
Proof in C17 Algebra 

By the middle of the sixteenth century there was in Europe, on the one hand, 

geometry, which had well-established standards and methods of proof, and a large 

body of actual proofs.  On the other hand, there was an emerging body of analytic 

techniques that did not have their own criteria or means of proof.  These techniques 

developed naturally out of simple recipes for performing arithmetical calculations 

such as the rule of three or the various methods of long division.  Having established 

techniques for finding square roots, it was natural for arithmeticians to extend these 

techniques to problems that we would nowadays express in quadratic equations (we 

still speak of the ‘roots’ of an equation).  In short, geometers looked for theorems with 

proofs, but people doing what came to be called ‘algebra’ or ‘specious analysis’ were 

looking for solutions.  This division is reflected in the titles of algebra books such as 

Cardano’s Ars Magna [Cardano 1545] or Harriot’s Artis Analyticae Praxis [Harriot 

1631].  While the word ‘ars’ (art in the unromantic sense of craft or technique) was 

often used, the word ‘scientia’ is pointedly absent from these book titles.  ‘Scientia’ 

was a highly contested term but the principal source of its meaning was still 

Aristotle’s Posterior Analytics, in which the title of science was reserved for 

systematic, deductive knowledge.  In the sixteenth century, geometry was widely
1
 

taken to fulfil this requirement while algebra did not.  However, by the middle of the 

seventeenth century we that find that algebra is able to offer proofs in its own right.  

That is, by that time algebraic argument had achieved the status of proof.  How did 

this transformation come about? 

 

This question could easily occupy an entire monograph.  An apparently continuous 

historical narrative that registered the many small steps on the journey, and that paid 

due attention to the unevenness of the development (for fear of presenting an 

excessively streamlined and whiggish account) might need more than one book.  

Historical development is always uneven, as there are always individuals ahead of 

their times and a greater number behind.  The development of early modern algebra is 

especially uneven due to the diversity of sources: to an indigenous European tradition 

of reckoning were added rediscovered Diophantus and the works of Islamic 

mathematicians.  Moreover, it was at about this time that national styles and rivalries 

started to flourish in European science.  In view of these complexities, the most we 

can hope to achieve in a short paper is a comparison of snapshots taken at significant 
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 But not universally.  See [Mancosu 1992].  This paper considers the debate following the 

publication in 1547 of the Commentarium de certitudine mathematicarum disciplinarum by 

Alessandro Piccolomini (1508-1578).  According to Mancosu, Piccolomini attempted to 

refute “a widespread argument which aimed at showing the certitude of mathematics (asserted 

by Aristotle and reiterated by Averroes and a long list of Aristotelian commentators) arguing 

from the assumption that mathematics makes use of the highest type of syllogistic 

demonstrations” [Mancosu 1992, 244].  The chief point stands, since the mathematics to 

which this controversy refers is that of Euclid.  As Mancosu put it, the question was, “What is 

the relationship between Aristotelian logic and Euclidean mathematics?” [Mancosu 

1992, 242].  For Piccolomini and his fellow renaissance writers, the question did not arise 

with respect to the analytic art.  Things were quite different a century later, when Hobbes, 

Wallis and Barrow took up the question of mathematical certainty afresh.  Then, the status of 

algebra was at the centre of the dispute.  See [Sasaki 1985]. 



moments in the story.  This paper offers a small collection of still photographs rather 

than the sort of cinematic sequence that gives an illusion of continuity.  

 

Before we open the photo-album, permit me a methodological note.  The initial sketch 

of a mathematics divided between problem-solving ‘analysis’ (arithmetic-cum-

algebra) and theorem-proving geometry is broadly-speaking right.  Indeed, some 

Renaissance mathematicians regretted this divide and dreamed of a unified, 

‘universal’ mathematics (‘mathesis universalis’) [Sasaki 1985, 91-92; Mancosu 1996, 

86].  However, to set up this division as an absolute distinction is to make a mystery 

of the fact that it was eventually overcome.  Absolute distinctions create insoluble 

historical problems (as Kuhn discovered).  Instead, we should recall that to draw a 

distinction is at the same time to make a connection.  That is, we must look for points 

in the historical record where the apparently absolute distinction breaks down.  In 

other words, we look for intimations of proof and rigour on the un-rigorous, 

‘heuristic’ side of the division: in the analytic practice; in the modes of argument; but 

also in the structure of the books themselves; and the language and notations used. 

