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Abstract 

The paper has three objectives: to expound a set-theoretical triplet model 
of concepts; to introduce some triplet relations (symbolic, logical, and 
mathematical formalization; equivalence, intersection, disjointness) between 
object concepts, and to instantiate them by relations between certain physical 
object concepts.  
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Introduction  

Currently explorations in cognitive science, cognitive psychology, and 
artificial intelligence have led to dramatic changes in the standard understanding 
of common concepts. They have turned out to be more intriguing objects of 
study (Margolis et al. 1999) than proponents of their logical analysis 
presupposed. Researchers have intensively used quantitative and experimental 
methods in studies of concept roles in knowledge attainment and object 
recognition. As consequence of this, most experts have now modeled common 
concepts as the complex structures. Only a few researchers have simulated 
concepts as the unstructured entities (Fodor 1998; Peacocke 1992).  

The diversity of tasks generated by recent concept studies creates a 
situation when each model proposed is suitable to resolving specific problem(s) 
and none answers all reasonable and hot questions about concepts. As result, 
                                                           
1 The draft. The final version, see: Communication &Cognition, Vol. 37, Nr. 
2 (2004), pp. 105-135. 
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many models of common concepts have been put forward (Barsalou 1993; 
Ganter et al. 1996; Goldstone 1996; Kangassalo 1992; Loocke 1999; Palomäki 
1994; Prinz 2002; Rosch 1999; Smith 1990; Wille 1982). Practically, all of 
them can be described set-theoretically. It means that models regard a concept 
as a special set-theoretical construction.  

There are many kinds of set-theoretical models of concepts. Their peculiar 
features, coverage and heuristics depend on three main factors.  

The first factor is the set-theoretical construction that imitates a concept. 
Traditionally, this construction is a certain set or an ordered pair/triad of sets.  

The second factor is a model of properties used in a concept model. As a 
rule, researchers have simulated a property of entities covered by a concept as a 
logical dichotomous predicate. Alternatively, a property is regarded in terms of 
its yes-no possession by entities in question, i.e. set-theoretically a property is 
modeled as a set of entities that possess it. However, there is the more 
promising modeling of a property in terms of 1) the set of entities that can 
possess a property, 2) property values, and 3) procedures for determining these 
values (Burgin et. al. 1993). Such a modeling, on the one hand, does not 
identify a concept of the entity and a property of the entity, and, on the other 
hand, differs in kind a concept of properties and a property of concepts.  

The third factor is the set theory describing the set-theoretical construction 
that models a concept. Now there are many options: standard, non-standard 
fuzzy (Zadeh 1975), named (Burgin 1990), rough (Pawlak 2002), etc. set theory 
in any of its numerous informal and formal versions. Typically, researchers 
have operated under a standard naive set theory and sporadically a certain 
version of naive fuzzy set theory.  

Let us illustrate these points.  

According to the well-known intuition, the evidence that a human person 
possesses a concept of sensible entities of any kind is equivalent to their 
effective recognizing by the person. Note, that even such a (perceptible) concept 
is not sensible, but ideational. The recognition is a procedure that decides 
whether an entity generated a given percept belongs to the set of entities 
covered by the concept in question. It is universally accepted, that recognizing 
is a procedure of processing information about not, ‘bare’ entities, but their 
properties. Now there are only more or less elaborated hypotheses about the 
mechanisms and stages of this processing. The hypotheses on the processing of 
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information about sensible properties are most well grounded experimentally 
and theoretically, but even they are a subject to permanent changes. Practically 
nothing is known about ‘recognizing’ non-sensible entities and processing of 
non-sensible information. That is a reason why most researchers prefer to 
simulate concepts leaving aside the specifics of the appropriate information 
processing. They have taken for granted the information about entities and their 
properties and have modeled concepts in terms of the entities that fall under 
concepts and properties of those entities.  

Thus, modeling concepts, one starts from considering together entities and 
their properties. Alternatively, entities are treated as carriers of their properties. 
This leads to the next standard set-theoretical model of concepts.  

Its first component is a set of entities that fall under a concept. 
Interchangeable terms ‘volume’, ‘extension’, ‘category’ and ‘reference’ denote 
this set.  

The second component is a set of (separately necessary and jointly 
sufficient) properties of entities falling under a concept. Mostly the terms 
‘content’ and sometimes ‘intension’ denote this set.  

Note, that the ‘extensional’ concept models take into account only the first 
component, while ‘intensional’ ones – only the second component of the 
standard model of concepts.  

Cognitive scientists and cognitive psychologists have criticized this model 
and proposed various prototype, exemplar and theory-theory alternatives (Smith 
et al. 1981; Cohen et al. 1984; Komatsu 1992). Many of them associate with a 
concept another pair of sets. For example, the prototype theoreticians model a 
concept by means of at least two sets. The elements (prototypes) of the first set 
are entities that most people ‘automatically, undoubtedly’ subsume under a 
concept. One has selected the elements of the second set due to a great degree 
of their similarity to prototypes. Thus, a concept has been modeled as an open 
set-theoretical structure: the fixed prototypical set and the generated variable set 
whose elements are being included in it on the basis of their similarity to 
prototypes.  

Contrary to all distinctions between models proposed, their proponents 
have shared, at least, two presuppositions. The first is the idea that all concepts 
are of the same kind. Taking common sense concepts as typical objects of 
studies, researchers have often overlooked the peculiarities of scientific 
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concepts. One of a few exceptions is a work of Meir Buzaglo devoted to 
mathematical concepts (Buzaglo 2002).  

The second presupposition is a concentration upon the composition and 
features of separate concepts. In consequence, the relations between concepts 
have received a little attention. There have been only sporadic attempts at 
studying such relations. To the best of author’s knowledge, Stephan Körner 
studied relations between concepts about 50 years ago. In the frame of an 
extensional logical model of ostensive concepts, he analyzed their inclusion, 
intersection and exclusion (Körner 1959, 24-35). Recently, Buzaglo studied 
systematically such relations between mathematical concepts as forced 
expansions. It should be also mentioned the experimentally based research of 
concept relations induced by influence of one concept on another (Goldstone 
1996).  

Thus, one of the important and interesting areas of the set-theoretical 
concept modeling is its application for analyzing and cataloguing relations 
between concepts. Evidently, that the concept cataloguing as well the 
cataloguing of relations between concepts depends on the model of concepts.  

To a first approximation, one can speak of about external and internal 
approaches to the cataloguing task. External approach associates with a concept 
the list of its holistic features. Accordingly, that or this combination of features 
generates a certain class of concepts. Internal approach connects with a concept 
its hypothetical internal composition of concepts. Correspondingly, possessing 
of that or this part of the composition generates a definite class of concept.  

