-Tarskian approach. I agree that a richer form
of ramification is the most plausible route for solving the Russell–Myhill
antinomy and related cardinality problems, and hence I do not blame such
difficulties on axioms 16. More is said about ramification in sec. 8, but for
the most part my focus is on the other set of problems.

§5. Dropping/modifiying axiom schema 16. Even if full fledged ramifica-
tion is invoked to solve the Russell–Myhill antinomy and related problems, it
provides no help in solving the problems regardingmany-one sense-functions
turning out to be senses according to axioms 16. However we solve the car-
dinality problems, denying or somehow weakening these axioms is still the
most initially tempting route for escaping these other difficulties. What
makes this route tempting is that it would allow us to admit that the sense-
functions h∗′, h∗′′, and h∗′′′, etc., discussed in sec. 3 characterize the function
h while denying that they are therefore to be regarded as senses of h. Simi-
larly, the sense-function j∗o1 7→o1 discussed at the end of sec. 3 can be admitted
to characterize the function (ëp p ⊃ p) without being taken as a sense of
this function.
The danger is that if axiom schema 16 is dropped outright, we make
it impossible to infer that a sense-function presents another function as
denotation in virtue of some correlation of the values of the two functions.
While we retain axioms 15, and preserve the relation in the other direction,
we still seem to be losing certain very important results, such as (SRT).
Hence, we must either replace axiom 16 with a weakened version that allows
the proof of (SRT) to go through, or introduce some alternative method of
getting this result. Anderson [2, 5], who, as we have seen, finds axioms 16
implausible for other reasons, has taken the latter approach in some of his
work.
It is not clear towhat extentChurchhimself appreciated the difficultieswith
deviant sense-functions and axioms 16 or took them sufficiently seriously.
In his published works, they are scantly mentioned, and usually only in
association with “empty” or “vacuous” senses (see [9, p. 4n] and [11, p. 152]),
which perhaps explains in part Parsons’s focus on such senses. Yet Church
surely had some awareness of the more general problem, evidence of which
can be found in Leon Henkin’s unpublished notes on lectures Church gave
on the Logic of Sense and Denotation as early as 1946. Moreover, in his
1974 formulation of Alternative (0), although Church does not discuss the
relevant issues in any detail, he presents weakened versions of axioms 16 that
provide some help.
For Alternative (0), Church introduces a hierarchy of operators, ë0, ë1, ë2,
. . . , rather than a single lambda operator. The reason is that, in Alterna-
tive (0), ë-converts are not taken as synonymous. Hence, “(ëxα fα 7→âxα)aα”
and “fα 7→âaα” would be thought to express different senses. The first
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ascendants of these expressions, therefore, must denote different senses.
For this reason, the ascendant of “(ëxα fα 7→âxα)aα” cannot simply be
“(ëxα+1 fα+1 7→â+1xα+1)aα+1” since this collapses to “fα+1 7→â+1aα+1” by ë-
conversion, and the latter is the ascendant of “fα 7→âaα”. Hence, in Alter-
native (0), the first ascendant of an expression containing a given operator
ën is formed using the operator ën+1, and ë-conversion is allowed only for
the base lambda operator ë0. In his formulation of Alternative (0), Church
modified axiom schema 16 to the following:9

(Axiom 16′αâ) (∀fα 7→â) (∀f∗
α+1 7→â+1){(∀xα) (∀x

∗
α+1
)

[∆xx∗ ⊃ ∆(fx)(f∗x∗)] ⊃ ∆f(ë1y∗f∗y∗)}.
Given the more particular understanding of the ascendant of an expression
at work in Alternative (0), the above is all that is needed to obtain (SRT).
This weakening of axiom schema 16 does provide some limited help in
blocking the outright absurdities involving deviant sense-functions and ax-
ioms 64. Let us return to the example functions h, h∗ and h∗′′′, from sec. 3
used to generate the argument that the sense of the name “Russell,” a∗, is
identical to the sense of the name “Frege,” b∗. With the unmodified version
of axiom 16éo , we got the result that ∆hh∗′′′, and since it follows from the
definition of h∗′′′ that h∗′′′a∗ = h∗′′′b∗, axiom 64éo leads to the result that
a∗ = b∗. With the weaker axiom 16′éo, we do not get the result that ∆hh∗′′′,
only the result ∆h(ë1y

∗ h∗′′′y∗). This blocks applying axiom 64 to get the
absurdity because while it is still provable that h∗′′′a∗ = h∗′′′b∗, it is impos-
sible to prove that (ë1y

∗ h∗′′′y∗)a∗ = (ë1y∗ h∗′′′y∗)b∗ without conversion
on ë1. For similar reasons, the argument to the effect that the True is the
False sketched at the end of sec. 3, is blocked.
While it avoids outright disaster, on the whole, I find this “solution”
to the difficulties unsatisfying. We still get the result that (ë1y

∗ h∗′′′y∗)
is a sense presenting h as denotation. Unpacking the definition of h∗′′′,
“(ë1y

∗ h∗′′′y∗)” is an abbreviation of:
[
ë1y

∗ ( ëx∗ é{ëp∗[(x∗ 6= a∗) & (p∗ = h∗x∗)] ∨
[(x∗ = a∗) & (p∗ = h∗b∗)]}

)
y∗

]

which ë-converts to:
(
ë1y

∗ é{ëp∗[(y∗ 6= a∗) & (p∗ = h∗y∗)] ∨ [(y∗ = a∗) & (p∗ = h∗b∗)]}
)
.

