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1 Introduction. Gödel’s causal philosophy

Gödel states in his philosophical notes (from 1954, according to
Hao Wang) that cause is “the fundamental philosophical concept”
([27, p. 432–433], [54, p. 119, 294, 315]). In discussions with Wang
in the 1970s, Gödel confirms the fundamental role of causality
with respect to time: “the real idea behind time is causation”
[54, p. 320, 168], as well as with respect to the general and the
particular: “causation is fundamental: it should also explain the
general and the particular” [54, p. 312], which themselves in turn
make a “fundamental fact of reality” [54, p. 295].1

For Gödel, philosophy includes metaphysical and theological
worldview. The theological worldview has it as its principle that
“the world and everything in it has meaning and sense”. This
principle is analogous to the “the principle that everything has a
cause”, which is “the basis of the whole of science” (letter to his
mother dated October 6, 1961, see [53] and [54, p. 108]). Hence,
if causality is the fundamental philosophical concept, then the-
ological “meaning and sense” should be, in some way, founded on
and explained in causal terms. Consequently, Gödel also holds
that philosophy, which is for him “rationalistic” and “theological”
[54, p. 290], should be transformed into an exact theory, a sci-
ence. As he emphasizes (in a letter to his mother, 1961), one day
we will be able to scientifically justify the theological worldview.
Gödel mentions several times, in his discussions with Wang, that

1“It is a fundamental fact of reality that there are two kinds of reality:
universals and particulars (or individuals)” [54, p. 295].
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what should be done in philosophy is something similar to what
Newton had done for physics:

The beginning of physics was Newton’s work of 1687,
which needs only very simple primitives: force, mass,
law. I look for a similar theory for philosophy or me-
taphysics.2

Gödel expresses his programme of scientific philosophy quite suc-
cintly: when he says (1975, according to Wang) that

the meaning of the world is the separation of force
and fact,

he is actually explaining a specific philosophical-theological con-
cept (‘meaning of the world’) in what he takes to be scientific
causal terms (‘force’, ‘fact’).

Gödel expresses the principles that the world and everything
in it has a meaning, and that meaning has always a causal sense
(everything has a cause), by saying, more neutrally, that the world
is rational (statement no. 1 in his “My philosophical viewpoint”,
around 1960, according to Wang). In this sense, as confirmed by
Wang, Gödel can also conceive the principle of sufficient reason
(‘ratio’) as “a given fundamental truth” [54, p. 63].

It is clear that although Gödel’s concept of science is deeply
grounded in the results of science of his time, it is not a common
one: for example, it should include phenomenological introspec-
tion3 (which includes a change of personality, too [54, p. 167]).
These phenomenological procedures should be transformed into
an exact methodology by means of which we could clearly and

2Cf. [54, p. 167, cf. p. 233, 288, 319, 309, 332]. Here are some other confir-
mations, in various contexts, of Gödel’s conception of philosophy as a science:
“Husserl reached the end, arrived at the science of metaphysics”, “philosophy
is persecuted science” [54, p. 166]; on philosophy as “exact theory” and on
a new science of concepts, see [54, p. 229–230]; cf. “the transformation of
certain aspects of traditional philosophy into an exact science” (quotation
according to [7]).

3Cf. [28, 5, 52]. Gödel speaks of “a deeper and deeper self knowledge of
reason [. . . a more and more complete rational knowledge of the essence of
reason (of which essence the faculty of self knowledge is itself a constituent
part)]”, Gödel’s letter to Tillich, quoted according to van Atten [6].
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precisely perceive primitive concepts of philosophy and “set up”
axioms about them (see, e.g., [54, p. 288, 289]). Here, mathema-
tical logic has a crucial role:

The significance of mathematical logic for philosophy
lies in its power to make thought explicit by illustra-
ting and providing a frame for the axiomatic method.
Mathematical logic makes explicit the central place of
predication in the philosophical foundation of rational
thought. ...4

From Gödel’s ascribing to causality a fundamental role in expla-
ining the general and the particular, and from the fact that predi-
cation relates the general and the particular, it follows that even
the logical concept of predication could and should be further
explained by means of causal terms. However, Gödel’s axiomatic
onto-theological system for his proof of God’s existence (see [26])
does not contain explicit concept of causality. In [34] we have
proposed a possible way of how necessity operator of the system
could be interpreted as causality.

It should be emphasized that for Gödel causality does not
come into philosophy only from science, as from the outside. He
is quite aware that causality is also an intrinsically philosophi-
cal concept, a basic one for philosophers like Aristotle or Kant.
For example, it is one of Kant’s categories (see Gödel’s note from
1954), and, as Gödel stresses, also a concept by means of which
Kant describes the influence of things in themselves on our recep-
tivity [25]. (For Aristotle, see for instance Gödel’s description of
the causal work of Aristotelian intellect (nous) [54, p. 235]).

As to the role of the concept of causality in Gödel’s philosophy,
Wang reports that Gödel said “on several occasions” in the seven-
ties that he “was not able to decide what the primitive concepts of
philosophy are” [54, p. 120, cf. p. 288]. However, the fundamental
role of causality in philosophy is confirmed by Gödel’s statements
from different periods of his life, and seems to have remained, for
him, largely undisturbed. On the other side, on the ground of
the published Gödel’s philosophical texts and remarks, it is far

4[54, p. 293].
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from certain how Gödel might have thought about the details
in carrying out the programme of a causally founded philosophy.
Here, we will concentrate on a possible causal sense and formali-
zation of Gödel’s ontological system and his ontological proof of
the necessary existence of God.

In the following, we, first, introduce Gödel’s preferred, cons-
tructivity criteria of knowledge, and connect them with the con-
cept of causality. Secondly, we give an historical example of a
constructive approach to the causal knowledge and analyze the
fulfilment of constructivity criteria in Gödel’s ontological proof.
Thirdly, we re-axiomatize Gödel’s ontological system by introdu-
cing quantifiable causal terms (system QCGO) and give the sys-
tem an appropriate semantics. Finally, we prove some additional
interesting theorems of QCGP.

2 Gödel’s constructivism and causality

Gödel’s programme of scientific philosophy by the use of axi-
omatic method is in accordance with at least some aspects of his
constructivistic epistemological views. On the example of Gödel’s
axiomatizing of logic of proofs (a sort of formalized epistemology),
we show what kind of axiomatization Gödel might have in mind,
and, at the same time, what obstacles in defining a fully cons-
tructivist system he was aware of. A similar axiomatic approach
we will apply to the theory of causality.

Gödel emphasizes in his Zilsel Lecture from 1938 [24] the epis-
temological advantage of the reduction of our knowledge to “cons-
tructive systems”, in the sense that “constructive systems are bet-
ter than those that work with the existential ‘there is’ ” [24, p.
83]. Constructive knowledge is more evident and reliable in that
it gives more secure foundations (of mathematics, on which Gödel
is focused in Zilsel Lecture, 1938, [24, p. 91]). Gödel enumerates
the following criteria of constructivity (where as the second item
the elimination of existential quantifiers is included):

1. computability and decidability of the “primitive operations
and relations” (by means of propositional calculus and re-
cursive definitions);
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2. ∃xp(x) is used only as an abbreviation for p(c); propositional
operations “should not be applied to” ∀xp – only statements
with free variables should be used instead;

3. the use of axiomatic systems (recursive definitions, propo-
sitional calculus, substitution) with “ordinary complete in-
duction” (Gödel leaves open the question about further axi-
oms and rules);

4. “objects should be surveyable (that is, denumerable)” (ac-
cording to an earlier draft, Konzept, objects are individuals,
functions, and relations).

Let us first see how Gödel meant to apply these criteria to
the concept of proving. Since this concept is, according to some
Gödel’s reflections, a special case of causation, we shall thereaf-
ter generalize our approach and propose a possible appropriate
formalization of the concept of causality.

As to the causal conception of proofs and proving, Gödel men-
tions that axioms cause theorems, and theorems cause their con-
sequences.5 Morover, Gödel considered the possibility of an axi-
omatic deduction of logical and set-theoretical axioms themselves
in terms of causality:

Perhaps the other Kantian categories (that is logi-
cal JcategoriesK, including necessity) can be defined
in terms of causality, and the logical (set-theoretical)
axioms can be derived from the axioms of causality”
[27, p. 432–435].

As to the constructivity of proofs, Gödel himself points out
that his translation of intuitionistic propositional logic, being in-
terpreted as a logic of provability, into S4 modal system [21](1933)

5“Causation in mathematics, in the sense of, say, a fundamental theorem
causing its consequences, is not in time, but we take it as a scheme in time”
[54, p. 320]. “He once said to me that there is a sense of cause according
to which axioms cause theorems. It seems likely that Gödel has in mind
something like Aristotle’s conception of cause or aitia which includes both
causes and reasons” [54, p. 120]. It is important to distinguish here causality
in a logical sense (say of logical consequence, or of a structure of logical
forms), from the causality in our cognition of concepts and axioms, i.e. from
the influence of concepts and logical truths on our mind.
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is not constructive. The reason is that operator B (in place of 2)
has the meaning: “it is provable that” (“there is a proof that”),
i.e. it implicitly contains existential quantification over proofs.
Thus Gödel tried in his Zilsel Lecture to come to some version
of logic of proofs (a sort of what is today called “justification lo-
gic”) that will better satisfy the constructivity criteria. Instead
of a provability operator (B), he uses formats zBq and zBp, q,
with the meaning ‘z is a proof of q’ and ‘z is a proof of q from
p’, respectively, operations on proofs f (z, u) and z′, and mentions
axioms zBp, q ∧ uBq, r → f (z, u)Bp, r, zBφ(x, y) → φ(x, y), as well
as uBv → u′B(uBv).

