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Abstract

We humans are natural-born engineers. As such, we model after machines not only
isolated, naturally occurring systems, but also the basic laws of physics, sharing with
machines a local-evolution-of-state ‘grammar’. However, previous work by the au-
thor casts doubt upon this mechanistic paradigm, suggesting that it is to blame for the
stubbornness of many open problems in physics. Simple experiments are therefore pro-
posed to identify ‘non-machines’. In one experiment, ‘non mechanistic correlations’ in
the spirit of Bell are sought in a pair of separated but previously coupled (macroscopic)
chaotic systems. In another it is tested whether chaotic systems could fuzzily ‘remem-
ber their future’ in the sense that a future binary perturbation applied to them could
be inferred from their present behavior with probability> 1/2. Chaotic systems are
chosen as candidates because the long-time application of their (deterministic) mech-
anistic description is conceptually groundless: All scales are significant and mutually
coupled in that regime, down to scales governed by QM, yet the quantum-classical
transition remains inexplicable—if only due to the measurement problem. Similarly
for non-deterministic chaotic systems, modeled as such purely for defying a short-time
deterministic mechanistic description. Should a non mechanistic signature be found
in such simple systems, the implications for science as a whole and life sciences in
particular cannot be overstated.

1 Introduction

Language shapes thought, and in no field is this more true than in physics. For over three
centuries, the basic grammar of theoretical physics has remained that of Newton, consisting
of two basic components: A ‘state vector’ representing the system at any given time, and an
evolution equation for the state vector. Implicit in those two is also the way in which our
actions in a ‘tabletop experiment’ are modeled: By choosing initial conditions for the state
vector, and/or choosing parameters for the evolution equation, such as applying an external
force or field.

Newtonian grammar1 (NG) even survived the 20th century turmoil. The quantum rev-
olution only redefined the space of the state vector—n-dimensional configuration space 7→
infinite dimensional Hilbert space. More remarkably, even the relativistic revolution, which
did away with the very notion of absolute time, did not seem to require a novel grammar.

Its robustness to paradigm shifts has erroneously promoted NG to an attribute of nature
rather than that of our descriptive language, and physical models not expressible in NG

1”Newtonian Schema” is the term given to this structure of a physical theory by Lee Smolin [8]. We
prefer ”Grammar” as it highlights the thought shaping role of language.
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are generally met with instinctive skepticism. However, the picture emerging from previous
papers by the author suggests that, NG’s robustness to paradigm shifts might itself have
been a product of wrongly shaped (Newtonian) thought. Maxwell-Lorentz Classical electro-
dynamics (CED) of point charges—an alleged success of NG—is ill-defined, and a century of
attempts, expressed in NG, to cure its pathologies all failed. Currently, the only well-defined
CED of interacting point-like charges (to the author’s best knowledge), dubbed ECD [2, 1],
is not expressible in NG. Precisely for this reason ECD can serve as a (classical) ontology
underlying QM statistics without conflicting with various no-go theorems, all implicitly as-
suming an ontological description using NG [3]. That QM is an NG theory can be traced
to local constraints, noatably energy-momentum conservation, satisfied by that ECD ontol-
ogy; see caption of fig.1. Finally, there are indications that advanced solutions of Maxwell’s
equations, mandated by ECD, are at play not only in microscopic physics, where they cre-
ate the illusion of ‘photons’ (among else) but also in astronomy’s missing mass problem [4].
And although advanced solutions per se are not in conflict with NG, their incorporation
into a consitent mathematical formalism, involving both matter and radiation, certainly is—
time-symmetric action-at-a-distance electrodynamics [5] being yet another, better known
example.

The appearance of NG in macroscopic (classical) physics is likewise explained by local
constraints satisfied by the underlying (ECD) ontology—see, e.g., appendix D of [1] for how
the Lorentz force equation is obtained as a local approximation for the center of an extended
charge. The question of whether the underlying microscopic ontology is likewise described
by NG, might therefore seem irrelevant to macroscopic physics. We argue to the contrary.
Microscopic local constraints are just what they are: constraints; long-time integration of
their manifestation in macroscopic, coarse grained quantities is not only often unreliable due
to the so-called butterfly effect, but moreover meaningless in a non NG universe, as are most
statistics derived therefrom. This realization, in conjunction with the above indications of
a non NG ontology, point to new experiments which might appear far-fetched, but only
because of a NG bias. If the universe is indeed non mechanistic, the implications for physics
and science in general would go far beyond quantum weirdness.