In either case of concept modeling, one can develop a scheme of 
cataloguing relations between concepts.  

All studies known to the author introduce and describe relations between 
concepts in terms of relations between the sets associated with related concepts. 
Usually, only one set has been corresponded to each concept in question. 
However, as prototype modeling illustrates, one may use two (and more) sets 
for imitating a concept. In this framework, it would appear natural to describe 
concept relations in terms of relations between various set-theoretical 
constructions that correspond to concepts. Apparently, the ‘richer’ construction 
in question, the ‘richer’ the spectrum of relations between concepts being 
imitated by the construction.  
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The simplest extensional set-theoretical modeling of concepts allows one 
to introduce such relations between concepts as extensional subordination, 
compatibility and disjunctivity. The first is induced by inclusion, the second — 
by intersection, the third – by non-intersection of sets of entities falling under 
concepts in question (i.e. volumes/extensions of concepts). Put otherwise, the 
concept C* is subordinate (compatible/disjunctive) to the concept C if and only 
if the volume of the concept C* is a subset of the volume of the concept C 
(intersection of the volume of the concept C* and the volume of the concept C 
is a nonempty/empty set).  

However, many relations between scientific concepts are ‘invisible’ under 
such modeling. Examples are such relations between physical concepts as 
symbolization, quantification, mathematization, theorization, etc. In the 
framework of extensional modeling, these relations are indiscernible as 
concepts in question in many cases have the same set of entities falling under 
them.  

In the intensional model one can consider relations between synonymous 
(denoted by the same term/name) coextensive (with the same extension) 
qualitative and quantitative concepts. In the simplest case, relations between a 
qualitative property from content of a qualitative concept and a synonymous 
quantitative property from content of an appropriate quantitative concept induce 
these relations. The chief drawback of standard modeling of this situation is an 
identification of property with a logical predicate that essentially restricts its 
applicability to real physical concepts. Physical magnitudes or properties of 
physical objects have more complicated structure than predicates and need more 
adequate modeling.  

In any case, studies of physical concepts are deficient in the area of 
concept analysis. Few researchers have conducted such studies (Boniolo 2001; 
Diez 2002) and they have not touched systematically the issue of relations 
between concepts.  

In what follows we will consider a triplet model of concepts and apply it 
to analysis of the internal structure of theoretical physical concepts and some 
relations between them. This model regards a theoretical physical concept as a 
complicated set-theoretical construction characterized by means of structures of 
physical theories. Henceforward we use the term “concept” to mean “theoretical 
physical concept”.  
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Compared to common concepts, physical concepts have discriminative 
marks that any realistic model of them ought to take into account. Firstly, it is 
an essential role of mathematical and theoretical structures in their constructing, 
change, functioning, and application. Secondly, they associate not only with 
properties of entities falling under them, but also with quantitative values of 
properties. Various procedures of experimental measurement, theoretical 
reasoning, and numerical computation help in determining these values.  

The triplet approach has modeled a physical concept as a triple consisting 
of three set-theoretical informational structures: a concept base, a concept 
linkage and a concept representing part. These structures are supposed to be 
carriers of information by means of which one constructs, distinguishes, 
identifies, connects, and applies concepts. 

For terminological clarity, we shall use capital bold symbols, letters, 
words, and word combinations for denoting concepts. We construct the names 
(terms) of concepts from these denotations by putting them into double quotes. 
For instance, the capital bold letter C denotes a concept and “C” denotes its 
name.  

There might be many various denotations of the same concept and, 
correspondingly, many its synonymous names. Against the obvious (at least 
contextually) difference between a concept and its name, many researchers 
without reservation have interchangeably used their denotations. This creates 
additional difficulties in concept studies. Among other things, this leads some 
researchers also to the identification of a concept with its name (see, critique of 
this in Rosser 1953).  

1. The Essentials of Triplet Modeling  

1.1. Presuppositions of the triplet modeling of concepts 
 

Concepts are pertinent and important objects of philosophical, logical, and 
psychological analysis over many hundreds of years. Their studies also abound 
in contemporary linguistics, cognitive psychology, artificial intelligence, 
informational science, cognitive science, pedagogy, etc. Paradoxically, only few 
researchers are ready to confess explicitly that theoretically they study concepts 
by means of constructing and analyzing their models. Many researchers from 
traditional areas (first of all, philosophy, logic and classical psychology) have 
presented outcomes of their studies as if concepts were immediately given to 
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their consciousness as simple and unstructured (formless, structureless) objects. 
Metaphorically speaking, researchers mainly consider concepts as indivisible, 
but ‘seeable by our mental capabilities’ atoms whether it be of our 
consciousness, cognition, knowledge, language, mind, thinking, thought, and 
the like. It is widely believed that there are complex concepts, but one has 
practically always connected their complexity with their acquisition, 
recognition, application, and practically never with their inner structure. 

Contrary to the prevailing view of concepts, the triplet approach has taken 
as an initial point of departure the following statements.  

According to the triplet view, concepts are not Platonic ideas. In a broad 
sense, their reality is produced by human thinking and processes involved in it. 
Objectivity of concepts is connected with a realization of certain of their 
cognitive functions. Among them are recognition and classification of objects, 
collecting, deepening, summarizing, abstracting, instantiating, extending, 
ordering, circumstantiating information about objects and evaluating its 
adequacy.  

In light of the contemporary understanding of the physical world and its 
cognition, it would be highly conjectural to follow G.Frege in associating 
objectivity of concepts with their hypothetical immutability and belonging to 
the outness. In particular, he stated that “the concept is something objective that 
we do not form and is not formed in us” (Frege 1984, 113).  

It seems, that physicists have constructed the physical concept as a holistic 
mental entity that fulfills specific cognitive functions. Concept’s possessors 
assembled a concept from some available structures that are not a concept itself. 
Ironically, one can reduce a concept to any of these structures. Among them are 
names of a concept and names of entities falling under it; definitions and 
descriptions of a concept; entities falling under a concept; properties of entities 
covered by a concept; images and other perceptual representations of these 
entities, names and values of properties of those entities, etc. Only after some 
conscious and unconscious, native and guided, goal-directed and time-
consuming many-staged processing these structures may create (not always) a 
concept. The proper end of concept creation is performing certain cognitive 
task(s). The change of a task, growing knowledge and cognitive skills of 
concept’s possessor have resulted in assembling a new concept even with the 
old name and extension. Fundamentally, any nontrivial use of a concept by its 
possessor will cause its appropriate transformation. Contemporary cognitive 
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psychology and cognitive science do not tell us much about the details of 
processes mentioned above and physiological, neurological, psychological, and 
cognitive mechanisms of their realization. However, hypothesis about the 
existence of these processes and mechanisms seems sound.  