A striking feature of both Gödel’s S4 logic of provability (1933)
and his logic of proofs from the Zilsel Lecture is that they can
prove the unprovability of inconsistency. In the S4 logic of prova-
bility, we can prove B¬B0 = 1 by means of modal axioms (on the
ground of the contraposition of a T axiom B0 = 1 → 0 = 1) [21].
On the other side, Gödel mentions that in his justification logic
(1938) it follows from ` aBq that ` aB∀u¬uB0 = 1. That is, in
causal terms, it can be proved that nothing causes contradiction
if some q is provable, and that this fact has its own cause. Gödel
notes that B is not applied here to ∀u (which would violate the
second condition of constructivity listed above) since ∀u¬uB0 = 1

“occurs here in suppositio materialis as an object, in quotation
marks” [24, p. 101]. We reconstruct this proof in a modern for-
mat of justification logic. We extend the classical first-order basis
with the justification logic counterparts of modal axioms K and
T and the rule of axiom necessitation:

JK t : (φ→ ψ)→ (u : φ→ t · u : ψ),

JT t : φ→ ψ,

ANec ` φ =⇒ ` c : φ,

φ is an axiom, c its associated proof term,

where t and u are proof terms (see [4]), and add the following
justification counterpart of a modal rule:

NecU ` φ1 → t : (φ2 → . . .→ u : (φn → z : ψ) . . .)
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=⇒ ` φ1 → t : (φ2 → . . .→ u : (φn → genx(z) : ∀xψ) . . .),

x /∈ free(φm≤n).

(For the latter rule in a general modal setting, see [29, p. 293]
and [51, p. 63] (R5).) We give a proof of genu((e · ((c · c′) · d)) ·
a) : ∀z¬z : ⊥ (instead of simply a : ∀z¬z : ⊥), where a is a proof of
some theorem.6

1 a : q any theorem q, a its proof
2 c : ((z : ⊥ → (⊥ → ¬q))→ ((z : ⊥ → ⊥)→ CPC axiom,

(z : ⊥ → ¬q))) ANec, z not occurring in a : q

3 c′ : (z : ⊥ → (⊥ → ¬q)) CPC, ANec
4 c · c′ : ((z : ⊥ → ⊥)→ (z : ⊥ → ¬q)) 2, 3 JK
5 z : ⊥ → ⊥ JT
6 d : (z : ⊥ → ⊥) ANec
7 (c · c′) · d : (z : ⊥ → ¬q) 4, 6 JK, MP
8 e : ((z : ⊥ → ¬q)→ (q → ¬z : ⊥) CPC, ANec
9 e · ((c · c′) · d) : (q → ¬z : ⊥) 7, 8 JK, MP
10 (e · ((c · c′) · d)) · a : ¬z : ⊥ 1, 9 JK
11 > → (e · ((c · c′) · d)) · a : ¬z : ⊥ 10 CPC
12 > → genz((e · ((c · c

′) · d)) · a) : ∀z¬z : ⊥ 11 NecU
13 genz((e · ((c · c

′) · d)) · a) : ∀z¬z : ⊥ 12 MP

CPC is classical propositional calculus, a and c′ are assumed to
be composed proof terms obtained by means of a successive ap-
plication of ANec, and z is a proof variable. Gödel simply says
that a, instead of genv((e · ((c · c

′) · d)) · a), is the proof of ∀z¬z : ⊥,
thus leaving the proof generalization implicit, and reducing the
finally obtained proof term to the starting proof part.

In the light of Gödel’s second incompleteness theorem, by
means of an arithmetically encoded statement that is precisely
analogous to the above sentences expressing the unprovability of
inconsistency, it is clear that the two Gödel’s logics mentioned
are not formalizations of a logic of proofs for any defined system
containing arithmetics. Both logics formalize a proofs concept in
some sense which is prior to the concept of proof in any particular
system (provability in the “absolute sense”).

6Cf. a proof in [13], which I encountered afterwards.
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Evaluating the constructivity of his logic of proofs, Gödel
mentions that the third and the fourth of the conditions for cons-
tructivity are not satisfied (additional axioms about B are not re-
ducible to definitions, there is no finite procedure for generating
proofs, so proofs are “unsurveyable”, see [47, p. 67]). As Gödel
supposes, one way to repair these defects, as far as it is possi-
ble, would be to restrict logic L of proofs to the logic of proofs
of L itself. Artemov fulfilled the idea of a logic of arithmetical
proofs, without provable aB∀u¬uB⊥ and with a denumerable do-
main of (arithmetical) proofs (see [2]). Building upon semantics
by Mkrtytchev [41] and including features of Kripkean models,
Fitting described a general semantics in the sense of a logic of
evidence (or justifications) in a broader sense than just arithme-
tical proofs [15]. However, if Gödel’s 1938 logic of proofs is not
interpretatively restricted to arithmetical proofs or to evidence in
general, but is interpreted in a causal way,7 the (causal) coun-
terpart of aB∀u¬uB⊥ need not necessarily be a problematic one.
Following this idea, we will apply features of Gödel’s justification
logic to his ontological proof, with modalities interpreted causally
(in some stronger sense than just proof causality). Before doing
that, we will generalize our discussion extending it to the prin-
ciple of sufficient reason, and adding a historical note about the
(non-)constructivity of the principle.

3 The principle of sufficient reason

Gödel’s attempts to formalize a logic of provability and proofs
are as such essentially interconnected with his later philosophical
considerations about the principle of sufficient reason, and with
his study of Leibniz’s and Kant’s philosophy. “Reason” can be in
general conceived either in a logical sense (proof) or in a real sense
(cause), independently of whether we conceive proofs themselves
causally (as Gödel), or separate proofs and causality from one
another (as e.g. Kant). Gödel often refers to Leibniz in connection
with the principle of sufficient reason, but it was in fact Rugjer J.

7Cf. a proposal for a justification logic of counterfactuals, mentioned in
[3].
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Bošković,8 who gave a sort of constructive turn to the principle.
The principle of sufficient reason, which is a “fundamental

truth” for Gödel (as reported by Wang), in one of Leibniz’s for-
mulations reads:

. . . no fact can ever be true or existent, no statement
correct, unless there is a sufficient reason why things
are as they are and not otherwise [38, p. §32].

If we use 2 in the existential (non-constructive) sense of ‘there is
a reason (proof, cause) for ...’, the principle of sufficient reason
amounts to the following:

φ→ 2φ

Of course, other ways of formalizing the principle of sufficient
reason are available (see, e.g. [43, 44, 10]9). Leibniz was aware of
our limitations in the use of this principle: “in most cases we can’t
know what the reason is” (ibid).10 However, the problem with
what we may today call the non-constructivity of the principle
of sufficient reason was pointed out more precisely by Bošković
(then by Leibniz) in his De continuitatis lege (1754) [11]. Bošković
criticizes the negative use of this principle in the sense of the
inference from the “lack of reason” (ex defectu rationis), where the
contrapositive of the principle of sufficient reason is a premise:

{¬2φ,¬2φ→ ¬φ} ` ¬φ.

Note that in ¬2φ → ¬φ, universal quantification (over reasons),
¬2, occurs under a connective (→, 2 being read existentially as
“there is a reason”, and occurring in suppositio personalis, not in
suppositio materialis), thus violating the second above mentioned
Gödel’s criterion of constructivity. As Bošković argues, since “all”
reasons are not in general available to human reasoning agents

8Dubrovnik 1711 – Milan 1787.
9Let us mention that φ → 2φ is an axiom of the intuitionistically based

propositional provability logic KM (see [42]).
10Cf. a commentary in [p. 201–202, 217–222, 282–284][55], where Leibniz’s

principle of sufficient reason is interpreted as a “completeness claim” about
axiom systems in logic, mathematics, and metaphysics.
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and there may be some reason for φ not being known to us, this
sort of reasoning is not reliable (the exception is, for example,
the case of the absurdity of φ). Instead, Bošković proposes a
general inductive-deductive procedure of accumulating and ve-
rifying singular available reasons in order to establish a probable
knowledge (e.g. a natural law), which should take into account
also non-sensible basic elements of matter. At the same time, this
constructive shift from the existential to the instantial conception
of the principle of sufficient reason provides a justification of the
empirical application of the concept of causality in science (in the
form of probable causal laws).11 In a sense, Bošković’s criticism of
the non-constructive use of the principle of sufficient reason can
be considered as a precursor of Gödel’s attempt at a constructive
theory of reasons in 1938.