2 Non-machines and their statistics

The settings of what follows is the block-universe (BU): 4D spacetime hosting a locally con-
served (symmetric) energy-momentum tensor, constructed from the basic building blocks
(fields in the case of ECD) of an ECD-like theory (fig. 1). The BU is a highly redun-
dant representation of a NG ontology as its content is fully encoded in any of its space-like
slices. Philosophy aside, it is therefore an unnecessary complication even in relativistic the-
ories. However, for a non-NG ontology, the BU is arguably the only faithful representation.
Consider a non-machine—for lack of a better name: A system which, unlike a machine,
does not admit an NG representation, viz., its contribution to the BU is not the result
of propagating some initial conditions. To illustrate the basic idea with as little technical
complications as possible, consider the following (formal) non relativistic, toy non-machine
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Figure 1: BU time slices (left) allegedly involved in a single-particle—for simplisity—QM experiemnt. Thick
vertical lines represent a crystal latice. Thin grey lines are initially left-to-right moving particles, some
transmiting, others reflecting. By ‘superimposing’ all members of the ensemble (right), one gets various
ensemble densities, e.g. charge density ρens, from which the (statistical) results of any QM experiment
can be deduced. From the constraints satisfied by individual members in the ensemble, equations for the
ensemble densities can be derived [3], and, upon writing ρens ≡ φ†φ, QM wave equations for φ follow.
Different φ’s then describe different ensembles rather than any single system (hence Ehrenfest’s theorem,
‘scars’ and general amplitude amplification of wave-functions near classical periodic orbits, and the inevitale
rapid wave-function delocalization of manifestly macroscopic but chaotic systems[9]). The NG nature of
the Schrödinger evolution is a consequence of local energy-momentum conservation, rather than being a
property of individual systems. Note that different members are brought to a common time support so
the Schrödinger evolution is fictitious—a mathematical tool for constructing ensemble densities; ensembles
representing steady-state systems even correspond to multiple time slices of a single system. The construction
in [3] only works for closed systems, hence the Hamiltonian. And indeed, when a closed system becomes
coupled to the environment, as must be the case during its ‘measurement’, the initial wave-function and
its evolution become nonsensical. Distinct ensembles, represented by distinct wave-functions, φm must then
be defined post measurement (insofar as QM is to be subsequently applied) and the collapse postulate is
just that complementary statistical ingredient, bridging the pre-post measurement gap, giving weights to
different φm’s based on their corresponding macroscopic ‘pointer configuration’. Heisenberg’s uncertainty
relations, reflecting certain properties of ensembles, are in line with the role of an agent in the BU, i.e., that
its action—measurement in this case—defines an ensemble.
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action for q : (−∞,∞)→ Rn

S[q] = −1

2

∫ ∞
−∞

dt

∫ ∞
−∞

dt′qT(t′)K̈(t− t′)q(t)−
∫ ∞
−∞

dtV
(
q(t), t

)
, (1)

where K is any diagonal matrix of non compactly supported, once integrable symmetric
functions, and (̈·) denotes double differentiation. It is the non compactness of K on R−
which prevents translating the associated Euler-Lagrange equations,∫ ∞

−∞
dt′K̈(t− t′)q(t′) +∇V

(
q (t) , t

)
= 0 , (2)

into NG language2. Note that, in and of itself, K’s non singular support does not necesserily
lead to temporal paradoxes (although, importantly, unlike ECD, does violate scale covarince);
More accurately: non tachyonic extrema of a relativistic version of (1), e.g. the self-term in
[13], do not do so. It is violation of this no-tachyons condition which can create paradoxes3

rather than a non-tachyonic q(s) (s a Lorentz scalar) functionally depending on q(s′) for
s′ > s—hence also on V (q(s′), s′)—which, at ‘worst’, can be labeled retro-causal, and does
not entail a paradox, as explained below.

Nonetheless, twice integrating the first term in (2) by parts, we get the classical e.o.m.

mq̈ +∇V (q, t) +R(t) = 0 , m :=

∫ ∞
−∞

K(t′)dt′ , (3)

with a residual term

R(t) :=

∫ ∞
−∞

dt′K(t− t′)q̈(t′)−mq̈(t)

vanishing in the ‘delta function limit’: K(·) 7→ limλ→∞ λK(λ ·). A different way of seeing a
machine in (2) involves the Noether currents associated with the symmetries of action (1),
which are exactly conserved even at finite λ. For sufficiently slowly varying V on the scale

2For a general system not derivable from a Lagrangian, (2) would be replaced by∫∞
−∞ dt′K̇(t− t′)q(t′) + F (q(t), t) = 0 , for some vector F .

3For suppose qi(si), si a diffeomorphism invariant, represents the world-line of the ith, possibly tachyonic
clock, in a collection of n clocks, shifted in s so that si = si+1 ≡ σi, i ≥ 1, at the (single) intersection
of qi with qi+1. And suppose that all si are monotonically increasing functions of their repective clock’s
time, as is the case for a geodesic qi, where s is the proper-time; think of clock i + 1 as being activated
by its encounter with clock i, ‘picking-up the counting of ticks’ from the last count of clock i. This implies
a diffeomorphism invariant causal chain: q1(s1) → q2(s2) . . . → qn(sn), si ∈ [σi−1, σi], 1 < i < n. Then,
without constraining q̇i+1(σi) to lie inside the future light-cone of qi(σi), the chain can be closed, i.e.,
qn(σn) = q1(σ0) for some σn > σ0—contradicting the fact that clock n can’t be active before the first tick
of clock 1. Clocks 1 and n, then, must not be allowed to register their time-stamps at a common space-time
point. It is this constraint on any generally covariant theory, rather than invariance of time-ordering under
a linear coordinate transformation plus spacetime homogeneity, which is the deeper origin of the Lorenzian
signature of the metric tensor. As for closed time-like curves—by the construction above they implicate the
solution as representing a physical scenario in which clocks can’t be consistently abstracted by mathematical
points, rendering them no more than a geometrical curiosity.
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set by K’s extent, translation invariance, e.g., lends itself to a good mechanistic description
of the coarse grained momenta and positions

