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Abstract. One of the most important abilities we have as humans is the ability to think about number. In 
this chapter, we examine the question of whether there is an essential connection between language and 
number. We provide a careful examination of two prominent theories according to which concepts of the 
positive integers are dependent on language. The first of these claims that language creates the positive 
integers on the basis of an innate capacity to represent real numbers. The second claims that language’s 
function is to integrate contents from modules that humans share with other animals. We argue that neither 
model is successful. 
 
 
 
 
One of the most important abilities we have as humans is the ability to think 
about number. Without it, modern economic life would be impossible, science 
would never have developed, and the complex technology that surrounds us 
would not exist. Though the full range of human numerical abilities is vast, the 
positive integers are arguably foundational to the rest of numerical cognition, 
and they will be our focus here. Many theorists have noted that although animals 
can represent quantity in some respects, they are unable to represent precise 
integer values.  There has been much speculation about why this is so, but a 
common answer is that it is because animals lack another characteristic feature of 
human minds—natural language. 
 In this chapter, we examine the question of whether there is an essential 
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connection between language and number, while looking more broadly at some 
of the potential innate precursors to the acquisition of the positive integers.  A 
full treatment of the present topic would require an extensive review of the 
empirical literature, something we do not have space for. Instead, we intend to 
concentrate on the theoretical question of how language may figure in an account 
of the ontogeny of the positive integers. Despite the trend in developmental 
psychology to suppose that it does, there are actually few detailed accounts on 
offer.  We'll examine two exceptions, two theories that give natural language a 
prominent role to play and that represent the state-of-the-art in the study of 
mathematical cognition.  The first is owing to C. R. Gallistel, Rochel Gelman, and 
their colleagues; the second, to Elizabeth Spelke and her colleagues.  Both 
accounts are rich and innovative and their proponents have made fundamental 
contributions to the psychological study of number.  Nonetheless, we will argue 
that both accounts face a range of serious objections and that, in particular, their 
appeal to language isn't helpful. Of course, this isn’t enough to show that the 
acquisition of number doesn’t depend on natural language.  But it does raise the 
very real possibility that, although language and number are both distinctively 
human achievements, there is no intrinsic link between the two. 
 
 
1. Gallistel and Gelman 
 
We will begin with Gallistel and Gelman’s treatment of the positive integers.  As 
they see it, the power of language stems from the way it interacts with an innate 
and evolutionarily ancient system known as the Accumulator.  Before explaining 
their theory, it will help to have a basic understanding of what this system is and 
how it is motivated. 
 
 
1.1. The Accumulator 
 
 Much of the motivation for the Accumulator derives from the study of non-
human animals (for a review, see Gallistel 1990). It turns out that many animal 
species are able to selectively respond to numerosity (i.e., numerical quantity) as 
such, though not, it seems, to precise numerosity. For example, in one 
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experimental design, a rat is required to press a lever a certain number of times 
before entering a feeding area to receive food. The rat can press more than the 
correct number of times, but if it enters the feeding area early it receives a 
penalty.  On experiments of this sort, rats were shown to respond appropriately 
to numbers as high as 24 (Platt & Johnson 1971; see also Mechner 1958).  While 
they don’t reliably execute the precise number of required presses, they do get 
the approximate number correct, and their behavior exhibits a predictable 
pattern.  First, they tend to overshoot the target, pressing a few more times than 
necessary rather than incurring the penalty.  Second, and more importantly, their 
range of variation widens as the target number of presses increases (see figure 1). 

 
 

 

 
 

Figure 1: Data from Platt & Johnson’s Experiments. In Platt & Johnson’s 
experiments, rats were required to press a lever a certain number of times before 
moving to a feeding area. As the target number of presses increases, the range of 
variation in the number of presses widens.  Adapted from Platt & Johnson (1971).  
 

  
 What makes this data interesting is that it looks like the rats really are 
responding to numerosity rather than some closely related variable, such as 
duration. In a related experiment, Mechner and Gueverkian (1962) were able to 
control for duration by varying the hunger levels of their subjects.  They found 
that hungrier rats would press the lever faster but with no effect on the number 
of presses.  So the rats weren’t simply pressing for a particular amount of time. 
Moreover, rats are equally good with different modalities (e.g., responding to 
numbers of lights or tones), and can even combine stimuli in two different 
modalities (Meck & Church 1983).  In short, the evidence strongly points in the 
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direction that rats are able to respond to number; they just don’t have precise 
numerical abilities. 
 Related studies with pigeons suggest that animals can respond to even larger 
numbers and that their discriminative capacity, though not as precise as the 
positive integers, is surprisingly fine-grained.  In these experiments, pigeons face 
a panel with three buttons and have the task of pecking the center button while it 
is illuminated. The experimenter controls things so that the illumination ceases 
after either 50 pecks or some other specified number, n.  If the pigeon ends up 
pecking 50 times, it is supposed to peck the right button next, but if it pecks n 
times, then it is supposed to peck the left button next.  Under these conditions, 
whether the pigeons are able to reliably peck on the left or the right in 
appropriate circumstances indicates whether they are able to discriminate n from 
50.  Rilling and McDiarmid (1965) found that pigeons are able to correctly 
discriminate 40 from 50 90% of the time and 47 from 50 60% of the time. 
 The data from these sorts of experiments conform to two principles—the 
Magnitude Effect and the Distance Effect (see Dehaene 1997). 

 
 

The Magnitude Effect 
 

According to the magnitude effect, performance for discriminating 
numerosities separated by an equal amount declines as the quantities 
increase.  For instance, it's harder to tell 10 from 12 than to tell 2 from 
4, even though the difference between the two pairs is the same. 

 
The Distance Effect 
 

According to the distance effect, the performance for discriminating 
two numerosities declines as the distance between the two decreases.  
For instance, it's harder to tell 3 from 4 than to tell 3 from 8. 
 