4 A glimpse on GO ontological proof

On inspection of Gödel’s ontological proof in a form present in
Gödel’s sketch from 1970 and in Scott’s slight variation of the
proof, as well as on inspection of additional Sobel’s modal col-
lapse proof,12 we can notice that Gödel’s criteria of constructi-
vity are, at least to some extent, respected. Following Hájek (e.g.
[30]), we will use ‘GO’ to name Gödel’s formal ontological system
as presented by Scott. (1) In GO, there is a decidable modal pro-
positional basis. (2) Regarding first-order quantifiers, we remark
the following: (a) ∃xφ(x) can be read as if it is skolemized (φ(c),
φ( f (x)), (b) ∀x can be omitted in the proof leaving x free, except
where it occurs under 2 in de dicto position (suppositio materi-
alis) – we notice that nowhere in the ontological proof ∀x appears
in de re position (bounding into a modal context). However, no
exception is present for ∀X, e.g. in ∀x(Gx → ∀X(Xx → P(X)),
that is, ∀X normally occurs under connectives and need not be
in suppositio materialis. (3) A properly defined axiomatic system

11See Hunter [31], who favours Bošković’s theory in opposition to Humean
skepticism. Cf. [36].

12See [26, 48]. Cf. [50] for a detailed axiomatic and model-theoretic recons-
truction, and [1] for an introductory commentary.
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is used. Although the concept of “positiveness” is not defined (in
distinction to G, E∫ ∫ and N), it is described by means of axioms,
obviously having the concept of ultrafilter as a paradigm.13 (4)
Objects, including causes, can be surveyable – at least one object
suffices for the whole ontological proof. This in distinction to the
“unsurveyable” number of proofs if “proof” is taken in an “absolute
sense” (see [24]).

Replacing 2 of GO with causal terms in analogy with Gödel’s
proof terms of [24] and in connection with the discussion about
non-constructivity in the use of the principle of sufficient reason,
makes a further move towards a more constructive (in the Göde-
lian sense of [24]) ontological theory. Since Gödel conceived mat-
hematical theoremhood, too, as a causal matter, formula φ in t : φ,
in causally (ontologically) reformulated justification logic, can be
a logical/mathematical theorem, and t its proof in the sense of a
logical cause of φ. – Let us add two examples of how ontological
causality can exceed a logical/mathematical one. First, under the
supposition of the causation a : q and of the presence of a (Ea),
it is plausible to have a′ : ∀u(¬u : (0 = 1)) as a consequence in a
causal sense: if a actually causes q then some a′ (not necessa-
rily a proof) prevents that anything causes ¬q, since otherwise
we could have a contradictory causal event (with some b actually
causing ¬q). Hence, a implies the causation that exceeds mat-
hematical formalism. Another example is Axiom C5 (see next
section), ¬t : φ → ?t : ¬t : φ. Here, ?t, cannot have a sense of one
proof of infinitely many propositions of the form ¬t : φ (cf. [3]),
though it could have a sense of some unique ontological cause
with infinitely many effects of the form mentioned.

13This may be connected with Gödel’s quest for a non-mechanical proce-
dure in finding new axioms, not only for set theory, but for philosophy, too, in
the sense of finding and defining (by means of axioms) primitive philosophi-
cal concepts. Gödel meant that such a procedure could be obtained through
some future improvement and refinement of phenomenological introspective
method (up to an exact, scientific theory) in investigating our use of concepts.
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5 Formalization of a causal Gödel ontology
(QCGO)

5.1 Language LQCGO

In [34] we proposed a combination of Gödel’s onto-theological
formal system GO with justification logic. We conceived justifica-
tion terms causally, with the intention to describe the concept of
causation constructively, in the sense of working with (“more evi-
dent”) causal instances instead of merely with the presence of ca-
usation (‘there is a cause that’). We now relax this constraint and
generally allow the (first-order) quantification over causes, too, in
order to enable universally quantified causation in de dicto posi-
tion, as at first allowed by Gödel in his Zilsel Lecture. Similarly,
Gödel nowhere in his onto-theological system (GO) explicitly res-
tricted first-order quantification (although we see that first-order
quantification de re never occurs in his ontological proof).

We now describe a quantificational causal system QCGO and
its language LQCGO.

The vocabulary of LQCGO is a modification and extension of
the vocabulary of first-order justification logic FOLP (see [4, 17]).
The vocabulary of LQCGO consists of first- and second-order va-
riables (x, y, z, x1, . . .; Xn,Yn,Zn, Xn

1
, . . .), first-order constants

(c, c1, . . .), second-order constants (relation symbols Pn,Pn
1
, . . .; =

and function symbols +, ·, !, ?, genx, geny, . . . , genX , genY , . . . ,
absx, absy,. . . , exs), third-order constant P (positivity), and pa-
rentheses. Operators are ¬, →, ∀ (other propositional and quan-
tification operators classically defined), ι, λ, and : .

By the following two definitions we jointly define terms and
formulas of LQCGO.

Definition 1 (Terms). First-order variables, first-order cons-
tants, and terms of the form ιxφ(x) are first-order terms (for φ,
see Definition 2 below). Compound first-order terms are built in
an analogous way as proof terms of FOLP, with the addition of the
two last cases in the following list (t and u are first-order terms):

• (t + u) – causal sum,

12

 Published in Kordula Świętorzecka (ed.), Gödel's Ontological
argument: History, Modifications, and Controversies, Warszawa:
Semper, 2015.



• (t · u) – the application of cause t (causal nexus) to cause u

(distal cause), proximate cause,

• !u – affirmation of t,

• ?u – limitation of t,

• genx(t), genX(t) – general cause (with respect to cause t as
its special case),

• absx(t) – abstract cause, cause of having a property (with
respect to t as a cause of the corresponding state of affairs;
see syntax and semantics below),

• exs(t) – cause of existence (actualization of cause t).

Familiar second-order grammar is used, with first-order iden-
tity sentences, λ abstraction, and causal formulas of the shape
t : φ.

Definition 2 (Formula).

φ ::= Rnt1 . . . tn | t = t′ | PT | t : φ | ¬φ | (φ1 → φ2) | ∀xφ | ∀Xφ

| (λx.φ)(t)

where Rn is a first-order relation symbol. We will use (λx1 . . . xn.φ),
or simply φ, if there is no ambiguity, as short for (λx1.(λx2.(. . . (λn.

φ) . . .))). λ abstract, (λx.φ), is a second-order term.
All and only first-order terms are causal terms (in FOLP, a

special set of proof variables and constants is disjoint from the set
of first-order terms; however, in quantified logic of proofs QLP by
M. Fitting [16], all and only proof terms are first-order terms).

In addition, we will use r, s as meta-variables for first-order
variables or first-order constants, t, u, v for first-order terms, and
T,U,V for second-order terms (R, S for second-order variables or
constants).

The following definitions will be used (the last two of them
are slight modifications of abbreviations in GO):

Et =de f ∃xx = t,

Tn =de f (λx1 . . . xn.¬T x1 . . . xn),

Xn = Yn =de f ∀x1 . . .∀xn(Xx1 . . . xn ↔ Y x1 . . . xn),
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Gt =de f ∀X(PX → Xt) (“most positive”, “God-like”),

E∫ ∫ t(X, u) =de f Xu ∧ ∀Y (Yu→ t : ∀z(Xz → Yz)) (essence),

Ntu =de f ∀X(E∫ ∫ t(X, u) → exs(t) : ∃xXx) (necessary exis-
tence).

According to the above definitions, we note that an essence of x

is supplied with a causality by means of which the essence brings
about all the properties of x. Necessary existence of x is a sort of
actualization of x’s essence.

5.2 System QCGO

Axioms are classical propositional tautologies and the following
three groups of axioms: general logical axioms, general causal
axioms, and causal positivity axioms (onto-theological).

General logical axioms are the following ones:

∀1a ∀xφ→ (Et → φ(t/x)), t is rigid and substitutable14 for x in φ

(for “rigid” see Axiom =R and Definition 3 below),

∀1b ∀x(φ→ ψ)→ (φ→ ∀xψ), x /∈ free(φ),

=1 t = t,

∀2a ∀Xφ→ φ(T /X)), T is substitutable for X in φ,

∀2b ∀X(φ→ ψ)→ (φ→ ∀Xψ), X /∈ free(φ),

λCnv φ(t/x)↔ (λx.φ)(t), t is substitutable for x in φ,

E ∀xEx (see Def. of E below),

Subs t1 = t2 → (φ(t2/x) → φ(t1/x)), where t1 and t2 are substitu-
table for x in φ,

D ∀y(y = ιxφ(x)↔ (∀x(φ→ x = y)∧φ(y/x))), x and y are different
variables.

We adopt the following general causal axioms:

14We say that t is substitutable for x in φ if t, or a free variable that occurrs
in t, does not become bound by ∀, λ, or ιoperator if t is substituted for x in
φ.

14
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CAE Et if t : φ ∈ CS or t = exs(u) with provably possible u (i.e.
QCGO ` ¬x : ¬∃y y = u15 (for CS see below),

CE (Et ∧ Eu)→ E(t ∗ u), Et → E ∗t, Et → E ∗(t),
(Eexs(t)∧Eexs(u))→ Eexs(t∗u), Eexs(t)→ Eexs(∗t), Eexs(t)

→ Eexs(∗(t))
(∗ is a causal function symbol),

CMon t : φ→ (t + u) : φ, u : φ→ (t + u) : φ,16

CK t : (φ→ ψ)→ (u : φ→ (t · u) : ψ),

CT t : φ→ (Et → φ),

C4 t : φ→ !t : t : φ,

C5 ¬t : φ→ ?t : ¬t : φ,

C∀ t : φ→ genx(t) : ∀xφ, x /∈ free(φ),
t : φ→ genX(t) : ∀Xφ, X /∈ free(φ),

Cλ t : φ(u/x)→ absu(t) : (λx.φ)(u)),

=R r = s→ ∃z : r = s.