Given this, how unpalatable is the result that the function (ë1y
∗ h∗′′′y∗) is a

sense of h? This is a very difficult point to assess. The intended interpretation
of function abstracts making use of the hierarchy of ë-operators is really only
discussed in the context of forming ascendants. However, “(ë1y

∗ h∗′′′y∗)”
is not the ascendant of any formula, involving, as it does, functions whose

9Here again I omit the superscripts on the ∆-relation Church used at this time.
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arguments and values are not senses such as the description function, dis-
junction and identity (note that the “ é”, “=” and “∨” in the above are the
normal extensional ones; they do not stand for sense-functions). While
“(ë1y

∗ h∗′′′y∗)” is still thought to stand for a function of type é1 7→ o1, it is
almost impossible to understand what sort of function it is supposed to be,
how it differs from h∗′′′, and how its values relate to its arguments. Nev-
ertheless it follows in Church’s system that it is a sense that presents h as
denotation. Since “(ë1y

∗ h∗′′′y∗)” is not the ascendant of any formula, it
is unclear what sort of predicate, if any, could express it. A more elegant
solution is in order, even for Alternative (0).
In any case, no similar solution is possible for Alternative (1), as it has
only one ë-operator, and if a hierarchy were imposed, conversion would have
to be allowed with operators other than ë0. Oddly, Church retains axiom
schema 16 in its unweakened form in his 1993 reformulation of Alterna-
tive (1). Presumably, he took it to be too central to the system, especially
with regard to obtaining (SRT), to abandon. The ramification adopted to
avoid semantic paradoxes provides no help with the difficulties under dis-
cussion. This formulation of Alternative (1) seems to avoid the more serious
problems sketched above simply by wholly neglecting to include axioms gov-
erning the identity conditions of senses, whereas such principles are clearly
called for.10

§6. Amore radical approach. According to the understandingof functions
adopted by Frege and Church, expanded from the common understanding
in mathematics, the value of a function for a certain argument is in no way
constituted by that function and its argument. The value of the function
positive square root of for the number four as argument is the number two,
but the number two is not composed of the number four and the square
root function. The same number is the result of a strictly infinite number
of different functions for different arguments. The problems that arise for
deviant sense-functions for the Logic of Sense andDenotation exist precisely
because there need be no direct link between the argument and value of a
sense-function. The value of a sense-function for the sense of the name
“Russell” as argument may be a thought that has nothing to do with Russell
or the sense of “Russell.” The problems donot arise for those sense-functions
in which there is always a direct link between the argument and value,
i.e., those in which the argument-sense can be regarded in some sense as a
constituent or part of the value-sense.

10For reasons discussed in sec. 8, axiom schema 64 would not hold for all types under the
guiding principles of Alternative (1). However, to arrive at inconsistency, wewould need only
the instance of axiom 64whereα and â are both type o, which, is not only consistent with, but
demanded by, these principles, for reasons discussed in the appendix. Similar considerations
apply for the instance of axiom 64 where α and â are types é and o respectively, which is the
instance giving rise to the more serious difficulties regarding function h∗′′′.
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It is not surprising then that certain Frege scholars, principally Dummett
([16, pp. 291–94]; [17, pp. 249–53, 265–70]; see also [30, pp. 65–76]), have
resisted attributing to Frege himself the view that the sense of a function
expression is a sense-function. Frege claims repeatedly that the thought
expressed by a complete sentence is a whole consisting of the senses of the
parts, which is difficult to reconcile with the sense-function view of the senses
of predicate expressions, especially as Frege [21, p. 255] denies that in the
realm of denotation the value of a function is composed of function and ar-
gument. However, putting aside the question of what Frege’s own view was,
these considerations do seem to recommend an alternative understanding of
the nature of the senses of function expressions. Rather than understanding
them as functions in the strict sense, one could instead understand them
as more literally “incomplete” or “unsaturated” entities (to borrow some
Fregean phrases). These incomplete senses would, like functions, come
together with an “argument,” and would, like functions, thereby yield a
“value.” However, unlike functions, they would be understood as binding
together with their argument-senses to form wholes, and these wholes would
contain the arguments as constituents. Because this is somewhat different
from the way that functions proper operate, I prefer to speak of s-arguments
and s-values rather than arguments and values in the traditional (functional)
sense.11

In what follows, I suggest that we modify Church’s approach by introduc-
ing constants and variables for such incomplete senses, and regard these as
falling into distinct types from any function types proper. In [29], David
Kaplan too resists equating the senses of functions of type α 7→ â with
functions of type α1 7→ â1 and instead posits a distinct type (α 7→ â)1 for
this purpose. Kaplan, however, does not develop this suggestion in detail.
In what follows, I make use of a revised type system in line with Kaplan’s
remarks. Type symbols are defined recursively as follows: (i) é0 and o0 are
type symbols, (ii) if α and â are type symbols, then (α 7→ â)0 is a type
symbol, (iii) if αn is a type symbol with n as its outermost subscript, then
αn+1 is a type symbol. As before, type é0 is the type of individuals, o0 is type
of truth-values, and generally, αn+1 is the type of senses with denotations of
type αn. We abandon Church’s assumption that the type symbol appropri-
ate to senses of type α is to be obtained from α by raising all primitive type
symbols in α by one, and, instead, simply raise the outermost subscript by
one. Those type symbols with outermost subscripts greater than zero are the
types for senses, and generally, we shall call such types sense types. Types

11The difference between my incomplete senses and sense-functions in Church’s sense is
somewhat analogous to the distinction between traditionalRussellian propositional functions
and Ramsey’s “propositional functions in extension” in [38]. Incomplete senses are more
like the former, though there are of course differences due to the differing natures of Fregean
thoughts and Russellian propositions.
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of the form (α 7→ â)n are functions in the usual mathematical sense only
when n = 0 and are understood as types for incomplete senses otherwise.
Again, the subscript on a type symbol can be omitted when it is zero, and
parentheses are left off with the convention of association to the right, but
only when the subscript directly outside the parentheses is zero. If f is a
function of type (αi 7→ âj)0, and a an entity of type αi , then fa is the entity
of type âj that is the value of f with a as argument. However, if F is an
incomplete sense of type (αi 7→ âj)n+1, and a∗ is a sense of type αi+n+1 then
Fa∗ is to be understood as the complex sense of type âj+n+1 that arises from
the composition of F with a∗, or the s-value of F with a∗ as s-argument. The
term “composition” also comes from Kaplan. The terminology is appropri-
ate as the sense a∗ is to be understood as in some way a constituent or part
of the complex sense Fa∗.
It should be noted that this approach does not eschew sense-functions.
We still posit functions of type (é1 7→ o1)0, i.e., functions with senses of
individuals as arguments and thoughts/propositions as values. However,
functions of this type are no longer regarded as the senses of functions of type
(é 7→ o)0; instead, that role is given to entities of type (é 7→ o)1. Let H(é 7→o)1
be the sense of the predicate “ . . . is human,” understood as an incomplete
sense of type (é 7→ o)1. When it takes an s-argument of type é1, it yields an
s-value of type o1. The composition of this sense with the sense of “Russell”
yields the thought that Russell is human, and the composition of this sense
with the sense of “Boston” results in the thought that Boston is human.
There is, to be sure, a function of type (é1 7→ o1)0, viz., h

