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Abstract

The aim of this paper is to argue that the (alleged) indeterminism of quantum me-
chanics, claimed by adherents of the Copenhagen interpretation since Born (1926),
can be proved from Chaitin’s follow-up to Gödel’s (first) incompleteness theorem. In
comparison, Bell’s (1964) theorem as well as the so-called free will theorem–originally
due to Heywood and Redhead (1983)–left two loopholes for deterministic hidden vari-
able theories, namely giving up either locality (more precisely: local contextuality, as
in Bohmian mechanics) or free choice (i.e. uncorrelated measurement settings, as in ’t
Hooft’s cellular automaton interpretation of quantum mechanics). The main point is
that Bell and others did not exploit the full empirical content of quantum mechanics,
which consists of long series of outcomes of repeated measurements (idealized as in-
finite binary sequences): their arguments only used the long-run relative frequencies
derived from such series, and hence merely asked hidden variable theories to repro-
duce single-case Born probabilities defined by certain entangled bipartite states. If
we idealize binary outcome strings of a fair quantum coin flip as infinite sequences,
quantum mechanics predicts that these typically (i.e. almost surely) have a property
called 1-randomness in logic, which is much stronger than uncomputability. This is
the key to my claim, which is admittedly based on a stronger (yet compelling) notion
of determinism than what is common in the literature on hidden variable theories.
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1 Introduction: Gödel and Bell

While prima facie totally unrelated, Gödel’s theorem (1931) in mathematical logic and
Bell’s theorem (1964) in physics share a number of fairly unusual features (for theorems):1

• Despite their very considerable technical and conceptual difficulty, both results are
extremely famous and have caught the popular imagination like few others in science.

• Though welcome in principle–in their teens, many people including the author were
intrigued by books with titles like Gödel, Escher Bach: An Eternal Golden Braid
and The Dancing Wu-Li Masters: An Overview of the New Physics, both of which
appeared in 1979–this imagination has fostered wild claims to the effect that Gödel
proved that the mind cannot be a computer or even that God exists, whilst Bell
allegedly showed that reality does not exist. Both theorems (apparently through
rather different means) supposedly also supported the validity of Zen Buddhism.2

• However, even among professional mathematicians (logicians excepted) few would
be able to correctly state the content of Gödel’s theorem when asked on the spot,
let alone provide a correct proof, and similarly for Bell’s theorem among physicists.

• Nonetheless, many professionals will be aware of the general feeling that Gödel in
some sense shattered the great mathematician Hilbert’s dream of what the foun-
dations of mathematics should look like, whilst there is similar consensus that Bell
dealt a lethal blow to Einstein’s physical world view–though ironically, Gödel worked
in the spirit and formalism of Hilbert’s proof theory, much as Bell largely agreed with
Einstein’s views about quantum mechanics and about physics in general.

• Both experts and amateurs seem to agree that Gödel’s theorem and Bell’s theorem
penetrate the very core of the respective disciplines of mathematics and physics.

In this light, anyone interested in both of these disciplines will want to know what these
results have to do with each other, especially since mathematics underwrites physics (or
at least is its language).3 At first sight this connection looks remote. Roughly speaking:4

1. Gödel proved that any consistent mathematical theory (formalized as an axiomatic-
deductive system in which proofs could in principle be carried out mechanically
by a computer) that contains enough arithmetic is incomplete (in that arithmetic
sentences ϕ exist for which neither ϕ nor its negation can be proved).

2. Bell showed that if a deterministic “hidden variable” theory underneath (and com-
patible with) quantum mechanics exists, then this theory cannot be local (in the
sense that the hidden state, if known, could be used for superluminal signaling).

1 In fact there are two incompleteness theorems in logic due to Gödel (see footnotes 2 and 5) and two
theorems on quantum mechanics due to Bell (Brown & Timpson, 2014; Wiseman, 2014), but for reasons to
follow in this essay I am mainly interested in the first ones, of both authors, except for a few side remarks.

2 See Franzén (2005) for an excellent first introduction to Gödel’s theorems, combined with a fair and
detailed critique of its abuses, including overstatements by both amateurs and experts (a similar guide to
the use and abuse of Bell’s theorems remains to be written), and Smith (2013) for a possible second go.

3Yanofsky (2013) nicely discusses both theorems in the context of the limits of science and reason.
4Both reformulations are a bit anachronistic and purpose-made. See Gödel (1931) and Bell (1964)!
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Both were triggered by a specific historical context. Gödel (1931) reflected on the recently
developed formalizations of mathematics, of which he specifically mentions the Principia
Mathematica of Russell and Whitehead and the axioms for set theory proposed earlier
by Zermelo, Fraenkel, and von Neumann. Though relegated to a footnote, the shadow
of Hilbert’s program, aimed to prove the consistency of mathematics (ultimately based on
Cantor’s set theory) using absolutely reliable, “finitist” means, clearly loomed large, too.5

Bell, on the other hand, tried to understand if the de Broglie–Bohm pilot wave theory,
which was meant to be a deterministic theory of particle motion reproducing all predictions
of quantum mechanics, necessarily had to be non-local: Bell’s answer, then, was “yes.”6

In turn, the circumstances in which Gödel and Bell operated had a long pedigree in
the quest for certainty in mathematics and for determinism in physics, respectively.7 The
former had even been challenged at least three times:8 first, by the transition from Euclid’s
mathematics to Newton’s; second, by the set-theoretic paradoxes discovered around 1900
by Russell and others (which ultimately resulted from attempts to make Newton’s calculus
rigorous by grounding it in analysis, and in turn founding analysis in the real numbers and
hence in set theory), and third, by Brouwer’s challenge to “classical” mathematics, which
he tried to replace by “intuitionistic” mathematics (both Hilbert and Gödel were influenced
by Brouwer, though contrecoeur : neither shared his overall philosophy of mathematics).

In physics (and more generally), what Hacking (1990, Chapter 2) calls the doctrine of
necessity, which thus far–barring a few exceptions–had pervaded European thought, began
to erode in the 19th century, culminating in the invention of quantum mechanics between
1900–1930 and notably in its probability interpretation as expressed by Born (1926):

Thus Schrödinger’s quantum mechanics gives a very definite answer to the question of

the outcome of a collision; however, this does not involve any causal relationship. One

obtains no answer to the question “what is the state after the collision,” but only to

the question “how probable is a specific outcome of the collision”. (. . . ) This raises the

entire problem of determinism. From the standpoint of our quantum mechanics, there

is no quantity that could causally establish the outcome of a collision in each individual

case; however, so far we are not aware of any experimental clue to the effect that there

are internal properties of atoms that enforce some particular outcome. Should we

hope to discover such properties that determine individual outcomes later (perhaps

phases of the internal atomic motions)? (. . . ) I myself tend to relinquish determinism

in the atomic world. (Born, 1926, p. 866, translation by the present author)

In a letter to Born dated December 4, 1926, Einstein’s famously replied that ‘God does
not play dice’ (‘Jedenfalls bin ich überzeugt, daß der nicht würfelt’). Within ten years
Einstein saw a link with locality,9 and Bell (1964) and later papers followed up on this.

5 Gödel’s second incompleteness theorem shows that one example of ϕ is the (coded) statement that the
consistency of the theory can be proved within the theory. This is often taken to refute Hilbert’s program,
but even among experts it seems controversial if it really does so. For Hilbert’s program and its role in
Gödel’s theorems see e.g. Zach (2001), Tait (2005), Sieg (2013), and Tapp (2013).

6 Greenstein (2019) is a popular book on the history and interpretation of Bell’s work. Scholarly analyses
include Redhead (1989), Butterfield (1992), Werner & Wolf (2001), and the papers cited in footnote 1.

7Some vocal researchers calim that Bell and Einstein were primarily interested in locality and realism,
determinism being a secondary (or no) issue, but the historical record is ambiguous; more generally, over
10,000 papers about Bell’s theorems show that Bell can be interpreted in almost equally many ways. But
this controversy is a moot point: whatever his own (or Einstein’s) intentions, Bell’s (1964) theorem puts
constraints on possible deterministic underpinnings of quantum mechanics, and that is how I take it.

