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Abstract:  
A different explanation of the Turing machine halting problem is because of arithmetic logic irreversibility 

and memory erasure that introduce computational uncertainty to the program running a Turing machine 

due to loss of information in the computation. This is basically what causes an algorithm to not be able to 

generate more information about an input, but at most the information is preserved. Characteristics of 

arithmetic logical irreversibility, Landauer's principle and memory erasure. Definition of the concept of 

arithmetic logical entropy as a measure of uncertainty and indicator of loss of information. Turing machine 

and its equivalent, general recursive functions, through the λ1 calculus and the Turing/Church thesis. There 

are recursive functions, programs that the Turing machine performs, whose behavior or semantic 

characteristics cannot be determined by another algorithm due to the loss of information in logical-

arithmetic operations. This means that the behavior of these is not completely predictable at each stage of 

the computation due to the lack of information in its definition. There are also trivial cases of highly 

predictable recursive functions because more information is available about their behavior. The indecision 

in the halting problem of the Turing machine as lack information to determine how the computation will 

be developed for programs (RF2) when more semantic characteristics of these are unknown. Since 

algorithms do not create more information than they have in the definition of their input, which in this 

case would be a recursive function or program, it cannot be determined by algorithms if a program will halt 

or not. Except in trivial cases that have more information about the program, but this would be cases and 

not the rule. 

 
1 Lambda-calculus 
2 Recursive Funtions 
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This also leads us to a different explanation of the Turing oracle machine as such that it introduces 

information from outside the computation, extra information that compensates for the lack of information 

and thus decides the result of the computation. 

"No man ever steps in the same river twice, everything flows" Heraclitus of Efeso 

Introduction 
 

This work is based on ideas arising from articles written by C. Bennet, R. Landauer, G. Chaitin.3 The central 

idea of reversibility and computational entropy is based on Prof. A. Ben-Naim's explanation of entropy and 

the second law of thermodynamics (increased entropy).4 In his books on these topics he suggests a more 

intuitive and accessible explanation of entropy and the second law based on Shannon's information theory 

and Boltzmann’s statistical mechanics. This is a statistical mathematical explanation that can be applied to 

other topics because they are abstract concepts that may be disconnected from thermodynamic physics. 

The concepts of reversibility and entropy in this work are abstract and therefore disconnected from the 

physical support and discussions that arise from this.  Disputes arising from questions such as whether the 

interpretation of thermodynamics through information theory is correct or not correct or questions about 

its connection to Boltzmann's mechanics or the question of Landauer's principle that would explain 

Maxwell's demon paradox through the loss of5 information at an abstract level, which many experts 

disagree with. These ideas of reversibility and entropy are used here as abstract tools to expose a 

computational limitation that explains the undecidability of the Turing halting problem.  

This version of the article is different from the original versions, there are changes in the thesis. These 

changes are based on criticism and corrections sent to me from the original post. In this version I have tried 

to respond to the criticisms made to the original article. It is also an adjustment of this research to other 

concepts developed later, such as the conservation of information. The concepts of logical-arithmetic 

 
3 In the bibliography there are the articles by these authors relevant to this work 
4 In the bibliography the first book by A. Ben-Naim about entropy and the second law 
5 the physics of the Information 
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irreversibility and its entropy have not been criticized, they haven’t been questioned; therefore, they can 

be considered correct. Also there haven’t been any problem on the historical development of the problem 

and other computational concepts addressed in the original versions. 

But there has been criticism of the application of these concepts to the halting problem. Having trivial 

cases, in which there are primitive recursive functions that would be very predictable, that is, decidable, 

these functions having the same irreversible arithmetic logic and loss of information. My thesis is that in 

these cases much more is known about these programs or recursive functions than in many other cases 

where there is not enough information because they are more complex and non-trivial. The recursive 

functions and their complexity define hierarchies of complexity, that is, what can be calculated and what 

cannot be calculated by means of these; therefore, there are trivial and non-trivial cases. So also, Bennet's 

reversible Turing machine susceptible to the halting problem also despite its reversibility. Being its logic-

arithmetic reversible backwards but ignoring its forward behavior. Therefore, no algorithm can predict 

how it will behave in the future, since this information cannot be generated by another algorithm if this 

information is not in the machine definition. The limitation of the algorithms due to the loss of information 

makes it impossible to generate information that is not in the input, that is, in the program or recursive 

function itself. 

 The Hilbert question, the theorem of Gödel and Turing's machine 6 
 

A famous mathematical problem and its response was what led Turing to develop his automatic 

calculation machine or primitive computer called Turing's machine and thus discover the problem of 

computable numbers that these machines have, producing or not certain types of outputs by means of 

automatic calculation, which would later become the famous halt problem7. This problem arises from a 

question that was formed by the famous mathematician David Hilbert in several mathematical congresses 

 
6 More details you can find in this page Halting problem - Wikipedia 
7 The halt problem was apparently an idea of Martin Davis in 1958, see Lucas's article on the origins of the Turing halt problem, 
its history, and its further development 

https://en.wikipedia.org/wiki/Halting_problem
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and the answer was the theorem of Gödel.  Hilbert asked the question in different ways, but it can simply 

be said that the question was as follows: How can it be shown that any statement or mathematical 

question well formulated by means of a formal language of mathematical logic can be said to be true or 

false?   This means that you can answer to any question or mathematical statement well formulated true 

or false so that the math is consistent and complete and therefore you can demonstrate any theorem or 

affirmation. At that time, all mathematicians were convinced that any formally well-defined statement can 

be decided even there were unresolved mathematical problems, statements, or questions that no one 

knew how to solve them, but they were not unsolvable rather by a technical problem or ignorance of some 

detail, they were convinced that they could solve those problems in the future. No one could ever imagine 

at that time the possibility of another option: that there are mathematical statements that cannot be 

decided whether they are true or false. 

It can be said that the problem of decision is to find a consistent and robust automatic method that using 

the formal language of logical inference all mathematical affirmation can be demonstrated. Gödel in his 

theorem responded negatively to Hilbert’s question and showed that mathematics cannot be both 

complete and consistent. But he did not answer the decision question in a definitive way and acceptable to 

all mathematicians, there were those who still had doubts. Turing completed the work of Gödel and 

responded to the decision problem in a blunt way and along the way he has created the theory of 

computability. Turing's machine was the tool he used in his demonstration that would complete the 

theorem of Gödel. 

