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Abstract

Previous research in Explainable Artificial Intelligence (XAI) suggests that a main aim of explainability ap-

proaches is to satisfy specific interests, goals, expectations, needs, and demands regarding artificial systems

(we call these ‘stakeholders’ desiderata’) in a variety of contexts. However, the literature on XAI is vast,

spreads out across multiple largely disconnected disciplines, and it often remains unclear how explainability

approaches are supposed to achieve the goal of satisfying stakeholders’ desiderata. This paper discusses

the main classes of stakeholders calling for explainability of artificial systems and reviews their desiderata.
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We provide a model that explicitly spells out the main concepts and relations necessary to consider and in-

vestigate when evaluating, adjusting, choosing, and developing explainability approaches that aim to satisfy

stakeholders’ desiderata. This model can serve researchers from the variety of different disciplines involved

in XAI as a common ground. It emphasizes where there is interdisciplinary potential in the evaluation and

the development of explainability approaches.

Keywords: Explainable Artificial Intelligence, Explainability, Interpretability, Explanations,

Understanding, Interdisciplinary Research, Human-Computer Interaction

1. Introduction

1.1. Background, Motivation, and Related Work

Explainable Artificial Intelligence (XAI) is – once again [1–4] – a burgeoning multidisciplinary area

of research. In general, XAI can be perceived as the topic or research field concerned with developing

approaches to explain and make artificial systems understandable to human stakeholders [5–7].

This puts several central aspects into the focus of XAI research. First, artificial systems are the primary

objects of investigation. Such systems can range from systems following a predefined set of rules, to expert

and knowledge-based systems, to systems relying on machine learning. Insights from XAI research become

important when these systems are too complex to allow for human oversight or are inherently opaque, which

precludes human insight [8]. Second, this view on XAI emphasizes the importance of approaches that en-

able or provide insights into artificial systems, their functioning, and their outputs. These approaches (we

call them ‘explainability approaches’) encompass methods, procedures, and strategies to provide explana-

tory information helping us to better understand artificial systems. Third, there is a decisive need for XAI

because there are human stakeholders (e.g., users, developers, regulators)2 whose interests, goals, expecta-

tions, needs, and demands regarding artificial systems (e.g., to have fair or trustworthy systems [9, 10]) call

for greater understandability of artificial systems. We call such conglomerations of stakeholders’ interests,

goals, expectations, needs, and demands regarding artificial systems ‘stakeholders’ desiderata’.

A large part of previous XAI research was mainly concerned with developing new explainability ap-

proaches without evaluating whether these methods are useful to satisfy stakeholders’ desiderata (except

2Generally, we speak of single stakeholders here. Since we cannot consider each stakeholder individually, we treat them as repre-

sentative members of specified stakeholder classes.
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maybe the desiderata of developers) [9, 11–13]. In fact, only a minority of papers concerned with ex-

plainability approaches also evaluated the proposed methods [12, 13]. In contrast, nowadays an increasing

number of researchers strongly suggest putting human stakeholders in the center of attention when evaluat-

ing and developing explainability approaches. For instance, researchers have proposed to comprehensively

examine the perspectives of all stakeholders involved in the discussions around XAI (e.g., [14–16]) or they

have introduced evaluation methods and metrics to systematically and empirically investigate the effects of

explainability approaches on human stakeholders and their desiderata (e.g., [9, 17]).

This paper reinforces and extends the focus on human stakeholders as well as on the development and

evaluation of explainability approaches, and provides three main contributions. First, we propose that when

evaluating, adjusting, choosing, and developing explainability approaches, research needs to pay more atten-

tion to stakeholders’ specific desiderata in given contexts. This is crucial as the success of explainability ap-

proaches depends on how well they satisfy these desiderata. Current measures and metrics focus on how well

explainability approaches calibrate trust or how much they increase human-machine performance (see, e.g.,

[17]). However, these are just two of many desiderata driving XAI research and although there is research

that investigates which classes of stakeholders hold essential desiderata for XAI (e.g., [14, 15, 18, 19]), there

is a lack of research identifying, defining, and empirically investigating these desiderata, let alone research

that links them to explainability approaches suitable for their satisfaction. Our paper identifies desiderata of

different classes of stakeholders and calls for systematic empirical research investigating how explainability

approaches, through the facilitation of understanding, lead to the satisfaction of these desiderata.

Second, we emphasize the central role of understanding as a path through which explainability ap-

proaches satisfy stakeholders’ desiderata. Although research has highlighted the importance of human un-

derstanding to XAI (e.g., [17, 20]), understanding sometimes seems to be considered as just one of many

important outcomes of explainability approaches [21]. We claim that increasing human understanding is not

just one of many important effects of explainability approaches, but crucial for the satisfaction of desiderata

in general. For this reason, we introduce a model that emphasizes the critical importance of human under-

standing as a mediator between explainability approaches and the satisfaction of desiderata (for a related

model focused on user performance, see Hoffman et al. [17]).

Third, we propose that our model can be used to guide evaluating, adjusting, choosing, and develop-

ing explainability approaches. In particular, our model highlights the main concepts and their relations of

how explainability approaches are supposed to lead to the satisfaction of stakeholders’ desiderata. Clearly

defining, analyzing, and capturing these concepts, as well as clarifying their relations are central for the
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systematic evaluation of the success of explainability approaches, as this helps to identify potential reasons

for why an explainability approach did not satisfy given desiderata. Similarly, considering these concepts

and their relations is crucial for the choice between different explainability approaches or for the successful

development of such approaches, because this supports the derivation of requirements for an explainability

approach that has the potential to satisfy stakeholders’ desiderata. Furthermore, our model is useful to de-

tect where input from disciplines outside of computer science (e.g., psychology, philosophy, law, sociology;

[22]) is crucial when evaluating or developing explainability approaches. Thus, our model serves to identify

interdisciplinary potential and is aimed to establish a common ground for different disciplines involved in

XAI. Overall, the current paper is intended for an interdisciplinary readership interested in XAI.

1.2. A Conceptual Model of the Relation Between Explainability Approaches and Stakeholders’ Desiderata

For the purposes of this paper, we introduce a conceptual model (see Figure 1) that organizes and makes

explicit the central concepts of how explainability approaches relate to the satisfaction of stakeholders’

desiderata, as well as the relations between these concepts. The main concepts in this model are: ‘explain-

ability approach’, ‘explanatory information’, ‘stakeholders’ understanding’, ‘desiderata satisfaction’, and

‘(given) context’.

Desiderata Satisfaction

epistemic substantial

Stakeholders’

Understanding

Explanatory

Information

Explainability

Approach

Status of Desiderata

Satisfaction

affectsfacilitatesprovides

Context

moderates

enables

Explanation Process Desiderata
motivate and guide

feeds back

Figure 1: Our proposed model of how explainability approaches relate to the satisfaction of stakeholders’ desiderata.

The overall idea of our model is that the success of an explainability approach depends on the satisfaction

of stakeholders’ desiderata (consisting of the substantial and the epistemic facet of desiderata satisfaction,

see Section 3.1). Desiderata satisfaction, thus, motivates an explanation process including explainability ap-

proaches, explanatory information, and stakeholders’ understanding. Specifically, in the explanation process

we assume that explainability approaches provide explanatory information to human stakeholders. Human

stakeholders engage with the information to facilitate their understanding of an artificial system, its func-

tioning, and outputs. As a consequence, the adjusted understanding of the stakeholders affects the extent to
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which their desiderata are satisfied. The context in which the human stakeholder and the artificial system

operate and interact affects the relations between the other concepts (i.e., influences the relation between

explanatory information and stakeholder understanding as well as the relation between understanding and

desiderata satisfaction). Identifying, defining, as well as capturing and empirically examining the concepts

and their relations should guide evaluating, adjusting, choosing, and developing of explainability approaches

that aim to satisfy stakeholders’ desiderata.

With a focus on stakeholders’ desiderata, the following sections will elaborate on the model’s concepts

and their relations in more detail, as well as explicate shortcomings of the current view on these concepts

and their relations. This paper is structured as follows. We will start on the right side of Figure 1 and

will continue to work backwards from stakeholders’ desiderata. In Section 2, we will describe different

classes of stakeholders and provide examples of their pertinent desiderata. We will elaborate on the central

role of understanding for desiderata satisfaction in Section 3. Evoking understanding, in turn, requires

explanatory information, as we will illuminate in Section 4. Section 5 will shed light on the connection

between explainability approaches and explanatory information. Throughout these sections, we will point

towards interdisciplinary potential that becomes apparent with the transition from one concept to the next in

our model. In Section 6, we will, then, exemplify how our model can be used to evaluate, adjust, choose,

and develop explainability approaches.

2. Stakeholders’ Desiderata

Stakeholders’ desiderata are one, if not the, reason for the rising popularity of XAI (see also [14, 19]).

Since stakeholders in combination with their concrete desiderata motivate, guide, and affect the explanation

process depicted in Figure 1, we propose that identifying and clarifying desiderata of the various classes

of stakeholders related to artificial systems is a crucial first step when evaluating, adjusting, choosing, and

developing explainability approaches for an artificial system in a given context.

2.1. Stakeholder Classes

The need for explainability starts with the increasing societal impact of artificial systems and the fact

that many such systems still have to be operated by humans or affect human lives. This indicates that there

are various groups of people with different interests in the explainability of artificial systems: people operate

systems, try to improve them, are affected by decisions based on their output, deploy systems for everyday
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tasks, and set the regulatory frame for their use. These people are commonly called stakeholders.3

Previous research has discussed varying classes of stakeholders in the context of XAI. For instance,

Preece et al. [18] distinguish between four main classes of stakeholders: developers, theorists, ethicists,

and users. Arrieta et al. [14] categorize the main classes of stakeholders into domain experts/users, data

scientists/developers/product owners, users affected by model decisions, managers/executive board mem-

bers, and regulatory entities (see also [15, 19, 24]). We follow Arrieta et al. and distinguish five classes of

stakeholders: users, (system) developers, affected parties, deployers, and regulators (see Figure 2).

Developer System

Deployer

User Affected Parties

Regulator

Figure 2: The different classes of stakeholders associated with artificial systems and their relations.