At some general level of analysis, all concepts reveal the same universal 
structure. Some concept models imitate its specific substructures. Examples are 
the above-mentioned extensional and intensional models. However, there are 
also structures appertained only to some concepts. For instance, mathematized 
concepts of theoretical physics have associated, at least, with mathematical 
symbols and structures that ‘are lacking’ in their synonymous common, if 
available, counterparts. Thus, it would be wrong to expand automatically to all 
concepts the outcomes of analysis of a certain type of concept.  

The multitude of concept models witnesses the internal complexity of 
concepts. Among other factors, it explains intricacy of concept acquisition, etc. 
What we usually call the same concept reveals its various aspects in various 
situations of its use.  

Practically, all concept models proposed are adequate and effective under 
stated cognitive tasks, certain presuppositions of analysis of concepts and 
specific conditions of their application. However, most concept models 
concentrate on some more or less simple aspect of a concept and reduce it to 
this aspect. In a sense, such models give partial pictures of concepts. In many 
cases, there is no practical need to put together these partial pictures.  

Any model is not a universal frame for resolution of all problems 
generated by concepts, their origin, compositions, functions, roles, development 
and so on. The triplet model constitutes no exception. Up to now it has proved 
to be effective in resolving problems of concept internal structure and 
classification. Its applicability beyond this area is an open question.  

1.2. Concept as information carrier  
 

There are many concept classes (Kuznetsov 1997; Medin et al. 2000). One 
may construct (introduce, invent, suggest, put forward, etc.) a concept of 
anything in the world. Some examples are the concepts GOD, UNIVERSE, 
METAL, SPACE, DURATION, WORD, SIGN, LOVE, DISEASE, 
HUMANITY, WAR, SET, NUMBER. We restrict our attention only to so 
called physical concepts, i.e. concepts used by physicists in their study of the 
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material world. It is widely accepted that the extension (volume) of physical 
concepts includes various forms of matter differentiation. Discriminating 
entities covered by physical concepts, one can draw a distinction between object 
concepts (e.g., PHYSICAL OBJECT, PLANET, STAR, ATOM), attributive 
concepts (e.g., PHYSICAL PROPERTY, MASS, ELECTRIC CHARGE, 
DENSITY), and relational concepts (e.g., PHYSICAL RELATION, 
DISTANCE, FORCE, VELOCITY). Sometimes, one has united attributive 
and relational concepts as PHYSICAL MAGNITUDES. The triplet modeling 
of any physical concept is specific to its class.  

To avoid confusion of objects and concepts of objects as well as names of 
objects and names of concepts of objects, we will use the following 
conventions. We will denote (refer to) physical objects by means of small bold 
symbols, letters, words and word combinations. We construct the names of 
physical objects by putting denotations of physical objects into double quotes. 
Thus, we will distinguish particle and PARTICLE as the object and the 
concept of this object. Correspondingly, we will distinguish “particle” and 
“PARTICLE” as the name of particle and the name of PARTICLE.  

If necessary, small italic characters will denote physical magnitudes or 
properties and relations of physical objects. An example is the magnitude mass. 
One of names of this magnitude is “mass”. Physicists use the symbol m 
simultaneously for denotation of the magnitude mass and for naming this 
magnitude. The distinction between these two uses of the symbol m commonly 
is evident from the context.  

For simplicity’s sake, we will consider only object concepts, i.e., concepts 
of isolated and supposedly independent physical objects like stars, planets, 
macroscopic bodies, molecules, atoms, nuclei, sub-nuclear constituents. As 
a main example we will take the various versions of the concept 
ELEMENTARY PARTICLE (in short, PARTICLE) and related concepts. 
Today there is no final and completed version of this concept. Physicists are in 
process of constructing its various and numerous variants. Rapidly alterable 
experimental data and dramatically reformative theories have caused transitions 
from one variant to another.  

The triplet modeling treats an object concept C as a (mental) construction 
assembled from three kinds of interrelated information: the concept base, the 
concept representing part and the concept linkage. Any separate piece of these 
informative kinds is not a concept itself, but only its triplet component. Such 
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components can play the role of the concept representer acting as a substitute 
for a concept. This concept is something objective when a physicist has been 
thinking of the object of her study by means of concept representers relevant to 
a given situation. Typically, the concept’s holders as well as researchers of 
concepts have identified a concept with some of its representers. 

The concept’s possessor may assemble different concepts with the same 
name from the information available. It depends on many cognitive and 
psychological factors. Among them there are the cognitive tasks that concept’s 
possessor wishes to resolve and requirements to the task solutions as well as the 
state of her mind and memory. The astronomer has used various concepts 
STAR when she thinks about internal structure of red dwarfs and about the 
role of giants in evolution of our Galaxy.  

1.3. The concept base 
 

The first kind of information associated with a concept C concerns objects 
falling under it. This is information about such objects considered as 
independent and separable entities. It includes pieces of knowledge (with some 
measure of conclusiveness) about the supposed existence of these objects, about 
their attributes (properties, relations, functions, quantity, composition, physical 
states, regularities, etc.) One can arrange this information according to 
hypotheses about the ontological structuring of the world. Today the most-used 
hypothesis assumes understanding the physical world in terms of ontological 
structure: objects – properties (and their values) of objects – relations (and their 
values) between objects (see Figure 1) or objects – their magnitudes – values of 
magnitudes (see Figure 2). It is worth noting that there are many connections 
between components of this structure. These connections have generated such 
its substructures as relations between properties, properties of a relation 
between objects, and a relation between numeric values of the same relation. 
The information ordered in such a way comprises the base of the concept C or 
the concept base B(C).  

The extensional model of concepts operates only with a part of the 
concept base. This is the information about the set of objects falling under a 
concept and, factually, about some shared property of these objects that 
simultaneously functions as a characteristic property of this set. The intensional 
model operates with another part of the concept base. This is the information 
about so-called first order properties of objects, i.e. properties directly 
connected with objects as independent and separable entities. Note, that n+1-
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order properties of objects are determined as the properties of the n-order 
properties of objects.  

 

 property values  
    

 the set of properties of various orders 
  

objects  
   
 the set of relations of various orders 

     
 relation values 

 
Figure 1  

 
objects  the set of magnitudes of various orders  magnitude values  

 
Figure 2  

 
In addition to this information, the base of any sophisticated physical 

concept includes also the following pieces of knowledge. They are about: 
properties of these properties; relations between objects; relations between 
properties; properties of relations; qualitative and quantitative values of 
properties and relations just listed; values of physical constants, etc.  