 
Together these principles illuminatingly characterize the approximate character 
of animals’ numerical abilities. 
 Gallistel and Gelman, following others, posit the existence of the Accumulator 
to explain the animals’ pattern of results (Gallistel 1990; Gallistel & Gelman 
2000).  As we’ll see, the interpretation of this system is a matter of some 
disagreement and Gallistel and Gelman have their own peculiar way of 
understanding it.  What’s widely agreed upon, however, is that the Accumulator 
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represents numerosity via a system of mental magnitudes. In other words, 
instead of using discrete symbols, the Accumulator employs representations 
couched in terms of a continuous variable.  
 Gallistel and Gelman employ an analogy to convey how the Accumulator 
works (Gallistel & Gelman 2000; Gallistel, Gelman, & Cordes forthcoming). 
Imagine water being poured into a beaker one cupful at a time and one cupful 
per item to be enumerated.1 The resulting water level (a continuous variable) 
would provide a representation of the numerosity of the set:  the higher the 
water level, the more numerous the set.  Moreover, with an additional beaker, 
the system would have a natural mechanism for comparing the numerosities of 
different sets.  The set whose beaker has the higher water level is the larger set.  
Similarly, the Accumulator could be augmented to support simple arithmetic 
operations.  Addition could be implemented by having two beakers transfer their 
contents to a common store.  The level in the common store would then represent 
their sum. 
 The Accumulator’s variability has several possible sources. One is an 
inaccuracy in the measuring cup.  Perhaps slightly more or less than a cupful 
gets into the beaker on any given pouring.  Another possibility is that the beakers 
are unstable.  Perhaps water sloshes around once inside them.  In any event, the 
suggestion is that the variability is cumulative so that the higher the water level, 
the greater the variability.  This would explain why a system along these lines is 
only approximate and why pairs of number separated by equal distances are 
harder to distinguish as the numbers get larger. 
 Gallistel and Gelman make a good case for the importance of the 
Accumulator in accounting for the numerical abilities of non-human animals. 
But, as they note, rats and pigeons aren’t the only ones who employ approximate 
representations of numerosity (Gallistel & Gelman 2000).  Humans do as well, 
and this suggests that humans have the Accumulator as part of their cognitive 

 
1 Put without the analogy, the model maintains that a fixed amount of energy is stored for each 
item enumerated and that the process is iterative in that only one unit is stored at a time.  
However, a major point of disagreement among defenders of the Accumulator is whether the 
process is in fact iterative.  For a non-iterative model, see Church & Broadbent (1990).  Another 
point of disagreement worth mentioning is whether one and the same mechanism—the 
Accumulator—underlies both numerical and temporal discriminations.  Gallistel and Gelman 
maintain that the Accumulator, functioning in different modes, underlies both types of 
discriminative ability. 
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equipment too.  In an important recent study, Fei Xu and Elizabeth Spelke set out 
to test the view held by many psychologists that preverbal infants aren't capable 
of discriminating numerosities beyond the range of 1-3 (Xu & Spelke 2000).  They 
presented six-month-old infants with displays of dots. One group of infants saw 
various displays of 8 dots while the other group saw displays of 16. After 
reaching habituation (i.e., a substantial decrease in looking time), both groups of 
infants were shown novel displays of both 8 and 16 dots and their looking times 
were measured (see figure 2). In both the habituation phase and the test phase, 
Xu and Spelke were extremely careful to control for features of the stimuli that 
correlate with numerosity—display size, element size, stimulus density, contour 
length, and average brightness.  What Xu and Spelke found was that the infants 
who were habituated to one numerosity recovered significantly more to the 
novel numerosity, indicating that they are able to distinguish 8 from 16 after all.  
However, infants under the same experimental conditions showed no sign of 
being able to discriminate 8 from 12.  Xu and Spelke's conclusion was that infants 
at this age can discriminate between large sets of differing numerosity "provided 
the ratio of difference between the sets is large" (p. 87).  Within the framework of 
the Accumulator model, this all makes sense. Like the rats and pigeons, infants 
are able to discriminate some numerosities from others.  It’s just that their 
Accumulator isn’t fully developed and so isn’t as sensitive as the one found in 
(mature) rats and pigeons. 
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Figure 2: Sample stimuli from Xu & Spelke’s experiments.  In Xu & Spelke’s 
experiments 6-month-old infants were habituated to displays of either 8 dots or 
16 dots.  In the testing phase they were shown new displays with both 8 and 16 
dots. The infants dishabituated more to displays with the novel numerosity, 
indicating that they were able to discriminate 8 from 16. From Xu & Spelke 
(2000). 

 
 

 Evidence for the accumulator can also be found in adult humans.  For 
example, Whalen, Gallistel, & Gelman (1999) gave adults tasks comparable to the 
ones previously given to rats.  In one of their experiments, adults had to respond 
to a displayed numeral by tapping a key the corresponding number of times as 
rapidly as possible.  The speed of the tapping ensured that the subjects couldn’t 
use subvocal counting, and Whalen et al. were able to rule out a reliance on 
duration as well.  The results were that Whalen et al.'s subjects performed in 
much the same way as Platt & Johnson’s rats.  Their responses were 
approximately correct, with the range of key presses increasing as the target 
numbers increased.  The conclusion Whalen et al. drew was that adults employ 
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"a representation that is qualitatively and quantitatively similar to that found in 
animals" (p. 134).2 
 So there is substantial evidence for the existence of an innate number-specific 
system of representation that provides humans and animals with an ability to 
respond to approximate numerosity by means of a system of mental magnitudes.  
This system explains the distance and magnitude effects and a wealth of 
experimental results (of which we have only been able to present a small sample 
here).  Though the Accumulator’s representational resources may seem rather 
crude compared to the concepts for the positive integers, Gallistel and Gelman’s 
position is that they form the basis for how we acquire the positive integers.  We 
are now in a position to turn to their theory. 
 
 
1.2. The Theory:  Getting the Integers from the Reals 
 
Psychologists typically assume that the positive integers form our most basic 
system of precise numerical representation.  Systems incorporating zero, 
negative integers, fractions, real numbers, etc. are thought to be cultural 
inventions.  Indeed, the cultural origin of many of these systems is taken to be 
part of the historical record. 
 Gallistel and Gelman’s theory boldly challenges this conventional wisdom. 
As they see it, the Accumulator plays a foundational role in the acquisition of the 
positive integers.  But they offer a distinctive interpretation of the Accumulator 
and what its states represent that provides the point of departure for a truly 
radical account of the relationship between the integers and the reals.  For 
Gallistel and Gelman, it's the reals, not the integers, that are the more basic: 3 
 

We suggest that it is the system of real numbers that is the 
psychologically primitive system, both in the phylogenetic and the 
ontogenetic sense. (Gallistel, Gelman, & Cordes, forthcoming, p. 1) 
 
Our thesis is that this cultural creation of the real numbers was a Platonic 
rediscovery of the underlying non-verbal system of arithmetic reasoning.  
The cultural history of the number concept is the history of learning to 
talk coherently about a system of reasoning with real numbers that 

