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Abstract: Implicit stochastic models, including both ‘deep neural networks’ (dNNs) and the more
recent unsupervised foundational models, cannot be explained. That is, it cannot be determined
how they work, because the interactions of the millions or billions of terms that are contained in their
equations cannot be captured in the form of a causal model. Because users of stochastic AI systems
would like to understand how they operate in order to be able to use them safely and reliably, there
has emerged a new field called ‘explainable AI’ (XAI). When we examine the XAI literature, however,
it becomes apparent that its protagonists have redefined the term ‘explanation’ to mean something
else, namely: ‘interpretation’. Interpretations are indeed sometimes possible, but we show that they
give at best only a subjective understanding of how a model works. We propose an alternative to
XAI, namely certified AI (CAI), and describe how an AI can be specified, realized, and tested in order
to become certified. The resulting approach combines ontologies and formal logic with statistical
learning to obtain reliable AI systems which can be safely used in technical applications.
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1. Introduction

Since the so-called ‘deep neural networks’ became broadly usable thanks to a huge
supply of training data and computation power, we have experienced a new wave of
Artificial Intelligence (AI) enthusiasm in research and applied technology. Despite their
name, they function in a way that has nothing to do with the way the central nervous
systems of animals works. Like all models resulting from statistical learning [1], dNNs
are the outputs of an optimization algorithm that uses supervised or non-supervised data
and training hyperparameters to find the local minimum of a loss-function [2]. Supervised
models are trained with data tuples of the form {xi, yi}N

i=1, where N indicates the number
of observations, x the input data (usually a vector) and y the output associated with the
input data, where y may be either a scalar or a vector. Input data are independent variables,
and the output (also called ‘outcome’) is then dependent thereon. For example, the input
variables might be quantitatively expressible features of a product sold online and the
outcome of its rating by customers. Such tuples can be obtained from data accumulating on
the internet, from production processes in a factory, or through manual annotation efforts.
Unsupervised models are obtained by using instead an N× p data matrix X which contains
no dependent variables (where N again represents the number of observations and p is the
number of variables in the matrix).

The resulting stochastic models are implicit, non-linear, and have millions or more
parameters – for example, the sequence-generating unsupervised model GTP-3 has 175 bil-
lion parameters [3]. Here ‘implicit’ means that the models are not generated explicitly
by creating a symbolic, structure such as a differential equation or a syllogism. Rather,
the model is obtained by using an optimization procedure. Of course, the model must in
every case be executable on a computer (Turing-machine). Because the models are created
implicitly, and because of their huge size, there is no way in which the processes by which
they estimate a stochastic output ŷ from an input vector x could be made explicit and
understandable for example to a human being.

Appl. Sci. 2022, 12, 1050. https://doi.org/10.3390/app12031050 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12031050
https://doi.org/10.3390/app12031050
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-8391-7353
https://doi.org/10.3390/app12031050
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12031050?type=check_update&version=1


Appl. Sci. 2022, 12, 1050 2 of 15

This situation has been still further aggravated in more recent times by the develop-
ment of so-called foundation models [4], which are, unlike supervised regression models or
supervised dNNs, unsupervised. There are two types of foundation models: (i) generative
models, which model multivariate or conditional multivariate distributions present in a
given body of training data [5]; and (ii) discriminative models which aim at modeling latent
higher-level patterns shared by similar outcome sequences with different data at the lowest
(input) level in order to enable predictions [6].

These unsupervised models are often specialized to certain tasks by conditioning them
on specific data or using them in transfer learning, where the models are retrained in a
supervised setting [4] (pp. 85–90). But no matter how they are obtained, they are in every
case either a functional or an operator consisting—in the unfolded equational view that
can always be obtained from the network view—of an equation with billions of terms and
parameters for which it is, again, impossible to tell how they create the output estimate ŷ
from a given input x.

For these reasons, certain aspects of using dNNs in production systems in any sector of
the economy, including the public sector, have been identified as possible areas of concern.
The most important of these are [4] (pp. 151–159):

• the lack of explainability, leading to attempts to create explainable AI [7],
• attitude bias [8] (see Section 3.5 below),
• social injustice and unfairness,
• abuse,
• carbon-dioxide footprint,
• legal aspects,
• economic aspects,
• as well as ethical aspects such as mass surveillance, the concentration of power, and

automated decision-making.

We note in passing that many of these aspects will become critical only under the
assumption that dNNs and foundation models are in fact used to the extent envisaged by
their respective developer communities. We shall return to two of the items on the list in
Section 4.3.

This paper focuses on the question of how explainable AI and attitude bias, but also
other concerns on this list, can be addressed. It is structured as follows: Section 2 defines
the concepts of explanation and interpretation in the context of implicit stochastic models.
Section 3 explains why the attempts to explain or even interpret stochastic AI must fail
and are irredeemably futile if the aim is to obtain AI that can be used safely in real-world
environments (the goal of any technology). Section 4 introduces the idea of Certifiable AI
and explains how stochastic AI systems can be used to construct reliable and safe systems
for real-world usage. It discusses how the design and testing of AI systems can eliminate
the need for attempts at XAI and at the same time serve to prevent attitude bias in such
systems, in order to obtain certified AI.