∗, whose value
for any argument x∗ is the same as the s-value of H for x∗ as s-argument.
However, it is not the case that for every function of type (é1 7→ o1)0 there
corresponds an incomplete sense of type (é 7→ o)1. We can allow our deviant
sense-functions h∗′, h∗′′, h∗′′′, etc., as entities of type (é1 7→ o1)0 without
positing anything corresponding to them in type (é 7→ o)1.
Indeed, one of the chief advantages of placing the senses of functions in
a distinct logical type is that it allows us more easily to curtail how many
and what sort are posited to exist. For functions proper, we can continue to
posit one for every determinate mapping from entities in the argument-type
to entities in the value-type. Such mappings may be many-one or one-
one. This underwrites defining functions by cases, resulting in “deviant”
functions. Suchdefinition ismadepossible in the ë-calculus using the lambda
and description operators, as seen above in the definitions of h∗′ and h∗′′′.
The case must be different with incomplete senses. They must be posited
only for those mappings in which the s-value is precisely the same for each
s-argument except differing in containing that s-argument in one or more
spots in which the other s-values contain their corresponding s-arguments
instead. For incomplete senses with s-arguments of types én or on, at least,
the mapping generated of s-arguments to s-values would be one-one.
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In the ë-calculus, functional “comprehension” is effected by allowing ë-
abstracts as valid substituends of function variables. ë-abstraction is the
typical means for defining functions other than those taken as primitive.
The deviant sense-function h∗′′′, as we have seen, could be defined using an
abstract such as the following:

(
ëx∗ é{ëp∗[(x∗ 6= a∗) & (p∗ = Hx∗)] ∨ [(x∗ = a∗) & (p∗ = Hb∗)]}

)
.

Clearly, ë-abstraction using the base ë-operator should be understood as
creating complex expressions of functional type, and in this case, an expres-
sion of type (é1 7→ o1)0. The above must not be understood as a complex
expression of type (é 7→ o)1. Nevertheless, there is a need for an abstraction
notation for incomplete senses. Among other things, such notation would
be necessary for forming ascendants of complex function expressions. Con-
sider, e.g., the function expression “(ëxé ∼o 7→o hé 7→oxé)”, while its denotation
is a function mapping all humans to the False, and other individuals to
the True, its sense would seem to be an incomplete sense of type (é 7→ o)1,
yielding different thoughts when completed by different senses for individu-
als.
Following the notation used by Church in Alternative (0), it is convenient
to use the operator ë1 in forming the ascendants of complex function ex-
pressions using ë proper. However, this operator is to be understood as
part of a notation forming expressions of type (α 7→ â)1, not for forming
sense-function expressions. (The base ë-operator can continue to be used
for that purpose.) To form the ascendant of “(ëxé ∼o 7→o hé 7→oxé),” we could
then utilize the expression “(ë1xé1 ∼(o 7→o)1 h(é 7→o)1xé1)”, which would be un-
derstood as having type (é 7→ o)1. To avoid misunderstanding, we should
note that this use of “ë1” is motivated primarily to distinguish incomplete-
sense abstracts from function abstracts, and not, like Church’s use of the
sign “ë1”, as a way of blocking conversion. Indeed, we shall find it possible
to allow conversion with regard to such abstracts.
To avoid a collapse back to the sorts of difficulties discussed earlier, we
must adopt certain conventions regarding the proper formulation of an
abstract of the form p(ë1xαi+1Mâm+1)q: (i) the bound variable xαi+1 must
be of a sense type, (ii) the expression occurring within the abstract, Mâm+1,
not only must itself be of a sense type, but also (a) must contain xαi+1 free,
and (b) must consist entirely of constants and variables falling into sense
types, and, generally, all its well-formed parts must be of sense types. Hence,
even if the whole expressionMâm+1 is of a sense type, it is not allowed in the
context p(ë1xαi+1Mâm+1)q if it contains any variables, constants or abstracts
standing for functions, individuals or truth-values (entities whose type isα0).
Consider, for example, the expression:

é{ëp∗[(x∗ 6= a∗) & (p∗ = Hx∗)] ∨ [(x∗ = a∗) & (p∗ = Hb∗)]}.
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This whole expression has the sense type o1, but clearly we do not want to
allow the following:

(
ë1x

∗ é{ëp∗[(x∗ 6= a∗) & (p∗ = Hx∗)] ∨ [(x∗ = a∗) & (p∗ = Hb∗)]}
)

as a well-formed expression of type (é 7→ o)1. The ban on constituent
function signs rules this out. The operator ë2 is used for forming ascendants
of expressions using the operator ë1, and generally, as a way of forming
complex expressions for entities of types of the form (α 7→ â)2, and so on,
creating a hierarchy. Full syntactic rules are given in the next section.
Generally, the restrictions placed on the formation of incomplete sense ab-
stracts ensure that their s-arguments can always be understoodas constituents
of their s-values. The stricture that Mâj+1 in an abstract p(ë1xαi+1Mâm+1)q
must contain xαi free rules out an abstract such as “(ë1x

∗ a∗)”, where “a∗”
is a constant. There is no incomplete sense that yields the same thought
as s-value for every s-argument. Similarly, the constant sense-function j∗

discussed at the end of sec. 3 does not correspond to any incomplete sense.