Turing's question was somewhat different from Hilbert’s one, but equivalent, this question is this: Can all 

numbers be calculated automatically? Are all numbers computable? This is a surprising and very rare 

question because no one ever saw numbers that cannot be calculated, there were not any mathematical 

instruments or concepts to deal with this question.  Most of the numbers people use can be calculated, but 

Turing suspected that there were numbers that could be formally defined but could not be calculated by 

finite means, like those of a person calculating on paper with a pencil. Turing defined today's well-known 
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concept of algorithm as a process of calculation or computing performed by a person with pen and paper. 

So, he wondered if an automatic machine that worked like this, like a person computing, could calculate 

any number? To answer this question Turing designed an abstract automatic calculation machine, a 

primitive computer, called a Turing machine. The idea of the machine was very simple, a person doing 

calculations, with limited means, step by step. The simplicity of this tool made its demonstration about 

incalculable numbers in a robust and out-of-all discussion result. 

The Turing machine and the automatic calculation8 
 

The Turing machine is a model of computation performing an automatic, basic, and elementary calculation. 

Through this model you can investigate questions related to computing, computational complexity for 

example the number of steps that must be taken to calculate something and solve a problem, how much 

memory will be required for this when computer resources are limited these issues are very important. 

This machine can process a symbol syntax without limits in theory and can use first-order logic and 

arithmetic. All of this was proved by a mathematician named Alonzo Church through his theory of the λ 9 

calculus of recursive functions which is a mathematical definition equivalent to Turing's machine, but much 

more mathematically rigorous.10 The λ calculus is the mathematical foundation of computability and it 

allows us to view the automatic calculation machine as a series of arithmetic logical operations equivalent 

to a classic Turing machine. The definitions of Turing and Church are equivalent and are therefore known 

today by the thesis Turing/ Church. This thesis defines the concept of effective computability in 

mathematical logic and the concept of algorithm as an automatic calculation process. Thus, the concept of 

Turing equivalence allows to define every Turing machine as a system of orders more general than Turing’s 

limited definition of the calculus machine and this is something very important and useful because it can 

be shown that very different computational models are equivalent to a Turing machine.  Through these 

 
8 one explanation more detailed you can find here Turing machine - Wikipedia 
9 Lambda-calculus 
10 Algorithm in the calculus λ is based on finite recursive functions 

https://en.wikipedia.org/wiki/Turing_machine
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new and different models, you can investigate other properties of automatic computing that are not easy 

to see on a classic Turing machine. 

Finally having Turing this automatic computing model, Turing’s machine could demonstrate the decision 

theorem according to its equivalent approach.  So, Turing represent different machines with a special 

numbering and thus flatten the differences between order tables and input states that these machines   

have in a way very similar to that used by Gödel in his demonstration of the indecision theorem when he 

codified all the formulas of formal logic. This numbering of the machines allowed Turing to propose that 

for any number that is computable must be a machine, it is a machine number. 

In the next step Turing creates a machine that can mimic every machine, the universal machine. This 

machine has as input a machine number and performs the computing of that specific machine and thus 

checks whether the machine could be computed through the universal machine. Also, the λ calculus gives a 

mathematical definition of the concept of universal machine therefore this universal machine is well-

founded mathematically speaking. 

This work makes use of an equivalent Turing computational model in accordance with the Turing Church 

thesis. This complete Turing machine is based on arithmetic logical operations that include memory 

erasure, something closer to a computer program with a list of arithmetic logical orders and therefore 

closer to the Church’s λ calculus than to the classic Turing machine. But thanks to the Turing Church thesis 

it can be said that the conclusions affect any Turing machine or equivalent. 

The halting problem of the Turing machine as a decision problem 
 

 Decision problems are those problems on which an answer to the problem should be received in a 

blunt way:  true or false, such as the question posed by Hilbert. You can define decision problem as any 

question about an infinite group of entries that must be answered if they fulfill any property, whether, 

therefore, indecision means that you cannot answer this question forcefully yes or no. 
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Turing proved through the universal machine that there are Turing machines (number of machines) that 

for which the universal machine cannot halt the calculation and you also cannot know if they halt one day 

with a result. This demonstrated that the universal machine cannot determine whether a machine halts 

with result by printing an output or continues to calculate in an infinite circle or freezes.11 This fact is the 

halting problem of Turing's machine and is a fundamental computing or automatic calculation problem, it 

is directly connected to the problem of the formal math decision (Hilbert's question) and therefore the 

result of Turing completes the theorem of Gödel if anyone was still in doubt. Historically speaking, the 

concept of stop appears in Church's λ calculus as part of efficient computation, but it does not appear in 

the original work of Turing, who dealt with the concept of circular and non-circular machines that cannot 

calculate certain numbers and cannot predict what they will print. But later was done the connection 

between these concepts through the Turing/Church thesis12. 

For years were tried to understand more thoroughly this phenomenon that appears in different ways in 

formal mathematics (Theorem of Gödel) and in computing as a freeze or circularity of a program, why does 

this happen? and what is the cause?13 

 One of the most interesting explanations was given by one of the founders of algorithmic 

information theory, G. Chaitin, in an article on the theorem of Gödel and information14, according to this 

article, the theorem of Gödel has an informative aspect by which any mathematical affirmation that has 

more information than the axiomatic system cannot be of proved using first-degree logic due to lack of 

information on the axiomatic basis. Therefore, the phenomenon of incompleteness proved by Gödel in the 

mathematical logic and Turing’s halting problem are common and natural phenomena, they are not rare 

and uncommon phenomena as they had taken them at first. This vision is at the heart of Chaitin's 

 
11 explanation more detailed of the halting problem Halting problem - Wikipedia 
12 Lucas, the origin of the halting problem 
13 The philosophical question that Hintikka mentioned in his book on Gödel's theorem, I will refer to this in the conclusions 
14 C. Calude has published several works based on this thesis and I will refer to these results in the conclusions because they are 
consistent with the hypothesis presented here. 

https://en.wikipedia.org/wiki/Halting_problem
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algorithmic information theory and the Chaitin incompleteness theorem.15 Despite the criticisms that 

received these ideas,16  for example, as how can be determined that there is more or less information on 

the axiomatic system, research done on random numbers and series within the framework of algorithmic 

information theory suggests that there is some truth in Chaitin vision of things. According to this theory 

there is no way to calculate a random number or generate a random series because they are more 

informative than the finite recursive functions (algorithm) that should generate them and this is 

compatible with Turing's assertion about numbers that cannot be calculated with an automatic machine, 

but the view of algorithmic information theory is fundamentally closer to Shannon's information theory. In 

this work it is completing the informative view of the problem of the halting in a different way to the 

theory of algorithmic information but having strong connections with it. 