Girolamo Cardano (1501-1576) 

The subject of our first snapshot is Girolamo Cardano’s Arts Magna [Cardano 1545], 

in which he systematises and proves the thirteen solutions by radicals of the cubic.  

There are thirteen solutions because his proofs are geometric.  He interprets the 

unknown as a line segment and the coefficients as lines, areas or volumes so as to 

preserve the homogeneity of the sum.  (‘Homogeneity’ means that volumes are only 

added to volumes, areas to areas and so forth.  To achieve this with a cubic equation, 

Cardano read the coefficient of the squared term as a line and that of the linear term 

read as an area, while he treated the constant term as a volume.  Then, the whole 

equation is in volumes.)  Consequently, he could only recognise positive coefficients 

(for what sense can be given to negative areas or volumes?), so rather than just the 

cubic he had thirteen variations.  He had no symbolism (except the use of letters to 

label points on diagrams) and consequently none of the notational machinery 

nowadays associated with algebra.  Rather, he wrote everything out in abbreviated 

prose and gave his proofs in the Euclidean style (see figure 1).  This geometrical 

rigour constrained the scope of his algebra.  For him there could be no rigorous 

treatment of equations of degree greater than three because “nature will not allow it”
2
.  

That is, there are just three dimensions in space, and geometry is the means of proof, 

so nothing can be proved about equations of degree greater than three. 

 

This geometric standard of rigour was a source of difficulty for Cardano because in 

the appendix to Ars Magna he explains how to solve a certain class of bi-quadratics 

(this result was due to his student, Ferrari).  What is the status of Ferrari’s argument to 

show that his solutions of these bi-quadratics are correct?  It cannot be proof (by 

Cardano’s standards), yet it is entirely persuasive.  This, though, is the least of 

Cardano’s difficulties.  Using modern notation, consider his solution by radicals of the 
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 “For as positio refers to a line, quadratum to a surface, and cubus to a solid body, it 

would be very foolish for us to go beyond this point, nature does not permit it.”  [Cardano  

1968, 9].   “Nanque cum positio lineam, quadratum superficiam, cubus corpus solidum 

referat, nae utique stultum fuerit, nos ultra progredi, quo naturae no licet.” [Cardano 1570, 6]. 



‘irreducible’ case of a cubic with three real roots.  If a and N are positive and 

N+ax  =x
3

, then: 
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Obviously when ( ) ( )32
32 aN <  the square roots are imaginary and the whole 

expression is complex.  Nevertheless, the solutions are real.  This is an early instance 

of a detour through the complex universe prompted by a question that makes no 

reference to complex numbers in either its statement or its solution.  This problem 

was more serious than that posed by equations with complex roots, since in those 

cases Cardano could simply declare such roots impossible or nonsensical (as many 

mathematicians did).  Cubics with three real roots cannot be so dismissed.  Thus there 

was, for Cardano, a dilemma.  On one hand, he had established standards of proof, on 

the other he had persuasive results that were impossible in principle to prove within 

these standards.  As we shall see, this dilemma intensified in the succeeding century.  

What was, for Cardano, a small trickle of results that could not be modelled in the 

geometry of solids with finite magnitudes, broadened to a flood.  In retrospect, we 

may (in a Popperian spirit) regard Cardano’s irreducible cubics and Ferrari’s bi-

quadratics as ‘refutations’ of the metaphysics and methodology implicit in Cardano’s 

geometric standards of rigour.  However, we should note, first, that Cardano had no 

such perspective.  Second, his anomalous cases might have remained as no more than 

recondite unsolved problems, and posed little threat to the established methodological 

order, had they not been but the first of many.  