We will provide details of how to combine deterministic with stochastic algorithms in
order to obtain seamless, reliable hybrid AI systems. For this purpose, prior knowledge in
the form of ontologies associated with mathematical knowledge is critical.

2. Implicit Stochastic Model Explanation and Interpretation

Max Weber [9] proposed what has become a standard distinction in the philosophy of
science between four different families of scientific goals, namely: description, explanation,
interpretation, and prediction [10,11]. Following Weber, I thus define the phrase ‘to explain
AI’ as the activity of obtaining a causal understanding of how a given AI (model or
algorithm) generates a certain output given a certain input. Explanation in general answers
the question: How does this work? It does this either exactly or almost exactly, in the way
Maxwell’s equations explain the behaviors of electromagnetic fields using a handful of
variables and universal constants.
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Interpretability is also well-defined (it is wrong to assert, as is commonly done in
the XAI literature, that ‘interpretability is a domain-specific notion’ [7]), namely as the
ability to formulate a model, which can take the form of an equation or a portion of text,
that enables users of the interpretation to experience subjectively the meaning of what is being
interpreted [12] (p. 1069).

For users with similar cultural backgrounds, the meaning experienced upon reading
such an interpretation may be similar. For example, the members of a church congregation
listening to a sermon interpreting a biblical text may experience a similar meaning and
establish that this is so during conversations after the service.

Interpretation is a hermeneutic activity of a sort first systematically described by
Schleiermacher and Dilthey [12]. It is nowadays applied not only to objects of the humani-
ties but also to implicit mathematical models. The requirement for interpretation is often
raised when explanations are a priori impossible.

I define interpretation power as the power of an interpretation model to achieve a
similar subjective meaning among individuals with a similar cultural background. It can
be assessed by performing interrater reliability tests in which metrics can be designed to
measure the degree to which members of a group of individuals obtain the same meaning
from a given interpretation [13].

Given these definitions, can stochastic implicit models be either explained or inter-
preted? Unlike the differential equations used in physics, they do not yield (almost) exact
representations of the relationships of the modeled processes. Rather, they yield at best
highly approximate models. The main problem is that, unlike differential equations, the
number of independent variables used as input for stochastic models is often huge. The
length of their input and output vectors determine the dimensionality of their domain and
range spaces, respectively:

f : Rk 7→ R, or (1)

O : Rk 7→ R` (2)

Here k-dimensional vectors are related by functionals f to scalars (one-dimensional
outputs), and by operators O to `-dimensional vectors. k or ` can be very large, as is
the case, for example, in dNN-based image classification (large k) and neural machine
translation (large k and `).

It is certain that the workings of implicit stochastic models such as supervised dNNs
and foundation models such as GPT-3 cannot be explained in the sense defined above,
since the number of independent variables and model parameters and their interactions
cannot be presented as a causal model due the sheer number of relations involved. Note
that here, we define a causal model as a model that formally describes the cause-and-effect
relationship between two physical entities. We do not mean ‘causability’ to describe ‘the
measurable extent to which an explanation [given] to a human expert achieves a specified
level of causal understanding’ [14] (see Section 4.2).

As is often stressed in the psychological literature, humans can only create and under-
stand models with very few variables [15,16]. What, then, is to be said about interpretation?

3. Attempts at Model Interpretation

This section presents three major families of attempts to produce interpretations of
models. Table 1 gives an overview and points to the sections and equations in which the
resp. models are discussed.
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Table 1. Overview: Types of interpretations of models.

Type Approach Section/Equation Significance

Classical
model

Z score Equation (3) Positive Z scores indicate
that the independent
variables contribute to the
outcome.

Gini imporance Section 3.1 Rough understanding of a
variable’s contribution to the
model’s prediction output

dNN local approximation
function

Equation (4) lower interrater reliability
than Z-score

dNN
global

basis-changing
inverse functional

Equation (5) Feature visualization

heatmap clustering Section 3.2.2 Improved feature
visualization

concept-labelling Equation (6) Hermeneutic interpretability
activation atlasses Section 3.2.2 High-quality intuitive

interpretation

3.1. Classic Types of Model Interpretation

Some traditional stochastic models, such as gradient boosted trees or regression models
used in medical risk-factor screening [17], can indeed be interpreted in the hermeneutic
sense. For forest models, the Gini importance measure of an input variable can be used to
obtain a rough understanding of that variable’s contribution to the model’s prediction
output [18].

Multiple regression models have the form:

f (x) = β0 +
M

∑
i=1

βixi, (3)

where β0, βi are the regression parameters, and M is the dimension of the input space (the
domain of the functional f ). With a sufficiently small number of parameters, interpretations
of such models can be obtained using statistics such as Z scores associated with the model
with the independent variables. Positive Z scores corresponding to a significant rejection
of the null hypothesis (as measured by the Wald test [19]) indicate that the independent
variables contribute to the outcome. However, even in this case, the interpretation is
only indicative and it depends on the presence of other predictors. The interpretation via
Z-statistics is not robust; when one removes from the input data any variable to which
a significant Z-statistic is associated, the scores of the remaining variables change. Such
interpretations are indeed not causal explanations at all, but rather methods to enable users
to experience a subjective meaning (in the sense of hermeneutics) related to the models
in question.