8For an overall survey of this theme see Kline (1980).
9This phase in the history of quantum mechanics is described by Mehra & Rechenberg (2000).
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2 Randomness and its unprovability

This precise history has a major impact on my argument, since it shows that right from the
beginning the kind of randomness that Born (probably preceded by Pauli and followed
by Bohr, Heisenberg, Jordan, Dirac, von Neumann, and most of the other pioneers of
quantum mechanics except Einstein, de Broglie, and Schrödinger) argued for as being
produced by quantum mechanics, was antipodal to determinism.10 Thus randomness in
quantum mechanics was identified with indeterminism, and hence attempts (like the de
Broglie–Bohm pilot wave theory) to undermine the “Copenhagen” claim of randomness
looked for deterministic (and arguably realistic) theories underneath quantum mechanics.

Although “undecidability” may sound a bit like “indeterminism”, the analogy between
the quests for certainty in mathematics and for determinism in physics (and their alleged
undermining by Gödel’s and Bell’s theorems, respectively) may sound rather superficial.
To find common ground more effort is needed to bringing these theorems together.11

First, some of its “romantic” aspects have to be removed from Gödel’s theorem, no-
tably its reliance on self-reference, although admittedly this was the key to both Gödel’s
original example of an undecidable sentence ϕ (which in a cryptic way expresses its own
unprovability) and his proof, in which an axiomatic theory that includes arithmetic is
arithmetized through a numerical encoding scheme so as to be able to “talk about itself”.
Though later proofs of Gödel’s theorem also use numerical encodings of mathematical
expressions (such as symbols, sentences, proofs, and computer programs), this is done
in order to make recursion theory (initially a theory of functions f : N → N) available
to a wider context, rather than to exploit self-reference. Each computably enumerable
but uncomputable subset E ⊂ N leads to undecidable statements (very rarely in main-
stream mathematics),12 namely those for which the sentence n /∈ E is true but unprovable.
Chaitin’s (first) incompleteness theorem (Theorem B.1 in Appendix B), which will play
an important role in my reasoning, is an example of this. To understand this theorem and
its background we return to the history of 20th century mathematics and physics.

Hilbert influenced this history in many ways,13 of which the sixth problem on his
famous list of 23 mathematical problems from 1900 is particularly relevant here: this
problem concerns the ‘Mathematical Treatment of the Axioms of Physics, especially the
theory of probabilities and mechanics’ (Hilbert, 1902). This problem influenced our topic
in two initially independent ways, which now come together. First, the problem inspired
von Neumann (1932) to develop his mathematical axiomatization of quantum mechanics,
which still forms the basis of all mathematically rigorous work on this theory. In particular,
he initiated the literature on hidden variable theories (see §3). Second, it led both von
Mises and Kolmogorov to their ideas on the mathematical foundations of probability and
randomness, initially in opposite ways: whereas von Mises (1919) tried (unsuccessfully)
to first axiomatize random sequences of numbers and then extract probability from these
as asymptotic relative frequency, Kolmogorov (1933) successfully axiomatized probability
first and then (unsuccessfully) sought to extract some notion of randomness from this.

10See Landsman (2020) for the view that randomness is a family resemblance (in that it lacks a meaning
common to all its applications) with the special feature that its various uses are always defined antipodally.

11Also cf. Breuer (2001), Calude (2004), Svozil, Calude & Stay (2004), Barrow (2011), Szangolies (2018).
12A subset E ⊂ N is computably enumerable (c.e.) if it is the image of a computable function f : N→ N,

and computable if its characteristic function 1E is computable, which is true iff both E and N\E are c.e.
13This is true for physics almost as much as it is (more famously) for mathematics, since Hilbert played

a major role in the mathematization of the two great theories of twentieth century physics, i.e. general
relativity (Corry, 2004; Renn, 2007) and quantum mechanics (Rédei & Stöltzner, 2001; Landsman, 2021).
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The basic problem (already known to Laplace and perhaps even earlier probabilists)
was that, in a 50-50 Bernoulli process for simplicity, an apparently “random” string like

σ = 001101010111010010100011010111 (2.1)

is as probable as a “deterministic” string like

σ = 111111111111111111111111111111. (2.2)

In other words, their probabilities say little or nothing about the “randomness” of indi-
vidual outcomes. Imposing statistical properties helps but is not enough to guarantee
randomness. It is slightly easier to explain this in base 10, to which I therefore switch for
a moment. If we call a sequence x Borel normal if each possible string σ in x has relative
frequency 10−|σ|, where |σ| is the length of σ (so that each digit 0, . . . , 9 occurs 10% of the
time, each block 00 to 99 occurs 1% of the time, etc.), then Champernowne’s number

0123456789101112131415161718192021222324252629282930 . . .

can be shown to be Borel normal. The decimal expansion of π is conjectured to be Borel
normal, too (and has been empirically verified to be so in billions of decimals), but these
numbers are hardly random: they are computable, which is one version of “deterministic”.

Any sound definition of randomness (for binary strings or sequences) has to navigate
between Scylla and Charybdis: if the definition is too weak (such as Borel normality),
counterexamples will undermine it (such as Champernowne’s number), but if it is too
strong (such as being lawless, like Brouwer’s choice sequences), it will not hold almost
surely in a 50-50 Bernoulli process (Moschovakis, 2016). As an example of such sound
navigation, Solomonoff, Kolmogorov, Martin-Löf, Chaitin, Levin, Solovay, Schnorr, and
others developed the algorithmic theory of randomness (Li & Vitányi, 2008). The basic
idea is that a string or sequence is random iff its shortest description is the sequence itself,
but the notion of a description has to made precise to avoid Berry’s paradox :

The Berry number is the smallest positive integer that cannot be described in less

than eighteen words.

The paradox, then, is that on the one hand this number must exist, since only finitely many
integers can be described in less than eighteen words and hence the set of such numbers
must have a lower bound, while on the other hand Berry’s number cannot exists by its
own definition.14 In the case at hand, the notion of a description is sharpened by asking
it to be computable, so that, roughly speaking (see appendix B for technical details),
we call a (finite) binary string σ (Kolomogorov) random if the length of the shortest
computer program generating σ is at least as long as σ itself, and call an (infinite) binary
sequence x (Levin–Chaitin) random or 1-random if its (sufficiently long) finite truncations
are Kolomogorov random. At last, for finite strings σ Chaitin’s (first) incompleteness
theorem states that although countably many strings σ are random, this can be proved
only for finitely many of these, whereas for infinite sequences x his (second) incompleteness
theorem says that if such a sequence is random, only finitely many of its digits can be
computed (see Theorems B.1 and B.4 for precise statements). Thus randomness is elusive.

14This is one of innumerable paradoxes of natural language, which leads to an incompleteness theorem
once the notion of a description has been appropriately formalized in mathematics, much as Gödel’s first
incompleteness theorem turns the the liar’s paradox into a theorem.
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3 Rethinking Bell’s theorem

In order to locate Bell’s (1964) theorem in the literature on quantum mechanics and
(in)determinism, I recall that Hilbert’s sixth problem inspired both the work of von Mises
and Kolmogorov that eventually gave rise to the algorithmic theory of randomness, and
(Hilbert’s postdoc) von Neumann’s work on the mathematical foundations of quantum
mechanics, culminating in his book (von Neumann, 1932). One of his results was that
there can be no nonzero function λ : Hn(C)→ R (where Hn(C) is the space of hermitian
n× n matrices, seen as the observables of a quantum-mechanical n-level system) that is:

1. dispersion-free (i.e. λ(a2) = λ(a)2 for each a ∈ Hn(C));

2. linear (i.e. λ(sa+ tb) = sλ(a) + tλ(b) for all s, t ∈ R and a, b ∈ Hn(C)).

Unfortunately, von Neumann interpreted this correct, non-circular, and interesting result
as a proof that quantum mechanics is complete in the sense that there can be no hidden
variables in the sense of Born (1926), i.e. ‘properties that determine individual outcomes’.
The reason this does not follow is twofold.15 First, the proof relies on a tacit assump-
tion that later came to be called non-contextuality, namely that the value λ(a) of some
observable a only depends on a, whereas measurement ideology à la Bohr (1935) suggests
that it may depend on a measurement context, formalized as a further set of observables
commuting with a (unless a is maximal such a set is far from unique).16 Second, though
natural, the linearity assumption is very strong and excludes even eigenvalues of a.

This second point was remedied by the Kochen–Specker theorem,17 who weakened von
Neumann’s linearity assumption to linearity on commuting observables, which at least in-
corporates eigenvalues and is even found so appealing that the Kochen–Specker is generally
taken to exclude non-contextual hidden variable theories. See also Appendix C.