Q(t) = m−1
∫ ∞
−∞

dt′K(t− t′)q(t′) , P (t) =

∫ ∞
−∞

dt′K(t− t′)q̇(t′) ,

viz., Q̇ = m−1P, Ṗ ' −∇V (Q). Without such quasi locality it would be impossible to
explain the reproducibility of many experiments notwithstanding (spacetime-) translation
covariance. However, this too is only an approximation, whose validity strongly depends on
the context in which it is used. For chaotic potentials (more generally: chaotic systems) the
time-scale, TM , over which a non-machine’s solution and that of its machine approximation
remain close (t-wise less than some small constant) could grow very slowly with increasing λ
especially if K has a long, i.e., algebraic tail (as is the case in ECD). One way of seeing this
lies in the residue, R, playing the role of an external force in (3) which, when acting on q
in unstable directions, leads to its subsequent exponential separation from the unperturbed
path. The dimensionality, n, of the system plays a crucial role in tempering the growth of TM
with increasing λ, as larger n implies (statistically) higher maximal Lyapunov exponent—
and it only takes one such ultra unstable direction for even a meager R to rapidly drive
an entire chaotic system ‘off course’. Now, realistically speaking, there is no “unperturbed
path”. And indeed, for sufficiently large λ most ‘coarse grained’ statistics associated with
(2), e.g. attractor manifold and power spectrum, would most likely be experimentally indis-
tinguishable from those of a noisy machine, viz. (3) with R a random noise. However, as R
is far from being random, such noisy machine approximation becomes moot with regard to
the global spacetime structure of (at least some) trajectories. In other words, a noise history
reproducing a global path of (2) would need to be too ‘structured’, or non random, for any
realistic noise source (e.g. Gaussian White).

However, the experiments proposed here do not attempt to ‘implicate’ individual space-
time structures as belonging to non-machines. Instead, a non mechanistic statistical signa-
ture is sought in ensembles of suspected structures, and there is a crucial difference in this
regard between machines and non-machines. In the former, e.g. (3) with R = 0, its solution
set can be 1-to-1 mapped to a subset of R2n equipped with a natural, i.e. Liouville mea-
sure. In contrast, the solution set of (2) is some infinite dimensional function space having
no obvious counterpart measure. Single-system equations of non-machines, then, cannot be
a complete description of the experiment, necessitating a compatible statistical description
of ensembles of solutions, not deriviable from the single-system theory alone, hence being
equally fundamental.

The significance of this last point is illustrated clearly in a scattering experiment (n = 1)
of monoenergetic particles off a chaotic potential, e.g. a crystal lattice. In the non-machine
case, uniformity over the impact parameter does not define an ensemble since two incoming
particles can have identical (freely moving, asymptotic-) solutions yet different outgoing
ones; As the two particles approach the target, their distinct future paths, gradually render
their R’s non negligible and distinct. Now, suppose that the past asymptotic motion takes
place in some time-independent, chaotic potential V . At some fixed plane orthogonal to
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the average propagation direction of the particles, V transitions into either V1 or V2. The
BU statistical view of this scenario now involves two ensembles of word-lines, q, shifted in
time such that q(0) lies on the V − V(·) interface plane. Define the past ensemble as that
collection of partial world-lines q(t) for t < 0. On time-scales shorter than TM , any such
partial world-line whose form is not excluded by (3) with R = 0 could appear in either
past ensemble. But does it? More accurately: Must its statistical weight (frequency of
appearance) be the same in both? An NG physicist would answer in the affirmative, so long
as the two ensembles originate from a common distribution of past initial conditions, but in
a non mechanistic BU an ensemble can’t even be 1− 1 mapped to such a distribution; past
and future potentials seen by ensemble’s members are both relevant. A non mechanistic
statistical signature should therefore be present in ensembles of non-machines even when
individual members are examined on time-scales shorter than TM . Obviously, one can do
better by examining them on time-scales longer than TM , hence the choice of a chaotic V
(almost any non chaotic V 6≡ 0 could do as well but the much longer TM introduces much
more noise which, in turn, requires greater statistical power to distinguish between the two
ensembles).

Zooming out now from our toy model, insofar as a physicist obeys the physics of the
systems he is studying—and there is no evidence to the contrary—he is represented by
some (extended) world-line in the BU, and his free will is technically an illusion. This
tension with one’s subjective feeling is present also in Newtonian-grammar physics, and this
never disocuraged physicists from doing physics. But unlike its Newtonian counterpart, our
physicist cannot meaningfully model this illusary free will by chosing the initial conditions
of a system (or distribution thereof) from which the system (ensemble thereof resp.) then
evolves. Instead, his ‘freely chosen’ actions constrain the global, spacetime structure of
systems he is studying (in a way which depends on both the system and the actions) and
in general, infinitely many such systems are compatible with a given constraint. His actions
therefore only define an ensemble, with the relative frequency of each ensemble-member being
a statistical property of the BU (revealed in a single lab only as a means of saving the hassle
of sampling the whole BU for similarly constrained, spontaneously occurring systems [3]).
Note that the Newtonian resolution can be viewed as a private case of ours.