Clearly, one person can be a member of several stakeholder classes. A user, for instance, can be affected

by the outputs of the system she operates. Additionally, these are just prototypical classes of stakeholders and

more fine-grained distinctions into sub-classes of stakeholders are possible [15]. For example, there is not

one prototypical developer, but developers differ in their expertise and in other factors (e.g., personality). A

novice developer may have different desiderata than an expert. In a similar way, a lay user’s desiderata might

differ from those of an expert user (more on this in Section 4.2). Moreover, we want to emphasize that this

list of stakeholders is not necessarily exhaustive because our distinction is based on previous research that

mainly comes from a computer scientific background. Thus, it might neglect other classes of stakeholders.

2.2. Exemplary Stakeholders’ Desiderata

The desiderata arising from the five classes of stakeholders are diverse. Based on a term search, we

identified more than 100 peer-reviewed journal and conference publications that postulate XAI as being

indispensable when it comes to satisfying the different desiderata (see Table 1).

3According to the Merriam-Webstar dictionary, a stakeholder is, among others, someone “who is involved in or affected by a course

of action” [23]. For this reason, we use this as a general term, but refer to specific stakeholder classes where appropriate.
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Table 1 presents exemplary desiderata that we have extracted from this literature review. Each row con-

tains a desideratum, partnered with sources that claim, propose, or show that XAI-related research (e.g., on

explainability approaches) and its findings and outputs can contribute to the satisfaction of this desideratum.

Furthermore, this table presents stakeholder classes that may be most prone to have one or more of these

desiderata. Whenever we could not extract stakeholder classes from the respective papers, we did our own

(mostly common-sense) mappings. Notably, most of the sources we present in this table only claim that

XAI-related research can contribute to satisfy the respective desiderata with only a subset of these papers

(for instance, [28, 31, 45]) providing empirical evidence for their claims (e.g., regarding the mapping of

desiderata to stakeholder classes or regarding the relation of explanatory information and desiderata). In

what follows, we present two important exemplary desiderata for each class of stakeholders.

Users. Most papers concerning stakeholders in XAI have this class of stakeholders in common (see, e.g.,

[14, 18, 19]). Among others, users take into account recommendations of artificial systems to make decisions

[24]. Some prototypical members of this stakeholder class are medical doctors, loan officers, judges, or

hiring managers. Usually, users are no experts regarding the technical details and the functioning of the

systems they use. However, they can work more effectively if they form adequate expectations concerning

the systems’ functioning. In case they cannot do so, and in cases where their expectations are violated, they

need information that goes beyond the knowledge of purely operating the system. This motivates at least the

following two central desiderata of users: usability [22, 36] and trust [29, 96, 115].

In many cases, a system is more usable if it offers meaningful information alongside its outputs. This

information can help users to adequately link their knowledge and assessment of a given situation to the

information used by a system, can help them to make decisions more quickly, or to increase decision quality

[116]. All of this can contribute to the usefulness (another important desideratum of users) of a system and

is important in high-stakes scenarios where a user decides on the basis of a system’s recommendations.

This is closely linked to the desideratum of adequately calibrating trust in systems. Both undertrust

and overtrust can negatively affect the appropriate use of systems [117]. In the case of undertrust, users

may constantly try to supervise a system’s behavior or even attempt to intervene in a system’s processes,

thereby undermining the effectiveness of the human-system interaction [118]. In the case of overtrust, people

may use a system without questioning its behavior [118–120]. This can again decrease the effectiveness

of the human-system interaction, as humans rely on the system’s outputs even in situations where they

should challenge them [117, 121]. Explainability approaches have the potential to provide means to let users

adequately calibrate their trust in artificial systems [17].
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Developers. Individuals who design, program, and build artificial systems are the developers. Naturally,

they count as a class of stakeholders, as without them the systems would not exist in the first place. Generally,

developers have a high expertise concerning the systems and an interest in improving them.

An especially important desideratum of developers is verification, that is, to check whether a system

works as intended [7, 122–124]. There are many ML-based classifiers that consider, for instance, irrelevant

inputs as relevant (see, e.g., [125, 126]). Increasing insights into the system’s decision-making processes by

using certain explainability approaches can help developers to recognize and correct such mistakes. Accord-

ingly, there are cases where XAI contributes to determine whether a system works as intended and, thus,

explainability approaches can support verification of the system.

Another important desideratum for developers is performance. There are many ways in which a system

can achieve a better performance. For example, the predictive accuracy of an ML algorithm can be seen

as a performance measure. Although there are some claims that explainability and accuracy are difficult

to combine [40, 44], there is also the opposite view, which sees XAI as a way to actually make systems

more accurate and, in particular, to help developers estimate system accuracy [70, 73]. By means of getting

information of what led to a system’s outcomes, developers can detect underrepresented or erroneous training

data and, thus, fine-tune the learning process to achieve higher accuracy. Another way in which performance

can be understood is user-system interaction. The better users can interact with a system, the better they,

the system, and the combination of user and system perform. To this end, insights about a system, its

functioning, and its outputs are a fruitful way to improve user-system performance [14, 17, 48].

Affected Parties. The influence of artificial systems is constantly growing and decisions about people are

increasingly automated – often without their knowing. Affected parties are such (groups of) people in the

scope of a system’s impact. They are stakeholders, as for them much hinges on the decision of an artificial

system. Patients, job or loan applicants, or defendants at court are typical examples of this class.

Crucial desiderata of affected parties are fairness [7, 9, 11, 122] and morality/ethics [6, 11, 127]. These

desiderata are closely related. If a system is fair, for instance, the influence of protected attributes (e.g.,

gender or ethnicity) is adequately limited or controlled in the systems’ decision-making processes. In the

case of ethical systems, their decision-making processes rely on morally permissible considerations (e.g.,

according to certain moral theories, an autonomous car in a dilemma situation should never let affected

parties’ age contribute to its decision-making process, see [128]).

Considerations of fairness and ethics have evolved because there is an increasing number of affected

parties. This can lead to discrimination of individuals (e.g., concerning the distribution of jobs, loans, or
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healthcare), not on the basis of their own actions or characteristics but on the basis of actions or character-

istics of social groups to which they belong (e.g., women, ethnic minorities, older people) [54]. One hope

of establishing automated decision-processes was to make decisions less prone to human bias [129]. How-

ever, it is commonly acknowledged that artificial systems can reproduce and, in this process, even intensify

human biases (see, e.g., [54] and [130]). To counteract biases, it is, therefore, crucial to enable their detec-

tion. Explainability approaches may aid in this regard by providing means to track down factors that may

have contributed to unfair and unethical decision-making processes and either to eliminate such factors, to

mitigate them, or at least to be aware of them.

Deployers. People who decide where to employ certain systems (e.g, a hospital manger decides to

implement a diagnosis system in her hospital) are deployers. We count them as another class of stakeholders

because their decisions influence many other classes of stakeholders. For example, users have to work with

the deployed systems and, consequently, new people fall inside of the range of affected parties.

Deployers want the systems they bring into use to be accepted [5, 11, 96, 131]. In the eyes of deployers,

the worst case in terms of acceptance is that users reject appropriately working systems so that the systems

will end up never being used [132]. Therefore, low acceptance undermines what deployers intend to achieve

when providing systems to users. Previous research claims that explainability approaches can aid in this case

by providing people with more insights into systems, which can improve their acceptance [11, 115, 131].

Another desideratum of deployers is the system’s legal compliance. As deployers bear a certain degree of

responsibility for systems they bring into use, they have to ensure that these systems comply with legislation.

Non-discrimination and safety of a system are two important factors for its legal compliance. Explainability

approaches promise to enable deployers and other stakeholders to check whether the system is indeed safe

and non-discriminatory. Moreover, the European General Data Protection Regulation (GDPR) and the often

discussed Right to Explanation [101] (arguably) explicitly require explanations.

Regulators. Finally, there are regulators stipulating legal and ethical norms for the general use, deploy-

ment, and development of systems. This class of stakeholders occupies a somewhat extraordinary role, since

they have a ‘watchdog’ function not only with regard to systems, but to the whole interaction process of

systems and the other stakeholder classes. This class consists of ethicists, lawyers, and politicians, who

must have the know-how to assess, control, and regulate the whole process of using artificial systems.

Regulators call, for instance, for trustworthy systems [5, 6, 10, 11, 29, 96, 115, 131]. However, the

concept of trustworthiness is still only vaguely defined [133]. For example, the High Level Expert group

on Artificial Intelligence (HLEGAI) initiated by the European Commission does not provide a common
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definition for trustworthiness, but it only proposes that trustworthy systems have three properties: they are

lawful, ethical, and robust [10]. Without examining trustworthiness more closely, the HLEGAI emphasizes

the significance of trustworthy artificial systems by stating that the trustworthiness of systems is imperative

for the realization of potentially vast social and economic benefits. Regulators such as the EU, as well as

previous research on artificial intelligence that calls for trustworthy systems (e.g., as described in [53]), agree

that explainability approaches are one central way to facilitate the trustworthiness of systems [10, 53].

Accountability is another important desideratum of regulators [20, 56]. Accountability is about being

able to identify who is blamable or culpable for a mistake. With increasing use of artificial systems, ac-

countability gaps might emerge [134, 135]. For instance, when the use of an artificial system harms a

person, it may not be clear who is accountable, as there are many parties that may have contributed to the

harm. Opaque artificial systems only amplify this issue. For example, a person acting on the outputs of a

system may not (be able to) know that this output was erroneous, so blaming her for ensuing problems might

inadequately ignore the contribution of the artificial systems. Overall, regulators want to avoid situations in

which existing legislation is hard to apply or where no one is (or feels) accountable for a mistake. In such

cases, explainability approaches may restore accountability by making errors and causes for unfavorable

outcomes detectable and attributable to the involved parties.

2.3. Interdisciplinary Potential

Artificial systems will continue to influence humans in every part of their lives, thus it is likely that

new desiderata will emerge. Further desiderata might evolve from societal, legal, political, philosophical,

or psychological needs regarding artificial systems (e.g., for competence, relatedness, or autonomy; [136]).