§7. A new formal system: the core. We begin our sketch of a new formal
system by describing a syntax. We begin with primitive constants: (i) a
constant C(o 7→o 7→o)n for every n > 0, (ii) a constant ∼(o 7→o)n for every n > 0,
(iii) a constant Π((αm 7→o) 7→o)n for every n > 0 and type αm, (iv) a constant

é
((αm 7→o) 7→αm)n for every n > 0 and type αm, (v) a constant ∆(αm 7→αm+1 7→o)n
for every n > 0 and type αm. For each type αm, we also posit an infinite
number of variables:

aαm , bαm , dαm , . . . , xαm , yαm , zαm , Aαm , Bαm , Dαm , . . . , Xαm , Yαm , Zαm ,

a ′αm , b
′
αm , d

′
αm , . . . , A

′
αm , B

′
αm , D

′
αm , . . . , a

′′
αm , b

′′
αm , d

′′
αm , . . . , etc.

We then define a well-formed expression (wfe) recursively as follows: (i) the
constants are wfes of the type given by their subscripts, (ii) variables are
wfes of the type given by their subscripts, (iii) ifMâm+n is a wfe of type âm+n
and every well-formed part ofMâm+n has a type whose outermost subscript
is at least n, and Mâm+n contains the variable xαi+n occurring free, then
p(ënxαi+nMâm+n)q is a wfe of type (αi 7→ âm)n , (iv) ifM(αi 7→âm)n is a wfe of
type (αi 7→ âm)n, and Aαi+n is a wfe of type αi+n, then p(M(αi 7→âm)nAαi+n)q
is a wfe of type âm+n; nothing else is a wfe. A formula is defined as a wfe
having type o. Parentheses are dropped when no ambiguity results, with the
convention of association to the left.
One consequence of the above definitions worth discussing is that vacu-
ous variable binding is disallowed in abstracts p(ënxαi+nMâm+n)q even when
n = 0. The reason for this change is that such abstracts would not have
ascendants unless vacuous variable binding were also allowed with those
abstracts where n > 0. However, earlier we considered reasons for avoiding
such abstracts. This too perhaps brings us closer in line with the approach of
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Frege himself, who disallowed all forms of vacuous variable binding. Certain
of Church’s axioms for the extensional portion of the system utilize vacuous
variable-binding, and so it will become necessary to revise them below, but
otherwise, the change has no deleterious effects on the system. A function
abstract formed with a vacuously bound variable always represents a con-
stant function, and the change does not deprive us of the ability to define
constant functions. For instance, rather than using the abstract “(ëx a)” for
the constant function whose value is always a, we can use an abstract such
as “{ëx é[ëy(x = x & y = a)]}”.
What inference rules would be adopted for the system depend in part on
the desired criteria for identity of senses. If we wish to conform to Church’s
Alternative (0), for reasons that should be clear from the discussion above,
the conversion rules II and III must be restricted to cases in which the
abstraction operator ën has the subscript 0. For Alternative (1), however, it
is possible and preferable to allow conversion regardless of the subscript. On
that conception, “ha” and “(ëx hx)a” are regarded as synonymous, and this
is easily captured by allowing the ascendant of the latter, “(ë1x

∗Hx∗)a∗” to
convert to the ascendant of the former, “Ha∗”. There is of course room for
exploring both alternatives. However, the Fregean notion of an “incomplete
sense” seems to cohere best with an account allowing such conversions, and,
indeed, Frege’s own logical work does not have distinct notations for “ha”
and “(ëx hx)a”. I have elaborated elsewhere [30, pp. 101–05] on reasons
for taking this to be the most Fregean of Church’s three alternatives, and
indeed, I do not share the attitude expressed by Anderson [5, p. 163] that
Alternative (1) was a “false start.”
Allowing such conversions, the conversion rules I–III are unchanged from
those considered in sec. 2 above, noting only that they are allowed regardless
of the subscript on the ë-operator. It is worth noting, however, that in
the revised syntax it is not always possible to perform a conversion on an
expression of the form p(ënxαi+nMâm+n)Nαi+nq. For example, a formula
containing the well-formed expression:

[ë1p
∗(ë1q

∗ C(o 7→o 7→o)1p
∗q∗)] é(ër∗ r∗ 6= r∗)

cannot be converted to one containing the expression:

{ë1q∗[C(o 7→o 7→o)1

é(ër∗ r∗ 6= r∗)]q∗}
because the latter expression is not well-formed. The above expression is to
be regarded as its most fully reduced form. Similarly, certain applications
of the expansion rule cannot be applied to expressions found with abstracts
using the ën operator where n > 0.
My formulation of the extensional portion of the system also makes use
of the following additional inference rules:

IV. Modus ponens: if Ao and Bo are formulas, from Co 7→o 7→oAoBo and Ao,
infer Bo.
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V. Generalization: ifMα 7→o is a wfe of type (α 7→ o), and xα is a variable
not occurring free inMα 7→o, fromMα 7→oxα infer Π(α 7→o) 7→oMα 7→o.

VI. Replacement: ifMα 7→o is a wfe of type (α 7→ o), and xα is a variable not
occurring free inMα 7→o, and Aα is a wfe of type α, then fromMα 7→oxα
inferMα 7→oAα .