There are other computer scientists17 who have thoroughly investigated this Gödel incompleteness 

problem and agree with the thesis about the informational aspect of the halting problem. These also point 

to an information limitation that occurs in all finite computing or finite theory, as the root of the problem. 

According to this thesis, uncertainty is at the base of algorithmic randomness. This algorithmic randomness 

described by algorithmic information theory18 is an expression of the incompleteness of arithmetic. 

Theorems in a finite and well-defined theory like arithmetic cannot be more complex than this theory. The 

most complex theorems would be improbable in theory. The information of the theory is incomplete in 

many cases and would be complete in trivial cases. The theory sets a limit to the complexity for the 

theorems that can be demonstrated within its framework, therefore, incompleteness is not accidental, and 

the limits imposed on computational complexity arise from the incompleteness of arithmetic and for this 

reason it exists halting problem. 

 
15 More details here Algorithmic information theory - Wikipedia 
16 In Panu Raatikainen article mentioned in the bibliography 
17 C. Calude and colleagues of this 
18 Kolgomorov complexity 

https://en.wikipedia.org/wiki/Algorithmic_information_theory
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Another very important result that is mentioned in these works and consistent with this thesis, says that 

the output of an arithmetic logical computation cannot have more information than the input of that 

computation. No more information can be obtained in the output of a program from an input by applying 

an arithmetic logic computation algorithm unless it is a machine that can add external information to the 

algorithm. Just as science needs more information to be able to explain more phenomena, a formal 

mathematical theory needs more information to prove a theorem. We can formally express a theorem well 

but perhaps it is not demonstrable in the specific theory. It is something that sounds natural to us but is 

not nothing trivial in mathematical logic and computation. 

Recursive functions, the height problem, and Rice's theorem 
Primitive recursive functions are basic functions that are obtained by applying them a finite number 

of times and can be calculated by means of a computer program using, for example, a “for” type loop. A 

basic function can be, for example, addition or multiplication or subtraction. Applying it recursively, a 

primitive recursive function is obtained, such as the factorial of an integer, which is obtained by combining 

addition and recursive multiplication. 

Most of the known computable functions are recursive primitives, therefore, they are the functions of 

greatest interest that can be calculated by Turing machines. But primitive recursive functions are a strict 

subset of general recursive ones. Church's calculus λ19 being a formal expression of general recursive 

functions. The Turing Church thesis refers to the equivalence between Turing machines, effective 

computation, and general recursive functions. Every general recursive function can be run on a Turing 

machine. There are many aspects and features of computation that are studied by means of general 

recursive functions, and many of these features are related to primitive recursive. For example, the 

Ackerman function is general, but it is not primitive because it is not bounded by a finite number of steps, 

finiteness is a very important characteristic of primitive functions. 

 
19 Lambda-calculus 
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Primitive functions can also be total or partial. Totals would be those defined in the entire definition 

domain of these or partial those that are defined only in a subset of the domain. The primitive total 

functions are a very special subset of the partial functions. The fact that they are defined in the entire 

domain guarantees that any value that falls in the domain of definition of this can be calculated while in 

the partial ones this is not the case and therefore, they are more prone to calculation failures and to the 

fact that the process does not halt. compute with a result. For this reason, the Turing halting problem has 

its expression here in being able to determine if the primitive functions in a program are total or partial 

and this cannot be known by means of an algorithm as Rice demonstrated in his famous theorem. This 

theorem is central to the theory of computation and computational complexity because it establishes a 

very general series of problems that are undecidable by means of algorithms. This has a deep connection 

to the Turing halt problem as will be seen later, but it is more general and extends the classes of problems 

that cannot be solved by algorithms. 

Rice's theorem establishes that all the semantic properties of recursive functions or languages recognizable 

by Turing machines, that is, non-trivial properties, related to their behavior, are undecidable. Trivial 

properties are true or false properties for all computable functions and non-trivial properties just the 

opposite, which cannot be established for all computable functions. In terms of general recursive functions 

this theorem says that there is no effective method that can establish whether a partial recursive function 

has some non-trivial property. There is no algorithm that can decide that a non-trivial property holds for all 

computable partial functions. The theorem is not applicable to properties of the Turing machine itself but 

to the language that this machine recognizes and the recursive function it performs, it is about the 

behavior of computer programs. 

His proof is related to the indecision of the stop problem. If it could be established that a certain non-trivial 

property holds for computable partial functions by means of an algorithm, the Turing machine halting 

problem could be solved. But since it is not decidable, whether a program halts or not, neither can it be 

decided that a non-trivial property of a program holds. But this is a more general result than the Turing 
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halting problem because it sets up a series of problems for which there is no algorithm that can decide 

them. For example, determine classes of recursive functions (programs) that behave in a certain way, this 

property being non-trivial. According to Rice's theorem, if there is at least one partial computable function 

in a particular class C of partial computable functions and another partial computable function that is not 

in C, then the problem of deciding whether a particular program computes a function in C is undecidable 

and this is also true for the following classes of functions: 

The class of recursive functions that terminates for all input. 

The class of recursive functions that ends up returning 0 or not. 

The class of recursive functions that produce k zeros in their calculations. 

The class of recursive functions whose domain of definition is finite or not. 

The class of recursive functions that are injective. 

The class of recursive functions that are total or not total. 

This last class describes an important undecidable problem, a partial recursive function f(x) given by a 

Turing T machine cannot be known if it is total or not, except in very trivial cases. The entirety of a 

primitive recursive function is a non-trivial property. It is also undecidable whether the condominium of a 

recursive function is finite or infinite. Nor can it be decided by means of algorithms if a recursive function is 

injective, surjective, or bijective. All these cases are not predictable by an algorithm except well-known 

trivial cases. These are all indecision problems derived from Rice's theorem and if they could be decided by 

an algorithm the stop problem would not be true. 