In the case of closed systems, according to [3], QM provides a rich statistical descrip-
tion of the ensemble, encoded in the wave-function, which is therefore an attribute of the
ensemble rather than of any single system (see caption of fig.1). By “closed” it is meant
that the system’s full energy-momentum balance is known and exactly incorporated into its
Hamiltonian. In contrast, the statistical description of open systems [12] is currently not
nearly as detailed and conceptually problematic. It boils down to treating an open system
as a small subsystem of a large closed system, tracing out the extra degrees of freedom,
not before making simplifying assumptions about their interaction with the subsystem and
with one another. However, this attempt is no more reliable than similar attempts to model
irreversibility within the framework of (classical) Hamiltonian dynamics, if only because
it ignores an essential source of dissipation and thermodynamic irreversibly: the radiation
arrow-of-time (manifested in ECD systems which are out of equilibrium with the zero-point-
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field [4]). When used in the context of macroscopic irreversible systems it furthermore pushes
the mysterious ‘collapse postulate’ of QM far beyond its empirically validated domain, mak-
ing it even harder to defend: Is the ‘observer’—and what is meant by that—part of the
environment? Moreover, when that irreversible system is chaotic, this approach, at best,
would prove consistent with the classical description, which, in turn, comes with its own
conceptual and practical difficulties. Ergodic theory [11], for example, seeks a flow-invariant
measure on phase/configuration space, and is indeed a valid starting point for predicting the
steady-state distribution of those (exceptional) systems for which such flow exists (e.g. type-
1 circuits in fig.3). However, as it typically yields a fractal set which includes infinitely many
(unstable) periodic orbits, neither ergodic theory nor its noisy versions, e.g. the associated
Fokker-Planck equation, are sufficient for that. More relevant to out point, though (and as
already pointed out) if this flow only locally approximates the 4D structure of chaotic sys-
tems, then ergodic theory is mute with regard to more complex statistics, e.g., the measure
on the past ensemble of chaotic solutions from the above example. A similar objection applies
to ensemble propagation when used to predict the long-time behavior of chaotic systems, or
to inter-system correlators of previously coupled chaotic systems (see sect.3.3).

Summarizing, when leaving the domain of closed quantum systems, QM becomes an unre-
liable tool. When then stepping into the realm of chaotic irreversible systems, one is already
in largely uncharted territory. There, presumably, lies new physics which is nevertheless
consistent with well established theories.

3 Are there macroscopic non-machines?

To distinguish machines from non-machines, we first propose testing whether a system can
‘remember its future’, diving deeper into the experiment described in sect. 2 and its con-
sequences, but without committing to the toy model used there. Machines can obviously
remember their past, meaning that a perturbation, p, to a machine in its past can be inferred
from its present state m (‘memory’). For simplicity, a binary type perturbations shall be
used, labeled ‘L’(eft) and ‘R’(ight). In contrast, machines cannot ‘remember’ their future.
Inferring a future perturbation from a machine’s present state entails, among else, the fol-
lowing: The state, m, of a machine is measured and projected onto the set {L,R} at some
initial time. The machine then propagates to a later time when its world-line intersects that
of a random bit generator (RBG) applying a random p ∈ {L,R} to it, and miraculously
p = m. This must happen everywhere throughout the BU, to all copies of the machine,
which is clearly not our BU.

This evident truth can be extended to non-deterministic machines in which the rest of
the universe is (realistically) treated as the source of randomness and possibly dissipation.
In this case, the machine’s stochastic evolution leads to a certain probability distribution
over its future states, parametrically depending on the nature of the initial perturbation
(L or R in our case, marginalized over possible additional ‘hidden variables’). If the two
distributions are distinguishable, i.e., if a random perturbation, p, can be deduced from
m with probability > 0.5, then the machine is said to fuzzily remember a bit. As in the
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deterministic case, machines can fuzzily remember a past bit but not a future one.
Like machines, non-machines can remember their past. A sufficiently strong perturbation

to a fully developed turbulence, for example, leaves an obvious signature on the streamlines
for a short time thereafter. It is even conceivable that this ‘short term memory’ would extend
much further into the past had only a different, more suitable signature been used—as in
the case of seasonal weather forecasts which are based on large statistical tables rather than
propagation of differential equations. But why should non-machines not remember their
future, at least fuzzily?

3.1 Statistics in the BU

Our definition of fuzzy memory involves the repetition of an experiment. In the context of the
BU this amounts to taking an ensemble of 4D structures, each corresponding to an instance
of an experiment, and computing statistics thereof. A typical ensemble could consist of
multiple ‘time slices’ from the (extended) world-line of a single non-machine, or single slices
from multiple copies of a single type of non-machines (see figure 1).