For the extensional portion, I suggest the following axioms and schemata:

(Axiom ∗1) p ⊃ (q ⊃ p),
(Axiom ∗2) [p ⊃ (q ⊃ r)] ⊃ [(p ⊃ q) ⊃ (p ⊃ r)],
(Axiom ∗3) (∼p ⊃ ∼ q) ⊃ [(∼p ⊃ q) ⊃ p],
(Axiom ∗4α) Π(α 7→o) 7→ofα 7→o ⊃ fα 7→oxα ,
(Axiom ∗5α) (∀xα)(p ⊃ fα 7→oxα) ⊃ (p ⊃ Π(α 7→o) 7→ofα 7→o),
(Axiom ∗6α) (∀xα)[fα 7→oxα ≡ (xα = yα)] ⊃ ( é(α 7→o) 7→αfα 7→o = yα),
(Axiom ∗7) (p ≡ q) ⊃ (p = q),
(Axiom ∗8nαiâm) (∀xαi+n)(f(αi 7→âm)nxαi+n = g(αi 7→âm)nxαi+n) ⊃ (f = g).
Here, I preface the axiom numbers with asterisks to differentiate them from
the axioms of Church’s formulation. I have not tried to preserve compati-
bility of the system with the possibility of the type é being empty, as Church
himself did, though this may be possible with some reformulation. I also
use free variables, which Church avoided. This too could likely be fixed, al-
though the ban on vacuous variable-binding makes the use of free variables
highly convenient. Together with rule IV, axioms ∗1–3 suffice for capturing
all tautologies of propositional logic. These, together with axioms ∗4–5 and
the other rules, suffice for Henkin-style completeness proofs for quantifica-
tion theory. Axioms ∗6 govern the description operator; if desired, “ é” can
be used as a choice operator instead, and axioms ∗6 replaced with:

fαm 7→oxαm ⊃ fαm 7→o( é(αm 7→o) 7→αmfαm 7→o).(Axiom ∗6′αm)

However, it may be best to avoid this assumption. Axioms ∗7–8 capture
the desired extensionality principles for the types not populated by senses,
and even incomplete senses are identified when they have the same s-value
for every s-argument. If this last assumption is deemed worth avoiding,
this axiom can be restricted to cases in which n = 0, though it should be
noted that the instances of axioms ∗8 when n 6= 0 are considerably weaker
than other plausible assumptions that might be made about their identity
conditions. To facilitate comparison with the numbering of the axioms in
Church’s systems, no axioms are listed as “Axiom ∗9” or “Axiom ∗10.”
Of course, the primary difference between the system presented here and
Church’s is that types such as (é 7→ o)1 are differentiated from function types
such as é1 7→ o1. Nevertheless, for any expression F(é 7→o)1 of type (é 7→ o)1,
there is an expression of type (é1 7→ o1), standing for a function whose
value for any sense of type é1 as argument is identical to the s-value of the
incomplete sense represented by F(é 7→o)1 for that sense as s-argument. In
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particular, for each such expression F(é 7→o)1 , if xé1 and yé1 are variables not
occurring in F(é 7→o)1 , we get:

⊢ (∀xé1)[(ëyé1 F(é 7→o)1yé1)xé1 = F(é 7→o)1xé1 ].
This makes it possible in many contexts to substitute expressions of type
é1 7→ o1 for those of type (é 7→ o)1 or vice-versa. To return to the examples
used in previous sections, if H is the incomplete sense of type (é 7→ o)1
expressed by “ . . . is human,” there is a sense-function, h∗ or (ëy∗Hy∗),
of type é1 7→ o1 for which it holds that (∀y∗)(h∗y∗ = Hy∗). However,
even given the extensionality principles above, this does not eliminate the
differences between these types, and an identity statement such as “h∗ = H”
is not even syntactically well-formed. Moreover, it is not the case that for
every expression of type é1 7→ o1 there is a corresponding expression of type
(é 7→ o)1. In particular, the deviant sense-functions h∗′, h∗′′, h∗′′′ considered
in sec. 3, while definable by well-formed abstracts of type (é1 7→ o1), have
nothing equivalent in type (é 7→ o)1.
We next turn to the intensional portion of the system. Church’s axioms
11–14 and 18 are modified only slightly in line with the changes to the type
system.

(Axiom ∗11n) ∆C(o 7→o 7→o)nC(o 7→o 7→o)n+1 ,
(Axiom ∗12nα) ∆Π((α 7→o) 7→o)nΠ((α 7→o) 7→o)n+1,
(Axiom ∗13nα) ∆ é((α 7→o) 7→α)n

é

((α 7→o) 7→α)n+1 ,
(Axiom ∗14nαm ) ∆∆(αm 7→αm+1 7→o)n∆(αm 7→αm+1 7→o)n+1,
(Axiom ∗18n) ∆∼(o 7→o)n∼(o 7→o)n+1 .
Versions of Church’s axioms 15–17, discussed earlier, are similarly modified
in line with the discussion above:12

(Axiom ∗15nαiâm) ∆f(αi 7→âm)nF(αi 7→âm)n+1 ⊃ [∆xαi+nyαi+n+1 ⊃ ∆(fx)(Fy)],
(Axiom ∗16nαiâm) (∀xαi+n)(∀yαi+n+1)[∆xy ⊃

∆(f(αi 7→âm)nx)(F(αi 7→âm)n+1y)] ⊃ ∆fF ,
(Axiom ∗17αm ) ∆xαmzαm+1 ⊃ (∆yαmzαm+1 ⊃ x = y).
While we here retain a schema superficially similar to Church’s axiom
schema 16, analogues of the difficulties discussed in sec. 3 are not present.
The variable F in ∗16 ranges over incomplete senses, not sense-functions.

12Alternatively, if we wished to take seriously the Fregean doctrine of the “incomplete”
or “unsaturated” nature of incomplete senses, and avoid constructions such as “∆fF ” that
place names of incomplete entities alone in subject position, we could avoid axioms such as
∗15 and ∗16 altogether and simply use formulas such as “(∀x) (∀x∗)[∆xx∗ ⊃ ∆(fx)(Fx∗)]”
in the place of constructions such as “∆fF ”. Such an approach would naturally fit best
with a more Fregean-style function calculus, one that displaces the need for ë-abstracts by
effecting functional comprehension directly through a strong replacement rule for function
and incomplete sense variables. For the development of a system along these lines, see
[30, chap. 5].
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The problematic sense-functions h∗′′′, j∗ and their ilk are not valid sub-
stituends. The syntactic rules governing abstracts of type (é 7→ o)1 and
(o 7→ o)1 bar defining anything yielding similar unpalatable results. This
allows us to obtain (SRT) by more or less the procedure by which it is gotten
in Church’s systems. Of course, the definition of first ascendant must be
modified so that the ascendantMαm+1 of a closed expressionMαm is gotten
more simply by increasing the outermost subscripts on the type symbols for
each variable, constant and ë-operator making upMαm by one. (SRT) can
then be proven for all closed expressions by induction on the length of the
expressionMαm . A full proof is left to the reader.