For example, with artificial systems in healthcare [137] there is a pressing need for formulating relevant

ethical and legal desiderata. In addition, it is also possible that explanatory information provided by artificial

systems does not only aim to improve task achievement but also to entertain users [138].

We conducted a literature review to derive an overview of stakeholders’ desiderata, but it will clearly

be possible to extend our list in Table 1. In fact, further developing and refining this list of desiderata is

an important point that reveals interdisciplinary potential. First, most of the sources referred to in Table 1

only claim that these desiderata are relevant for stakeholders. There needs to be a more thorough empirical

investigation, probably done by interdisciplinary teams of psychologists, philosophers, and scholars from

law to show the actual importance of these desiderata for certain stakeholder classes.

Furthermore, in our overview, the desiderata’s denotations stem (in most cases) directly from the source
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papers. However, some of these desiderata are closely related and, especially given the interdisciplinary

research contributing to XAI, it is plausible that different authors actually mean to refer to the same desider-

atum but give it a different term or use the same term to refer to different desiderata. Consistent terminology

and conceptual clarity for the desiderata are pivotal and there is a need to explicate the various desiderata

more precisely. Different disciplines like law, philosophy, and psychology need to come together to discuss

their conceptions of various desiderata to agree on common definitions of these desiderata. Without this,

insights from different disciplines regarding the respective desiderata (e.g., what kind of explanatory infor-

mation is required to satisfy a given desideratum) might not be adequately integrated into a common stream

of research.

Additionally, we need research that more explicitly analyzes society’s stakeholder classes affected by

artificial systems. For instance, collaborating with sociologists could offer a broader or more nuanced picture

of the classes of stakeholders that have to be considered within the scope of XAI. In any case, in order to

comprehensively address the stakeholders’ desiderata, we need a more detailed understanding of stakeholder

classes and sub-classes. For this, it is promising to consult disciplines outside of computer science focusing

on society (i.e., sociology) as well as individual differences within groups of society (i.e., psychology).

Furthermore, researchers from different disciplines may be able to take the perspective of certain stake-

holder classes. By doing so, they can help to refine the list of desiderata. For instance, computer scientists

can take the perspective of developers. Psychologists can take the perspective of users and affected people.

Management scholars could take the perspective of deployers. Philosophers, political scientists, as well as

researchers from law can take the perspective of regulators.

Working together in interdisciplinary teams can, thus, contribute to a comprehensive consideration of

important desiderata in a given context. However, comprehensiveness is just one side of the coin, the jus-

tification of desiderata is another. Concerning this justification, there are two main perspectives: one from

ethics and one from jurisprudence. From an ethical perspective, we can judge whether a desideratum is

compatible with some, many, or even all established moral theories. Similarly, legislation can be consulted

to assess whether there are laws demanding (or prohibiting) to meet certain desiderata. When engaging in

thorough moral and legal justification, we might conclude that there will be desiderata that are not justifi-

able. In high-stakes decisions, for instance, each individual user might want systems to do what is best for

her. In the case of autonomous cars, drivers will probably want a car to decide in a way that makes it more

likely that they will survive if the car faces an imminent accident [139]. There might be cases where such

a decision is neither morally nor legally justifiable. In a less drastic example, users may ask for an expla-
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nation of why they received a low score on a personnel selection test. However, providing this explanation

might render the given test obsolete because the explanation possibly enables participants to game the test

[8]. We suggest that the given context, as well as moral and legal considerations are decisive factors when

determining whether certain stakeholders’ desiderata can be justified.

3. Desiderata Satisfaction requires Understanding

In the previous section, we have introduced our claim that the need for XAI arises from stakeholders’

desiderata. More precisely, the need arises in cases where certain stakeholders’ desiderata are not (suffi-

ciently) satisfied [7, 14, 15, 18, 53]. For this reason, we have to take a look at what it means for a desideratum

to be satisfied.

3.1. Facets of Desiderata Satisfaction

We propose that the satisfaction of each desideratum can take two facets. We call these facets epistemic

and substantial desiderata satisfaction, respectively. On the one hand, stakeholders want systems to have

certain properties that make them actually fair, transparent, or usable. In line with this, a desideratum

(e.g., fairness) is substantially satisfied if a system sufficiently possesses the corresponding properties. On

the other hand, stakeholders want to know or be able to assess whether a system (substantially) satisfies

a certain desideratum (i.e., whether the system has the required properties). So, the epistemic facet of the

fairness desideratum is satisfied for a stakeholder, if she is in a position to assess or know whether and to what

extent the system is fair. Naturally, for XAI the epistemic facet is the most important one, since explanatory

information can contribute to the satisfaction of the epistemic facet of every desideratum, whereas this is not

the case for the substantial facet.

As an example, take the desideratum of having usable systems. A successful explanation process as

depicted in our model may enable users to recognize whether a system is usable, and, optimally, also increase

the system’s usability to a certain degree. In this case, the epistemic satisfaction consists in the stakeholders

being able to check whether a system or its outputs are usable for the task at hand. To a lesser extent,

however, an explanation process can also contribute to the substantial satisfaction of the desideratum, since

it provides additional knowledge about the system that makes it more usable for the stakeholder. For larger

deficits in usability to be addressed, however, explanatory information might not directly help; for this, the

entire artificial system may need to be redesigned.
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Depending on the desideratum, the two facets are correlated to a certain degree (possibly even com-

pletely, when satisfying the epistemic facet also completely satisfies the substantial facet). To illustrate,

consider the desideratum of retaining user autonomy in human-in-the-loop scenarios. Let us assume that an

explanation process has helped to satisfy the epistemic facet of this desideratum to a certain degree, as it has

enabled the user to assess the extent to which she can retain her autonomy in making decisions based on the

recommendations of the system. Additionally, the more understanding a user has about a system’s output,

the more autonomous she can decide based on it. Thus, the explanation process has helped to satisfy the

epistemic and the substantial facet of this desideratum. Hence, in this case, the substantial and the epistemic

facet of desiderata satisfaction are highly correlated.

Now, consider the desideratum that systems adhere to certain ethical principles. When having sufficient

information about a system, regulators can evaluate whether this system complies with ethical standards.

Again, the explanation process serves to satisfy the epistemic facet of this desideratum. However, this

does not directly make the system’s processes and outputs more likely to comply with ethical standards.

Consequently, explanation processes can at most indirectly satisfy the substantial facet of this desideratum:

based on the understanding obtained by the explanation process, faults can be identified and steps to improve

systems regarding their ethical properties can be initiated. In this case, the epistemic and the substantial facet

of desiderata satisfaction are only loosely correlated.

On the one hand, the distinction of these two facets shows that explanation processes can contribute to the

satisfaction of all epistemic facets of desiderata concerning artificial systems. On the other hand, it shows

that an explanation process alone does sometimes not suffice to satisfy the substantial facet of desiderata

concerning artificial systems. In many cases, however, the epistemic satisfaction enables the substantial one.

This means that even if a better understanding of the systems triggered by explanatory information does

not always directly lead to the substantial satisfaction of the desiderata, it can form the necessary basis for

achieving it. As the epistemic satisfaction of a desideratum is closely linked to a better understanding of a

system, understanding is the pivotal point for all endeavors of satisfying desiderata.

3.2. Understanding

Throughout the history of XAI research, authors have highlighted the central importance of understand-

ing in XAI (e.g., [2, 20, 115, 140–142]). The overall goal of XAI is to advance human understanding of

artificial systems in order to satisfy a given desideratum. There is an ongoing debate in the philosophical

literature about what constitutes understanding [143–145], and a comprehensive review of this concept is
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beyond the scope of the current paper (see, for instance, [144] for a review on understanding, [146, 147]

for papers on the concept of understanding, [138, 148, 149] for the relation between explanations and un-

derstanding, or [150] for the related topic of cognitive processes in knowledge acquisition; furthermore, see

[151] for a broad overview on the theoretical basics of understanding relevant for XAI research). Some

aspects of understanding, however, are typically agreed upon: There are different depths and breadths of

understanding (in the following, we will use the term degree of understanding to address depth and breadth

of understanding, similar to [144, 152]), and there are different kinds of understanding [20, 146].

For the evaluation of explainability approaches it will, thus, be crucial to determine stakeholders’ under-

standing of artificial systems. Examining understanding of software has a long history in human-computer

interaction and education [108, 153]. Typically, when referring to the understanding of an artificial system,

these disciplines also refer to users’ mental models of systems. A mental model of a system can be un-

derstood as a mental representation of this system and its functioning. According to Rouse et al., mental

models allow humans “to generate descriptions of system purpose and form, explanations of system func-

tioning and observed system states, and predictions of future states” [154]. In other words, mental models

allow humans to mentally simulate aspects of a system, for instance, in order to understand the causes of its

decision-making [17].

Translated to the case of artificial systems, this means that we could examine understanding by investi-

gating stakeholders’ mental models of a system [17, 108]: how well does a person’s mental model mirror the

actual system? Are there gaps in the current understanding of a system’s functioning? Are people overcon-

fident that they understand how a system works (when they actually only have an illusion of understanding)

[155]? Are there learned misconceptions about systems and their outputs that need to be revised [156]? For

example, it is possible to investigate a stakeholder’s mental model through think-aloud techniques where

stakeholders are tasked to describe systems and their inner workings, or by letting stakeholders draw their

mental model of a given system (for an overview of methods to elicit mental models, see [17]). Similarly, it

is possible to measure understanding by capturing what humans’ mental models enable them to do in relation

to a system and its outputs. For example, Kulesza et al. [157] used an explanation task to assess whether

participants understood what kinds of information are used to predict outcomes. Other studies used predic-

tion tasks to assess, for instance, whether participants can anticipate which predictive model would produce

better outcomes [115], whether participants can predict what outcome a predictive model would produce for

a person with a given profile [21], or whether participants can foresee the influence of a given feature on

an outcome [21]. Another possibility would be to use manipulation tasks in order to assess whether people
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understood what kind of information might add to the predictive accuracy of a model (e.g., like in [115]).