For instance, the base of the concept PARTICLE contains pieces of 
knowledge that deal with facts and hypotheses concerning: the place of particles 
in the structure of the physical world; classes of particles (leptons, mesons, 
hadrons, etc.); types of particle interactions (gravitational, weak, 
electromagnetic, strong, electroweak, etc.); external and internal properties of 
particles (charge, mass, spin, isotopic spin, strangeness, stability, beauty, color, 
etc.); numeric values of properties; physical constants and their values (e – 
electron charge, ħ – Planck’s constant, c – speed of light in a vacuum, etc.) It is 
significant that the base of the concept PARTICLE is a subject of permanent 
changes (elaborating, supplementing, rejecting, and restructuring) during the 
last seventy years. To see this, one need only compare overviews of particles 
data published in different years.  
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The concept base contains, as it were, the outcomes of the first stage of the 
preprocessing of information connected with a concept. Many concept models 
consider only a particular base substructure and identify it with a concept.  

Physical concepts associate with such specialized, abstract, and highly 
organized systems as physical theories. One says practically nothing about the 
contemporary concept PARTICLE without the profound and extensive use of 
a certain physical theory, i.e. its languages, models, problems, methods, 
estimations, etc. Moreover, a particular theory proposes a specific way of 
representing and processing available information about particles. It means that, 
at least in the course of modeling physical object concepts, one should not miss 
the second stage of preprocessing information about objects falling under 
concepts. The input of this preprocessing stage is the concept base. The output 
constitutes the concept representing part. Mechanisms of preprocessing are 
beyond the scope of this paper.  

1.4. The concept representing part 
 

Thus, the second kind of information is an outcome of second stage of 
preprocessing information associated with a concept. The main aim of such a 
preprocessing is to prepare conditions for the effective use of concepts in 
cognitive processes (application and constructing hypotheses and models, 
formulating and resolving problems, deducing and justifying statements, etc.).  

From the formal point of view, the second kind of information or the 
concept representing part has been expressed by general linguistic and specific 
theoretical structures from physical theories relevant for a concept in question.  

There are many kinds of such structure. Their examples are expressive 
forms of languages. In the case of assertive languages these are letters of 
alphabets, words, word combinations, sentences, texts; in the case of 
programming languages – constants, variables, commands, operators, programs, 
data, bases and banks of knowledge, etc. Various structures of physical theories 
are vitally important for constituting and processing physical concepts. Among 
them are laws, potential, partial and full models (Balzer et al. 1987; Sneed, 
1971), abstract properties, measuring, computing models, principles of 
symmetry and supersymmetry, problems, hypotheses, estimations, heuristics, 
procedures (Burgin et al. 1994).  
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In what follows we consider only formal linguistic and theoretical 
structures of expressing the concept representing part. Thus, we reduce this part 
to its formal structural aspect. It means that we consider so-called formal 
structural representing part R(C) of the physical concept C.  

In this paper, we leave aside semantic questions of meaning and sense. It 
is a significant limitation, but, happily, one may analyze many important 
relations between concepts without delving into semantic issues.  

From the reference point of view, components of R(C) may function as 
names, descriptions, definitions, pictures, images, diagrams, tables, models, 
specific theories (theory of spin, theory of internal quantum numbers, etc.) of 
components from the concept base.  

The extensional model of concepts contains implicitly only such 
representing structures as general and singular names of objects falling under a 
physical concept. However, the representing parts of physical versions of the 
concept PARTICLE include expressive forms of many physical theories: 
quantum mechanics, relativity theory, quantum field theory, theories of 
symmetries and supersymmetries, etc. It would be an unjustified and fruitless 
simplification to suggest that R(PARTICLE) contains only the names of 
different degrees of generality like “particle”, “electron”, “proton”, 
“neutron”, or even their symbols “e”, “p”, “n”. It is interesting to note that 
R(PARTICLE) does not include singular (individual) names of particles, 
possibly, due to absolute identity of particles of the same class.  

1.5. The concept linkage  
 

The third kind of information associated with a concept concerns the 
nature and ways of establishing the correlation between components of its base 
(i.e., pieces of the information of objects and their attributes) and structures that 
depict them in its representing part. This information comprises the linkage 
L(C) of a concept C. In the case of physical concepts this correlation is not 
equal to the trivial and simple juxtaposition of two sets of elements. The 
components of this correlation are constituted by performing complex 
operations of the denotation, abstraction, idealization, modeling, computer 
simulation, argumentation, problem formulation and resolution, interpretation, 
observation, experimentation, measurement, calculation, computation, etc.  
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Let us illustrate this by considering briefly a case of using sophisticated 
mathematical apparatus in contemporary theories of particles. Physicists have 
provided the quantitative description and explanation of some details of particle 
interaction at high energies by topological constructions of fiber bundle and 
section (Bernstein and Phillips 1981). It means that these constructions are 
components of the representing part of the some contemporary version of the 
concept PARTICLE. The linkage between them and experimentally measured 
values of properties and relations of particles, i.e. between some components of 
the representing part and the base, is a result of physicist’s creative activity. It 
includes all operations above mentioned except direct observation of 
elementary particles. In a sense, all versions of this concept are not ostensive 
ones.  

1.6. Fluidity of concepts  
 

These three kinds of information are vitally important for construction and 
uses of theoretical physical concepts. Without either of these, it would be 
difficult to say that a physicist possesses a certain concept. None of these 
informative kinds exists in a final and finished form.  

Indeed, any nontrivial utilization of a concept results in the growth of 
information about its base as well as in elaborating and restructuring its 
representing part and linkage. The permanent improvement of measuring 
technique, the development of new experimental and mathematical methods 
cause changes in the linkage of most scientific concepts. The physicist’s 
tendency to generalize information at hand, to explain the refined as well as 
principally new information about the concept base leads to using new 
mathematical structures in the concept representing part. Examples are the 
application of matrix calculus by Heisenberg for the development of many 
concepts of quantum mechanics or using group-theoretical methods by 
theoretical physicists for constituting many concepts of contemporary 
elementary particles physics. In some instances physicists are even forced to 
invent new mathematical structures and use these in the representing parts of 
their concepts. Newton’s invention of differential and integral calculus has 
played a principal role in building such concepts of classical mechanics as 
MOTION, FORCE, VELOCITY, ACCELERATION, etc.  

It would appear reasonable to suggest that these augmentations of 
information should be included by one or another way into a physical concept. 
The point here is that the nontrivial use of a concept has resulted in changes of 
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all kinds of information associated with a concept. However, these changes are 
not total because some essential pieces of information remain stable. Thus, the 
standard presupposition of concept analysis that concepts are finished and 
unchanged entities (similar to Plato’s ideas) should be taken with reservations.  

It is notable that the most stable informative structure connected with a 
concept is its name, i.e., the term for a concept. However, constancy of the 
concept name is not identical with invariability of three kinds of information 
associated with a concept. Formalizing concepts, many experts factually assume 
such invariability. It is true only for a momentary static picture of concepts.  