CMon–C4, and C∀ are second-order generalizations of the cor-
responding schemes of FOLP [4], with modified CT requiring the
presence of the cause. According to CT, cause t is conceived as a
“sufficient reason” (see a comment in footnote 18 below).

System QCGO also includes causal Gödelian axioms for the
positivity of properties (onto-theological axioms, cf. GA1 − 5 of
GO, with modifications in CGA2 and CGA4, see [34]):

QCGA1(=GA1) ∀X(PX ↔ ¬PX),

QCGA2 ∀X∀Y ((PX ∧ t : ∀y(Xy → Yy))→ PY ),
15Applications of CAE for exs in such a proof should be ultimately based

on cases without CAE for exs.
16Note that a cause is assumed to be an (at least) sufficient cause (it may

include redundant components, and may be a sufficient and necessary cause
as well). Hence, if t is a sufficient cause of φ, the fact that, possibly, u is a
sufficient cause of ¬φ does not in any way change anything in the first fact
(that t is a sufficient cause of φ). Hence, their sum continues to be a cause of
φ (as well as of ¬φ). What will actually be the case depends on which cause
exists (they cannot both actually co-exist, since then φ ∧ ¬φ would be the
case). For instance, if t exists (Et), then φ will actually obtain (see Axiom
CT). We remark that Axiom CE does not imply E(t + u) from Et (or Eu).
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QCGA3(=GA3) PG,

QCGA4 ∀X(PX → ιxGx : PX),

QCGA5 PN .

Definition 3 (Rigid term). A term t is rigid iff ` x = t →
∃y y : x = t.

As in justification logic, a constant specification set, CS, is needed
– it is a set of formulas k : φ (k being a first-order constant) for
each axiom φ (for each axiom there is a corresponding cause). –
In the examples below, we will often use certain letters as abbre-
viations to indicate a cause term that is composed by causal term
operations on basic causal terms assigned by CS to the axioms.

Rules of inference are as follows:

MP ` φ→ ψ, φ =⇒ ` ψ,

U1 ` φ =⇒ ` ∀xφ ,

U2 ` φ =⇒ ` ∀Xφ,

ACau (axiom causation): if ` φ, then ` k : φ, where φ is an axiom,
and k a cause constant with k : φ ∈ CS.

Quantificationally bound and free variables are conceived as usual.
In addition, we say that t in t : φ binds free x (X) of φ if and only
if x (X) is not free in t.

Remark 1. Let us notice that even proper logical axioms of QCGO
(taken from general first-order or second-order logic) have their
causes, which will make possible, by means of other axioms (like
CK) and rules, to derive propositions about logical causality. This
is in accordance with the so-called Gödel’s Platonism and his sta-
tements like the ones mentioned above about axioms causing the-
orems, and theorems causing their consequences (see the begin-
ning of the next section for a closer explanation). Our intended
interpretation of this logical causation of QCGO is that logical axi-
oms and theorems are not justified merely by their epistemological
reasons (evidence, proofs), but have also their ontological founda-
tion in some fundamental features of (not epistemically conditi-
oned) objectivity.

16



We assume a familiar definition of inconsistency of a set Γ

of formulas by means of derivability of a contradiction (φ and
¬φ) from Γ, and a definition of Γ being consistent as Γ not being
inconsistent.

6 Some propositions and theorems

6.1 General features of ontological causation

From the form of a causal formula t : φ it can be seen that an
effect, which is expressed by a formula (φ), cannot as such be a
cause, expressed by a first-order term (t), of any further effect.
Strictly, it is not so that an axiom causes a theorem, but the cause
of an axiom (t : φ), combined with a causal nexus between the
axiom and a theorem (s : (φ→ ψ)), causes the theorem (t ·s : ψ).17

Thus, for example, the transitivity of causality does not obtain
in a literal sense. What is transitive is causal nexus, expressed as
a causal conditional t : (φ→ ψ).

Proposition 1 (Transitivity of causal nexus). QCGO ` t : (φ →
ψ) → (u : (ψ → χ) → ((a · t) · u) : (φ → χ)), where a is taken to be
the cause of (φ→ ψ)→ ((ψ → χ)→ (φ→ χ)).

Dokaz.

1 (φ→ ψ)→ ((ψ → χ)→ (φ→ χ)) PC

2 a : ((φ→ ψ)→ ((ψ → χ)→ (φ→ χ))) 1 ACau
3 t : (φ→ ψ)→ (a · t) : ((ψ → χ)→ (φ→ χ)) 2 CK
4 t : (φ→ ψ)→ (u : (ψ → χ)→ ((a · t) · u) : (φ→ χ)) 3 CK

17Thus, on the present account, cause and effect are inhomogeneous. In the
light of the discussion between eventualist and factualist accounts of causality
(see, e.g. [9], in connection with Gödel’s “slingshot” argument), we propose
a mixed account, where cause would be, in a way, similar to an event, and
effect to a fact. Actually, Gödel’s distinction between force and fact seems
to be even more appropriate: cause could be conceived as a (causal) force,
whereas effect is simply a fact resulting from the work of causal force. See the
introductory part of this chapter and [54, p. 309–313] for Gödel’s informal
distinction of force (thesis) and fact (antithesis of force).

17
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PC stands for the propositional fragment of QCGO.
Further, to say that φ causes χ if φ causes ψ and ψ causes χ,

means, more precisely, that the cause of φ, only if taken together
with the needed causal nexuses (of φ→ ψ and ψ → χ), causes χ:

Proposition 2. Suppose that QCGO ` a′ : (φ → ((φ → ψ) →
((ψ → χ) → χ))). Then QCGO ` t : (φ → ψ) → (u : (ψ → χ) →
(v : φ→ (((a′ · v) · t) · u) : χ)).

Dokaz. In a similar way like the proof of Proposition 1.

Causal nexus is not asymmetric. If the left-to-right as well as
the right-to-left directions have their respective causes, the cause
of the biconditional can easily be calculated:

Proposition 3 (Symmetry). Let QCGO ` b : ((φ → ψ) → ((ψ →
φ)→ (φ↔ ψ))). Then,

QCGO ` t : (φ→ ψ)→ (u : (ψ → φ)→ ((b · t) · u) : (φ↔ ψ))

Dokaz. By a successive application of axiom CK like for Propo-
sition 1.

In addition, causal nexus is reflexive since φ → φ is provable
in QCGO.18

From the above examples it is clear that a causal nexus can
be decomposed into intermediate causes that are indicated in the
causal prefix, and that the number of intermediate causes is finite
(since a causal prefix is of a finite length). The decomposition of a
causal nexus ends with the first, immediate causes, which are by
CS ascribed to the axioms. Let us notice that the origins of such a
causal theory, as build upon a paradigm of logical reasoning and
logic of proofs, can be traced back to Aristotle. In [35, 37], we

18As commented by B. Žarnić, it follows that beside some cause t of φ
there is always a compound cause u · t of the same fact φ (if u : (φ → φ)

holds). In this sense, we make a further precision in the concept of sufficient
cause. Cause t is sufficient even though not all those causal components are
explicitly included in t which, according to the system, provably follow to be
included in the causation of φ. Similarly, if existent t causes φ, we say that
t + u (u being existent but redundant), too, causes φ in the same causation
event.
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showed how a significantly similar style of formalization can be
applied to Aristotle’s causal conceptions of logic and science.19

In the following propositions the subscripts of causal prefixes
indicate the axioms or theorems associated with the prefixes. So-
metimes, just a sublogic to which axioms or theorems belong is
indicated (PC, SOL – propositional and second-order fragment of
QCGO, respectively, sub – substitution, λ – λ conversion).

Proposition 4.

(1) QCGO ` t : (φ ∧ ψ)→ ((a′∧E
· t) : φ ∧ (a′′∧E

· t) : ψ)

(2) QCGO ` !t : t : Tφ→ (Et → φ)

(3) QCGO ` (t : φ ∨ t : ψ)→ (b∨I · !t + b′∨I
· !t) : (t : φ ∨ t : ψ) [2].

Dokaz. We prove (1):

1 a′∧E
: ((φ ∧ ψ)→ φ) PC, ACau

2 a′′∧E
: ((φ ∧ ψ)→ ψ) PC, ACau

3 t : (φ ∧ ψ)→ (a′∧E
· t) : φ CK, MP

4 t : (φ ∧ ψ)→ (a′′∧E
· t) : ψ PC, MP

5 t : (φ ∧ ψ)→ ((a′∧E
· t) : φ ∧ (a′′∧E

· t) : ψ) PC

6.2 Specific onto-theological causal features

Many of the proofs of the following propositions are similar to
the proofs in system CGO of [34] (without the quantification on
causes and without definite descriptions) or in some non-causal
variants of the axiomatization of Gödel’s ontology as [50]. We
elaborate some specific proofs of QCGO.