§8. Surrogate models, remnants of axioms 64 and the need for ramifica-
tion. What remains is to develop axioms governing the identity conditions
of senses. We shall not attempt here a full exploration of this topic, which
raises a number of philosophical issues. Since senses are usually regarded as
the meanings of linguistic phrases, an exploration of the identity conditions
of senses goes hand in hand with the exploration of synonymy in language.
It is still a matter of debate to what extent there is one privileged or “correct”
definition of synonymy; many would allege that there are different equally
legitimate notions of meaning and with them different equally legitimate
conceptions of synonymy: which it is appropriate to invoke on which occa-
sions depends on one’s purposes. In some ways, a realism about intensional
entities such as senses mitigates against this, for it suggests that there are
facts of the matter about the identity conditions of such entities. Still, even a
realist can countenance different kinds of intensions with identity conditions
of differing stringencies. At any rate, different theories about the identity
conditions of senses are worth exploring.
For a realist equating senses with abstract intensional entities, the intended
interpretation of the Logic of Sense andDenotation would be such as to take
these abstracta as populating the domains of quantification for sense-types.
However, since the nature and existence of these abstracta is a matter of
controversy, this provides little help in securing uncontroversial models for
a certain set of principles regarding sense-identity. However, for those con-
ceptions of the identity conditions of senses that can be translated into a
definition of synonymy for a well-defined language, surrogate models for
principles of sense-identity can be sought by taking the domains of quan-
tification for sense-types to consist in equivalence classes of synonymous
closed expressions, i.e., those expressions which are regarded as having the
same sense. This general line of model construction is outlined in [1]. In
particular, for the sort of system sketched above, the domain of type αm+1
can be thought to consist in equivalence classes of synonymous closed wfes
of type αm. The syntactic rules of the system sketched above are such that
every closed wfe of an s-type is the ascendant of some wfe; the models would
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be constructed in such a way that the denotation of each such wfe would
be the equivalence class of synonymous expressions containing the wfe of
which it is the ascendant. Which principles of sense-identity such models
would support depends on the operant notion of synonymy.
Aswe have seen, under the guiding principles ofAlternative (0), in a formal
language such as that used in the Logic of Sense and Denotation containing
no redundant primitives, two closed expressions are deemed synonymous if
and only if they differ from each other by at most choice of bound variable.
Under Alternative (1), two sentences are synonymous if and only if they
can be obtained from one another by inference rules I–III, i.e., they are ë-
converts. Mymain interest in this context involves Alternative (1), primarily
because the changes to Church’s system sketched above were made to block
the problems regardingdeviant sense-functions, andaswe saw in sec. 5 above,
Church’s 1993 formulation of Alternative (1) avoids outright inconsistency
from these difficulties only in neglecting to include principles regarding sense
identity similar to Alternative (0)’s axiom schema 64, which asserts that the
senses of functions are themselves one-one. Since my main interest in this
paper has been the nature of the senses of functions, I fix my attention
narrowly on the issues surrounding this sort of principle.
It should be noted, however, that something akin to axioms 64 does not
hold generally for all types under the guiding principles of Alternative (1).
To see this, we need only consider the following counterexamples. Consider
closed expressions aαm and Rαm 7→αm 7→o of the indicated types, and let xαm
and fαm 7→o be variables not occurring in them. The following expressions
are all ë-converts:

Raa,(7)

(ëx Rxa)a,(8)

(ëx Rax)a,(9)

(ëf fa)(ëx Rxa),(10)

(ëf fa)(ëx Rax).(11)

Since these expressions are interconvertible, under Alternative (1), they are
regarded as expressing the same sense. Let R∗

(αm 7→αm 7→o)1 be the ascendant
of R and let a∗αm+1 be the ascendant of a. Then the ascendants of the above
are:

R∗a∗a∗,(7∗)

(ë1xαm+1 R
∗xa∗)a∗,(8∗)

(ë1xαm+1 R
∗a∗x)a∗,(9∗)

(ë1f(αm 7→o)1 fa
∗)(ë1xαm+1 R

∗xa∗),(10∗)

(ë1f(αm 7→o)1 fa
∗)(ë1xαm+1 R

∗a∗x).(11∗)
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Thesewould, in the surrogatemodels, be assigned the same equivalence class.
Indeed, the identity statements between the above expressions would follow
from allowing conversion with regard to abstracts formed with ë1, which we
recommended for capturing Alternative (1). In particular, we have:

⊢ (ë1f(αm 7→o)1 fa
∗)(ë1xαm+1 R

∗xa∗) = (ë1f(αm 7→o)1 fa
∗)(ë1xαm+1 R

∗a∗x).
(12)

If something such as axiom schema 64 were allowed in full generality, then,
along with various results of (SRT), one would arrive at the result that:

⊢ (ë1xαm+1 R∗xa∗) = (ë1xαm+1 R
∗a∗x).(13)

However, this result is obviously unpalatable in most cases, and along with
the determinacy of senses (axiom schema *17), leads in effect to the result
that all relations are symmetric, which is, of course, impossible, and con-
tradicts many results of the system. These examples show that while the
senses of the primitive function signs may yield distinct s-values for distinct
s-arguments, this does not hold generally for all senses of functions under
Alternative (1).
However, the following less general versions of axioms 64 remain plausible:

(Axiom ∗19niαm ) (∀F(éi 7→αm)n+1)(∀xéi+n+1)(∀yéi+n+1)[(Fx = Fy) ⊃ (x = y)],
(Axiom ∗20niαm ) (∀F(oi 7→αm)n+1)(∀poi+n+1)(∀qoi+n+1)[(Fp = Fq) ⊃ (p = q)].
These are supported by the intended surrogate models for Alternative (1).
Expressions of the form pFaq and pFbq, where a and b are not function
expressions, are interconvertible (and hence synonymous according to Al-
ternative (1)) only if a and b are interconvertible. (For further discussion,
see the appendix.) Due to the counterexamples given above, it is not al-
ways the case that pMFq and pMGq are interconvertible only if F and G are
interconvertible when F and G are themselves function expressions.
In sec. 3 we showed that in Church’s formulation, if axiom 16éo is taken
together with axiom 64éo , an argument making use of the many-one sense-
function h∗′′′ results in the absurdity that the sense of “Russell” is the same as
the sense of “Frege.” We also saw that axiom 16oo, if conjoined with axiom
64oo , leads to outright inconsistency when we consider the sense-function j∗

mapping all thoughts to the same tautological thought. Nevertheless, some-
thing akin to axioms 64éo and 64oo are demanded by the operant principles
governing sense-identity in Alternative (1). The corresponding instances in
the revision are the following:

(Axiom ∗1900o) (∀F(é 7→o)1) (∀xé1) (∀yé1)[(Fx = Fy) ⊃ (x = y)],
(Axiom ∗2000o) (∀F(o 7→o)1) (∀po1) (∀qo1)[(Fp = Fq) ⊃ (p = q)].
However, when formulated using variables of type (é 7→ o)1 or (o 7→ o)1
rather than those of type é1 7→ o1 or o1 7→ o1, we have no instances such
as h∗′′′ or j∗, and the problems are avoided. This is of course the primary
motivation for the changes to Church’s system.
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While these changes are sufficient to block the problems that arise from
deviant or otherwise unusual sense-functions coming out as senses of func-
tions according to Church’s original axioms 16, i.e., the difficulties discussed
in section 3, such as the Russell–Myhill antinomy, may continue to pose
problems without the introduction of some form of ramification. It might
be thought, however, that the failure of axioms 64 in their full generality
may provide some help in avoiding the Russell–Myhill antinomy. Nicholas
Denyer [15] recently blocked a formulation by Adam Rieger [39] of a para-
dox broadly similar to the Russell–Myhill in effect by drawing upon less
stringent criteria for the identity of thoughts such as that in Alternative (1),
though not in somany words. Indeed, given only the axioms we have consid-
ered so far the antinomy is not forthcoming. A simple formulation similar
to that considered in sec. 4 would follow from the principle:

(∀K(o1 7→o)1)(∀L(o1 7→o)1)[(Π((o1 7→o) 7→o)1K=Π((o1 7→o) 7→o)1L)⊃(K=L)].(14)

However, given the type restrictions on axioms 19 and 20, the above would
not follow as a theorem. Indeed, the failure of axioms 64 in unrestricted form
may give us reason for thinking that not all senses of type ((o1 7→ o) 7→ o)1
have distinct s-values for distinct s-arguments. On the current formulation,
the reasoning behind the Russell–Myhill antinomy results in a theorem that
there is no sense of type ((o1 7→ o) 7→ o)1 that always has distinct s-values
for distinct s-arguments, i.e.:

(∀M((o1 7→o) 7→o)1) (∃K(o1 7→o)1) (∃L(o1 7→o)1)[(MK =ML) & (K 6= L)].(15)

One response to the Russell–Myhill paradox might be simply accepting
the above result. Indeed, in a 1903 letter to Frege [24, p. 60], Russell once
considered something broadly similar as a way of solving a similarCantorian
paradox of propositions.
However, I donot in the endbelieve that accepting (15) is a satisfactoryway
to respond to theRussell–Myhill antinomy, and indeed, (15) is not supported
by the surrogate models we have sketched (cf. [32]). Indeed, properties of
conversion make (14) extremely plausible instead. Obviously, an expression
of the form pΠ(o1 7→o) 7→oko1 7→oq is interconvertible with an expression of the
form pΠ(o1 7→o) 7→olo1 7→oq only ifko1 7→o and lo1 7→o are interconvertible. (Indeed,
generally for any primitive constant S of a type of the form (α 7→ â) 7→ ä, for
any function expression f and g of type α 7→ â , pSfq would be convertible to
pSgq only if f is convertible with g.) For this reason, (14), or somethingmore
general fromwhich (14) can be derived, is a plausible candidate for an axiom
inAlternative (1). One could deny (14) while adhering to the basic principles
of Alternative (1) only if one is willing to deny that the quantifiers Π(α 7→o) 7→o
are really primitive constants, and instead find some way of construing them
as defined, but without making use of any additional primitive constants
that would themselves give rise to a similar puzzle.
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This makes it highly desirable to seek some other way of avoiding the
paradox than accepting (15). Like Church, I find ramified type-theory
to be, formally speaking, the most promising route to take. In traditional
Russellian ramified type-theory, a proposition quantifying over a range of
propositions must be of a higher “order” than the propositions quantified
over (see, e.g., [40]). Similarly, we might suggest that the quantifier sense
Π((o1 7→o) 7→o)1 would have as s-values thoughts of higher-order than those
which can be taken as argument to any function presented by any of its pos-
sible s-arguments. It then would turn out that the thoughts of lowest-order
would be less numerous than functions of type o1 7→ o whose arguments
are of lowest-order. We could then accept that every function of this type
has a sense of type (o1 7→ o)1, and that for every such sense it is possible
to generate a distinct thought, provided that the thoughts so generated are
(at least) of the next highest order. To escape the sorts of general worries
about the cardinalities of sense types pointed out by Anderson, we must
hold that in general, the s-values of any primitive function sense of type
((αm+n+1 7→ â) 7→ αm)1 is “order-raising” within the system of ramifica-
tion. The full development of a system of ramification and the philosophical
rationale underlying it deserves more careful and detailed scrutiny than we
can give it here, and is left for another occasion. The brief sketch given
here differs somewhat from the sort of ramification suggested by Church in
his last paper on the topic [13], but it is possible that a suitably modified
version of his suggestions could be made to work as well.13 The system
sketched in the previous section is aimed more modestly at solving those
difficulties present in Church’s systems stemming from unusual or deviant
sense-functions for which ramification provides no help.