Further possible tasks might be perception tasks (e.g., naming of recognized characteristics of a model) or

imagination tasks (e.g., estimating what a model would predict for a given input), all of which would reflect

different degrees of understanding. Furthermore, all of these tasks can reveal misconceptions of a system’s

functioning or knowledge gaps that need to be adjusted or filled with additional or alternative explanatory

information. Additionally, what all of these ways to capture stakeholder understanding have in common is

that they might help us to examine whether a given desideratum has the potential to be satisfied. For exam-

ple, if a developer has understood a system in a way that she can imagine situations under which a system

might fail, her ability to make the system more robust most likely increases.

Furthermore, there is an initial degree to which stakeholder understand artificial systems. Specifically,

stakeholders without any prior experience with a given system will likely start with a degree of understanding

that corresponds to their (background) knowledge of artificial systems or arose from initial instructions they

have received regarding the system [17, 158]. Thus, they will have an incomplete or even faulty mental model

of the given system [20]. For instance, a stakeholder might know (or might be informed) that machine-

learning based systems are usually trained on historical data in order to predict new data. This degree

of understanding can, then, be augmented (e.g., with explanatory information generated from explainability

approaches). With a higher degree of understanding (and, consequently, a more detailed and accurate mental

model of a system), a stakeholder might understand what kind of training data underlie a given system, what

kind of algorithm is used for a given system, or what kind of output data a system produces [17, 63, 159].

Thus, with increasing degrees of understanding, stakeholders will be able to assess whether a given system

has desired characteristics and adequate processes, or produces expected outcomes. In other words, an

increasing degree of understanding will satisfy the epistemic facet of more and more desiderata. For the

satisfaction of the desideratum’s substantial facet, however, the opposite might sometimes be the case, as we

will discuss in the next section.

3.3. The Relation Between Understanding and Desiderata Satisfaction

In certain cases, a stakeholder’s degree of understanding and the extent of desiderata satisfaction are

positively correlated. For instance, if the desideratum is to retain autonomy in interaction with a system,

usually a higher degree of understanding satisfies the epistemic and substantial facets of this desideratum to a

greater extent. However, there are also more complex cases. Assume that the desideratum is to trust a certain

system. Acquiring a higher degree of understanding will increase a stakeholder’s epistemic satisfaction of
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this desideratum (i.e. she can better assess whether and to what extent to trust the system), but the substantial

facet (i.e., her actual trust) can be influenced in a negative way. When a stakeholder still possesses a low

degree of understanding, she is likely to be unaware of problematic features a system has in certain contexts

(e.g., in complex environments) or with certain kinds of input data (e.g., noisy inputs). So, with a low degree

of understanding, a stakeholder is likely to trust a system (although inadequately) [29, 38]. In contrast, with

a higher degree of understanding, the stakeholder is able to recognize or even explain the conditions under

which a system will tend to fail. Therefore, she is more aware of the system’s problematic features, and this

may, consequently, decrease her trust in it [21, 38].

Additionally, it can happen that understanding contributes to the satisfaction of a single desideratum of a

stakeholder to a greater extent, while the satisfaction of other desiderata for the same stakeholder suffers [63].

To illustrate, take the trade-off between transparency and non-gameability of systems. Deployers of systems

want to comply with legislation and, consequently, want their systems to be transparent. Understanding is

a necessary condition for perceived transparency. However, making systems more transparent can diminish

another desideratum of deployers, the systems’ non-gameability [8]. In other words, it should not be possible

for particular users to manipulate a system in such a way that they can systematically evoke beneficial outputs

for them. However, more transparency caused by a higher degree of understanding may enable some people

to exploit the system [63]. In a personnel selection test, for example, a better understanding of the selection

system may enable participants to game the test, preventing its proper use (i.e., selecting suitable applicants).

This points to another potential trade-off to be considered regarding the relation between an advanced

understanding and desiderata satisfaction. Felzmann and colleagues [15] argue that different stakeholders

might hold different expectations regarding the extent to which a single desideratum has to be satisfied. It

is furthermore possible that, while desiderata of one stakeholder are influenced positively by an increase

in understanding, desiderata of other stakeholders suffer. An example of such a case was described by

Langer et al. [160]. They provided additional information accompanying an automated personnel selection

system for their participants, which resulted in more perceived transparency, but at the same time reduced

acceptance of the system (for a similar finding see [161]). In such cases, it can happen that the two desiderata

of transparency and acceptance arise from different perspectives and characteristics of stakeholders. For

instance, legislation (i.e., a regulator) might call for transparency of systems, whereas a company using a

system (i.e., a deployer) desires the system to be accepted. Explaining the system will, then, lead to the
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satisfaction of the legal desideratum, but at the price of impairing the company’s desideratum.4

These examples indicate that the degree and kind of understanding of artificial systems which explain-

ability approaches should evoke may depend on trade-offs between a variety of desiderata from a variety of

stakeholders. Consequently, the development, implementation, and use of explainability approaches should

go hand in hand with a case-by-case evaluation of the relevant stakeholders’ desiderata. While estimating

the effects of explainability approaches, it is central to investigate the perspective of not only one, but all

stakeholders who potentially have a variety of (conflicting) desiderata with regard to a given system.

3.4. Factors Influencing the Relation Between Understanding and Desiderata Satisfaction

Characteristics of the context in which artificial systems operate moderate the relation between under-

standing and desiderata satisfaction and may affect the degree and kind of understanding necessary to satisfy

a given desideratum. There is no agreed-upon definition of the term “context” [162] and a deeper dive into

the discussion about the term goes beyond what we can achieve in this paper (for discussions on this topic,

see [162, 163]). Following Dourish [163], we hold that the context is set by a given situation, in the inter-

action between a stakeholder, an artificial system, a given activity or task, and an environment. This makes

it impossible to anticipate all contextual influences that will affect the process of how explainability ap-

proaches aim to satisfy stakeholders’ desiderata without knowing the concrete situation. Nevertheless, it is

crucial to consider and anticipate these contextual influences when evaluating and developing explainability

approaches.

For instance, what is at stake in a given situation can affect the relation between understanding and

stakeholders’ desiderata. That is, whether a context is a high or low stakes scenario may determine the degree

of understanding necessary to satisfy a given desideratum. Research indicates that certain situations tend to

require a greater understanding of an event than other situations. Specifically, situations where instrumental,

relational, moral, or legal values are at stake might be more likely to require extensive understanding [164–

166]. Instrumental values are at stake when there are (personal, economical etc.) benefits or losses to expect

in a specific situation (e.g., when an artificial system handles financial transactions). Relational values are at

stake when important interpersonal relationships might be affected by an event (e.g., when artificial systems

are used for employee layoff). Moral values are at stake when moral rights might be violated (e.g., when

using artificial systems for sentencing in court). Finally, legal values are at stake when legal rights might be

4Note that this example also describes a situation where two desiderata of the company are in conflict: user acceptance and adhering

to legislation.
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violated (e.g., when an artificial systems outputs conflict with the right of non-discrimination). Depending

on the concrete situation (e.g., being in an autonomous car), instrumental, relational, moral, and legal values

determine the stakes of a situation. Additionally, identifying which of these values stakeholders regard as

relevant or which values are indeed relevant in which situations may allow for drawing inferences about

whether a situation is (considered) high or low stakes. Consequently, these values serve as an orientation for

when stakeholders are more likely to demand higher degrees of understanding. Specifically, this means that

for the satisfaction of a given desideratum in a low stakes scenario, a lower degree of understanding might

be sufficient compared to high stakes scenarios.

Furthermore, contexts involving artificial systems may differ in their ‘outcome favorability’ [167, 168].

In the case of an unfavorable outcome, people are more likely to call for additional information in order

to understand the reasons for the outcome, and so to be able to better assess and control further similar

outcomes [36, 167]. On the one hand, it may be that increasing the extent of understanding in the case of

favorable outcomes has little potential to positively affect a desideratum’s satisfaction. On the other hand,

a better understanding can be central to positively affecting a desideratum’s satisfaction in the case of a

unfavorable outcome. For instance, perceived fairness is a central desideratum for many decision situations

[169]. While understanding may have negligible effects on perceived fairness under favorable outcomes,

it can improve perceived fairness under unfavorable outcomes [170]. Supporting this claim, Kizilcec [38]

found that available explanatory information only affected perceived fairness when people’s expectations

concerning an outcome were violated. There may, however, be certain conditions under which a better un-

derstanding (negatively) affects perceived fairness even when people experience favorable outcomes [166].

What is at stakes in a situation and outcome favorability are just two of many possible contextual influ-

ences on the relation between understanding and desiderata satisfaction. Further candidates are the applica-

tion context (e.g., at home, at work), time constraints [171], and social circumstances (e.g., whether there

are other people present in a given situation; [163]).

3.5. Interdisciplinary Potential

The interdisciplinary potential we see in the relation between understanding and desiderata satisfaction is

described in research questions such as: (a) How does stakeholders’ initial degree of understanding or prior

knowledge of artificial systems relate to their desiderata satisfaction? (b) What are the trade-offs between

desiderata of a single stakeholder and/or desiderata of multiple stakeholders and what are the implications

of understanding regarding these trade-offs? (c) How does the degree and kind of understanding relate to
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the satisfaction of desiderata? (d) How do task or context affect the relation between understanding and

desiderata satisfaction in a given situation?

Scholars from educational sciences could collaborate with computer scientists in order to investigate how

to design adequate instructions to achieve a proper basic understanding or background knowledge of artificial

systems that can serve as a general basis to partially satisfy a large variety of desiderata. Furthermore, it is

necessary to involve psychologists in order to experimentally examine the relation between understanding

and desiderata satisfaction as well as influences affecting this relation. In this regard, it will be central to

determine what it means for a certain desideratum to be satisfied. This requires finding an adequate way

of measuring the satisfaction of this desideratum (e.g., using self-report measures, expert interviews, legal

analyses), as well as understanding the requirements for it to be satisfied (e.g., defining minimum legal

standards, enabling stakeholders to perform a specific task successfully). In practice, this involves having

an elaborated research design, clear conceptual definitions, appropriate operationalization and measurement

methods, and fitting research disciplines for iterative (empirical) research.

Finally, scholars from requirement engineering may help to understand relationships between several

desiderata. Based on their results, scholars from law and from philosophy can help to determine which

trade-offs are morally and/or legally justified. In general, an interdisciplinary collaboration can contribute to

being aware of potential relationships and trade-offs between certain desiderata.