Rice’s Theorem implies that there is no algorithm that can determine, in general, whether a given recursive 

function computes a particular property. This is because we can code recursive functions like Turing 

machines, so any non-trivial property of recursive functions corresponds to a non-trivial property of 

languages recognized by Turing machines. 
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These problems are closely related to the hierarchy of arithmetic complexity. This hierarchy tells us how 

complex a calculus problem is in arithmetic and therefore has a lot of importance in the theory of 

computation. If a computational problem is isomorphic or can be reduced to one of these problems, then it 

has the degree of undecidability given by the complexity of this problem, and therefore this would be a 

difficult or impossible problem to compute. 

The concept of arithmetic logical reversibility and memory erasure 
 

 These phenomena have been studied by C. Bennet and R. Landauer 20 in the 60s and 80s of the 

previous centuries on a thermodynamic physical plane with different computational devices. But they as 

physicist who were stayed in the thermodynamic aspects of the irreversible phenomena, less in the 

abstract consequences, in the logic mathematics that are the basis of computation, this area of research 

opened by them is known today as the physics of information. But this work is focused on the 

mathematical logical aspects of these concepts unrelated to physical support to give a different 

interpretation, thus creates some abstract concepts for these phenomena without going into the 

thermodynamic physical aspects. All these concepts based on mathematical logic and probability may be 

applied to computing, to the automatic calculation without connection to the hardware of computer or 

calculation machine.  Then we can discover how arithmetic logical irreversibility and memory erasure 

affect computation, generating computational uncertainty or improbability which would explain why the 

universal machine cannot calculate whether a certain Turing machine with defined input halts with a result 

or not. On the other hand, if we perform the calculation again the same result is received and this has an 

explanation, the uncertainty is local but not global, there is here a question of focus on computing or 

automatic calculation. The algorithm can also be treated as something potential and global such as 

machine code, instruction tables, program, but also as a local current process when computing. This is a 

 
20 Below herself mentions all the Articles relevant de these authors on the subject. 
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macro description (program, table of orders) in front of the micro description, the states of the computing. 

They are not the same thing; the theory of the information revels this fact. 

 Landauer's principle refers to a thermodynamic aspect of computing on the physical plane. This 

principle sets a minimum energy limit necessary to perform an irreversible computing or calculation 

operation according to this when a memory bit is erased for example there is an increase in entropy and 

therefore power is lost by dissipation and no work can be extracted from the computer, the computer 

consumes power when loses information.21 

Here it is suggested to interpret this in a different and more general way according to the 

explanation of A. Ben Naim for the rise of entropy as a general loss of information resulting from an 

irreversible operation at the logical, abstract level.22 How does this happen? if we have a bit of memory 

and delete it ,  it becomes NULL and if we try to recover it, we have two options 0 or 1, each with 50% 

probability because there is no preference for one value or another. This creates uncertainty because it is 

not possible to know for sure what the bit value was therefore it is irreversible at an abstract, logical level. 

Many erase operations like this happen in computing as this is an allowed operation because computer 

resources are limited so it is necessary to delete. On the classic Turing machine, it is also a permitted 

operation. If we assume the possibilities that this bit could also be NULL before deletion the situation 

becomes even more complicated as there are 3 possibilities with 33% probability each and this generates 

more uncertainty. 

We will discuss here the logical reversibility by means of the NAND logical gate, the famous 

operator NOT AND, for reasons of simplicity and its widespread use in basic digital systems. This gate or 

logical operator has the functional completeness property which means that you can express all the 

Boolean logic through combinations of this logical gate, and this is also valid for NOR, NOT OR. As a result 

 
21 More details on this value Landauer's principle - Wikipedia 
22 In the books of Ben-Naim scored below has excellent explanations about the theme but it must be acknowledged that Bennet 
and Landauer they also noticed this possibility, but they still stayed in the physical interpretation, the physics of information. 
Here because it is computing at an algorithmic abstract interpretation is foremost. 

https://en.wikipedia.org/wiki/Landauer's_principle
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of this property is usually based the computer’s hardware that they are after all digital systems on these 

gates and in particular NAND because it is easier to produce them, these gates are called universal gates. 

But the phenomenon of logical irreversibility exists in all the Boolean logical operators that form the basis 

of computers and the automatic computation of recursive functions, and this will be detailed later. 

 The logical irreversibility arises from the values of the truth tables of the operator or logical gate, for 

example, if the output of the operator is 1 then there are 3 input options so there is uncertainty regarding 

the input, if it is 0 there is a single possible input then there is absolute certainty about the input of that 

operator.  NAND Truth Table: 

input output 

(1,1) 0 

(1.0) 1 

(0,1) 1 

(0,0) 1 

 

In general, the gate or logical operator has 2 input bit and 1 bit output when in 50% of the outputs, when 

the value is 1, you cannot know what the exact input was because there are 3 equally likely options. This 

means that in the logical operator there is also uncertainty as in the case of deleting a bit because it is not 

possible to know with certainty all the values that were in the logical operator that have given certain 

results. 

  More complex the logic with NAND gates generates more uncertainty by the loss of information given by 

the bit’s differences between the inputs and outputs. I call this phenomenon logical entropy and it 23 will 

be analyzed later with the Shannon measure of information. Logical entropy introduces uncertainty into 

logical operations because you cannot know exactly what the operation was like with the inputs included 

 
23 Using the interpretation Ben-Naim 
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and this means loss of information, at some point after many operations, you cannot know exactly how it 

go to a certain place or result computing and this is an irreversible situation. You could certainly know it if 

you save all the data from the operations done, but then the computing had to be fully computed at least 

once. If we add to this the deletion that it is a permitted operation on a Turing machine or equivalent    

machine the uncertainty for loss of information in the computation becomes very large and important. 