3.2. dNN Model Interpretation

The XAI community does of course acknowledge that the behavior of dNNs (how
they create an output from a given input) can not be causally explained. It recognizes that
the ideal ‘comprehensive explanation [which] would extract the whole causal chain from
input to output’ is ‘so far not available’. Rather, they seek ‘reduced forms of explanation’
such as a ‘collection of scores indicating the importance of each input pixel/feature for
the prediction’ [20], so that explanation is in effect replaced by interpretation. Other XAI
authors define an ‘explanation model as any interpretable approximation of the original
model’ [21], which is to say that explanation and interpretation are used as synonyms.
Consequently, Rudin asks the community to ‘stop explaining black-box machine learning
models for high stakes decisions and use interpretable models instead’ [7].
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There are two approaches to creating an interpretation of this type, involving local
and global models, respectively [22]. We review what we believe are the most important
examples of these approaches in order to identify the limitations of dNN interpretation in
general, without however claiming completeness.

3.2.1. Local Interpretation

Local interpretation approaches try to map a given predictive functional f ∈ F , f :
Rk → R, where F is a metric functional space, to a lower-dimensional functional space
G using a local approximation function φ : F → G, g(x0) = φ( f (x0)), where x0 ∈ Rk, the
domain of the approximated functional f . One can think of the approximation point x0 as
an element of a narrow interval I ⊂ Rk, with the quality of the approximation declining
drastically as the interval size increases.

Lundberg and Lee [21] have provided a useful unified representation of such approx-
imations. The approximation functions φ are often composite, for instance of the form
φ = χ ◦ ψ, where χ : Rk → {0, 1}M maps the input space to a binary space of dimension M
and ψ : {0, 1} → R lifts the binary representation to the regression space R, which is the
range of the approximated functional f . The full approximation functions then looks like
this (adapted for the purpose of this analysis from [21] (Equation (1))):

g(x0) = ψ0 +
M

∑
i=1

ψi(χi(x0)), (4)

with g(x0) ≈ f (x0). This means that the approximation functional g ∈ G tries to locally
map a high-dimensional model to a logistic regression model in order to achieve an
interpretability similar to the interpretation obtained with such classical models (using the
regression-Z-scores for parameters of Equation (3), as described in Section 3.1 above).

However, such approximations are of lower quality, and this is for two reasons. First,
they are local, which means that they work only for narrow input interval or single input
vectors, where the classical models are global. And second, because they always involve an
error factor of approximation, where classical models allow a direct interpretation without
approximation (For reasons of space we here leave aside the inherent approximation of
linear models, which is a form of bias essential to these models; see Section 3.5, Equation (7)).
Their interpretation power is thus lower, which means also that the interrater reliability
will be lower.

3.2.2. Global Interpretation

A second approach tries to ‘uncover qualities of the data at large that affect model
behaviors’ [4]. For example, it is analyzed how input features propagate within a neural
network [20,23], or how models transform input features using mechanisms similar to
basis changes in vector spaces [24,25]. Another more recent approach seeks to character-
ize dNN nodes in terms of activation patterns to interpret or visualize how the models
operate [26,27].

Analyses of this sort are often performed for dNNs that operate on image data or
that play games which are presented to the human player as a series of images. This is
because here results of the analysis can be visualized and thereby interpreted in some
sense by appealing to visual intuition, by analogy with the way we describe the perceptual
environment by appealing to its affordance character [28].
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Predictor Decomposition

Bach et al. [23] proposed a recursive mechanism to map the predictions of a functional
f from its range to its domain space, i.e., they defined a basis-changing inverse functional
g : R→ Rk (see Equation (1)) with g( f (x)) = r ∈ Rk, constrained as follows:

k

∑
p=1

rp = f (x), (5)

where k is again the dimension of the domain of f and each rp is obtained by summing
over a subset of the nodes of a neural network. The vector r = (r1, . . . , rp) can be under-
stood as a decomposition (basis change) of the range of the function that is obtained by
harvesting and summarising the structure of the neural network. It can be used to visualize
prediction-relevant features in the input and in the layers of the neural network to obtain
‘relevance maps’ (heatmaps) that indicate which features of the input space contribute to
the classification output of the network [20] (Suppl. 3.2–3.3). Such maps can be inspected to
identify which features of the image are used by the classification algorithm. Lapuschkin et
al. went one step further and clustered the heatmaps from classification tasks to obtain sets
of images with similar classification-relevant properties [20] (Methods Section).