4. Understanding Requires Explanatory Information

Providing explanatory information of a given phenomenon is the default procedure to facilitate its un-

derstanding [147, 172, 173]. Explanatory information helps humans to navigate complex environments by

facilitating better understanding, predictions, and control of situations [138, 174]. Such information narrows

down possible reasons for events, decreases uncertainty, corrects misconceptions, facilitates generalization

and reasoning, and enables a person to draw causal conclusions [138, 155, 174, 175].

In the context of XAI, explanatory information puts stakeholders in a position to grasp generalizable pat-

terns underlying the production of a system’s outcomes (e.g., LIME [115]). These patterns allow for drawing

inferences about (potentially causal) connections between the system’s inputs and outputs, or for narrowing

down the possible ways in which the system might have failed. Additionally, these patterns may help stake-

holders to tell apart correct but unexpected behavior from malfunctions in order to to debug the system. In

general, all of this can reduce people’s uncertainty concerning a system (e.g., uncertainty concerning how to

behave towards it, how to react to it, what to think of it, whether to recommend it, or whether to disseminate
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it; [63]). Overall, explanatory information should lead to a better understanding, which should, in turn, posi-

tively affect the satisfaction of stakeholders’ desiderata. Depending on the explanatory information, different

degrees and kinds of understanding can be acquired [20, 152]. For this reason, we have to shed more light

on what characteristics of explanatory information are.

4.1. Characteristics of Explanatory Information

Important characteristics of explanatory information concern its kind and its presentation format. There

are various kinds of explanatory information: teleological (i.e., information that appeals to the function of the

explanandum; [176]), nomological (i.e., information that refers to laws of nature; [177]), statistical relevance

(i.e., information that is statistically relevant to the explanandum; [178, 179]), contrastive (i.e., information

that highlights why event P happened and not event Q; [6]), counterfactual (i.e., information that appeals to

hypothetical cases in which things went differently; [180]), mechanistic (i.e., information that appeals to the

mechanisms underlying a certain process; [181]), causal (i.e., information that appeals to the causes of an

event; [182, 183]), network (i.e., information that appeals to the topological properties of a network model

describing a system; [184]), and many more.

Concerning the presentation format, there are also various possibilities. Roughly, we can distinguish

between text-based and multimedia presentation [36]. A text-based presentation can be a natural language

text, a rule extracted from a rule-based system, an execution trace, or simply the program’s source code. A

multimedia presentation can include graphics, visualizations, images, and animations. For instance, heat-

maps of neural activity are a popular presentation format for explanatory information of neural networks

[14].

Aside from the very general characteristics of kinds and presentation format, there are further character-

istics of explanatory information that influence how and whether it evokes understanding: soundness (i.e.,

how accurate the information is), completeness, novelty (i.e., whether the information is new for the re-

cipient), and complexity (e.g., depending on the number of features and on the interrelation between the

features the information contains; [171]) are just some of the various examples of further characteristics of

explanatory information (for more, see [63]).

The importance of acknowledging the characteristics of explanatory information is highlighted by re-

search in cognitive and educational psychology that shows that effects of explanatory information can vary

depending on their characteristics [138, 150, 166]. Take complexity as an example: studies show that peo-

ple prefer simpler information (e.g., information mentioning fewer causes; [185]). Another example is the
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finding that explanatory information that aligns with a stakeholder’s goals in a certain situation is preferred

[186]. Vasilyeva et al. [186] showed that people evaluate teleological explanatory information compared

to mechanistic explanatory information as more useful when asked to name the function of a phenomenon,

and, conversely, perceive mechanistic explanatory information as more useful when asked to name the cause

of an event.

4.2. Factors Influencing the Relation Between Explanatory Information and Understanding

The relation between explanatory information and understanding is influenced by a variety of charac-

teristics of the stakeholders, the context, and interactions between these characteristics [164, 166, 187].

Considering these influences is central to evaluate and develop explainability approaches.

Characteristics of Stakeholders. Since every stakeholder possesses an individual degree of understanding

of a system, an individual ability to understand, and an individual set of desiderata that are or need to be sat-

isfied to a certain extent, the characteristics of stakeholders who receive explanatory information influence

the relation between explanatory information and understanding [18]. Some of the characteristics that most

obviously influence this relation are the stakeholders’ background knowledge, beliefs, learning capacities,

and desiderata they have concerning respective systems [63, 188–190]. For instance, explanatory informa-

tion including technical details might increase an expert developer’s degree of understanding while technical

details can hamper understanding for novice developers or other (non-expert) stakeholders [175].

Furthermore, desiderata that are salient for a respective stakeholder can influence the relation between

explanatory information and understanding. Specifically, as stakeholders engage with information in order

to advance their understanding of artificial systems, their motivation and prior beliefs may affect how they

interpret a given set of information [67]. For instance, if a stakeholder’s primary desideratum is to ensure

that a system provides fair outputs, they will scrutinize explanatory information for signs of bias that might

lead to unfair outcomes. In contrast, if a stakeholder’s primary desideratum is to improve a system’s predic-

tive accuracy, they might pay special attention to information providing insights on how to improve system

performance. This indicates that, depending on the given desideratum, the same amount and kind of infor-

mation can lead to different degrees and kinds of understanding. Consequently, it is important to provide the

appropriate information for the given purpose. These assumptions are supported by research proposing that

human reasoning processes can be strongly influenced by explanatory information. Such information has

the potential to improve human decision-making but may also hamper it (e.g., when explanatory information

attenuates human biases or when humans need to invest too much effort to use the information [36, 67]).
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The list of individual differences influencing the relation between explanatory information and under-

standing goes beyond the scope of this article and covers personality traits such as conscientiousness [191],

need for cognition5 [192, 193], and need for closure [194, 195], as well as people’s preferences for detailed

versus coarse explanations [196], or age differences between stakeholders [197].

Characteristics of the Context. Time pressure can be a relevant contextual influence [63, 171]. For a stake-

holder under high time pressure, the same explanatory information may lead to less understanding as com-

pared to situations where she is under low time pressure [198]. Workload is another contextual influence

[199]. In situations of high perceived workload, the same explanatory information can lead to a different

degree of understanding compared to low workload conditions. Similar things are true for situations where

it is more likely that stakeholders will experience higher levels of stress [200, 201] (e.g., high stake and high

risk situations, multitasking environments; [171, 202]).

In general, depending on the situation and task at hand, the effects of explanatory information on un-

derstanding may differ. Therefore, it is important to investigate the contextual conditions of a stakeholder’s

interaction with an artificial system in detail when theorizing about how explanatory information can best

improve understanding. Given the impact of the context and given the fact that it might not be possible

to anticipate all relevant contextual influences [163], it is especially important to assess the effects of ex-

planatory information in laboratory and in field settings [9, 63]. Although it has advantages to investigate

the effects of, for instance, stress on the relation between explanatory information and understanding in con-

trolled laboratory settings, such results may not translate to field settings. This finding is in line with calls for

experiments involving human participants in proxy tasks in order to show that given explanatory information

not only elicits understanding when simulating a context, but also under real world conditions (that is, to

investigate whether given explanatory information is equally valuable in the wild) [9, 63]. Although it will

be impossible to fully anticipate how the context will alter the relation between explanatory information and

understanding (e.g., because the interpretation of contextual influences depends on the relevant stakeholders

[162]), at least it is crucial to be aware that contextual influences may be central for the success or failure of

explanatory information.

5Need for cognition is a personality trait that distinguishes people who like to put effort into cognitive activities from those who

prefer less cognitively demanding activities.
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Interactions Between Characteristics of Explanatory Information, Stakeholders, and the Context. Finally,

characteristics of explanatory information, stakeholders, and the context can interact in ways that affect how

stakeholders engage with explanatory information to advance their understanding of artificial systems. For

instance, the level of detail of explanatory information can interact with the prior knowledge of a stakeholder.

Whereas expert developers’ understanding may benefit to a higher degree from explanatory information with

much detail, this level of detail can have the contrary effect for novice developers [36, 166, 203, 204]. At

the same time, when novice users want to learn how to use a system, they might want detailed explanatory

information whereas when expert users want to use the system for task fulfillment, every unnecessary piece

of information could lead to the rejection of the system [36]. Further, if the context changes, the relations be-

tween explanatory information and understanding are prone to change as well. For instance, as soon as there

is time pressure in the aforementioned situations, it is plausible that neither expert nor novice developers or

users pragmatically benefit from too detailed explanatory information.

4.3. Interdisciplinary Potential

The following research questions reinforce calls for extensive validation and experimental studies in-

vestigating the effects of explainability approaches in different contexts and in relation to different stake-

holders [9, 63] (we refer readers to Sokol et al. [63] for a description of further important characteristics

of explanations, stakeholders, and contexts that affect the relations between explanations and stakeholders’

understanding): (a) How should we classify explanatory information? (b) How does different explanatory

information lead to understanding? (c) How do different stakeholders engage with explanatory information?

(d) How can we optimally evoke understanding through explanatory information? (e) How do stakeholder

differences (e.g., background knowledge, personality characteristics) affect understanding? (f) How do con-

textual influences (e.g., different levels of risk, multi-tasking environments, time pressure) affect the relation

between explanatory information and understanding? (g) How should explanatory information be designed?

What should it include? What kind of presentation format (e.g., textual, graphical) is appropriate? How can

stakeholders interactively engage with this information?

On the one hand, these research questions call for a unified classification of explanatory information.

Often, computer scientist classify explanatory information based on its presentation format or based on

the explainability approach it originated from (e.g., [205]). Philosophers and psychologists, however, usu-

ally classify explanatory information in terms of the kinds mentioned above (e.g., causal or nomological;

[206]). In order to prevent the debate from drifting apart, philosophers, psychologists, and computer scien-
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tists should collaborate to find standardized ways to classify explanatory information. On the other hand,

these research questions call for empirical evaluation of the value of different kinds of explanatory informa-

tion for different stakeholders, under a variety of contexts and under the consideration of different desiderata.