 

Figure 1 [Cardano 1545] p. 71 



François Viète (1540-1603) 

Viète’s principal achievement is the introduction of a recognisably modern symbolism 

for variables, coefficients and some operations (though he still wrote everything else 

out longhand; note too the use of double lines to indicate subtraction).  Nevertheless, 

Viète’s algebra seems firmly within the tradition of problem-solving technique since 

he gives little or nothing in the way of proof.  Consider, for example, Proposition XVI 

of his Ad Logisticen Speciosam Notæ Priores [Viète 1646, 20], which is in fact a 

problem-to-solve rather than a hypothesis-to-prove: “To subtract the cube of the 

difference between two roots from the cube of their sum.”  The argument consists of a 

single sentence: “Let the individual solids making up the cube of BA −  be subtracted 

from the individual solids making up the cube of BA + .”  This is, strictly speaking, a 

procedure rather than a proof, and he carries it out in the next sentence to get the 

answer: in modern notation, 32 26 BBA +  (see figure 2).  However, we cannot 

conclude from the brevity of this discussion that Viète was indifferent to proof.  

Certainly, he hoped to illustrate the expressive power and heuristic efficiency of his 

symbolism.  However, his texts have the form (if not the substance) of a deductive, 

‘scientific’ system. He labels his problems as ‘propositions’ and his solutions as 

‘theorems’, and he makes reference to Aristotle’s Posterior Analytics [Viète 1983].  

In particular he claims that theorems proved by his art conform to the laws governing 

the relation of attribute to subject, laid down in Posterior Analytics, Book I, Part IV.  

So in terms of the quaesto that Mancosu discusses, Viète claims for algebra 

(specifically, for his ‘zetetics’) the status attributed to Euclidean mathematics by 

Aristotelian tradition.   

 

The fact that Viète could present a calculation with letters standing in for arbitrary 

quantities as a proof, however modest, indicates a change in the conception of number 

itself.  Viète did not interpret numbers geometrically as Cardano did, even though he 

retained the old geometric vocabulary of ‘squares’ and ‘cubes’ (as indeed we do 

today).  That is why he felt no obligation to locate a ‘line’ in a diagram (it makes no 

sense, to use the example in hand, to ask about the relative positions of A and B).  By 

contrast, each of Cardano’s proofs implies a diagram: the elements of the proof are 

elements of the diagram (line-segments, areas and volumes with determinate relative 

positions).  The diagram is essential—it supplies the terms of the theorem with their 

meanings (though in fact not every proof in Ars Magna has a  diagram printed with it, 

since the proofs are all rather similar, so having seen one diagram it is easy for the 

reader to supply the others).  None of this holds for Viète, whose few diagrams appear 

late in the text, after his algebra is established.  Another indication of this change is 

the fact that Viète was not bound to three dimensions, even in principle.  Cubes of 

cubes make sense in Viète’s mathematics.  Cardano did work with negative and 

complex numbers, and did contemplate powers higher than three, but only when 

reckoning the solutions to problems.  The change in the mode of mathematical 

reasoning between Cardano and Viète indicates a change in the conception of number 

precisely because it takes place in the context of proof, where philosophical niceties 

matter. 

 

Viète’s scientific aspirations for his algebra are clearest in the programmatic part of 

his work.  At the start of chapter two of his Introduction to the Analytic Art [Viète 

1591], he says, “Analysis accepts as proven the well-known fundamental rules of 

equations and proportions that are given in the Elements”.  There follows a list of 

‘rules’, the first six of which are adapted from the common notions of Euclid.  The 



remaining ten rules are adapted from book V of Euclid (sometimes attributed to 

Eudoxus of Cnidus), on ratio and proportion.  He then claims that, “a proportion may 

be said to be that from which an equation is composed and an equation that into which 

a proportion resolves itself.”
3
  This formula is essential to the scientific status of 

Viète’s art because it connects his analytic techniques with the theorem-proving side 

of mathematics.  As one would expect given this fundamental principle, he argues in 

succeeding chapters for algebraic results on grounds drawn from the Euclidean theory 

of proportion.  Like Cardano, then, Viète presented himself as a follower of Euclid.  

