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ABSTRACT 

 

Lightning in a Bottle 

 

Jonathan Lawhead 

 

 

     Climatology is a paradigmatic complex systems science.  Understanding the global climate 

involves tackling problems in physics, chemistry, economics, and many other disciplines.  I 

argue that complex systems like the global climate are characterized by certain dynamical 

features that explain how those systems change over time.  A complex system’s dynamics are 

shaped by the interaction of many different components operating at many different temporal 

and spatial scales.  Examining the multidisciplinary and holistic methods of climatology can help 

us better understand the nature of complex systems in general. 

     Questions surrounding climate science can be divided into three rough categories: 

foundational, methodological, and evaluative questions.   ”How do we know that we can trust 

science?" is a paradigmatic foundational question (and a surprisingly difficult one to answer). 

Because the global climate is so complex, questions like “what makes a system complex?” also 

fall into this category.  There are a number of existing definitions of ‘complexity,’ and while all 

of them capture some aspects of what makes intuitively complex systems distinctive, none is 

entirely satisfactory.  Most existing accounts of complexity have been developed to work with 

information-theoretic objects (signals, for instance) rather than the physical and social systems 



studied by scientists.  Dynamical complexity, a concept articulated in detail in the first third of 

the dissertation, is designed to bridge the gap between the mathematics of contemporary 

complexity theory (in particular the formalism of “effective complexity” developed by 

Gell-Mann and Lloyd [2003]) and a more general account of the structure of science generally. 

Dynamical complexity provides a physical interpretation of the formal tools of mathematical 

complexity theory, and thus can be used as a framework for thinking about general problems in 

the philosophy of science, including theories, explanation, and lawhood.  

     Methodological questions include questions about how climate science constructs its models, 

on what basis we trust those models, and how we might improve those models.  In order to 

answer questions about climate modeling, it’s important to understand what climate models look 

like and how they are constructed.  Climate model families are significantly more diverse than 

are the model families of most other sciences (even sciences that study other complex systems). 

Existing climate models range from basic models that can be solved on paper to staggeringly 

complicated models that can only be analyzed using the most advanced supercomputers in the 

world.  I introduce some of the central concepts in climatology by demonstrating how one of the 

most basic climate models might be constructed.  I begin with the assumption that the Earth is a 

simple featureless blackbody which receives energy from the sun and releases it into space, and 

show how to model that assumption formally.  I then gradually add other factors (e.g. albedo and 

the greenhouse effect) to the model, and show how each addition brings the model’s prediction 

closer to agreement with observation.  After constructing this basic model, I describe the 

so-called “complexity hierarchy” of the rest of climate models, and argue that the sense of 

“complexity” used in the climate modeling community is related to dynamical complexity.  With 



a clear understanding of the basics of climate modeling in hand, I then argue that foundational 

issues discussed early in the dissertation suggest that computation plays an irrevocably central 

role in climate modeling.  “Science by simulation” is essential given the complexity of the global 

climate, but features of the climate system--the presence of non-linearities, feedback loops, and 

chaotic dynamics--put principled limits on the effectiveness of computational models.  This 

tension is at the root of the staggering pluralism of the climate model hierarchy, and suggests that 

such pluralism is here to stay, rather than an artifact of our ignorance.  Rather than attempting to 

converge on a single “best fit” climate model, we ought to embrace the diversity of climate 

models, and view each as a specialized tool designed to predict and explain a rather narrow range 

of phenomena.  Understanding the climate system as a whole requires examining a number of 

different models, and correlating their outputs.  This is the most significant methodological 

challenge of climatology. 

 

       Climatology’s role contemporary political discourse raises an unusually high number of 

evaluative questions for a physical science.  The two leading approaches to crafting policy 

surrounding climate change center on mitigation (i.e. stopping the changes from occurring) and 

adaptation (making post hoc changes to ameliorate the harm caused by those changes).  Crafting 

an effective socio-political response to the threat of anthropogenic climate change, however, 

requires us to integrate multiple perspectives and values: the proper response will be just as 

diverse and pluralistic as the climate models themselves, and will incorporate aspects of both 

approaches.  I conclude by offering some concrete recommendations about how to integrate this 

value pluralism into our socio-political decision making framework. 
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"The sciences, each straining in its own direction, have hitherto harmed us little; but some day the piecing together of 
dissociated knowledge will open up such terrifying vistas of reality, and of our frightful position therein, that we shall 

either go mad from the revelation or flee from the light into the peace and safety of a new dark age." 

-H.P. Lovecraft 

 

 Prelude  

Doing Better 

0.0  Motivation and Preliminaries 

     The world is messy, and science is hard.  These two facts are, of course, related: science seeks 

to understand a messy world, and that’s a difficult task.  Scientists have a variety of tools at their 

disposal to cope with this messiness: the creation of idealized models, the scientific division of 

labor, and the proliferation of increasingly elaborate pieces of technology all serve to help us 

predict and control a complex world.  Not all tasks call for the application of the same tools, 

though, and so the scientific project takes all kinds: there’s room for a variety of contributions, 

and we must be willing to change tactics as new problems present themselves.  Adaptation, 

flexibility, and collaboration are at the heart of scientific progress.  This dissertation is intended 

not to be a work in the philosophy of science precisely, but neither is it, strictly speaking, a work 

of “pure science” (whatever that might mean).  Rather, it is a philosophical contribution to 

science itself: I will attempt to employ the methods and tools of the philosopher to engage with a 

concrete issue in contemporary science—the problem of global climate change.  

     In March of 2010, Dr. Jon Butterworth of University College, London’s high energy physics 

group published a short piece in The Guardian titled “Come on, ‘philosophers of science,’ you 

must do better than this, ” in which he called upon philosophers of science to make a real 1

1 Butterworth (2010) 
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contribution to the emerging (and increasingly important) climate science debate.  Butterworth’s 

call for philosophers of science to “do better” was inspired by another contribution to The 

Guardian from a few days earlier, this one written by Nicholas Maxwell, a philosopher at 

University College, London.  Maxwell’s piece, “Scientists should stop deceiving us ,” criticizes 2

scientists generally (and climate scientists in particular) for producing what he calls 

“incomprehensible gobbledygook” that (he suggests) is to blame for the public’s rejection of 

scientific insights.  Going even further, Maxwell suggests that underlying this problem is an even 

deeper one—an insistence on the part of scientists (especially physicists) that scientific theories 

be “unified”—capable of applying to all parts of the world in their domain—and that more 

explanatorily satisfying theories are rejected on the basis of disunity, leading to a thicket of 

incomprehensible theories that make little contact with the values of contemporary society. 

       As Butterworth points out, there is surely some truth to Maxwell’s criticism:  

Science often falls short of its ideals, and the climate debate has exposed some shortcomings. 
Science is done by people, who need grants, who have professional rivalries, limited time, and 
passionately held beliefs. All these things can prevent us from finding out what works. This is why 
the empiricism and pragmatism of science are vital, and why when scientific results affect us all, and 
speak against powerful political and financial interests, the openness and rigour of the process 
become ever more important.  3

Science (to recapitulate the point from above) is hard, and indeed does often fall short of its goal 

of predicting what will happen in the world.  The reasons for these failures are varied and 

complicated, but Maxwell is surely right to say that some of them have to do with the attitudes of 

some scientists themselves.  With Butterworth, though, I have a hard time seeing the force of the 

claim that much of the blame for this problem is to be laid at the feet of specialization: the 

2 Maxwell (2010) 
3 Butterworth (ibid.) 
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division of scientific labor is a natural, reasonable, and deeply effective response to a messily 

complex world.  The “gobbledygook” that Maxwell decries is (as Butterworth notes) a kind of 

sophisticated short-hand meant for communication between experts themselves, not between 

experts and the public; the problem there, then, is less with the science itself and more with the 

communication of science.  The problem, to put the point another way, is that it is difficult for 

working scientists themselves to take a high-level view of the project as a whole, and to see the 

scientific forest for the experimental trees.  This, perhaps, is where a philosopher might help. 

     Butterworth closes his article with a few distinctly philosophical-sounding assertions. 

Science is a form of systematised pragmatism: it finds out what works, and in the process we 
increase our understanding of the universe in which we live. I have no objection to philosophers 
watching, and trying to understand and improve the processes. It might even work. But they really 
ought to (and often do) have an understanding of what they are watching. … This is worth 
discussing, and I sincerely hope philosophers of science can do better than Maxwell in contributing 
to a debate of huge significance for the future of our species. 

I agree whole-heartedly with this sentiment.  Philosophers of science do indeed need to do better 

with regard to climate science—it is a real, pressing issue: perhaps the most pressing 

contemporary scientific issue facing us.  To a very great extent, this means doing something: the 

degree to which philosophers have engaged with climate science at all is minimal even compared 

to the general paucity of philosophical contact with applied contemporary social issues.  While 

some people in philosophy departments have begun to take notice of this (more on this later), it 

is high time that more followed suit, and that this became a topic of wide-spread discussion 

among philosophers.  It is in this spirit that this project is conceived; my hope here is not to solve 

the climate change problem (that is not my job), nor is it simply to provide the kind of abstract 

theoretical criticism that Butterworth rightly calls down Maxwell (as a representative of 

philosophy of science generally) for being obsessed with.  Rather, it is to sketch the lay of the 
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land.  My hope is that this dissertation will open the door to contributions by my peers (many of 

whom are, I am sure, far better equipped to deal with these issues than I am) to begin to have a 

conversation about this pressing social and scientific problem.  My hope is that this will be the 

beginning of philosophers of science at least trying to do better. 

0.1  Outline and General Structure 

     The somewhat unusual nature of this project, though, means that the structure and 

methodology of this dissertation will be somewhat different from most works both in philosophy 

and science.  Before beginning the project proper, then, I want to say a bit about why I chose to 

structure things as I have, and why I have focused on the issues that I chose.  My hope is that in 

flagging some of the unorthodox aspects of this work as intentional, I might short-circuit a few 

lines of objection to my project that would (I think) serve only to distract from the real work to 

be done.  To get the ball rolling, let me lay out a sketch of how this work will proceed.  

     First, there are foundational questions.  These questions concern the structure of science 

generally, the relationship between the various branches of science, climate science's continuity 

(or lack thereof) with the rest of science, and other issues that don’t seem to be investigated 

directly by any other branch of science.  Foundational questions include those that are 

traditionally thought of as the purview of the philosopher: "how do we know that we can trust 

science?" is a paradigmatic foundational question (and a surprisingly difficult one to answer, at 

that).  Chapters One, Two, and Three of this work will focus on foundational questions. 

 Specifically, Chapter One outlines a novel approach to philosophy of science based on recent 

advances in information theory, and lays the groundwork for applying that approach to the 
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problem of climate science.  Chapters Two and Three review some contemporary work being 

done in complexity theory, with a particular focus on attempts to define and quantify the notion 

of “complexity” itself, then sketch an account of complexity that builds on the work done in 

Chapter One. 

 

    Second, there are methodological questions.  These questions are more specifically concerned 

with the structure and operation of a particular branch of science; the methodological questions 

that will concern (say) a fundamental physicist will be different from the methodological 

questions that will concern a climate scientist.  Questions about how climate science makes its 

predictions, on what basis we ought to trust those predictions, how we might use the tools of 

climate science to make better predictions, how to interpret the climate data on record, and how 

to best make use of our limited computing resources are all methodological questions.  "How 

should we decide which factors to include in our climate model?" is a paradigmatic 

methodological question.  Chapters Four,  Five, and Six will focus on methodological 

questions.  Chapter Four consists in a general introduction to the project of climate modeling, 

with a focus on the limitations of simple climate models that are solvable in the absence of pure 

computer simulations.  In Chapter Five, I examine the challenges of building more complex 

climate models, with special attention to the problems posed by non-linearity and chaos in the 

climate system.  In Chapter Six, I examine the role that computational simulation plays in 

working with climate models, and attempt to reconcile the novel problems posed by “science by 

simulation” with the results of climate science. 

    The answers to questions in each of the categories will (of course) be informed by answers to 
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questions in the other categories; how we ought to react to a rapidly changing climate (an 

evaluative question) will clearly depend in part on how much we trust the predictions we've 

generated about the future (a foundational question), and that trust will depend in part on how we 

design and implement our climate models (a methodological question).  My purpose in 

delineating these categories, then, is not to suggest that this division corresponds to essentially 

different spheres of inquiry—rather, this way of carving up the complicated and multi-faceted 

problems in the philosophy of climate science is just a pragmatic maneuver.  Indeed, it is one of 

the principal theses of my project that none of these groups of questions can be effectively dealt 

with in isolation: they need to be tackled as a package, and a careful examination of that package 

is precisely what I am concerned with here.  With this general structural outline in mind, then, let 

me say a bit more about what I intend to do in each chapter. 

     Chapter One is the most traditionally philosophical, and deals with general questions in the 

philosophy of science.  In particular, I focus on the question of how philosophy can make a 

contribution to the scientific project.  I offer an apocryphal quotation attributed to Richard 

Feynman, viz., " Philosophy of scientists is about as useful to scientists as ornithology is to 

birds," as my primary target, and attempt to see how a philosopher of science might respond to 

Feynman's charge.  I argue that none of the accounts of science on offer in the literature can 

easily meet this challenge, in large part because they're often concerned with questions that are of 

little real consequence to practicing scientists.  Drawing on concepts in information theory, I 

construct a novel account of structure of the scientific project that (I hope) skirts some of the 

stickier (but, I argue, less important) issues in which 20th century philosophy of science often 

became mired.  With that account of science in hand, I argue that philosophy has a real 
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contribution to make to the scientific project as a whole—I argue, that is, that there are issues 

with which the scientific project ought to be concerned that are not precisely scientific issues, 

and that philosophers are in a good position to tackle those issues. 

     In offering this account of the structure of science, I also give a novel way of understanding 

what it means to say that the scientific project is "unified."  This is not merely an abstract point, 

but has real consequence for what will and will not count as a legitimate scientific theory: as we 

saw, one of the criticisms Maxwell offers is that scientists reject what he considers perfectly 

good theories on the basis of disunity.  Is this true?  In what sense is the unity of science an 

important guide to scientific theory, and how should we evaluate the relative unity of different 

theories?  Does the unity of science conflict with the obvious methodological division of labor 

across the different branches of science?  In addressing these questions, I hope to set the stage for 

a more fruitful examination of climate science's place in the scientific project overall. 

     Chapters Two and Three taken together are primarily a contribution to the foundations of 

complex-systems theory.  Building on the account of science from Chapter One, I argue that the 

traditional bifurcation of science into physical and social sciences is, at least sometimes, 

misleading.  I suggest that we should also see some scientific problems in terms of a distinction 

that cuts across the physical/social science division: the distinction between complex-systems 

sciences and simple-systems sciences.  After reviewing some of the attempts to define 

"complexity" in the (relatively nascent) field of complex-systems theory (and arguing that none 

of the attempts fully succeeds in capturing the relevant notion), I use the machinery assembled in 

Chapter One to construct a novel account of complexity that, I argue, unifies a few of the most 

plausible definitions in the literature.  This concept, which I will call dynamical complexity gives 
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us a theoretical tool to help us think about the difference between systems that seem intuitively 

"simple" (e.g. a free photon in a vacuum) and systems that seem intuitively "complex" (e.g. the 

global climate) more clearly, and to begin to get a grasp on important differences between the 

methods of sciences that study systems with high dynamical complexity and those of sciences 

that study systems with low dynamical complexity.  I then argue that, based on this definition, 

climate science is a paradigmatic complex-systems science, and that recognition of this fact is 

essential if we're to bring all our resources to bear on solving the problems posed by climate 

change.  

     In Chapter Four, we turn from explicitly foundational issues in the philosophy of science 

and complexity theory to more concrete methodological questions. I introduce the basics of 

climate science, and construct a very simple climate model from first principles.  This chapter 

closes with a consideration of the limitations of the methods behind this basic model, and of the 

general principles that inform it.  This paves the way for the discussion of deeper challenges in 

Chapter Five. 

     Chapter Five describes some of the specific problems faced by scientists seeking to create 

detailed models of complex systems.  After a general introduction to the language of dynamical 

systems theory, I focus on two challenges in particular: non-linearity and chaotic dynamics.  I 

discuss how these challenges arise in the context of climatology. 

     We'll then focus on a more concrete examination of a particular methodological innovation 

that is characteristic of complex-systems sciences: computer-aided model-building.  Because of 

the nature of complexity (as described in Chapter Three) and the various special difficulties 
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enumerated in Chapter Five, many of the techniques that simple-systems sciences rely on to 

make progress are unavailable to climate scientists.  Like economists and evolutionary biologists, 

climatologists' most potent weapon is the creation of complex mathematical models that underlie 

a host of computer simulations.   In Chapter Six, I examine some of the widespread criticisms of 

this "science by simulation," and argue that they are either misinformed or not fatal to the project 

of climate science.  Drawing further on the resources of complex-systems theory, I argue that the 

function of computational models is not exactly to predict, but rather to act as “tools for 

deciding,” helping us coordinate and organize our more detailed investigation of the global 

climate. 

    0.2  Methods and Problems 

     The relative paucity of philosophical literature dealing with issues in the foundations of 

climate science puts me in the somewhat unusual position of having to cover an enormous 

amount of territory in order to mark out the lay of the land.  In order to do what I want to do, 

then, I need to sacrifice a certain amount of depth in the name of achieving a certain amount of 

breadth.  This is a deliberate move, but it does not come without consequences.  Before 

beginning the actual project, I want to take a few pages to review some of these issues, flag them 

as problems that I have considered, and offer a few justifications for why I have chosen the 

approach that I have. 

     There is some risk that in trying to speak to everyone with this dissertation, I will end up 

satisfying no one at all.  I suspect that individual readers will find my discussions of their 

particular areas of specialization somewhat unsatisfying: philosophers of science operating in the 
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tradition of the profession—those who have inherited their methods and problems down from 

Hempel, Kuhn, Popper, van Fraassen, and so on—will likely find my discussion of the structure 

of the scientific project in Chapter One unsatisfying in virtue of the fact that it makes very little 

contact with the classic literature in the field.  Mathematicians and physicists working in 

dynamical systems theory will likely find my discussion of dynamical complexity unsatisfying in 

virtue of its relatively informal and non-mathematical presentation.  Practicing climatologists 

will likely find my discussion of Mann's work in particular (and the methods of climate science 

in general) unsatisfying in virtue of the fact that I am not myself a climatologist, and thus lack 

the kind of sensitivity and feel for the scientific vernacular that comes from years of graduate 

school spent simmering in the relevant scientific literature.  Ethicists and political philosophers 

will likely find my discussion of the moral and social issues surrounding climate science's 

predictions unsatisfying in virtue of the fact that I (quite admittedly) know very little about the 

state of the ethics literature today, and thus will be presenting largely what I see as 

common-sense approaches to solving these problems that are as devoid of ethical theory as 

possible.  

     In short, no matter who you are, you're probably going to be deeply suspicious of what I have 

to say, particularly about the topic in which you specialize.  Why, then, have I chosen to 

approach this project in the way that I have?  Instead of leaving everyone upset, why not try to 

please a small number of people and make a deep contribution to just one of the issues I discuss 

here?  There are a few answers to this that are, I think, related.  Perhaps primarily, I'm concerned 

with philosophy's treatment of climate science generally, and a highly general approach is (I 

think) the best way to express this concern.  As I've said, while there has been a not-insignificant 
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amount of value theory done on the topic of environmental ethics, there's been very little 

philosophical contribution to the actual science of climate change.  In effect, then, one of the 

principal goals of this dissertation is to jump up and down, wave my arms, and shout "over 

here!"  As I inevitably get some (many) of the details wrong in my discussion, I hope others will 

be inspired to step in and correct things, point out what I've done incorrectly, and do better than I 

am capable of doing.  If I can inspire enough controversy to get the philosophical community 

involved in the climate change debate, then I will count this as a success, irrespective of whether 

or not my own views are accepted or rejected. 

     Relatedly, part of my intention here is to stake out a large amount of territory all at once to 

suggest how those with expertise in specific problems might make deeper contributions than I 

make here.  In discussing philosophy of science, complexity theory, model-building, and value 

theory all in a single work, I hope to sketch the general shape that a fully-fledged "philosophy of 

climate science" literature might take, and to open the door for more systematic contributions to 

that literature by those who are best equipped to make them.  In order to make this goal 

achievable in only a few hundred pages of writing, I'm forced to make a number of simplifying 

assumptions in some places, and to ignore significant problems entirely in other places. 

Whenever possible, I will offer a footnote flagging the fact that I'm doing this deliberately, and 

suggesting what a more careful elaboration of the topic might look like.  If I were to give each 

topic here the full attention it deserves, this work would be thousands of pages in length (not to 

mention beyond my ability).  I far prefer to leave the project of elaborating and expanding most 

of what I'm trying to start here to my betters.  To facilitate this, I will close each chapter with a 

series of questions for further exploration, or a brief discussion of the shape that future research 
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might take.  I intend to take up at least some of this research myself in the future (particularly 

work in the foundations of complexity theory and information theory as they relate to climate 

science and the scientific project as a whole), but I am equipped with neither the time nor the 

ability to take all of it up; climate change is a pressing issue that demands our immediate 

attention, and we'll need to work together if we're to solve this problem.  If nothing else, this 

dissertation is a sustained argument for precisely this point. 

     Finally, it is worth highlighting that this dissertation is motivated by an explicitly pragmatic 

approach to philosophy and science.  I think that Butterworth is precisely correct when he says 

that "science is a form of systematized pragmatism," and I suspect that most scientists (insofar as 

they think about these things at all) would, given the chance, assent to that statement.  The 

largest consequence of this is that I wish, whenever possible, to remain totally neutral as to how 

what I'm saying makes contact with more traditionally philosophical questions—particularly 

those in mainstream metaphysics.  Chapter One places a great deal of weight on facts about 

patternhood, and there is a temptation to attempt to read what I'm saying as making a claim about 

the metaphysical status of patterns—a claim relating to the emerging metaphysical position that 

some  have termed "ontic structural realism."  I will say a bit more about this in Chapter One 4

when the issue comes up directly, but this is worth mentioning here by way of one last 

methodological preliminary: while I do indeed have a position on these issues, I think the point I 

am making here is independent of that position.  I'm inclined to agree with something like the 

structural realist position the James Ladyman and Don Ross have pioneered—that is, I'm 

inclined to agree that, if we're to take science seriously as a metaphysical guide, we ought to take 

4 See, canonically, Dennett (1991) and Ladyman et. al., (2007) 
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something like patterns (in a robust, information-theoretic sense) as the primary objects in our 

ontology—but this is a highly controversial claim in need of defense on its own terms.  This is 

neither the time nor the place for me to enter into that debate .  When I couch my discussion in 5

terminology drawn from the structural realist literature—when I speak, for instance, of "real 

patterns,"—it is merely for the sake of convenience.  Nothing in my project turns on taking this 

language as anything but a convenience, though—if you prefer to take the Humean view, and 

think of patterns as the sort of things that supervene on purely local facts about spatio-temporal 

particulars, that will do no violence to the story I want to tell in this dissertation.  

     Conversely, if you wish to read parts of this (particularly the first three chapters) as the 

preliminaries of a contribution to the metaphysics of patterns, or as a sketch of how such a 

metaphysics might be tied to issues in the foundations of complex systems theory, this also will 

not impact the larger point I want to make.  Indeed, I will suggest at the close of Chapter Three 

that such an exploration might be one of the future research programs suggested by this project. 

I take it as one of the strengths of this approach that it is neutral between these two 

interpretations—whether or not you are sympathetic to the Dennett/Ladyman account of patterns 

as primary metaphysical objects or not, my discussion of patternhood turns exclusively on 

patterns understood in the (relatively) uncontroversial information-theoretic sense.  That's the 

sense in which I want to maintain metaphysical neutrality here—some of my discussion adopts 

conventions from the structural realist camp, but this is strictly a matter of convenience and 

clarity (they have developed this vocabulary more than any other area of philosophy).  I'm 

confident that the points I make could be translated into more obviously neutral terms without 

5 I do intend to develop the kind of framework I deploy in Chapter One into a robust metaphysical theory at some 
point.  That is simply not the project with which I am concerned here. 
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any significant problems.  

     With these preliminaries out of the way, then, let's begin. 
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Chapter One  

Who Are You, and What Are You Doing Here? 

1.0 Cooperate or Die 

     The story of science is a story of progress through collaboration.  The story of philosophy, on 

the face of it, is a story of neither:  it is an academic cocktail party cliché that when an area of 

philosophy starts making progress, it’s time to request funds for a new department.  If this 

observation is supposed to be a mark against philosophy, I’m not sure I understand the 

jibe—surely it’s a compliment to say that so much has sprung from philosophy’s fertile soil, isn’t 

it?  Whether or not the joke contains a kernel of truth (and whether or not it does indeed count as 

a black mark against the usefulness of the discipline) is not immediately important.   This project 

is neither a work in philosophy as traditionally conceived, nor a work in science as traditionally 

conceived: it is, rather, a work on a particular problem.  I’ll say a bit more about what that means 

below, but first let’s start with an anecdote as a way into the problem we’ll be tackling. 

     In 2009, Columbia University's Mark Taylor, a professor of Religion, wrote an Op-Ed for the 

New York Times calling for a radical restructuring of academia.  Among the controversial 

changes proposed by Taylor was the following: "Abolish permanent departments, even for 

undergraduate education, and create problem-focused programs. These constantly evolving 

programs would have sunset clauses, and every seven years each one should be evaluated and 

either abolished, continued or significantly changed. "  This suggestion drew a lot of fire from 6

other academics.  Brian Leiter, on his widely-circulated blog chronicling the philosophy 

6 Taylor (2009) 
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profession, was particularly scathing in his rebuke: "Part of what underlies this is the fact that 

Taylor has no specialty or discipline of his own, and so would like every other unit to follow suit, 

and 'specialize' in intellectual superficiality across many topics. "  Ouch.  Professor John 7

Kingston of the University of Massachusetts, Amherst's linguistics department was a bit more 

charitable in his response, which appeared in the published reader comments on the New York 

Times' website: 

Rather than looking inward as [Taylor] claims we all do, my colleagues and I are constantly looking 
outward and building intellectual bridges and collaborations with colleagues in other departments. In 
my department's case, these other departments include Psychology, Computer Science, and 
Communications – these collaborations not only cross department boundaries at my institution but 
college boundaries, too. Moreover, grants are increasingly collaborative and interdisciplinary.  8

This seems to me to be a more sober description of the state of play today.  While some of us 

might cautiously agree with Taylor's call for the radical restructuring of university departments 

(and, perhaps, the elimination of free-standing disciplines), virtually all of us seem to recognize 

the importance and power of collaboration across existing disciplines, and to recognize that 

(contra what Leiter has said here) generality is not necessarily the same thing as superficiality. 