 
2 For further evidence concerning the Accumulator’s role in adult human cognition, see Dehaene 
(1997), and Barth, Kanwisher, & Spelke (2003). 
3 See also Gallistel & Gelman (2000) and Gelman & Cordes (2001). 
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predates our ability to talk, both phylogenetically and ontogenetically. 
(Gallistel, Gelman, & Cordes, forthcoming, p. 3) 
 

 
For Gallistel and Gelman, the integers are a psychological achievement but one 
that occurs only against the background of representational resources that most 
others take to be a far greater psychological achievement. 
 On the standard interpretation of the Accumulator, its representations are of 
approximate numerosity (see, e.g., Dehaene 1997, Carey 2001).  They represent, 
in Elizabeth Spelke and Sanna Tsivkin’s useful phrase, “a blur on the number 
line” (2001, p. 85). Instead of picking out 17 (and just 17), an Accumulator-based 
representation indeterminately represents a range of numbers in 17's general 
vicinity.  A good deal of the evidence in favor of this interpretation—and 
likewise, a good deal of evidence in favor of the Accumulator—comes from the 
variability in animal and human performance under a variety of task conditions.  
But Gallistel and Gelman have a different take on this variability.  Their 
interpretation is that it traces back to problems with memory.  "[T]he reading of a 
mental magnitude is a noisy process, and the noise is proportional to magnitude 
being read" (forthcoming, p. 5).  That is, the accumulator represents precise 
numerosities that are systematically distorted when stored and retrieved. Mental 
magnitudes, as they see it, aren't approximate.  It's the processes that are defined 
over them that make them seem as if they are.  How precise are the 
representations that feed into memory? Gallistel and Gelman's answer is that 
they are extremely precise, that mental magnitudes by their very nature are so 
fine-grained as to represent the real numbers.4 
 Given this understanding of the Accumulator, arriving at representations of 
the positive integers is not a matter of trying to make precise the approximate 

 
4 Gallistel and Gelman's claim that mental magnitudes represent the reals isn't a metaphor.  It's to 
be taken quite literally.  Oddly, though, they are not entirely explicit about why they think this is 
so.  We suspect that their reasoning may be something like the following. Since a single system, 
the Accumulator, functions to represent both number and duration (see note 1), the 
representations involved must have the same basic features when representing number and time. 
And since time can be measured in terms of arbitrarily finer and finer units, the representations 
must be capable of being divided in ever finer ways, ultimately to the point of representing any 
real numbered unit of time. Anything less would be to impose a discrete structure on what is by 
all accounts a continuous, non-discrete vehicle of representation.  The upshot is that it is 
supposed to be intrinsic to the format of representation that it picks out quantities in terms of real 
numbers.  So when the Accumulator is working with numerosities, that can hardly change.  It's 
built into the nature of the representations themselves. 
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representations used by the Accumulator.  The representations in the 
Accumulator are already perfectly precise; in fact, precise representations of all 
the positive integers are already present in the Accumulator, since the positive 
integers are a subset of the reals.  What’s needed is some way to pick out the 
positive integers from among the reals. This is where Gallistel and Gelman 
appeal to natural language. 
 One of Gallistel and Gelman’s major contributions to the study of numerical 
cognition is the characterization of a set of principles whose mastery is 
constitutive of learning to count.  There are four principles in all (see Gelman & 
Gallistel 1978): 

 
 

Gelman & Gallistel’s Counting Principles 
 

1. The One-One Principle:  one and only one tag is to be used for each item in a 
count.   
 

2. The Stable-Order Principle: the tags used in counting must be applied in a fixed 
order. 
 

3. The Cardinal Principle:  the final tag in a count gives the cardinality of the set of 
items being counted. 
 

4. The Abstraction Principle: principles 1-3 apply to any collection of entities; in 
other words, there is no restriction on the sorts of things one can count. 
 
 

For Gallistel and Gelman, counting plays a critical role in the acquisition of 
concepts of positive integers.  They argue that the preverbal system—the 
Accumulator—effectively embodies the counting principles5 and that children 
may come to perceive the correspondence between non-verbal and verbal 
counting processes.  This leads children to conclude that counting terms 
represent the same thing as the preverbal mental magnitudes, namely, 
numerosities.  What’s more, language, according to Gallistel and Gelman, acts as 
a kind of filter.6  Its discrete character invariably selects the integers from the rest 
of the reals: 

 
5 Returning to the beaker analogy, each water level resulting from adding a cupful of water 
corresponds uniquely to the next item enumerated (One-One Principle).  Likewise, the beaker 
states occur in a fixed order (Stable-Order Principle), with the final beaker state giving the 
cardinal value of the set (Cardinal Principle).  Lastly, the Accumulator is not tied to any 
particular modality; it can be used to evaluate the numerosity of visual stimuli, auditory stimuli, 
tactile stimuli, and so on (Abstraction Principle). 
6 Alternatively, Gelman & Cordes (2001) describe the process as making explicit what was 
previously implicit through a process of "re-representation" (p. 294). 
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[T]he integers are picked out by language because they are the 
magnitudes that represent countable quantity.  Countable quantity is the 
only kind of quantity that can readily be represented by a system 
founded on discrete symbols, as language is. (forthcoming, p. 19) 

 
 
For Gallistel and Gelman, the nonverbal system gives children a head start in 
learning the verbal system in that it directs them to the verbal system and shapes 
their understanding of its significance.  But in learning the verbal system, 
children are able to go beyond the limitations of the preverbal system and 
beyond the capacities of animals and infants.  Language brings the positive 
integers into focus and eliminates the variability that is so characteristic of the 
preverbal system. 
 