1.7. Set-theoretical descriptions of triplet structure of concepts 
 

From the above discussion, it appears that there are some sound grounds 
for modeling a concept C as a triple (B(C), L(C), R(C)). One may describe this 
triple by means of different mathematical theories: category theory, theory of 
“ordinary” sets, theories of fuzzy sets, theory of named sets, some topological 
and algebraic theories, etc. In what follows we will use only some elementary 
notions of informal naive theory of ordinary sets. However, one may naturally 
continue the line of consideration proposed for the case of other set theories 
(see, for example (Kuznetsov et al. 1998)).  

1.8. Holistic and local relations between concepts  
 

It is possible to introduce the notions of holistic and local relations 
between two concepts.  

Let C and C* be concepts and (B(C), L(C), R(C)) and (B(C*), L(C*), 
R(C*)) be, correspondingly, their triplet models.  

The holistic kind is associated with relations between triplet structures 
(B(C), L(C), R(C)) and (B(C*), L(C*), R(C*)) each of which being considered 
as one aggregate.  

One may schematically picture holistic concept relations by means of the 
diagram 1.  

The pair (α, β) characterize holistic relations between C and C*. Here α is 
a relation between R(C) and R(C*) and β is a relation between B(C) and 
B(C*).  
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α 
R(C) → R(C*) 

L(C) ↑  ↑ L(C*) 
B(C) → B(C*) 

β 
 

Diagram 1. 

There are also some natural restrictions on the bases, linkages and 
representing parts of meaningfully related concepts. Commutivity of the 
diagram (αL(C) = L(C*)β) is one of these restrictions. We illustrate this with 
concepts C and C* that are various temporal states of the ‘same’ concept. As 
the criterion of sameness we take the condition B(C) ⊆ B(C*).  

Let us suppose that we have the concept PARTICLE = C, as it exists at 
some moment t of the history of particle physics development. The simplest 
triplet model of this concept can be described as follows. The base associates 
with particle classes known at t. The representing part includes only names of 
these particle classes. The linkage contains the relations of naming particle 
classes by their names and inverse relations. In this case, it is naturally to 
assume the fulfillment of the next three conditions.  

1) For any class of elementary particles from the base, there are its names 
in the representing part, i.e. there are no nameless particle classes. 2) There are 
no empty names in the representing part, i.e. names for which there are no 
known particle classes. 3) The linkage nomenclates (tags, titles) certain names 
to the appropriate particle classes and juxtaposes particle classes and their 
names.  

Concepts for which these conditions are valid will be called self-consistent 
with respect to the procedure of naming and the inverse procedure, or, in short, 
self-consistent.  

The discovery of a new particle class causes changes of the base, the 
representing part and the linkage of C. These changes result in transforming the 
concept C in the new concept С*. The change of the base is associated with its 
extension by the new class of particles and is exemplified by the relation β that 
transforms B(C) into B(C*). The change of the representing part is associated 
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with its extension by new names for the new class of particles and is 
exemplified by the relation α that transforms R(C) to R(C*). The changes of 
the base and the representing part generate the change of the linkage. 

The holistic relation between concepts С and С* will be ‘good’ if both 
concepts are self-consistent and the diagram 1 is commutative. The latter means 
that the path from B(C) via R(C) to R(C*) ends with the same result as the path 
from B(C) via B(C*) to R(C*). Informally, on one hand, this means that 
transforming R(C) should be such that there will be no empty names in R(C*) 
and new names will be names of the particle class discovered. On the other 
hand, the transformation of B(C) should be such that B(C*) includes only such 
new particle class for that there are names. To put it differently, composition 
αL(C) of relations α and L(C) should be identical to composition L(C*)β of 
relations L(C*) and β.  

Relations between substructures of triplet structures of concepts induce the 
local concept relations. Examples are relations between R(C) and R(C*) or 
between B(C) and B(C*).  

Evidently, in the extensional model framework relations between the 
concept extensions induce relations between concepts. This means that 
‘extensional’ relations between concepts are special cases of local relations 
between concepts in the framework of triplet model.  

In this paper, we concern only local relations between concepts induced 
by relations between substructures of their representing parts. These will be 
called RR*-relations or, in short, R-relations. The local relations induced by 
relations between concept bases considered in (Kuznetsov 2003).  

1.9. Formal structural components of the concept representing part 
 

Analyzing R-relations, we need a detailed set-theoretical description of the 
concept representing part.  

Let us consider a situation in which a physicist possesses some object 
concepts. Usually one supposes that a physicist operates only with the 
information about properties of objects covered by concepts. However, more 
realistically to admit that she associates with concepts certain ontological 
hypotheses about inner structure, properties, and relations of objects falling 
under these concepts. According to the triplet modeling, such information is 
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contained in the bases of concepts and characterizes objects and their attributes 
as they supposed to be. For example, a physicist can describe some physical 
object as orbiting in an ellipse in a definite spatial region, as having spherical 
form and huge mass. Here special emphasis is placed on the hypothetical 
ontological content, but not on forms of its expression.  

In principle, a physicist expresses the content of the accessible information 
by means of linguistic and specific theoretical structures. A physicist may use 
all of these in the concept representing part. However, a rather limited set of 
expressive structures is associated with a certain concept at any moment of its 
history. Modeling concepts, researchers, as a rule, have taken explicitly into 
account such linguistic structures as separate words and word combinations that 
function as object names.  

Let us return to our favorite example. The simplest extensional model of 
the concept PARTICLE refers explicitly only to the set of physical objects 
falling under it. As this takes place, names of various degrees of generality and 
abstractness have been implicitly used for description both of this set, its 
subsets, and elements. Their examples are words and word combinations that in 
plural refer to some sets and in singular – to its elements: “microobject(s)”, 
“constituent(s) of atoms”, “elementary particle(s)”, “hadron(s)”, 
“nucleon(s)”, “proton(s)”, etc.  

Considering scientific practice, one can notice the following. Not only 
words and word combinations, but also letters of various alphabets, sentences of 
informal and formal languages, combinations of sentences, and special 
structures of physical theories (structuralist models, see Diez 2002) are among 
components of concept representing parts. Examples are the symbol e denoting 
electrons, the sentences ‘The mass of an electron is not equal to zero’, ‘Charged 
leptons interact through electromagnetic forces’, ‘Electrons are spinor fields’, 
etc.  

Usually, sentences and their sets function as definitions and descriptions 
of components from the concept base. However, at least the representing parts 
of physical concepts contain some sentences that function as true statements. 
These statements are consequences of abstract assertions, mathematical 
formulas, sophisticated hypotheses, complex theoretical models, etc. In turn, 
theoretical models are specific combinations of letters and symbols, words and 
statements that may be considered and analyzed as some wholeness (see, for 



 

 

 

19

example, the structuralist reconstruction of theoretical models (Sneed 1971; 
Balzer et al. 1987)).  