Proposition 5. QCGO ` ¬u : ¬∃xGx

Dokaz. Cf. [34] for CGO.

Theorem 1. QCGO ` ∀x(Gx → E∫ ∫ cSOL·

ι

xGx(G, x))

Dokaz. Like in [34], where it is sketched for CGO.
19For comparison, see [56, p. 209–234] on general properties of causality in

physics.
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Proposition 6.

QCGO ` Gx → ∀X(Xx → PX)

QCGO ` Gx → (Gy → x = y)

Dokaz. See [50] for GO.

Proposition 7 (The uniqueness of Gx.). QCGO ` (Gx ∧ Ex) →
x = ιxGx

Dokaz.

1 Gx ∧ Ex ass.
2 ∀y(Gx → (Gy → x = y)) Proposition 6,U1
3 Gx → ∀y(Gy → x = y) 1, 2∀1a
4 ∀y(Gy → x = y) 1, 3 MP
5 Gx ∧ ∀y(Gy → x = y) 1, 4 PC
6 x = ιxGx 5 D, MP
7 (Gx ∧ Ex)→ x = ιxGx 1–6, Ded. Th.

(Cf. also Chapter “Gödel’s ‘slingshot’ argument and his onto-
theological system” in this book, for logic fGO ι.)

Proposition 8. QCGO ` ∃xGx → exs(cSOL ·

ιxGx) : ∃xGx

Dokaz. Like Scott’s proof for GO, with exs(cSOL ·

ιxGx) for 2.

Theorem 2. QCGO ` ∃xGx

Dokaz.

1 ¬∃xGx ass.
2 ¬exs(cSOL ·

ιxGx) : ¬∃xGx Prop. 5

3 ¬exs(cSOL ·

ιxGx) : ∃xGx 1 CT, CAE
CE, Prop. 5

4 ?exs(cSOL ·

ιxGx) : ¬exs(cSOL ·

ιxGx) : ∃xGx 3 C5
5 a : (∃xGx → exs(cSOL ·

ιxGx) : ∃x : Gx) 4 ACau,
Prop. 8

6 b : ((∃xGx → exs(cSOL ·

ιxGx) : ∃x : Gx)→ contrapos.,
(¬exs(cSOL ·

ιxGx) : ∃xGx → ¬∃xGx)) ACau
7 (b · a) : (¬exs(cSOL ·

ιxGx) : ∃xGx → ¬∃xGx) 5, 6 CK,
MP
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8 ?exs(cSOL ·

ιxGx) : ¬exs(cSOL ·

ιxGx) : ∃xGx 7 CK,
→ (b · a) · ?exs(cSOL ·

ιxGx) : ¬∃xGx MP
9 ¬(b · a) · ?exs(cSOL ·

ιxGx) : ¬∃xGx → 8

¬?exs(cSOL ·

ιxGx) : ¬exs(cSOL ·

ιxGx) :∃xGx contrapos.
10 ¬(b · a) · ?exs(cSOL ·

ιxGx) : ¬∃xGx Prop. 5

11 ¬?exs(cSOL ·

ιxGx) : ¬exs(cSOL ·

ιxGx) : ∃xGx 9, 10 MP
12 ∃xGx 1-11 Ded.Th.

4,11 contrd.

Corollary 1. QCGO ` exs(cSOL ·

ιxGx) : ∃xGx

Dokaz. From Proposition 8 and Theorem 2.

Informally, the theorems on God’s existence say that a God-
like being exists because it (its essence = being God) is actualized,
i.e., in an essential sense, it exists of itself (a se). This seems to
correspond to Gödel’s idea of God as something which is “nece-
ssary in itself” (an sich notwendig) [27, p.431].

Proposition 9. QCGO ` y = ιxGx → ∃x x : y = ιxGx

Dokaz. Like the proof of y = ιxGx → 2y = ιxGx (Rigidity of
God) in the “slingshot” chapter of this book, with ∃x x : instead
of 2.

Existentially quantified cause in Proposition 9 will be instan-
tiated below in Theorem 3.

Proposition 10. QCGO ` ∃x x = ιxGx (i.e. E ιxGx)

Dokaz. Follows from Proposition 7 and Theorem 2.

Theorem 3 (Universal Cause). QCGO ` φ ↔ ((cSOL ·

ιxGx) ·
exs(cSOL ·

ιxGx)) : φ.

Dokaz. For from left to right direction, see [34] for CGO. Spe-
cifically for QCGO, the proof depends on Eexs(cSOL ·

ιxGx) (like
Theorem 2). Cf. also axiomatic non-justificational proof; see [14,
p. 163–164]. From right to left: we need E((cSOL ·

ιxGx) · exs(cSOL ·

ιxGx)), which follows from axioms CAE and CE, Proposition 7
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and Theorem 2. (Causal term cSOL ·

ιxGx is in this last case, for
simplicity, taken as short for cFOL · (cSOL ·

ιxGx), with FOL for
first-order fragment of QCGO.)

According to Theorem 3, universal ontological cause conta-
ins (second-order) logic and its application to positive (“real”)
properties (comprised by ιxGx). Let us call the application of
logic on “real” properties “real logic”. Thus, we could say that
the activation (“affirmation of being”) of real logic is a universal,
onto-theological cause of each fact (and is “superposed” on possi-
ble natural causes of facts; see Proposition 11, Case 3 below). In
addition, by C4,CAE, and Proposition 10, it follows

QCGO ` φ↔ !((cSOL ·

ιxGx) · exs(cSOL ·

ιxGx)) :

((cSOL ·

ιxGx) · exs(cSOL ·

ιxGx)) : φ.

(Since we proposed a reading of ! as “affirmation”, this could have
some connection with Gödel’s reflexion that “the affirmation of
being is the cause of the world” [27, p. 433].) – Eventually, it can
be noticed that, due to Theorem 3, each designating first-order
term is rigid.

Proposition 11.

1. QCGO ` P(λx.x = x).

2. QCGO ` φ→ P(λx.φ)) Positivity of facts.

3. QCGO ` t : φ → ((cSOL ·

ιxGx) · exs(cSOL ·

ιxGx)) : (Et → φ)

Reduction of causes to the universal cause.

4. QCGO ` ((cSOL ·

ιxGx) · exs(cSOL ·

ιxGx)) : φ↔ P(λx.φ) Posi-
tivity of universal causation.

5. QCGO ` t : φ→ (Et → P(λx.φ)) Positivity of causation.

See [34] for Cases 2, 5.

Dokaz.

1. Like for CGO in [34].
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2. Follows from the first clause of Proposition 6, with (λx.φ)

for X, and Theorem 2. (Cf. proof in [34] as a modification
of the modal collapse proof in CGO).

3. From CT and Theorem 3.

4. From CT with axioms CAE, CE, Theorem 3, Proposition
7, and Case 2 above (Proposition 11).

5. From CT and Case 2 above (Proposition 11).

Proposition 12. QCGO ` t : ∀xφ → (Et → ∀x((cSOL ·

ιxGx) ·
exs(cSOL ·

ιxGx)) : φ (Universal Converse Barcan).

Dokaz. From t : ∀xφ and from Et, ∀xφ follows, and hence Ey →
φ(y/x) for y /∈ free(t : ∀xφ). By Theorem 3 we obtain Ey → ((cSOL ·

ιxGx) · exs(cSOL ·

ιxGx)) : φ(y/x), and thus (by first-order logic and
E) ∀x((cSOL ·

ιxGx) · exs(cSOL ·

ιxGx)) : φ.

Proposition 13. QCGO ` ∀xt : φ→ (Et → ((cSOL ·

ιxGx)·exs(cSOL ·
ιxGx)) : ∀xφ) (Universal Barcan).

Dokaz. From ∀xt : φ, it follows Ey → t : φ(y/x) (y /∈ free(t : ∀xφ)),
and from there Et → (Ey → φ(y/x)). Thus, by first-order logic, we
obtain Et → ∀xφ. By Theorem 3, Et → ((cSOL ·

ιxGx) · exs(cSOL ·

ιxGx)) : ∀xφ follows.

Proposition 14 (Ass1). QCGO ` φ ↔ ιxGx = ιx(x = ιxGx ∧
φ(x/ ιxGx))

Dokaz. Cf. chapter “Gödel’s ‘slingshot’ argument and his onto-
theological system” for fGO ι in this book.

From the above propositions we can see that God, being the
cause of positivity of properties, is also the cause of the positi-
vity of each fact. It follows that even worst facts should contain
an essential positivity aspect – being, self-identity, necessary part
of the whole (however difficult, otherwise, this may be to under-
stand). Further, God is involved in all causation (since in the
“universal cause”), together with specific causes of facts (Et, see
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Case 3 of Proposition 11),20 and thus sustains the positive side
in each causal event. Hence, finally, in no fact or causal event
the negative can prevail. In this way, if we conceive the positive
as “affirmation of being”, Leibniz’s question “why is there somet-
hing rather than nothing?” [39, p. 602], too, receives its answer
– in the fundamental primacy of the positive. In addition, accor-
ding to this Gödelian system, nothing in the “world” disappears,
nothing new appears (see Propositions 12 and 13) – all objects
are, in a sense, omnipresent, although they are not all equally
fundamental.21

We will now show how Gödel’s slingshot argument from his
[22] 22 can be extended to QCGO, where a precise onto-theological
cause for each pair of asserted equivalent propositions can be
constructed.