 
1.3. Objections 
 
Unfortunately, Gallistel and Gelman’s theory faces a number of serious 
objections and ultimately, we believe, it cannot be made to work. 
 Let's start with their understanding of the Accumulator and its 
representational states. Granting that the representations in the Accumulator are 
given by mental magnitudes, should we take the system to be capable of 
representing the full range of real numbers?  The answer quite simply is no.  For 
example, there is no reason to suppose that Platt and Johnson’s rats are capable 

of representing 3.5, much less 7.4121326769 or Ö2.  Certainly the rats’ behavior 
doesn’t show sensitivity to these numerosities.  To be sure, they can’t reliably 
determine whether they should press 7, 8, 9, or 10 times, when the required value 
is precisely 8.  But this would only seem to indicate a failure to discriminate 
among various whole number values.   
 Of course, it may be that experiments that are sensitive enough to detect the 
presences of more fine-grained representational capacities have not yet been 
conducted.  Perhaps future experiments will show that the rats’ representations 
of numerosity do encompass the full range of the real numbers and that they can 
distinguish between, say, 7.4121326768 and 7.4121326769.  Similarly, we suppose 
one could try to insist that the rats have the far more powerful representational 
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system embodying the reals but are unable to manifest it in their behavior.  At 
present, however, we have no reason to take either of these possibilities 
seriously.7  
 Moreover, the situation isn’t just that there is a lack of evidence to support 
Gallistel and Gelman’s position.  There is also an inherent tension in their 
account.  Assuming that the Accumulator’s states do represent the reals, it’s hard 
to see how the Accumulator could embody the counting principles.  The idea 
that there is a “next tag” makes no sense with respect to the reals. The problem is 
that the reals are dense in that between any two real numbers there is always 
another real number.  So “2” is no more “the next tag” after “1” than “1.5” is (or, 
for that matter, than any other number greater than 1 is). Putting this problem 
aside, even if there was some sense in which “the next tag” could be defined for a 
system representing the reals, the Accumulator would still have to operate with 
impossibly perfect precision to ensure that the same accumulator levels are 
applied in the same order for each count. In all likelihood the level 
corresponding to“1” would rarely be followed by the level corresponding to “2”; 
rather, it would sometimes be followed by “2.0000000000103”, sometimes by 
“2.000010021”, etc.  But that’s just to say that the stable order principle wouldn’t 
hold.  And if two items were being counted and the final tag were anything other 
than precisely “2”, the cardinality principle wouldn’t hold either, since the 
cardinal value of a two membered set is precisely 2, not, 2.0000000000103 or 
2.000010021.8 

 
7 Though we don’t have space to discuss it here, there is reason to doubt whether the mental 
magnitudes employed in measuring duration are as fine-grained as the reals either.  It’s hardly 
obvious that we ever represent to ourselves durations of p or Ö2 seconds.  Certainly, there is no 
behavioral evidence for this.  Nor is there evidence that for any two durations there is always a 
representable duration between then.  Much the same is true of other mental magnitudes.  There 
is no reason to believe that the visual system can always represent a length between any two 
lengths no matter how fine-grained, or that the auditory system can always represent a volume 
between any two volumes.  
8 These problems also undermine Gallistel and Gelman’s claim that the correspondence between 
verbal and nonverbal counting will help in picking out the integers from the reals.  Since there 
won’t be any Accumulator states consistently correlated with verbal counting symbols, there 
won’t be any correspondence to notice. Moreover, this problem remains on the alternative 
interpretation of Accumulator states where such states represent a “blur on the number line”.  In 
that case the “correspondence” would be between “n” and a blur somewhere in the general 
vicinity of n.  But this isn’t really a correspondence at all. Indeed, the problem remains even if we 
suppose that the Accumulator states represent precise integer values—albeit ones which can only 
be accessed via the noisy and distorting process of memory.  Since the precise values cannot be 
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 What has gone wrong?  Our diagnosis is that Gallistel and Gelman have 
taken features of the representational format to necessitate features of the content 
of the representation.  In particular, they have assumed that if the vehicle of 
representation is a continuous magnitude, then what it represents must also be a 
continuous magnitude. However, this assumption is mistaken.  There is nothing 
at all incoherent about mental magnitudes representing discrete values. 
 What about the second half of Gallistel and Gelman’s model, namely, the 
role that they assign to language?  Recall that on their view natural language acts 
as a sort of filter, selecting the positive integers from among the reals. Natural 
language is able to do this because it is discrete, and discrete representations are 
supposed to readily represent only countable quantities.  Unfortunately, this 
feature of their theory is indefensible quite apart from the troubles with their 
interpretation of the Accumulator. 
 The main problem is their assumption about what language can and cannot 
readily represent.  The fact that language is discrete does not in any way limit it 
to representing discrete contents.  Language has no difficulty representing 
imprecise, non-discrete properties such as being bald, being red, or being tall. Far 
from it; vagueness is a pervasive feature of language (Keefe 2000).  Likewise, 
language isn’t limited to terms like “pencil”, which pick out countable entities.  It 
can happily accommodate mass terms, such as “salt”, which pick out substances 
or stuffs.  Mass terms can also be incorporated into expressions of quantity 
(“more salt”, “less salt”, “a little salt”, “a lot of salt”, “loads of salt”).  And it 
should also go without saying that language has numerous devices for 
expressing inexact quantities of differing sizes (“some”, “plenty”, “a few”, “a 
handful”, “a bunch of”, “an army of”). 
 Language can also readily represent specific real number quantities via 
names and descriptions (“pi” and “the square root of two”).  And by 
incorporating a system of decimal notation, language can of course represent 
arbitrarily fine-grained real values, allowing us to discuss such things as whether 
the current interest rate of  5.867% is likely to rise. 

 
accessed as such to be compared with the verbal counts, again it seems there would be no 
correspondence that the child could notice. 
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 We take it that these considerations undercut any hope that the discrete 
character of language accounts for how the integers emerge from the reals. Once 
again, the difficulties for Gallistel and Gelman’s theory appear to stem from a 
conflation of representational formats, or vehicles, and representational contents.  
In this case, the problematic assumption is that discrete vehicles—linguistic 
symbols—can only readily express discrete contents.  But it should now be 
abundantly clear that this assumption is false. Discrete systems like language are 
not limited to representing countable quantities. The relation between vehicles 
and contents just isn’t as tight as Gallistel and Gelman would have us assume. 
 We have argued that Gallistel and Gelman’s account of the ontogeny of the 
integers faces a number of serious objections. Their interpretation of the 
Accumulator as representing the reals is unwarranted, their commitment to this 
interpretation is in direct conflict with their claim that the Accumulator operates 
in accordance with the counting principles, and their view about language’s role 
as a filter is based on mistaken assumptions about what language can and cannot 
readily represent.  These objections go to the heart of Gallistel and Gelman’s 
account.  Without their interpretation of the Accumulator and without their view 
of language acting as a filter, their account simply cannot be made to work. All 
the same, Gallistel and Gelman are right to emphasize the importance of the 
Accumulator. It is a number-specific system that is plausibly innate and likely to 
play a role in the ontogeny of the integers. In the next section we will examine 
another theory which also makes use of the Accumulator, but in very different 
way. 
 
 
2. Spelke 
 
We turn now to Elizabeth Spelke’s theory of the positive integers.  Like Gallistel 
and Gelman, Spelke makes use of the Accumulator, but she also emphasizes a 
second cognitive system.  And importantly, she identifies a new and interesting 
role for natural language to play.  
 