The inspection and clustering of heatmaps generated from image-classification and
Atari-game playing dNNs revealed the features that the dNN had learned. For example, it
was shown that dNNs learn to classify horses from notes printed on pictures that designate
them as such. If these notes are transposed to pictures of cars, then the cars get classified
as horses as well. In another setting, the authors identified that the dNN uses the table
nudging mechanism built into a virtual pinball game to move the ball without using the
flippers at all in order to obtain an infinite number of points. This strategy would not
work if the simulation was adapted to model a real pinball machine more closely, for there
the machine tilts upon repeated manipulation of the table in order to thwart the player’s
attempt to manipulate the game.

Node and Activation Characterisations

Several groups have proposed procedures to assign descriptive concepts to indi-
vidual nodes of a neural network in order to provide semantics that would make them
interpretable for users [26,29]. For example, nodes used in the classification of images of
water landscape pictures can be associated with concepts such as blue or river or water.
As proposed by Bau et al., dNN nodes can either be associated with atomic concepts C
from a vocabulary C [29] or they can be assigned to formulae L(C) consisting of combi-
nations of concepts obtained by applying connectives (∧,∨,¬) of propositional logic over
C to yield node interpretation semantics more adequate to the behavior of input-distal
nodes [26]. For example, a node can be associated with a propositional formula such
as ((water ∨ river) ∧ ¬blue). The assignment to concepts is performed via an explanation
function e that uses a similarity measure δ on a node n:

e(n) = argmax
C∈C

δ(n, C), (6)

where the similarity measure δ is computed by selecting activated nodes which are thresh-
olded into a binary segmentation Mn. Using a vocabulary-annotated (verum) image mask.
This verum is a map of activated nodes to concepts, the Broden (‘Broadly and Densely
Labeled’) dataset. ‘The purpose of Broden is to provide a ground truth set of exemplars for a
broad set of visual concepts. The concept labels in Broden are normalized and merged from
their original data sets so that every class corresponds to an English word.’ [29] (Section 2.1).
This verum allows the assignment of activations to concepts. LC(x), the assignment of
activated units to concepts is computed via the Jaccard-index δ(n, C) = ∑x 1(M(x)∧LC(x))

∑x 1(M(x)∨LC(x))
,

where n indicates the node to which an assignment of concept C is made.
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Certainly, the labeling of image-processing dNNs with concepts or propositional-logic
formulae in this way provides some hermeneutic interpretability of the model. However,
because the verum image mask, LC is incomplete, and the activated concept- or formula-
assigned nodes contribute to the overall result (for image tasks) only to a minor extent and
may even be negatively correlated with model performance (in natural language inference),
the value of this approach is again at best merely hermeneutic: Looking at the annotated
nodes neither enables a causal understanding of how the model works nor can it be used
to improve in a useful way predictions of how the dNN will work in a given case.

Another approach to the characterization of image-processing dNNs is the activation
atlases proposed by a group at OpenAI [27]. Such atlases visualize features of averaged
node cluster activations which are tagged by pseudo-images that describe the visual
material that node clusters model. The technique was further refined (for example in [30,31])
so that it is now possible to map out ‘multimodal’ nodes and node groups in a dNN used
to identify faces of prominent persons. Though these approaches provide, again, a human-
understandable interpretation, they neither explain how the models work nor can they
help to alleviate any of the features of stochastic models which have been identified as
detrimental to the quality of their outputs, including inexact prediction, unpredictable
behavior, and attitude bias.

3.3. Reasons for Model Interpretation Failure

The examples we reviewed, as well as other interpretation models for implicit non-
linear stochastic models, are very elegant attempts to reduce the stunning dimensionality
of the dNN domain and range spaces to dimensions that can be understood by human
users. However, these approaches merely provide the user with a narrative that enables
a superficial, partial understanding of what is going on inside the dNN, and no causal
explanation of how it works. This understanding may help some skeptics to develop a
kind of emotional trust in the function of dNNs. It can certainly help to understand their
limitations. But it can provide no explanation of a sort that would work reliably from one
input to the next. Deep learning models cannot be explained, because deep learning induces
model parameterizations with millions or billions of parameters to master classification or
regression tasks. dNNs solve these tasks in a manner that differs completely from the way
humans interpret text, language, sounds, images, or smell or somatosensory input.

Some authors think that neural networks are modeled in a way that mimics the
structure of human neural systems and that the inspection of the artificial networks can
teach us something about the way the nervous system works [32]. Though it is true that
convolutional neural networks, for example, were designed by using basic models of the
mammalian visual system, the details of the natural and artificial systems are radically
different. Consider that one single neuron in the visual cortex (which is supposed to
be modeled by one node of a convolutional neural network in its upper layers) contains
millions of functionally relevant molecules and interacts directly and indirectly with billions
of other neurons, each again endowed with millions of functional molecules, to contribute
to the conscious experience of vision. For more details see [33,34] (Ch. 2–3)).