In the light of this, we describe a concept representing part in the 
following terms.  

Let Ln be some language with the alphabet An, the vocabulary Vn, the set 
of expressions (sentences) En and the set of texts Tn. Here and in what follows n 
= 1, 2, 3,…. All these sets are supposed to be finite. These sets will be called the 
language constitutive sets or, in short, constitutive sets. Practically, only the 
alphabets are more or less stable, other constitutive sets are subjects of 
permanent change. It should be noted that important characteristics of language 
are also its rules for constructing, evaluating and transforming its constitutive 
sets. In this paper, we will not touch these rules.  

The point of this paper is that one can formally and structurally 
characterizes the representing part of a concept by means of certain 
combinations of the subsets of language constitutive sets. It is well to bear in 
mind that the representing part of physical concepts includes, as a rule, subsets 
of constitutive sets from several languages. For simplicity’ sake, we consider 
only two languages L1 and L2. From this standpoint, the representing part of the 
concept C includes some subsets of unions of ‘cognominal’ constitutive sets of 
two languages:  

R(C) = <A(C), V(C), E(C), T(C)>, where A(C) ⊆ A1 ∪ A2, V(C) ⊆ V1 ∪ 
V2, E(C) ⊆ E1 ∪ E2, T(C) ⊆ T1 ∪ T2.  

In principle, it is necessary also to take into account ‘hybrid’ constitutive 
sets generated by the simultaneous utilizing of two languages. The most natural 
medium for these is the set of expressions and the set of texts. Indeed, in the 
case of two languages the concept representing part includes meaningful 
expressions and texts built from both alphabets. It contains also bilingual 
meaningful expressions contained components from two vocabularies. The 
same is true for the set of texts. From this viewpoint, it would be more precise 
to operate with E(C) ⊆ E1 ∪ E2 ∪ E12, T(C) ⊆ T1 ∪ T2 ∪ T12. Here E12 is a set 
of meaningful expressions consisting of letters and words from both languages 
and T12 is a set of texts constructed from those expressions.  
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2. R-relations between concepts 

Let us consider two concepts C and C* with representing parts R(C) = 
<A(C), V(C), E(C), T(C)> and R(C*) = <A(C*), V(C*), E(C*), T(C*)>. In the 
framework of such modeling, it is possible to introduce many R-relations. We 
will consider only some of these.  

2.1. Formalizations 

There are many meaningful relations of formalization of concepts.  

Definition 1. A concept L1,L2,…,LnC is n-lingual if its representing part 
includes elements and subsets of constitutive sets from n languages.  

As a rule, common concepts are monolingual. Let us consider the 
following example. The English translation of the Ukrainian word ‘школа' (and 
the Russian word ‘школа’) is the word ‘school’. The representing parts of 
concepts ШКОЛА and SCHOOL are expressed, correspondingly, by means 
of Ukrainian and English languages. Taking into account the differences of 
teaching systems, kinds and contents of textbooks, terms of study, one might 
conclude that these concepts are not identical. Note that, after twelve years of 
the Ukrainian independence and various transformations of the Ukrainian and 
Russian educational systems, the Ukrainian concept ШКОЛА is not identical 
to the Russian concept ШКОЛА and neither is identical to the Soviet concept 
ШКОЛА.  

Physical concepts are, at least, bilingual. Representing parts of many 
general physical concepts (even in the case of its informal exposition) include 
letters of Greek and Latin alphabets. Representing parts of theoretical concepts 
include expressive tools of many mathematical languages. Thus, these concepts 
are multilingual. For example, the representing part of the classical mechanics 
concept FORCE includes constructions from vector algebra, theory of 
functions, differential calculus, theory of differential equations, etc. Thus, it 
would be unjustified simplification to suggest that theoretical physicists have 
built the representing parts of their concepts by means of only one mathematical 
language.  

The use of expressive means from many languages in representing parts of 
physical concepts is not an end in itself. Often this is a unique way of obtaining 
nontrivial information about the concept bases. From this point of view, the 
grasping of many physical concepts presupposes the profound learning, 
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possessing and understanding of a great deal of mathematics and its numerous 
languages.  

For example, according to contemporary physics, objects falling under the 
quantum mechanical concept WAVE FUNCTION are not spatially localized 
and visualized objects of classical physics. Only physicists with deep 
knowledge of theory of Hilbert spaces and theory of differential equations in 
partial derivatives are able to describe internal and external properties of 
quantum-mechanical objects, predict and compute their experimentally 
measurable values.  

In principle, multilingualism of the concept representing part is justifiable 
when each of the languages used possesses unique expressive and 
transformational capabilities and could not be eliminated without essential loss 
of concept effectiveness.  

For example, the use of languages of probability theory in the representing 
part of the concept WAVE FUNCTION allows physicists to predict the 
probability of the location of a quantum object at a spatial point. The additional 
use of the languages of differential and integral calculus allows one to compute 
the probability of detecting a quantum object in some spatial region.  

Let us consider two concepts L1C and L1,L2С with the same base B. 
Constitutive components from the representing part of the former concept are 
constructed by language L1, and those of the latter – by languages L1 and L2. As 
this takes place, some constitutive components from R(L1C) enter into R(L1,L2С) 
without changes and others – after their translation into L2.  

Definition 2. The bilingual concept L1,L2С is a nontrivial complete 
(representing; linkage; base) L2-lingual extension of the concept L1C, if and only 
if the R(L1,L2С) contains such constitutive components constructed by language 
L2 that their processing has resulted in obtaining more effectively or otherwise 
unknown information about the concept C (its representing part; linkage, base).  

For example, let us take the concept INTEGER as a monolingual concept 
L1C with a representing part expressed in ordinary language L1. In particular, 
names of counting numbers are expressed by special English words – numerals, 
relations between integers are expressed by words ‘greater’, ‘lesser’, ‘equal’, 
and operations over integers are expressed by words ‘summation’, ‘addition’, 
‘subtraction’, etc. However, even the simplest arithmetic operations with large 
numbers we perform better when corresponding combinations of ciphers 
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substitute for these words. Thus, strictly speaking, the new concept INTEGER 
with such a representing part will be bilingual one because the Arabic numerals, 
strictly speaking, are not elements of the English alphabet. From this follows, 
that the second concept is a nontrivial base L2-lingual extension of the first 
concept.  