The National Academies Press' Committee on Science, Engineering, and Public Policy 

recognized the emerging need to support this kind of collaborative structure at least as far back 

as 2004, publishing an exhaustive report titled Facilitating Interdisciplinary Research.  The 

report describes the then-current state of interdisciplinary research in science and engineering: 

Interdisciplinary thinking is rapidly becoming an integral feature of research as a result of four 
powerful “drivers”: the inherent complexity of nature and society, the desire to explore problems and 
questions that are not confined to a single discipline, the need to solve societal problems, and the 
power of new technologies.  9

7 Leiter (2009) 
8 Kingston (2009) 
9 Committee on Science, Engineering, and Public Policy (2004), p. 3 
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The times, in short, are a-changing; the kinds of problems facing science today increasingly call 

for a diverse and varied skill-set—both in theory and in practical application—and we ignore this 

call at our peril.  This is true both inside traditional disciplines and outside them; in that sense, 

Taylor’s call was perhaps not as radical as it first appears—the kind of collaborative, 

problem-focused research that he advocates is (to a degree) alive and well in the traditional 

academic habitat.  Research in quantum mechanics, to take one example on which my 

background allows me to speak at least semi-intelligently, might incorporate work from particle 

physicists doing empirical work with cloud chambers, high-energy particle physicists doing other 

empirical work with particle accelerators, and still other particle physicists investigating the 

mathematics behind spontaneous symmetry breaking.  Progress will come as a result of a 

synthesis of these approaches to the problem. 

     This is hardly earth-shattering news: science has long labored under an epistemic and 

methodological division of labor.  Problems in physics (for instance) have long-since become 

complex to such a degree that no single physicist can hope to understand all the intricacies (or 

have the equipment to perform all the necessary experiments), so physicists (and laboratories) 

specialize.  The results that emerge are due to the action and work of the collective—to the 

institutional practices and structures that allow for this cooperative work—as much as to the 

work of individual scientists in the laboratories.  Each branch supports all the others by working 

on more-or-less separable problems in pursuit of a common goal—a goal which no one branch is 

suited to tackle in isolation.  In the case of elementary particle physics, that goal is (roughly) to 

understand patterns in the behavior of very, very small regions of the physical world; every 

relevant tool (from mathematical manifolds to particle accelerators) is recruited in pursuit of that 
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goal. 

     More recently, however, a more sweeping collaborative trend has begun to emerge; 

increasingly, there have been meaningful contributions to quantum mechanics that have come 

not just from particle physicists, nor even just from physicists: the tool box has been enlarged. 

The work of W.H. Zurek on the relationship between quantum mechanics and classical 

mechanics, for instance, has been informed by such diverse fields of science as Shannon-Weaver 

information theory, mathematical game theory, and even Darwinian evolutionary biology . 10

"Pure" mathematics has contributions to make too, of course; much of the heavy-lifting in 

General Relativity (for example) is done by differential geometry, which was originally 

conceived in the purely theoretical setting of a mathematics department. 

     Philosophy too has been included in this interdisciplinary surge.  The particular tools of the 

philosopher—the precise nature of which we shall examine in some detail in the coming 

sections—are well-suited to assist in the exploration of problems at the frontiers of human 

knowledge, and this has not gone unappreciated in the rest of the sciences.  Gone are the days 

when most physicists shared the perspective apocryphally attributed to Richard Feynman, viz., 

"Philosophy of science is about as useful to scientists as ornithology is to birds."  There are real 

conceptual problems at the heart of (say) quantum mechanics, and while the sort of 

scientifically-uninformed speculation that seems to have dominated Feynman's conception of 

philosophy is perhaps of little use to working scientists, the interdisciplinary turn in academia 

has begun to make it safe for the careful philosopher of science to swim along the lively reef of 

physical inquiry with the physicist, biologist, and chemist.  Science is about collaboration, and 

10 See Zurek (2002), Zurek (2003), and Zurek (2004), respectively. 

18 



 

there is room for many different contributions.  No useful tool should be turned away. 

     So this call for radical collaboration is hardly new or revolutionary, despite the minor uproar 

that Taylor and his critics caused.  The problem with which this project is concerned—the use to 

which I’ll be putting my own tools here—is not a new one either.  It is one about which alarm 

bells have been ringing for at least 60 years now, growing steadily louder with each passing 

decade: the problem of rapid anthropogenic global climate change.  I shall argue that what 

resources philosophy has to offer should not be ignored here, for every last bit of information 

that can be marshaled to solve this problem absolutely must be brought to bear.  This is a 

problem that is more urgent than any before it, and certainly more than any since the end of the 

nuclear tensions of the Cold War.  While it likely does not, as some have claimed, threaten the 

survival of the human species itself—short of a catastrophic celestial collision, few things 

beyond humanity's own weapons of mass destruction can claim that level of danger—it threatens 

the lives of millions, perhaps even billions, of individual human beings (as well as the quality of 

life for millions more), but only if we fail to understand the situation and act appropriately.  I 

shall argue that this is quite enough of a threat to warrant an all-out effort to solve this problem. 

I shall argue that philosophy, properly pursued, has as real a contribution to make as any other 

branch of science.  I shall argue that we must, in a very real sense, cooperate or die. 

1.1 What's a Philosopher to Do? 

     Of course, we need to make all this a good deal more precise.  It's all well and good for 

philosophers to claim to have something to add to science in general (and climate science in 

particular), but what exactly are we supposed to be adding?  What are the problems of science 
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that philosophical training prepares its students to tackle?  Why are those students uniquely 

prepared to tackle those questions?  What is it about climate science specifically that calls out for 

philosophical work, and how does philosophy fit into the overall project of climate science? 

Why (in short) should you care what I have to say about this problem?  These are by no means 

trivial questions, and the answers to them are far from obvious.  Let's start slowly, by examining 

what is (for us) perhaps the most urgent question in the first of the three categories introduced in 

Chapter Zero : the question of how philosophy relates to the scientific project, and how 11

philosophers can contribute to the advancement of scientific understanding . 12

     The substance of the intuition lurking behind Feynman's quip about ornithology is this: 

scientists can get along just fine (thank you very much) without philosophers to tell them how to 

do their jobs.  To a point, this intuition is surely sound—the physicist at work in the laboratory is 

concerned with the day-to-day operation of his experimental apparatus, with experiment design, 

and (at least sometimes) with theoretical breakthroughs that are relevant to his work.  Practicing 

scientists—with a few very visible exceptions like Alan Sokal—paid little heed to the brisk 

"science wars" of the 1980s and 1990s.  On the other hand, though, the intuition behind 

Feynman’s position is also surely mistaken; as I noted in Section 1.0, many of those same 

practicing physicists often acknowledge (for example) that people working in philosophy 

departments have made real contributions to the project of understanding quantum mechanics.  It 

seems reasonable to suppose that those (living) scientists ought to be allowed to countermand 

11 I suggested that questions we might ask about climate science could be roughly divided into three categories: 
foundational questions, methodological questions, and evaluative questions.  This chapter and the following one will 
deal with foundational questions.  See Section 0.1 for more detail. 
12 The sense in which this is the most urgent question for us should be clear: the chapters that follow this one will 
constitute what is intended to be a sustained philosophical contribution to the climate change debate.  On what basis 
should this contribution be taken seriously?  Why should anyone care what I have to say?  If we can't get a clear answer 
to this question, then all of what follows will be of suspect value. 
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Feynman who, great a physicist as he was, is not in a terribly good position to comment on the 

state of the discipline today; as James Ladyman has observed, “the metaphysical attitudes of 

historical scientists are of no more interest than the metaphysical opinions of historical 

philosophers .”  I tend to agree with this assessment: primacy should be given to the living, and 13

(at least some) contemporary scientists are happy to admit a place for the philosopher in the 

scientific project. 

     Still, it might be useful to pursue this line of thinking a bit further.  We can imagine how 

Feynman might respond to the charge leveled above; though he's dead we might (so to speak) 

respond in his spirit.  Feynman might well suggest that while it is true that genuine contributions 

to quantum mechanics (and science generally) have occasionally come from men and women 

employed by philosophy departments, those contributions have come about as a result of those 

men and women temporarily leaving the realm of philosophy and (at least for a time) doing 

science.  He might well suggest, (as John Dewey did) that, “…if [philosophy] does not always 

become ridiculous when it sets up as a rival of science, it is only because a particular philosopher 

happens to be also, as a human being, a prophetic man of science. ”  That is, he might well side 14

with the spirit behind the cocktail party joke mentioned in Section 1.0—anything good that 

comes out of a philosophy department isn’t philosophy: it’s science.  

     How are we to respond to this charge?  Superficially, we might accuse the spirit of Feynman 

of simply begging the question; after all, he's merely defined science in such a way that it 

includes (by definition!) any productive work done by philosophers of science.  Given that 

13 Ladyman, Ross, Spurrett, and Collier (2007) 
14 Dewey (1929), p.408 
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definition, it is hardly surprising that he would consider philosophy of science qua philosophy of 

science useless—he's defined it as the set of all the work philosophers of science do that isn't 

useful!  'Philosophy of science is useless to scientists,' on that view, isn't a very interesting claim. 

By the same token, though, we might think that this isn't a very interesting refutation; let's give 

the spirit of Feynman a more charitable reading.  If there's a more legitimate worry lurking 

behind the spirit of Feynman's critique, it's this: philosophers, on the whole, are not qualified to 

make pronouncements about the quality of scientific theories—they lack the training and 

knowledge to contribute non-trivially to any branch of the physical sciences, and while they 

might be well-equipped to answer evaluative questions, they ought to leave questions about the 

nature of the physical world to the experts.  If philosophers occasionally make genuine progress 

in some scientific disciplines, cases like that are surely exceptional; they are (as Dewey suggests) 

the result of unusually gifted thinkers who are able to work both in philosophy and science 

(though probably not at the same time).  

     What's a philosopher of science to say here?  How might we justify our paychecks in the face 

of the spirit of Feynman's accusations?  Should we resign ourselves to life in the rich (if perhaps 

less varied) world of value theory and pure logic, and content ourselves with the fact that 

condensed-matter physicists rarely attempt to expound on the nature of good and evil?  Perhaps, 

but let's not give up too quickly.  We might wonder (for one thing) what exactly counts as 

"science," if only to make sure that we're not accidentally trespassing where we don’t belong. 

For that matter, what counts as philosophy and (in particular) what is it that philosophers of 

science are doing (useful or not) when they're not doing science?  Surely this is the most basic of 

all foundational questions, and our answers here will color everything that follows.  With that in 
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mind, it's important to think carefully about how best to explain ourselves to the spirit of 

Feynman. 

1.2 What's a Scientist to Do? 

     Let's start with a rather banal observation: science is about the world .  Scientists are in the 15

business of understanding the world around us—the actual world, not the set of all possible 

worlds, or Platonic heaven, or J.R.R Tolkien’s Middle Earth .  Of course, this isn’t just limited 16

to the observable, or visible world: science is interested in the nature of parts of the world that 

have never been directly observed and (in at least some cases) never will be.  Physicists, for 

instance, are equally concerned that their generalizations apply to the region of the world inside 

the sun  as they are that those generalizations apply to their laboratory apparatuses.  There’s a 17

more important sense in which science is concerned with more than just the observed world, 

though: science is not just descriptive, but predictive too—good science ought to be able to make 

predictions, not just tell us the way the world is right now (or was in the past).  A science that 

15 The philosophically sophisticated reader might well be somewhat uncomfortable with much of what follows in the 
next few pages, and might be tempted to object that the observations I’ll be making are either fatally vague, fatally 
naïve, or both.  I can only ask this impatient reader for some patience, and give my assurance that there is a deliberate 
method behind this naïve approach to philosophy of science.  I will argue that if we start from basic facts about what 
science is—not as a social or professional institution, but as a particular attitude toward the world— how it is practiced 
both contemporarily and historically, and what it is supposed to do for us, we can short-circuit (or at least sneak by) 
many of the more technical debates that have swamped the last 100 years of the philosophy of science, and work 
slowly up to the tools we need to accomplish our larger task here.  I ask, then, that the philosophically sophisticated 
reader suspend his sense of professional horror, and see if the result of our discussion here vindicates my dialectical 
(and somewhat informal) methodology.  I believe it will.  See Section 0.2for a more comprehensive defense of this 
naive methodology. 
16 Though it is worth mentioning that considerations of possible worlds, or even considerations of the happenings in 
Tolkien's Middle Earth might have a role to play in understanding the actual world.  Fiction authors play a central role 
in the study of human culture: by running detailed "simulations" exploring elaborate hypothetical scenarios, they can 
help us better understand our own world, and better predict what might happen if certain facets of that world were 
different than they in fact are.  This, as we will see, is a vital part of what the scientific enterprise in general is 
concerned with doing. 
17 Some philosophers of science (e.g. van Fraassen) have argued that there is a sense in which we observe what goes on 
inside the sun.  This is an example of the sort of debate that I do not want to enter into here.  The question of what 
counts as observation is, for our purposes, an idle one.  I will set it to the side. 
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consisted of enumerating all the facts about the world now, as useful as it might be, wouldn’t 

seem to count as a full-fledged science by today’s standard, nor would it seem to follow the 

tradition of historical science; successful or not, scientists since Aristotle (at least!) have, it 

seems, tried to describe the world not just as it is, but as it will be.  

     This leads us to another (perhaps) banal observation: science is about predicting how the 

world changes over time.  Indeed, a large part of how we judge the success (or failure) of 

scientific theories is through their predictive success; the stock example of Fresnel’s success with 

the wave theory of light, as demonstrated by the prediction (and subsequent observation) of a 

bright spot at the center of the shadow cast by a round disk is a stock example for good 

reason—it was a triumph of novel predictive utility.  General relativity’s successful prediction of 

the actual orbit of the planet Mercury is another excellent paradigm case here; Mercury’s erratic 

orbit, which was anomalous in Newton’s theory of gravity, is predicted by Einstein’s geometric 

theory.  This success, it is important to note, is not in any sense a result of “building the orbit in 

by hand;” as James Ladyman and John Collier observe, though Einstein did (in some sense) set 

out to explain Mercury’s orbit through a general theory of gravitation, he did this entirely by 

reference to general facts about the world—the empirically accurate prediction of Mercury’s 

orbit followed from his theory, but nothing in the theory itself was set with that particular goal in 

mind.  The history of science is, if not exactly littered with, certainly not lacking in other 

examples of success like this; indeed, having surprising, novel, accurate predictions “pop out” of 

a particular theory is one of the best markers of that theory’s success . 18

18 The Aharnov-Bohm effect, a surprising quantum mechanical phenomenon in which the trajectory of a charged 
particle is affected by a local magnetic field even when traversing a region of space where both the magnetic field and 
the electric fields' magnitudes are zero, is another excellent example here.  This particular flavor of non-locality implies 
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     It is not enough, then, to say that science is about prediction of how the world will change 

over time.  Science doesn’t just seek to make any predictions, it seeks to make predictions of a 

particular sort—predictions with verifiable consequences—and it does this by attempting to pick 

out patterns that are in evidence in the world now, and projecting them toward the future.  That is 

to say: science is the business of identifying genuine patterns  in how the world changes over 19

time.  It is precisely this projectability that makes a putative pattern genuine rather than ersatz; 

this is why science is of necessity concerned with more than just enumerating the facts about the 

way the world is now—just given the current state of the world, we could hypothesize a virtually 

infinite number of “patterns” in that state, but only some of those putative patterns will let us 

make accurate predictions about what the state of the world will be in (say) another hour.  

1.3 Toy Science and Basic Patterns 

     Let’s think more carefully about what it means to say that science is in the business of 

identifying genuine patterns in the world.  Consider a simple example—we’ll sharpen things up 

as we go along.  Suppose we’re given a piece of a binary sequence, and asked to make 

predictions about what numbers might lie outside the scope of the piece we’ve been given: 

S1: 110001010110001 

Is there a genuine pattern in evidence here?  Perhaps.  We might reasonably suppose that the 

that the classical Maxwellian formulation of the electromagnetic force as a function of a purely local electrical field and 
a purely local magnetic field is incomplete.  The effect was predicted by the Schrodinger equation years before it was 
observed, and led to the redefinition of electromagnetism as a gauge theory featuring electromagnetic potentials, in 
addition to fields.  See Ahranov and Bohm (1959).  Thanks to Porter Williams for suggesting this case. 
19 The sense of “genuine” here is something like the sense of “real” in Dennett’s “real patterns” (Dennett 1991).  I wish 
to delay questions about the metaphysics of patterns for as long as possible, and so opt for “genuine” rather than the 
more ontologically-loaded “real.”  What it means for a pattern to be “genuine” will become clearer shortly.  Again, see 
Section 0.2 for more on the underlying metaphysical assumptions here. 
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pattern is “two ‘ones,’ followed by three ‘zeros’ followed by ‘one, zero, one, zero,’ and then 

repeat from the beginning.”  This putative pattern R is empirically adequate as a theory of how 

this sequence of numbers behaves; it fits all the data we have been given.  How do we know if 

this is indeed a genuine pattern, though?  Here’s an answer that should occur to us immediately: 

we can continue to watch how the sequence of numbers behaves, and see if our predictions bear 

out.  If we’ve succeeded in identifying the pattern underlying the generation of these numbers, 

then we’ll be able to predict what we should see next: we should see a ‘zero’ followed by a 'one,’ 

and then another ‘zero,’ and so on.  Suppose the pattern continues: 

S2: 0101100010101 

Ah ha!  Our prediction does indeed seem to have been born out!  That is: in S2, the string of 

numbers continues to evolve in a way that is consistent with our hypothesis that the sequence at 

large is (1) not random and (2) is being generated by the pattern R.  Of course, this is not enough 

for us to say with certainty that R (and only R) is the pattern behind the generation of our 

sequence; it is entirely possible that the next few bits of the string will be inconsistent with R; 

that is one way that we might come to think that our theory of how the string is being generated 

is in need of revision.  Is this the only way, though?  Certainly not: we might also try to obtain 

information about what numbers came before our initial data-set and see if R holds there, too; if 

we really have indentified the pattern underlying the generation of S, it seems reasonable to 

suppose that we ought to be able to “retrodict” the structure of sub-sets of S that come before our 

initial data-set just as well as we can predict the structure of sub-sets of S that come after our 

initial data-set.  Suppose, for example, that we find that just before our initial set comes the 
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string: 

S0: 00001000011111 

The numbers in this string are not consistent with our hypothesis that all the numbers in the 

sequence at large are generated by R.  Does this mean that we’ve failed in our goal of identifying 

a pattern, though?  Not necessarily.  Why not? 

     There’s another important question that we’ve been glossing over in our discussion here: for a 

pattern in some data to be genuine must it also be global ?  That is, for us to say reasonably that 20

R describes the sequence S, must R describe the sequence S everywhere?  Here’s all the data we 

have now: 

S0-2: 000010000111111100010101100010101100010101 

It is clear that we can no longer say that R (or indeed any single pattern at all) is the pattern 

generating all of S.  This is not at all the same thing as saying that we have failed to identify a 

pattern in S simpliciter, though.  Suppose that we have some reason to be particularly interested 

in what’s going on in a restricted region of S: the region S1-2.  If that’s the case, then the fact that 

R turns out not to hold for the totality of S might not trouble us at all; identifying a universal 

pattern would be sufficient for predicting what sequence of numbers will show up in S1-2, but it is 

by no means necessary.  If all we’re interested in is predicting the sequence in a particular region 

of S, identifying a pattern that holds only  in that region is no failure at all, but rather precisely 21

20 The sense of 'global' here is the computer scientist's sense—a global pattern is one that holds over the entirety of the 
data set in question. 
21 Of course, it might not be true that R holds only in S1-2.  It is consistent with everything  we’ve observed about S so 
far to suppose that the sub-set S0 and the sub-set S1-2 might be manifestations of an over-arching pattern, of which R is 
only a kind of component, or sub-pattern. 
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what we set out to do to begin with!  It need not trouble us that the pattern we’ve identified 

doesn’t hold everywhere in S—identifying that pattern (if indeed there is one to be identified) is 

another project entirely.  

     When we’re investigating a sequence like S, then, our project is two-fold: we first pick a 

region of S about which we want to make predictions, and then attempt to identify a pattern that 

will let us make those predictions.  When we have a candidate pattern, we can apply it to 

heretofore unobserved segments of our target region and see if the predictions we’ve made by 

using the pattern are born out.  That is: we first identify a particular way of carving up our target 

data-set and then (given that carving) see what patterns can be picked out.  That any patterns 

identified by this method will hold (or, better, that we have good reason to think they'll hold) in a 

particular region only is (to borrow the language of computer programmers) a feature rather than 

a bug.  It's no criticism, in other words, to say that a putative pattern that we've identified relative 

to a particular carving of our subject-matter holds only for that carving; if our goal is just to 

make predictions about a restricted region of S, then identifying a pattern that holds only in that 

region might well make our jobs far easier, for it will give us license to (sensibly) ignore data 

from outside our restricted region, which might well make our task significantly easier . 22

     Let's think about another potentially problematic case.  Suppose now that we're given yet 

another piece of S: 

S3: 0010100100010 

 S3 is almost consistent with having been generated by R—only a single digit is off (the bolded 

22 For more discussion of approximate pattern and their role in science, see Lawhead (2012) 

28 



 

zero ought to be a one if R is to hold)—but still, it seems clear that it is not an instance of the 

pattern.  Still, does this mean that we have failed to identify any useful regularities in S3?  I will 

argue that it most certainly does not mean that, but the point is by no means an obvious one. 

What's the difference between S3 and S0 such that we can say meaningfully that, in picking out R, 

we've identified something important about the former but not the latter?  To say why, we'll have 

to be a bit more specific about what counts as a pattern, and what counts as successful 

identification of a pattern. 

      Following Dennett  and Ladyman et. al. , we might begin by thinking of patterns as being 23 24

(at the very least) the kinds of things that are "candidates for pattern recognition. "  But what 25

does that mean?  Surely we don't want to tie the notion of a pattern to particular 

observers—whether or not a pattern is in evidence in some dataset (say S3) shouldn't depend on 

how dull or clever the person looking at the dataset is.  We want to say that there at least can be 

cases where there is in fact a pattern present in some set of data even if no one has yet (or 

perhaps even ever will) picked it out.  As Dennett notes, though, there is a standard way of 

making these considerations more precise: we can appeal to information theoretic notions of 

compressibility.  A pattern exists in some data if and only if there is some algorithm by which 

the data can be significantly compressed. 

     This is a bit better, but still somewhat imprecise.  What counts as compression?  More 

urgently, what counts as significant compression?  Why should we tie our definition of a pattern 

to those notions?  Let's think through these questions using the examples we've been looking at 

23 Dennett (1991) 
24 Ladyman, Ross, Spurrett, and Collier (2007) 
25 Dennett (op. cit.), p. 32, emphasis in the original 
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for the last few pages.  Think, to begin with, of the sequence : 

S1-2: 1100010101100010101100010101 

This, recall, was our perfect case for R: the pattern we identified holds perfectly in this data-set. 

What does it mean to say that R holds perfectly in light of the Dennettian compressibility 

constraint introduced above, though?  Suppose that we wanted to communicate this string of 

digits to someone else—how might we go about doing that?  Well, one way—the easiest way, in 

a sense—would just be to transmit the string verbatim: to communicate a perfect bit map of the 

data.  That is, for each digit in the string, we can specify whether it is a 'one' or a 'zero,' and then 

transmit that information (since there are 28 digits in the dataset S1-2, the bit-map of S1-2 is 28 bits 

long).  If the string we're dealing with is truly random then this is (in fact) the only way to 

transmit its contents : we have to record the state of each bit individually, because (if the string 26

is random) there is no relationship at all between a given bit and the bits around it.  Now we're 

getting somewhere.  Part of what it means to have identified a pattern in some data-set, then, is to 

have (correctly) noticed that there is a relationship between different parts of the data-set under 

consideration—a relationship that can be exploited to create a more efficient encoding than the 

simple verbatim bit-map.  

     The sense of 'efficiency' here is a rather intuitive one: an encoding is more efficient just in 

case it is shorter than the verbatim bit map—just in case it requires fewer bits to transmit the 

same information.  In the case of S1-2, it's pretty easy to see what this sort of encoding would look 

26 Citing Chaitin (1975), Dennett (op. cit.) points out that we might actually take this to be the formal definition of a 
random sequence: there is no way to encode the information that results in a sequence that is shorter than the 
"verbatim" bit map. 
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like—we specify R, then specify that the string we're passing consists in two iterations of R. 

Given a suitable way of encoding things, this will be much shorter than the verbatim bit map. 

For example, we might encode by first specifying a character to stand for the pattern, then 

specifying the pattern, then specifying the number of times that the pattern iterates.  It might look 

something like this: 

R:110001010:RRR 

This string is 15 bits long; in just this simple encoding scheme, we've reduced the number of 

characters required to transmit S1-2 by almost 50%.  That's a very significant efficiency 

improvement (and, given the right language, we could almost certainly improve on it even 

further) .  27

     This compressibility criterion is offered by Dennett as a necessary condition on patternhood: 

to be an instance of a (real) pattern, a data-set must admit of a more compact description than the 

bitmap.  However, as a number of other authors have pointed out , this cannot be the whole 28

story; while compressibility is surely a necessary condition on patternhood, it cannot be both 

necessary and sufficient, at least not if it is to help us do useful work in talking about the world 

(recall that the ultimate point of this discussion is to articulate what exactly it is that science is 

doing so that we can see if philosophy has something useful to contribute to the project). 