In this context, the results of Moosavi et al. are very relevant. They showed that neural
network image classifiers can be nudged into a complete misclassification of images when
the input material is mixed with small and universal perturbation vectors [24] generated
using an iterative parsimonious perturbation search algorithm. When the image data
are perturbed using this universal vector, drastic misclassification occurs. For example,
a sock is classified as an elephant or a whale as a bird. Jo and Bengio [25] hypothesized
that these perturbations are possible because convolutional neural networks (a CNN is a
neural network that can take matrices (image data) as input by using convolutional filter
matrices on the input data to map their matrix structure to the nodes of the neural network).
use different features of the input space to perform their classifications than humans do—
features which they call ‘surface statistical regularities’—and that the perturbations alter
these features to bring about the mentioned drastic effects.
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They used Fourier transformations to construct datasets that share with the original
images exactly identical high-level abstractions but differ with regard to surface regularities.
For example, a portrait was transformed into an image that preserves the feature contours
but uses different colors, with the result that the transformed result maintains the features
of the face but presents it in unnatural colors (like the Marylin Monroe series by Andy
Warhol).

They found that the dNNs tend to model the ‘Fourier image statistics of the training
dataset, sometimes exhibiting up to a 28% generalization gap across the various test sets.’
This confirms their hypothesis and explains why dNN-image classification can be perturbed
so easily. It also provides insight into the way in which these models achieve their results
namely—and in contrast to humans—without using any semantics. This provides yet
another reason why dNNs are non-explainable.

3.4. Deep Reasons for Deep Model Explanation Failure

Interpretations via the local and global interpretation mechanisms described in Section 2
above yield merely a partial, subjective interpretation. What is the deeper reason for our
inability to interpret the behavior of these models in the more objective manner that would
be required to come closer to an explanation?

The sorts of implicit stochastic models which researchers have tried to interpret are
often those used to emulate human behavior, for example in image or text classification,
game playing, in the generation of texts [3] or pictures [35] through the continuation of
a given sequence, and also in simulations of inanimate nature, for example, a weather
phenomenon such as rain [36]. In all these settings, the models approximate the behavior
of complex systems using a logic system, a Turing machine. A Turing machine can only
compute algorithms that can be formulated using the basic recursive functions described
by Church [37,38]. The problem is that only a certain subset of extended Newtonian
mathematics can be expressed as Turing-computable algorithms.

There are indeed countably many (ℵ0) Turing-computable functions, but uncountably
many (2ℵ0) non-Turing-computable functions, and this will not change [39,40]. Implicit
stochastic models, no matter how large and complicated they are, remain models approxi-
mating complex system behavior using Newtonian mathematics. If this was not the case,
then we could not use them inside computers.

The models are generated by using derivatives of loss equations to find local minima
in multivariate functionals. The result is a very long differentiable equation. The equation
faces some Newtonian requirements which are relaxed: for example, it does not require
the interactions between its variables to be always the same. Nor does it require that these
interactions have to be homogeneous over the entire neural net. But for neural networks
to be computable, it is still required that they satisfy most of the properties of Newtonian
models. The manifolds they describe must be differentiable, and the importance of any
given interaction must decrease over space or time in a regular fashion; in other words,
they must still have a weak Markov property in all spatial and temporal directions.

These properties constrain the quality of the approximation to real-world phenomena
that can be achieved with stochastic models. In particular, they are unable to model
complex system properties such as changes in phase space, the non-ergodic nature of
complex system behavior, and their context-dependence [41].

We do not understand how humans classify texts or images or conduct conversations.
Neither do we have mathematical causal (and thus predictive) models of the weather or of
the Earth’s climate. (Every mathematical causal model is also a predictive model because
the explanations it provides can be used for an almost exact prediction.) Causal models for
such complex systems are beyond the scope of currently available mathematics [34,42,43].
When we emulate human behavior, or the behavior of the weather system, we create
approximations of these complex systems. But, as we have seen from the review of
important examples from the XAI literature, we cannot understand these approximations
any more than we understand the systems themselves.
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This does not, however, mean that we cannot obtain highly functional, reliable, and
safe AI systems which avoid undesired bias when we carefully design these systems.

3.5. Attitude Bias in Statistical Learning

In statistical learning, it is assumed that there are true properties of a distribution
relation f (X) = Y. Against this view, bias is defined as the squared difference between the
expectation E of an estimate f̂ (x0) and the real outcome f (x0):

[E f̂ (x0)− f (x0)]
2. (7)

The bias thus indicates the amount by which the average of our estimate differs
from the true mean. It is seen as a property, not of the distribution, but rather of the
model which is interpreted as introducing a systematic deviation from the truth. Models
of increasing complexity usually have a lower bias but a higher variance—the expected
squared difference between the estimate and its expectation (average) [1] (Section 7.3):

E[ f̂ (x0)− E f̂ (x0)]
2.

In the dNN- and XAI-communities however, bias is understood in the sense of attitude
bias [4] (Section 5.1), which I define as the presence in humans of attitudes concerning
group-related value judgments (also called stereotypes or prejudices) such as ‘Asians are
more intelligent than caucasians’, or ‘women have a higher emotional intelligence than
men.’ Attitude bias is thus a matter, not of systematic deviation of a model from the truth
of a distribution, but rather a property of the training distribution X itself arising from
group-related systematic value judgements. Where such biases are present in the training
data, for example in large text corpora taken from the web [8], statistical models obtained
from supervised or unsupervised training material will implicitly incorporate them. Of
course, models will also incorporate the common-sense knowledge that is present in such
data, for example, that the sun rises every day or that all animate organisms need water.