 The arithmetic reversibility works very similar to logic. Any integer that is output from an arithmetic 

calculation almost always has several options as input. For example, let us take the number 8 in binary 

notation 1000, consisting of 4 bits, being it the result of a simple arithmetic operation as addition or 

multiplication or a combination of these, there are several calculation possibilities as you can see and all of 

them possible. If we take as input two 3 bits numbers, in total 6 bits, or 3 with 3 bits numbers in total 9 

bits, with the result only you cannot know which operation was made, there is a greater loss of information 

than there was in Boolean logic as you can see. Here are a couple of simple examples of possible 

operations. The operation is denoted digitally because they are performed on machines and their decimal 

equivalent: 

011+101=1000 (3+5=8), 010x100=1000 (2x4=8), (010x011) +010=1000 ((2x3) +2=8) 

010+110=1000 (2+6=8), 111+001=1000 (1+7=8), (011x011)-001=1000 ((3x3)-1=8) 

This phenomenon is known, but they were not given enough attention and less in the context of 

computation or automatic calculation.  As more arithmetic operations are doing in a computation, the 

difference between inputs and output will be larger, in these simple examples 6 bits or 9 bits inputs and 4 

bits result produce a difference of 2 to 5 bits of information. Therefore, there is more uncertainty here 

than with the logic operation or deleting memory. Also, here so you can see there is entropy that goes up    

24 with loss of information that can be calculated with the Shannon measurement of the information, but 

the calculation will be more complex when arithmetic operations became more complex. 

 
24 See Ben-Naim 
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Information theory: Shannon measure of information, characteristics, and 

interpretations25 
 

The Shannon measure of information is a mathematical, probabilistic tool whose function was to 

indicate a measure of information regardless of the content of the message.  Shannon developed his 

theory and this measure in message communications to improve the effectiveness of communications, but 

this theory as it happens sometimes became something different and more extensive than the original 

intention.   Information theory has spread to many scientific fields beyond communications engineering, 

sometimes with incorrect and confusing applications, but it has also given birth to very fruitful and 

important ideas in many areas of science. It can be said with certainty that modern digital communications 

are based on this theory and could not work without Shannon's ideas and her measurement of 

information. 

 Shannon's work on information began seriously in his investigation into message encryption during 

World War II. He was the author of a very serious mathematical research on information encoding and an 

analysis of message encryption in which he tried to improve the encryption of allied messages. Unlike 

Turing who was trying to break the encryption of messages coming out of the German encoding machine   

known as Enigma through of a primitive computer, Shannon tried to hide the message in a better 

encryption that would not destroy the content and make it unreadable.  The view of each of them to the 

problem was therefore different, but they complement each other, they are different sides of the same 

coin. At that time because they were super-secret themes none of them knew which things are doing each 

other even they met during the war. Shannon quickly understood that a well-coded message using good 

encryption should look very random without losing the message itself, to permit the message decoding. 

This was a major limitation and the redundancies, lack of randomness, in the message was a weakness that 

primitive machine like the one that Turing and his team built in England could exploit to decipher these 

 
25 Here i rely on the Ben-Naim’s book about theory of information and Gleick’s book about the information, more details here 
Information theory - Wikipedia 

https://en.wikipedia.org/wiki/Information_theory
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messages. Therefore, Shannon researched the structure of languages and their patterns in a new way, very 

different from that previously used by other experts such as linguists. He was looking for a more accurate 

way to tie up with messages from a mathematical point of view. He focused on redundancy patterns in 

messages that they were the weak point in attacking an encrypted message. This means studying the 

frequencies of letters, words, and their probabilities in a message. His statistical analysis revealed several 

important properties of a language such as that the statistical distribution of letters in each language is 

very different. Certain letters appear more frequently after others, specific words are more likely than 

others before or after certain words. Shannon calculated that the English has a redundancy of 50%, this 

means that you can cut a message in English by half and still have meaning and not lose the content of the 

message. This idea is the basis of Shannon's information theory. His work improved the compression of the 

probabilities of redundancies in a language, he also understood that no encryption can completely hide the 

message, but significant improvements can be made with techniques he discovered. This investigation into 

message encryption led him to the conclusion that encryption works as noise was  introduced into the 

message and how all these things can be calculated with some sufficiently powerful computer using 

statistical tools and an effective compute Turing/Church equivalent, if you could analyze the encrypted 

messages quickly enough could break the encryption using some kid of automatic machine, not so complex 

, in fact this is what Turing did in England to break the encryption of the Enigma  but Shannon did not know 

it.  Shannon's research proved this fact on a theoretical level and his work was classified as super-secret 

and it stays unpublished for many years. 

Shannon’s new approach was based on statistical analysis of the message totally clean of meaning. 

He looked at the message in a physical way, its components, symbols, words, and its relationship to 

information and how they appear in the message in one way and not in another. Looking at the symbols in 

a message according to statistical patterns Shannon observed that the information in the message is 

related to the appearance of those symbols in a certain way and there is uncertainty in this appearance or 
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surprise in the order of appearance. Thus, he characterizes the statistical analysis of the information 

following these points: 

• It is necessary to take several messages for this type of analysis, a single message is not 

enough 

• There are more frequent patterns than others in messages with the same information 

• The information is entropy, a concept taken from statistical mechanics (Thermodynamics) 

that measures the degree of order in a particle system and this is because the symbols of a 

message appear in a certain26 way according to the language and theme of the message. 

This order is not random and therefore entropy can accurately measure the order of 

appearance of symbols or words. 

 Shannon quickly understood that her focus on the study of encrypted messages based on meaningless 

information can be applied to other topics such as communications.  The problem with communications is 

that you must lower the noise that affects messages and cause errors. Therefore, this type of analysis 

could help improve message transmission through the communications channels and allow more messages 

to be passed more effectively and error free, this means strengthen the same communications channels 

without a physical and expensive upgrade. These things were very important to the phone company he 

worked after the war. Based on his information theory he suggested several improvements to 

communications engineers such as reinforcing redundancies in certain cases to allow message repair, 

message compression to better leverage communication channels, add some signal correction 

mechanism.27 These recommendations based in a well-founded theory were not trivial at the time. The 

fundamental achievement of his theory was the use of the mathematical expression of thermodynamic 

 
26 the particles would be letters and the messages system 
27 Control bit in the 8 bits byte when 7 are information and the 8th is a control bit about the previous 7, according to an accurate 
algorithm you can tell if the 7 bits information is correct or there is an error, some bit was changed. 
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entropy as a measure of the order28 of possible configurations in a specific system as a measure of 

information in a message, this was really an extraordinary genius. 