The final step in the series of attempts, initiated by von Neumann, to exclude hidden
variables by showing that subject to reasonable assumptions the corresponding value attri-
butions cannot exist even independently of any statistical considerations, is the so-called
free will theorem.18 In the wake of the renowned “epr” paper (Einstein, Podolsky and
Rosen, 1935) the setting has now become bipartite (i.e. Alice and Bob who are spacelike
separated each perform experiments on a correlated state) and the non-contextuality as-
sumption is weakened to local contextuality : the outcomes of Alice’s measurements are
independent of any choice of measurements Bob might perform, and vice versa.19 Thus
her value attributions λ(a|context) may well be contextual, as long as the observables
commuting with the one she measures (i.e. a), which form a context to a, are local to her.

A second line of research, which goes back at least to de Broglie (1928), was influ-
entially taken up by Bohm (1952), and most recently includes ’t Hooft (2016), assumes
the possibility of non-contextual value attributions and tries to make these compatible
with the Born rule of quantum mechanics. Bell (1964) was primarily concerned with such
theories, asking himself if a deterministic theory like Bohm’s was necessarily non-local.

15See also Bub (2011), Dieks (2016), and forthcoming work by Chris Mitsch for balanced accounts.
16The idea of contextuality was first formulated by Grete Hermann (Crull & Bacciagaluppi, 2016).
17See Kochen & Specker (1967). Ironically, his followers attribute this theorem to Bell (1966), although

the result is just a technical sharpening of von Neumann’s result they so vehemently ridicule. For a deep
philosophical analysis of the Kochen–Specker theorem, as well as of Bell’s theorems, see Redhead (1989).

18See appendix C. This theorem is originally due to Heywood & Redhead (1983), with follow-ups by Stairs
(1983), Brown & Svetlichny (1990), and Clifton (1993), but it was named and made famous by Conway &
Kochen (2009), whose main contribution was an emphasis on free will (Landsman, 2017, Chapter 6).

19Since Alice and Bob are spacelike separated their observables commute (Einstein locality).
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In Bell’s analysis, which takes place in the bipartite (epr) setting, the quantum-mechanical
probabilities are obtained by formally averaging over the set of hidden variables, i.e.,

Pψ(F = x,G = y | A = a,B = b) =

∫
Λ
dµψ(λ)Pλ(F = x,G = y | A = a,B = b). (3.1)

Here ψ is some (explicitly identified) quantum state of a correlated pair of (typically)
2-level quantum systems (which may be either optical, where the degree of freedom is
helicity, or massive, where the degree of freedom is spin), F is an observable measured by
Alice defined by her choice of setting a, likewise G for Bob defined by his setting b, with
possible outcomes x ∈ 2 = {0, 1}, likewise y ∈ 2 for Bob; the left-hand side is the Born
probability for the outcome (x, y) if the correlated system has been prepared in the state
ψ; the expression Pλ(· · · ) on the right-hand side is the probability of the outcome (x, y) if
the unknown hidden variable or state equals λ, and finally, µψ is some probability measure
on the space Λ of hidden states supposedly provided by the theory for each state ψ.

We now say that the hidden variable theory supplying the above quantities is:

• deterministic if the probabilities Pλ(F = x,G = y | A = a,B = b) equal 0 or 1;

• locally contextual if the expression

Pλ(F = x | A = a,B = b) =
∑
y=0,1

Pλ(F = x,G = y | A = a,B = b); (3.2)

is independent of b, whilst the corresponding expression

Pλ(G = y | A = a,B = b) =
∑
x=0,1

Pλ(F = x,G = y | A = a,B = b), (3.3)

is independent of a. That is, the probabilities of Alice’s outcomes are independent
of Bob’s settings, and vice versa. This locality property seems very reasonable and
in fact it follows from special relativity, for if Bob chooses his settings just before his
measurement, there is a frame of reference in which Alice measures before Bob has
chosen his settings, and vice versa. In turn, this is equivalent to the property that
even if she knew the value of λ, Alice could not signal to Bob, and vice versa.20

Bell proved that a hidden variable theory cannot satisfy (3.1) and be both deterministic
and locally contextual (which explained why Bohm’s theory had to be non-local). Making
his tacit assumption that experimental settings can be “freely” chosen explicit, we obtain:21

Theorem 3.1 The conjunction of the following properties is inconsistent:

1. determinism;

2. quantum mechanics, i.e. the Born rule for Pψ(F = x,G = y | A = a,B = b);

3. local contextuality;

4. free choice, i.e. (statistical) independence of the measurement settings a and b from
each other and from the hidden variable λ (given the probability measure µψ).

20In quantum mechanics the left-hand side of (3.1) satisfies this locality condition for any state ψ.
21See Landsman (2017), §6.5 for details, or Appendix C below for a summary.
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4 Are deterministic hidden variable theories deterministic?

Although the assumptions have a slightly different meaning, the free will theorem leads
to the same result as Bell’s theorem (see Appendix C), so that the (no) hidden variable
tradition initiated by von Neumann, which culminates in the former, coalesces with the
(positive) hidden variable tradition going back to de Broglie, shown its place by the latter.
Thusly there are the obvious four (minimal) ways out of the contradiction in Theorem 3.1:

• Copenhagen (i.e. mainstream) quantum mechanics rejects determinism;

• Valentini (2019) rejects the Born rule and hence qm (see the end of §5 below);

• Bohmians reject local contextuality;22

• ’t Hooft (2016) rejects free choice.

We focus on the last two options, so that determinism and quantum mechanics (i.e. the
Born rule) are kept. In both cases the Born rule is recovered by averaging the hidden
variable with respect to a probability measure µψ on the space of hidden variables, given
some (pure) quantum state ψ. The difference is that in Bohmian mechanics the total
state (which consists of the hidden configuration plus the “pilot wave” ψ) determines the
measurement outcomes given the settings, whereas in ’t Hooft’s theory the hidden variable
determines the outcomes as well as the settings.23 More specifically:

• In Bohmian mechanics the hidden variable is position q, and dµψ(q) = |ψ(q)|2dq is
the Born probability for outcome q with respect to the expansion |ψ〉 =

∫
dq ψ(q)|q〉.

• In ’t Hooft’s theory the hidden variable is a basis vector |m〉 in some separable
Hilbert space H (m ∈ N), and once again the measure µψ(m) = |cm|2 is given by
the Born probability for outcome m with respect to the expansion |ψ〉 =

∑
m cm|m〉.

Thus the hidden variables (i.e. q ∈ Q and m ∈ N, respectively) have familiar quantum-
mechanical interpretations and also their compatibility measures are precisely the Born
measures for the quantum state ψ. In this light, we may ask to what extent these hidden
variable theories are truly deterministic, as their adherents claim them to be. Since the
argument does not rely on entanglement and hence on a bipartite experiment, we may as
well work with a quantum coin toss. The settings of the experiments are then fixed, so that
we may treat Bohmian mechanics and ’t Hooft’s theory on the same footing. Idealizing
to an infinite run, one has an outcome sequence x : N → 2. Standard (Copenhagen)
quantum mechanics refuses to say anything about its origin, but nonetheless it does make
very specific predictions about x. The basis of these predictions is the following theorem,
whose notation and proof are explained in Appendix A. One may think of a fair quantum
coin, in which σ(a) = 2 = {0, 1} and µa(0) = µa(1) = 1/2, and which probabilistically is
indistinguishable from a fair classical coin (which in my view cannot exist, cf. §5).

22There is a subtle difference between Bohmian mechanics as reviewed by e.g. Goldstein (2017), and de
Broglie’s original pilot wave theory (Valentini, 2019). This difference is immaterial for my discussion.

23In Bohmian mechanics, the hidden state q ∈ Q just pertains to the particles undergoing measurement,
whilst the settings a are supposed to be “freely chosen” for each measurement (and in particular are
independent of q). The outcome is then fixed by a and q. In ’t Hooft’s theory, the hidden state x ∈ X
of “the world” determines the settings as well as the outcomes. Beyond the issue raised in the main text,
Bohmians (but not ’t Hooft!) therefore have an additional problem, namely the origin of the settings
(which are simply left out of the theory). This weakens their case for determinism even further.
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Theorem 4.1 The following procedures for repeated identical independent measurements
are equivalent (in giving the same possible outcome sequences with the same probabilities):

1. Quantum mechanics is applied to the whole run, described as a single quantum-
mechanical experiment with a single classically recorded outcome sequence;

2. Quantum mechanics is applied to single experiments (with classically recorded out-
comes), upon which classical probability theory takes over to combine these.