However, he appeals to book V only, and since this concerns proportion rather than 

geometry, it does not impose the same constraints as Cardano’s standards of rigour.  It 

is, therefore, less misleading to describe him as a follower of Eudoxus than as a 

follower of Euclid. 

 

In Viète, then, we have on the one hand an art with an aspiration to scientific status 

grounded by a sort of equivalence principle in Euclidean (or better, Eudoxan) 

tradition and presented as a body of theorems.  On the other, we have a useful 

notational innovation that permits one to argue for general results, but which has not 

yet developed to the point where the manipulation of symbolic expressions counts as 

argument. 
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 “Itaque Proportio potest dici constitution æqualitatis.  Æqualitas, resolutio proportionis” 

[Viète 1646, 2]. 



 

Figure 2 (Vietae 1646) p. 20 

Thomas Harriot (1560-1618) 

Thomas Harriot’s Artis Analyticae Praxis [Harriot 1631] shares the scientific 

aspirations of Viète’s algebra.  Like Viète, Harriot lays down definitions and he 

orders his results into minor lemmas and major theorems.  He celebrates a completed 



proof with Quad Erat Probandum or Quad Erat Demonstrandum.  In spite of the title 

given to his work by others when it was published posthumously (Artis…), he 

evidently shared Viète’s aspiration to establish algebra as a science.  There is another 

similarity to Viète that connects Harriot with book V of Euclid.  Look at his proof that 

the arithmetic mean of two unequal numbers is greater than the geometric mean 

(figure 3).  Rather than start with the minimal assumption that qp > , and then 

multiply each side by qp − , he observes that 22 ,, qpqp is a series in proportion and 

therefore he can immediately state that 22 qpqpqp −>− . As in Viète, the theory of 

proportions in book V of Euclid is the assumed ground upon which the new science is 

to be built. 

 

Another aspect of Harriot’s scientific aspirations for algebra was his system of 

canonical equations.  These are equations with straightforward solutions.  Every non-

canonical equation was associated with a canonical equation of the same degree, from 

which, Harriot hoped, it would be possible to solve the non-canonical case, or at least 

calculate the number and signs of the solutions.  Harriot was not the first to attempt to 

classify equations.  The point is that an objective taxonomy is part of what would 

distinguish a true science from an art or craft. 

 

Harriot’s notation was more highly developed than that of Viète.  He employed 

Robert Recorde’s familiar equality sign and the present-day symbol for inequality.  

He did not use superscripted numbers for exponents (we owe that to Descartes
4
), but 

instead repeated the letter or expression: for our p
2
 he wrote pp.  Consequently, he 

could not have entertained fractional or complex exponents.  However, there was a 

vital notational innovation: combinations of operations.  Rather than use brackets, he 

expressed products of polynomials by listing the factors vertically, next to a vertical 

line.  That is, for our ( )( )dcba −+ , Harriot wrote 
dc

ba

−

+
 (it is easy to imagine how this 

might have evolved out of the usual method for multiplying numbers).  This capacity 

of Harriot’s notation to combine symbols for operations made it sufficiently powerful 

to induce a qualitative difference from the work of Cardano and Viète.  In Cardano, 

mathematical argument, expressed in Latin prose, made essential use of diagrams and 

appealed to geometrical intuition.  As for Viète, what little argument he offered, he 

couched in a mixture of symbols and prose.   That is because he had nothing to play 

the role of brackets.  His notation did not allow him to combine operations and 

thereby create complex expressions.  Rather, to avoid ambiguity, he had to fall back 

into prose.  To return to the example above, he wrote 32 26 BBA + as “A quadratum in 

B sexies + B cubo bis”.  However, replacing a complex expression with an equivalent 
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 Descartes does not appear in this photo-album for two reasons.  First, in his mathematics 

the relation between algebra and geometry is too complex and philosophically fraught to treat 

briefly.  Second, in his epistemology he rejects formal deduction in favour of the lucid 

perception of clear and distinct ideas.  For him, a deductive sequence is one intellectual 

intuition sliced into a series of lesser intuitions in order to accommodate the limits of human 

memory.  Consequently, to divide the movement from premises to conclusion into a sequence 

of small steps can have pedagogic or psychological value only.  By his own standards he had 

no logical requirement to do this: readers in whom the light of reason burns sufficiently 

brightly will see the truth of his claims.  For more on Descartes and deduction see [Larvor 