Science cannot simply be in the business of finding ways to compress data sets; if that were so, 

then every new algorithm—every new way of describing something—would count as a new 

27 All of this can be made significantly more precise given a more formal discussion of what counts as a "good" 
compression algorithm.  Such a discussion is unnecessary for our current purposes, but we will revisit information 
theory in significantly more detail in Chapter Two.  For now, then, let me issue a promissory note to the effect that 
there is a good deal more to say on the topic of information-content, compression, and patternhood.  See, in particular, 
Section 2.1.3. 
28 Collier (1999) and Ladyman, Ross, Spurrett, and Collier (2007) 
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scientific discovery.  This is manifestly not the case; whatever it is that scientists are doing, it is 

not just a matter of inventing algorithm after algorithm.  There's something distinctive about the 

kinds of patterns that science is after, and about the algorithms that science comes up with.  In 

fact, we've already identified what it is: we've just almost lost sight of it as we've descended into 

a more technical discussion—science tries to identify patterns that hold not just in existing data, 

but in unobserved cases (including future and past cases) as well.  Science tries to identify 

patterns that are projectable.  

      How can we articulate this requirement in such a way that it meshes with the discussion 

we’ve been having thus far?  Think, to begin, of our hypothetical recipient of information once 

again.  We want to transmit the contents of S1-2 to a third party.  However, suppose that (as is 

almost always the case) our transmission technology is imperfect—that we have reason to expect 

a certain degree of signal degradation or information loss in the course of the transmission.  This 

is the case with all transmission protocols available to us; in the course of our transmission, it is 

virtually inevitable that a certain amount of noise (in the information-theoretic sense of the dual 

of signal) will be introduced in the course of our message traveling between us and our 

interlocutor.  How can we deal with this?  Suppose we transmit the bitmap of S1-2 and our 

recipient receives the following sequence: 

S1-2: 1100010101100010101100??0?01 

Some of the bits have been lost in transmission, and now appear as question marks—our 

interlocutor just isn’t sure if he’s received a one or a zero in those places.  How can he correct for 

this?  Well, suppose that he also knows that S1-2 was generated by R.  That is, suppose that we’ve 
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also transmitted our compressed version of S1-2.  If that’s the case, then our interlocutor can, by 

following along with R, reconstruct the missing data and fill in the gaps in his signal.  This, of 

course, requires more transmission overall—we have to transmit the bitmap and the 

pattern-encoding—but in some cases, this might well be worth the cost (for instance, in cases 

where there is a tremendous amount of latency between signal transmission and signal reception, 

so asking to have specific digits repeated is prohibitively difficult).  This is in fact very close to 

how the Transmission-Control Protocol (TCP) works to ensure that the vast amount of data being 

pushed from computer to computer over the Internet reaches its destination intact. 

     Ok, but how does this bear on our problem?  Next, consider the blanks in the information our 

interlocutor receives not as errors or miscommunication, but simply as unobserved cases.  What 

our interlocutor has, in this case, is a partial record of S1-2; just as before, he’s missing some of 

the bits, but rather than resulting from an error in communication, this time we can attribute the 

information deficit to the fact that he simply hasn’t yet looked at the missing cases.  Again, we 

can construct a similar solution—if he knows R, then just by looking at the bits he does have, 

then our interlocutor can make a reasonable guess as to what the values of his unobserved bits 

might be.  It’s worth pointing out here that, given enough observed cases, our interlocutor need 

not have learned of R independently: he might well be able to deduce that it is the pattern 

underlying the data points he has, and then use that deduction to generate an educated guess 

about the value of missing bits.  If an observer is clever, then, he can use a series of 

measurements on part of his data-set to ground a guess about a pattern that holds in that data set, 

and then use that pattern to ground a guess about the values of unmeasured parts of the data set. 

     At last, then, we’re in a position to say what it is that separates S3 from S0 such that it is 
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reasonable for us to say that R is informative in the former case but not in the latter, despite the 

fact that neither string is consistent with the hypothesis that R is the pattern underlying its 

generation.  The intuitive way to put the point is to say that R holds approximately in the case of 

S3 but not in the case of S0, but we can do better than that now: given R, and a restricted set of S3, 

an observer who is asked to guess the value of some other part of the set will do far better than 

we’d expect him to if R was totally uninformative—that is, he will be able to make predictions 

about S3 which, more often than not, turn out to be good ones.  In virtue of knowing R, and by 

measuring the values in one sub-set of S3, he can make highly successful predictions about how 

other value measurements in the set will turn out.  The fact that he will also get things wrong 

occasionally should not be too troubling; while he’d certainly want to work to identify the 

exceptions to R—the places in the sequence where R doesn’t hold—just picking out R goes a 

very long way toward sustained predictive success.  Contrast that case to the case in S0: here, 

knowledge of R won’t help an observer make any deductions about values of unobserved bits. 

He can learn as much as he wants to about the values of bits before and after a missing bit and he 

won’t be any closer at all to being able to make an educated guess about the missing data. 

1.4 Fundamental Physics and the Special Sciences 

     It might be worth taking a moment to summarize the rather lengthy discussion from the last 

section before we move on to considering how that discussion bears on the larger issue at hand. 

We started by observing that science is “about the world” in a very particular sense.  In exploring 

what that might mean, I argued that science is principally concerned with identifying patterns in 

how the world around us changes over time .  We then spent some time examining some basic 29

29 A similar view of scientific laws is given in Maudlin (2007).  Maudlin argues that scientific laws are best understood 
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concepts in information theory, and noted that many of the insights in the philosophy of 

information theory first articulated by Dennett (1991) and later elaborated by other authors fit 

rather neatly with a picture of science as the study of patterns in the world.  We looked at a few 

problem cases in pattern identification—including patterns that hold only approximately, and 

data-sets with partial information loss—and argued that even in cases like that, useful 

information can be gleaned from a close search for patterns; patterns neither need to be universal 

nor perfect in order to be informative.  We tried to give an intuitive picture of what we might 

mean when we say that science looks for patterns that can be projected to unobserved cases.  I’d 

like to now drop the abstraction from the discussion and make the implicit parallel with science 

that’s been lurking in the background of this discussion explicit.  We should be able to draw on 

the machinery from Section 1.3 to make our earlier discussion of science more concrete, and to 

examine specific cases of how this model actually applies to live science.  

     Here’s the picture that I have in mind.  Scientists are in the business of studying patterns in 

how the world changes over time.  The method for identifying patterns varies from branch to 

branch of science; the special sciences differ in domain both from each other and from 

fundamental physics.  In all cases, though, scientists proceed by making measurements of certain 

parts of the world, trying to identify patterns underlying those measurements, and then using 

those patterns to try to predict how unobserved cases—either future measurements or 

as what he calls LOTEs—“laws of temporal evolution.”  This is largely consistent with the picture I have been arguing 
for here, and (not coincidentally) Maudlin agrees that an analysis of scientific laws should "take actual scientific 
practice as its starting point" (p. 10), rather than beginning with an a priori conception of the form that a law must take. 
Our point of departure from Maudlin's view, as we shall see, lies in our treatment of fundamental physics.  While 
Maudlin wants to distinguish "FLOTEs" (fundamental laws of temporal evolution) from normal LOTEs on the basis of 
some claim of "ontological primacy" (p. 13) for fundamental physics, the view I am sketching here requires no such 
militantly reductionist metaphysics.  My view is intended to be a description of what working scientific laws actually 
consist in, not a pronouncement on any underlying metaphysics. 
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measurements in a novel spatial location—might turn out.  Occasionally, they get a chance to 

compare those predictions to observed data directly.  This is more common in some branches of 

science than in others: it is far more difficult to verify some of the predictions of evolutionary 

biology (say, speciation events) by observation than it is to verify some of the predictions of 

quantum mechanics (say, what state our measurement devices will end up in after a 

Stern-Gerlach experiment).  More frequently, they are able to identify a number of different 

patterns whose predictions seem either agree or disagree with one another.  Evolutionary biology 

is a well-confirmed science in large part not because large numbers of speciation events have 

been directly observed, but because the predictions from other sciences with related domains 

(e.g. molecular biology)—many of which have been confirmed through observation—are 

consistent with the predictions generated by evolutionary biologists. 

     Just as in the case of our toy science in Section 1.3, it seems to me that science generally 

consists in two separate (but related) tasks: scientists identify a domain of inquiry by picking out 

a way of carving up the world, and then identify the patterns that obtain given that way of 

carving things up.  This is where the careful discussion from Section 1.3 should be illuminating: 

not all scientists are interested in identifying patterns that obtain everywhere in the 

universe—that is, not all scientists are interested in identifying patterns that obtain for all of S. 

Indeed, this is precisely the sense in which fundamental physics is fundamental: it alone among 

the sciences is concerned with identifying the patterns that will obtain no matter where in the 

world we choose to take our measurements.  The patterns that fundamental physics seeks to 

identify are patterns that will let us predict the behavior of absolutely any sub-set of the 

world—no matter how large, small, or oddly disjunctive—at which we choose to look; it strives 
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to identify patterns that describe the behavior of tiny regions of space-time in distant galaxies, 

the behavior of the interior of the sun, and the behavior of the Queen of England’s left foot.  This 

is a fantastically important project, but it is by no means the only scientific project worth 

pursuing .  The special sciences are all, to one degree or another, concerned with identifying 30

patterns that hold only in sub-sets of the domain studied by physics.  This is not to say that the 

special sciences all reduce to physics or that they’re all somehow parasitic on the patterns 

identified by fundamental physics.  While I want to avoid engaging with these metaphysical 

questions as much as possible, it’s important to forestall that interpretation of what I’m saying 

here.  The special sciences are, on this view, emphatically not second-class citizens—they are 

just as legitimate as fields of inquiry as is fundamental physics.  Again (and contra Maudlin), the 

sense of “fundamental” in “fundamental physics” should not be taken to connote anything like 

ontological primacy or a metaphysically privileged position (whatever that might mean) within 

the general scientific project.  Rather (to reiterate) it is just an indicator of the fact that 

fundamental physics is the most general part of the scientific project; it is the branch of science 

that is concerned with patterns that show up everywhere in the world.  When we say that other 

sciences are concerned with restricted sub-sets of the physical world, we just mean that they’re 

concerned with picking out patterns in some of the systems to which the generalizations of 

fundamental physics apply . 31

30 It is worth pointing out that it is indeed possible that there just are no such patterns in the world: it is possible that all 
laws are, to a greater or lesser extent, parochial.  If that were true, then it would turn out that the goal underlying the 
practice of fundamental physics was a bad one—there just are no universal patterns to be had.  Because of this 
possibility, the unity of science is an hypothesis to be empirically confirmed or disconfirmed. Still, even its 
disconfirmation might not be as much of a disaster as it seems: the patterns identified in the course of this search would 
remain legitimate patterns, and the discovery that all patterns are to some extent parochial would itself be incredibly 
informative.  Many advances are made accidentally in the course of pursuing a goal that, in the end, turns out to not be 
achievable.  
31 Ladyman, Ross, Spurrett, and Collier (2007) put the point slightly differently, arguing that fundamental physics is 
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     In contrast to fundamental physics, consider the project being pursued by one of the special 

sciences—say, molecular biology.  Molecular biologists are certainly not interested in 

identifying patterns that hold everywhere in the universe; biologists have relatively little to say 

about what happens inside the sun (except perhaps to note that the conditions would make it 

difficult for life to prosper there).  They are, instead, concerned with the behavior of a relatively 

small sub-set of regions of the universe.  So far, the patterns they’ve identified have been 

observed to hold only on some parts of Earth, and that only in the last few billion years.   It’s 32

clearly no criticism of molecular biology to point out that it has nothing to say on the subject of 

what happens inside a black hole—that kind of system is (by design) outside molecular biology’s 

domain of interest.  Just as in the case of S1-2 above, this restriction of domain lets molecular 

biologists focus their efforts on identifying patterns that, while they aren’t universal, facilitate 

predictions about how a very large class of physical systems behave.  

     What exactly is the domain of inquiry with which molecular biology is concerned?  That is, 

how do molecular biologists carve up the world so that the patterns they identify hold of systems 

included in that carving?  It is rather unusual (to put it mildly) for the creation of a domain in this 

sense to be a rapid, deliberate act on the part of working scientists.  It is unusual, that is, for a 

group of people to sit down around a table (metaphorical or otherwise), pick out a heretofore 

fundamental in the sense that it stands in an asymmetric relationship to the rest of science: generalizations of the special 
sciences are not allowed to contradict the generalizations of fundamental physics, but the reverse is not true; if the 
fundamental physicists and the biologists disagree, it is the biologist who likely has done something wrong.  They call 
this the “Primacy of Physics Constraint” (PPC).  It seems to me that while this is certainly true—that is, that it’s 
certainly right that the PPC is a background assumption in the scientific project—the way I’ve put the point here makes 
it clear why the PPC holds.  
32 It’s worth noting, though, that the search for habitable planets outside our own solar system is guided by the patterns 
identified by biologists studying certain systems here on Earth.  This is an excellent case of an application of the kind 
of projectability we discussed above: biologists try to predict what planets are likely to support systems that are 
relevantly similar to the systems they study on Earth based on patterns they’ve identified in those terrestrial systems.  It 
remains to be seen whether or not this project will prove fruitful. 
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unexplored part of the world for empirical inquiry, and baptize a new special science to 

undertake that inquiry.  Rather, new sciences seem most often to grow out of gaps in the 

understanding of old sciences.  Molecular biology is an excellent illustration here; the isolation 

of DNA in 1869—and the subsequent identification of it as the molecule responsible for the 

heritability of many phenotypic traits—led to an explosion of new scientific problems: what is 

the structure of this molecule?  How does it replicate itself?  How exactly does it facilitate 

protein synthesis?  How can it be damaged?  Can that damage be repaired?  Molecular biology 

is, broadly speaking, the science that deals with these questions and the questions that grew out 

of them—the science that seeks to articulate the patterns in how the chemical bases  for living 33

systems behave.  This might seem unsatisfactory, but it seems that it is the best answer we're 

likely to get: molecular biology, like the rest of science, is a work-in-progress, and is constantly 

refining its methodology and set of questions, both in light of its own successes (and failures) 

and in light of the progress in other branches of the scientific project.  Science is (so to speak) 

alive. 

     This is an important point, and I think it is worth emphasizing.  Science grows up organically 

as it attempts to solve certain problems—to fill in certain gaps in our knowledge about how the 

world changes with time—and is almost never centrally planned or directed.  Scientists do the 

best they can with the tools they have, though they constantly seek to improve those tools.  The 

fact that we cannot give a principled answer to the question "what parts of the world does 

molecular biology study?" should be no bar to our taking the patterns identified by molecular 

biology seriously.  Just as we could not be sure that R, once identified, would hold in any 

33 This includes not just the bases in the technical sense—nucleic acids—but also other chemical foundations that are 
necessary for life (e.g. proteins). 

39 



 

particular segment of S that we might examine, we cannot be sure of precisely what regions of 

the world will behave in ways that are consistent with the patterns identified by molecular 

biologists.  This is not to say, though, that the molecular biologists have failed to give us any 

interesting information—as we saw, universality (or even a rigidly defined domain of 

applicability) is no condition on predictive utility.  To put the point one more way: though the 

special sciences are differentiated from one another in part by their domains of inquiry, giving an 

exhaustive account of exactly what parts of the world do and don't fall into the domain of a 

particular science is likely an impossible task.  Even if it were not, it isn't clear what it would add 

to our understand of either a particular science or of science as a whole: the patterns identified by 

molecular biology are no less important for our not knowing if they do or don't apply to things 

other than some of the systems on Earth in the last few billion years; if molecular biology is 

forced to confront the problem of how to characterize extraterrestrial living systems, it is 

certainly plausible to suppose that its list of patterns will be revised, or even that an entirely new 

science will emerge from the realization that molecular biology as thus far conceived is parochial 

in the extreme.  Speculating about what those changes would look like—or what this new special 

science would take as its domain—though, is of little real importance (except insofar as such 

speculation illuminates the current state of molecular biology).  Like the rest of the sciences, 

molecular biology takes its problems as they come, and does what it can with the resources it 

has. 

     If we can't say for any given special science what exactly its domain is, then, perhaps we can 

say a bit more about what the choice of a domain consists in—that is, what practical activities of 

working scientists constitute a choice of domain?  How do we know when a formerly singular 
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science has diverged into two?  Perhaps the most important choice characterizing a particular 

science's domain is the choice of what measurements to make, and on what parts of the world. 

That is: the choice of a domain is largely constituted by the choice to treat certain parts of the 

world as individuals, and the choice of what measurements to make on those individuals. 

Something that is treated as an individual by one special science might well be treated as a 

composite system by another ; the distinction between how human brains are treated by 34

cognitive psychology (i.e. as the primary objects of prediction) and how they're treated by 

neurobiology (i.e. as aggregates of individual neural cells) provides an excellent illustration of 

this point.  From the perspective of cognitive psychology, the brain is an unanalyzed individual 

object—cognitive psychologists are primarily concerned with making measurements that let 

them discern patterns that become salient when particular chunks of the physical world (that is: 

brain-containing chunks) are taken to be individual objects.  From the perspective of 

neurobiology, on the other hand, brains are emphatically not unanalyzed objects, but are rather 

composites of neural cells—neurobiologists make measurements that are designed to discern 

patterns in how chunks of the physical world consisting of neural cells (or clusters of neural 

cells) evolve over time.  From yet another perspective—that of, say, population 

genetics—neither of these systems might be taken to be an individual; while a population 

geneticist might well be interested in brain-containing systems, she will take something like 

alleles to be her primary objects, and will discern patterns in the evolution of systems from that 

perspective.  

     We should resist the temptation to become embroiled in an argument about which (if any) of 

34 We'll explore this point in much more depth in Chapter Two. 
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these individuals are real individuals in a deep metaphysical sense.  While it is certainly right to 

point out that one and the same physical system can be considered either as a brain (qua 

individual) or a collection of neurons (qua aggregate), this observation need not lead us to 

wonder which of these ways of looking at things (if either) is the right one.  Some patterns are 

easier to discern from the former perspective, while others are easier to discern from the latter. 

For the purposes of what we're concerned with here, it seems to me, we can stop with that 

fact—there is no need to delve more deeply into metaphysical questions.  Insofar as I am taking 

any position at all on questions of ontology, it is one that is loosely akin to Don Ross' "rainforest 

realism: " a systematized version of Dennett's "stance" stance toward ontology.  Ross' picture, 35

like the one I have presented here, depicts a scientific project that is unified by goal and subject 

matter, though not necessarily by methodology or apparatus.  It is one on which we are allowed 

to be frankly instrumentalist in our choice of objects—our choice of individuals—but still able to 

be thoroughly realists about the relations that hold between those objects—the patterns in how 

the objects change over time.  This metaphysical position is a natural extension of the account of 

science that I have given here, and one about which much remains to be said.  To engage deeply 

with it would take us too far afield into metaphysics of science, though; let us, then, keep our eye 

on the ball, and content ourselves with observing that there is at least the potential for a broad 

metaphysical position based on this pragmatically-motivated account of science.  Articulating 

that position, though, must remain a project for another time. 

1.5  Summary and Conclusion: Exorcising Feynman's Ghost 

     The story of science is a story of progress through collaboration: progress toward a more 

35 See Ross (2000) and Chapter Four of Ladyman et. al. (2007), as well as Dennett (1991) 
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complete account of the patterns in how the world evolves over time via collaboration between 

different branches of science, which consider different ways of carving up the same world. 

Individual sciences are concerned with identifying patterns that obtain in certain subsets of the 

world, while the scientific project in general is concerned with the overarching goal of 

pattern-based prediction of the world's behavior.  Success or failure in this project is not 

absolute; rather, the identification of parochial or "weak" patterns can often be just as useful (if 

not more useful) as the identification of universal patterns.  Scientists identify patterns both by 

making novel measurements on accessible regions of the world and by creating models that 

attempt to accurately retrodict past measurements.  The scientific project is unified in the sense 

that all branches of science are concerned with the goal of identifying patterns in how the 

physical world changes over time, and fundamental physics is fundamental in the sense that it is 

the most general of the sciences—it is the one concerned with identifying patterns that will 

generate accurate predictions for any and all regions of the world that we choose to consider. 

Patterns discovered in one branch of the scientific project might inform work in another branch, 

and (at least occasionally) entirely novel problems will precipitate a novel way of carving up the 

world, potentially facilitating the discovery of novel patterns; a new special science is born. 

     We might synthesize the discussions in Section 1.3 and Section 1.4 as follows.  Consider the 

configuration space  D of some system T—say, the phase space corresponding to the kitchen in 36

36 That is, consider the abstract space in which every degree of freedom in T is represented as a dimension in a 
particular space D (allowing us to represent the complete state of T at any given time by specifying a single point in D), 
and where the evolution of T can be represented as a set of transformations in D.  The phase space of classical 
statistical mechanics (which has a dimensionality equal to six times the number of classical particles in the system), the 
Hilbert space of standard non-relativistic quantum mechanics, and the Fock space of quantum field theory (which is the 
direct sum of the tensor products of standard quantum mechanical Hilbert spaces) are all prime examples of spaces of 
this sort, but are by no means the only ones.  Though I will couch the discussion in terms of phase space for the sake of 
concreteness, this is not strictly necessary: the point I am trying to make is abstract enough that it should stand for any 
of these cases. 
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my apartment.  Suppose (counterfactually) that we take Newtonian dynamics to be the complete 

fundamental physics for systems like this one.  If that is the case, then fundamental physics 

provides a set of directions for moving from any point in the phase space to any other point—it 

provides a map identifying where in the space a system whose state is represented by some point 

at t0 will end up at a later time t1.  This map is interesting largely in virtue of being valid for any 

point in the system: no matter where the system starts at t0, fundamental physics will describe the 

pattern in how it evolves.  That is, given a list of points [a0,b0,c0,d0…z0], the fundamental physics 

give us a corresponding list of points [a1,b1,c1,d1…z1] that the system will occupy after a given 

time interval has passed.  In the language of Section 1.3, we can say that fundamental physics 

provides a description of the patterns in the time-evolution of the room’s bit map: given a 

complete specification of the room’s state (in terms of its precise location in phase space) at one 

time, applying the algorithm of Newtonian mechanics will yield a complete specification of the 

room’s state at a later time (in terms of another point in phase space). 

     This is surely a valuable tool, but it is equally surely not the only valuable tool.  It might be 

(and, in fact, is) the case that there are also patterns to be discerned in how certain regions of the 

phase space evolve over time.  That is, we might be able to describe patterns of the following 

sort: if the room starts off in any point in region P0, it will, after a given interval of time, end up 

in another region P1.  This is, in fact, the form of the statistical-mechanical explanation for the 

Second Law of Thermodynamics.  This is clearly not a description of a pattern that applies to the 

“bit map” in general: there might be a very large number (perhaps even a continuous infinity) of 

points that do not lie inside P0, and for which the pattern just described thus just has nothing to 

say.  This is not necessarily to say that the project of identifying patterns like P0  P1 isn’t one 
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that should be pursued, though.  Suppose the generalization identified looks like this: if the room 

is in a region corresponding to “the kitchen contains a pot of boiling water and a normal human 

being who sincerely intends to put his hand in the pot ” at t0, then evolving the system (say) 10 37

seconds forward will result in the room’s being in a region corresponding to “the kitchen 

contains a pot of boiling water and a human being in great pain and with blistering skin.” 

Identifying these sorts of patterns is the business of the special sciences. 

     Not all regions will admit of interesting patterns in this way.  This is the sense in which some 

ways of “carving up” a system’s space seem arbitrary in an important way.  In a system with a 

relatively high degree of complexity—very roughly, a system with a relatively high-dimensional 

configuration space —there will be a very large number of ways of specifying regions such that 38

we won’t be able to identify any interesting patterns in how those regions behave over time. 

This is the sense in which some objects and properties seem arbitrary in problematic ways: 

carvings corresponding to (for example) grue-like properties (or bizarre compound objects like 

“the conjunction of the Queen of England’s left foot and all pennies minted after 1982”) just 

don’t support very many interesting patterns.  Regions picked out by locutions like that don’t 

behave in ways that are regular enough to make them interesting targets of study.  Even in cases 

like this, though, the patterns identified by fundamental physics will remain reliable: this (again) 

is the sense in which fundamental physics is fundamental.  The behavior of even 

arbitrarily-specified regions—regions that don’t admit of any parochial patterns—will be 

37 We can think of the “sincerely intends to put his hand in the pot” as being an assertion about location of the system 
when its state is projected onto a lower-dimensional subspace consisting of the configuration space of the person’s 
brain.  Again, this location will (obviously) be a regional rather than precise one: there are a large number of points in 
this lower-dimensional space corresponding to the kind of intention we have in mind here. 
38 This is only a very rough gesture at a definition of complexity, but we’re not yet in a position to do better than this. 
For a more precise discussion of the nature (and significance) of complexity, see Section 2.2. 
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predictable by an appeal to the bit-map level patterns of fundamental physics. 

     More precisely, then, the business of a particular special sciences consists in identifying 

certain regions of a system’s configuration space as instantiating enough interesting patterns to 

be worth considering, and then trying to enumerate those patterns as carefully as possible.  A 

new special science emerges when someone notices that there exist patterns in the time-evolution 

of regions  which have heretofore gone unnoticed.  The borders of the regions picked out by the 39

special sciences will be vaguely-defined; if the special scientists were required to give a 

complete enumeration of all the points contained in a particular region (say, all the possible 

configurations corresponding to “normal human observer with the intention to stick his hand in 

the pot of boiling water”), then the usefulness of picking out patterns of those regions would be 

greatly reduced.  To put the point another way, there’s a very real sense in which the vagueness 

of the carvings used by particular sciences is (to borrow from computer science yet again) a 

feature rather than a bug: it lets us make reliable predictions about the time-evolution of a wide 

class of systems while also ignoring a lot of detail about the precise state of those systems.  The 

vagueness might lead us to occasionally make erroneous predictions about the behavior of a 

system, but (as I argued in Section 1.3) this is not at all a fatal criticism of a putative pattern. 