Either way, the (purely theoretical) Born probability µa for single outcomes induces the
infinite Bernoulli process probability µ∞a on the space σ(a)N of infinite outcome sequences.

Theorem B.3 in Appendix B then implies:

Corollary 4.2 With respect to the “fair” probability measure P∞ on 2N almost every
outcome sequence x of an infinitely often repeated fair quantum coin flip is 1-random.

In hidden variable theories, on the other hand, x factors through Λ, that is, there are
functions h : N → Λ and g : Λ → 2 such that x = g ◦ h. Hidden variable theories
do provide g, i.e. describe the outcome of any experiment given the value of the hidden
variable λ ∈ Λ. However, what about h, that is, the specification of the value of the hidden
variable λ in each run of the experiment? There are just the following two scenarios:

1. The function h is provided by the hidden variable theory. In that case, since the
theory is supposed to be deterministic, h explicitly gives the values λn = h(n) for
each n ∈ N (i.e. experiment no. n in the run). Since g is also given, this means
that x is given by the theory. By Theorem B.4 (i.e. Chaitin’s second incompleteness
theorem), the outcome sequence cannot be 1-random, against Corollary 4.2.

2. The function h is not provided by the hidden variable theory. In that case, the theory
fails to determine the outcome of any specific experiment and just provides averages
of outcomes. My conclusion would be that, except for some kind of a “story”, nothing
has been gained over quantum mechanics, but hidden variable theorists argue that
their theories cannot be expected to provide initial conditions (for experiments), and
claim that the randomness in measurement outcomes originates in the randomness
of the initial conditions of the experiment.24 But then the question arises what else
provides these conditions, and hence our function h. The point here is that in order to
recover the predictions of quantum mechanics as meant in Corollary 4.2, the function
h must sample the Born measure (in its guise of the compatibility measure µψ on Λ),
in the sense of “randomly” picking elements from Λ, distributed according to µψ, cf.
(A.2). This, in turn, should guarantee that the sequences x = g ◦ h mimic fair coin
flips. Since g is supposed to be given, this implies that the randomness properties of
x must entirely originate in h. This origin cannot be deterministic, since in that case
we are back to the contradictory scenario 1 above. Hence h must come from some
unknown external random process in nature that our hidden variable theories invoke
as a kind of an oracle. In my view the need for such a random oracle undermines
their purpose and makes them self-defeating. Every way you look at this you lose!

24The Bohmians are divided on the origin of their compatibility measure, referred to in this context as
the quantum equilibrium distribution, cf. Dürr, Goldstein, & Zanghi (1992) against Valentini (2019). The
origin of µψ is not my concern, which is the need to randomly sample it and the justification for doing so.
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5 Conclusion and discussion

We may summarize the discussion in the previous section as follows:25

Theorem 5.1 For any hidden variable theory T the following properties are incompatible:

1. Determinism: T states the outcome of the measurement of any observable a given
the value λ ∈ Λ of the hidden variable via a function g : Λ → σ(a) and provides
these values for each experiment; for an infinite run this is done via some function
h : N→ Λ, so that T provides the outcome sequence x : N→ σ(a) through x = g ◦ h.

2. Born rule: Outcome sequences are almost surely 1-random. (cf. Corollary 4.2).

The proof is short. According to the first clause T states the entire outcome sequence x.
By Chaitin’s incompleteness theorem B.4 this is incompatible with the second clause. �

In order to understand Theorem 5.1 and its proof it may be helpful to note that in classical
coin tossing the role of the hidden state is also played by the initial conditions (cf. Diaconis
& Skyrms, 2018 Chapter 1, Appendix 2). The 50-50 chances (allegedly) making the coin
fair are obtained by averaging over the initial conditions, i.e., by sampling. By the same
arguments, this sampling cannot be deterministic, i.e. given by a function like h, for
otherwise the outcome sequences appropriate to a fair coin would not obtain: it must
be done in a genuinely random way and hence by appeal to an external random process.
This is impossible classically, so that–unless they have a quantum-mechanical seed–fair
classical coins do not exist, as confirmed by Diaconis & Skyrms (2018, Chapter 1).

I conclude that deterministic hidden variable theories compatible with quantum me-
chanics do not exist. The reason that Bell’s (1964) theorem and the free will theorem
leave two loopholes for determinism (i.e. local contextuality and no free choice) is that
their compatibility condition with quantum mechanics is stated too weakly: the theory
is only required to reproduce certain single-case (Born) probabilities, as opposed to the
properties of typical outcome sequences (from which the said probabilities are extracted
as long-run frequencies). This reason this approach is still partly successful lies in the
clever use of entangled states. If one rejects the second requirement on determinism in
Theorem 5.1, Bell’s theorem and the free will theorem still provide useful constraints on
deterministic hidden variable theories, but as shown in the previous section such a rejection
necessitates an appeal to an unknown random process and hence seems self-defeating.

Let us now consider the role of the idealization to infinite outcome sequences and see
what happens if the experimental runs are finite.26 Once again, via Theorem 4.1 the Born
rule predicts that outcome strings will be Kolmogorov random with high probability. Any
deterministic theory (in the sense of Theorem 5.1) provides an explicit description (say in
ZFC) of the outcomes, whose randomness would be provable from this description. But
this is precluded by Chaitin’s first incompleteness theorem (i.e. Theorem B.4), now in the
role played by his second incompleteness theorem in the infinite case.27 �

25In stating the second condition I have taken σ(a) = {0, 1} with 50-50 Born probabilities, but this can
be generalized to other spectra and probability measures. See Downey & Hirschfeldt (2010), §6.12.

26In other words, we examine whether Earman’s principle is satisfied, cf. footnote 37.
27To make this argument completely rigorous one would need to define what a “description” provided

by a deterministic theory means logically. There is a logical characterization of deterministic theories
(Montague, 1974), and there are some arguments to the effect that the evolution laws in deterministic
theories should be computable, cf. Earman (1986), Chapter 11, and Pour-El & Richards (2016), passim,
but this literature makes no direct reference to output strings or sequences of the kind we analyze and in
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Nonetheless, although their incompatibility with quantum mechanics has now been
established, it will be hard to disprove deterministic hidden variable theories from exper-
imental data. Let us look at the proof of Bell’s theorem for inspiration as to what such a
(dis)proof should look like. In the context of the epr–Bohm experiment local deterministic
hidden variable theories predict correlations that satisfy the Bell inequalities,28 whereas
on suitable settings quantum mechanics predicts (and experiment shows) that typical out-
come sequences violate these inequalities. Now a disproof of some deterministic hidden
variable theory T cannot perhaps be expected to show that all quantum-mechanical out-
come sequences violate the predictions of the hidden variable theory (indeed they do not,
albeit with low probability), but it should identify at least a sufficiently large number
of typical (i.e. random) sequences. However, even in the finite case this identification is
impossible by Theorem B.1, so that the false predictions of T cannot really be confronted
with the correct predictions of quantum mechanics. Thus the unprovability of their false-
hood condemns deterministic hidden variable theories, and perhaps even determinism as
a whole, to a zombie-like existence in a twilight zone comparable with the Dutch situation
around selling soft drugs: although this is forbidden by law, it is (officially) not prosecuted.

The situation would change drastically if deterministic hidden variable theories gave
up their compatibility with the Born rule (on which my entire reasoning is based), as for
example Valentini (2019) has argued in case of the de Broglie–Bohm pilot wave theory. For
it is this compatibility requirement that kills such theories, which could leave zombie-dom
if only they were brave enough to challenge the Born rule. This might open the door to
superluminal signaling and worse, but on the other hand the possibility of violating the
Born rule would also provide a new context for deriving it, e.g. as a dynamical equilibrium
condition (as may be the case for the Broglie–Bohm theory, if Valentini is right).

I would personally expect that the Born rule is emergent from some lower-level theory,
which equally well suggests that it is valid in some limit only, rather than absolutely.