In the case of a binary type perturbation, there are four relevant sub ensembles of the
full experiment ensemble, indexed by a pair (m, p) with p,m ∈ {R,L}. The p(erturbation)
index indicates which perturbation is finally applied to the non-machine, and the m(emory)
is the result of some binary projection of an initial measurement, aimed at revealing the
type of future perturbation. A fuzzy memory of a future random binary perturbation is
demonstrated by a non-machine if

‖ (R,R) ‖+ ‖ (L,L) ‖ > ‖ (L,R) ‖+ ‖ (R,L) ‖ , (4)

with ‖ · ‖ being just the number of elements in the relevant sub-ensemble. Of course, the
ensemble size should be large enough to exclude pure chance. Note that we now treat the
perturbation as an attribute of the non-machine rather than the RBG, as in the machine
case, for it constrains the global 4D structure of a non-machine. In contrast, a perturbation to
a machine only constrains that irrelevant part of its world-line succeeding the perturbation.
It follows that future memory of a non-machine, unlike that of a machine, does not involve
its ‘conspiracy’ with RBG’s; It is just a statistical affinity, (4), between two segments of its
(extended) world-line or, more accurately: A statistical property of spacetime structures,
discriminating between the R and L ensembles of RBG’s in interaction with non-machines;
figure 2.

One instinctive (NG biased) push-back could be: Since the measurement, m, precedes the
perturbation, p, the latter can be chosen non randomly so that p = ¬m. While this might
be interpreted as an instance of ‘false memory’, it is not an argument against (fuzzy) future
memory according to our definition (which machines are incapable of). So conditioning
p on m corresponds to selectively choosing only the two sub-ensembles on the r.h.s. of (4)
rather than all four. It might even render moot the original ensemble, consisting of spacetime
structures of the type shown in fig.2, as in this modified protocol a second energy-momentum
‘bridge’ necessarily exists between non-machines and perturbers through which the latter is
informed of m.
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Figure 2: Spacetime structures involving alleged non-machines (thin lines) interacting with a ‘perturber’
(thick lines) in one of its two modes (R and L). Note the energy-momentum bridge necessarily connecting
the two. Seen form this perspective, future memory should not be attributed to any single non-machine type
independently of an experimental context.

A different way of formulating the above objection involves so-called backwards-in-time
signaling (BITS) [10], prima facie implied by future memory—p being the signal sent to
the past, and m its (distorted) reception. BITS exclusion is normally taken as one of the
tenets of any physical theory to exclude causal paradoxes, of the sort created by choosing
p = ¬m when perfect future memory is possible. This reason clearly doesn’t apply to ‘fuzzy
BITS’, facilitated by fuzzy future memory, but a weaker case can still be made against fuzzy
BITS, on the premise that, whatever action m triggers, it must not affect the ‘fidelity of
the communication channel’ (i.e. p = ¬m could completely ruin a near perfect channel).
However, such action-independent channel fidelity proviso, borrowed from mundane commu-
nication, is inconsistent with the role of agency in a BU supporting non-machines (sect. 2)
hence BITS exclusion, as a tenet, is unjustified. In principle, then, future memory indeed
facilitates BITS, provided the receiving side does not act to ruin the channel.

Yet another implausibility argument, involves the inevitable noise coming from the rest of
the universe, and the variability in the act of measuring m. The long-time evolution of non-
machines—a category allegedly including classically chaotic systems—are highly sensitive to
both. As each member of an ensemble is affected by a distinct noise history and a member-
specific measurement process, one may object to the very existence of a well-defined ensemble,
comprising non-machines of a common type. However, the very formulation of this objection
uses Newtonian grammar, which we have set out to refute. That each ensemble member
corresponds to a distinct time-slice of the BU means that, should statistical regularities arise
in the ensemble, environmental coupling would be incorporated into them (Kolmogorov
scaling law and chaos universality are two such examples). This is precisely what allegedly
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happens in the case of systems faithfully described by QM according to [3].
One might also muster QM against future memory. By the standard collapse picture,

the act of measuring m just updates the original wave-function φ 7→ φm in a way which
is independent of any future interaction with the system. However, this argument (ideally)
applies only to closed systems, (see caption of fig.1). Moreover, the collapse picture is clearly
a caricature of a much more complex, system dependent process, and it is conceivable, e.g.,
that a sufficiently massive, closed macroscopic chaotic system could be ‘looked at’ to obtain
m—say, continuously and weakly coupled to some ‘recorder’ for a macroscopic time—in ways
not captured by that simplified picture.

With the above objections removed, the author can think of no reason why inequality
(4) must not be satisfied by non-machines.

3.2 Schematic proposal for testing future memory

For the sake of concreteness, two types of analog, chaotic electric circuits shall serve as
alleged non-machines (fig.3) consisting of some nonlinear ‘feedback principle’ coupling dif-
ferent scales—hence generically all scales (“scale” roughly refers to frequency components
in the circuit’s currents/voltages). Such circuits should not be viewed as low-dimensional
non-machines—small n in the language of sect.2—but rather as providing, though their volt-
ages, a low dimensional projection of an effectively n = ∞, irreversible non-machine; the
irreversible counterpart of, say, the center-of-mass motion of a bound n-body system in an
external chaotic potential.