There are drastic ugly examples of the effects such attitude bias can have on trained
models, such as the chatbot Tay which Microsoft had to turn off in 2016 because Twitter
users had turned it into ‘a neo-nazi sexbot’. (https://www.technologyreview.com/2016/0
3/24/161424/why-microsoft-accidentally-unleashed-a-neo-nazi-sexbot/, accessed on 17
January 2022).

How can such attitude bias inherited from training material be avoided? One road is by
using human-curated material, which drastically reduces the amount of available training
material and thereby prevents the usage of foundation models or supervised dNNs which
are enormously data greedy.

But there is another road: through AI certification.

4. Certified AI

To obtain explainable, reliable, and safe AI systems, the systems need to be engineered
in the way in which we have built technology since the 17th century, namely on the basis of
experiments and the principle of composition. Some technical artifacts used in engineering
are exactly understood. Others are understood only approximatively. For example, a
jet plane is made of many parts, and many of them can be modeled very well. We also
have an understanding of the lift force that enables the plane to fly—but we cannot model
exactly how this force works. However, airplanes can be specified and tested, and the
conditions under which they can depart, land, and fly can be specified to minimize the
risks involved in traveling through the air. This has made air travel with jets the safest
means of travel—safer by far than travel by car or train—if the specified conditions are met.

To achieve a comparable level of quality, and thus of safety, AI systems need to be
engineered using a similar framework. This means the requirements along all of the
following dimensions (the following enumeration is based loosely on ISO 25010 [Software
and software quality models]).

https://www.technologyreview.com/2016/03/24/161424/why-microsoft-accidentally-unleashed-a-neo-nazi-sexbot/
https://www.technologyreview.com/2016/03/24/161424/why-microsoft-accidentally-unleashed-a-neo-nazi-sexbot/
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• behavior —the suitability and accuracy of its functions,
• security—access control, and similar measures, which include anti-keyloggers, anti-

malware, anti-spyware, anti-subversion, anti-tamper, anti-theft, antivirus, and cryp-
tographic software, computer-aided dispatch, firewall, intrusion detection system,
intrusion prevention system, log management software, records management, sand-
box, security information management, security information and event management,
software and operating system updating, and vulnerability management,

• reliability—maturity, fault tolerance, recoverability,
• usability,
• efficiency,
• maintainability, and
• portability

must be clearly stated, and AI systems realized to meet them.

Such systems can then be certified, as medical devices or airplanes are certified. We
then obtain certified AI (CAI), something that is realistic and feasible, instead of XAI, which
is impossible. Consider as an example a certain sort of human activity in the domain of
precision engineering, which we seek to automate by means of an AI-controlled robot [34]
(Chapter 13).

• Let X, Y be finite-dimensional vector spaces in Rm and Rn, respectively, with n, m ∈ N.
• Obtain a set of data (input-output tuples) from these spaces: 〈Xk,m, Yk,n〉, where k ∈ N

is the size of the set.
• Let Ti : Rp 7→ Rq, i ∈ N, p, q ∈ N>1 be operators and let f j : R` 7→ R, j ∈ N0, ` ∈ N be

functionals.
• The functionals and operators can be algorithms, differential equations, syllogisms, or

stochastic regression models (including neural networks). Note that the domain of T1
is Rm and the range of Tn is Rn.

• Let the operator T0 represent the outcome that the ML or AI model is to emulate in the
current context. This is an activity, which is performed to realize a certain step in the
production process, for example, the combination of two delicate, small parts into one
larger part. The machine which is supposed to replace the human then has to obtain
an operator of the form

ŷ = T̂0 = T1 ◦ f1 ◦ · · · ◦ f θ
m−1 ◦ Tκ

n−1 ◦ fm ◦ Tλ
n (8)

where ŷ is an estimator of T0.
The equation describes the composition (◦) of a series of steps, each one consisting
of the application of some functional or operator. These might be a stochastic model,
an ontology-based mechanical theorem prover, a Bayesian network, a set of rules, an
algebraic graph, and there are many other alternatives. The superscripts θ, κ and λ
used on some of the functionals and operators indicate the usage of prior distributions
or prior knowledge, a crucial point to which we will return below.

• The set of functionals and operators of the model can be trained and tested by using
appropriate data-subsets in the usual ratio (see [1] (Chapter 7)).

• Finally, the model ŷ is evaluated by using a validation partition from the data.