The author is grateful to Jacob Barandes, Jeremy Butterfield, Cristian Calude, Erik Curiel, John Earman,

Bas Terwijn, and Noson Yanofsky, as well as to members of seminar audiences and especially readers of

the first version of this essay on the FQXi website for very helpful comments and corrections. He is even

more grateful to the late Michael Redhead, for his exemplary approach to the foundations of physics.

any case the identification of “deterministic” with “computable” is obscure even in situations where the
latter concept is well defined. For example, if we stipulate that h : N → Λ is computable (and likewise
g : Λ → 2) then the above appeal to Chaitin’s first incompleteness theorem is not even necessary, but
this seems too easy. A somewhat circular solution, proposed by Scriven (1957), is to simply say that T
is deterministic iff the output strings or sequences it describes are not random, but this begs for a more
explicit characterization. One might naively expect such a characterization to come from the arithmetical
hierarchy (found in any book on computability): if, as before, we identify 2N with the power set P (N) of N,
then S ⊂ N is called arithmetical if there is a formula ψ(x) in PA (Peano Arithmetic) such that n ∈ S iff
N � ψ(n), that is, ψ(n) is true in the usual sense. We may then classify the arithmetical subsets through
the logical form of ψ, assumed in prenex normal form (i.e., all quantifiers have been moved to the left): S is
in Σ0

0 = Π0
0 iff ψ has no quantifiers or only bounded quantifiers (in which case S is computable), and then

recursively S ∈ Σ0
n+1 iff ψ(x) = ∃yϕ(x, y) with ϕ ∈ Π0

n, and ϕ ∈ Π0
n+1 iff ψ(x) = ∀yϕ(x, y) with ϕ ∈ Σ0

n.
Here any singly quantified expression ∃yϕ(x, y) may be replaced by ∃y1 · · · ∃ykϕ(x, y1, . . . , yk) and likewise
for ∀y. By convention Σ0

n ⊂ Σ0
n+1 and Π0

n ⊂ Π0
n+1, and ∆0

n := Σ0
n ∩ Π0

n. Since in classical logic ∀yϕ(x, y)
is equivalent to ¬∃y¬ϕ(x, y), it follows that Π0

n sets are the complements of Σ0
n sets. One would then like

to locate deterministic theories somewhere in this hierarchy, preferably above the computable ∆0
0. The

idea of a hidden variable (namely y) suggests Σ0
1 and closure under complementation (it would be crazy if

some deterministic theory prefers ones over zeros) then leads to ∆0
1, but this equals ∆0

0. The next level ∆0
2

is impossible since this already contains 1-random sets like Chaitin’s Ω. Hence more research is needed.
28For Bell’s proof it is irrelevant whether or not some hidden variable is able to sample the compatibility

measure, since the Bell inequalities follow from pointwise bounds, cf. Landsman (2017), eq. (6.119).
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A The Born rule

The Born measure is a probability measure µa on the spectrum σ(a) of a (bounded) self-
adjoint operator a on some Hilbert space H, defined as follows by any state ω on B(H):29

Theorem A.1 Let H be a Hilbert space, let a∗ = a ∈ B(H), and let ω be a state on
B(H). There exists a unique probability measure µa on the spectrum σ(a) of a such that

ω(f(a)) =

∫
σ(a)

dµa(λ) f(λ), for all f ∈ C(σ(a)). (A.1)

The Born measure is a mathematical construction; what is its relationship to experiment?
This relationship must be the source of the (alleged) randomness of quantum mechanics,
for the Schrödinger equation is deterministic. We start by postulating, as usual, that
µa(∆) is the (single case) “probability” that measurement of the observable a in the state
ω (which jointly give rise to the pertinent Born measure µa) gives a result λ ∈ ∆ ⊂ σ(a).
Here I identify single-case “probabilities” with numbers (consistent with the probability
calculus) provided by theory, upon which long-run frequencies provide empirical evidence
for the theory in question, but do not define probabilities. The Born measure is a case
in point: these probabilities are theoretically given, but have to be empirically verified by
long runs of independent experiments. In other words, by the results reviewed below such
experiments provide numbers whose role it is to test the Born rule as a hypothesis. This
is justified by the following sampling theorem (strong law of large numbers): for any
(measurable) subset ∆ ⊂ σ(a) and any sequence (xn) ∈ σ(a)N we have µ∞a -almost surely:

lim
N→∞

1

N
(1∆(x1) + · · ·+ 1∆(xN )) = µa(∆). (A.2)

Proof of Theorem 4.1. Let a = a∗ ∈ B(H), where H is a Hilbert space and B(H) is the
algebra of all bounded operators on H, and let σ(a) be the spectrum of a. For simplicity
(and since this is enough for our applications, where H = C2) I assume dim(H) < ∞, so
that σ(a) simply consists of the eigenvalues λi of a (which may be degenerate). Let us
first consider a finite number N of identical measurements of a (a “run”). The first option
in the theorem corresponds to a simultaneous measurement of the commuting operators

a1 = a⊗ 1H ⊗ · · · ⊗ 1H ; (A.3)

· · ·
aN = 1H ⊗ · · · ⊗ 1H ⊗ a, (A.4)

all defined on the N -fold tensor product HN ≡ H⊗N of H with itself.30 To put this
in a broader perspective, consider any set (a1, . . . , aN ) ≡ a of commuting operators on
any Hilbert space K (of which (A.3) - (A.4) is obviously a special case with K = HN ).
These operators have a joint spectrum σ(a), whose elements are the joint eigenvalues
λ = (λ1, . . . , λN ), defined by the property that there exists a nonzero joint eigenvector
ψ ∈ K such that aiψ = λiψ for all i = 1, . . . , N ; clearly,

σ(a) = {λ ∈ σ(a1)× · · · × σ(an) | eλ ≡ e
(1)
λ1
· · · e(n)

λn
6= 0} ⊆ σ(a1)× · · · × σ(aN ), (A.5)

29Here a state ω is a positive normalized linear functional on B(H), as in the C*-algebraic approach to
quantum mechanics (Haag, 1992; Landsman, 2017). One may think of expectation values ω(a) = Tr (ρa),
where ρ is a density operator on H, with the special case ω(a) = 〈ψ, aψ〉, where ψ ∈ H is a unit vector.

30This can even be replaced by a single measurement, see Landsman (2017), Corollary A.20.

12



where e
(i)
λi

is the spectral projection of ai on the eigenspace for the eigenvalue λi ∈ σ(ai).
Von Neumann’s Born rule for the probability of finding λ ∈ σ(a) then simply reads

pa(λ) = ω(eλ), (A.6)

where ω is the state on B(K) with respect to which the Born probability is defined.31 If
dim(K) < ∞, as I assume, we always have ω(a) = Tr (ρa) for some density operator ρ,
and for a general Hilbert space K this is the case iff the state ω is normal on B(K). For
(normal) pure states we have ρ = |ψ〉〈ψ| for some unit vector ψ ∈ K, in which case

pa(λ) = 〈ψ, eλψ〉. (A.7)

The Born rule (A.6) is similar to the single-operator case (Landsman, 2017, §4.1):32 the
continuous functional calculus gives a Gelfand isomorphism of commutative C*-algebras

C∗(a, 1K) ∼= C(σ(a)), (A.8)

under which the restriction of the state ω, originally defined on B(K), to its commutative
C*-subalgebra C∗(a) defines a probability measure µa on the joint spectrum σ(a) via the
Riesz isomorphism. This is the Born measure, whose probabilities are given by (A.6). For
the case (A.3) - (A.4) we have equality in (A.5); since in that case σ(ai) = σ(a), we obtain

σ(a) = σ(a)N , (A.9)

and therefore, for all λi ∈ σ(a) and states ω on B(HN ), the Born rule (A.6) becomes

pa(λ1, . . . , λN ) = ω(eλ1 ⊗ · · · ⊗ eλN ). (A.10)

Now take a state ω1 on B(H). Reflecting the idea that ω is the state on B(HN ) in which
N independent measurements of a ∈ B(H) in the state ω1 are carried out, choose

ω = ωN1 , (A.11)

the state on B(HN ) defined by linear extension of its action on elementary tensors:

ωN1 (b1 ⊗ · · · ⊗ bn) = ω1(b1) · · ·ωN (bN ). (A.12)

It follows that

ωN (eλ1 ⊗ · · · ⊗ eλN ) = ω1(eλ1) · · ·ω1(eλN ) = pa(λ1) · · · pa(λN ), (A.13)

so that the joint probability of the outcome (λ1, . . . , λN ) ∈ σ(a) is simply

p~a(λ1, . . . , λN ) = pa(λ1) · · · pa(λN ). (A.14)

Since these are precisely the probabilities for option 2 (i.e. the Bernoulli process), i.e.,