The characteristics of the components together with Kirchhoff’s laws, jointly constrain
the voltages, which can be seen as a point in configuration space, and in type-1 circuits
these constraints locally (in time) translate to a chaotic flow on configuration space, i.e.
take the form of coupled differential equations with a positive Lyapunov exponent (Note
how the roles of system and its model are swapped when using analog computers to solve
differential equation; analog circuits solving Hamilton’s equations should not be mistaken for
closed systems). In type-2 circuits—so-called ‘noise sources’—no flow exists as components
characteristics are too coarse of an abstraction, e.g., that of a Zener diode in reverse bias,
just around its breakdown voltage. Nevertheless, the voltage of a type-2 circuit is also piece-
wise mechanistic. For lack of a better analytic option, we shall resort to machine learning
(ML) in an attempt to prove future memory. The experiment consists of three stages: Data
acquisition, followed by a training session of, say, a deep neural network on half of the
data points and, finally, testing the trained network against the remaining half for future
memory. The data acquisition stage begins with an initiation session, during which the
circuit is brought to steady state. At the end of this prolonged stage (relative to all other
time scales involved) a short voltages ‘clip’ of duration ∆ is recorded. It is important that
the circuit be coupled to the ‘recorder’ (e.g. oscilloscope) throughout the entire experiment,
so as to make it an integral part of the non-machine. The raw product of this stage is n
measurements, c1, . . . , cn ∈ [0, 1] which are predetermined projections of a clip. At a fixed
later time, T , a perturbation p ∈ {L,R} is applied to the circuit in the form of some strong
coupling to yet another (type L/R) circuit, manifestly affecting the circuit’s behavior. The
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Figure 3: Alleged non-machines. Type-1 circuits admit a local-in-time constraint in the form of a differential
equation, Chau’s circuit being a simple example (the blue sub-circuit is one of several ‘non-linear resistor’
realizations). Type-2 circuits are so-called noise sources. A reversed biased Zener diode fluctuating between
insulator and conductor around its breakdown voltage.

perturbation type should be either randomly chosen or alternating L/R, thereby reducing
the effect of any systematic drift in experimental conditions. This cycle is repeated N times.
Initiation session and the perturbation jointly define the experiment ensemble, hence there
are two of them, presumably different.

Next, N/2 data points (cycles) are randomly chosen for the training session which seeks a
function m : {c1, . . . , cn} → {L,R} maximizing inequality (4). This optimal m is then tested
for (4) violation on the remaining N/2 data points, and future memory is demonstrated if
m passes the test with statistical significance.

For a sufficiently long initiation session the ‘local state’ of a circuit is assumed to converge
to a fixed distribution irrespective of p. Future memory detection therefore mandates ∆ >
TM or else the local state would uniquely determine the entire clip. Alternatively, and
not mutually exclusive, a sufficiently large configuration space, guaranteeing an effectively
infinite ‘ergodicity time’, might circumvent the ∆ > TM condition. As for determining TM–
in type-1 it is unknown a priori but is expected to be proportional to the inverse average
Lyapunov exponent as components’ characteristics are varied; for type-2 it is the average
duration of its piece-wise mechanistic behavior, which can be simply deduced and made very
small. The tradeoff is that type-1 circuits are less sensitive to noise/environmental coupling
than type-2.

Our assuption that the p = R and p = L experiemntal (sub-)ensebles of non-machine
solutions are (statistically) distinct despite having identical configuarion-space distributions
post initiation, parallels the QM case described in [3] section 4.2.2 (mind the arXiv erratum):
Wave-function initiation leads to a charge/momentum steady-state distribution which is
independent of any future interaction of the charge(s). However, for this difference to be
realistically detectable, the measurement-to-perturbation time, T , must be much shorter
than the duration of the initiation session (which must obviously be � TM) and as short as
possible.

There are, of course, many possible variations on this protocol, e.g., m might take values
in some continuous set instead of {L,R}, reflecting a varying degree of certainty in p, etc.
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Figure 4: A typical Bell test consists of generating four ‘forests’ of ‘trees’ (samples shown bottom left) corre-
sponding to the four combinations of perturbations applied to a tree’s two ‘branches’—a/a′ and b/b′—which
in Bell’s case correspond to two possible polarizer’s orientations interacting with a particle. A perturbation
results in branch deformations of two types (−1/1). In the proposed Bell’s test, the classification scheme
of each branch (−1 vs. 1 deformed) is not predetermined but instead optimized to violate the l.h.s. of
Bell-CHSH inequality (7) on training data. The dashed grey line is only relevant to the discussion below of
no-signaling.

Also worth noting is the possibility of testing past memory beyond the trivial short-term
mechanistic memory, using the proposed approach with p and m temporally interchanged.