Each functional f j and each operator Ti with i > 0 of the model represents a part of
the relevant human act sequence which is decomposed when the algorithm emulating
the animate behavior is designed. (In some cases, a single human act can be represented
mathematically through the combination of several functionals or operators. For example,
to mimic a human chess player, many operations are computed for one movement.) For
example, T1 might be an act of perception, f1 corresponds to the first movement pattern
of the human act sequence, and so on. Under certain conditions, it is possible to directly
train the entire operator ŷ = T̂0 end-to-end, though such applications are rare in real-world
problems.
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4.1. Priors

The most important characteristic of the compositional model (8) is the usage of priors. The
term prior distribution is used in Bayesian inference to describe a prior probability distribution
p(θ), for example the likelihood of an unborn child to be a girl is very close to p(θ = 1) = 1

2 ,
where θ ∈ {0, 1} indicates boy or girl, respectively. (Inherited anomalies of the sex chromo-
somes are very rare; girl-boy-birth-rate-imbalances can however sometimes be observed.) We
know that this prior is correct from sampling the sex of children in human populations. In
contrast, prior knowledge describes propositions that we know with certainty to be true (given
certain conditions), such as Newton’s laws. To explain the behavior of a system, we need to
use such propositions because they allow a causal understanding of the system’s function. To
make a compositional system explainable, it suffices that the last functional or operator in the
compositional chain uses prior knowledge. For example, if the operator Tλ

n in Equation (8) is
a fully deterministic mechanical theorem prover operating as described in Section 4.1, then
the results can be evaluated exactly against the requirements using automated testing with
pre-defined test cases.

Even if some of the components of the chain described in Equation (8) are stochastic,
the result will still be deterministic, testable, and reliable.

An Example of Prior Knowledge: Axiomatised Ontologies

Prior knowledge can be expressed using differential equations or via taxonomic or
axiomatic ontologies. Taxonomic ontologies are directed graphs which relate entities
(graph-theoretical nodes) to one another using set-membership relations (graph-theoretical
edges) such as

human ⊂ mammal ⊂ animal ⊂ animate being,

where each subset is derived from its superset using Aristotelian genus-species defini-
tions that constrain the superset to the subset by adding more properties. Taxonomy-like
ontologies using other entity relations are designated according to the relation types (as
when meronymy is used for part-whole-taxonomies). Axiomatic ontologies consist of
propositions expressed in (propositional, predicate, or modal) logic. Such ontologies are
not necessarily graphs, because the propositions are not necessarily connected via relations,
though they can be treated as nodes and related to each other explicitly to yield axiom-
atized taxonomies. This is the type of ontology that is obtained with the web ontology
language OWL if all nodes are axiomatically defined using the modal description logic
of the SROIQ(D) standard [44]. Axiomatised ontologies without explicit node connec-
tions but common propositional elements can be seen as forming networks in which two
propositions that share one or more elements are implicitly connected.

Such axiomatized ontologies or axiomatized taxonomies are extremely useful because
they can be used with mechanical theorem provers (MTPs) to compute exact logical in-
ferences. Consider a chatbot built for customer request management on the part of an
electricity utility with the aid of an ontology and an MTP. Its penultimate operator Tλ

n−1
consists of an axiomatized ontology Γ, which captures the most important target statements
which customers make in the form of logical formulas and an MTP. Γ = Γ1 ∪ · · · ∪ Γ`

is made of ` sub-ontologies to increase the expressive power of propositional formulae
γij ∈ Γi, i = 1 . . . `, j = 1 . . . N, where N is the number of formulae. These sub-ontologies
can contain synonymies and compositional language elements that are regularly used
by speakers, such as noun phrases related to time and space or verb phrases describing
frequent activities.
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For example, a set of target propositions that expresses the intent of a customer to re-
voke a recently signed contract looks like this (Abbreviations: V—verb, PHO—prepositional
object head, S—subject, O—object, POP—preposition.):

(γ11) : electroRequest(V) ∧ reRevocation(POH) ∧ (verb(V, S) ∨ ((you(O)) ∧ verb(V, S, O)))

∧mod(POP, POH, V)

(γ22) : ((request(X) ∨ ask(X) ∨ solicit(X) ∨ arrogate(X) ∨ demand(X))

→ electroRequest(X))

(γ23) : ((withdrawal(X) ∨ suspension(X) ∨ revocation(X) ∨ annulment(X) ∨ abrogation(X))

→ reRevocation(X))

Formula γ11 is an abstract representation of sentences like ‘I hereby request a contract
revocation.’ The elements electroRequest(V) and reRevocation(POH) are artificial abstract
terms used to increase the set of natural language sentences to which the proposition
applies; the MTP can use them by replacing them with their synonyms. (The syntactic
elements such as verb, you and mod are used to express in logical form the syntactic structure
of the natural language sentence.) Formula γ22 provides context-specific synonyms for
verbs indicating an act of requesting, formula γ23 provides such synonyms for nouns
indicating contract revocation. An MTP can use the implications (→) to infer formula
γ11 from different combinations of the synonyms given in formulae γ22 and γ23. The
functionals and operators acting before the MTP-operator Tλ

n−1 translate natural language
sentences into logical formulae:

SENTENCE {φ1, . . . , φk} = Φ. (9)

This allows the MTP to infer a target formula from the set of translations Φ:

Φ ` γij ∈ Γ. (10)

The final operator Tµ
n is a rules engine that automatically directs those sentences to

which no formula could be assigned to a human being for inspection. For those with a
translation into logic, it uses the inferred formula γij to perform operations on system
services to fulfill the customer’s request automatically.