 The Shannon measure of the information29 quantifies a statistical aspect of the symbols in a 

message as explained above and it is defined as follows: Given a group of letters or symbols in a message, 

usually called events or facts, given their probabilities of appearing in the message, their statistical 

distribution can be measured by this measure of the surprise or uncertainty or average improbability of the 

information in this distribution by this  formula  called entropy of the message according to  the name 

Shannon gave to it. Today is tending to call it the Shannon measure of information (SMI) to differentiate it 

from the thermodynamic entropy in which it is inspired, this was known as Boltzmann's entropy, and it is 

interpreted as a measure of disorder in a system. 

H= - ∑ 𝑝𝑖  log2 𝑝𝑖
𝑛
𝑖  

Where 𝑝𝑖it represents the probability of event i, symbol i, in the message, H the entropy of the information 

or measure of information and it is represented in bits. 

This formula is shaped like a sophisticated average over the message symbols and its original shape in 

statistical mechanics has a K constant in front of the sum that is related to thermodynamic units of 

measure. As a result of this similarity Shannon also called it entropy of information, but its intention was 

other, to relate the measure of the order of symbols and therefore does not mean the same thing as in 

thermodynamics for physical entropy that it is related to work and energy.  All these things led to 

misinterpretations of information theory and therefore there were confusing and incorrect uses of theory. 

This measure or entropy as Shannon called has 4 different and interesting interpretations, in this work I 

will refer to 3 of them, but also classical interpretation will be necessary to point to certain aspects of 

computation. It is very important to say that this measure cannot be applied to the general concept of 

 
28 In thermodynamics it’s referred usually as disorder  
29 Known also as entropy of the information but today to differentiate it from entropy thermodynamics it is called the Shannon 
measure of the information 



20 
 

information and less to the meaning of the information but refers to a very specific aspect of it: the 

existence of specific events in groups of symbols. It may use as a measure on a series of events or statistics 

distribution of connected events such as letters or words in a series of messages and it has no meaning to 

use it on a single event or unconnected events. In this work, events are the results of arithmetic logical 

operations and memory erasure according to the configuration of a Turing machine or computational 

program. 

These are the 4 interpretations of the Shannon measure of30information, the first 3 have probabilistic 

statistical roots and the fourth of a different, information-based type of how to obtain information from 

the statistical distribution. 

1) Uncertainty in a series of experiments or events 

2) Unlikelihood or Improbability of a series of events or experiments 

3) Surprise or unforeseen in a series of events or experiments31 

4) A measure of the number of bits needed to obtain accurate information about a series of data by 

means of binary answers to questions about this data, that is, true/false answers, these bits being 0 

or 1 according to the answers.32 

This work will mainly use interpretation 1 and 2 indicating uncertainty and unlikelihood, 4 with respect to 

lack of information and oracle machine and the 3 to present certain interesting characteristics of 

computing as a series of operations. 

1) Shannon's measurement of information as a measure of the average uncertainty of a group of 

events 
 

 
30 theory of the information, Ben-Naim chapter 1 
31 this is the original interpretation and the trivial one, already explained above  
32 this is a more complex interpretation and untrivial but very important here 
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This interpretation arises from measure H as an average of the uncertainty of an event group, it is directly 

related to the statistical distribution of these group events, for example, symbols in messages. The 

explanation is as follows: 

Given n events or experiments 𝑥1𝑥2. . . . . 𝑥𝑛whose probabilities in distribution are  𝑝1𝑝2. . . . 𝑝𝑛,  when p=1 

the event is 100% certain but for p < 1 it is less certain and more uncertain. If − log2 𝑝𝑖 it is big, p is small. 

The -log strongly decreasing when the probability rises therefore 𝑝𝑖 log2 𝑝𝑖  indicates uncertainty regarding 

the i event because the possibility of the event is small and the sum of all raises them, this sum basically 

indicates the average uncertainty of all events according to the statistical distribution of them. 

Graph 1 shows the -log p function strongly decreasing and not linearly with the increase in the probability 

of the event and goes up exponentially when in event it becomes unlikely. 

According to Shannon's theory, the information gained by a datum or event 𝑥𝑖  is: 𝐼(𝑥𝑖) =

 −𝑝(𝑥𝑖) . 𝑙𝑜𝑔2𝑝(𝑥𝑖) where p is the probability of the event or datum. 

Graph 1 shows the function -log p strongly decreasing and not linearly when the probability of the event 

increases. On the other hand, it rises exponentially when the event becomes improbable. 

Close to probability 1 of the event, almost certainly, in graph 2 can be seen that the information gained by 

the event I=-p log p is close to 0 and therefore there is no information gain. Exactly the maximum of 

information gained in the probability 0.3679 when the maximum of I=-p log p is 0.53 but there is greater 

uncertainty here since p < 1. 

But the maximum entropy H would occur when the events are equally probable, that is, p=1/2, this is 

because the derivative of f(p)=-p log(p) is f'(p)=1-log(p) and is equal to 0 in ½. That is, when events have a 

probability of 50%, the entropy would be maximum and this is the basis of the maximum entropy inference 

method by which events that approach 50% probability under the constraints of a given problem, would be 

the most likely solution to the problem. This method is very powerful for solving complex problems where 

there is a lack of information and cannot be calculated analytically. 
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Graph 1                                                        Graph 2 

 

2) The unlikelihood or lack of expectation or expectedness average of a group of events 

 

This interpretation of H is like the previous one but in terms of expectation and possibility of an event in a 

series of connected events and is also probabilistically based. When p is very small it is very feasible that 

the event does not happen and when approaching 1 it is very feasible to happen. So being -log p a strongly 

decreasing function, the situation is reversed because it balances to the probability of the p event and 

therefore the multiplication of these, 𝑝𝑖  log2 𝑝𝑖   the function -log p indicates improbability and lack of 

expectation when p event expectation,  but -log p decreases  strongly to 0 and therefore H indicates with 

the sum the average improbability or lack of expectation of these events.   

2) The surprise or unforeseen average in a group of events 

 

This is the classic interpretation of the measure, the one that Shannon referred to extensively in his work 

and which was quoted above because it is strongly connected to the problem of encryption and message 

transmission focusing on the redundancy patterns of a message. When talking about surprise and lack of 

expectations, it refers to a serial current of symbols, each new symbol is a surprise, you cannot know what 

the next symbol will be, but you can calculate your probability in the current according to the previous 
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occurrences. This interpretation helps clarify Shannon's ideas when developing information theory and its 

measurement. It is very difficult to understand the information theory without understanding this. 