Appendix A. Some properties of conversion relevant to synonymy conditions
under Alternative (1). To justify axiom schemata ∗19 and ∗20, I here sketch
a proof that they are supported by the sorts of surrogate models suggested
for Alternative (1), i.e., in which the domain of quantification for a sense
type αm+1 consists of equivalence classes of interconvertible closed wfes of
type αm. Here, however, I limit my discussion to features of equivalence
classes of interconvertible wfes of the base language, i.e., the language prior
to the addition of sense-type expressions. Going beyond this would require
settling the issues with regard to ramification, and studying properties of
conversionwith abstracts formedwith ën+1 rather than ë0. These are difficult
matters that require fuller exploration elsewhere.
Following Church [7], I write “M conv N” to mean that wfe M is ë-
convertible to the wfe N, i.e., there is some finite number (possibly zero) of

13It is also possible that a suitably modified version of the alternative strategy adopted by
Cocchiarella [14] for solving similar paradoxes in other systems could be adopted, though it
would likely require further deviation from the core of a Fregean philosophy of language.
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applications of the conversion rules by whichM becomesN. The conversion
rules are I–III from p. 156, though to cover wfes of different types we must
expand them to apply not just when A and B have type o, but other types
as well, and we must add the additional rules: (II′) where A is a wfe of a
function type and and x is a variable of the appropriate type to constitute the
argument toA but x does not occur free inA replace p(ëx(Ax))qwithA; and
(III′) whereA is a wfe of a function type and x is a variable of the appropriate
type to constitute the argument to A but x does not occur free in A, replace
A with p(ëx(Ax))q. These rules are not needed in the logical system, as
they follow as derived rules from rules II and III along with axioms ∗8.
Nevertheless, they need to be included as part of the conditions under which
expressions are convertible when this is taken as the criterion of synonymy.
Otherwise, it would not hold that “∼o 7→o” conv “(ëpo ∼o 7→o po)”, yet surely
these are to be regarded as synonyms under Alternative (1). The relation
conv is reflexive, transitive and symmetric. Also, following Church, we say
that a wfe A is in normal form iff (i) A is fully reduced (i.e., A does not
contain a part of the form p((ëxM)N)q to which rule II could be applied),
and (ii) if A is a wfe of functional type, it takes the form p(ëxM)q. So
“(ëpo ∼o 7→opo)”, not “∼o 7→o”, is in normal form. We say that a closed
wfe of A is in principal normal form iff it is in normal form and its bound
variables occur in strict alphabetical order, i.e., the letter aαm is used for the
first occurrence of a variable of type αm, the letter bαm used for the next,
and so on, without repetition, or omission. An wfe A is said to have a
normal form iff there is some wfe B in normal form such that A conv B; it
has been proven for typed languages of ë-conversion that every wfe has a
normal form [27, pp. 323–332]. Moreover, if a closed wfe A has a normal
form, then there is a unique closed wfe B in principal normal form such that
A conv B [7, p. 26]. I use the notation |pnf A| in the metalanguage for this
unique wfe. If A is in normal form, then A differs from |pnf A| by at most
choice of bound variable.
Axiom schemata ∗19 and ∗20 are then made plausible by the following:
Conversion Result. If F is a closed wfe of a type with arguments of type é
or o and a and b are closed wfes of the appropriate type to constitute arguments
to F, then pFaq conv pFbq only if a conv b.
Proof. Assume that pFaq conv pFbq. Then |pnf Fa| is the same as |pnf Fb|.
Notice also that pFaq conv p|pnf F||pnf a|q and pFbq conv p|pnf F||pnf b|q,
and hence |pnf Fa| conv p|pnf F||pnf a|q and |pnf Fa| conv p|pnf F||pnf b|q.
Because |pnf F| is in normal form, it takes the form p(ëaαM)q. Hence,
p|pnf F||pnf a|q and p|pnf F||pnf b|q are, respectively, p(ëaαM)|pnf a|q and
p(ëaαM)|pnf b|q. These are not in normal form, but let A be the result
of applying rule II to p(ëaαM)|pnf a|q, and let B be the result of applying
rule II to p(ëaαM)|pnf b|q. Here, A results from substituting |pnf a| for all
free occurrences of aα inM. Because a is not a function expression, neither
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is |pnf a|, and so |pnf a| cannot take the form p(ëyN)q. Hence A does not
contain any portion to which rule II applies, since neither M nor |pnf a|
contains any such portions, and substituting |pnf a| for aα cannot create any
new portions of this form. If A is not a function expression, it is already
in normal form. If A is a function expression, then either A is already in
normal form, or, where x is some variable not occurring inA orB, p(ëxAx)q
is in normal form, depending on whether or notM begins with a ë-operator.
Let A∗ be either A or p(ëxAx)q, whichever is in normal form. Similar
reasoning applies to B, and let B∗ be either B or p(ëxBx)q, whichever is in
normal form. (Notice that A∗ is A if and only if B∗ is B, since they have the
same type and both A and B were obtained by substitutions in M.) Now,
because A∗ is in normal form and pFaq conv A, and A conv A∗, A∗ differs
from |pnf Fa| by at most alphabetic choice of bound variable; similarly B∗
differs from |pnf Fa| by at most alphabetic choice of bound variable, and
hence they differ from each other by at most this much. Because we have
disallowed vacuous variable binding, A∗ contains |pnf a| in certain spots
where B∗ contains |pnf b|, i.e., those spots wherein M contains aα free.
Hence, the portion(s) |pnf a| of A∗ must differ from the portions |pnf b| of
B∗ by at most choice of bound variable. In fact, |pnf a| and |pnf b| must be
identical, because both are in principal normal form. Since a conv |pnf a|
and b conv |pnf b|, we can conclude that a conv b. ⊣
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