This may primarily call for empirically working psychologists, as they have the tools and expertise to design

experimental studies, for philosophers to determine the qualities of good explanatory information, and for

computer scientists to adjust the presentation of explanatory information as well as possible. Furthermore,

cognitive scientists might need to examine what exactly understanding of artificial systems actually means

and how to measure it (see [17] for ideas of how to capture human understanding of artificial systems).

However, deriving explanatory information of artificial systems is a task that in itself requires a lot of

interdisciplinary research. The following section completes the specification of the concepts and relations in

our model by describing that, in order to get the required explanatory information from the systems, there is

the need for fitting explainability approaches.

5. Explanatory Information Requires Explainability Approaches

In order to provide explanatory information that facilitates understanding and, thus, affects the satisfac-

tion of the desiderata of the different classes of stakeholders, XAI research has developed a wide variety of

explainability approaches. These approaches encompass methods, procedures, and strategies that provide

explanatory information to help stakeholders better understand artificial systems, their inner workings, or

their outputs. A specific explainability approach is characterized by all steps and efforts that are undertaken

to extract explanatory information from a system and to adequately provide it to the stakeholders in a given

context. Explainability approaches can take many guises and the literature commonly distinguishes two

families of approaches (e.g., [12, 14, 63, 131, 205, 207]): ante-hoc and post-hoc approaches.

5.1. Families of Explainability Approaches

Ante-hoc approaches aim at designing systems that are inherently transparent and explainable. They

rely on systems being constructed on the basis of models that do not require additional procedures to extract

meaningful information about their inner workings or their outputs. For example, decision-trees, rule-based

models, and linear approximations are commonly seen as inherently explainable (given they have a limited

size) [7, 131]. A human can, in principle, directly extract information from these models in order to enhance

her understanding of how the system works or of how the system arrived at a particular output. Unfortunately,

this way of deriving explanatory information from transparent models might only be useful for stakeholders
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with a certain expertise [16, 208]. For this reason, ante-hoc approaches make systems directly explainable

only for developers and members of other stakeholder classes that possess enough expertise about artificial

systems. Furthermore, ante-hoc explainability can also lead to a loss of predictive power [14, 15] and not all

systems can be designed inherently explainable.

Post-hoc approaches try to circumvent the aforementioned shortcomings. Such approaches are, in princi-

ple, applicable to all kinds of models. The difference to ante-hoc approaches is that post-hoc approaches do

not aim at the design-process of a particular system, but at procedures and methods that allow for extracting

explanatory information from a system’s underlying model, which is usually not inherently transparent or

explainable in the first place [11, 63, 131, 207]. Post-hoc approaches are, for example, based on input-output

analyses or the approximation of opaque models by models that are inherently explainable.

In many cases, however, post-hoc approaches are restricted with respect to how they present explanatory

information. That is, given a specific model or one of its outputs, the information an approach will provide on

repeated usage (and the format in which the approach provides the information) will be similar. Hence, for

post-hoc approaches the same holds as for ante-hoc approaches: it is not guaranteed that all stakeholders are

able to understand the provided information in the given format [16, 208]. So, the explanatory information

accessible from both, post-hoc and ante-hoc approaches is often only interpretable for developers or other

expert stakeholders. This means that this information does not directly facilitate understanding for non-

experts [16].

One solution to this is to combine several explainability approaches in order to cover a broad range of

different information and presentation modes. Another solution that has received increasing attention is to

have recourse on interactive explainability approaches [12, 67]. Interactive approaches are based on the idea

that the user or some other stakeholder is provided with more in-depth information concerning a system if

the information she initially received does not suffice. Based on her needs, the person interacting with the

system can call for information about specific aspects of a decision or request a presentation in a different

format. To date, however, approaches that are fully interactive remain rare [12, 205].

A third solution is to have a human facilitator (e.g., an expert stakeholder) explain a system to other

stakeholders. For instance, when regulators want to satisfy their desiderata concerning artificial systems,

there will be cases where they do not directly interact with an artificial system. Instead, a human facilitator

(e.g., an expert user or a developer) will do so and derive suitable explanatory information for the regulator.

In a sense, this process introduces a desiderata hierarchy based on the stakeholders into Figure 2. In other

words, one desideratum might have to be satisfied for one stakeholder class before some other desideratum
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(for another stakeholder class) can be satisfied. For example, the facilitator’s desideratum (in this case: to be

able to explain a system to a regulator), must be satisfied first as a precondition for the satisfaction of a regu-

lator’s desideratum (e.g., to be able to assess the fairness of a system). Thus, we have the complete processes

in Figure 1 nested within the explainability approach. Having a human facilitator (e.g., a developer) deriving

explanatory information (assisted by an explainability approach) for another stakeholder (e.g., a regulator)

can be considered a hybrid human-system approach to explainability.

5.2. Factors Influencing the Relation between Explanatory Information and Explainability Approaches

There are further characteristics of explainability approaches that are worth mentioning, since they are

likely to influence the provided kind of explanatory information or its presentation format. First, it is im-

portant to distinguish post-hoc approaches that work regardless of the underlying model type (so-called

model-agnostic approaches) from ones that only work for specific (types of) models (so-called model-specific

approaches). Model-agnostic approaches aim to deliver explanatory information about a system solely by

observing input/output pairs [63, 115, 131, 207]. Model-specific approaches do so while also factoring

in specific features of the model at hand (e.g., by creating prototype vectors in a support vector machine)

[63, 131, 207]. Model-agnostic approaches have the advantage of working for all types of models, but have

the drawback that they tend to be less efficient, less accurate as well as less explanatory powerful (i.e., the

explanatory information’s level of detail is lower with regard to individual phenomena) than the former.

Second, previous research distinguished the scope of an explainability approach. Some approaches

provide information about only single predictions of the model. The scope of these approaches is local

[63, 115, 131, 207]. Often, they offer visualized prototype outcome examples (e.g., [209, 210]). The more

general type of approaches has a global scope [63, 131, 207]. These approaches are designed to uncover the

overall decision processes in the model. Here, the usual way to provide this information is by approximating

complex models with simpler ones that are inherently explainable.

Depending on the explainability approach, the explanatory information provided will differ. Global

explainability approaches, for instance, are likely to produce more complex information that requires more

background knowledge by stakeholders to be understood. Local explanability approaches, on the other hand,

only show a limited picture of a system’s inner working and may not be representative of its overall decision-

making processes. Based on these differences we can conclude that certain explainabilty approaches are

more suitable for the satisfaction of given desiderata of specific stakeholder classes than others.

To elaborate, take users who want to calibrate their trust in a system. They will need a different kind
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of information compared to users who want to have usable systems. In the first case, the explainability

approach will likely need to extract information about the robustness of a system, about conditions under

which outputs of the system are trustworthy and situations where users have to be aware that outputs might be

misleading. In the case of usable systems, users might want information that directly matches their specific

goals in a given task. Another example: if a desideratum of users is learning how to use a system, they may

need a different kind of explanatory information compared to when they simply want to fulfill tasks with

the help of an artificial system [211]. This is because users who want to learn how to use a system need

more details whereas users who want to fulfill tasks need directly useful information in order not to reduce

their productivity through overly detailed information. Differences in the information needed can also be

due to differences in the perspective of stakeholders. Take the desideratum of fairness. Affected parties

will more likely focus on aspects of individual fairness which may call for explainability approaches that

facilitate local explainability. Regulators, however, may focus on more general notions of fairness calling

for explainability approaches facilitating global explainability.

5.3. Interdisciplinary Potential

The design of explainability approaches and the goal of providing adequate explanatory information

with the potential to affect stakeholders desiderata, again, hold untapped interdisciplinary potential, with re-

search questions such as: (a) How can we pinpoint what explanatory information an explainability approach

should provide in which case? (b) How can we design interactive explainability approaches? (c) How can

explainability approaches involving human facilitators be optimally designed? (d) How can we guarantee

that an explainability approach provides the required explanatory information? (e) How should stakeholders’

desiderata and their degrees of understanding be taken into account when generating explanatory information

or when developing new explainability approaches?

For all of these research questions, we see a potential for collaboration between computer scientists,

philosophers, psychologists, and cognitive scientists. For instance, philosophers and psychologist have to

determine which information is needed to assess whether a system is fair, whereas computer scientists de-

velop explainability approaches that provide this information, are aware of trade-offs between different ap-

proaches as well as of technical constraints. Furthermore, investigating how the examination of stakeholders

and their desiderata narrows down the options of possibly successful explainability approaches might be a

fruitful area for future research.

A more thorough discussion about which desiderata of what stakeholder class call for what kind of ex-
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plainability approach goes far beyond what a single paper can achieve. However, in Section 6, we will show

that our model could inspire work that is necessary to evaluate the usefulness of an explainability approach

in relation to a given desideratum. Furthermore, we will show that the model supports the development

of new explainability approaches to satisfy a given set of desiderata. Thus, the next section aims to show

how our model can lead to actionable insights for XAI research by analyzing the concepts and relations that

we propose in Figure 1. By means of hypothetical application scenarios, we want to stimulate ideas about

specific applications of our model.

6. Bringing It All Together: Hypothetical Application Scenarios

Following, we will present how the previous sections come together within hypothetical application

scenarios. These scenarios highlight the importance of different stakeholder classes and their desiderata.

Furthermore, these scenarios emphasize that understanding affects the satisfaction of these desiderata, that

explanatory information provided by explainability approaches facilitate understanding, and that analyzing

and investigating these concepts and their relations is central for the aims of XAI as well as for the develop-

ment of explainability approaches that can successfully satisfy stakeholder desiderata.

The main application of our model is derived from the idea that if an explanation process does not

change a certain desideratum’s extent of satisfaction, the corresponding explainability approach might not

be a suitable means for satisfying the desideratum in the given context. Such a discovery (e.g., resulting from

stakeholder feedback or from empirical investigation) can provide feedback regarding which explainability

approaches and what kinds of explanatory information work for which desiderata in which contexts. Thus,

this feedback can serve as an input for the improvement of explanation processes and, consequently, helps

to evaluate, adjust, choose, and develop explainability approaches for a given purpose and context.