4) Information measuring at several events 

 

This interpretation is somewhat more sophisticated than the previous ones and is not related to the 

probability of the event. It should be remembered that this measure is not information, but you can get 

information from this, information regarding a statistical distribution of events, from a group of data that 

have well-defined probabilities. 

This quantitative interpretation of H entropy is directly related to the lack of information produced 

by uncertainty in a series of statistical data and how information can be obtained from this statistical 

distribution in a minimum number of steps. This point is very important for the discussion below    

regarding obtaining information under conditions of uncertainty. To explain this interpretation, we will 

define a game, in which we have a table divided into 8 lockers, these lockers divided by a somewhat higher 

wall to prevent an object thrown to the table from being on the edge and not entering a locker.33 The 8 

lockers are numbered from 1 to 8. In this game there are 2 players, and one randomly throws a coin on the 

table and the other must guess in what locker it is in and this by asking a minimum of binary questions, 

namely questions whose answer is yes or no. If the player asks without any order or strategy, he/she can 

guess the first one, but also easily may get to the maximum of 8 questions then the average of questions of 

the player who handles so will be high. The player who wants to win must play with some strategy to keep 

an average of questions low on all laps of this34game. In this game players face a problem of uncertainty, 

and it is about getting the exact information in an optimized way through binary questions, there is a 

strategy that will allow the player to use it to get to the exact place of the coin in a minimum of steps. 

 
33 this interpretation is based on one explanation given by Ben-Naim in the 2 books mentioned here 
34 There is a game similar called submarine in which each player fixes their boats in a board and the other player must guess 
where the ships are to sink them. Also, here there is a strategy to disperse the ships better and try to find those of the rival and 
whoever the player is based only on luck without any order will probably lose the game. 
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Without this strategy the average steps will be higher and there is a mathematical prove for this, but we 

will not enter this prove here. 

The following graph depicts the game, the table divided into 8 lockers, the coin that is thrown in a random 

way and which the other player must guess where it is. 

    

    

 

The correct strategy is to split the table in 2 halves, two areas, right and left and ask if it is the coin on the 

left or right and so again on the area, we get true answer until you reach the locker, this strategy limit the 

possibilities all the time by converging towards the locker where the coin is located. This is the most 

effective way to find the place where the coin is located.35 It is said that the entropy H, measure Shannon 

of the information, indicates exactly the number of steps that must be done on average to reach the exact 

position of the coin, in this case the probability of the event is and  
1

8
 then calculating the entropy for 8 

lockers we get the following: 

− ∑
1

8
 x 𝑙𝑜𝑔2

1

8
 8

1 =3 bits 

This means that using the right strategy in 3 questions by average we got to the place of the coin, and this 

would be the most effective way to get this information and anyone who does not use this strategy will 

reach higher averages of questions. 

If the probability of the event is not  
1

8
 as in this simple example due to different lockers size, the number of    

questions will change according to the calculation of H but the basic idea would be the same, divide the 

table into areas with the highest probability, here because they are equally likely events is divided into 

areas with 50% probability at each step but if there is any asymmetry for having higher probabilities  you 

 
35 Ben-Naim, information theory, chapter 2, properties of the Shannon measure of the information 
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should try to take areas with the maximum  probability. All of this depends on the distribution of 

probabilities of events. 

This interpretation allows us to obtain information from a series of data about which there is a priori 

uncertainty, but we are interested in a posteriori information through a convergent process of limitation of 

possibilities strategy that minimizes the number of steps or questions to obtain the information. Attention, 

the answer to each binary question is one bit of information and therefore in this case 3 bits of average 

information are necessary to locate the coin in the locker. 

Arithmetic logical entropy and erasure of information in terms of information 

theory 
 

 If we apply the Shannon measure on the NAND logical operator, for example, but this is also true 

for any other logical operator and calculate their entropy we will get their uncertainty. The results of this 

logical operator are given by its truth table and therefore there are 2 possible values 1 or 0, with 50% of 

probability to each one, if we take the values in the input and output table the situation is as follows:  for 

(1.1) -> 0, 100% input/output certainty, probability 1. So, the probability of event 0 is according to 

conditional probability, Bayes, 1x 
1

2
 this is 

1

2 
 𝑎𝑛𝑑 𝑡ℎ𝑖𝑠 represents half of the logical operator's possibilities. 

The use of Bayes is because it is very important in logical operators what value the output takes. This is 

because one of the values is irreversible and the other is not, except in the XOR (or exclusive) operator. 

Therefore, Laplace's insufficient reason and giving equal probability values to each event would not be 

applicable here because there are irreversible events and others that are not. There is a bias towards a 

certain output, in this case 1, which is irreversible and 0, which is reversible. This means that irreversibility 

depends on the outputs we see. 
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For the output 1 is more complicated because there are multiple inputs for the same result (0.1), (0.0),(1,0) 

->1 ,  the input has a 
1

3
  of probability each one and the conditional probability of the events is then 

1

6
=

1

2
𝑥

1

3
 entropy for this logical operator is: 

H= - [ 3 x ( 
1

6
  𝑥 𝑙𝑜𝑔2

1

6
) +( 

1

2
  𝑥 𝑙𝑜𝑔2

1

2
)  ] =1,7924 bits 

This is almost 1.8 bits namely 1.8-bit uncertainty approximately per simple logical operation and according 

to interpretation 4 you must ask 1.8 minimum binary questions to get the values of the input of the logical 

operator and reconstruct the operation completely, inputs and outputs. In event 1 you can ask if the first 

entry is 0 or 1 and thus reduce the possibilities, in the worst case you will make 3 steps in the best 1 and 

thus give the average about 2. 

In memory erasure entropy is 1, namely 1 bit uncertainty, in case that the bit had two chances 1 or 0 and 

therefore it is not known what there was in the bit before the deletion. But if there is one more possibility, 

NULL namely empty, there are 3 possible states before erasing, this empty bit chance cause to the entropy 

goes up even higher because uncertainty goes up. Basic case without empty is: 

H= - 2 x ( 
1

2
 x 𝑙𝑜𝑔2

1

2
)=1 bit 

Case with NULL as a possible event 

H= - 3x ( 
1

3
x 𝑙𝑜𝑔2

1

3
)=1.58 bit 

In elementary arithmetic or basic calculations can be easily seen as entropy goes up when calculations 

become more complex, inputs are larger with the combination of more operations. A simple but illustrative 

example, 011+101=1000 (3+5=8) shown above. Here there are 6 bits input representing integers, each bit 
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has 2 options 1 or 0 then the probability in each bit input is  
1

2
 36 when we have a 4-bit output, its entropy is 

calculated as well: 

H= - 6 x ( 
1

2
x 𝑙𝑜𝑔2

1

2
) = 3 bits 

This means 3 bits of uncertainty for this simple arithmetic operation. Arithmetic entropy will rise rapidly for 

more complex operations. 