 
2.1. Language as the Basis for Conceptual Change 
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Spelke's treatment of the positive integers is based on a general account of 
conceptual change that aims to explain, among other things, why the human 
conceptual system is far more expressive and flexible than that of other animals.  
At the center of Spelke’s account is natural language.  According to Spelke, 
human beings are endowed with a variety of innate domain-specific, task-
specific modules. These modules function independently of one another, and 
their internal workings are inaccessible to other parts of the mind.  As Spelke 
sees it, the richness of adult human thought isn’t a matter of the contents of any 
particular module; most of these modules are supposed to be present in other 
species.  Rather, the key difference is owing to the human ability to bring 
together the contents of two or more modules.  Crucially, the way this is done is 
through natural language. “Natural languages provide humans with a unique 
system for combining flexibly the representations they share with other animals.  
The resulting combinations are unique to humans and account for unique 
aspects of human intelligence” (Spelke 2003, p. 291).  Language’s power stems 
from two of its central features—its domain-generality and its compositionality:   
 

First, a natural language allows the expression of thoughts in any area of 
knowledge.  Natural languages therefore provide a domain-general 
medium in which separate, domain-specific representations can be 
brought together.  Second, a natural language is a combinatorial system, 
allowing distinct concepts to be juxtaposed and conjoined.  Once children 
have mapped representations in different domains to expressions of their 
language, therefore, they can combine those representations. Through 
these combinations, language allows the expression of new concepts: 
concepts whose elements were present in the prelinguistic child’s 
knowledge systems but whose conjunction was not expressible, because 
of the isolation of these systems. (Spelke & Tsivkin 2001, p. 71) 

 
 
 Spelke’s primary and most developed illustration of this account focuses on 
spatial reorientation (Spelke 2003, Spelke & Tsivkin 2001, Shusterman & Spelke 
this volume).  In reorienting, one could rely on geometrical information about the 
layout of the environment, landmark cues, or both.  Surprisingly, many non-
human animals seem unable to combine these two types of information; for 
example, they don’t take advantage of concepts like LEFT OF THE BLUE WALL.9  
Moreover, while adult humans do employ combinations of this sort, children 

 
9 Here and below we employ the standard small capitals notation for concepts and mental representations. 
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who have yet to master the spatial vocabulary don’t, and neither do adults who 
are engaged in tasks that interfere specifically with language-processing.  These 
results seem to provide strong support for Spelke’s general account of conceptual 
change.  Natural language, as she puts it, has the “magical property” of 
compositionality. “Thanks to their compositional semantics, natural languages 
can expand the child’s conceptual repertoire to include not just the preexisting 
core knowledge concepts but also any new well-formed combination of those 
concepts” (Spelke 2003, p. 306). 
 
 
2.2. The Theory of Positive Integers: Old Concepts, New Combinations 
 
Spelke’s account of how the positive integers are acquired is supposed to follow 
the same pattern as the spatial reorientation case, once again drawing upon 
language’s domain-generality and combinatorial structure. 
 

The foregoing analysis of spatial orientation prompts a different [i.e., 
novel] account of number development.  Children may attain the mature 
system of knowledge of the natural numbers by conjoining together 
representations delivered by their two preverbal systems. Language may 
serve as a medium of this conjunction, moreover, because it is a domain-
general, combinatorial system to which the representations delivered by 
the child’s two nonverbal systems can be mapped. (Spelke & Tsivkin 
2001, p. 84) 

 
 
What, then, are the two preverbal systems on the basis of which the positive 
integers are formed?  Unfortunately, Spelke doesn’t have a lot to say about them. 
The first she and Sanna Tsivkin characterize as a small-number system, saying that 
it “serves to represent small numerosities exactly” (Spelke & Tsivkin 2001, p. 83). 
The second, in contrast, is supposed to be a large-number system, one that “serves 
to represent large sets” but whose “accuracy decreases with increasing set size in 
accord with Weber’s Law” (Spelke and Tsivkin 2001, p. 83).  We take it that the 
large-number system is the Accumulator.  Though Spelke doesn’t come right out 
and say this, the evidence that she and Tsivkin cite on behalf of the large number 
system is exactly the sort that is generally associated with the Accumulator.  
Things are a little more tricky with their so-called small number system.  But the 
sort of evidence they cite in connection with this system suggests that what they 
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have in mind is what is elsewhere known as the object indexing system (or the 
object file system). 
 The object indexing system is a psychological mechanism that supports the 
visual tracking of a small number of objects.  Several similar models have been 
proposed, but the basic idea in each case is to have re-assignable indexes that 
function as abstract representations of individual objects (see, e.g., Leslie, Xu, 
Tremoulet, & Scholl 1998).  In adult humans, the number of indexes is about 
four—a number that derives from work on object-based attention studies in 
vision (Trick & Pylyshyn 1993).  The indexes are abstract in that they don’t 
inherently represent the color, shape, texture, or any of the features of an object.  
They are sometimes likened to fingers, which can point to a thing without 
thereby conveying any of its features. Object indexes are able to do this because 
they track objects, in the first instance, by responding to their spatial-temporal 
properties.10 As a result, once an index is assigned to an object, it “sticks” to it 
simply on the basis of such things as the object's maintaining a continuous path 
(with allowances for brief occlusions). 
 The object indexing system has a great deal of explanatory power.  Here we 
have space for only one example—its ability to account for an influential finding 
of Karen Wynn’s.  Wynn (1992) showed five-month-old infants scenes that 
instantiated simple additions and subtractions followed by outcomes that were 
either arithmetically correct or incorrect. In one experiment, after a doll was 
placed on an empty stage, a screen came up to hide the doll from view.  While 
the screen was still up, a second doll was visibly added. The screen was then 
withdrawn revealing either two objects (the correct outcome) or one object (an 
incorrect outcome). The infants’ looking time (relative to their base preference 
levels) was significantly greater for the incorrect outcome, suggesting to Wynn 
that five-month-olds know that 1+1=2 (see figure 3).  Wynn’s conclusion is 
controversial, but for present purposes the interesting fact is that her results hold 
only for small numbers.  This is part of the reason Spelke and Tsivkin claim that 
there is a system that represents only small numerosities.  The object indexing 

 
10 This isn't to say, however, that an object's features aren't represented by the object indexing 
system.  Leslie et al. (1998) emphasize that features may be recorded and may even be used in the 
assignment of object indexes.  It's just that the use of spatial-temporal properties is more basic 
and can govern the assignment of indexes independently of information about features. 
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system explains this cap in terms of its limited stock of indexes; it can track no 
more than four objects simultaneously. The looking time patterns in Wynn’s 
experiments can also be explained under the assumption that attention is 
allocated when an active index loses its object or when a new object necessities 
the activation of a new index.  In the 1+1 scenario, infants look longer at the 
incorrect outcome (1+1=1) because they end up with an active index that has lost 
its object. 
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Figure 3: Schematic Depiction of one of Wynn’s Addition/Subtraction 
Experiments.  After a doll was placed on an empty stage, a screen came up to 
hide the doll from view.  While the screen was still up, a second doll was visibly 
added. The screen was then withdrawn revealing either two objects (the correct 
outcome) or one object (an incorrect outcome). Adapted from Wynn (1992). 