2001]. 



is the characteristic form of algebraic argument.    It is precisely because Viète’s 

notation did not allow this that he was unable to lay out his derivations explicitly, 

relying instead on his readers’ numerical intuition.  In Harriot, however, the 

manipulation of symbols counts as argument.  The argument starts with the condition 

of the theorem expressed as an equation (or in the case in hand, an inequality).  By a 

series of truth-preserving manipulations this is converted into the required conclusion.  

Cardano’s great slabs of Latin prose have vanished, replaced by a terse commentary, 

the sole purpose of which is to distinguish each manipulation from its neighbours 

(“Ergo… Sed…”).  It is at about this point that mathematics became ‘the discipline in 

which your pencil is smarter than you are’.  That is, insight is still required but where 

this fails, one can go some distance by relying on the notation and its rules (though 

these are as yet implicit, so the project of proving their reliability cannot even be 

mooted). 



 

Figure 3 [Harriot 1631, 72] 



John Pell (1611-1685) 

The final photograph is of the work of John Pell.  This is inevitably a blurred image 

because Pell did not publish a work on algebra under his own name.  Instead, we have 

An Introduction to Algebra, originally written in German by a Johann Rahn, translated 

into English by one Thomas Brancker “much altered and augmented by D. P.” (title 

page), and published in 1668.  Whatever the division of authorship between Rahn, 

Brancker and Pell, this work is interesting because in it the passage of algebra from 

geometry and prose to symbolic manipulation reaches its conclusion (though the 

development of the notation does not). 

 

On the page reproduced here as figure 4, we find the recipe for Pythagorean triads.  

This is just one of many number-theoretic results in this work.  The interest for our 

purposes is the division of the page into three columns.  On the right, in the broadest 

column, the proof is carried out.  In the narrow, middle column, each line of the proof 

has a number.  In the left-hand column, each line has a note using previous line-

numbers to explain how the current line of the proof was derived.  These elements—

numbered lines and comments—are now familiar to programmers and logicians.  The 

comments themselves are easily standardised because there are only finitely many 

possible types of manipulation to get from one line to the next, namely the usual 

operations of arithmetic, plus the substitution of equivalent expressions.  In place of 

Cardano’s geometric standards of rigour, we now have a simple rule: make sure you 

apply the same operation to both sides of the equation.  One could, in principle, check 

this syntactically.   

 

This possibility was not lost on one of the leading mathematicians of the day.  Leibniz 

dreamed of a language in which logical errors would show up as faulty grammar, as if 

in natural language “errors were due to solecisms or barbarisms”.
5
  The development 

of algebraic notation meant that algebra had this property (or something very close to 

it) by the middle of the seventeenth century.  That is, Cardano could have expressed 

faulty mathematical arguments in correct and elegant Latin, because there was no 

relationship between the syntax of the language and the rigour of the proof.  Indeed, 

the science-minded philosophers of the seventeenth century tended to suspect that the 

literary skill of their humanist predecessors served precisely to disguise logical 

fallacies.  In the language of algebra, however, faulty logic shows up as faulty syntax.  

It would be a long time before anyone was in a position to try to prove this, not least 

because the modern notion of a wholly uninterpreted symbolism was not yet fully 

articulated.  Nevertheless, the possibility of automated (‘blind’), valid argument was 

discernible (to Leibniz at any rate) in the algebra of the mid-to-late seventeenth 

century. 
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 De scientia universalis seu calculo philosophico [Leibniz 1960 vol. VII, 200]. 