Definition 3. The relation of L2-lingual extension between concepts L1C 
and L1,L2С with the same bases is:  

— local (full) symbolic L2-formalization (L2-symbolization), if letters of 
alphabet of the language L2

 are used as symbols that substitute for some (all) 
constitutive components of the concept L1C;  

— local (full) logical L2-formalization (L2-logicalization), if L2 is a logical 
language in terms of which some (all) constitutive components of the 
concept L1C are expressed. (A specific logical language determines its own 
type of formalization. For example, the first order predicate language 
determines the first order predicate formalization of concepts);  

— local (full) mathematical L2-formalization (L2-mathematization), if L2 is a 
language of certain mathematical theory in terms of which some (all) 
constitutive components of the concept L1C are expressed. (Depending on 
the kind of mathematical theory, to a first approximation, one can introduce 
such specific kinds of mathematization as algebraization, arithmetization, 
categorization, functionalization, geometrization, metrization, set-
theoretization, topologization etc.)  

Contrary to a widespread opinion, the logical formalization of a concept is 
not a prerequisite of its effective mathematical formalization. Historically, many 
physical concepts were given mathematical expression without any attempt of 
their logical formalization .  

In turn, it should be noted that symbolization of physical concepts is only 
a prelude to their effective mathematization.  

Definition 4. The component type of the concept C is L-symbolic (verbal, 
sentential, textual) if its representing part includes elements from the alphabet 
(the vocabulary, the set of sentences, the set of texts) of the language L.  

The component type of common concept is simultaneously verbal, 
sentential and textual. In addition to this, the component type of many physical 
concepts is symbolic. For example, representing parts of concepts of many 
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elementary particle classes include their symbolic names that are letters from 
the Greek alphabet with superscripts and subscripts.  

Early in its “development” a new physical concept may have any 
component type. For example, the representing part can contain only some 
fuzzy set of texts. Later the set of sentences characteristic of the concept had 
been formulated and then the set of characteristic words has been associated 
with it. However, upon becoming familiar with an existent concept, a person 
usually learns one of its names (i.e., a word or a word combination). Then she 
learns a sentence or sentences containing this name and finally text(s) 
associated with the concept.  

According to the extensional modeling, one regards a concept as the set of 
objects falling under it and denotes this set by the same general name with the 
same spelling as the name of this concept. It is implicitly assumed, that the 
concept representing part includes only such name. Based on it, one can say that 
the component type of a concept is verbal. However, on closer inspection one 
should take into account the properties of objects falling under a concept. In this 
case, the concept representing part includes not only names of objects, but also 
names of properties of these objects and values (qualitative and quantitative 
names) of properties in question. It also includes sentences such as ‘The object 
with a name “general name of objects in question” possesses the property with 
a name “general name of property”’. What this means is that the component 
kind of the concept in question is sentential.  

Intuitively, some physical concepts have the status of symbolic concepts 
that processed only as symbols of a formal system. For example, in the case of 
the concept VELOCITY AS CONTINUOUSLY DIFFERENTIABLE 
FUNCTION the immediate subject of derivation or integration is the symbol f 
from its representing part, but not the word ‘function’.  

This intuition may be explicated as follows.  

Let σ be structure that transforms according to the rules of a formal 
system Σ built in language L1. 

Definition 5. The concept С* = (B(C*), L(C*), R(C*) = <σ>) is a 
constructive B-conservative σ-formalization of the concept C = (B(C) = B(C*), 
L(C), R(C) = <A(C), V(C), E(C), T(C)>) if structure σ substitutes for any 
component from A(C), V(C), E(C), T(C) of the representing part R(C) of the 
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concept C and transformation of σ has resulted in new information about the 
concept base B(C*) = B(C).  

Definition 6. The constructive B-conservative σ-formalization is:  

— mono-symbolic if σ is an elementary symbol of system Σ (and language L1); 
— poly-symbolic if σ is a combination of elementary symbols of system Σ (and 

language L1);  
— structure-symbolic if σ is a relational structure constructed from symbols of 

system Σ (and language L1);  

Let us consider some details of classical and quantum-theoretical (non-
relativistic) mathematical formalizations of the informal concept PARTICLE. 
Its representing part contains words and word combinations ‘an elementary 
particle’, ‘energy’, ‘momentum’, ‘spatial localization’, 'equation of motion', etc. 

According to the classical mathematical formalization, one should replace 
such components of the representing part by mathematical constructions from 
arithmetic, vector algebra and theory of continuous functions. In particular, the 
word ‘mass’ is replaced by the symbol m that denotes scalar mathematical 
function with positive numeric values. The words ‘force’ and ‘acceleration’ are 
substituted, correspondingly, by symbols f and a that denote specific finite-
dimensional vector continuous functions of spatial and temporal coordinates. 
These substitutions are examples of mono-symbolic formalization. The 
expression ‘f = ma’ constructed from these symbols substitutes for the word 
combination ‘equation of motion’. This substitution is an example of structure-
symbolic formalization. The classical mechanics holds that the solution of 
equation of motion permits one to describe classical properties of elementary 
particles and predict (under knowing some initial conditions) quantitative values 
of these properties. Notice that the solution of equation of motion is a result of 
its specific transformation according to the theory of differential equations.  

In the early twentieth century, it was experimentally demonstrated, that 
the classical mathematical formalization of the concept PARTICLE was 
limited in applicability. The non-relativistic quantum formalization is more 
effective, but is not universally applicable, too. 

According to the last formalization, the symbol ψ denoting a vector from 
infinite-dimensional functional space replaces the phrase ‘an elementary 
particle’. Physicists have replaced the classical equation of motion by the 
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Schrödinger equation or some other fundamental quantum mechanical equation 
for the wave function ψ. It is assumed that solutions of this equation predict the 
distribution of measured values of some quantum mechanical properties of 
particles at low energies. In particular, the phrase ‘a spatial localization of a 
particle’ is replaced by the phrase ‘a probability of finding a particle in a spatial 
point x’, which, in turn, is replaced by a certain poly-symbolic combination 
known as ⎥ψ(x)⎥2.  

It is interesting to note that, in the former case, formalizations of some 
particle properties (mass, etc.) take place. However, in the latter case physicists 
replace the name ‘an elementary particle’ by the symbol ψ that enters quantum 
mechanical equation. In both cases, formalizations are constructive because 
they have resulted in new information about the concept base.  

Definition 7. Let C and C* be concepts and R(C*) in comparison with 
R(C) contains additionally the symbol (correspondingly, word, phrase, 
sentence, text). The concept С* is a nontrivial one-element symbolization 
(verbalization, phrasalization, sententialization, textualization) of the concept C 
if and only if the processing of R(C*) has resulted in new information in 
comparison with the processing of R(C).  

One may also characterize constitutive components of the concept 
representing part in terms of their reference to constituents of the base.  