 
 
 Having introduced Spelke’s two preverbal number modules, we turn now to 
her account of how they come together to yield the integers. Representations 
from the small number system (the object indexing system) are supposed to be 
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conjoined with representations from the large number system (the Accumulator), 
through the power of natural language.  According to Spelke and Tsivkin, 
exposure to number words leads children to notice that representations from the 
two systems apply to the same sets of entities for small numbered sets: 
 

… because the words for small numbers map to representations in both 
the small-number system and the large-number system, learning these 
words may indicate to the child that these two sets of representations pick 
out a common set of entities, whose properties are the union of those 
picked out by each system alone.  This union of properties may be 
sufficient to define the set of natural numbers. (Spelke & Tsivkin 2001, 
p.85) 

 
 

A variety of cues then suggest that all number words should be treated alike, 
even though the small number system is limited to very small sets: 

 
Because all the number words appear in the same syntactic contexts (see 
Bloom & Wynn 1997) and occur together in the counting routine, 
experience with the ambient language may lead children to seek a 
common representational system for these terms. (Spelke & Tsivkin 2001, 
p.85) 

 
 

And finally it all comes together, the result being representations of the positive 
integers: 

 
… because the terms one, two and three form a sequence in the counting 
routine, children may discover that each of these number words picks out 
a set with one more individual than the previous word in the sequence, 
and they may generalize this learning to all the words in the counting 
sequence. (Spelke & Tsivkin, 2001, 85-6) 

 
 
 In support of this account, Spelke cites two further sources of evidence 
linking language to number.  One source of evidence involves cases of brain 
damaged patients who have impaired language and are also unable to perform 
exact calculations (yet retain the ability to approximate).  The other source of 
evidence involves experimental work on bilinguals who were trained to do 
certain sorts of exact calculations and approximations in one of their languages 
and then tested on these tasks in both of their languages.  Interestingly, the 
bilinguals were able to transfer the new approximation skills across languages, 
but were unable to transfer their new skills with exact calculations.  Spelke and 
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her collaborators take this to suggest that language is essentially involved in the 
representation of large exact numerosities—a view that is a natural corollary of 
her theory of development. 
 
 
2.3.Objections 
 
Spelke’s account faces a number of serious objections, and ultimately, we believe 
it is no more promising than Gallistel and Gelman’s.  Much of the trouble with 
Spelke’s account comes right at the beginning.  In particular, it isn’t clear which 
representations are to be drawn from the two modules.  Spelke gives several 
answers that are significantly different from one another if not simply 
inconsistent. 
 As we saw in sec. 2.2, Spelke and Tsivkin (2001) claim that the small-number 
system “serves to represent small numerosities exactly”.  This remark is 
embedded in a larger discussion where they introduce the small number system 
by noting that “the capacity for representing the exact numerosity of small sets is 
common to humans and other animals and emerges early in human 
development” (pp. 82-3).  Likewise, writing with Marc Hauser, Spelke refers to 
“a system for representing the exact number of object arrays or events with very 
small numbers of entities” (Hauser & Spelke, forthcoming, p. 9).  Yet in a related 
discussion, Spelke says that the system “does not permit infants to discriminate 
between different sets of individuals with respect to their cardinal values” (2003, 
p. 299).  These claims, if not simply inconsistent, are in strong tension with one 
another.  How could a system represent the exact numerosity of different small 
sets without at least permitting infants to discriminate among them with respect 
to their cardinality?    
 Other times the concern isn’t inconsistency but rather that what are supposed 
to be the same components of the theory are presented in ways that aren’t at all 
equivalent.  For example, at one point Spelke and Tsivkin say that the small-
number system represents a two-member set as “an object x and an object y, such 
that y≠x”, whereas the large-number system represents it as “a blur on the 
number indicating a very small set” (Spelke & Tsivkin, p. 85).  Elsewhere, 
however, they suggest that what the two contribute is something very different: 
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From the small number system may come the realization that each 
number word corresponds to an exact number of objects, that adding or 
subtracting exactly one object changes number, and that changing the 
shape or spatial distribution of objects does not change number.  From the 
large-number system may come the realization that sets of exact 
numerosity can increase without limit, and that a given symbol represents 
the set as a unit, not just as an array of distinct objects” (Spelke & Tsivkin 
2001, p. 86)  
 
 

Given all of these different pronouncements, it’s hard to say which should be 
taken as Spelke’s considered view of the representations that the two modules 
are supposed to deliver. 
 If that weren’t bad enough, it’s doubtful that any of her answers are 
especially promising.  For instance, take the representations (i) and (ii). 
 

(i) AN OBJECT AN OBJECT X AND AN OBJECT Y, SUCH THAT Y≠X  
 

(ii) ———— [“————” indicates a specific blur on the number line 
corresponding to approximately two] 

 
Spelke and Tsivkin talk repeatedly about “conjoining” representations from the 
small and large number systems.  But conjoining these two representations 
results in the bizarre representation, (iii).  
 