Proposition 15. QCGO ` X ιxGx → (d ι· ιxGx) : X ιxGx, with d ι

assumed to be a compound cause of PX → X ιxGx.

Dokaz. Like the proof of X ιxGx → 2X ιxGx in the “slingshot”
chapter of this book. After we derive X ιxGx → PX, formula
PX → ιxGx : PX follows by CGA4, and X ιxGx → ιxGx : PX by
propositional calculus. From Definition of G and from G ιxGx we
have d ι: (PX → X ιxGx) (with d ιas an appropriate cause). From
the last two derived sentences the proposition follows by CK.

Theorem 4. QCGO ` φ→ (ψ → ((d′
PC
· ((dPC · ((e′subs

· ((esubs · (d′λ ·
(d′ι· ιxGx))) · (d′′

λ
· (d′′ι · ιxGx)))) · c)) · a)) · b) : (φ↔ ψ))

Dokaz. Terms a and b in the following proof are assumed to be
causal terms for the instances of Proposition 14. Terms d′ιand d′′ι

are meant as originating from d ιof Proposition 15 for particular

20Gödel mentions in his notes the involvement of creatures in a sort of
“secondary” creation: “God created [schuf] things so that they can at their
turn still ‘create’ [‘erschaffen’] something” (K. Gödel, Max-Phil X, p. 12,
quotation according to [40]). This moment was also pointed out to me in
discussion by Paul Weingartner (2013, 2015), see [56].

21For broader philosophical explanations and motivations of a Gödelian
philosophical view with temporal and modal “collapse”, see [57, 58, 33, 34].

22See [49] and [46], as well as “Gödel’s ‘slingshot’ argument and his onto-
theological system” in this book.
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instantiations of this proposition. c is causal term for ιxGx =

ιx(x = ιxGx ∧φ(x/ ιxGx)). Subscripts of other cause terms indicate
axioms or other formulas to which they belong as their respective
causal terms.

1 a : (φ↔ ιxGx = ιx(x = ιxGx ∧ φ(x/ ιxGx))) Prop.14,
ACau

2 b : (ψ ↔ ιxGx = ιx(x = ιxGx ∧ ψ(x/ ιxGx))) as for 1
3 φ→ ιxGx = ιx(x = ιxGx ∧ φ(x/ ιxGx)) Prop.14

4 φ→ (λx.x = ιx(x = ιxGx ∧ φ(x/ ιxGx)))( ιxGx) 3 λCnv
5 φ→ (d′

λ
· (d′ι· ιxGx)) : 4,Prop.

ιxGx = ιx(x = ιxGx ∧ φ(x/ ιxGx)) 15, λCnv
6 ψ → ιxGx = ιx(x = ιxGx ∧ ψ(x/ ιxGx)) Prop. 14

7 ψ → (λx.x = ιx(x = ιxGx ∧ ψ(x/ ιxGx)))( ιxGx) 6 λCnv
8 ψ → (d′′

λ
· (d′′ι · ιxGx)) : ιxGx = ιx(x = ιxGx 7, Prop.

∧ψ(x/ ιxGx)) 15, λCnv
9 esubs : ( ιxGx = ιx(x = ιxGx ∧ φ(x/ ιxGx))→ Subs,

( ιxGx = ιx(x = ιxGx ∧ ψ(x/ ιxGx))→ ACau
ιx(x = ιxGx ∧ φ(x/ ιxGx)) = ιx(x = ιxGx ∧ ψ(x/ ιxGx))))

10 φ→ (esubs · (d′λ · (d
′ι· ιxGx))) : 5, 9 CK,

( ιxGx = ιx(x = ιxGx ∧ ψ(x/ ιxGx))→ PC

ιx(x = ιxGx ∧ φ(x/ ιxGx)) = ιx(x = ιxGx ∧ ψ(x/ ιxGx)))

11 φ→ (ψ → ((esubs · (d′λ · (d
′ι· ιxGx))) 8, 10 CK,

· (d′′
λ
· (d′′ι · ιxGx))) : MP

ιx(x = ιxGx ∧ φ(x/ ιxGx)) = ιx(x = ιxGx ∧ ψ(x/ ιxGx)))

12 e′
subs

: ( ιx(x = ιxGx ∧ φ(x/ ιxGx)) Subs,
=

ιx(x = ιxGx ∧ ψ(x/ ιxGx))→ ( ιxGx = ιx(x = ACau

ιxGx ∧ φ(x/ ιxGx))↔ ιxGx = ιx(x = ιxGx ∧ φ(x/ ιxGx))

→ ( ιxGx = ιx(x = ιxGx ∧ φ(x/ ιxGx))

↔ ιxGx = ιx(x = ιxGx ∧ ψ(x/ ιxGx)))))

13 φ→ (ψ → ((e′
subs
· ((esubs · (d′λ · (d

′ι· ιxGx))) 11, 12

· (d′′
λ
· (d′′ι · ιxGx)))) · c) : CK, PC

( ιxGx = ιx(x = ιxGx ∧ φ(x/ ιxGx))

↔ ιxGx = ιx(x = ιxGx ∧ ψ(x/ ιxGx))))
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14 dPC : (( ιxGx = ιx(x = ιxGx ∧ φ(x/ ιxGx)) PC,
↔ ιxGx = ιx(x = ιxGx ∧ ψ(x/ ιxGx))) ACau
→ ((φ↔ ιxGx = ιx(x = ιxGx ∧ φ(x/ ιxGx)))

→ (φ↔ ιxGx = ιx(x = ιxGx ∧ ψ(x/ ιxGx)))))

15 φ→ (ψ → ((dPC · ((e′subs
· ((esubs 1, 13, 14

· (d′
λ
· (d′ι· ιxGx))) · (d′′

λ
· (d′′ι · ιxGx)))) · c)) · a) : PC, CK,

(φ↔ ιxGx = ιx(x = ιxGx ∧ ψ(x/ ιxGx)))) MP
16 d′

PC
: ((φ↔ ιxGx = ιx(x = ιxGx ∧ ψ(x/ ιxGx))) PC, ACau

→ ((ψ ↔ ιxGx = ιx(x = ιxGx ∧ ψ(x/ ιxGx)))

→ (φ↔ ψ)))

17 φ→ (ψ → ((d′
PC
· ((dPC · ((e′subs

· ((esubs 2, 15, 16

· (d′
λ
· (d′ι· ιxGx))) · (d′′

λ
· (d′′ι · ιxGx)))) · c)) PC, CK,

· a)) · b) : (φ↔ ψ)) MP

In short, the cause of the equivalence of each pair of formulas is
nicely composed of logic and ιxGx.

7 Semantics

At first, second-order domain and the meanings of λ abstracts
and P will be defined by means of frames in a general and possi-
bly arbitrary way. Thereafter, we will be able to determine their
meanings in models in a specific interconnected way.23

Definition 4 (QCGO frame and variable assignment). Frame, F,
and variable assignment, a, are ordered set 〈W,R,D,D(n), I , q, a〉,
such that

1. W 6= ∅,

2. R ⊆ W ×W , reflexive, euclidean,

3. D 6= ∅,

4. ∅ 6= D(n) ⊆ ℘(Dn)W ,

5. (a) I(c) ∈ D,

(b) I(Cn) ∈ D(n),

23For such a procedure in general, see e.g. [14, 12].

26



(c) I(P,w) ∈ ℘D(1),

(d) I(!), I(?), I(genx), I(genX), I(absu), I(exs) ∈ DD,

(e) I(·), I(+) ∈ DD2

,

6. q(w) ∈ ℘D, closed under causal functions, includes the set
of all I(exs)(d) ∈ q(w) closed under causal functions with
respect to d, based on the set of all I(c) with c associated by
CS to an axiom,

⋃

w q(w) 6= D,

7. a(x) ∈ D, a(Xn) ∈ D(n).

Where there is no ambiguity, !, ?, genx, genX , absu, exs, ·, and +, are
used for I(!), I(?), I(genx), I(genX), I(absu), I(exs), I(·) and I(+),
respectively.

In the following definition, the influence function (In) is in-
troduced, which is needed for the definition of the satisfaction
of causal formulas and is a counterpart of the evidence function
(stemming from [41]) in Fitting models for justification logic.24

In case of constants and variables, the notation JtKF,wa will be used
for a(t) if t is a variable, and for I(t) if t is a constant (analogo-
usly, JTnKFa will be used for second-order constants and variables).
Further, JtKF,wa will be used for ∗Jt′KF,wa , or Jt′KF,wa ∗ Jt′′KF,wa if ∗ is
a one-place or two-place causal function, and finally, it will be
used in the way defined in Case 8 of Definition 5 if t is a definite
description. For a second-order term, T , JTnKF,wa is the value of
the function JTnKF,a at w.

Definition 5 (Satisfaction, influence, and the denotation of des-
cription in F, a,w).