µa = µNa , (A.15)

this proves the claim for N <∞. To describe the limit N →∞, let B be any C*-algebra
with unit 1B; below I take B = B(H), B = C∗(a, 1H), or B = C(σ(a)). We now take

AN = B⊗N , (A.16)

31The uses of states themselves may be justified by Gleason’s theorem (Landsman, 2017, §§2,7, 4.4).
32The Born rule for commuting operators follows from the single operator case (Landsman, 2017, §2.5).
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the N -fold tensor product of B with itself.33 The special cases above may be rewritten as

B(H)⊗N ∼= B(HN ); (A.17)

C∗(a, 1H)⊗N ∼= C∗(a1, . . . , aN , 1HN ); (A.18)

C(σ(a))⊗N ∼= C(σ(a)× · · · × σ(a)), (A.19)

with N copies of H and σ(a), respectively, and in (A.18) the ai are given by (A.3) -
(A.4). We may then wonder if these algebras have a limit as N → ∞. They do, but it
is not unique and depends on the choice of observables, that is, of the infinite sequences
a = (a1, a2, . . .), with aN ∈ AN , that are supposed to have a limit. One possibility is to
take sequences a for which there exists M ∈ N and aM ∈ AM such that for each N ≥M ,

aN = aM ⊗ 1B · · · ⊗ 1B, (A.20)

with N−M copies of 1B. On that choice, one obtains the infinite tensor product B⊗∞, see
Landsman (2017), §C.14. The limit of (A.17) in this sense is B(H⊗∞), where H⊗∞ is von
Neumann’s ‘complete’ infinite tensor product of Hilbert spaces,34 in which C∗(a, 1H)⊗∞

is the C*-algebra generated by (a1, a2, . . .) and the unit on H⊗∞. The limit of (A.19) is

C(σ(a))⊗∞ ∼= C(σ(a)N), (A.21)

where σ(a)N, which we previously saw as a measure space (as a special case of XN for
general compact Hausdorff spaces X), is now seen as a topological space with the product
topology, in which it is compact.35 As in the finite case, we have an isomorphism

C∗(a, 1H)⊗∞ ∼= C(σ(a))⊗∞, (A.22)

and hence, on the given identifications, we obtain an isomorphism of C*-algebras

C∗(a1, a2, . . . , 1H⊗∞) ∼= C(σ(a)N). (A.23)

It follows from the definition of the infinite tensor products used here that each state ω1 on
B defines a state ω∞1 on B⊗∞. Take B = B(H) and restrict ω∞1 , which a priori is a state
on B(H⊗∞), to its commutative C*-subalgebra C∗(a1, a2, . . . , 1H⊗∞). The isomorphism
(A.23) then gives a probability measure µa on the compact space σ(a)N, where the label
a now refers to the infinite set of commuting operators (a1, a2, . . .) on H⊗∞. To compute
this measure, I use (A.1) and the fact that by construction functions of the type

f(λ1, λ2, . . .) = f (N)(λ1, . . . , λN ), (A.24)

where N <∞ and f (N) ∈ C(σ(a)N ), are dense in C(σ(a)N) (with respect to the appropri-
ate supremum-norm), and that in turn finite linear combinations of factorized functions
f (N)(λ1, . . . , λN ) = f1(λ1) · · · fN (λN ) are dense in C(σ(a)N ). It follows from this that

µa = µ∞a . (A.25)

Since this generalizes (A.15) to N =∞, the proof of Theorem 4.1 is finished. �

33If B is infinite-dimensional, for technical reasons the so-called projective tensor product should be used.
34See Landsman (2017), §8.4 for this approach. The details are unnecessary here.
35Cf. Tychonoff’s theorem. The associated Borel structure is the one defined by the cylinder sets.
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B 1-Randomness

In what follows, the notion of 1-randomness, originally defined by Martin-Löf in the setting
of constructive measure theory, will be explained through an equivalent definition in terms
of Kolmogorov complexity.36 We assume basic familiarity with the notion of a computable
function f : N→ N, which may be defined through recursion theory or Turing machines.

A string is a finite succession of bits (i.e. zeros and ones). The length of a string σ is
denoted by |σ|. The set of all strings of length N is denoted by 2N , where 2 = {0, 1}, and

2∗ =
⋃
N∈N

2N (B.1)

denotes the set of all strings. The Kolmogorov complexity K(σ) of σ ∈ 2∗ is defined,
roughly speaking, as the length of the shortest computer program that prints σ and then
halts. We then say, again roughly, that σ is Kolmogorov random if this shortest program
contains all of σ in its code, i.e. if the shortest computable description of σ is σ itself.

To make this precise,37 fix some universal prefix-free Turing machine U , seen as per-
forming a computation on input τ (in its prefix-free domain) with output U(τ), and define

K(σ) = min
τ∈2∗
{|τ | : U(τ) = σ}. (B.2)

The function K : 2∗ → N is uncomputable, but that doesn’t mean it is ill-defined. The
choice of U affects K(σ) up to a σ-independent constant, and to take this dependency into
account we state certain results in terms of the “big-O” notation familiar from Analysis.38

For example, if σ is easily computable, like the first |σ| binary digits of π, then

K(σ) = O(log |σ|), (B.3)

with the logarithm in base 2 (as only the length of σ counts). However, a random σ has

K(σ) = |σ|+O(log |σ|). (B.4)

We say that σ is c-Kolmogorov random, for some σ-independent constant c ∈ N, if

K(σ) ≥ |σ| − c. (B.5)

36For details see Volchan (2002), Terwijn (2016), Diaconis & Skyrms (2018, Chapter 8), and Eagle (2019)
for starters, technical surveys by Zvonkin & Levin (1970), Muchnik et al. (1998), Downey et al. (2006),
Grünwald & Vitányi (2008), and Dasgupta (2011), and books by Calude (2002), Li & Vitányi (2008), Nies
(2010), and Downey & Hirschfeldt (2010). For history see van Lambalgen (1987, 1996) and Li & Vitányi
(2008). For physical applications see e.g. Earman (1986), Svozil (1993, 2018), Calude (2004), Wolf (2015),
Bendersky et al. (2016, 2017), Senno (2017), Baumeler et al. (2017), and Tadaki (2018, 2019).

37A Turing machine T is prefix-free if its domain D(T ) consists of a prefix-free subset of 2∗, i.e., if
σ ∈ D(T ) then στ /∈ D(T ) for any σ, τ ∈ 2∗, where στ is the concatenation of σ and τ : if T halts on input
σ then it does not halt on either any initial part or any extension of σ. The prefix-free version is only
needed to correctly define randomness of sequences in terms of randomness of their initial parts, which
is necessary to satisfy Earman’s Principle: ‘While idealizations are useful and, perhaps, even essential to
progress in physics, a sound principle of interpretation would seem to be that no effect can be counted as
a genuine physical effect if it disappears when the idealizations are removed.’ See Earman (2004), p. 191.
For finite strings σ one may work with the plain Kolmogorov complexity C(σ), defined as the length (in
bits) of the shortest computer program (run on some fixed universal Turing machine U) that computes σ.

38Recall that f(n) = O(g(n)) iff there are constants C and N such that |f(n)| ≤ C|g(n)| for all n ≥ N .
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Simple counting arguments show that as |σ| = N gets large, the overwhelming majority
of strings in 2N (and hence in 2∗) is c-random.39 The following theorem, which might be
called Chaitin’s first incompleteness theorem, therefore shows that randomness is elusive:40

Theorem B.1 For any sound mathematical theory T containing enough arithmetic there
is a constant C ∈ N such that T cannot prove any sentence of the form K(σ) > C (although
infinitely many such sentences are true), and as such T can only prove (Kolmogorov)
randomness of finitely many strings (although infinitely many strings are in fact random).

The proof is quite complicated in its details but it is based on the existence of a com-
putably enumerable (c.e.) list T = (τ1, τ2, . . .) of the theorems of T , and on the fact
that after Gödelian encoding by numbers, theorems of any given grammatical form can
be computably searched for in this list and will eventually be found. In particular, there
exists a program P (running on the universal prefix-free Turing machine U used to define
K(·)) such that P (n) halts iff there exists a string σ for which K(σ) > n is a theorem of
T . If there is such a theorem the output is P (n) = σ, where σ appears in the first such
theorem of the kind (according to the list T). By definition of K(·), this means that

K(σ) ≤ |P |+ |n|. (B.6)

Now suppose that no C as in the above statement of the theorem exists. Then there is
n ∈ N large enough that n > |P | + |n| and there is a string σ ∈ 2∗ such that T proves
K(σ) > n. Since T is sound this is actually true,41 which gives a contradiction between

K(σ) > n > |P |+ |n|; K(σ) ≤ |P |+ |n|. (B.7)

Note that this proof shows that a proof in T of K(σ) > n (if true) would also identify σ.