Definition 8. The concept C is b-named (b-definitional, b-modeling, b-
theoretical) if its representing part contains language structure that functions as 
a name (correspondingly, a definition, a model, a theory) of the component b ∈ 
B(C).  

Notice that many components of R(C) do not refer immediately to 
constituents of B(C).  

2.2. Representing equivalencies of concepts 

Let us consider some other local R-relations between concepts.  

Definition 9. The concept С is completely R-equivalent to the concept C* 
if and only if A(C) = A(C*), V(C) = V(C*), E(C) = E(C*), T(C) = T(C*). 
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It should be emphasized, that the identity of concepts does not follow 
from complete R-equivalency of concepts because these may have various 
bases.  

Proposition 1. The concept C is completely R-equivalent to itself.  

Proposition 2. The relation of complete R-equivalence is transitive, 
symmetric and reflexive.  

Definition 10. The concept C is a(v, e, t)-locally R-equivalent to the 
concept C* if and only if a ∈ A(C) and a ∈ A(C*) (correspondingly, v ∈V(C) 
and v ∈ V(C*); e ∈ E(C) and e ∈ E(C*); t ∈ T(C) and t ∈ T(C*)).  

The representing part of any object concept contains the word ‘object’. 
What this means is that all object concepts are ‘object’-locally R-equivalent.  

According to the non-relativistic quantum mechanics, the representing 
parts of concepts of various particle classes (electrons, protons, neutrons and 
others) include many constructions. Among these are the wave function (ψ is an 
element of the alphabet of quantum mechanical language) and the quantum 
mechanical equation of motion (the Schrödinger equation ∂ψ = 0 is an 
expression from the set of expressions of quantum mechanics). By this is meant 
that concepts in question are ψ (∂ψ = 0)–locally R-equivalent.  

Proposition 3. If the concept C is t-locally R-equivalent to the concept C* 
then there are such e and a, that e ∈ t and a ∈ e ∈ t and for which C is e-locally 
and a-locally R-equivalent to C*.  

Proposition 4. If the concept C is e-locally R-equivalent to the concept C* 
then there is such a, that a ∈ e and for which C is a-locally R-equivalent to C*.  

Definition 11. The concept C is a{v, e, t}-coherent if and only if a ∈ A(C), 
then there are such v ∈ V(C), e ∈ E(C) and t ∈ T(C), that a ∈ v ∈ e ∈ t.  

2.3. Representing disjointnesses of concepts  
 

Let us consider some concept relations induced by set-theoretical 
disjointness. 
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Definition 12. The concepts C and C* are completely R-disjoint if and 
only if A(C) ∩ A(C*) = ∅, V(C) ∩ V(C*) = ∅, E(C) ∩ E(C*) = ∅, T(C) ∩ 
T(C*) = ∅.  

The English translation of the Ukrainian word ‘частка’ is the word 
‘particle’. In the light of this, informal concepts ЧАСТКА and PARTICLE 
with representing parts expressed, correspondingly, in terms of Ukrainian and 
English languages are completely R-disjoint concepts. However, mathematized 
versions of these concepts are not completely R-disjoint because these use 
standard Latin and Greek symbols and their combinations, in particular, motion 
equation.  

Proposition 5. The relation of complete R-disjointness is not transitive on 
the set of all object concepts, i.e., for arbitrary C, C* and C**, complete R-
disjointness of C and C** does not follow from complete R-disjointness of C 
and C* and complete R-disjointness of C* and C**.  

Definition 13. The concepts C and C* are a(v, e, t)-locally R-disjoint if 
and only if A(C) ∩ A(C*) = ∅ (correspondingly, V(C) ∩ V(C*) = ∅; E(C) ∩ 
E(C*) = ∅; T(C) ∩ T(C*) = ∅).  

Proposition 6. The relation of a(v, e, t)-partial R-disjointness is not 
transitive on the set of all object concepts.  

Proposition 7. The completely R-disjoint concepts are a(v, e, t)-locally R-
disjoint.  

2.4. Representing intersections of concepts 
 

Let us consider concept relations induced by various set-theoretical 
intersections. 

Definition 14. Concepts C and C* are completely R-intersecting if and 
only if A(C) ∩ A(C*) ≠ ∅, V(C) ∩ V(C*) ≠ ∅, E(C) ∩ E(C*) ≠ ∅, T(C) ∩ 
T(C*) ≠ ∅.  

Proposition 8. The relation of complete R-intersection is reflexive and 
symmetric.  
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Proposition 9. The relation of complete R-intersection is not transitive on 
the set of all object concepts. It means that for arbitrary C, C* and C**, 
complete R-intersection of C and C** does not follow from complete R-
intersection of C and C* and complete R-intersection of C* and C**.  

Definition 15. The subset of the set of all object concepts is a non-
transitive R-subset if it includes only concepts related by the non-transitive 
complete R-intersection.  

Proposition 10. The relation of complete R-intersection is tolerant on the 
non-transitive R-set.  

Informally, tolerance of complete R-intersection of concepts means the 
following. Complete R-intersection of concepts could be interpreted as an 
expression of their similarity in respect to their representing parts. In this case 
tolerance of the relation between completely R-intersecting concepts means that 
concepts C and C** that are similar to the concept C* are not necessarily 
similar to each other.  

There are many propositions about the connections among the introduced 
above types of concept relation. One example is the next proposition. 

Proposition 11. Completely R-equivalent concepts are completely R-
intersecting.  

3. Perspectives  
 

All representing relations between concepts introduced above are 
homogeneous in a sense that these are induced by single-type relations between 
homonymous constitutive components of the representing parts of concepts. For 
example, the relation of a-local R-intersection is induced by intersection of sets 
consisting from elements of the alphabet(s).  

There are also inhomogeneous concept relations that are induced by 
heterogeneous set-theoretical relations between homonymous constitutive 
components of the representing parts of concepts. An example is the relation 
between the concept representing parts that is induced simultaneously by 
intersection of their sets of letters and the relation ‘to be a subset’ between their 
sets of sentences.  
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There are clusters of closely connected physical concepts. An example is 
the cluster of classical mechanics concepts. It includes concepts MASS, 
SPATIAL COORDINATE, TEMPORAL COORDINATE, 
TRAJECTORY, VELOCITY, ACCELERATION, FORCE, TIME, 
SPACE, ENERGY, etc. Nontrivial relations between these concepts are 
induced not by set-theoretical, but by specific mathematical relations between 
constitutive components of their representing parts. For instance, as physicists 
say, momentary velocity at a point is equal to derivative of spatial coordinate 
with respect to temporal coordinate.  

In the framework of triplet modeling, one can explicate these concept 
relations in terms of composition of constitutive components of concept 
representing parts. In turn, various kinds of composition are useful in analysis of 
problems of concept combinations.  
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