We propose that each step in our model (Figure 1: Explainability Approaches → Explanatory Infor-

mation → Understanding → Desiderata Satisfaction) allows for drawing inferences about the explanation

process involving explainability approach(es), kind(s) of explanatory information, and stakeholder under-

standing. The following questions, which arise at different points in our model, are of particular interest:

• Who are the relevant stakeholders and what are their specific characteristics? Which are the relevant

desiderata in a specific context and are they satisfied?

• Have the stakeholders acquired a sufficient degree and the right kind of understanding that allows for

assessing whether given desiderata are satisfied and to facilitate their satisfaction?
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• Does the provided explanatory information and its format of presentation facilitate stakeholders’ un-

derstanding in a given context and in consideration of the stakeholder characteristics?

• Is the explainability approach able to provide the right kind and amount of explanatory information in

the right presentation format?

• Are there contextual influences hindering or promoting the satisfaction of desiderata through the ex-

planation process?

Investigating these questions requires empirical research, hypothesis testing and interdisciplinary coop-

eration, but should, eventually, aid in evaluating, adjusting, choosing, and developing explainability ap-

proach(es) and finding explanatory information in order to adequately satisfy stakeholders’ desiderata.

With this in mind, we believe that our model is useful for several important application scenarios. First,

our model is useful for choosing adequate explainability approaches for novel application contexts of arti-

ficial systems and for guiding the development of new explainability approaches. Specifically, our model

can be used to inform projects on how to develop explainability approaches to satisfy certain desiderata for

a given class of stakeholders. Second, our model is useful for evaluating why and at which stage an ex-

plainability process failed to contribute to satisfying the relevant desiderata. Let us assume that the use of

an explainability approach does not lead to the satisfaction of a certain desideratum. Why is this the case?

Is the explainability approach not suitable for the satisfaction of the desideratum (e.g., the explainability

approach provides the false kind of explanatory information) and should be replaced by another approach?

Or does the error lie somewhere else in the explanation process? In some cases, we may be able to adjust

the explainability approach appropriately to achieve its intended purpose.

6.1. General Application Scenarios

For structured attempts to evaluate, adjust, choose, or develop explainability approaches for a given

context we roughly distinguish two scenarios, which we call the evaluation and the discovery scenario. In

the evaluation scenario, we want to investigate whether the use of a specific explainability approach was

adequate, and if not, what is needed to fix its shortcomings. In the discovery scenario, we want to find

an adequate explainability approach to satisfy stakeholders’ desiderata. This can take one of two forms:

choosing among existing approaches or, if no adequate approach is available, developing a new one.

Stakeholder and Desiderata. Both evaluation and discovery scenarios start with examining the stake-

holders and clarifying their desiderata in the given context. In the discovery scenario, we have to examine

what the relevant classes of stakeholders are and which desiderata they have concerning the application of a
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system under consideration. In the evaluation scenario, we have to check – even in scenarios where already

identified desiderata are satisfied – whether the explanation process fits all relevant classes of stakeholders

and all of their desiderata (and ensure that we did not overlook important stakeholders or desiderata).

For this, we need input from a wide variety of disciplines including but not limited to scholars from law,

sociology, psychology, philosophy, and computer science. Such a combination of expertise and perspectives

helps to identify relevant stakeholder classes and list their desiderata pertaining to a given context. Defining

these desiderata falls within the expertise of philosophers. The elaboration of the desiderata’s relevant moral

and legal aspects is a task for ethicists and scholars from law. Furthermore, assessing contextual peculiari-

ties and stakeholder characteristics relevant in a given context will require psychologists (on the individual

level), sociologist (on the group level), as well as domain experts such as judges or personnel managers (for

particular application scenarios).

Desiderata Satisfaction. For the discovery scenario, the next step is to determine what it means that

stakeholders’ desiderata are satisfied in a specific context: to make estimates, to provide guidelines, and

to create measures for when the identified desiderata are satisfied. For the evaluation scenario, we have to

check whether the relevant desiderata are satisfied or not. If they are, the explanation process was successful

and the chosen explainability approach appropriate. If they are not substantially satisfied, there are two

possible cases. First, the necessary understanding was not acquired and, thus, the desideratum is also not

epistemically satisfied. Then, an improvement of the stakeholders’ understanding is required. Second, an

adequate degree and kind of understanding is reached and, thus, the epistemic facet of the desideratum is

satisfied. In this case, we may conclude that the regarded desideratum is not directly substantially satisfiable

by means of explainability approaches. Regardless of the case, at this point we have to move on to investigate

stakeholders’ understanding.

Determining conditions for desiderata satisfaction will be an interdisciplinary task for psychologists,

philosophers, and scholars from law. Furthermore, computer scientists and domain experts can give practical

input on satisfaction conditions for the desiderata in their specific domain. Making the satisfaction of these

desiderata measurable and examining their extent of satisfaction will be a job for psychologists who develop

measures or tasks that help to assess the extent of desiderata satisfaction. Additionally, it can be a task for

scholars from law or philosophers to provide clear guidelines for when a desideratum is satisfied.

Stakeholders’ Understanding. The discovery scenario continues by investigating and defining require-

ments for the stakeholders’ understanding needed to satisfy the desiderata under consideration. Specifically,

we have to determine the appropriate degree and kind of understanding concerning the system and its out-
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put that promise to enable the epistemic facet of desiderata satisfaction. At the same time, this means that

we need to assess (e.g., in studies using tasks to measure stakeholders’ mental models of a system, or in

studies using tasks to reveal whether stakeholders were able to, for instance, explain a systems’ functioning

or predict a systems’ behavior and outcomes) stakeholders’ actual degree and kind of understanding. This

is especially important in the evaluation scenario when deficits in the substantial desiderata satisfaction be-

come apparent. This results from the circumstance that assessing whether the required degree and kind of

understanding that has been achieved allows for drawing inferences as to whether there is a fundamental

gap between the explanatory process and the substantial desiderata satisfaction, or whether the provided

information is not appropriate to evoke understanding. This is due to the fact that the explanation process

can only serve to maximize understanding. If a desideratum still remains (substantially) unsatisfied, its full

satisfaction goes beyond the scope of any explainability approach.

Philosophers can help to investigate and explicate what it means to have a certain degree or kind of

understanding. Building on this, psychologists can design ways to empirically assess and measure such

understanding (e.g., is it necessary for a given desideratum that stakeholders are able to predict a system’s

outputs? Is it necessary that stakeholders are able to anticipate situations when systems will likely fail?).

Furthermore, scholars from law can contribute conditions for traceability and auditability.

Explanatory Information. The next step in the discovery scenario is to pin down what explanatory

information has the potential to facilitate the right kind and degree of understanding in a predetermined

context. This implies an evaluation of different dimensions of explanatory information with respect to the

expected effects within an explanation process. To do so, we have to pay attention to, for instance, the

kind of information, its presentation format [36], its quality [17], its amount [171], its completeness, its

complexity, or its adequacy for the given context [171]. In the evaluation scenario, we have to check whether

an explainability approach provides explanatory information that sufficiently meets the previously identified

requirements. Sometimes there will also be a need to re-evaluate whether the requirements concerning the

information are indeed adequate.

In this respect, philosophers and other explanation scientists can help to distinguish between different

kinds and features of explanatory information [6, 7]. Furthermore, scholars from law can examine current

legislation to find out whether it prescribes certain kinds of explanatory information. In the case of the

GDPR, for instance, they have to specify what it means to “provide [...] meaningful information about

the logic involved” (GDPR Art. 13 (2)(f); [101]). Finally (and based on this differentiation), educational

or cognitive psychologist have the task to characterize the explanatory information that is best suited to
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facilitate the required kind and degree of understanding for a certain context.

Explainability Approach. Insights from the assessment of the concepts and relations in our model can

guide and inform the requirements for explainability approaches that aim to satisfy given desiderata. This is

of particular importance for the discovery scenario, where the primary objective is to identify which approach

is expected to be most appropriate for providing specific information. Assume that, in the evaluation scenario

we are at a point where the desiderata are not satisfied, the adequate degree and kind of understanding is not

evoked, and the required explanatory information is not delivered. In this case, it is necessary to investigate

whether the explainability approach is even capable of producing explanatory information with the right

features at all. All the insights that are available at this point can indicate whether an existing explainability

approach provides explanatory information that is sufficient to satisfy stakeholders’ desiderata.

Additionally, we can learn whether a given explainability approach has the potential to derive explanatory

information that can satisfy stakeholders’ desiderata to a certain degree, whether it is necessary to adjust the

explainability approach, whether it is sufficient to choose another one, or whether we need to develop an

entirely new one. At this stage, computer scientists who can improve, adjust, and design explainability

approaches are the main contributors integrating the aforementioned insights. First, they have the abilities to

assess what is technically feasible and possible. Second, they can actually implement the demands regarding

the explainability approach resulting from the previous steps.

6.2. Specific Application Scenario

We will conclude our thoughts about the application of our model by means of a specific example.

Consider a situation where users want a system that produces fair outputs (substantial facet). For this,

we first need an explanation process that enables them to assess whether the system produces fair outputs

(epistemic facet) and, consequently, we need to find an adequate explainability approach. We first clarify

the relevant user sub-classes and their prototypical characteristics. Will it be, for instance, novice or expert

users? Then, we determine whether other stakeholder classes also have to be considered. For example, do

we need to consider the perspectives of regulators regarding fairness? Furthermore, we have to anticipate the

context. Are we talking about a personnel selection tasks or court cases with completely different contextual

peculiarities?

Subsequently, we determine what users mean when they desire fair outputs (i.e., we clarify the satisfac-

tion conditions of the desideratum’s substantial facet). What kind of algorithmic fairness do they expect?

At the same time, it is important to be aware of other relevant desiderata as the satisfaction of other user
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desiderata could be affected when trying to satisfy the fairness desideratum. Similarly, there may be unan-

ticipated effects on the stakeholders’ desiderata. For instance, will using a specific explainability approach

that proves suitable to assess system fairness also affect predictive accuracy of the artificial system?

Next, we consider the desideratum’s epistemic facet. Under which circumstances would users be enabled

to assess whether the outputs of a system are fair? What do they need to understand with regard to a

system’s functioning or outputs? To answer these questions, we must determine what degree and what kind

of understanding is appropriate for the epistemic satisfaction of the fairness desideratum and we need a

detailed investigation of how contextual influences moderate this relation. Furthermore, we must be aware

of given stakeholder characteristics (e.g., users’ background knowledge).