As an idealization of a long (binary) string, a (binary) sequence x = x1x2 · · · is an
infinite succession of bits, i.e. x ∈ 2N, with finite truncations x|N = x1 · · ·xN ∈ 2N for each
N ∈ N. We then call x Levin–Chaitin random if each truncation of x is c-Kolmogorov
random for some c, that is, if there exists c ∈ N such that K(x|N ) ≥ N−c for each N ∈ N.
Equivalently,42 a sequence x is Levin–Chaitin random if eventually K(x|N ) >> N , in that

lim
N→∞

(K(x|N )−N) =∞. (B.8)

Apart from having the same intuitive pull as Kolmogorov randomness (of strings), this
definition gains from the fact that it is equivalent to two other appealing notions of ran-
domness, namely patternlessness and unpredictability, both also defined computationally.

39It is easy to show that least 2N − 2N−c+1 + 1 strings σ of length |σ| = N are c-Kolmogorov random.
40Here “sound” means that all theorems proved by T are true; this is a stronger assumption than consis-

tency (in fact only the arithmetic fragment of T needs to be sound). One may think of Peano Arithmetic
(PA) or of Zermelo–Fraenkel set theory with the axiom of choice (ZFC). As in Gödel’s theorems, one
also assumes that T is formalized as an axiomatic-deductive system in which proofs could in principle be
carried out mechanically by a computer. The status of the true but unprovable sentences K(σ) > C in
Chaitin’s theorem is similar to that of the sentence G in Gödel’s original proof of his first incompleteness
theorem, which roughly speaking is an arithmetization of the statement “I cannot be proved in T”: as-
suming soundness and hence consistency of T , one can prove G and K(σ) > C in the usual interpretation
of the arithmetic fragment of T in the natural numbers N. See Chaitin (1987) for his own presentation
and analysis of his incompleteness theorem. Raatikainen (1998) also gives a detailed presentation of the
theorem, including a critique of Chaitin’s ideology. Incidentally, he shows that there even exists a U with
respect to which K(·) is defined such that C = 0 in ZFC. See also Franzén (2005) and Gács (1989).

41The following contradiction can be made more dramatic by taking n such that n >> |P |+ |n|.
42See Calude (2002), Theorem 6.38 (attributed to Chaitin) for this equivalence.
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In view of these equivalences we simply call a Levin–Chaitin random sequence 1-random.43

A sequence x ∈ kN is Borel normal in base k if each string σ has frequency k−|σ|

in x. Any hope of defining randomness as Borel normality in base 10 is blocked by
Champernowne’s number 0123456789101112131 · · · , which is Borel normal but clearly not
random in any reasonable sense (this is also true in base 2). The decimal expansion of π
is also conjectured to be Borel normal in base 10 (with huge numerical support), although
π clearly is not random either. However, Borel normality seems a desirable property of
truly random numbers on any good definition, and so we are fortunate to have:

Proposition B.2 A 1-random sequence is Borel normal (in base 2, but in fact in any
base) and hence (“monkey typewriter theorem”) contains any finite string infinitely often.44

Another desirable property comes from the following theorem due to Martin-Löf, in which
P is the 50-50 probability on {0, 1} and P∞ is the induced probability measure on 2N:

Theorem B.3 With respect to P∞ almost every outcome sequence x ∈ 2N is 1-random.

This implies that the 1-random sequences form an uncountable subset of 2N,45 although
topologically this subset is meagre (i.e. Baire first category).46 Chaitin’s incompleteness
theorem for (finite) strings has the following counterpart for (infinite) sequences:

Theorem B.4 If x ∈ 2N is 1-random, then ZFC (or any sufficiently comprehensive math-
ematical theory T meant in Theorem B.1) can compute only finite many digits of x.47

This clearly excludes defining a 1-random number by somehow listing its digits, but some
can be described by a formula. One example is Chaitin’s Ω, or more precisely ΩU ,48 which
is the halting probability of some fixed universal prefix-free Turing machine U , given by

ΩU :=
∑

τ∈2∗|U(τ)↓

2−|τ |. (B.9)

43Any pattern in a sequence x would make it compressible, but one has to define the notion of a pattern
very carefully in a computational setting. This was accomplished by Martin-Löf in 1966, who defined
a pattern as a specific kind of probability-zero subset T of 2N (called a “test”) that can be computably
approximated by subsets Tn ⊂ 2N of increasingly small probability 2−n; if x ∈ T , then x displays some
pattern and it is patternless iff x /∈ T for all such tests. Martin-Löf’s definition yields what usually called
1-randomness, in view of his use of so-called Σ0

1 sets. See the textbooks Li & Vitányi (2008), Calude (2002),
Nies (2009), and Downey & Hirschfeldt (2010) for the equivalences between Levin–Chaitin randomness
(incompressibility), Martin-Löf randomness (patternlessless), and a third notion (unpredictability) that
evolved from the work of von Mieses and Ville, finalized by Schnorr. The name Levin–Chaitin randomness,
taken from Downey et al. (2006), is justified by its independent origin in Levin (1973) and Chaitin (1975).

44For details and proofs see Calude (2002), Corollary 6.32 in §6.3 and almost all of §6.4.
45To see this, use the measure-theoretic isomorphism between (2N,ΣK , P

∞) and ([0, 1],ΣL, dx), where
ΣK is the “Kolmogorov” σ-algebra generated by the cylinder sets [σ] = {x ∈ 2N | x||σ| = σ}, where σ ∈ 2∗,
and ΣK is the “Lebesgue” σ-algebra generated by the open subsets of [0, 1]. See also Nies (2009), §1.8.

46See Calude (2002), Theorem 6.63. Hence meagre subsets of [0, 1] exist with unit Lebesgue measure!
47More precisely, only finitely many true statements of the form: ‘the n’th bit xn of x equals its actual

value’ (i.e. 0 or 1) are provable in T (where a proof in T may be seen as a computation, since one may
algorithmically search for this proof in a list). See Calude (2002), Theorem 8.7, which is stated for Chaitin’s
Ω but whose proof holds for any 1-random sequence. Indeed, as pointed out to the author by Bas Terwijn,
even more generally, ZFC (etc.) can only compute finitely many digits of any immune sequence (we say
that a sequence x ∈ 2N is immune if the corresponding subset S ⊂ N (i.e. 1S = x) contains no infinite c.e.
subset), and by (for example) Corollary 6.42 in Calude (2002) any 1-random sequence is immune.

48There exists a U for which not a single digit of ΩU can be known, see Calude (2002), Theorem 8.11.
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C Bell’s theorem and free will theorem

In support of the analysis of hidden variable theories in the main text, this appendix
reviews Bell’s (1964) theorem and the free will theorem, streamlining earlier expositions
(Cator & Landsman, 2014; Landsman, 2017, Chapter 6) and leaving out proofs and other
adornments.49 In the specific context of ’t Hooft’s theory (where the measurement settings
are determined by the hidden state) and Bohmian mechanics (where they are not, as in the
original formulation of Bell’s theorem and in most hidden variable theories) an advantage
of my approach is that both free (uncorrelated) und correlated settings fall within its
scope; the former are distinguished from the latter by an independence assumption.50

As a warm-up I start with a version of the Kochen–Specker theorem, whose logical
form is very similar to Bell’s (1964) theorem and the free will theorem, as follows:

Theorem C.1 Determinism, qm, non-contextuality, and free choice are contradictory.

Of course, this unusual formulation hinges on the precise meaning of these terms.

• determinism is the conjunction of the following two assumptions.

1. There is a state space X with associated functions A : X → S and L : X → O,
where S is the set of all possible measurement settings Alice can choose from, namely
a suitable finite set of orthonormal bases of R3 (11 well-chosen bases will do to arrive
at a contradiction),51 and O is some set of possible measurement outcomes. Thus
some x ∈ X determines both Alice’s setting a = A(x) and her outcome α = L(x).