The progress of a particular special science consists largely in attempts to make the boundaries 

of its class of carvings as precise as possible, but this notion of progress need not entail that the 

ultimate goal of any special science is a set of perfectly defined regions.  To be a pattern is not 

necessarily to be a perfect pattern, and (just as with compression algorithms in information 

theory) we might be happy to trade a small amount of error for a large gain in utility.  The 

39 It might be appropriate to remind ourselves here that the regions under discussion here are regions of configuration 
space, not space-time. 
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scientific project consists in the identification of as many of these useful region/pattern pairings 

as possible, and individual sciences aim at careful identification of patterns in the evolution of 

particular regions . 40

     With this understanding of science (and the scientific project more generally) in hand, then, 

we can return to the question we posed near the beginning of this chapter: how are we to respond 

to the spirit of Richard Feynman?  What's a philosopher to say in his own defense?  What do we 

bring to the scientific table?  It should be clear from what we've said thus far that philosophy is 

not, strictly speaking a science; philosophy (with a very few exceptions) does not seek to make 

measurements of the world around us , use those measurements to identify patterns in that 41

world, and construct models under which those patterns are projected to future unobserved cases. 

That is, philosophy is not a science in the way that chemistry, biology, economics, climate 

science, or (a fortiori) fundamental physics are sciences; there is no set of configuration-space 

carvings with which philosophy is concerned.  However, this does not mean that philosophy is 

not a part of Science in the sense of contributing to the overall scientific project.  How does that 

relationship work?  An analogy might help here.  Consider the relationship between commercial 

airline pilots and the air-traffic controllers working at major metropolitan airports around the 

world.  The kind of specialized knowledge required to operate (say) a Boeing 747 safely—as 

40 There will often be overlap between the regions studied by one science and the regions studied by another.  The 
“human with his hand in a pot of boiling water” sort of system will admit of patterns from (for example) the 
perspectives of biology, psychology, and chemistry.  That is to say that this sort of system is one that is in a region 
whose behavior can be predicted by the regularities identified by all of these special sciences, despite the fact that the 
unique carvings of biology, psychology, and chemistry will be regions with very different shapes.  Systems like this 
one sit in regions whose time-evolution is particularly rich in interesting patterns. 
41 Of course, this is not to dismiss experimental philosophy as a legitimate discipline.  Rather, on the view that I am 
advocating here, traditional experimental philosophy would count as a special science (in the sense described above) in 
its own right—a special science with deep methodological, historical, and conceptual ties to philosophy proper, but one 
which is well and truly its own project. 
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well as the rather restricted vantage point from which an individual pilot can view the airspace 

surrounding a port-of-call—leaves little room for coordination between planes themselves. 

While some communication is present between pilots, most of the direction comes from the 

ground—from people who, though they lack the incredibly technical know-how required to fly 

any one of the planes they support, fulfill a vital role, both in virtue of their position as outsiders 

with (so to speak) a bird's eye view on the complicated and fast-paced project of moving people 

in and out of cities via air travel and in virtue of their specialized training as managers and 

optimizers.  Philosophers, I suggest, play a role similar to that of air traffic controllers while 

scientists play the role of pilots: while it is the pilots who are directly responsible for the success 

or failure of the project, their job can be (and is) made significantly easier with competent 

support and direction from the ground.  The air traffic controllers cooperate with the pilots to 

further a shared goal: the goal of moving people about safely.  Likewise, philosophers cooperate 

with scientists to further a shared goal: the goal of identifying genuine projectable patterns in the 

world around us.  If this example strikes you as over inflating the philosophers' 

importance—who are we to think of ourselves as controlling anything?—then consider a related 

case.  Consider the relationship between highway transportation qua vehicles and highway 

transportation qua broad system of technology—a technology in the fourth and last of the senses 

distinguished by Kline . 42

     Think of the system of highway system in the United States : while the vehicles—cars, 43

trucks, motorcycles, bicycles, and so on—are in some sense the central components of the 

highway system (without vehicles of some sort, there would be no system to speak of at all), they 

42 Kline (1985) 
43 I owe this example to conversation with my friend and colleague Daniel Estrada. 
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by no means exhaust the vital components of the system. The highway system as a whole 

consists of a highly designed, standardized, well-maintained, incredibly diverse set of objects 

and practices that are just as essential for the smooth transportation of the people using the 

system as are the vehicles that traverse it: the traffic lights, the signs, the rest stops, the paint on 

the road, the safety-rails, the traffic cones, and so on are as vital as the cars themselves. Even 

more saliently for the purposes of our discussion, consider all the knowledge that went into 

conceptualizing, constructing, and maintaining that system, and of the skills and knowledge that 

must be imparted to each driver before he or she is competent to control a ton of metal and 

plastic moving at 75 miles per hour: these skills (and the tens of thousands of man-hours behind 

their conceptualization and implementation) are likewise essential.  Think of the actual 

production and maintenance of those roads, the hundreds of thousands of miles of concrete, 

construction, and cleanup— as well as the hours of political negotiations and legal regulations 

and labor disputes that sit behind every mile of that road.  Only through the smooth operation of 

this system as a whole is actual use of the road—the sitting behind the wheel, listening to terrible 

music, with only some destination in mind—made possible.  

     If the previous comparison of philosophers to air-traffic controllers seems to elevate 

philosophy beyond its rightful station, then we might take comfort in the fact that, though we 

might play the role of the lowly dotted yellow line, this role is still deeply essential to the 

functioning of the whole.  Philosophers are not scientists in just the same way that dotted yellow 

lines are not cars, or that air-traffic controllers are not pilots, or that traffic engineers are not 

commuters trying to get to work on time.  Like our transportation analogues, though, 

philosophers have a vital role to play in the scientific project as a whole: a role of coordination, 
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general analysis, optimization, and clarification.  We are suited to play this role precisely in 

virtue of not being scientists: we are uniquely suited (to both carry the transportation theme and 

echo a famous metaphor of Wilfred Sellars') "build bridges" between the activities of individual 

scientists, and between different branches of the scientific project as a whole.  Philosophers are 

trained to clarify foundational assumptions, note structural similarities between arguments (and 

problems) that at first glance could not seem more disparate, and to construct arguments with a 

keen eye for rigor.  These skills, while not necessarily part of the scientist's tool-kit, are vital to 

the success of the scientific project as a whole: if we're to succeed in our goal of cataloging the 

interesting patterns in the world around us, we need more than just people directly looking for 

those patterns.  We might take this as a special case of Bruno Latour's observation that "the more 

non-humans share existence with humans, the more humane a collective is, " and note that the 44

more non-scientists share in the scientific project, the more scientific the project becomes.  Now, 

let us turn to that project in earnest.  

 

 

 

 

 

 

44 Latour (1999) 
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Chapter Two 

What's the Significance of Complexity? 

2.0  Introduction and Overview 

     In Chapter One, I presented a general theory about the nature of the scientific project, and 

argued that this general theory suggests a natural way of thinking about the relationship between 

(and underlying unity of) the different branches of science.  This way of looking at science is 

instructive but (as I said), doing abstract philosophy of science is not really my goal here. 

Eventually, we will need to turn to consider climate science specifically and examine the special 

problems faced by those studying the Earth's climate system.  Before we get down into the 

nitty-gritty concrete details, though, we'll need a few more theoretical tools.  Here's how this 

chapter will go. 

     In 2.1 I will introduce a distinction between "complex systems" sciences and "simple 

systems" sciences, and show how that distinction very naturally falls out of the account of 

science offered in Chapter One.  I will draw a distinction between "complex" and 

"complicated," and explore what it is that makes a particular system complex or simple.  We'll 

think about why the distinction between complex and simple systems is a useful one, and discuss 

some attempts by others to make the notion of complexity precise.  In 2.2, we will attempt to 

construct our own definition using the framework from the last chapter.   Finally, in 2.3, I’ll set 

up the discussion to come in Chapter Three, and suggest that climate science is a paradigmatic 
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complex systems science, and that recognizing that fact is essential if we’re to make progress as 

rapidly as we need to.  More specifically, I’ll argue that the parallels between climate science and 

other complex systems sciences—particularly economics—have been largely overlooked, and 

that this oversight is primarily a result of the tradition of dividing the sciences into physical and 

social sciences.  This division, while useful, has limitations, and (at least in this case) can 

obfuscate important parallels between different branches of the scientific project.  The 

complex/simple systems distinction cuts across the physical/social science distinction, and serves 

to highlight some important lessons that climate science could learn from the successes (and 

failures) of other complex systems sciences.  This is the second (and last) chapter that will be 

primarily philosophical in character; with the last of our conceptual tool-kit assembled here, 

we’ll be ready to move on to a far more concrete discussion in Chapter Three and beyond. 

2.1  What is “Complexity?”  

     Before we can actually engage with complex systems theories (and bring those theories to 

bear in exploring the foundations of climate science), we’ll need to articulate what exactly makes 

a system complex, and examine the structure of complex systems theories generally.  Just as in 

Chapter One, my focus here will be primarily on exploring the actual practice of contemporary, 

working science: I’m interested in what climate scientists, economists, and statistical physicists 

(as well as others working in the branches of science primarily concerned with predicting the 

behavior of complex systems) can learn from one another, rather than in giving a priori 

pronouncements on the structure of these branches of science.  With that goal in mind, we will 

anchor our discussion with examples drawn from contemporary scientific theories whenever 

possible, though a certain amount of purely abstract theorizing is unavoidable.  Let's get that over 
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with as quickly as possible. 

     It is important, first of all, to forestall the conflation of “complex/simple” and 

“complicated/simplistic.”  All science is (to put the point mildly) difficult, and no branch of 

contemporary science is simplistic in the sense of being facile, superficial, or easy.  In opposing 

complex systems to simple systems, then, I am not claiming that some branches of science are 

“hard” and some are “soft” in virtue of being more or less rigorous—indeed, the hard/soft 

science distinction (which roughly parallels the physical/social science distinction, at least most 

of the time) is precisely the conceptual carving that I’m suggesting we ought to move beyond. 

There are no simplistic sciences: all science is complicated in the sense of being difficult, 

multi-faceted, and messy.  Similarly, there are no simplistic systems in nature; no matter how we 

choose to carve up the world, the result is a set of systems that are decidedly complicated (and 

thank goodness for this: the world would be incredibly boring otherwise!).  This point should be 

clear from our discussion in Chapter One.  

     If all systems are complicated, then, what makes one system a complex system, and another a 

simple system?  This is not an easy question to answer, and an entirely new academic 

field—complex systems theory—has grown up around attempts to do so.  Despite the centrality 

of the concept, there’s no agreed-upon definition of complexity in the complex systems theory 

literature.  We'll look at a few different suggestions that seem natural (and suggest why they 

might not be entirely satisfactory) before building our own, but let’s start by trying to get an 

intuitive grasp on the concept.  As before, we’ll tighten up that intuitive account as we go along; 

if all goes well, we’ll construct a natural definition of complexity piece by piece.  
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     Rather than trying to go for a solid demarcation between complex and simple systems 

immediately, it might be easier to start by comparing systems.  Here are some comparisons that 

seem intuitively true : a dog’s brain is more complex than an ant’s brain, and a human’s brain is 45

more complex still.  The Earth’s ecosystem is complex, and rapidly became significantly more 

complex during and after the Cambrian explosion 550 million years ago.  The Internet as it exists 

today is more complex than ARPANET—the Internet’s progenitor—was when it was first 

constructed.  A Mozart violin concerto is more complex than a folk tune like “Twinkle, Twinkle, 

Little Star.”  The shape of Ireland’s coastline is more complex than the shape described by the 

equation x2 + y2 = 1.  The economy of the United States in 2011 is more complex than the 

economy of pre-Industrial Europe.  All these cases are (hopefully) relatively uncontroversial. 

What quantity is actually being tracked here, though?  Is it the same quantity in all these cases? 

That is, is the sense in which a human brain is more complex than an ant brain the same sense in 

which a Mozart concerto is more complex than a folk tune?  One way or another, what’s the 

significance of the answer to that question—if there’s an analogous sense of complexity behind 

all these cases (and I shall argue that there is, at least in most cases), what does that mean for the 

practice of science?  What can we learn by looking at disparate examples of complex systems? 

Let’s look at a few different ways that we might try to make this notion more precise.  We’ll start 

with the most naïve and intuitive paths, and work our way up from there .  Once we have a few 46

45 I'm going to rely quite heavily on our intuitive judgments of complexity in this chapter; in particular, I'll argue that 
some of the definitions we consider later on are insufficient because they fail to accord with our intuitive judgments 
about what counts as a complex system.  Since constructing a more rigorous definition is precisely what we're trying to 
do here, this doesn't seem like much of a problem.  We've got to start somewhere. 
46 For an even more exhaustive survey of different attempts to quantify “complexity” in the existing literature, see 
Chapter 7 of Mitchell (2009).  We will not survey every such proposal here, but rather will focus our attention on a few 
of the leading contenders—both the most intuitive proposals and the proposals that seem to have gotten the most 
mileage—before offering a novel account of complexity that attempts to synthesize these contenders. 
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proposals on the table, we’ll see if there’s a way to synthesize them such that we preserve the 

strengths of each attempt while avoiding as many of their weaknesses as possible. 

2.1.1 Complexity as Mereological Size 

     One simple measure tends to occur to almost everyone when confronted with this problem for 

the first time: perhaps complexity is a measure of the number of independent parts that a system 

has—a value that we might call “mereological size.”  This accords rather well with complexity in 

the ordinary sense of the word: an intricate piece of clockwork is complex largely in virtue of 

having a massive number of interlocking parts—gears, cogs, wheels, springs, and so on—that 

account for its functioning.  Similarly, we might think that humans are complex in virtue of 

having a very large number of “interlocking parts” that are responsible for our functioning in the 

way we do —we have a lot more genes than (say) the yeast microorganism .  Something like 47 48

this definition is explicitly embraced by, for example, Michael Strevens: “A complex system, 

then, is a system of many somewhat autonomous, but strongly interacting parts .”  Similarly, 49

Lynn Kiesling says, “Technically speaking, what is a complex system?  It’s a system or 

arrangement of many component parts, and those parts interact. These interactions generate 

outcomes that you could not necessarily have predicted in advance. ” 50

     There are a few reasons to be suspicious of this proposal, though.  Perhaps primarily, it will 

47 It’s interesting to point out that this is precisely the intuition that many proponents of the “intelligent design” 
explanation for biological complexity want to press on.  See, canonically, Paley (1802). 
48 Even still, the amount of information encoded in the human genome is shockingly small by today’s storage 
standards: the Human Genome Project has found that there are about 2.9 billion base-pairs in the human genome.  If 
every base-pair can be coded with two bits, this corresponds to about 691.4 megabytes of data.  Moreover, Christley et. 
al. (2009) point out that since individual genomes vary by less than 1% from each other, they can be losslessly 
compressed to roughly 4 megabytes.  To put that in perspective, even a relatively cheap modern smartphone has about 
16 gigabytes of memory—enough to store almost 5,000 complete human genomes. 
49 Strevens (2003), p. 7 
50 Kiesling (2011) 
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turn the question "how complex is this system?" into a question that's only answerable by 

making reference to what the system is made out of.  This might not be a fatal issue per se, but it 

suggests that measuring complexity is an insurmountably relativist project—after all, how are we 

to know exactly which parts we ought to count to define the complexity of a system?  Why, that 

is, did we choose to measure the complexity of the human organism by the number of genes we 

have?  Why not cells (in which case the blue whale would beat us handily), or even atoms (in 

which case even the smallest star would be orders of magnitude more complex than even the 

most corpulent human)?  Relatedly, how are we to make comparisons across what (intuitively) 

seem like different kinds of systems?  If we've identified the gene as the relevant unit for living 

things, for instance, how can we say something like "humans are more complex than cast-iron 

skillets, but less complex than global economies ?"  51

     Even if we waive that problem, though, the situation doesn't look too good for the 

mereological size measure.  While it's certainly true that a human being has more nucleotide base 

pairs in his DNA than a yeast microbe, it's also true that we have far fewer base pairs than most 

amphibians, and fewer still than many members of the plant kingdom (which tend to have 

strikingly long genomes) .  That's a big problem, assuming we want to count ourselves as more 52

51 Whether or not these comparisons are accurate is another matter entirely.  That is, whether you think it's actually true 
to say that humans are less complex than the 21st century global economy, it seems clear that the comparison is at least 
sensible.  Or, at least, it seems clear that it ought to be sensible if we're to succeed in our goal of finding a notion of 
"complexity" that is widely-applicable enough to be useful.  I'll argue in 2.2 that there is sense to the comparison and 
(moreover) that the global economy is more complex than an individual human.  For now, though, it's enough to point 
out that even having that discussion presupposes a wide notion of complexity that renders the mereological size 
measure suspect. 
52 Most amphibians have between 109 and 1011 base-pairs.  Psilotum nudum, a member of the fern family, has even 
more: something on the order of 2.5 x 1011 base-pairs.  The latter case is perhaps the most striking comparison, since P. 
nudum is quite primitive, even compared to other ferns (which are among the oldest plants still around): it lacks leaves, 
flowers, and fruit.  It closely resembles plants from the Silurian epoch (~443 million years ago – 416 million years 
ago), which are among the oldest vascular plants we've found in the fossil record. 
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complex than frogs and ferns.  This isn't going to do it, then: while size certainly matters 

somewhat, the mereological size measure fails to capture the sense in which it matters.  Bigger 

doesn't always mean more complex, even if we can solve the all-important problem of defining 

what "bigger" even means. 

     In the case of Strevens’ proposal, we might well be suspicious of what Wikipedia editors 

would recognize as “weasel words” in the definition: a complex system is one that is made up of 

many parts that are somewhat independent of one another, and yet interact strongly.  It’s difficult 

to extract anything very precise from this definition: if we didn’t already have an intuitive grasp 

of what ‘complex’ meant, a definition like this one wouldn’t go terribly far toward helping us get 

a grasp of the concept.  How many parts do we need?  How strongly must they interact?  How 

autonomous can they be?  Without a clear and precise answer to these questions, it’s hard to see 

how a definition like this can help us understand the general nature of complexity.  In Strevens’ 

defense, this is not in the least fatal to his project, since his goal is not to give a complete analysis 

of complexity (but rather just to analyze the role that probability plays in the emergence of 

simple behavior from the chaotic interaction of many parts).  Still, it won’t do for what we’re 

after here (and Kiesling can claim no such refuge, though her definition does come from an 

introductory-level talk).  We’ll need to find something more precise. 

2.1.2 Complexity as Hierarchical Position 

     First, let's try a refinement of the mereological size measure.  The language of science (and, to 

an even greater degree, the language of philosophy of science) is rife with talk of levels.  It's 

natural to think of many natural systems as showing a kind of hierarchical organization: lakes are 
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made out of water molecules, which are made out of atoms, which are made out of quarks; 

computers are made out of circuit boards, which are made out of transistors and capacitors, 

which are made out of molecules; economies are made out of firms and households, which are 

made out of agents, which are made out of tissues, which are made out of cells &c..  This view is 

so attractive, in fact, that a number of philosophers have tried to turn it into a full-fledged 

metaphysical theory .  Again, I want to try to avoid becoming deeply embroiled in the 53

metaphysical debate here, so let's try to skirt those problems as much as possible.  Still, might it 

not be the case that something like degree of hierarchy is a good measure for complexity?  After 

all, it does seem (at first glance) to track our intuitions: more complex systems are those which 

are "nested" more deeply in this hierarchy.  It seems like this might succeed in capturing what it 

was about the mereological size measure that felt right: things higher up on the hierarchy seem to 

have (as a general rule) more parts than things lower down on the hierarchy.  Moreover, this 

measure might let us make sense of the most nagging question that made us suspicious of the 

mereological size measure: how to figure out which parts we ought to count when we're trying to 

tabulate complexity.  

     As attractive as this position looks at first, it's difficult to see how it can be made precise 

enough to serve the purpose to which we want to put it here.  Hierarchy as a measure of 

complexity was first proposed by Herbert Simon back before the field of complex systems theory 

diverged from the much more interestingly named field of “cybernetics.”  It might be useful to 

actually look at how Simon proposed to recruit hierarchy to explain complexity; the difficulties, I 

think, are already incipient in his original proposal: 

53 See, e.g., Morgan (1923), Oppenheim & Putnam (1958), and (to a lesser extent) Kim (2002) 
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Roughly, by a complex system I mean one made up of a large number of parts that interact in a 
non-simple way. In such systems, the whole is more than the sum of the parts, not in an ultimate, 
metaphysical sense, but in the important pragmatic sense that, given the properties of the parts and 
the laws of their inter-action, it is not a trivial matter to infer the properties of the whole. In the face 
of complexity, an in-principle reductionist may be at the same time a pragmatic holist...  54

     This sounds very much like the Strevens/Kiesling proposal that we looked at in 2.1.1, and 

suffers from at least some of the same problems (as well as a few of its own).  Aside from what I 

flagged above as Wikipedian “weasel words,” the hierarchical proposal suffers from some of the 

same subjectivity issues that plagued the mereological proposal: when Simon says (for instance) 

that one of the key features of the right sort of hierarchical composition is 

“near-decomposability,” exactly what is it that’s supposed to be decomposable?  Again, the 

hierarchical position seems to be tracking something interesting here—Simon is right to note that 

it seems that many complex systems have the interesting feature of being decomposable into 

many (somewhat less) complex subsystems, and that the interactions within each subsystem are 

often stronger than interactions between subsystems.  This structure, Simon contends, remains 

strongly in view even as the subsystems themselves are decomposed into sub-subsystems.  There 

is certainly something to this point.  Interactions between (say) my liver and my heart are 

relatively “weak” compared to interactions that the cells of my heart (or liver) have with each 

other.  Similarly, the interactions between the mitochondria and the Golgi body of an individual 

cell in my heart are stronger than the interactions between the individual cells.  Or, to move up in 

the hierarchy, the interactions between my organs seem stronger than the interactions between 

my body as a whole and other individual people I encounter on my daily commute to Columbia’s 

campus.  

     Still, a problem remains.  What’s the sense of “stronger” here?  Just as before, it seems like 

54 Simon (1962) 
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this proposal is tracking something, but it isn’t easy to say precisely what.  We could say that it is 

easier for the equilibrium of my body to be disturbed by the right (or, rather, wrong) sort of 

interaction between my liver and heart than it is for that same equilibrium to be disturbed by the 

right kind of interaction between me and a stranger on the subway, but this still isn’t quite 

correct.  It might be true that the processes that go on between my organs are more fragile—in 

the sense of being more easily perturbed out of a state where they’re functioning normally—than 

the processes that go on between me and the strangers standing around me on the subway as I 

write this, but without a precise account of the source and nature of this fragility, we haven’t 

moved too far beyond the intuitive first-pass account of complexity offered at the outset of 

Section 2.1.  Just as with mereological size, there seems to be a nugget of truth embedded in the 

hierarchical account of complexity, but it will take some work to extract it from the surrounding 

difficulties. 

2.1.3 Complexity as Shannon Entropy 

     Here’s a still more serious proposal.  Given the discussion in Chapter One, there’s another 

approach that might occur to us: perhaps complexity is a measure of information content or 

degree of surprise in a system.  We can recruit some of the machinery from the last chapter to 

help make this notion precise.  We can think of “information content” as being a fact about how 

much structure (or lack thereof) exists in a particular system—how much of a pattern there is to 

be found in the way a system is put together.  More formally, we might think of complexity as 

being a fact about the Shannon entropy  in a system.  Let’s take a moment to remind ourselves 55

55 See Shannon (1948) and Shannon & Weaver (1949) 
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of what exactly that means, and see if it succeeds in capturing our intuitive picture of complexity. 

     “Amount of surprise” is a good first approximation for the quantity that I have in mind here, 

so let’s start by thinking through a simple analogy.  I converse with both my roommate and my 

Siamese cat on a fairly regular basis.  In both cases, the conversation consists in my making 

particular sounds and my interlocutor responding by making different sounds.  Likewise, in both 

cases there is a certain amount of information exchanged between my interlocutor and me.  In 

the case of my roommate, the nature of this information might vary wildly from conversation to 

conversation: sometimes we will talk about philosophy, sometimes about a television show, and 

sometimes what to have for dinner.  Moreover, he’s a rather unusual fellow—I’m never quite 

sure what he’s going to say, or how he’ll respond to a particular topic of conversation.  Our 

exchanges are frequently surprising in a very intuitive sense: I never know what’s going to come 

out of his mouth, or what information he’ll convey.  My Siamese cat, on the other hand, is far 

less surprising.  While I can’t predict precisely what’s going to come out of her mouth (or when), 

I have a pretty general sense: most of the time, it’s a sound that’s in the vicinity of “meow,” and 

there are very specific situations in which I can expect particular noises.  She’s quite 

grandiloquent for a cat (that’s a Siamese breed trait), and the sight of the can opener (or, in the 

evening, just someone going near the can opener) will often elicit torrent of very high-pitched 

vocalizations.  I’m not surprised to hear these noises, and can predict when I'll hear them with a 

very high degree of accuracy. 

     The difference between conversing with these two creatures should be fairly clear.  While my 

cat is not like a recording—that is, while I’m not sure precisely what she’s going to say (in the 

way that, for instance, I’m precisely sure what Han Solo will say in his negotiations with Jabba 
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the Hutt), there’s far less variation in her vocalizations than there is in my roommate’s.  She can 

convey urgent hunger (and often does), a desire for attention, a sense of contentment, and a few 

other basic pieces of information, but even that variation is expressed by only a very narrow 

range of vocalizations.  My roommate, on the other hand, often surprises me, both with what 

kind of information he conveys and how he conveys it.  Intuitively, my roommate’s vocalizations 

are the more complex. 