 

Figure 4  [Rahn 1668, 84] 

Disputes over the notion of proof 

Our sequence of four snapshots illustrates a change in the notion of mathematical 

proof in little over a century between Cardano (1545) and Pell (1668).  Indeed, the 

crucial change was already present in Harriot’s posthumous work of 1631, in which 

the manipulation of symbols is presented as proof.  As we have seen, such 

manipulation was possible because Harriot’s notation had a device equivalent to 

brackets, so he could distribute multiplication over addition.  This richness permitted 

the substitution of equivalent expressions.  Gathering terms and multiplying out 



brackets could now be done explicitly in the notation rather than merely described in 

prose.  Therefore, the introduction of brackets is as important a step as Viète’s use of 

letters for unknowns and coefficients.  This shift in the notion of proof required the 

abandonment of Cardano’s conception of rigour, dependant as it was on geometrical 

intuition.  This change was part of the much larger philosophical and scientific 

turmoil of the time—Cardano published his Ars Magna two years after the publication 

of Copernicus’ De revolutionibus orbium coelestium.  In view of the intense 

contemporary debate about the philosophical foundations of scientific knowledge, it is 

implausible that mathematicians of the time did not ask whether these changes were 

compatible with rigour, even though our four chosen figures had relatively little to say 

about the nature of proof.  Mention has already been made of the renaissance 

Quaestio de Certitudine Mathematicarum.  As the seventeenth century opened the 

debate shifted its focus.  Rather than accounting for the certainty of (Euclidean) 

mathematics, the problem was to understand the logical relations between different 

parts of mathematics.  Algebra was only one new arrival: mathematicians had to 

contemplate complex numbers and indivisibles too.  These changes have generated a 

rich historiography
6
, to which I hope to add just one point. 

 

There was, by the middle of the seventeenth century, an accumulation of results that 

could not possibly be proved geometrically.  These were mostly number-theoretic 

results such as the sums of finite series (principally arithmetic progressions and 

powers thereof), or formulae such as the Pythagorean recipe taken from Pell’s algebra 

above.  Mathematicians explored the triangle of binomial coefficients (‘Pascal’s 

triangle’).  Some of these (such as the Pythagorean recipe) could be proved using 

existing algebraic techniques, while others would have to wait for the development of 

proof by complete induction.  In addition, equations themselves were becoming 

objects of study.   Cardano noted that the complex roots of an equation occur in pairs, 

but had no means to prove it.  The symmetric functions of coefficients were identified 

in Girard’s L’invention nouvelle en l’algèbre of [Girard1629].  Descartes’ ‘rule of 

signs’ for calculating the number of positive and negative roots of a real-valued 

equation from the changes in sign in the coefficients (intimated in Cardano and 

sometimes attributed to Harriot) had to wait until the eighteenth century for a rigorous 

treatment.  In his algebra, Pell appealed to the modern sense of dimension: the number 

of data should equal the number of unknowns, or else the solution will be under- or 

over-determined.
7
  Cardano had to admit that a few rather recondite phenomena could 
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 See [Mancosu 1992; Mancosu 1996] for developments in France and Italy; [Sasaki 1985; 

Pycior 1997] for the English end of the story, and the Hobbes-Wallis-Barrow controversy in 

particular. 

7
 Wallis comments on this in his Treatise of Algebra [Wallis 1684, 214].  With reference to the remark above about national styles and rivalries, part of Wallis’ aim is to argue Harriot’s priority over Descartes.  According to Wallis, everything purely algebraic in Descartes was already there in Harriot, and Descartes merely applied algebra to geometry [Wallis 1684, v].  Wallis produces no more than an anecdote in support of his claim that Descartes must have known of Harriot’s work, and does not see any anachronism in projecting back to Harriot’s time the notion of ‘pure’ algebra (as distinct from geometry). 



not be treated within his standards of rigour.  Since these were so few, he had the 

option of conserving his standards while noting the anomalies as such.  His successors 

in the following century faced an avalanche of arithmetical and number theoretical 

results that could not be proved in Cardano’s Euclidean style.  Moreover, algebra 

began to distinguish itself from arithmetic as mathematicians discerned general 

features of equations (such as the symmetric functions or the rule of signs).  As a 

result, the conservative horn of Cardano’s dilemma disappeared.  Faced with all this 

new material, mathematicians had no option than to abandon Cardano’s geometrical 

standards of rigour. 
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