2. There exists some set Λ and an additional function H : X → Λ such that

L = L(A,H), (C.1)

in the sense that for each x ∈ X one has L(x) = L̂(A(x), H(x)) for a certain function
L̂ : S×Λ→ O. This self-explanatory assumption just states that each measurement
outcome L(x) = L̂(a, λ) is determined by the measurement setting a = A(x) and
the “hidden” variable or state λ = H(x) of the particle undergoing measurement.

• qm fixes O = {(0, 1, 1), (1, 0, 1), (1, 1, 0)}, which is a non-probabilistic fact of quan-
tum mechanics with overwhelming (though indirect) experimental support.

• non-contextuality stipulates that the function L̂ just introduced take the form

L̂((~e1, ~e2, ~e3), λ) = (L̃(~e1, λ), L̃(~e2, λ), L̃(~e3, λ)), (C.2)

49The original reference for Bell’s theorem is Bell (1964); see further footnote 6, and in the context of
this appendix also Esfeld (2015) and Sen & Valentini (2020) are relevant. The free will theorem originates
in Heywood & Redhead (1983), followed by Stairs (1983), Brown & Svetlichny (1990), Clifton (1993), and,
as name-givers, Conway & Kochen (2009). Both theorems can and have been presented and interpreted in
many different ways, of which we choose the one that is relevant for the general discussion on randomness
in the main body of the paper. This appendix is taken almost verbatim from Landsman (2020).

50This addresses a problem Bell faced even according to some of his most ardent supporters (Norsen, 2009;
Seevinck & Uffink, 2011), namely the tension between the idea that the hidden variables (in the pertinent
causal past) should on the one hand include all ontological information relevant to the experiment, but on
the other hand should leave Alice and Bob free to choose any settings they like. Whatever its ultimate
fate, ’t Hooft’s staunch determinism has drawn attention to issues like this, as has the free will theorem.

51If her setting is a basis (~e1, ~e2, ~e3), Alice measures the quantities (J2
~e1
, J2
~e2
, J2
~e3

), where J~e1 = 〈 ~J,~ei〉 is

the component of the angular momentum operator ~J of a massive spin-1 particle in the direction ~ei.
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for a single function L̃ : S2 × Λ→ {0, 1} that also satisfies L̃(−~e, λ) = L̃(~e, λ).52

• free choice finally states that the following function is surjective:

A×H : X → S × Λ; x 7→ (A(x), H(x)). (C.3)

In other words, for each (a, λ) ∈ S × Λ there is an x ∈ X for which A(x) = a and
H(x) = λ. This makes A and H “independent” (or: makes a and λ free variables).

See Landsman (2017), §6.2 for a proof of the Kochen–Specker theorem in this language.53

Bell’s (1964) theorem and the free will theorem both take a similar generic form, namely:

Theorem C.2 Determinism, qm, local contextuality, and free choice, are contradictory.

Once again, I have to explain what these terms exactly mean in the given context.

• determinism is a straightforward adaptation of the above meaning to the bipartite
“Alice and Bob” setting. Thus we have a state space X with associated functions

A : X → S; B : X → S; L : X → O R : X → O, (C.4)

where S, the set of all possible measurement settings Alice and Bob can each choose
from, differs a bit between the two theorems: for the free will theorem it is the same
as for the Kochen–Specker theorem above, as is the set O of possible measurement
outcomes, whereas for Bell’s theorem (in which Alice and Bob each measure a 2-level
system), S is some finite set of angles (three is enough), and O = {0, 1}.

– In the free will case, these functions and the state x ∈ X determine both the
settings a = A(x) and b = B(x) of a measurement and its outcomes α = L(x)
and β = R(x) for Alice on the Left and for Bob on the Right, respectively.

– All of this is also true in the Bell case, but since his theorem relies on impossible
measurement statistics (as opposed to impossible individual outcomes), one in
addition assumes a probability measure µ on X.54

Furthermore, there exists some set Λ and some function H : X → Λ such that

L = L(A,B,H); R = R(A,B,H), (C.5)

in the sense that for each x ∈ X one has functional relationships

L(x) = L̂(A(x), B(x), H(x)); R(x) = R̂(A(x), B(x), H(x)), (C.6)

for certain functions L̂ : S × S × Λ→ O and R̂ : S × S × Λ→ O.

52Here S2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1} is the 2-sphere, seen as the space of unit vectors in
R3. Eq. (C.2) means that the outcome of Alice’s measurement of J2

~ei
is independent of the “context”

(J2
~e1
, J2
~e2
, J2
~e3

); she might as well measure J2
~ei

by itself. The last equation is trivial, since (J−~ei)
2 = (J~ei)

2.
53The assumptions imply the existence of a coloring Cλ : P → {0, 1} of R3, where P ⊂ S2 consist of all

unit vectors contained in all bases in S, and λ “goes along for a free ride”. A coloring of R3 is a function
C : P → {0, 1} such that for any set {e1, e2, e3} in P with eiej = δij13 and e1 + e2 + e3 = 13 where 13 is
the 3× 3 unit matrix) there is exactly one ei for which C(ei) = 1. Indeed, one finds Cλ(~e) = L̃(~e, λ). The
key to the proof of Kochen–Specker is that on a suitable choice of the set S such a coloring cannot exist.

54The existence of µ is of course predicated on X being a measure space with corresponding σ-algebra
of measurable subsets, with respect to which all functions in (C.4) and below are measurable.
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• qm reflects elementary quantum mechanics of correlated 2-level and 3-level quantum
systems for the Bell and the free will cases, respectively, as follows:55

– In the free will theorem, O = {(0, 1, 1), (1, 0, 1), (1, 1, 0)} is the same as for
the Kochen–Specker theorem. In addition perfect correlation obtains: if a =
(~e1, ~e2, ~e3) is Alice’s orthonormal basis and b = (~f1, ~f2, ~f3) is Bob’s, one has

~ei = ~fj ⇒ L̂i(a, b, z) = R̂j(a, b, z), (C.7)

where L̂i, R̂j : S×S×Λ→ {0, 1} are the components of L̂ and R̂, respectively.
Finally,56 if (a′, b′) differs from (a, b) by changing the sign of any basis vector,

L̂(a′, b′, λ) = L̂(a, b, λ); R̂(a′, b′, λ) = R̂(a, b, λ). (C.8)

– In Bell’s theorem, O = {0, 1}, and the statistics for the experiment is reproduced
as conditional joint probabilities given by the measure µ through

P (L 6= R|A = a,B = b) = sin2(a− b). (C.9)

• local contextuality, which replaces and weakens non-contextuality, means that

L(A,B,H) = L(A,H); R(A,B,H) = G(B,H). (C.10)

In words: Alice’s outcome given λ does not depend on Bob’s setting, and vice versa.

• free choice is an independence assumption that looks differently for both theorems:

– In the free will theorem it means that each (a, b, λ) ∈ S × S × Λ is possible in
that there is an x ∈ X for which A(x) = a, B(x) = b, and H(x) = λ.

– In Bell’s theorem, (A,B,H) are probabilistically independent relative to µ.57

This concludes the joint statement of the free will theorem and Bell’s (1964) theorem in the
form we need for the main text. The former is proved by reduction to the Kochen–Specken
theorem, whilst the latter follows by reduction to the usual version of Bell’s theorem via
the free choice assumption; see Landsman (1917), Chapter 6 for details.

For our purposes these theorems are equivalent, despite subtle differences in their
assumptions. Bell’s theorem is much more robust in that it does not rely on perfect
correlations (which are hard to realize experimentally), and in addition it requires almost
no input from quantum theory. On the other hand, Bell’s theorem uses probability theory
in a highly nontrivial way: like the hidden variable theories it is supposed to exclude it
relies on the possibility of fair sampling of the probability measure µ. The factorization
condition defining probabilistic independence passes this requirement of fair sampling on
to both the hidden variable and the settings, which brings us back to the main text.

Different parties may now be identified by the assumption they drop: Copenhagen
quantum mechanics rejects determinism, Valentini (2019) rejects the Born rule and hence
qm, Bohmians rejects local contextuality, and finally ’t Hooft rejects free choice. However,
as we argue in the main text, even the latter two camps do not really have a deterministic
theory underneath quantum mechanics because of their need to randomly sample the
probability measure they must use to recover the predictions of quantum mechanics.

55In Bell’s theorem quantum theory can be replaced by experimental support (Hensen et al., 2015).
56As in Kochen–Specker, this is because Alice & Bob measure squares of (spin-1) angular momenta.
57By definition, this also implies that the pairs (A,B), (A,H), and (B,H) are also independent.
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