     We can also think of “surprise” as tracking something about how much I miss if I fail to hear 

part of a message.  In messages that are more surprising (in this sense), missing just a small 

amount of data can make the message very difficult to interpret, as anyone who has ever said 

expressed incredulity with “What?!” can attest; when a message is received and interpreted as 

being highly surprising, we understand that just having misheard a word or two could have given 

us the wrong impression, and request verification.  Missing just two or three words in a sentence 

uttered by my roommate, for instance, can render the sentence unintelligible, and the margin for 

error becomes more and more narrow as the information he’s conveying becomes less familiar. 

If he’s telling me about some complicated piece of scholarly work, I can afford to miss very little 

information without risking failing to understand the message entirely.  On the other hand, if he’s 

asking me what I’d like to order for dinner and then listing a few options, I can miss quite a bit 

and still be confident that I’ve understood the overall gist of the message.  My cat’s 

communications, which are less surprising even than the most banal conversation I can have with 

my roommate, are very easily recoverable from even high degrees of data loss; if I fail to hear 

the first four “meows,” there’s likely to be a fifth and sixth, just to make sure I got the point. 

Surprising messages are thus harder to compress in the sense described in Chapter One, as the 
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recovery of a missing bit requires a more complex pattern to be reliable.  

     Shannon entropy formalizes this notion.  In Shannon’s original formulation, the entropy (H) 

of a particular message source (my roommate’s speech, my cat’s vocalizations, Han Solo’s 

prevarications) is given by an equation,  the precise details of which are not essential for our 56

purposes here, that specifies how unlikely a particular message is, given specifications about the 

algorithm encoding the message.  A particular string of noises coming out of my cat are (in 

general) far more likely than any particular string of noises that comes out of my roommate; my 

roommate’s speech shows a good deal more variation between messages, and between pieces of 

a given message.  A sentence uttered by him has far higher Shannon entropy than a series of 

meows from my cat.  So far, then, this seems like a pretty good candidate for what our intuitive 

sense of complexity might be tracking: information about complex systems has far more 

Shannon entropy than information about simple systems.  Have we found our answer?  Is 

complexity just Shannon entropy?  Alas, things are not quite that easy.  Let’s look at a few 

problem cases. 

     First, consider again the "toy science" from Section 1.3.  We know that for each bit in a given 

string, there are two possibilities: the bit could be either a ‘1’ or a ‘0.’  In a truly random string in 

this language, knowing the state of a particular bit doesn’t tell us anything about the state of any 

other bits: there’s no pattern in the string, and the state of each bit is informationally independent 

of each of the others.  What’s the entropy of a string like that—what’s the entropy of a 

56  H = ∑PiHi  This equation expresses the entropy in terms of a sum of probabilities pi(j)for producing various  
    i 
symbols j such that the message in question is structured the way it is.  Thus, the more variation you can expect in each 
bit of the message, the higher the entropy of the total message.  For a more detailed discussion of the process by which 
this equation can be derived, see Shannon (1948) and Shannon & Weaver (1964). 
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“message” that contains nothing but randomly generated characters?  If we think of the message 

in terms of how “surprising” it is, the answer is obvious: a randomly-generated string has 

maximally high Shannon entropy.  That’s a problem if we’re to appeal to Shannon entropy to 

characterize complexity: we don’t want it to turn out that purely random messages are rated as 

even more complex than messages with dense, novel information-content, but that’s precisely 

what straight appeal to Shannon entropy would entail.  

     Why not?  What’s the problem with calling a purely random message more complex?  To see 

this point, let’s consider a more real-world example.   If we want Shannon entropy to work as a 

straight-forward measure for complexity, it needs to be the case that there's a tight correlation 

between an increase (or decrease) in Shannon entropy and an increase (or decrease) in 

complexity.  That is: we need it to be the case that complexity is proportional to Shannon 

entropy: call this the correlation condition.  I don't think this condition is actually satisfied, 

though: think (to begin) of the difference between my brain at some time t, and my brain at some 

later time t1.  Even supposing that we can easily (and uncontroversially) find a way to represent 

the physical state of my brain as something like a message,  it seems clear that we can construct 57

a case where measuring Shannon entropy isn't going to give us a reliable guide to complexity. 

 Here is such a case. 

     Suppose that at t, my brain is more-or-less as it is now—(mostly) functional, alive, and doing 

its job of regulating the rest of the systems in my body.  Now, suppose that in the time 

57 Mitchell (op. cit.) points out that if we’re to use any measure of this sort to define complexity, anything we wish to 
appropriately call “complex” must be put into a form for which Shannon entropy can be calculated—that is, it has to be 
put into the form of a message.  This works just fine for speech, but it isn’t immediately obvious how we might go 
about re-describing (say) the brain of a human and the brain of an ant messages such that we can calculate their 
Shannon entropy.  This problem may be not be insurmountable (I’ll argue in 2.2 that it can indeed be surmounted), but 
it is worth noting still. 
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between t and t1, someone swings a baseball bat at my head.  What happens when it impacts?  If 

there's enough force behind the swing, I'll die.  Why is that?  Well, when the bat hits my skull, it 

transfers a significant amount of kinetic energy through my skull and into my brain, which 

(among other things) randomizes  large swaths of my neural network, destroying the 58

correlations that were previously in place, and making it impossible for the network to perform 

the kind of computation that it must perform to support the rest of my body.  This is (I take it) 

relatively uncontroversial.  However, it seems like we also want to say that my brain was more 

complex when it was capable of supporting both life and significant information processing than 

it was after it was randomized—we want to say that normal living human systems are more 

complex than corpses.  But now we've got a problem: in randomizing the state of my brain, 

we've increased the Shannon entropy of the associated message encoding its state.  A decrease in 

complexity here is associated with an increase in Shannon entropy.  That looks like trouble, 

unless a system with minimal Shannon entropy is a system with maximal complexity (that is, 

unless the strict inverse correlation between entropy and complexity holds).  But that's absurd: a 

system represented by a string of identical characters is certainly not going to be more complex 

than a system represented by a string of characters in which multiple nuanced patterns are 

manifest .  The correlation condition between entropy and complexity fails. 59

58 The sense of “randomizes” here is a thermodynamic one.  By introducing a large amount of kinetic energy into my 
brain, my assailant (among other things) makes it the case that the volume of the region of configuration space 
associated with my brain is wildly increased.  That is, the state “Jon is conscious and trying to dodge that baseball bat” 
is compatible with far fewer microstates of my brain than is the state “Jon has been knocked out by a baseball bat to the 
face.”  The bat’s impacting with my skull, then, results in a large amount of information loss about the system—the 
number of possible encodings for the new state is larger than the number of possible encodings for the old state.  The 
Shannon entropy has thus increased. 
59 To see this point, think of two pieces of DNA—one of which codes for a normal organism (say, a human being) and 
one of similar length, but which consists only in cytosine-guanine pairs.  Each DNA string can be encoded as a 
message consisting entirely of the letters A, C, G, and T.  The piece of DNA that codes for a functional organism will 
be associated with a message with far higher Shannon entropy than the piece of DNA associated with a message that 
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     Shannon entropy, then, can’t be quite what we’re looking for, but neither does it seem to miss 

the mark entirely.  On the face of it, there’s some relationship between Shannon entropy and 

complexity, but the relationship must be more nuanced than simple identity, or even 

proportionality.  Complex systems might well be those with a particular entropic profile, but if 

that’s the case, then the profile is something more subtle than just “high entropy” or “low 

entropy.”   Indeed, if anything, it seems that there’s a kind of “sweet spot” between maximal and 

minimal Shannon entropy—systems represented by messages with too much Shannon entropy 

tend not to be complex (since they’re randomly organized), and systems represented by messages 

with too little Shannon entropy tend not to be complex, since they’re totally homogenous.  This 

is a tantalizing observation: there’s a kind of Goldilocks zone here.  Why?  What’s the 

significance of that sweet spot?  We will return to this question in Section 2.1.5.  For now, 

consider one last candidate account of complexity from the existing literature. 

  2.1.4  Complexity as Fractal Dimension 

     The last candidate definition for complexity that we’ll examine here is also probably the least 

intuitive.  The notion of a fractal was originally introduced as a purely geometric concept by 

French mathematician Benoit Mandelbrot , but there have been a number of attempts to connect 60

the abstract mathematical character of the fractal to the ostensibly “fractal-like” structure of 

certain natural systems.  Many parts of nature are fractal-like in the sense of displaying a certain 

degree of what’s sometimes called “statistical self-similarity.”  Since we’re primarily interested 

in real physical systems here (rather than mathematical models), it makes sense to start with that 

consists entirely of the string ‘CG’ repeated many times.  Surely DNA that codes for a functional organism, though, is 
more complex than a non-coding DNA molecule.  Again, the correlation condition fails. 
60 Mandelbrot (1986) 
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sense of fractal dimension before considering the formal structure of mathematical fractals. 

Let’s begin by getting a handle on what counts as statistical self-similarity in nature, then, to 

begin with. 

     Consider a stalk of broccoli or cauliflower that we might find in the produce section of a 

supermarket.  A medium-sized stalk of broccoli is composed of a long smooth stem (which may 

be truncated by the grocery store, but is usually still visible) and a number of lobes covered in 

what look like small green bristles.  If we look closer, though, we’ll see that we can separate 

those lobes from one another and remove them.  When we do, we’re left with several things that 

look very much like our original piece of broccoli, only miniaturized: each has a long smooth 

stem, and a number of smaller lobes that look like bristles.  Breaking off one of these smaller 

lobes reveals another piece that looks much the same.  Depending on the size and composition of 

the original stalk, this process can be iterated several times, until at last you’re removing an 

individual bristle from the end of a small stalk.  Even here, though, the structure looks 

remarkably similar to that of the original piece: a single green lobe at the end of a long smooth 

stem. 

     This is a clear case of the kind of structure that generally gets called “fractal-like.”  It’s worth 

highlighting two relevant features that the broccoli case illustrates nicely.  First, fractal-like 

physical systems have interesting detail at many levels of magnification: as you methodically 

remove pieces from your broccoli stem, you continue to get pieces with detail that isn’t 

homogenous.  Contrast this with what it looks like when you perform a similar dissection of 

(say) a carrot.  After separating the leafy bit from the taproot, further divisions produce (no pun 

intended) pieces that are significantly less interesting: each piece ends up looking more-or-less 
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the same as the last one—smooth, orange, and fibrous.  That’s one feature that makes fractal-like 

parts of the world interesting, but it’s not the only one.  After all, it’s certainly the case that there 

are many other systems which, on dissection, can be split into pieces with interesting detail many 

times over—any sufficiently inhomogeneous mixture will have this feature.  What else, then, is 

the case of fractals tracking?  What’s the difference between broccoli and (say) a very 

inhomogeneous mixture of cake ingredients?  

     The fact that (to put it one more way) a stalk of broccoli continues to evince interesting details 

at several levels of magnification cannot be all that makes it fractal-like, so what’s the second 

feature?  Recall that the kind of detail that our repeated broccoli division produced was of a very 

particular kind—one that kept more-or-less the same structure with every division.  Each time 

we zoomed in on a smaller piece of our original stalk, we found a piece with a long smooth stem 

and a round green bristle on the end.  That is, each division (and magnification) yielded a 

structure that not only resembled the structure which resulted from the previous division, but also 

the structure that we started with.  The interesting detail at each level was structurally similar to 

the interesting detail at the level above and below it.  This is what separates fractal-like systems 

from merely inhomogeneous mixtures—not only is interesting detail present with each division, 

but it looks the same.  Fractal-like systems (or, at least the fractal-like systems we’re interested in 

here) show interesting details at multiple levels of magnification, and the interesting details 

present at each level are self-similar. 

     With this intuitive picture on the table, let’s spend a moment looking at the more formal 

definition of fractals given in mathematics.  Notice that we’ve been calling physical systems 

“fractal-like” all along here—that’s because nothing in nature is actually a fractal, in just the 
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same sense that nothing in nature is actually a circle.  In the case of circles, we know exactly 

what it means to say that there are no circles in nature: no natural systems exist which are 

precisely isomorphic to the equation that describes a geometric circle: things (e.g. basketball 

hoops) are circular, but on close enough examination they turn out to be rough and bumpy in a 

way that a mathematical circle is not.  The same is true of fractals; if we continue to subdivide 

the broccoli stalk discussed above, eventually we’ll reach a point where the self-similarity breaks 

down—we can’t carry on getting smaller and smaller smooth green stems and round green 

bristles forever.  Moreover, the kind of similarity that we see at each level of magnification is 

only approximate: each of the lobes looks a lot like the original piece of broccoli, but the 

resemblance isn’t perfect—it’s just pretty close.  That’s the sense in which fractal-like physical 

systems are only statistically self-similar—at each level of magnification, you’re likely to end up 

with a piece that looks more-or-less the same as the original one, but the similarity isn’t perfect. 

The tiny bristle isn’t just a broccoli stalk that’s been shrunk to a tiny size, but it’s almost that. 

This isn’t the case for mathematical fractals: a true fractal has the two features outlined above at 

every level of magnification—there’s always more interesting detail to see, and the interesting 

details are always perfectly self-similar miniature copies of the original 

     Here’s an example of an algorithm that will produce a true fractal: 

1. Draw a square. 
2. Draw a 45-45-90 triangle on top of the square, so that the top edge of the square and the 

base of the triangle are the same line.  Put the 90 degree angle at the vertex of the 
triangle, opposite the base 

3. Use each of the other two sides of the triangle as sides for two new (smaller) squares. 
4. Repeat steps 1-4 for each of the new squares you’ve drawn. 

Here’s what this algorithm produces after just a dozen iterations: 
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Fig. 2.1 

     Look familiar?  This shape  is starting to look suspiciously like our stalk of broccoli: there’s 61

a main “stem” formed by the first few shapes (and the negative space of later shapes), “lobes” 

branching off from the main stem with stems of their own, and so on.  If you could iterate this 

procedure an infinite number of times, in fact, you’d produce a perfect fractal: you could zoom in 

on almost any region of the shape and find perfect miniaturized copies of what you started with. 

Zooming in again on any region of one of those copies would yield even more copies, ad 

infinitum. 

     This is a neat mathematical trick, but (you might wonder) what’s the point of this discussion? 

How does this bear on complexity?  Stay with me just a bit longer here—we’re almost there.  To 

explain the supposed connection between fractal-like systems and complexity, we have to look a 

bit more closely at some of the mathematics behind geometric fractals; in particular, we’ll have 

to introduce a concept called fractal dimension.  All the details certainly aren’t necessary for 

what we’re doing here, but a rough grasp of the concepts will be helpful for what follows. 

Consider, to begin with, the intuitive notion of “dimension” that’s taught in high school math 

classes: the dimensionality of a space is just a specification of how many numbers need to be 

61 The shape generated by this procedure is called the Pythagoras Tree. 

70 



 

given in order to uniquely identify a point in that space.  This definition is sufficient for most 

familiar spaces (such as all subsets of Euclidean spaces), but breaks down in the case of some 

more interesting figures .  One of the cases in which this definition becomes fuzzy is the case of 62

the Pythagoras Tree described above: because of the way the figure is structured, it behaves in 

some formal ways as a two-dimensional figure, and in other ways as a not two-dimensional 

figure. 

     The notion of topological dimensionality refines the intuitive concept of dimensionality.  A 

full discussion of topological dimension is beyond the scope of this chapter, but the basics of the 

idea are easy enough to grasp.  Topological dimensionality is also sometimes called “covering 

dimensionality,” since it is (among other things) a fact about how difficult it is to cover the figure 

in question with other overlapping figures, and how that covering can be done most efficiently. 

Consider the case of the following curve : 63

 

Fig. 2.2 

62 Additionally, it’s difficult to make this definition of dimensionality more precise than the very vague phrasing we’ve 
given it here.  Consider a curve embedded in a two-dimensional Euclidean plane—something like a squiggly line 
drawn on a chalkboard.  What’s the dimensionality of that figure?  Our intuitions come into conflict here: for each 
point on the curve, we have to specify two numbers (the Cartesian coordinates) in order to uniquely pick it out.  On the 
other hand, this seems to just be a consequence of the fact that the curve is embedded in a two-dimensional space, not a 
fact about the curve itself—since it’s just a line, it seems like it ought to just be one-dimensional.  The intuitive account 
of dimensionality has no way to resolve this conflict of reasoning.  
63 This figure is adapted from one in Kraft (1995) 
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Suppose we want to cover this curve with a series of open (in the sense of not having a 

precisely-defined boundary) disks.  There are many different ways we could do it, three of which 

are shown in the figure above.  In the case on the bottom left, several points are contained in the 

intersection of four disks; in the case in the middle, no point is contained in the intersection of 

more than three disks; finally, the case on the right leaves no point contained in the intersection 

of more than two disks.  It’s easy to see that this is the furthest we could possibly push this 

covering: it wouldn’t be possible to arrange open disks of any size into any configuration where 

the curve was both completely covered and no disks overlapped .  We can use this to define 64

topological dimensionality in general: for a given figure F, the topological dimension is defined 

to be the minimum value of n, such that every finite open cover of F has a finite open refinement 

in which no point is included in more than n+1 elements.  In plain English, that just means that 

the topological dimension of a figure is one less than the largest number of intersecting covers 

(disks, in our example) in the most efficient scheme to cover the whole figure.  Since the most 

efficient refinement of the cover for the curve above is one where there is a maximum of two 

disks intersecting on a given point, this definition tells us that the figure is 1-dimensional.  So far 

so good—it’s a line, and so in this case topological dimensionality concurs with intuitive 

dimensionality . 65

     There’s one more mathematical notion that we need to examine before we can get to the 

punch-line of this discussion: fractal dimensionality.  Again, a simple example  can illustrate 66

64 Why not?  Remember that the disks are open, so points just at the “boundary” are not contained in the disks.  Thus, a 
series of very small disks that were very near each other without intersecting would necessarily leave at least some 
points uncovered: those in the tiny region between two open disks.  The only way to cover the whole figure is to allow 
the disks to overlap slightly. 
65 This also lets us move beyond our problem case from above: we can say why it is that a curve on a plane can be 
one-dimensional even though it is embedded in a two-dimensional space. 
66 This exceedingly clear way of illustrating the point is due to Mitchell (op. cit), though our discussion here is 
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this point rather clearly.  Consider a Euclidean line segment.  Bisecting that line produces two 

line segments, each with half the length of the original segment.  Bisecting the segments again 

produces four segments, each with one-quarter the length of the original segment.   Next, 

consider a square on a Euclidean plane.  Bisecting each side of the square results in four copies, 

each one-quarter the size of the original square.  Bisecting each side of the new squares will 

result in 16 squares, each a quarter the size of the squares in the second step.  Finally, consider a 

cube.  Bisecting each face of the cube will yield eight one-eighth sized copies of the original 

cube.  

     These cases provide an illustration of the general idea behind fractal dimension.  Very 

roughly, fractal dimension is a measure of the relationship between how many copies of a figure 

are present at different levels of magnification and how much the size of those copies changes 

between levels of magnification .  In fact, we can think of it as a ratio between these two 67

quantities.  The fractal dimension d of an object is equal to log(a)/log(b), where a = the number 

of new copies present at each level, and b is the factor by each piece must be magnified in order 

to have the same size as the original.  This definition tells us that a line is one-dimensional: it can 

be broken into n pieces, each of which is n-times smaller than the original.  If we let n = 2, as in 

our bisection case, then we can see easily that log(2)/log(2) = 1.  Likewise, it tells us that a 

square is two-dimensional: a square can be broken into n2 pieces, each of which must be 

somewhat more technically precise than the discussion there; Mitchell hides the mathematics behind the discussion, 
and fails to make the connection between fractal dimension and topological dimension explicit, resulting in a somewhat 
confusing discussion as she equivocates between the two senses of "dimension."  For a more formal definition of fractal 
dimensionality (especially in the case of Pythagoras Tree-like figures), see Lofstedt (2008). 
67 In the illustration here, we had to build in the presence of “copies” by hand, since a featureless line (or square or 
cube) has no self-similarity at all.  That’s OK: the action of bisecting the figure is, in a sense, a purely abstract 
operation: we’re not changing anything about the topology of the figures in question by supposing that they’re being 
altered in this way.  In figures with actual self-similarity (like fractals), we won’t have to appeal to this somewhat 
arbitrary-seeming procedure.  
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magnified by a factor of n to recover the size of the original figure; again, let n = 2 as in our 

bisection case, so that the bisected square contains 22 = 4 copies of the original figure, each of 

which must be doubled in size to recover the area of the original figure.  Log(4)/log(2) = 2, so 

the square is two-dimensional.  So far so good.  It’s worth pointing out that in these more 

familiar cases intuitive dimension = topological dimension = fractal dimension.  That is not the 

case for all figures, though. 

     Finally, consider our broccoli-like fractal: the Pythagoras Tree.  The Pythagoras Tree, as you 

can easily confirm, has a fractal dimension of 2: at each step n in the generation, there are 2n 

copies of the figure present: 1 on the zeroth iteration, 2 after a single iteration, 4 after two 

iterations, 8 after three, 16 after four, and so on.  Additionally, each iteration produces figures 

that are smaller by a factor of √2/2.  Following our formula from above, we can calculate 

log(2)/log(√2/2), which is equal to 2.  This accords with our intuitive ascription of 

dimensionality (the Pythagoras Tree looks like a plane figure) but, more interestingly, it fails to 

accord with the topological dimension of the figure.  Perhaps surprisingly, the Pythagoras Tree’s 

topological dimension is not 2 but 1—like a simple curve, it can be covered by disks such that no 

point is in the intersection of more than two disks .  Topologically, the Pythagoras Tree behaves 68

like a simple one-dimensional line, while in other ways it behaves more like a higher 

dimensional figure.  Fractal dimension lets us quantify the amount by which these behaviors 

diverge: in fact, this is a characteristic that’s common to many (but not all) fractals.  In addition 

to the two-pronged “fine detail and self-similarity” definition given above, Mandelbrot, in his 

68 The math behind this assertion is, again, beyond the scope of what we’re concerned with here.  For a detailed 
discussion of why the topological dimension of fractal canopies—the class of figures to which the Pythagoras Tree 
belongs—is 1, see Mandelbrot (1986), Chapter 16. 
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original discussion of fractals, offers an alternative definition: a fractal is a figure where the 

fractal dimension is greater than the topological dimension . 69

     At last, we’re in a position, then, to say what it is about fractals that’s supposed to capture our 

notion of complexity.  Since fractal dimension quantifies the relationship between the 

proliferation of detail and the change in magnification scale, an object with a higher fractal 

dimension will show more interesting detail than an object with a lower fractal dimension, given 

the same amount of magnification.  In the case of objects that are appropriately called 

“fractal-like” (e.g. our stalk of broccoli), this cascade of detail is more significant than you’d 

expect it to be for an object with the sort of abstract (i.e. topological) structure it has.  That’s 

what it means to say that fractal dimension exceeds topological dimension for most fractals (and 

fractal-like objects): the buildup of interesting details in a sense “outruns” the buildup of other 

geometric characteristics.  Objects with higher fractal dimension are, in a sense, richer and more 

rewarding: it takes less magnification to see more detail, and the detail you can see is more 

intricately structured. 

     So is this measure sufficient, then?  You can probably guess by now that the answer is ‘no, 

not entirely.’  There are certainly cases where fractal dimension accords very nicely with what 

we mean by ‘complex:’ it excels, for instance, at tracking the rugged complexity of coastlines. 

Coasts—which were among Mandelbrot’s original paradigm cases of fractal-like objects—are 

statistically self-similar in much the same way that broccoli is.  Viewed from high above, 

coastlines look jagged and irregular.  As you zoom in on a particular section of the coast, this 

kind of jaggedness persists: a small segment of shore along a coast that is very rugged in general 

69 Mandelbrot offered these two definitions as equivalent.  It has since been discovered, though, that there are a number 
of fractals (in the first sense) for which the latter definition does not hold.  See Kraft (1995) for more on this. 
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is likely to be very rugged itself.  Just as with the broccoli, this self-similarity is (of course) not 

perfect: the San Francisco bay is not a perfect miniaturization of California’s coastline overall, 

but they look similar in many respects.  Moreover, it turns out that the more rugged a coastline 

is, the higher fractal dimension it has: coasts with outlines that are very complex have higher 

fractal dimension than coasts that are relatively simple and smooth. 

     The most serious problem with using fractal dimension as a general measure of complexity is 

that it seems to chiefly be quantifying a fact about how complex an object’s spatial configuration 

is: the statistical self-similarity that both broccoli and coastlines show is a self-similarity of 

shape.  This is just fine when what we’re interested in is the structure or composition of an 

object, but it isn’t at all clear how this notion might be expanded.  After all, at least some of our 

judgments of complexity seem (at least at first glance) to have very little to do with shape: when 

I say (for instance) that the global economy is more complex today than it was 300 years ago, it 

doesn’t look like I’m making a claim about the shape of any particular object.  Similarly, when I 

say that a human is more complex than a fern, I don’t seem to be claiming that the shape of the 

human body has a greater fractal dimension than the shape of a fern.  In many (perhaps most) 

cases, we’re interested not in the shape of an object, but in how the object behaves over time; 

we’re concerned not with relatively static properties like fractal dimension, but with dynamical 

ones too. Just as with Shannon entropy, there seems to be a grain of truth buried in the fractal 

dimension measure, but it will takes some work to articulate what it is; also like Shannon 

entropy, it seems as though fractal dimension by itself will not be sufficient. 

2.2  Moving Forward 

     We have spent the majority of this chapter introducing some of the concepts behind 
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contemporary complexity theory, and examining various existing attempts to define 

‘complexity.’  I have argued (convincingly, I hope) that none of these attempts really captures all 

the interesting facets of what we’re talking about when we talk about complex physical systems 

(like the Earth’s climate).  I have not yet offered a positive view, though—I have not yet told you 

what I would propose to use in place of the concepts surveyed here.  In Chapter Three, I shall 

take up that project, and present a novel account of what it means for a physical system to be 

complex in the relevant sense.  This concept, which I will call dynamical complexity, is presented 

as a physical interpretation of some very recent mathematical advancements in the field of 

information theory.  The central problem that shall occupy us in the next chapter, then, is how to 

transform a discussion of complexity that seems to work very well for things like messages into 

an account that works well for things like climate systems.  My hope is that dynamical 

complexity offers this bridge.  Once this final conceptual tool is on the table, we can start 

applying all of this to the problem of understanding the Earth’s climate. 
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Chapter Three  

Dynamical Complexity 

 

3.0  Recap and Survey 

     Let’s take a moment to summarize the relative strengths and weaknesses of the various 

approaches to defining complexity we considered in the last section; it will help us build a 

satisfactory definition if we have a clear target at which to aim, and clear criteria for what our 

definition should do.  Here’s a brief recap, then. 