3.3 Bell’s inequality test for entangled non-machines

The previous experimental approach can be used to test whether two such circuits, A and B,
which are initially coupled, exhibit ‘spooky’ correlations after being decoupled. Decoupled
machines would just propagate their states at decoupling, hence correlations post decoupling
are bounded by those already existing in the joint distribution of these initial states, playing
the role of the ‘hidden variable’ λ in Bell’s theorem. Bell quantified this mechanistic bound
for a special case of post decoupling joint measurements, which aught to be respected by
machines (“little robots” in his words4). In contrast, the decoupling of non-machines is best
understood as the branching of their joint, spacetime ‘tree’, and post decoupling correlations

4Bell further assumes that the joint distribution of initial states of the ensemble of robot-couples, right
after their decoupling, is independent of the orientation of the beam-splitters they later encounter. By
relaxing this so-called independence/‘free will’ postulate, as certain ‘retro-causal’ models [6, 7] do, any
correlations can obviously be achieved by machines. In this case, however, initiation stage, too, must result
in a joint distribution of states which depends on subsequent machines’ interaction (e.g. with beam-splitters)
which most likely contradicts experiment. This is in contrast to the non-machine case (see penultimate
paragraph of sect. 3.2) where the ‘tree’ and the interactions of its two branches are a special case of a
non-machine and its future perturbation respectively in a future-memory experiment.
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are just a statistical attribute of a ‘forest’ of such trees (fig.4). More precisely: Four such
forests are involved, corresponding to the four combinations of perturbations applied to a
tree’s two ‘branches’, pA/p

′
A and pB/p

′
B, which in Bell’s case are the two possible polarizer’s

orientations interacting with each particle. Note that, as each forest comes with its own set
of trees, Bell’s theorem can neither be applied to the union of all four forests, treating this
time a tree as a hidden variable to be sampled from a single distribution.

In the proposed counterpart to Bell’s test, the perturbation’s role is played by, say,
coupling of circuit A to either circuit a or a′, and similarly for B. However, unlike in the
standard test (cf.[3] section 4.2.2) the ‘polarization measurements’ are virtual, as opposed
to physical—a limitation of quantum systems only. Consequently, the data acquisition stage
for each of the four forests— consisting of a long initiation session pre decoupling, followed
by a shorter, though > TM , post decoupling period and ending with two perturbations—
does not yet involve polarization measurements. Only at the next stage, half the runs
of each forest are randomly assigned for the training session where a virtual ‘polarization
measurement’∈ {−1, 1} of each circuit, in each run, is taken post decoupling, but either pre
or post perturbation. To find the ‘best’ such choice of measurement, four neural networks,

mA,m
′
A : {ccirA1 , . . . , ccirAn } → {−1, 1}, mB,m

′
B : {ccirB1 , . . . , ccirBn } → {−1, 1} (5)

are trained to maximize the l.h.s. of Bell-CHSH inequality

|C(a, b)− C(a, b′) + C(a′, b) + C(a′, b′)| ≤ 2 , (6)

where the C’s are the relevant correlators, e.g.

C(a, b′) ≡ 1

N/2

N/2∑
i=1

mA
(i)m′B

(i) ,

with the sum running over all training trees in forest (a, b′), and c
cirA/B
i ∈ [0, 1] are the

corresponding clip projections of post decoupling measurements. Then, violation of (6)
is tested on the remaining half. Violation of the Tsirelson’s bound, i.e., (6) with a r.h.s.
equal to 2

√
2, would prove—as with future memory—that macroscopic physics is even more

non-local than permitted by QM.
Bell’s inequlity violation does not necessarily imply signaling across space-like separa-

tions which, at any rate would not lead to causal paradoxes for exactly the same reason
BITS doesn’t.5 Nor does non-violation imply no such signaling. Settling for the conditional

5Although not discussed in [3], the block-universal origin of QM (algebraic) no-signaling theorem implicitly
appears in its section 4.2 . The c.o.m. associated with the marginal densities of any (spinning) particle,
a, traces classical trajectories in a potential consisting of two parts: External, and some mean-field, inter-
particle ensemble average, non vanishing inside the trap. Its motion can be first analyzed in region 1 of figure
4 and then separately in regions 2&3, where the region-specific c.o.m encodes marginal ‘spin measurements’ in
each arm of the experiment. No-signaling then follows under natural, i.e., non fine-tuned assumptions. This
however has no bearing on signaling in our case, where measurements correspond to ‘clips’, and marginals
of measurements are not encoded in the c.o.m. of fictitious particles.
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probabilities needed to exclude/affirm such possibility, calculated from Bell’s test optimal
m’s (5), is a mistake. One should instead optimize a single neural network to discriminate
between pB and p′B based on A’s data taken outside the future light-cone of the corresponding
p.

Finally, it is possible to combine a Bell test with a future memory test, by training the
neural network to predict whether two non-machines which are initially separated, are later
brought into interaction. Note that future memory is, in fact, a private case of this last
experiment; As (true) RNG’s are themselves (alleged) non-machines, the roles of perturbing
and perturbed systems can be swapped in a future memory experiment.

3.4 Quantum computing

We conclude this section with insight into quantum computers (QC) which are, within the
general framework of this paper, quintessentially non-machines, hence their superiority over
digital classical computers (DCC) which are machines by design. Concretely, unlike a DCC,
a QC doesn’t need to propagate the Schrödinger equation in order to compute ρens ≡ φ†φ
at a final time from φ at some initial time—a task requiring computational resources, which
increase exponentially with the ‘size’ of the system (e.g. number of qbits)6. Instead, QCs
‘sample’ ensembles of 4D structures, which indirectly leads to a sampling of ρens at the final
time.