The last two steps of the chain, the MTP Tλ
n−1 and the rules engine Tµ

n , guarantee a
deterministic, explainable and testable behavior of the system because they are logical
steps. Both of them function on the basis of prior knowledge stated either in predicate logic as
exemplified above in formulae (γ11, γ22, and γ23), or using Horn clauses (these are clauses
to express if . . . then conditions in the form ¬p1 ∨ ¬p2 . . .¬pk ∨ q, propositional logic) to
run a rules engine.

Even if some of the earlier steps in the compositional chain (Equation (8)) are per-
formed by stochastic AI functionals and operators, so long as the translations in Equation (9)
are correct (because they, too, contain the deterministic functionals and operators used
in the relevant parts of the chain), this will mean that the last two steps will act like a
filter that guarantees that the system can be certified using systematic testing based on the
specification of the system.

4.2. Other Approaches to Enhance Prior Knowledge in AI Appliactions

Prior distributions and causal stochastic relations (such as the relationship between
smoking and increased lung-cancer likelihood) can be built-into stochastic systems also
via approaches other than the ontologies described in the previous sections. For example,
Bayesian networks [45] can be used to model known relationships between entities in
combination with stochastic priors. There are many attempts to include priors in the
dNN domain as well. For example, Holzinger et al. [14] propose to use graph neural
networks to enable multi-modal information fusion in the medical domain using text,
images, and other source types in one model. Another approach uses a ‘subset of features
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highlighted by domain experts as justifications for predictions, to enforce the alignment
between local explanations and rationales.’ [46]. Diligenti et al. [47] propose to use first-
order logic clauses expressing prior knowledge as constraints integrated into the training
process. An important earlier machine learning paper showed that the addition of virtual
training examples to a training set is ‘equivalent to incorporating the prior knowledge
as a regularizer’ [48]. When used for quality control of production in manufacturing [49],
statistical learning can indeed lead to certifiable stochastic systems because models created
from assembly-line data can in some situations be seen as models of logic systems. Such
systems can be modeled with very high precision by dNN—because adequate and almost
exact mathematical models are possible when deterministic laws of nature dominate the
behavior of the system [50]. All these approaches are very important for the further
improvement of statistical learning and need to be expanded, but it is unlikely that end-to-
end neural network approaches, which remain stochastic models, after all, can compete with
stochastic-deterministic hybrids to meet the requirements of certification in complex system
modeling tasks and contexts. On the other hand, full stochastic models are much more
flexible than such hybrids; which model type to use therefore depends on requirements.

4.3. Legal and Ethical Aspects of Certified AI

Certified AI can be used to meet the legal and ethical requirements for the usage of AI.
For example, the Charter of Fundamental Rights (CFR) requires that patients give a ‘free
and informed consent’ to medical procedures performed on them and, as Stöger et al. [51]
point out, there should be a ‘shared decision-making’ by the patient and the physician.
The usage of certified AI would certainly greatly serve the goals formulated in the CFR
because the deterministic character of the last step of the algorithm allows the physician
to explain the way the AI works in the same way a surgical intervention or a model of
pharmacodynamics (which is in all cases less accurate than a deterministic computable
algorithm due to the interaction of the drug with the complex system of the human body)
can be elucidated to the patient.

Certified AI could also support ethical goals for the usage of AI in medicine. Recently,
‘Ten commandments’ have been proposed for the medical application of AI [52]. Many
of these can be well supported if the AI is certified in the way described in Section 4.1.
For example, goals 1 (transparency regarding the source of a decision) or goals 4 and 5
(explainability and repeatability) are enabled by CAI with regard to the final result of
the computation (but not every intermediate possibly stochastic step) if the last step of a
compositional chain is deterministic and adequate tests have been performed.

5. Conclusions

We have seen that implicit stochastic models do not allow explanations, but rather
only one or other sort of interpretation in the sense of hermeneutics. Such interpretations
are useless in the realm of technical systems. Who among us would be satisfied with a
pacemaker or insulin pump whose operations are merely interpreted? The very idea that
one might be willing to use technical production systems in mission-critical applications
using end-to-end stochastic AI is in any case absurd. No one wants a cruise missile flying
with a stochastic model as its sole guiding component. All mission-critical technologies
need to be certified, and to achieve this, deterministic components are needed at the critical
steps of the compositional chain. Many components can and should still be stochastic in
order to exploit the enormous potential of statistical learning. But only if the test-relevant
components are deterministic can we achieve explainability and obtain the sort of certified
AI that we can specify and systematically test using real-world test scenarios.

Prior knowledge expressed, as in the small example given above, using differential
equations, fully axiomatized ontologies in predicate logic or in modal logic are crucial
to enable certified AI and to avoid the attitude bias implicitly built into dNNs from their
training material.
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Currently, we can take AI systems into mass-production above all in the approximative
worlds of, for example, consumer advertisement placing as practiced by Google or Amazon.
To take them further and into domains requiring the sort of exact behaviors that we have
come to expect from the technical devices which surround us, will require AI systems that
can be certified to behave according to our specifications.
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