     The mereological size and hierarchical position measures suffered from parallel problems.  In 

particular, it’s difficult to say precisely which parts we ought to be attending to when we’re 

defining complexity in terms of mereological size or (similarly) which way of structuring the 

hierarchy of systems is the right way (and why).  Both of these approaches, though, did seem to 

be tracking something interesting: there does seem to be a sense in which a system’s place in a 

sort of “nested hierarchy” seems to be a reliable guide to its complexity.  All other things being 

equal, a basic physical system (e.g. a free photon traveling through deep space) does indeed seem 

less complex than a chemical system (e.g. a combination of hydrogen and oxygen atoms to form 

H2O molecules), which in turn seems less complex than a biological system (e.g. an amoeba 

undergoing asexual reproduction), which seems less complex than a social system (e.g. the 

global stock market).  The problem (again) is that it’s difficult to say why this is the case: the 

hierarchical and mereological size measures take it as a brute fact that chemical systems are less 

complex than biological systems, but have trouble explaining that relationship.  A satisfactory 
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theory of complexity must account for both the intuitive pull of these measures and deal with the 

troubling relativism lurking beneath their surfaces. 

      The Shannon entropy measure suffered from two primary problems.  First, since Shannon 

entropy is an information theoretic quantity, it can only be appropriately applied to things that 

have the logical structure of messages.  To make this work as a general measure of complexity 

for physical systems, we would have to come up with an uncontroversial way of representing 

parts of the world as messages generally—a tall order indeed.  Additionally, we saw that there 

doesn’t seem to be a strict correlation between changes in Shannon entropy of messages and the 

complexity of systems with which those messages are associated.  I argued that in order for 

Shannon entropy to function as a measure of complexity, a requirement called the correlation 

condition must be satisfied: it must be the case that a monotonic increase in complexity in 

physical systems is correlated with either a monotonic increase or a monotonic decrease in the 

Shannon entropy of the message associated with that system.  The paradigm case here (largely in 

virtue of being quite friendly to representation as a string of bits) is the case of three strings of 

DNA: one that codes for a normal human, one that consists of randomly paired nucleotides, and 

one that consists entirely of cytosine-guanine pairs.  In order for the correlation condition to 

obtain, it must be the case that the system consisting of either the randomly paired nucleotides 

(which has an associated message with maximal Shannon entropy) or the C-G pair molecule 

(which has an associated messages with minimal Shannon entropy) is more complex than the 

system consisting of the human-coding DNA molecule (which has an associated message with 

Shannon entropy that falls between these two extremes).  This is not the case, though: any 

reasonable measure of complexity should rate a DNA strand that codes for a normal organism as 
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more complex than one that’s either random or homogeneous.  The correlation condition thus 

fails to hold.  A successful measure of complexity, then, should account for why there seems to 

be a “sweet spot” in between maximal and minimal Shannon entropy where the complexity of 

associated systems seems to peak, as well as give an account of how in general we should go 

about representing systems in a way that lets us appropriately judge their Shannon entropy. 

     Finally, fractal dimension suffered from one very large problem: it seems difficult to say how 

we can apply it to judgments of complexity that track characteristics other than spatial shape. 

Fractal dimension does a good job of explaining what we mean when we judge that a piece of 

broccoli is more complex than a marble (the broccoli’s fractal dimension is higher), but it’s hard 

to see how it can account for our judgment that a supercomputer is more complex than a 

hammer, or that a human is more complex than a chair, or that the global climate system on 

Earth is more complex than the global climate system on Mars.  A good measure of complexity 

will either expand the fractal dimension measure to make sense of non-geometric complexity, or 

will show why geometric complexity is just a special case of a more general notion.  

2.1  Dynamical Complexity 

     With a more concrete goal at which to aim, then, let’s see what we can do.  In this section, I 

will attempt to synthesize the insights in the different measures of complexity discussed above 

under a single banner—the banner of dynamical complexity.  This is a novel account of 

complexity which will (I hope) allow us to make sense of both our intuitive judgments about 

complexity and open the door to making those judgments somewhat more precise.  Ultimately, 

remember, our goal is to give a concept which will allow us to reliably differentiate between 

complex systems and simple systems such that we can (roughly) differentiate complex systems 
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sciences from simple systems sciences, opening the door to more fruitful cross-talk between 

branches of science that, prior to the ascription of complexity, seemed to have very little in 

common with one another.  I shall argue that such an understanding of complexity emerges very 

naturally from the account of science given in Chapter One.  I’m going to begin by just laying 

out the concept I have in mind without offering much in the way of argument for why we ought 

to adopt it.  Once we have a clear account of dynamical complexity on the table, then I’ll argue 

that it satisfies all the criteria given above—I’ll argue, in other words, that it captures what seems 

right about the mereological, hierarchical, information-theoretic, and fractal accounts of 

complexity while also avoiding the problems endemic to those views.  

     Back in Section 1.5, I said, “In a system with a relatively high degree of complexity—very 

roughly, a system with a relatively high-dimensional configuration space—there will be a very 

large number of ways of specifying regions such that we won’t be able to identify any interesting 

patterns in how those regions behave over time,” and issued a promissory note for an explanation 

to come later.  We’re now in a position to examine this claim, and to (finally) cash that 

promissory check.  First, note that the way the definition was phrased in the last chapter isn’t 

going to quite work: having a very high-dimensional configuration space is surely not a 

sufficient condition for complexity.  After all, a system consisting of a large number of 

non-interacting particles may have a very high-dimensional phase space indeed: even given 

featureless particles in a Newtonian system, the dimensionality of the phase space of a system 

with n particles will be (recall) 6n.  Given an arbitrarily large number of particles, the phase 

space of a system like this will also be of an arbitrarily large dimensionality.  Still, it seems clear 

that simply increasing the number of particles in a system like that doesn’t really increase the 
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system’s complexity: while it surely makes the system more complicated, complexity seems to 

require something more.  This is a fact that the mereological size measure (especially in 

Kiesling’s phrasing) quite rightly seizes on: complexity is (at least partially) a fact not just about 

parts of a system, but about how those parts interact. 

     Let’s start to refine Chapter One’s definition, then, by thinking through some examples.  As 

a reminder, let’s remind ourselves of the example we worked through there: consider a 

thermodynamically-isolated system consisting of a person standing in a kitchen, deliberating 

about whether or not to stick his hand in the pot of boiling water.  As we saw, a system like this 

one admits of a large number of ways of carving up the associated configuration space : 70

describing the situation in the vocabulary of statistical mechanics will yield one set of 

time-evolution patterns for the system, while describing it in the vocabulary of biology will yield 

another set, and so on.  Fundamental physics provides the “bit mapping” from points in the 

configuration space representing the system at one instant to points in the same space at another 

instant; the different special sciences, then, offer different compression algorithms by which the 

state of a particular system can be encoded.  Different compressions of the same system will 

evince different time-evolution patterns, since the encoding process shifts the focus from points 

in the configuration space to regions in the same space.  All of this is laid out in significantly 

more detail in Chapter One. 

     Now, consider the difference between the person-stove- water system and the same system, 

only with the person removed.  What’s changed?  For one thing, the dimensionality of the 

70 Equivalently, we might say that a system like this admits of a very large number of interesting configuration spaces; 
there are very many ways that we might describe the system such that we can detect a variety of interesting 
time-evolution patterns. 
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associated configuration space is lower; in removing the person from the system, we’ve also 

removed a very large number of particles.  That’s far from the most interesting change, 

though—in removing the human, we’ve also significantly reduced the number of interesting 

ways of carving up the configuration space.  The patterns identified by (for instance) psychology, 

biology, and organic chemistry are no longer useful in predicting what’s going to happen as the 

system evolves forward in time.  In order to make useful predictions about the behavior of the 

system, we’re now forced to deal with it in the vocabulary of statistical mechanics, inorganic 

chemistry, thermodynamics, or (of course) fundamental physics.  This is a very significant 

change for a number of reasons.  Perhaps paramount among them, it changes the kind of 

information we need to have about the state of the system in order to make interesting 

predictions about its behavior.  

     Consider, for instance, the difference between the following characterizations of the system’s 

state: (1) “The water is hot enough to cause severe burns to human tissue” and (2) “The water is 

100 degrees C.”  In both cases, we’ve been given some information about the system: in the case 

of (1), the information has been presented in biological terms, while in the case of (2), the 

information has been presented in thermodynamic terms .  Both of these characterizations will 71

let us make predictions about the time-evolution of the system, but the gulf between them is 

clear: (2) is a far more precise  description of the state of the system, and requires far more 72

detailed information to individuate than does (1).  That is, there are far more points in the 

system’s configuration space that are compatible with (1) than with (2), so individuating cases of 

71 That is, the information has been presented in a way that assumes that we’re using a particular state-space to 
represent the system. 
72 That is, there are far fewer possible states of the system compatible with (2) than there are states compatible with (1). 
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(2) from cases of not-(2) requires more data about the state of the system than does individuating 

cases of (1) from cases of not-(1).   This is a consequence of the fact that (as we saw in Chapter 73

One) some special science compressions are more lossy (in the sense of discarding more 

information, or coarse-graining more heavily) than others: biology is, in general, a more lossy 

encoding scheme than is organic chemistry.  This is (again) a feature rather than a bug: biology is 

lossy, but the information discarded by biologists is (ideally) information that’s irrelevant to the 

patterns with which biologists concern themselves.  The regions of configuration space that 

evolve in ways that interest biologists are less precisely defined than the regions of configuration 

space that evolve in ways that interest chemists, but the biologists can take advantage of that fact 

to (in a sense) do more work with less information, but that work will only be useful in a 

relatively small number of systems—those with paths that remain in a particular region of 

configuration space during the time period of interest. 

     The significance of this last point is not obvious, so it is worth discussing in more detail. 

Note, first, that just by removing the human being from this system, we haven’t necessarily made 

it the case that the biology compression algorithm fails to produce a compressed encoding of the 

original state: even without a person standing next to the pot of water, generalizations like “that 

water is hot enough to burn a person severely” can still be made quite sensibly.  In other words, 

the set of points in configuration space that a special science can compress is not necessarily 

identical to the set of points in configuration space that the same special science can usefully 

73 This does not necessarily mean that the associated measurements are operationally more difficult to perform in the 
case of (2), though—how difficult it is to acquire certain kinds of information depends in part on what measurement 
tools are available.  The role of a thermometer, after all, is just to change the state of the system to one where a certain 
kind of information (information about temperature) is easier to discern against the “noisy” information-background of 
the rest of what’s going on in the system.  Measurement tools work as signal-boosters for certain classes of 
information. 
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compress; the information that (for instance) the inside of my oven is too hot for infants to live 

comfortably is really only interesting if there is an infant (or something sufficiently like an 

infant) in the vicinity of my oven.  If there isn’t, that way of describing my oven’s state remains 

accurate, but ceases to be very relevant in predicting how the system containing the over will 

change over time; in order for it to become predicatively relevant, I’d need to change the state of 

the system by adding a baby (or something suitably similar).  This is a consequence of the fact 

that (as we saw in 1.5), the business of the special sciences is two-fold: they’re interested both in 

identifying novel ways of carving up the world and in applying those carvings to some systems 

in order to predict their behavior over time.   Both of these tasks are interesting and important, 74

but I want to focus on the latter one here—it is analysis of the latter task that, I think, can serve 

as the foundation for a plausible definition of ‘complexity.’ 

     By removing the person from our example system, we reduce the complexity of that system. 

This is relatively uncontroversial, I take it—humans are paradigmatic cases of complex systems. 

My suggestion is that the right way to understand this reduction is as a reduction in the number 

of predictively useful ways the system can be carved up.  This is why the distinction just made 

between special-scientific compression and useful special-scientific compression is essential—if 

we were to attend only to shifts that changed a system enough for a particular special science’s 

compression to fail entirely, then we wouldn’t be able to account for the uncontroversial 

reduction of complexity that coincides with the removal of the human from our kitchen-system. 

After all, as we just saw, the fact that the compression scheme of biology is useless for predicting 

74 Of course, these two interests are often mutually-reinforcing.  For a particularly salient example, think of the search 
for extraterrestrial life: we need to both identify conditions that must obtain on extrasolar planets for life to plausibly 
have taken hold and, given that identification, try to predict what sort of life might thrive on one candidate planet or 
another. 
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the behavior of a system doesn’t imply that the compression scheme of biology can’t be applied 

to that system at all.  However, removing the person from the system does render a large number 

of compression schemes predictively useless, whether or not they still could be applied: 

removing the person pushes the system into a state for which the patterns identified by (e.g.) 

biology and psychology don’t apply, whether or not the static carvings of those disciplines can 

still be made. 

     This fact can be generalized.  The sense in which a system containing me is more complex 

(all other things being equal) than is a system containing my cat instead of me is just that the 

system containing me can be usefully carved up in more ways than the system containing my cat. 

My brain is more complex than my cat’s brain in virtue of there being more ways to compress 

systems containing my brain such that the time-evolution of those states can be reliably predicted 

than there are ways to compress systems containing my cat’s brain such that the same is true. 

The global climate today is more complex than was the global climate 1 billion years ago in 

virtue of there being more ways to usefully carve up the climate system today than there were 1 

billion years ago .  Complexity in this sense, then, is a fact not about what a system is made out 75

of, or how many parts it has, or what its shape is: it is a fact about how it behaves.  It is a 

dynamical fact—a fact about how many different perspectives we can usefully adopt in our quest 

to predict how the system will change over time.  One system is more dynamically complex than 

another if (and only if) it occupies a point in configuration space that is at the intersection of 

75 If this assertion seems suspect, consider the fact that patterns identified by economists (e.g. the projected price of 
fossil fuels vs. the projected price of cleaner alternative energies) are now helpful in predicting the evolution of the 
global climate.  This was clearly not the case one billion years ago, and (partially) captures the sense in which 
humanity’s emergence as a potentially climate-altering force has increased the complexity of the global climate system. 
This issue will be taken up in great detail in Chapter Three. 
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regions of interest to more special sciences: a system for which the patterns of economics, 

psychology, biology, chemistry, and physics are predictively useful is more complex than one for 

which only the patterns of chemistry and physics are predictively useful. 

2.2.1  Dynamical Complexity as a Unifying Definition 

     I have now given a definition of dynamical complexity.  Before we close this theoretical 

discussion and move on to consider the special problems faced by climate science as a complex 

science, it’s worth briefly reviewing the attempted definitions of complexity we surveyed in 

Section 2.1 to see how dynamical complexity fares as a unifying definition of complexity.  In 

this section, I will argue that dynamical complexity succeeds in cherry-picking the best features 

of the mereological size measure, the hierarchical position measure, the information-theoretic 

measure, and the fractal dimension measure, while avoiding the worst difficulties of each of 

them.  Let’s begin with the mereological size measure. 

     As I mentioned above, one of the strongest virtues of the mereological size measure is that (at 

least in its better formulations) it attends to the fact that complexity is a concept that deals not 

with static systems, but with dynamic systems—with systems that are moving, changing, and 

exchanging information with their environments.  Strevens , for instance, emphasizes not only 76

the presence of many parts in a complex system, but also the fact that those parts interact with 

one another in a particular way.  This is an insight that is clearly incorporated into dynamical 

complexity: since dynamical complexity deals with the number of different ways of carving 

configuration space that yield informative time-evolution patterns for a given system, the 

presence of interacting constituent parts is indeed, on this view, a great contributor to 

76Strevens (Ibid) 
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complexity.  Why?  Well, what does it mean to say that a system is “composed” of a large 

number of interacting parts?  It means (among other things) that the system can be fruitfully 

redescribed in the language of another science—the one that carves configuration space in terms 

of whatever the parts for this particular system are.  To say that the human body is composed of 

many interacting cells, for instance, is just to say that we can either treat the body as an 

individual (as, say, evolutionary biology might) and make use of the patterns that can be 

identified in the behavior of systems like that, or treat it as a collection of individual cells (as a 

cellular biologist might) and predict its behavior in terms of those patterns.  Systems which can 

appropriately be said to be made out of many parts are often systems which can be treated by the 

vocabulary of multiple branches of the scientific project.  Moreover, since we’re tying dynamical 

complexity not to composition but behavior, we don’t need to answer the uncomfortable 

questions that dog the avid proponent of the mereological size measure—we don’t need to say, 

for instance, which method of counting parts is the right one.  Indeed, the existence of many 

different ways to count the parts of a system is something that dynamical complexity can 

embrace whole-heartedly—the fact that the human body can be seen as a collection of organs, or 

cells, or molecules straightforwardly reflects its status as a complex system: there are many 

different useful ways to carve it up, and many interesting patterns to be found in its 

time-evolution.  

     This leads directly into the hierarchical position measure.  Here too the relationship to 

dynamical complexity is fairly clear.   What does it mean to say that one system is “nested more 77

deeply in the hierarchy?”  It means that the system can be described (and its behavior predicted) 

77 Indeed, it was my reading of the canonical articulation of the hierarchical scheme—Oppenheim and Putnam 
(1954)—that planted the seed which eventually grew into the position I have been defending over the last 60 pages.  
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in the language of more branches of science.  The central mistake of previous attempts to make 

this notion precise, I think, lies in thinking of this “nestedness” as hierarchical in the traditional 

linear sense: of there being strict pyramidal structure to the relationship between the various 

branches of science.  In Oppenheim and Putnam’s  formulation, for instance, physics was at the 78

bottom of the pyramid, then chemistry, then biology, then psychology, then sociology.  The 

assumption lurking behind this model is that all systems described by chemistry can also be 

described by physics (true enough, but only in virtue of the fact that the goal of physics is to 

describe all systems), all systems described by biology can also be described by chemistry 

(probably also true), that all systems that can be described by psychology can also be described 

by biology (possibly not true), and that all systems described by sociology can also be described 

by psychology (almost certainly not true).  The last two moves look particularly suspect, as they 

rule out a priori the possibility of non-biological systems that might be usefully described as 

psychological agents,  or the possibility of systems that cannot be treated by psychology, and yet 79

whose behavior can be fruitfully treated by the social sciences.   80

     Dynamical complexity escapes from this problem by relaxing the pyramidal constraint on the 

relationship between the various branches of science.  As I argued in Chapter One, the 

intersections between the domains of the various sciences are likely to be messy and 

complicated: while many psychological systems are in fact also biological systems, there may 

well be psychological systems which are not—the advent of sophisticated artificial intelligence, 

78 Op. cit. 
79 This is the worry that leads Dennett to formulate his “intentional stance” view of psychology.  For more discussion of 
this point, see Dennett (1991). 
80 Social insects—bees and ants, for instance—might even be an existing counterexample here.  The fascinating 
discussion in Gordon (2010) of ant colonies as individual “superorganisms” lends credence to this view.   Even if 
Earthly ants are not genuine counterexamples, though, such creatures are surely not outside the realm of possibility, and 
ought not be ruled out on purely a priori grounds. 
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for instance, would give rise to systems that might be fruitfully studied by psychologists but not 

by biologists.  This is a problem for someone who wants to embrace position in a strict hierarchy 

as a measure of complexity: there may be no strict hierarchy to which we can appeal.  Dynamical 

complexity cheerfully acknowledges this fact, and judges complexity on a case-by-case basis, 

rather than trying to pronounce on the relative complexity of all biological systems, or all 

psychological systems. 

    What aspects of fractal dimensionality does dynamical complexity incorporate?  To begin, it 

might help to recall why fractal dimensionality by itself doesn’t work as a definition of 

complexity.  Most importantly, recall that fractal dimensionality is a static notion—a fact about 

the shape of an object—not a dynamical one.  We’re interested in systems, though, not static 

objects—science deals with how systems change over time.  On the face of it, fractal 

dimensionality doesn’t have the resources to deal with this: it’s a geometrical concept properly 

applied to shapes.  Suppose, however, that think not about the geometry of a system, but about 

the geometry of the space representing the system.  Perhaps we can at least recover 

self-similarity and see how complexity is a fractal-like concept. 

    Start with the normal configuration space we’ve been dealing with all along.  From the 

perspective of fundamental physics, each point in the space represents an important or 

interesting distinction: fundamental physics is a bit-map from point-to-point.  When we 

compress the configuration space for treatment by a special science, though, not all point 

differences remain relevant—part of what it means to apply a particular special science is to treat 

some distinctions made by physics as irrelevant given a certain set of goals.  This is what is 

meant by thinking of the special sciences as coarse-grainings of fundamental physics. 
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     Suppose that instead of thinking of the special sciences as providing compressed versions of 

the space provided by fundamental physics, though, we take the view offered in Chapter One: 

we can think of a special science as defining a new configuration space for the system.  What 

were formerly regions in the very high-dimensional configuration space defined by fundamental 

physics can now be treated as points in a lower dimensional space defined by the special science 

in question.  It is tempting to think that both these representations—the special sciences as 

coarse-graining and the special sciences as providing entirely novel configuration spaces—are 

predicatively equivalent, but this is not so.  

     The difference is that the second way of doing things actually makes the compression—the 

information loss—salient;  it isn’t reversible.  It also (and perhaps even more importantly) 

emphasizes the fact that the choice of a state-space involves more than choosing which 

instantaneous states are functionally equivalent—it involves more than choosing which 

collections of points (microstates) in the original space to treat as macrostates.  The choices of a 

state-space also constitutes a choice of dynamics: for a system with a high degree of dynamical 

complexity, there are a large number of state spaces which evince not only interesting static 

detail, but interesting dynamical detail as well.  Thinking of (say) a conscious human as being at 

bottom a system that’s only really completely describable in the state space of atomic physics 

eclipses not just the presence of interesting configurations of atomic physics’ particles 

(interesting macrostates), but also the presence of interesting patterns in how those 

configurations change over time: patterns that might become obvious, given the right choice of 

state space.  Choosing a new state space in which to describe the same system can reveal 

dynamical constraints which might otherwise have been invisible. 
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     We can think of the compression from physics to (say) chemistry, then, as resulting in a new 

configuration space for the same old system—one where points represent regions of the old 

space, and where every point represents a significant difference from this new (goal-relative) 

perspective, with the significance stemming from both the discovery of interesting new 

macrostates and interesting new dynamics.  This operation can be iterated for some systems: 

biology can define a new configuration space that will consist of points representing regions of 

the original configuration space.   Since biology is more “lossy” than chemistry (in the sense of 81

discarding more state-specific information in favor of dynamical shortcuts), the space defining a 

system considered from a biological perspective will be of a still lower dimensionality that the 

space considering the same system from a chemical perspective.  The most dynamically complex 

systems will be those that admit of the most recompressions—the ones for whom this creation of 

a predictively-useful new configuration space can be iterated the most.  After each 

coarse-graining, we’ll be left with a new, lower-dimensional space wherein each point represents 

an importantly different state, and wherein different dynamical patterns describe the transition 

from state to state.  That is, repeated applications of this procedure will produce increasingly 

compressed bitmaps, with each compression also including a novel set of rules for evolving the 

bitmap forward in time.  

     We can think of this operation as akin to changing magnification scale with physical objects 

that display fractal-like statistical self-similarity: the self-similarity here, though, is not in shape 

but in the structure and behavior of different abstract configuration spaces: there’s interesting 

81 Note that it isn’t right to say “regions of chemistry’s configuration space.”  That would be to implicitly buy into the 
rigid hierarchical model I attributed to Oppenheim and Putnam a few pages back, wherein all biology is a 
sub-discipline of chemistry, psychology is a sub-discipline of biology, and so on.  That won’t do.  Many of the points 
might well correspond to regions of the “one step lower” space, but not all will. 
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detail, but rather than being geometrically similar, it is dynamically similar.  Call this dynamical 

self-similarity.  Still, there’s a clear parallel to standard statistical self-similarity: fractal 

dimension for normal physical objects roughly quantifies how much interesting spatial detail 

persists between magnification operations, and how much magnification one must do move from 

one level of detail to another.  Similarly, dynamical complexity roughly quantifies how much 

interesting detail  there is in the patterns present in the behavior of the system (rather than in the 82

shape of the system itself), and how much coarse-graining (and what sort) can be done while still 

preserving this self-similar of detail.  This allows us to recover and greatly expand some of the 

conceptual underpinnings of fractal dimensionality as a measure of complexity—indeed, it ends 

up being one of the more accurate measures we discussed. 

2.2  Effective Complexity: The Mathematical Foundation of Dynamical Complexity 

     Finally, what of Shannon entropy?  First, notice that this account of dynamical complexity 

also gives us a neat way of formalizing the state of a system as a sort of message so that its 

Shannon entropy can be judged: the state of a system is represented by its position in 

configuration space, and facts about how the system changes over time are represented as 

patterns in how that system moves through configuration space.  All these facts can easily be 

expressed numerically.  The deeper conceptual problem with Shannon entropy remains, though: 

if the correlation condition fails (which it surely still does), how can we account for the fact that 

there does seem to be some relationship between Shannon entropy and dynamical complexity? 

That is, how do we explain the fact that where there is no strict, linear correlation between 

changes in dynamical complexity and changes in Shannon entropy, there does indeed seem to be 

82 We will consider how this quantification works in just a moment.  There is a mathematical formalism behind all of 
this with the potential to make things far more precise.  
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a “sweet spot”—middling Shannon entropy seems to correspond to maximal complexity in the 

associated system. 

     In other words, identifying complexity with compressibility leads to an immediate conflict 

with our intuitions.  A completely random string—a string with no internal structure or 

correlation between individual bits—will, on this account, said to be highly complex.  This 

doesn’t at all accord with our intuitions about what complex systems look like; whatever 

complexity is, a box of gas at perfect thermodynamic equilibrium  sure doesn’t have it.  This 83

observation has led a number of information theorists and computer scientists to look for a 

refinement on the naïve information-theoretic account.  A number of authors have been 

independently successful in this attempt, and have produced a successor theory called “effective 

complexity.”  Let’s get a brief sense of the formalism behind this view (and how it resolves the 

problem of treating random strings as highly complex), and then examine how it relates to the 

account of dynamical complexity given above.  