(iii) AN OBJECT X AND AN OBJECT Y, SUCH THAT Y≠X AND ———— 
 
The problem is that it is anything but clear what this representation means. 
 Since the target is a concept like SEVEN (exactly seven, not approximately 
seven), perhaps a more promising suggestion is to combine the generic concept 
of EXACT NUMEROSITY with a given approximate numerical range.  The generic 
concept may be what Spelke has in mind when she emphasizes that the small 
number system “represents small numerosities exactly”.  Suppose, then, that the 
combination is a representation of exact numerosity with a blur corresponding to 
approximately 7—SEVENISH, for lack of a better expression.  The question is what 
the result would be?  We see no reason to think that  there is a determinate 
answer to this question or one that Spelke would find particularly favorable.  To 
see why, consider a close analogy. RED indeterminately applies to a range of 
colors with no precise boundary separating red and its neighboring colors, such 
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as orange.  What happens when the concept RED is combined with the concept 
EXACT COLOR.  What would the content of this concept be?  The answer isn’t at all 
clear.  Notice that adding COLOR to RED doesn’t add anything at all, so in 
combining EXACT COLOR and RED, EXACT does all the work.  But what does EXACT 
add to RED?  Something can be such-and-such percentage red, or such-and-such 
shade of red, but not exactly red.  Perhaps the best that can be said here is that 
EXACT + RED just means red.  In that case, EXACT NUMEROSITY + SEVENISH would 
just mean sevenish.  This hardly brings us closer to SEVEN. 
 What’s more, the situation doesn’t improve even if one insists that EXACT 
NUMEROSITY + SEVENISH must refer to some more specific numerosity, since there 
are many specific contents that would be candidates.  These include (but aren’t 
limited to) the range 7-8, the range 6-7, the range 6-8, the number 7.5, the number 
8, and so on.  All of these are different ways of making SEVENISH more precise.  
Modifying SEVENISH by EXACT NUMEROSITY does nothing to single out seven. 
 Things get even worse in that Spelke can’t assume that a concept of 
numerosity is in the small-number system in the first place.  If this system is the 
object indexing system, as we suggested earlier, then its representational powers 
are far more modest.  What it does is attend to a small number of objects by 
employing a small number of indexes, one per object.  Its representations are the 
indexes, each of which only represents the object it temporarily tracks.  Of 
course, whenever the system responds to two objects, it will activate exactly two 
indexes.  But that doesn't mean that the system is employing the concept EXACTLY 
TWO or representing the two-ness of the set.  Rather, it’s just a reflection of the 
parallel activation of two indexes, each of which continues to represent no more 
than its object. The same considerations extend to other numerical or quasi-
numerical concepts that Spelke may wish to appeal to—EXACT NUMEROSITY, 
EXACT, NUMEROSITY, ONE, TWO, EXACTLY ONE, EXACTLY TWO, etc. None of these are 
present in the object indexing system, and none can be taken for granted.11 

 
11 One might try to argue that, though these are not explicitly represented in the object indexing 
system, one or more are implicitly represented. We should note that we don’t think that this is a 
promising suggestion. Part of the problem is that Spelke would then need a mechanism that 
could make them explicit.  Moreover, such a mechanism would threaten to make her language-
based theory of conceptual change superfluous.  Any cognitive mechanisms that could render a 
concept explicit in the envisioned sense would be capable of formulating an entirely novel 
concept.  Language would no longer be the driving force for conceptual change. 
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 Up until now we have been taking at face value Spelke’s claim that her 
treatment of the positive integers follows the same model as her treatment of 
spatial reorientation.  It may be, however, the two aren’t so closely related and 
that what Spelke ought to say is that the common ground between them is just 
the importance given to language.  In that case, it may be that language’s 
compositional structure is what’s important for spatial reorientation but that 
language functions rather differently when it comes to number.  If this is right, 
then Spelke’s view of number isn’t grounded in her general theory of conceptual 
change (or else that theory is described very misleadingly).  On the other hand, 
the departure from her general theory of conceptual change would make sense of 
the fact that Spelke suggests a variety of different contributions from the 
preverbal number modules.  It would also make sense of Spelke and Tsivkin’s 
remarks about different “realizations” coming from the two number systems.   
 Suppose, then, that the theory isn’t that the representations of the small and 
large number systems are combined compositionally.  The remarks about 
realizations suggest a more intellectual process where information made 
available by the two modules is subjected to reflection and a certain amount of 
theorizing takes place, leading somehow to a new stock of concepts.  One 
problem that this raises for Spelke is where the reflection takes place.  Spelke’s 
inventory of innate mechanisms includes the modules we share with animals 
plus language.  Clearly reflection of the required sort isn’t something that could 
occur in a domain-specific, task-specific module; and language, while it may 
provide a domain-general medium, isn’t a mechanism that can be counted on to 
embody any inference you like.  So it may turn out that the seat of conceptual 
change has yet to be identified. 
 More generally, though, we need to ask what exactly the initial information to 
be combined looks like, how exactly the process works, and how any new 
concepts emerge from it.  Since the alternative model of conceptual change that 
we are considering is not explicitly discussed in Spelke’s work, it cannot be 
evaluated in any detail.  But to get a feel for the difficulties it is likely to face, 
consider just the question of what initial information is to be combined. In 
several places, Spelke indicates that the small number system may contribute 
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something like the concept of an individual, while the large number system 
contributes something like the concept of a set.  For instance: 
  

One system represents small numbers of persisting, numerically distinct 
individuals exactly and takes account of the operation of adding or 
removing one individual from the scene.  It fails to represent the 
individuals as a set, however, and therefore does not permit infants to 
discriminate between different sets with respect to their cardinal values.  
A second system represents large numbers of objects or events as sets 
with cardinal values, and it allows for numerical comparison across sets.  
This system, however, fails to represent sets exactly, it fails to represent 
the members of these sets as persisting, numerically distinct individuals, 
and therefore it fails to capture the numerical operations of adding or 
subtracting one. (Spelke 2003, p. 299) 

 
 
Learning the meaning of small number words is supposed to bring these two 
representations together, thereby laying the groundwork for concepts of the 
positive integers: 
 

To learn the full meaning of two, however, children must combine their 
representations of individuals and sets: they must learn that two applies 
just in case the array contains a set composed of an individual, of another, 
numerically distinct individual, and of no further individuals…  (Spelke 
2003, p. 301). 