If we apply here the Shannon's interpretation 4, we will see in this example a couple of interesting things. If 

we ask the binary questions to obtain information, each answer would be a bit of information, having the 

output of the calculation plus these bits we will be able to completely reconstruct the operation then the 

entropy also represents the bits or information lost in the arithmetic operation. In the logical output bit 

operator + 1.8-bit information fully describes an operation with 3-bit input/output namely 3 bits is not 

required. In the deletion certainly 1 bit is enough to know if there were 1 or 0 only. In the simple arithmetic 

of this example 4 output bits plus 3 bits are sufficient to reconstruct the operation, these 3 bits could be 

one of the inputs and the subtraction operation on the output we get the other input from the original 

operation. This is an important fact because these bits given by the entropy would be the information lost 

in an irreversible operation and would make it reversible if these bits were obtained. This means that they 

complete the output of the operation, and the entire input is not required to be a reversible operation 

according to these simple examples. In machines or programs where millions of logical-mathematical 

operations are performed and erasing memory the information losses during computing would be huge.   

Information loss due to arithmetic logic entropy and memory erasure 
 

Due to the loss of information in the computation in complex programs, several steps forward and 

even several steps backward are unknown, except in cases such as Bennet's reversible machine. Therefore, 

 
36 This is approximate because you can't get 8 from the sum of any 3-bit number, but hypothetically speaking you can say that 
the probability is ½. But here you can use the insufficient reason and give equiprobabilities because the irreversibility of the 
operation does not depend on what the output is, as was the case with the logical operator. 
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in general it’s not possible to predict exactly what will happen in these programs several steps forward or 

backward, except in trivial cases. In Rice's terms it is not known exactly what non-trivial properties there 

are in that program or recursive function based on its definition alone. More information would be needed 

to determine it, and an algorithm would not suffice to determine this because algorithms do not generate 

more information about their inputs. In trivial cases, for recursive functions or programs, would know 

where their behavior would be limited in some way. This would be extra information that is not always 

available, for example, knowing the definition domain / image well or whether they are finite or not, or 

other semantic information about them that can add more certainty to the computation. 

Given these conditions, the Turing result on the universal machine is very clear and reasonable. Therefore, 

cannot be calculated by means of an algorithm if a Turing machine (computer program) with a specific 

input would halt or not with output. This algorithm limitation would be a consequence of the uncertainty 

of the computation and its loss of information. The halting conditions of a Turing machine or program 

cannot be calculated in a deterministic way due to computational uncertainty and lack of trivial 

information about it because this information cannot be generated with another algorithm. 

A different interpretation for the Oracle Turing machine37 
 

  The oracle Turing's machine is a common machine that is connected to an oracle that can answer 

questions sent by the machine immediately, yes, or no, without any computing. In this context this 

machine can face decision problems because it does not have to perform any calculation but ask to the 

oracle, this type of machine can therefore solve the halting problem and thus do things that the common 

machine cannot calculate automatically.38 It generally does not matter how the oracle works, but this can 

be a giant database, for example. In the configuration of the oracle machine there is an order called ASK 

which is the call to the oracle and ask something for example whether such a Turing machine that is 

 
37 one explanation more detailed information about this type of machine here Oracle machine - Wikipedia 
38 Through a algorithm 

https://en.wikipedia.org/wiki/Oracle_machine
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running now ends with a printed response and therefore a universal oracle machine could theoretically 

solve the halting problem. 

The oracle machine is an open system because it can receive information from outside the calculation or 

computing unlike a common machine that it is closed system, there is only one input and then the 

computation process. The machine oracle enters information from outside to control for example 

computational uncertainty and make an incalculable decision otherwise. The oracle generates certainty 

that is not possible by computing using finite recursive functions.39 The oracle would complete the missing 

information, and this would be the informative aspect that Chaitin was talking about in his article 

mentioned here and in general in his theory. 

On an oracle machine, the output can be more informative than the input. Because information is being 

entered into the computation and not only calculating. This would be the big difference with respect to a 

common machine. 

Conclusions 
 

 The loss of information due to logical or arithmetic operations or memory erasure is the root of 

computational uncertainty or improbability. This would limit the possibility of an algorithm to generate 

more information about an input, at most it would preserve this information if the loss of information is 

neutralized by saving the whole computation. But no more information is generated than there is. 

Turing's result is very clearly proven and the generalization of it by Rice's theorem extends this problem to 

other cases. The semantic properties of a program are not calculable due to lack of information. This 

agrees with the view of many experts mentioned here regarding the importance of information in 

understanding the stop problem and Gödel's theorem. An algorithm defines a rule, but in many cases, it 

 
39 algorithm 
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does not define all the potential data of the rule. These data would be a surprise in terms of Shannon 

information, therefore not computable by other algorithms that are also limited by them. 

Here I must mention Hintikka's famous philosophical comment that says that Gödel's proof of 

incompleteness has no importance from a philosophical point of view since it does not explain the 

elementary reasons why arithmetic is incomplete, it only proves that it is. In this work, as well as in other 

works mentioned here, an attempt has been made to present a probable hypothesis as to why 

incompleteness exists in arithmetic and why the Turing halt problem exists. The hypothesis here is that the 

arithmetic logic and its entropy create an information barrier about the system. A limit of the probable in a 

system or theory, more information cannot be generated based on a given information. This would affect 

the forward and backward computation. But this hypothesis has not yet been fully investigated and 

formalized enough to give a definitive answer to the philosophical question that Hintikka leaves us. The 

fact that this hypothesis is consistent with many other results suggests that it is true. It would be necessary 

to further investigate the arithmetic logical entropy and the loss of information, the uncertainty generated 

by this, to give a definitive answer to Hintikka's fundamental question. 
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