     The central move from the information-content account of complexity that’s built on the back 

of Shannon entropy to the notion of effective complexity is analogous to the move from thinking 

about particular strings and thinking about ensembles of strings.  One way of presenting the 

standard Shannon account of complexity associates the complexity of a string with the length of 

the shortest computer program that will print the string, and then halt.  The incompressibility 

problem is clear here as well: the shortest computer program that will print a random string just 

is the random string: when we say that a string S is incompressible, we’re saying (among other 

83 A system like that could be appropriately represented as a random string, as part of what it means for a system to be 
at thermodynamic equilibrium is for it to have the maximum possible entropy for a system constituted like that. 
Translated into a bit-string, this yields a random sequence. 
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things) that “Print S” is the shortest possible program that will reproduce S.  Thus, a maximally 

random (incompressible) string of infinite length is infinitely complex, as the shortest program 

that produces it is just the string itself. 

     Suppose that rather than think of individual strings, though, we shift our attention to 

ensembles of strings that share certain common features.  In the language of Gell-Mann and 

Lloyd, suppose that rather than think about the shortest program that would reproduce our target 

string exactly, we think about the shortest program that would reproduce the ensemble of strings 

which “best represents” the target string .  Gell-Mann argues that the best representative of a 84

random string is the uniform ensemble—that is, the ensemble of strings that assigns all possible 

strings equal probability.  This is supposed to resolve the compressibility issues in the traditional 

information-theoretic account of complexity.  It’s easy to see why: suppose we want to print a 

random string of length n.  Rather than printing n characters directly, Gell-Mann proposes that 

we instead write a program that prints a random character n times.  The program to do this is 

relatively short, and so the effective complexity of a random string will rate as being quite low, 

despite the fact that individual random strings are incompressible.  Gell-Mann is capitalizing on 

a higher-order regularity: the fact that all random strings are, in a certain respect, similar to one 

another.  While there’s no pattern to be found within each string, this higher-order similarity lets 

us produce a string that is in some sense “typical” of its type with relative ease.  

     Conversely, a string with a certain sort of internal structure—one with a large number of 

patterns—is a member of a far more restricted ensemble.  The collected work of Shakespeare (to 

use one of Gell-Mann’s own examples) rates as highly complex because it (considered as a 

84 Gell-Mann and Lloyd (2003).  See also Foley and Oliver (2011). 
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single string) is a member of a very small ensemble of relevantly similar strings.  There is very 

little (if anything) in Shakespeare that is well-captured by the uniform ensemble; the information, 

to a very large degree, is specialized, regular, and non-incidental. 

     In other words, the effective complexity of a string is the algorithmic information content of 

the ensemble that “best represents” the string.  If the ensemble is easy to produce (as in the case 

of both a random string and an entirely uniform string), then any string belonging to that 

ensemble is itself is low in effective complexity.  If the ensemble is difficult (that is, requires a 

lengthy program) to produce, then any string that is a member of that ensemble is high in 

effective complexity.  This resolves the central criticism of the algorithmic information content 

(i.e. Shannon) approach to defining complexity, and seems to accord better with our intuitions 

about what should and should not count as complex. 

     What, then, is the relationship between effective complexity and dynamical complexity? 

Moreover, if effective complexity is the right way to formalize the intuitions behind complexity, 

why is this the case?  What’s the physical root of this formalism? To answer these questions, let’s 

look at one of the very few papers yet written that offers a concrete criticism of effective 

complexity itself.  McAllister (2003) criticizes Gell-Mann’s formulation on the grounds that, 

when given a physical interpretation, effective complexity is troublingly observer-relative.  This 

is a massively important point (and McAllister is entirely correct), so it is worth quoting him at 

length here: 

The concept of effective complexity has a flaw, however: the effective complexity of a given string 
is not uniquely defined. This flaw manifests itself in two ways. For strings that admit a physical 
interpretation, such as empirical data sets in science, the effective complexity of a string takes 
different values depending on the cognitive and practical interests of investigators. For strings 
regarded as purely formal constructs, lacking a physical interpretation, the effective complexity of a 
given string is arbitrary. The flaw derives from the fact that any given string displays multiple 
patterns, each of which has a different algorithmic complexity and each of which can, in a suitable 
context, count as the regularity of the string. 
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[…] 
For an example, consider a data set on atmospheric temperature. Such a data set exhibits many 
different patterns (Bryant 1997). These include a pattern with a period of a day, associated with the 
earth’s rotation about its axis; patterns with periods of a few days, associated with the life span of 
individual weather systems; a pattern with a period of a year, associated with the earth’s orbit around 
the sun; a pattern with a period of 11 years, attributed to the sunspot cycle; a pattern with a period of 
approximately 21,000 years, attributed to the precession of the earth’s orbit; various patterns with 
periods of between 40,000 and 100,000 years, attributed to fluctuations in the inclination of the 
earth’s axis of rotation and the eccentricity of the earth’s orbit; and various patterns with periods of 
between 107 and 109 years, associated with variations in the earth’s rate of rotation, the major 
geography of the earth, the composition of the atmosphere, and the characteristics of the sun. Each of 
these patterns has a different algorithmic complexity and is exhibited in the data with a different 
noise level. Any of these patterns is eligible to be considered as the regularity of the data set. 
Depending on their cognitive and practical interests, weather forecasters, meteorologists, 
climatologists, palaeontologists, astronomers, and researchers in other scientific disciplines will 
regard different patterns in this series as constituting the regularity in the data. They will thus ascribe 
different values to the effective complexity of the data set . 85

 
        McAllister’s observations are acute: this is indeed a consequence of effective complexity . 86

I think McAllister is wrong in calling this a fatal flaw (or even a criticism) of the concept, 

though, for reasons that should be relatively obvious.  The central thrust of McAllister’s criticism 

is that it is difficult to assign a determinate value to the effective complexity of any physical 

system, as that system might contain a myriad of patterns, and thus fail to be best represented by 

any single ensemble.  The question of what effective complexity we assign a system will depend 

on what string we choose to represent the system.  That choice, in turn, will depend on how we 

carve the system up—it will depend on our choice of which patterns to pay attention to.  Choices 

like that are purpose-relative; as McAllister rightly says, they depend on our practical and 

cognitive interest. 

     Given the account of science I developed in Chapter One, though, this is precisely what we 

85 Ibid. pp. 303-304 

86 In addition, his choice to use climate science as his leading example here is very interesting, given the overall shape 
of the project we’re pursuing here.  Chapter Five will consider the ramifications of this discussion for the project of 
modeling climate systems, and Chapter Seven will deal with (among other things) the policy-making implications. 
For now, it is more important to get a general grasp on the notion of effective complexity (and dynamical complexity).  
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should expect out of a concept designed to describe the relationship between how different 

branches of science view a single physical system.  There’s no single correct value for a system’s 

effective complexity, because there’s no single correct way to carve up a system—no single way 

to parse it into a string of patterns.  Far from making us think that effective complexity gets it 

wrong, then, this should lead us to think that effective complexity gets things deeply right: the 

presence of a plurality of values for the effective complexity of a system reflects the 

methodological plurality of the natural sciences.  

     McAllister suggests that we might instead choose to sum different values to get a final value, 

but his proposal is limited to summing over the complexity as defined by algorithmic 

information content.  Because McAllister believes his observation that effective complexity 

contains an observer-relative element to be a fatal flaw in the concept, he doesn’t consider the 

possibility that we might obtain a more reliable value by summing over the effective complexity 

values for the system.  

     My proposal is that dynamical complexity, properly formalized, is precisely this: a sum of the 

effective complexity values for the different strings representing the different useful carvings of 

the system.  While there is no single value for effective complexity, we can perfectly coherently 

talk about summing all the useful ways given our goals and values.  The value of this sum will 

change as we make new scientific discoveries—as we discover new patterns in the world that are 

worth paying attention to—but this again just serves to emphasize the point from Chapter One: 

the world is messy, and science is hard.  Complexity theory is part of the scientific project, and 

so inherits all the difficulties and messiness from the rest of the project.  

     Dynamical complexity, in other words, offers a natural physical interpretation for the 
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formalism of effective complexity, and a physical interpretation that takes the multiplicity of ways 

that physical systems can be described into account.  It offers a natural way to understand how 

the abstraction described by Gell-Mann and others relates to the actual practice of scientists.  The 

conceptual machinery underwriting the account of science that we developed in this chapter and 

the last helps us get an intuitive picture of complexity and its place in science.  The formalism of 

effective complexity provides a formalism that can be used to underwrite this intuitive 

formulation, making the concepts described more precise. 

 
2.3  Conclusion, Summary, and the Shape of Things to Come 
 

     In the previous chapter, we examined several different ways that “complexity” might be 

defined.  We saw that each attempt seemed to capture something interesting about complexity, 

but each also faced serious problems.  After arguing that none of these definitions by itself was 

sufficient to yield a rigorous understanding of complexity, I introduced a new 

concept—dynamical complexity.  This chapter has consisted in a sustained description of the 

concept, and an argument for its role as a marker for the kind of complexity we’re after when 

we’re doing science.  The insight at the heart of dynamical complexity is that complexity, at least 

as it concerns science, is a feature of active, changing, evolving systems.  Previous attempts to 

define complexity have overlooked this fact to one degree or another, and have tried to account 

for complexity primarily in terms of facts about the static state of a system.  Dynamical 

complexity, on the other hand, tracks facts about how systems change over time, and (moreover) 

embraces the notion that change over time can be tracked in numerous different ways, even for a 

single system.  If our account of science from Chapter One is right—if science is the business 
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of identifying new ways to carve up the world such that different patterns in how the world 

changes over time become salient—then dynamical complexity is a concept that should be of 

great interest to working scientists, since it captures (in a sense) how fruitful (and how difficult) 

scientific inquiry into the behavior of a given system is likely to be.  Finally, we saw how the 

formalism of effective complexity very naturally dove-tails with the intuitive conceptual 

machinery developed here and in Chapter One.  I argued that summing over the effective 

complexities of different representations of the same system offers a way to quantify the 

dynamical complexity of the system.  This value will be a moving target, and will be observer 

(and goal) relative to some degree.  This should concern us no more than the observation  that 

the choice of what patterns we pay attention to in science is goal-relative should trouble us, as 

they stem from precisely the same features of the scientific project. 

     In Chapter Four, we will leave foundational questions behind and move on to considering 

some methodological questions relevant to climate science.  We’ll introduce the basics of 

climatology and atmospheric science, and examine the difficulties involved in creating a working 

model of the Earth’s climate.  From there, we will consider the particular challenges that climate 

science faces, given that it explicitly deals with a system of high dynamical complexity, and 

think about and how have those challenges been met in different fields. We’ll examine why it is 

that scientists care about dynamical complexity, and what can be learned by assessing the 

dynamical complexity of a given system.  In Chapter Five,  I’ll synthesize the two threads that 

have, up to that point, been pursued more-or-less in parallel and argue the global climate is a 

paradigmatic dynamically complex system.  We’ll examine how that fact has shaped the 

methodology of climate science, as well as how it has given rise to a number of unique problems 
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for climatologists to tackle.  I shall argue that the markedly high degree of dynamical complexity 

in the global climate system is best dealt with by strongly interdisciplinary scientific inquiry, and 

that a failure to recognize the role that dynamical complexity plays in shaping the practices of 

some branches of science is what has led to most of the general criticism faced by climate 

science.  In Chapter Six, we’ll look at one case in particular—Michael Mann’s “hockey stick” 

prediction—and see how the criticisms levied at Mann often result from a failure to understand 

the special problems faced by those studying dynamically complex systems.  Finally, in Chapter 

Seven, we’ll examine the political controversy surrounding climate science, assess various 

recommended responses to anthropogenic climate change, and examine the role that 

complexity-theoretic reasoning should play in the policy-making process.  Onward, then. 
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Chapter Four  

A Philosopher’s Introduction to Climate Models 

 

4.0 What Have We Gotten Ourselves Into? 

     As usual, let’s begin by briefly reviewing where we are in our overall discussion, with an eye 

toward how to proceed from here.  The last two chapters have focused very heavily on the details 

of certain aspects of complexity theory, and it might be easy to lose sight of our overall goal.  In 

Chapter Two, I presented a primer on complex systems theory and surveyed various attempts to 

reduce the notoriously slippery notion of complexity itself to various proxy concepts, including 

mereological size, chaotic behavior, algorithmic incompressibility, fractal dimension, Shannon 

entropy, and hierarchical position.  I argued (convincingly, I hope) that none of these definitions 

precisely captures the intuition behind complexity and that moreover, the nature of complexity is 

such that it is likely that no single unifying definition is forthcoming.  Rather, we should aim at a 

constellation of related notions of complexity, each of which is tailored to the different purposes 

toward which complexity theory might be used.  I proposed the concept of dynamical complexity 

as best capturing the aspects of the varied proxy concepts we considered that are most relevant to 

scientists seeking to understand active, dynamical complex systems in the natural world (as 

opposed to, say, those interested in studying aspects of abstract signals), and argued effective 

complexity can plausibly be taken as a physical interpretation of the existing mathematical 

framework of effective complexity.  A system’s dynamical complexity, recall, is a fact about the 

pattern-richness of the system’s location in the configuration space defined by fundamental 

physics.  Equivalently, we can think of it as being a fact about how many predictively useful 

ways the system can be carved up.  Formally, a system’s dynamical complexity is the sum of the 
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effective complexity values for all relevant ways of representing the system.  See Section 2.2.2 

for more on this. 

       In this chapter, I would like to narrow our focus and apply some of the concepts we’ve 

developed over the last hundred (or so) pages to more practical concerns.  In Chapter Zero, I 

argued that the issue of global climate change is perhaps the most pressing scientific problem of 

our time, and suggested that the paucity of philosophical engagement with this problem is a 

travesty in need of serious attention.  Chapter One consisted of a systematic description of the 

kind of contribution that philosophers can be expected to make to problems like this one, and 

Chapters Two and Three laid the groundwork for making some contributions of that kind.  In 

this chapter, we will start to examine climate science itself.  As I have repeatedly emphasized, 

philosophy is at its best when it makes contact with the social and scientific issues of the day, 

and it is difficult to imagine a more pressing social and scientific problem than that of global 

climate change. 

     Here’s how this chapter will go.  In Section 4.1, I will offer a brief overview to some of the 

central concepts and terminology of climate science.  The focus of this section will be not on the 

controversial aspects of climatology, but just on introducing some of the basic jargon and ideas 

behind the science; at this point, we will have very little to say about what makes climate science 

particularly difficult, or about the nature of the political dispute raging in the wake of the science. 

Rather, our goal shall be just to get enough of the basics on the table to allow for an intelligible 

discussion of some of the specifics that are of particular philosophical interest.  We’ll introduce 

these concepts by way of a concrete examination of the practice of model building in climate 

science.  Sticking with the generally dialectical style we’ve been using so far, we’ll begin with a 

103 



 

simple, intuitive observation about the relationship between the climate and incoming solar 

radiation and build up from there.  As we run up against the short-comings of each 

candidate-model we consider, we’ll introduce some more terminology and concepts, 

incorporating them into increasingly more sophisticated models.  By the end of Section 4.1, we 

will have constructed a working (if still quite basic) climate model piece by piece. 

     Section 4.2 will build from there (and will lay the groundwork for the next chapter).  With a 

firm grasp on the basic model we’ve constructed in Section 4.1, we’ll survey some of the 

considerations that guide climatologists in their construction of more elaborate models.  We’ll 

examine the notion of a “hierarchy of models” in climate science, and explore the connection 

between this hierarchy and the discussions of science and complexity theory we’ve had so far. 

We’ll take a look at the diverse family of models (so-called “Earth models of intermediate 

complexity”) that occupy the territory between the relatively simple model we’ve constructed 

here and the elaborate supercomputer-dependent models that we’ll consider in Chapter Five. 

We’ll think about what climate scientists mean when they say “intermediate complexity,” and 

how that concept might relate to dynamical complexity.  Finally, we’ll consider some of the 

limitations to the scientific methodology of decomposing systems into their constituent parts for 

easier analysis.  We’ll explore the parallels between the development of complexity-theoretic 

reasoning in climate science and biology, two more striking examples of sciences which have 

begun to turn away from the old decompositionist-centered scientific method.  This critique will 

lay the groundwork for Chapter Five, in which we’ll examine the elaborate, holistic, 

complicated family of cutting-edge climate models, which seek to represent the climate as a 

unified complex system within a single comprehensive model. 
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4.1  Fundamentals of Climate Science 

     Climate science is a mature science, with a large body of technically-sophisticated and 

specialized literature.  The goal of giving a complete and substantive introduction to its 

fundamentals in anything as short as a single section of this dissertation is surely impossible to 

achieve.  I’ll refer the curious reader to a number of secondary sources  for further clarification 87

of the terms I’ll present here, as well as for elaboration on concepts I don’t discuss.  My 

objective here is just to present the bare minimum of terminology necessary to make the rest of 

our discussion comprehensible.  I’ll highlight some of the subtleties later on in this chapter (and 

the next), but many important details will necessarily be left out in the cold (so to speak), and 

some of the concepts I do discuss will be simplified for presentation here.  Whenever possible 

I’ll flag these simplifications in a footnote. 

     Let’s start with distinguishing between the study of the climate and the study of the weather. 

We can think of weather as a set of short-term, more-or-less localized facts about the prevailing 

atmospheric conditions in particular places.  Questions about whether or not it will rain 

tomorrow, what tonight’s low temperature will be, and so on are (generally speaking) questions 

about the weather.  The study of climate, on the other hand, consists in studying both the 

long-term trends in the prevalence of certain weather events in particular places (is it, on 

average, raining more or less this century than it was last century?), and also in studying the 

factors that produce particular weather events (e.g. the interplay between ocean and atmosphere 

temperatures that produces hurricanes generally).  Standard definitions used by climatologists 

87 Dawson & Spannagle (2009) is perhaps the most comprehensive and accessible general reference; I’d recommend 
that as a first stop on a more detailed tour of the climate science literature.  
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resemble something like “the mean [weather] state together with measures of variability or 

fluctuations, such as the standard deviation or autocorrelation statistics for the period .” 88

Additionally (and perhaps more saliently), climate study includes the identification of factors 

that drive the evolution of these long-term trends, and this is the aspect of climatology that has 

drawn the most attention recently.  The claim that the activity of human beings is causing the 

average temperature to increase, is a claim of this third kind.  It’s also worth emphasizing that 

since the study of climate is concerned with the factors that produce weather conditions, it is not 

necessarily limited to the study of atmospheric conditions.  In particular, the relationship 

between the ocean and the atmosphere is a very significant sub-field of climate science , while 89

those who study the weather directly are significantly less concerned with exploring the 

dynamics of the ocean. 

          Here’s a question that might immediately occur to us: what exactly counts as “long-term” 

in the relevant sense?  That is, at what time-scale does our attempt to predict facts about 

temperature, precipitation, &c. cease to be a matter of weather prediction (that is, the kind of 

forecasting you might see on the nightly news), and become a matter of climate prediction?  By 

now, our answer to this question should be fairly easy to predict: there is no concrete line other 

than that of actual scientific practice.  As with all other special sciences, the difference between 

weather forecasting and climatology is defined only by the research questions that drive 

scientists working in their respective disciplines.  There are clear cases that fall into one or 

another discipline—the question of how likely it is that it will rain tomorrow is clearly a question 

88 Schneider (2009), p. 6 
89 For an obvious example, consider the importance of the El Nino-Southern Oscillation—a coupled atmosphere/ocean 
phenomenon that occurs cyclically in the Pacific ocean region (and has received significant media attention).  
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for weather forecasting, while the question of how the Earth’s changing axis of rotation 

contributes to ice ages is clearly a question for climatology—but many questions will be of 

interest to both disciplines, and there is bound to be significant overlap in both topic and method. 

     It is worth pointing out, as a brief historical aside, that this reunification is a relatively recent 

event.  Until recently (as late as the middle of the 20th century), the study of climate fell into 

three largely independent camps: short-term weather forecasting, climatology, and theoretical 

meteorology.  Practical forecasting and climatology were almost purely descriptive sciences, 

concerned solely with making accurate predictions without concern for the mechanisms behind 

those predictions.  Weather forecasts in particular were devoid of any theoretical underpinnings 

until well into the 20th century.  The most popular method for forecasting the weather during the 

first part of the 20th century involved the use of purely qualitative maps of past weather activity. 

Forecasters would chart the current state to the best of their ability, noting the location of clouds, 

the magnitude and direction of prevailing winds, the presence of precipitation, &c.  Once the 

current state was recorded on a map of the region of interest, the forecasters would refer back to 

past charts of the same region until they found one that closely resembled the chart they had just 

generated.  They would then check to see how that past state had evolved over time, and would 

base their forecast of the current situation on that past record.  This turned forecasting into the 

kind of activity that took years (or even decades) to become proficient in; in order to make 

practical use of this kind of approach, would-be forecasters had to have an encyclopedic 

knowledge of past charts, as well as the ability to make educated guesses at how the current 

system might diverge from the most similar past cases .  Likewise, climatology at the time was 90

90 For a detailed discussion of the evolution of the science of forecasting, see Edwards (2010) 
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more-or-less purely descriptive, consisting of the collection and analysis of statistical 

information about weather trends over long time-scales, and relying almost exclusively on 

graphical presentation. Although some inroads were being made in theoretical meteorology at 

the same time—mostly by applying cutting-edge work in fluid dynamics to the flow of air in the 

upper atmosphere—it wasn’t until the advent of the electronic computer in the 1950s and 1960s, 

which made numerical approximation of the solutions to difficult-to-solve equations finally 

feasible on a large scale, that forecasting and climatology moved away from this purely 

qualitative approach.  Today, the three fields are more tightly integrated, though differences in 

the practical goals of weather and climate forecasting—most significantly, the need for weather 

forecasts to be generated quickly enough to be of use in (say) deciding whether or not to take an 

umbrella to work tomorrow—still give rise to somewhat different methods.  We will return to 

these issues in Chapter Five when we discuss the role of computer models in climate science.  

     We can think of the relationship between weather and climate as being roughly analogous to 

the relationship between (say) the Newtonian patterns used to predict the behavior of individual 

atoms, and thermodynamics, which deals with the statistical behavior of collections of atoms. 

The question of exactly how many atoms we need before we can begin to sensibly apply patterns 

that make reference to average behavior—patterns like temperature, pressure, and so on—just 

isn’t one that needs a clear answer (if this dismissive shrug of an answer bothers you, review the 

discussion of the structure of the scientific project in Chapter One).  When we apply the 

patterns of thermodynamics and when we apply the dynamics of Newtonian mechanics to 

individual atoms is a matter of our goals, not a matter of deep metaphysics. Precisely the same is 

true of the line between weather forecasting and climatology: which set of patterns we choose to 
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pay attention to depends on our goals.  For more on the question of how to individuate particular 

special sciences, see Section 1.4.  For now, we will set this question aside and focus on climate 

science as it is practiced.  As a general rule of thumb, weather forecasting is concerned with 

predicting particular events, and climatology is concerned with predicting trends.  This 

definition is good enough for our purposes, at least for now. 

4.1.1  Basic Energy Balance Models 

     What, then, are the patterns of interest to climate scientists?  In general, climate scientists are 

interested in predicting the long-term behavior of the Earth’s atmosphere (as well as the systems 

that are tightly coupled to the atmosphere).  A tremendous number of patterns turn out to play a 

role in this general predictive enterprise (indeed, this is part of what makes climate science a 

complex-systems science; more on this below), but not all of them are necessarily of immediate 

interest to us here .  Since our ultimate goal is to focus our discussion in on anthropogenic 91

climate change, we can limit our attention to those factors that might play a significant role in 

understanding that problem.  To begin, it might be helpful to get a very basic picture of how the 

Earth’s climate works, with particular attention to temperature, since this is a feature of the 

climate that will be of great interest to us as we proceed. 

     Like most contemporary science, climate science relies very heavily on the construction of 

models—artifacts which are supposed to represent interesting aspects of a physical system . 92

91 In particular, it’s worth flagging that (at least recently) economic patterns have become very salient in the prediction 
of the time-evolution of the climate: as the activity of human civilization has become a more important factor in forcing 
the climate state, patterns that are relevant in predicting that activity have become relevant in predicting climate states 
as well.  We will explore the connection with economic patterns more in the next two chapters. 
92 I’m using “artifact” in a very broad sense here.  Some models are themselves physical systems (consider a model 
airplane), while others are mathematical constructions that are supposed to capture some interesting behavior of the 
system in question.  The main point of model-building is to create something that can be more easily manipulated and 
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The simplest climate model is the energy balance model, which is concerned with the amount of 

energy received and emitted by the Earth.  All matter  emits electromagnetic radiation, and the 93

wavelength (λ) of that emitted radiation straightforwardly varies with the temperature of the 

object.  The Sun, a relatively hot object, emits E/M radiation across a very wide spectrum, from 

very short-wave gamma radiation (λ > 10-12 m) to very long-wave microwave and radio radiation 

(λ > 102 m).  Some of the radiation emitted by the Sun, of course, is in the very narrow range of 

the E/M spectrum that is visible to the naked human eye (λ = ~.4-.8 x 10-6 m).  The surface 

temperature of the sun is approximately 5,778K; this means that the sun’s peak E/M 

emission—that is, the area of the E/M spectrum with the most intense emission—falls into this 

visible spectrum, at somewhere around λ = .5-.6 x 10-6 m.  This corresponds to light that normal 

humans perceive as yellowish-green (the sun appears primarily yellow from Earth because of 

atmospheric scattering of light at the blue end of the visible spectrum).  Similarly, the Earth 

emits electromagnetic radiation.  However, the Earth is (thankfully) much cooler than the sun, so 

it radiates energy at a significantly different wavelength.  Peak E/M emission wavelength is 

inversely proportional to the temperature of the radiator (this is why, for instance, the color of a 

heating element in a toaster progresses from red, to orange, to yellow as it heats up), and the 

Earth is sufficiently cold so that its peak E/M emission is somewhere around λ = 20 x 10-6 m. 