When we have estimated what degree and kind of understanding is required to enable users to assess

whether a system’s outputs are fair, we can determine what kind of explanatory information facilitates this

understanding. For example, we might need explanatory information about the influence of features based

on protected attributes (e.g., race) on the system’s outputs. Alternatively, we might need information that

contrasts the treatment of different groups of people (e.g., minorities and majorities). With this knowledge,

we can determine what explainability approach provides this kind of explanatory information. Most likely,

it would be post-hoc, local approaches that provide explanatory information that either highlights feature

relevance or that allow users to compare subsets of instances regarding their predicted outcomes. As a result,

we have specific demands regarding the explainability approach for satisfying the fairness desideratum in

the case under consideration.

With this knowledge we can either choose an adequate explainability approach from existing ones or

design a new one. Afterwards, we can investigate whether the explanatory information resulting from the

respective explainability approach leads to a better understanding of the system and its outputs. This means

that we are now in a position to empirically evaluate the success of the selected approach and the corre-

sponding explanation process.

For this, we may conduct a stakeholder study and find that, given our definitions of desiderata satisfac-

tion, the epistemic facet may be satisfied (e.g., users can actually and justifiedly assess whether the system

produces fair outputs; users can explain whether and why the respective system’s outputs are fair; users can

predict what kind of inputs will lead to fair or unfair outcomes) but not the substantial one (i.e., the system’s

outputs are actually not fair). Then, we may have to conclude that the substantial facet of the desidera-

tum is not satisfiable by altering the explainability approach. Nevertheless, satisfying the epistemic facet

of the desideratum can help us to figure out how to satisfy the substantial facet of the desideratum beyond
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XAI-related strategies. For instance, we may obtain information that a developer can use to improve system

fairness. In this case, the artificial system has to be adjusted or changed to additionally satisfy the substantial

facet of desiderata satisfaction.

On the other hand, if the stakeholder study reveals that the epistemic facet of the desideratum is not

satisfied (e.g., users fail in explaining whether and why the respective system’s outputs are fair), we can

conclude that the users’ degree or kind of understanding of the system and its outputs does not suffice. In

many situations this may be the case because the explanatory information was not suitable to evoke the

necessary understanding (e.g., the explainability approach did not provide explanatory information suitable

to allow assessing whether the system produces fair outcomes). Depending on the context, the task, and

stakeholders’ individual characteristics, it may be necessary to iteratively adjust the characteristics of the ex-

planatory information so that stakeholders engaging with this information achieve the right kind and degree

of understanding. Alternatively, it may be necessary to adjust the explainability approach if it is not suitable

to provide explanatory information useful for facilitating stakeholder understanding.

7. Conclusion

With increasing numbers of people affected by artificial systems, the number of stakeholders’ desiderata

will continue to grow. Although the focus of XAI research has shifted towards human stakeholders and

the evaluation of explainability approaches, this shift still needs to incorporate a comprehensive view of all

stakeholders and their desiderata when artificial systems are used in socially relevant contexts as well as

empirical investigation of explainability approaches with respect to desiderata satisfaction. This engenders

an even more pressing need for interdisciplinary collaboration in order to consider all stakeholders’ per-

spectives and to empirically evaluate and optimally design explainability approaches to satisfy stakeholders’

desiderata. The current paper has introduced a model highlighting the central concepts and their relations

along which explainability approaches aim to satisfy stakeholders’ desiderata. We hope that this model

inspires and guides future interdisciplinary evaluation and development of explainability approaches and,

thereby, further advances XAI research concerning the satisfaction of stakeholders’ desiderata.
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[142] M. A. Köhl, K. Baum, M. Langer, D. Oster, T. Speith, D. Bohlender, Explainability as a non-

functional requirement, in: IEEE 27th International Requirements Engineering Conference (RE),

2019, pp. 363–368. doi:10.1109/RE.2019.00046.

[143] H. W. De Regt, Understanding scientific understanding, Oxford University Press, 2017. doi:10.

1093/oso/9780190652913.001.0001.

[144] C. Baumberger, C. Beisbart, G. Brun, What is understanding? An overview of recent debates in

epistemology and philosophy of science, in: S. G. C. Baumberger, S. Ammon (Eds.), Explaining

Understanding: New Perspectives from Epistemolgy and Philosophy of Science, Routledge, 2017,

pp. 1–34.

50

http://dx.doi.org/10.1007/s10676-004-3422-1
http://dx.doi.org/10.1007/s10676-004-3422-1
http://dx.doi.org/10.1146/annurev-orgpsych-032516-113108
http://dx.doi.org/10.1093/jcr/ucz013
http://dx.doi.org/10.1146/annurev.psych.57.102904.190100
http://dx.doi.org/10.1126/science.aaf2654
http://dx.doi.org/10.1287/isre.7.3.342
http://dx.doi.org/10.1109/RE.2019.00046
http://dx.doi.org/10.1093/oso/9780190652913.001.0001
http://dx.doi.org/10.1093/oso/9780190652913.001.0001


[145] F. I. Malfatti, On understanding and testimony, Erkenntnis (2019) 1–21doi:10.1007/

s10670-019-00157-8.

[146] C. Baumberger, Types of understanding: Their nature and their relation to knowledge, Conceptus

40 (98) (2014) 67–88. doi:10.1515/cpt-2014-0002.

[147] K. Lambert, On whether an answer to a why-question is an explanation if and only if it yields scientific

understanding, in: G. G. Brittan (Ed.), Causality, method, and modality, Vol. 48, Springer, Dordrecht,

Netherlands, 1991, pp. 125–142. doi:10.1007/978-94-011-3348-7_8.

[148] T. Lombrozo, S. Carey, Functional explanation and the function of explanation, Cognition 99 (2)

(2006) 167–204. doi:10.1016/j.cognition.2004.12.009.

[149] M. T. Chi, N. De Leeuw, M.-H. Chiu, C. Lavancher, Eliciting self-explanations improves understand-

ing, Cognitive Science 18 (3) (1994) 439–477. doi:10.1207/s15516709cog1803\_3.

[150] R. E. Mayer, Cognition and instruction: Their historic meeting within educational psychology, Journal

of educational Psychology 84 (4) (1992) 405–412. doi:10.1037/0022-0663.84.4.405.

[151] S. T. Mueller, R. R. Hoffman, W. Clancey, A. Emrey, G. Klein, Explanation in human-ai systems: A

literature meta-review, synopsis of key ideas and publications, and bibliography for explainable ai,

CoRR abs/1902.01876. arXiv:1902.01876.

[152] C. Kelp, Understanding phenomena, Synthese 192 (12) (2015) 3799–3816. doi:10.1007/

s11229-014-0616-x.

[153] P. J. Feltovich, R. L. Coulson, R. J. Spiro, Learners’ (mis)understanding of important and difficult

concepts: A challenge to smart machines in education, in: Smart Machines in Education: The Coming

Revolution in Educational Technology, MIT Press, Cambridge, MA, USA, 2001, pp. 349–375.

[154] W. B. Rouse, N. M. Morris, On looking into the black box: Prospects and limits in the search for

mental models, Psychological bulletin 100 (3) (1986) 349–363. doi:10.1037/0033-2909.

100.3.349.

[155] L. Rozenblit, F. Keil, The misunderstood limits of folk science: An illusion of explanatory depth,

Cognitive Science 26 (5) (2002) 521–562. doi:10.1207/s15516709cog2605_1.

51

http://dx.doi.org/10.1007/s10670-019-00157-8
http://dx.doi.org/10.1007/s10670-019-00157-8
http://dx.doi.org/10.1515/cpt-2014-0002
http://dx.doi.org/10.1007/978-94-011-3348-7_8
http://dx.doi.org/10.1016/j.cognition.2004.12.009
http://dx.doi.org/10.1207/s15516709cog1803_3
http://dx.doi.org/10.1037/0022-0663.84.4.405
http://arxiv.org/abs/1902.01876
http://dx.doi.org/10.1007/s11229-014-0616-x
http://dx.doi.org/10.1007/s11229-014-0616-x
http://dx.doi.org/10.1037/0033-2909.100.3.349
http://dx.doi.org/10.1037/0033-2909.100.3.349
http://dx.doi.org/10.1207/s15516709cog2605_1


[156] D. Kuhn, How do people know?, Psychological science 12 (1) (2001) 1–8. doi:10.1111/

1467-9280.00302.

[157] T. Kulesza, S. Stumpf, M. Burnett, S. Yang, I. Kwan, W.-K. Wong, Too much, too little, or just right?

Ways explanations impact end users’ mental models, in: IEEE Symposium on Visual Languages and

Human Centric Computing, IEEE, 2013, pp. 3–10. doi:10.1109/VLHCC.2013.6645235.

[158] J. Tullio, A. K. Dey, J. Chalecki, J. Fogarty, How it works: A field study of non-technical users

interacting with an intelligent system, in: Proceedings of the 2007 Conference on Human Factors in

Computing Systems (CHI), Association for Computing Machinery, New York, NY, USA, 2007, pp.

31–40. doi:10.1145/1240624.1240630.

[159] M. Mitchell, S. Wu, A. Zaldivar, P. Barnes, L. Vasserman, B. Hutchinson, E. Spitzer, I. D. Raji,

T. Gebru, Model cards for model reporting, in: Proceedings of the 2019 Conference on Fairness,

Accountability, and Transparency, Association for Computing Machinery, New York, NY, USA, 2019,

p. 220–229. doi:10.1145/3287560.3287596.

[160] M. Langer, C. J. König, A. Fitili, Information as a double-edged sword: The role of computer ex-

perience and information on applicant reactions towards novel technologies for personnel selection,

Computers in Human Behavior 81 (2018) 19–30. doi:10.1016/j.chb.2017.11.036.

[161] D. T. Newman, N. J. Fast, D. J. Harmon, When eliminating bias isn’t fair: Algorithmic reductionism

and procedural justice in human resource decisions, Organizational Behavior and Human Decision

Processes 160 (2020) 149–167. doi:10.1016/j.obhdp.2020.03.008.
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