Cleverly specified ensembles, defined by their initial wave-function and ‘Hamiltonian’,
have been shown to result in great improvement over DCC algorithms in solving certain
practical problems. In theory. In practice, decoherence (coupling to external, closed systems)
and dissipation pose a formidable challenge to any substantial progress. Currently, to counter
decoherence the plan is to use quantum error correcting codes (QECC) which, by definition,
involve (multiple) measurements at intermediate times between the initial ‘wave function
preparation’ and the final measurement. By our previous remarks, measuring a quantum
system implies coupling a closed system to an open (macroscopic) one, i.e., leaving the arena
of ensembles where QM (unitary) evolution alone determines ρens. The extra component
added to the description of ρens involves the so-called collapse postulate of QM which, unlike
the evolution operator, is only a caricature of an actual measurement (just recall how a
Stern-Gerlach experiment ‘measures’ the spin of a particle to be ‘up’ or ‘down’).

Perhaps such machine-non-machine hybrid systems would eventually lead to practical
quantum superiority. However, this is far from being experimentally settled, and ECD’s take
on it isn’t optimistic: insofar as a qbit realization is well approximated by a closed system
(hence its Hamiltonian), it is constantly radiating, with advanced and retarded radiation
(statistically) canceling each other. A perfect qbit is therefore unavoidably coupled to its
surroundings and, as a simple consequence of Maxwell’s equations, more so the nearer. Such
essential ‘cross talking’, which is manifested in the (ECD) zero-point-field, can be prevented
neither by a better qbit nor a shield thereof (whose constituent atoms likewise radiate).

6Any analogue classical computer (ACC) which is patently a machine, by definition can be emulated by
a DCC with resources that grow sub-exponentially with its size, hence is also inferior to QC.
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This renders unrealistic all QECC algorithms, which assume qbit wise noise-independence,
in addition to the detrimental effect of uncontrolled qbits coupling.

Alternatively, if the previous experiments verify the existence of irreversible non-machines,
a direct way of coping with environmental coupling in QC would be to search directly (theo-
retically and experimentally) for ‘XM’—that statistical description of irreversible systems—
for various programmable (micro/meso-scopic) non-machines. Such XM’s already incorpo-
rate effects of decoherence and dissipation into their statistical description, doing so without
sacrificing the one feature of QC responsible for its superiority over a DCC, viz., its ability
to sample an ensemble of non-machines (And as with future memory, XM might even be
more permissive than QM). Note that for an XM-based computer to be superior to any
DCC, XM taking an analytic form must share QM’s exponential complexity growth with
size (which is quite plausible). On the other hand, suppose the steady-state distribution of
a simple chaotic system is known (e.g. via ergodic theory). Temporarily coupling n such
systems, exponentially increases the ‘transient time’, T , before the combined system reaches
steady-state and inter-system correlators become T -independent. This could pose a scala-
bility barrier for XM computers and, according to our interpretation, should hold true also
for reversible coupled systems, i.e., for (conventional) QCs.

Yet another avenue possibly leading to an exponential advantage over DCCs might be
to send, backwards in time, the result of a DCC heavy computation. However, in this case
as well, the fuzziness of BITS is expected to increase with transmission-to-reception time
hence might demand compensating resources, e.g. multiple BITS transmitters, which too
grow exponentially with the size of the problem (notwithstanding error correcting codes).
Similarly when trying to fight this rapid increase in fuzziness over time with multiple ‘relays’
at intermediate times between transmission and final reception.

Finally, should macroscopic non-machines prove to exist, the most profound implications
would be for biology, viz., modeling of biological systems. To be sure, biological systems
do have mechanistic components (or at the very least, components whose modeling by a
machine is practically fruitful). However, biological systems are by far nature’s most com-
plicated physical systems. The assumption that their current mind-boggling complexity
has (mechanistically) evolved from some simple initial conditions in the early universe is
quintessentially NG biased and highly speculative. Affirmation of non-machines’ existence
might be a good opportunity to reconsider this mechanistic dogma. In particular, decades
of research in brain science, done on the premise that brains are machines, have got us no
closer to the answer for even the most basic questions. We still have no idea, e.g., how this
alleged machine remembers, let alone creates original ideas.

4 Conclusion

In previous work by the author a detailed proposal was laid out for a classical ontology
(ECD), of which QM is a very partial statistical description, applicable to ensembles of
closed systems where the effects of the radiation arrow-of-time—an inescapable attribute of
an ECD universe—are negligible. This view implies that current use of QM is grossly over-
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reaching (and accordingly, with minimal empirical success to back it up). However, quantum
weirdness allegedly lies in individual members of an ensemble, which are spacetime ‘struc-
tures’ associated with non-machines, whether closed or open. It is only QM’s statistics of
ensembles of such structures which is applicable exclusively to simple closed systems. Quan-
tum weirdness is therefore not expected to disappear altogether from macroscopic irreversible
physics but, instead, take a new statistcal form, perhaps even weirder. The illusion of ‘dark
matter’ is one example [4] with immediate, testable predictions. Non mechanistic correla-
tions, proposed in the current paper, is another. The use of machine learning to this end
is by no means essential, reflecting the author’s failure to hitherto come up with XM—that
rich statistical description of irreversible systems. Nonetheless, it is certainly conceivable
that none will be found and that, more generally, the days of new analytic laws of physics
are numbered.
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