1. F,w |=a Tt1 . . . tn iff 〈Jt1K
F,w
a , . . . , JtnK

F,w
a 〉 ∈ JTnKF,wa , we include

here also the formulas of the shape (λx.φ)(t) (as if there are
no parantheses around t),

2. F,w |=a PT iff JTKFa ∈ I(P,w),

3. F,w |=a t = u iff JtKF,wa = JuKF,wa ,

24Gödel sometimes mentions “influence” (germ. ‘Einwirkung’) in a narrow
connection with his concept of cause. For example, when explaining why
cause involves space: “being near = possibility of influence” [27, p. 434-435].
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4. F,w |=a ¬φ iff F,w 6|=a φ,

5. F,w |=a φ ∧ ψ iff F,w |=a φ and F,w |=a ψ,

6. F,w |=a ∀xφ iff for each d ∈ Q(w),F,w |=a[d/x] φ,

7. F,w |=a ∀Xnφ iff for each dn ∈ D(n),F,w |=a[dn/Xn] φ,

8. J ιxφKF,wa =



















d ∈ q(w)} if for any d′ ∈ q(w),

M,w |=[d′/x] φ⇐⇒ d′ = d,

a member of D\{q(w)} otherwise

9. J(λx.φ)KFa ∈ D(1),

10. In(φ,F,w, a) ∈ ℘D (influence), with the following conditions:

(a) for some d ∈ q(w), d ∈ In(φ,F,w, a) if φ is an axiom,

(b) JtKF,wa ∈ In(φ → ψ,F,w, a) & JuKF,wa ∈ In(φ,F,w, a) =⇒
JtKF,wa · JuKF,wa ∈ In(ψ,F,w, a),

(c) JtKF,wa ∈ In(φ,F,w, a) =⇒ JtKF,wa + JuKF,wa ∈ In(φ,F,w, a),
JuKF,wa ∈ In(φ,F,w, a) =⇒ JtKF,wa + JuKF,wa ∈ In(φ,F,w, a),

(d) JtKF,wa ∈ In(φ,F,w, a) =⇒ !JtKF,wa ∈ In(t : φ,F,w, a),

(e) if for some w′ with wRw′, JtKF,w
′

a /∈ In(φ,F,w′, a) or
F,w′ |=a′ Et,¬φ, then ?JtKF,wa ∈ In(¬t : φ,F,w, a), where
a′ differs from a at most with respect to the free vari-
ables not occurring in t,

(f) JtKF,wa ∈ In(φ,F,w, a) =⇒ genx(JtK
F,w
a ) ∈ In(∀xφ,F,w, a),

where x does not occur free in t,
JtKF,wa ∈ In(φ,F,w, a) =⇒ genX(JtKF,wa ) ∈ In(∀Xφ,F,w, a),
where X does not occur in t,

(g) JtKF,wa ∈ In(φ(u/x),F,w, a) ⇐⇒ absu(JtKF,wa ) ∈ In((λx.φ)

(u),F,w, a),

(h) J ιxGxKF,wa ∈ In(PT,F,w, a).

(i) JtKF,wa ∈ In(φ,F,w, a) & wRw′ =⇒ JtKF,w
′

a ∈ In(φ,F,w′, a)

(j) JtKF,wa /∈ In(φ,F,w, a) & wRw′ =⇒ JtKF,w
′

a /∈ In(φ,F,w′, a)

11. F,w |=a t : φ iff for all w′ with wRw′, and for all a′ that
differ from a at most with respect to the free variables not
occurring in t,
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(a) F,w′ |=a′ Et → φ,

(b) JtKF,w
′

a ∈ In(φ,F,w′, a).

See evidence function conditions for first-order logic of proofs in
[17]. For propositional conditions corresponding to (10e) and (10j)
in epistemic setting, see [45]. Compare Case 8 with [19, p. 400–
401].

Definition 6 (QCGO model and variable assignment). A QCGO

model and variable assignment, i.e. a pair 〈M, a〉, are a frame and
a variable assignment 〈F, a〉 such that for each φ,

J(λx.φ)KF,wa = { d | F,w |=a[d/x] φ } and J(λx.φ)KFa ∈ D(1),

and such that the following conditions for I(P,w) hold:

1. JTKFa ∈ I(P,w) ⇐⇒ JTKF,wa /∈ I(P,w) (complementarity),

2. JTKFa ∈ I(P,w) & ∀w′ with wRw′(JTKF,wa ⊆ JUKF,wa & In(∀x

(T x → Ux),F,w′, a) 6= ∅) =⇒ JUKFa ∈ I(P,w) (causal clo-
sure),

3. JTKF,wa =
⋂

{ JUKF,wa | JUKFa ∈ I(P,w) } =⇒ JTKFa ∈ I(P,w) (clo-
sure under intersection),

4. JTKFa ∈ I(P,w)&wRw′ =⇒ JTKFa ∈ I(P,w′) & J ιxGxKF,w
′

a ∈
In(PT,F,w′, a) (positivness causality),

5. JNKFa ∈ I(P,w) (essence-existence causation),

with JTKFa , JTKFa , JUKFa , JNKFa ∈ D(1).

Definition 7 (Designation and satisfaction in M, a). Like de-
finition 5, but restricted to models (M) and associated variable
assignments.

Definition 8 (Validity). QCGO |= φ iff for each M, w, and a,
M,w |=a φ.
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8 Outline of adequacy

We outline the soundness and completeness proofs.

Theorem 5 (Soundness). In the class of QCGO models, axioms
of QCGO are valid and rules truth-preserving.

Dokaz. For the proof, we take several axioms as examples.

CT Follows from the reflexivity of R (Definition 4), and Defini-
tion 5, Case 11.

C5 Let M,w |=a ¬t : φ. Hence, there are w′ with wRw′, and a′

differing from a at most with respect to the valuation of the
variables not occurring free in t, such that M,w′ |=a′ Et,¬φ,
or, alternatively, such that JtKM,w′

a /∈ In(φ,M,w′, a). Thus,
for each w′′ with wRw′′, and a′, M,w′′ |=a′ ¬t : φ (because
of euclidean R, and Case 11 of Definition 5). Also J?tKM,w′′

a ∈
In(¬t : φ,M,w′′, a) (Definition 5, Case 10e). Therefore, M,w

|=a ?t : ¬t : φ (see Definition 5, Case 11).

C∀ (first-order case) Let M,w |=a t : φ, with x /∈ free(t). Thus,
for each w′ with wRw′, and each a′ differing from a at most
with respect to the valuation of the variables not occurring
free in t, M,w′ |=a′ Et → φ and JtKM,w′

a ∈ In(φ,M,w′, a).
Hence, since x /∈ free(t), M,w′ |=a′ Et → ∀xφ (Definition 5,
Case 6). In addition, genx(JtK

M,w′

a ) ∈ In(∀xφ,M,w′, a) (Defi-
nition 5, Case 10f). Therefore, M,w |=a genx(t) : ∀xφ (Defi-
nition 5, cases 11 and 10f).

Cλ Suppose that M,w |=a t : φ(u/y). Hence, for each w′ with
wRw′, JtKM,w′

a ∈ In(φ(u/y),M,w′, a), and thus absu(JtKM,w′

a ) ∈
In((λy.φ)(u),M,w, a) (Case 10g of Definition 5). Finally, on
the ground of Cases 1 and 9 (λ formula satisfaction) of Defi-
nition 5, and Case 11 of Definition 5, M,w |=a absu(t) : (λy.φ)

(u).

CGA1-5 Follow straightforwardly from Definition 6 (denotation
of P).

30



D We just note that in case of J ιxφKF,wa /∈ q(w), as well as in case
of more than one d ∈ q(w) satisfying φ, the biconditional is
vacuously satisfied.

The following outline of a completeness proof is given for clo-
sed formulas (sentences) and is partly built on a Gallin style
completeness proof for intensional logic [18] (but see also Fit-
ting’s completeness proof for FOLP [17]) and is accommodated
for causal interpretation. For simplicity, we will assume universal
accessibility in models.

Since in the course of the proof saturated (maximal consis-
tent and ω-complete) supersets of sentences should be build, we
introduce an infinite supply of new first-order and second-order
constants (“witnesses”) outside LQCGO to be able to consistently
instantiate each existential sentence in the set. We call this exten-
ded language LQCGO′. Also, constant specification CS should be
extended to CS′ in order to take into account all new constants
and terms containing the new constants: we extend CS with k : φ′

for each k : φ so that φ′ is like φ except for possibly containing
terms in which new constants occur.

First, we need to show that for each consistent set of senten-
ces of LQCGO, a sequence W of saturated sets, w, of sentences
of language LQCGO′ can be build, on the ground of which the
function INF can be defined:

Definition 9. t ∈ INF(φ,w) iff for some w′ in W , t : φ ∈ w′,

and which has the following property of “¬t : -completeness”

for each w in W, ¬t : φ ∈ w iff, for some w′ in W,

Et ∧ ¬φ ∈ w′ or t /∈ INF(φ,w′).