 
 
 One point to note here is that it is puzzling how the combination of such 
varied information is supposed to be achieved.  The suggestion is that the likes of 
(1) and (2) are brought together to yield (3): 
 

(1) the information that there is a set consisting of a small indeterminate 
number of individuals that aren’t represented as persisting or as being 
numerically distinct form one another 

 
(2) the information that there is a persisting individual and a different 

persisting individual 
 
(3) the belief that there is a set consisting of a persisting individual and a 

different persisting individual and no other individuals 
 
A major problem with this proposal, to the extent that we understand it, is the 
very different assumptions about “individuals” in the two systems.  In one case 
the individuals are persisting and numerically distinct.  In the other, they are 
neither of these.  There would seem to be little point of contact between the two, 
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making it difficult to see how they could come to support a common belief, short 
of equivocation.  Similarly, the notion of set that is supposed to be derived from 
the large-number system is a peculiar one.  Our ordinary notion of a set is one 
which is defined in terms of its members (where these are numerically distinct, 
persisting individuals).  But Spelke can’t avail herself of this notion. Another 
concern is that, while Spelke may be right that the small number system doesn’t 
represent the set of objects as such—that it only represents the individuals in the 
set—whatever justification there is for this claim could be applied to the 
Accumulator as well.  The only thing the Accumulator patently represents is a 
property of sets, viz., their approximate numerosity.  This no more requires that 
the sets themselves be represented than representing the redness of an individual 
requires representing the individual as such.  As a result, Spelke isn’t in a 
position to assume that the Accumulator has any explicit representation of a set 
to begin with. 
 Together these considerations cast doubt on Spelke’s theory insofar as it 
breaks away from the spatial reorientation example.  Because Spelke says so little 
about how the imagined combination proceeds, it’s hard to say more.  Still, we 
do want to mention one final potential difficulty.  The current model requires 
that both the small number system and the large number system are responsive 
to smaller numbers, each in its own way.  For example, both are supposed to be 
able to respond to sets of two items, particularly in the course of learning the 
word “two”.  The result is supposed to be that learning the first few number 
words precipitates, and in some sense causes, a conceptual shift giving rise to the 
positive integers.  It goes without saying that for any of this to work, the large 
number system—the Accumulator—has to function for small numbers.  Our last 
concern is that there is a very real possibility that it doesn’t.  In the Xu and Spelke 
study cited in section 1.1, it was found that infants who could distinguish 8 from 
16 couldn’t distinguish between 8 and 12 (Xu & Spelke 2000).  And in a 
subsequent work, Xu has found that infants who can distinguish between 4 and 8 
nonetheless can’t distinguish between 2 and 4 (Xu 2003).  Xu concludes that 
infants at this age have an Accumulator that requires a 1:2 ratio but, in addition, 
that it doesn’t respond to small numbers (thus the failure with 2 vs. 4).  Why not? 
There are several possibilities.  One is that, as Xu puts it, the Accumulator’s 
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“computations are unstable or undefined for small values” (Xu 2003, p. B23).  
This would be a likely outcome particularly if its operations aren’t iterative—as 
assumed by Gallistel and Gelman—but instead compute approximate number in 
some other way.12 Another possibility is that “the output of the object tracking 
system inhibits the output of the number estimation system [the Accumulator]” 
(Xu 2003, p. B24).  Either way, Spelke’s treatment of the positive integers would 
be problematic, since she couldn’t assume that children have representations 
from both preverbal systems at the level at which they are supposed to be 
compared.  The result is that they’d have no basis for formulating concepts for 
the integers 1, 2 and 3, and the account wouldn’t even get off the ground.  
 Finally, before closing this section, we should say a word or two about the 
evidence linking language to number.  This includes evidence from brain 
damaged patients and from bilinguals, both pointing to a link between language 
and the representation of exact number, including exact calculation.  The 
question is whether the link is so strong that it argues that language is intrinsic to 
the representation of the positive integers, making language a condition for their 
emergence.  We’d suggest that the evidence is, at best, inconclusive.  This is for 
the simple reason that, among language users, language may come to play an 
important role in the representation of the integers without being the original 
source of these concepts.  Though extremely interesting, the data aren’t 
developmental data; consequently, they don’t tell one way or the other about the 
fact of ontogeny. 
 Of course, even if this data did establish that language is essential to number, 
this wouldn’t argue for Spelke’s theory in particular. The data are equally 
compatible with Gallistel and Gelman’s theory or any of a large number of 
different possible theories that take language to play a crucial role in the 
ontogeny of number.  Moreover, there are also data suggesting that number isn’t 
essentially dependent on language. Though we lack the space to go into much 
detail here, it’s worth mentioning in this context that there are cases of patients 
with severe linguistic deficits who can perform exact calculation.  For instance, 
Hermelin and O’Connor (1990) describe a speechless autistic man who can 

 
12 Spelke herself has argued for a noniterative model in Barth, Kanwisher, & Spelke (2003). 
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identify five figure prime numbers and who can factorize numbers of the same 
magnitude, all based on exposure to a few examples.  The examples involve the 
use of symbols—standard Arabic notation.  However, the important point is that 
Arabic notion isn’t anything like a natural language and can hardly vindicate 
Spelke’s model of development.  At the very least, it lacks the domain-generality 
that is supposed to allow language to bring together representations from 
distinct modules. 
 In this section we have argued that Spelke’s account faces a number of 
serious objections.  Many of these concern the representations that are supposed 
to be contributed by the preverbal number modules.  In particular: 
 

•It isn’t clear what these representations are. 
 
•Spelke’s suggestions aren’t always consistent. 
 
•The reasonable candidates involve concepts that aren’t explicitly 

represented (exactly one, numerosity, set, etc.). 
 
•The reasonable candidates don’t get us closer to the positive integers when 

combined via the compositional semantics of natural language.   
 
Further, if compositionality isn’t the mechanism of conceptual change, then it 
just isn’t clear what the alternative is supposed to be.  And finally, all of the 
suggestions and hints that Spelke makes assume that both preverbal systems 
contribute representations in connection with the first few integers.  But there is 
evidence to suggest that the Accumulator doesn’t function for these numbers, in 
which case Spelke’s account can’t even get off the ground. 
 In light of these problems, Spelke’s account of the positive integers is not 
promising. At the same time Spelke does identify an innate cognitive mechanism 
(the object indexing system) that, like the Accumulator, may well play an 
important role in the ontogeny of the integers. But the question remains of how 
exactly the two could be combined to yield the integers and what other 
ingredients might be needed.13 
 
 

 
13 For our views on these questions, and a more detailed discussion of the ontogeny of number, 
see our “Acquiring Number Concepts”. 
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3. Conclusion 
 
Are language and number essentially linked?  In this paper we have examined 
two of the most important current accounts of the origins of number concepts.  
Though they have their own distinctive commitments, both identify language as 
one of the core innate capacities that subserve the development of number.  We 
have argued that neither account is defensible.  Still, work by Gallistel, Gelman, 
Spelke, and others has done much to advance our understanding of the origins of 
number.  So the answer to our question is, so far as anyone knows, no.  Though it 
is still too early to say whether the ontogeny of number depends on language, 
the situation at present is that we have little reason to suppose that it does. 
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