We assume that a modified and extended Gallin-style construc-
tion of W for a consistent set Γ of sentences of LQCGO is possible
in the following way. The construction starts from a sequence W0

of sets wi of sentences of LQCGO′ in such a way that Γ = w0 and
each other wi∈ω = ∅. We build each Wn+1 by comparing Wn with
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the pair 〈φn, n〉 so that we extend wn by φn if and only if this exten-
sion can be accomplished in a consistent way, i.e. if and only if the
sequence Wn+1 that is obtained in this way is relatively consistent
– we say that Wn is relatively consistent if and only if for each wn

i

in Wn and each finite w′ ⊆ wn
i
, the set {∀x¬x : ¬ ∧ (w′ ⊆ wn

i
)}i25 is

consistent (cf. [18, p. 25]). Finally, we define wi =
⋃

n∈ω wn
i
, and

W = {wi}i∈ω.
Let us remark that in the first-order case, for ω-completeness,

we add to wn
i
, for each ∃xφ, not only an instantiation of φ, by

substitution k/x with a new k, but also Ek. Let us also note that,
for instance, ∃x t : Pxy, with x /∈ free(t), does not have any further
instantiation, since x is not bound by ∃x, but already by t (and
can be generalized by genx(t) replacing t). Also, in order to achieve
the ¬t : -completeness of W , we add ¬t : φ to wn

i
if and only if we

add Et ∧ ¬φ, too, as a member to the alphabetically first empty
wn

j
or put t /∈ INF(φ,wn

j
).

Proposition 16.

t ∈ INF(φ,w)⇐⇒ t : φ ∈ w.

Dokaz. From left to right. Assume t ∈ INF(φ,w). Then for some
w′, t : φ ∈ w′ (Definition 9). Hence, for no w′′, Et ∧¬φ ∈ w′′, since
otherwise, ¬t : φ ∈ w′ (according to the rules of the construction
of W : relative consistency and the conditions for the membership
of ¬t : φ ∈ wi). For the same reason ¬t : φ /∈ w, and hence t : φ ∈ w

(maximality). – From right to left. From Definition 9 (the right
to left direction) it follows that t ∈ INF(φ,w) for each w, if for
some w, t : φ ∈ w.

Now, the following proposition is provable:

25We denote by ∧(w′) the conjunction of all members of w′.

32



Proposition 17.

1. If φ is an axiom, then there is a constant k such that k ∈
INF(φ,w).

2. t ∈ INF(φ→ ψ,w) & u ∈ INF(φ,w, u) =⇒ (t ·u) ∈ INF(ψ,w),

3. t ∈ INF(φ,w) =⇒ (t + u) ∈ INF(φ,w), u ∈ INF(φ,w) =⇒
(t + u) ∈ INF(φ,w),

4. t ∈ INF(φ,w) =⇒ !t ∈ INF(t : φ,w),

5. for some w′, t /∈ INF(φ,w′) or Et ∧ ¬φ ∈ w′ =⇒
?t ∈ INF(¬t : φ,w),

6. t ∈ INF(φ,w) =⇒ genx(t,w) ∈ INF(∀xφ,w), where x does
not occur free in t,
t ∈ INF(φ,w) =⇒ genX(t ∈ INF(∀Xφ,w), where X does not
occur in t,

7. t ∈ INF(φ(u/x),w)⇐⇒ absu(t) ∈ INF((λx.φ)(u),w),

8. J ιxGxKF,wa ∈ INF(PT,F,w, a),

9. ιxGx ∈ INF(PT,w) for each w and each positive second-
order term T ,

10. t ∈ INF(φ,w) =⇒, then for each w′, t ∈ INF(φ,w).

Dokaz. We prove some cases as examples. For Case 1, the propo-
sition follows from Definition 9 on the ground of CS′ and maxi-
mality (for each axiom φ and each w, it holds that φ ∈ w as
well as k : φ ∈ w, where k : φ ∈ CS′). For Case 2, assume that
t ∈ INF(φ → ψ,w) and u ∈ INF(φ,w). Thus, t : φ → ψ ∈ w and
u : φ ∈ w (Proposition 16), and hence, (t · u) : ψ ∈ w (CK, maxi-
mality). Therefore, (t · u) ∈ INF(ψ,w) (Proposition 9). We take
Case 5 as a further example. According to the construction of
w in W , if for some w′, t /∈ INF(φ,w′) or Et ∧ ¬φ ∈ w′, then
t : φ /∈ w and hence ¬t : φ ∈ w. It follows that ?t : ¬t : φ ∈ w (C5,
maximality). Thus, ?t ∈ INF(¬t : φ,w) (Proposition 16). Case 9
follows from Axiom QCGA4 and Definition 9. For Case 10, if we
assume the antecedent, t : φ ∈ w follows (Proposition 16). There-
fore, for each w′, t ∈ INF(φ,w′ (Definition 9, from the right to
left direction).
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We skip the proof that, by means of the construction des-
cribed, a sequence W satisfies all the proposed properties (each
w saturated, ¬t : -completeness of W). Provided these properties
obtain, the following holds:

t : φ ∈ w ⇐⇒ for each w′, Et → φ ∈ w′

and t ∈ INF(φ,w′)

After establishing the sequence W with the required properties,
the second step is to build a canonical frame and, thereafter,
a canonical model associated with W . In the canonical frame
and model, the ground-domain is the set of equivalence classes
of individual constants of LQCGO′. An equivalence class [k] =

{ k′ | k = k′ ∈ w, for any w }.

Definition 10 (Canonical frame, variable assignment). Canoni-
cal frame, FW , for a set W of saturated sets of sentences, and
a variable assignment a, taken together, are ordered set 〈W,D,
D(n), I , q, a〉 such that:

1. W : the set of all worlds w of the sequence W (w is a saturated
set of sentences of LQCGO′),

2. D = { [k] | k is an individual constant of LQCGO′ },

3. ∅ 6= D(n) ⊆ ℘(Dn)W ‘,

4. (a) I(k) = [k],

(b) I(Kn) ∈ D(n),

(c) I(P) ∈ ℘D(1),

(d) I(∗1,w) = { 〈[k1], [k2]〉 | ∗k1 = k2 ∈ w or ∗ (k1) = k2 ∈ w },
where ∗ ∈ {!, ?, genx, genX , absu, exs},

(e) I(∗2,w) = { 〈[k1], [k2], [k3]〉 | (k1 ∗ k2) = k3 ∈ w }, where ∗ ∈
{·,+},

5. q(w) ∈ ℘D, with the corresponding conditions from Defini-
tion 4,

6. a(xi) ∈ D, a(Xn
i
) ∈ D(n).
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Definition 11 (Canonical model, variable assignment). Canoni-
cal model, MW , and variable assignment are a special canonical
frame and variable assignment (Definition 10), defined in ana-
logy to Definition 6 by means of the appropriate designation of λ
terms and P, with I(Kn,w) = { 〈[k1], . . . [kn]〉 | Kk1 . . . kn ∈ w } , and
I(K1) ∈ I(P,w) if and only if PK ∈ w, and having the correspon-
ding second-order domains.

We assume the proof that a canonical model is a QCGO model.

Theorem 6 (Canonical satisfaction, denotation, and influence).
For a world w ∈ W in canonical model MW ,

(1) MW ,w |= φ iff φ ∈ w,

(2) J ιxφKM,w = [k] ∈ q(w)} if Ek ∈ w and ∀x(φ(x)↔ x = k) ∈ w,

otherwise J ιxφKM
W ,w /∈ q(w),

(3) [k] ∈ J(λx.φ)KM
W ,w iff φ(k/x) ∈ w,

(4) JTKM
W

∈ JPKM
W ,w iff PT ∈ w,

(5) JtKM
W ,w ∈ In(φ,MW ,w) iff t ∈ INF(φ,w).

Dokaz. Let us give some examples.

- MW ,w |= t : φ

⇐⇒ for each w′,MW ,w′ |= Et → φ, that is for each w′,MW ,

w′ 6|= Et or MW ,w′ |= φ, and JtKM
W ,w′

a ∈ In(φ,MW ,w′),
⇐⇒ for each w′, Et → φ ∈ w′ (since Et /∈ w′ or φ ∈ w′), and
t ∈ INF(φ,w′) (inductive hypothesis),
⇐⇒ t : φ ∈ w (Definitions 10 and 11).

- J ιxφKM
W ,w. Let Ek ∈ w and ∀x(φ(x) ↔ x = k) ∈ w; then

ιxφ = k ∈ w (D,∀1a, maximality); hence J ιxφKM
W ,w = [k] ∈

q(w)} (inductive hypothesis). – Let ∀x(φ(x) ↔ x = k) /∈ w;
then ∃x¬(φ(x) ↔ x = k) ∈ w and for some k′, ¬(φ(k′/x) ↔
k′ = k) ∈ w; hence, either φ(k/x) /∈ w or k′ = k /∈ w; ac-
cordingly (inductive hypothesis), either MW ,w 6|= φ(k′/x) or
MW ,w 6|= k′ = k; therefore J ιxφKM

W ,w /∈ q(w).
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- [k] ∈ J(λx.φ)KM
W ,w ⇐⇒ MW ,w |=a[[k]/x] φ ⇐⇒ MW ,w |=

φ(k/x)⇐⇒ φ(k/x) ∈ w (inductive hypothesis)⇐⇒ (λx.φ)(k) ∈
w (Definitions 10 and 11).

The completeness can be then proved from the satisfiability
of any consistent sentence of QCGO. This finishes our outline on
adequacy.
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