This means that the Earth’s emission is mostly in the infrared portion of the spectrum, a fact 

which plays a very significant role in the dynamics of the greenhouse effect (see Section 4.1.3). 

studied than the object itself, with the hope that in seeing how the model behaves, we can learn something interesting 
about the world.  There is a thicket of philosophical issues here, but a full exploration of them is beyond the scope of 
this project.  The philosophical significance of one class of models in particular—computer simulations—will be the 
primary subject of Chapter Five, but for a more general contemporary overview of representation and model-building, 
see van Fraassen (2010). 
93 Or, at least, all matter with temperature greater than absolute zero. 
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     The input of energy from the sun and the release of energy (in the form of infrared radiation) 

by the Earth dominate the temperature dynamics of the planet.  At the simplest level, then, 

understanding how the temperature of the Earth changes over time is just a matter of balancing 

an energy budget: if the Earth absorbs more energy than it emits, it will warm until it reaches 

thermal equilibrium .  The simplest energy balance models, so-called “zero-dimensional energy 94

balance models,” (ZDEBM) model the Earth and the Sun as point-like objects with particular 

temperatures, absorption characteristics, and emission characteristics.  We can quantify the 

amount of energy actually reaching any particular region of the Earth (e.g. a piece of land, a 

layer of the atmosphere, or just the Earth simpliciter for the most basic ZDEBM) in terms of 

Watts per square meter (Wm-2).  The amount of energy reaching a particular point at a given time 

is called the radiative forcing active on that point .   Assuming that the Earth is in 95

equilibrium—that is, assuming that the radiated energy and the absorbed energy are in 

balance—the simplest possible ZDEBM would look like this: 

S = F (4a) 

Here, S represents the amount of solar energy input to the system (i.e. absorbed by the Earth), 

and F represents the amount of energy radiated by the Earth.  How much solar energy does the 

94 A very simple model of this sort treats the Earth as an “ideal black body,” and assumes that it reflects no energy. 
Thus, the model only needs to account for the energy that’s radiated by the Earth, so we can work only in terms of 
temperature changes.  This is an obvious simplification, and the addition of reflection to our model changes things 
(perhaps even more significantly than we might expect).  We’ll discuss this point more in a moment. 
95 The Intergovernmental Panel on Climate Change (IPCC) uses the term “radiative forcing” somewhat 
idiosyncratically.  Since they are concerned only with possible anthropogenic influences on the climate system, they 
express radiative forcing values in terms of their deviation from pre-Industrial levels.  In other words, their values for 
the amount of energy reaching certain points on the Earth “subtract out” the influence of factors that they have good 
reason to think are unrelated to human intervention on the climate.  These radiative forcing values might be more 
properly called net anthropogenic radiative forcing; an IPCC value of (say) .2 Wm-2 represents a net increase of .2 
Watts per square meter, over and above the radiative forcing that was already present prior to significant human 
impacts.  Unless otherwise specified, I will use ‘radiative forcing’ in the standard (non-IPCC) sense. 

111 



 

Earth receive?  Well, just however much of the sun’s energy actually reaches as far as the Earth 

multiplied by the size of the area of the Earth that the sun is actually shining on.  Filling in some 

values, we can expand that to: 

                                           (4b)σTS = 4
So =  4

p = F  

In this expanded equation, So is the solar constant (the amount of energy radiated by the sun 

which reaches Earth), which is something like 1367 Wm-2.  Why is this value divided by four? 

Well, consider the fact that only some of the Earth is actually receiving solar radiation at any 

particular time—the part of the Earth in which it is day time.  Without too much loss of accuracy, 

we can think of the Earth as a whole as being a sphere, with only a single disc facing the sun at 

any given time.   Since all the surface areas we’ll be dealing with in what follows are areas of 

circles and disks, they’re all also multiplied by πr2; for the sake of keeping things as 

clean-looking as possible, I’ve just factored this out except when necessary, since it is a common 

multiple of all area terms.  That’s the source of the mysterious division by 4 in (4b), though: the 

area of the Earth as a whole (approximated as a sphere) is 4 πr2, while the area of a disk is just 

πr2.  

     On the other side of the balance, we have σTp
4  = F.  The value σTp

4 is obtained by applying the 

Stefan-Boltzmann law, which gives the total energy radiated by a blackbody (F) as a function of 

its absolute temperature (Tp), modified by the Stefan-Boltzmann constant (σ), which itself is 

derived from other constants of nature (the speed of light in a vacuum and Planck’s constant). 

Filling in actual observed values, we get: 

                 [(5.670373 × 10  W m )K ](255K )4
[(1367 W m )−2

=  −8 −2 −4 4  (4c) 
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Unfortunately, evaluating this leaves us with 341.75 Wm-2 = 240 Wm-2, which is (manifestly) not 

valid—though at least both sides come out on the same order of magnitude, which should 

suggest that we’re on to something.  What’s the problem?  In order to diagnose where things are 

going wrong here, we’ll have to dig more deeply into the energy balance class of models, and 

start to construct a more realistic model—one which begins to at least approximately get things 

right. 

4.1.2 Albedo 

     The basic ZDEBM of the climate is roughly analogous to the simple “calorie balance” model 

of nutrition—if you consume more calories than you burn each day you will gain weight, and if 

you burn more calories than you consume you will lose weight.  In both cases, while the model 

in question does indeed capture something accurate about the system in question, the real story is 

more complicated.  In the case of nutrition, we know that not all calories are created equal, and 

that the source of the calories can make a difference: for instance, consuming only refined 

carbohydrates can negatively impact insulin resistance, which can affect the body’s metabolic 

pathways in general, leading to systemic changes that would not have occurred as a result of 

consuming an equal amount of calories from protein .  Analogously, the most simple 96

ZDEBM—in which the Earth and the sun are both featureless points that only absorb and radiate 

energy—doesn’t capture all the factors that are relevant to temperature variation on Earth.  

96 Even more strongly, it might be the case that calories in and calories out are not entirely independent of one another. 
That is, there might be interesting feedback loops at play in constructing an accurate calorie balance: a fact which is 
obfuscated in this simple presentation.  For example, it might be the case that consuming a lot of calories leads to some 
weight gain, which leads to low self-esteem (as a result of poor body-image), which leads to even more calorie 
consumption, and so on.  This sort of non-linear multi-level feedback mechanism will be treated in detail in Chapter 
Five, but will be ignored for the time being. 
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      Adding some more detail, consider a slightly more sophisticated ZDEBM, the like of which 

actually represents the planet in enough detail to be of actual (though limited) predictive use.  To 

begin, we might note that only some of the wide spectrum of E/M radiation reaching the Earth 

actually makes it to the planet’s surface.  This reflects the fact that our first approximation of the 

Earth as a totally featureless ideal black-body is, as we’ve seen, very inaccurate: in addition to 

radiating and absorbing, the Earth also reflects some energy.  The value representing the 

reflectance profile of a particular segment of the planet (or the entire planet, in this simple 

model) is called the albedo.  At the very least, then, our ZDEBM is going to have to take albedo 

into account: if we allow our model to correct for the fact that not all of the energy that reaches 

the Earth is actually absorbed by the Earth, then we can approach values that accurately 

represent the way things are. 

     Earth’s albedo is highly non-uniform, varying significantly over both altitude and surface 

position.  In the atmosphere, composition differences are the primarily relevant factors, while on 

the ground color is the most relevant characteristic.  Cloud cover is certainly the most significant 

factor for calculating atmospheric albedo (clouds reflect some energy back to space).  On the 

ground, the type of terrain makes the most significant difference: the ocean reflects very little 

energy back to space, and snow reflects a great deal (dry land falls somewhere between these 

two extremes, depending on what’s on it).  However, we’re getting ahead of ourselves: ZDEBMs 

don’t take any of this variation into account, and operate on the simplifying assumption that 

albedo can be averaged for the planet (in much the same way that emission and absorption can 

be).  In all cases, though, albedo is expressed as a dimensionless fraction, with a value between 0 

and 1 (inclusive).  0 albedo represents total absorption (a perfectly black surface), and 1 albedo 
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represents a total reflection (a perfectly white surface).  To get an idea of the relative values at 

play here, consider the following table.  97

 

Surface Albedo 
Equatorial oceans at noon 0.05 
Dense forest 0.05-0.10 
Forest 0.14-0.20 
Modern city 0.14-0.18 
Green crops 0.15-0.25 
Grassland 0.16-0.20 
Sand 0.18-0.28 
Polar oceans with sea ice 0.6 
Old snow 0.4-0.6 
Fresh snow 0.75-0.95 
Clouds 0.40-0.9 
Spherical water droplet with low angle of 
incidence  98

0.99 

 

     Taking albedo into account will clearly affect the outcome of the model we’ve been working 

with.  We were implicitly treating the Earth as if it were a perfect absorber—an object with 

albedo 0—which would explain why our final result was so far off base.  Let’s see how our 

result changes when we jettison this assumption.  We will stick with the simplification we’ve 

been working with all along so far and give a single average albedo value for the Earth as a 

whole, a value which is generally referred to as the “planetary albedo.”  More nuanced energy 

97 Adapted from Ricklefs (1993) 
98 This explains why, in practice, the albedo of large bodies of water (e.g. oceans or very large lakes) is somewhat 
higher than the listed value.  Choppy water has a layer of foam (whitecap) on top of it, which has an albedo value that’s 
much closer to the value for a water droplet than to the value for calm water.  The value of the oceans as a whole, then, 
is somewhere between the values of a water droplet and calm water.  This is an example of the sort of small space-scale 
difficulty that causes problems for the more sophisticated general circulation model, discussed in more detail in 
Chapter Six. 
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balance models, which we will discuss shortly, might refine this assumption somewhat.  Our 

modified model should decrease the value of S (the amount of energy absorbed by the Earth) by 

a factor that is proportional to the albedo: as the albedo of the planet increases it absorbs less 

energy, and as the albedo decreases it absorbs more.  Let’s try this, then: 

                                        (4d)σT4
S (1−α)o =  4

p  

In the special case where the Earth’s albedo α is 0, (4d) reduces to (4c), since 1-α is just 1.  OK, 

so once again let’s fill in our observed values and see what happens.  We’ll approximate α as 

being equal to .3, so now we have: 

                                   (4e) [(5.670373 × 10 ) W m K ](255K )4
[(1367 W m )(1−.3)]−2

=  −8 −2 −4 4  

Which gives us a result of: 

239.225 Wm-2 = 240 Wm-2                                        (4f) 

This is far more accurate, and the remaining difference is well within the margin of error for our 

observed values.  

     So now we’re getting somewhere.  We have a simple model which, given a set of observed 

values, manages to spit out a valid equality.  However, as we noted above, the purpose of a 

model is to help us make predictions about the system the model represents, so we shouldn’t be 

satisfied just to plug in observed values: we want our model to tell us what would happen if the 

values were different than they in fact are.  In this case, we’re likely to be particularly interested 

in Tp: we want to know how the temperature would change as a result of changes in albedo, 
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emitted energy, or received energy.  Fortunately, it’s only a trivial matter of algebraic 

manipulation to rearrange our last equation to solve for Tp: 

= Tp √4  4σ
(S (1−α)o

 (4g) 

We’re now free to plug in different values for incoming solar radiation and planetary albedo to 

see how the absolute temperature of the planet changes (try it!).  But wait: something is still 

amiss here.  By expressing the model this way, we’ve revealed another flaw in what we have so 

far: there’s no way to vary the amount of energy the planet emits.  Recall that we originally 

expressed F—the total energy radiated by Earth as a blackbody—in terms of the 

Stefan-Boltzmann law.  That is, the way we have things set up right now, the radiated energy 

only depends on the Stefan-Boltzmann constant σ (which, predictably, is constant) and the 

absolute temperature of the planet Tp.  When we set things up as we did just now, it becomes 

apparent that (since the Stefan-Boltzmann constant doesn’t vary), the amount of energy that the 

planet radiates depends directly (and only) on the temperature.  Why is this a problem?  Well, we 

might want to see how the temperature varies as a result of changes in how much energy the 

planet radiates .  That is, we might want to figure out how the temperature would change if we 99

were to add an atmosphere to our planet—an atmosphere which can hold in some heat and alter 

the radiation profile of the planet.  In order to see how this would work, we need to understand 

how atmospheres affect the radiation balance of planets: we need to introduce the greenhouse 

effect and add a parameter to our model that takes it into account. 

99 In fact, there’s another clue that something’s not right here.  Solving the equation using the values we’ve got so far 
gives us a temperature of 255K, which is significantly below the freezing point of water (it’s around 0 degrees F, or -18 
degrees C).  As you can easily verify, this is not the temperature of the planet’s surface, at least most of the time. 
Something is wrong here.  Hang in there: we’ll see the explanation for this anomaly soon, in Section 4.1.3. 
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4.1.3 The Greenhouse Effect and Basic Atmospheric Physics 

     So how does the greenhouse effect work?  To begin, we should note that as some skeptics  100

of anthropogenic climate change have pointed out, the term “greenhouse effect” is somewhat 

misleading: the mechanics of the effect bear only a passing resemblance to the mechanics of 

man-made greenhouses.  Artificial greenhouses are kept warmer than the ambient environment 

primarily through a suppression of convection: that is, the glass in the greenhouse prevents warm 

air—which is less dense than cold air, and so will tend to rise above it—from rising away from 

ground level, and thus keeps conditions warmer than they would be otherwise.  A similar 

mechanism is at work when you leave your car parked in the sun on a warm day: the interior 

heats up, but because the cabin is air-tight (at least on the timescales of interest to you during 

your trip to the shopping mall or grocery store), the warmer air inside the car and the cooler air 

outside the car cannot circulate, so the temperature increase can build up over time.  The 

planetary greenhouse effect operates very differently.  The layers of the Earth’s atmosphere are 

not closed systems in this sense, and while convection impediment can play a role in increasing 

radiative forcing felt on the ground—the fact that cloudy nights are generally warmer than clear 

nights is partially explained by this effect—it is not the driving factor in keeping the surface of 

the Earth warm. 

     Rather than blocking the motion of air itself—convection—the greenhouse effect operates 

primarily by altering the balance of radiation that is emitted by the planet (conveniently, this is 

100 Gerlich and Tscheuschner (2009).  This paper should be taken with a very large grain of salt (a full shaker would 
perhaps be even better), as the arguments Gerlich and Tscheuschner make about the “falsification” of the greenhouse 
effect are highly suspect.  Halpern et. al. (2010) argue convincingly that Gerlich and Tscheuschner fundamentally 
misunderstand much of the involved physics.  Still, they are (at least) correct on this point: the atmospheric greenhouse 
effect is very different from the effect involved in glass greenhouses. 
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just what is missing from the model we’ve constructed so far).  Up to this point, recall, we’ve 

been treating the Earth as if it is a naked point: the only feature we’ve added thus far is planetary 

albedo, which can be thought of as just preventing some energy from reaching the planet in the 

first place.  This is reflected (no pun intended) in the fact that our albedo factor α modifies the 

value of the solar radiance term So directly: albedo comes in on the left side of the equation on 

our model.  What we’re looking for now, remember, is something that modifies the value on the 

right side of the equation.  In order to do that, we have to tinker with the energy not before it is 

received, but as it is released back into space.  This is what the greenhouse effect does. 

     But how?  Departing from our ZDEBM for a moment, consider the way the atmosphere of the 

Earth is actually structured.  The Earth’s atmosphere is highly non-uniform in several different 

ways.  Most importantly for us right now, the atmosphere is an extremely heterogeneous 

mixture, containing significant amounts of several gasses, trace amounts of many more, and 

small airborne solids (e.g. specks of dust and soot) collectively called “aerosols.”  Ignoring 

aerosols for the moment (which are far more relevant to albedo calculation than to the 

greenhouse effect ), the composition of the atmosphere looks like this : 101 102

 

101 Aerosols like dust, soot, and sulfate aerosols (which are a byproduct of fossil fuel combustion) modify the albedo 
directly and indirectly.  Direct modification comes as a result of radiation scattering (increasing the albedo of the 
atmosphere in which they are suspended, providing a kind of “miniature shade”).  Indirect modification comes as a 
result of their action as nuclei of cloud condensation: they make it easier for clouds to form in the atmosphere by acting 
as “seeds” around which water vapor can condense into clouds.  This leads to increased cloud formation and average 
cloud lifespan (increasing albedo), but also reduced precipitation efficiency (since less water vapor is needed to form 
clouds, so clouds that do form are less moisture-dense).  Aerosols thus play an important (and complicated) role in 
climate forcing: a role which is beyond the scope of our current discussion.  They will be discussed in more detail when 
we consider feedback mechanisms in Section 4.2. 
102 Source for figures: Carbon dioxide: NOAA (2012), Methane: IPCC AR4 (2007).  
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Gas Volume 
Nitrogen (N2) 780,840 ppmv  (78.084%) 103

Oxygen (O2) 209,460 ppmv (20.946%) 
Argon (Ar) 9,340 ppmv (0.9340%) 
Carbon dioxide (CO2) 393.65 ppmv (0.039365%) 
Neon (Ne) 18.18 ppmv (0.001818%) 
Methane (CH4) 1.77 ppmv (0.000177%) 
Helium (He) 5.24 ppmv (0.000524%) 
Krypton (Kr) 1.14 ppmv (0.000114%) 
Hydrogen (H2) 0.55 ppmv (0.000055%) 
Nitrous oxide (N2O) 0.3 ppmv (0.00003%) 
Carbon monoxide (CO) 0.1 ppmv (0.00001%) 
Xenon (Xe) 0.09 ppmv (0.000009%) 
Ozone (O3) 0.0 to 0.07 ppmv (0 to 0.000007%)  104

Nitrogen dioxide (NO2) 0.02 ppmv  (0.000002%) 
Iodine (I2) 0.01 ppmv (0.000001%) 
Ammonia (NH3) trace 
Water vapor (H2O) ~0.40% over full atmosphere, typically 

1%-4% at surface 
Fig. 4.1 

 

      Different gases have different absorption properties, and so interact differently with various 

wavelengths of radiation.  Radiation of a given wavelength may pass almost unimpeded through 

relatively thick layers of one gas, but be almost totally absorbed by even small amounts of 

another gas.  This is the source of the greenhouse effect: the composition of the atmosphere 

directly affects how much radiation (and of which wavelengths) is able to escape to space. 

Recall that the wavelength of the energy radiated by an object depends on its absolute 

103 “ppmv” stands for “parts per million by volume.”  
104 Ozone composition varies significantly by vertical distance from the surface of the Earth, latitude, and time of year. 
Most ozone is concentrated in the lower-to-mid stratosphere (20-35 km above the surface of the Earth), and there is 
generally less ozone near the equator and more toward the poles.  Ozone concentration is at its highest during the 
spring months (March-May and September-November for the Northern and Southern hemispheres, respectively).  
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temperature, and that this means that (contrary to the model we’ve been working with so far), the 

temperature of the Earth depends on the composition of the atmosphere.  

     Here’s a simple account of the physics behind all this.  Molecules of different gases have 

different molecular structures, which (among other things) affects their size and chemical 

properties.  As incoming radiation passes through the atmosphere, it strikes a (quite large) 

number of different molecules.  In some cases, the molecule will absorb a few of the photons 

(quanta of energy for electromagnetic radiation) as the radiation passes through, which can push 

some of the electrons in the molecule into an “excited” state.  This can be thought of as the 

electron moving into an orbit at a greater distance from the nucleus, though it is more accurate to 

simply say that the electron is more energetic.  This new excited state is unstable, though, which 

means that the electron will (eventually) “calm down,” returning to its previous ground state. 

Because energy is conserved throughout this process, the molecule must re-emit the energy it 

absorbed during the excitation, which it does in the form of more E/M radiation, which might be 

of different wavelengths than the energy originally absorbed .  Effectively, the gas molecule 105

has “stored” some of the radiation’s incoming energy for a time, only to re-radiate it later.  

     More technically, the relationship between E/M radiation wavelength and molecular 

absorption depends on quantum mechanical facts about the structure of the gas molecules 

populating the atmosphere.  The “excited” and “ground” states correspond to electrons 

transitioning between discrete energy levels, so the wavelengths that molecules are able to 

absorb and emit depend on facts about which energy levels are available for electrons to 

105 Though, of course, this means that the number of photons will also have to be different, unless the energy difference 
is accounted for in some other way. 
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transition between in particular molecules.  The relationship between the energy change of a 

given molecule  and an electromagnetic wave with wavelength λ is:  106

ΔE = ħ/λ                                           (4h) 

where ħ is the reduced Planck constant (h/2π), so larger energy transitions correspond to shorter 

wavelengths.  When ΔE is positive, a photon is absorbed by the molecule; when ΔE is negative, 

a photon is emitted by the molecule.  Possible transitions are limited by open energy levels of the 

atoms composing a given atom, so in general triatomic molecules (e.g. water, with its two 

hydrogen and single oxygen atoms) are capable of interesting interactions with a larger spectrum 

of wavelengths than are diatomic molecules (e.g. carbon monoxide, with its single carbon and 

single oxygen atoms), since the presence of three atomic nuclei generally means more open 

energy orbital states.   107

     Because the incoming solar radiation and the outgoing radiation leaving the Earth are of very 

different wavelengths, they interact with the gasses in the atmosphere very differently.  Most 

saliently, the atmosphere is nearly transparent with respect to the peak wavelengths of incoming 

radiation, and nearly opaque (with some exceptions) with respect to the peak wavelengths of 

outgoing radiation.  In the figure below, the E/M spectrum is represented on the x-axis, and the 

absorption efficiency (i.e. the probability that a molecule of the gas will absorb a photon when it 

encounters an E/M wave of the given wavelength) of various molecules in Earth’s atmosphere is 

represented on the y-axis.  The peak emission range of incoming solar radiation is colored 

106 All of what follows here holds for simple atoms as well, though free atoms are relatively rare in the Earth’s 
atmosphere, so the discussion will be phrased in terms of molecules. 
107 For details, see Mitchell (1989) 
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yellow, and the peak emission range of outgoing radiation is colored blue (though of course some 

emission occurs from both sources outside those ranges) .108

 

FIG. 4.2 

 

Note the fact that incoming solar radiation is not absorbed efficiently by any molecule, whereas 

outgoing radiation is efficiently absorbed by a number of molecules, particularly carbon dioxide, 

nitrous oxide, water vapor, and ozone.  This is the source of the greenhouse effect. 

     A more apt metaphor for the effect, then, might be the “one-way mirror” effect.  Rather than 

acting like a greenhouse (which suppresses convection), the presence of a heterogeneous 

atmosphere on Earth acts something like an array of very small one-way mirrors, permitting 

virtually all incoming radiation to pass relatively unimpeded, but absorbing (and later 

re-radiating) much of the energy emitted by the planet itself.  Of course this too is just a 

metaphor, since true mirrors are reflective (rather than radiative), and changing the reflection 

profile of the system (as we’ve seen) changes the albedo, not the radiative values.  Moreover, 

108 Figure adapted from Mitchell (op. cit.) 
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while mirrors are directional, the reradiation of energy from greenhouse gasses is not: the 

emitted photons might travel in any direction in the atmosphere, possibly resulting in their 

reabsorption by another molecule.  Still, it can  be useful to keep this picture in mind: adding 

more greenhouse gasses to the atmosphere is rather like adding more of these tiny mirrors, 

trapping energy for a longer time (and thus allowing the same amount of energy to have a greater 

net radiative forcing effect) than it otherwise would be. 

     The greenhouse effect explains, among other things, why the temperature of Earth is 

relatively stable during both the days and nights.  On bodies without an atmosphere (or without 

an atmosphere composed of molecules that strongly interact with outgoing radiation), an absence 

of active radiative forcing (during the night, say) generally results in an extreme drop in 

temperature.  The difference between daytime and nighttime temperatures on Mercury (which 

has virtually no atmosphere) is over 600 degrees C, a shift which is (to put it mildly) hostile to 

life.  With an atmosphere to act as a heat reservoir, though, temporary removal of the active 

energy source doesn’t result in such an immediate and drastic temperature drop.  During the 

Earth’s night, energy absorbed by the atmosphere during the day is slowly re-released, keeping 

surface temperatures more stable.  A similar effect explains why land near large bodies of water 

(oceans or very large lakes) tends to have a more temperate climate than land that is isolated 

from water; large bodies of water absorb a significant amount of solar radiation and re-release it 

very slowly, which tends to result in less extreme temperature variation . 109

109 The clever reader will note that this implies that the water on Earth’s surface plays a significant role in regulating the 
overall climate.  This is absolutely true (aren’t you clever?), and the most advanced climate models are, in effect, 
models of atmospheric and aquatic dynamics that have been “coupled” together.  So far, though, this too is a detail that 
is beyond the scope of our discussion (and the simple model we’ve been considering).  We’ll return to this point in the 
next chapter. 

124 



 

     How do we square this with the ZDEBM we’ve been working with so far?  As we noted 

above, the model as we’ve expressed it suggests that the Earth’s temperature ought to be 

somewhere around 255K, which is below the freezing point of water.  The solution to this puzzle 

lies in recognizing two facts: first that the effective temperature of the planet—the temperature 

that the planet appears to be from space—need not be the same as the temperature at the surface, 

and second that we’ve been neglecting a heat source that’s active on the ground.  The second 

recognition helps explain the first: the greenhouse gasses which re-radiate some of the outgoing 

energy keep the interior of the atmosphere warmer than the effective surface.  If this seems 

strange, think about the difference between your skin temperature and your core body 

temperature.  While a healthy human body’s internal temperature has to remain very close to 

98.6 degrees F, the temperature of the body along its radiative surface—the skin—can vary quite 

dramatically (indeed, that’s part of what lets the internal temperature remain so constant).  At 

first glance, an external observer might think that a human body is much cooler than it actually 

is: the surface temperature is much cooler than the core temperature.  Precisely the same thing is 

true in the case of the planet; the model we’ve constructed so far is accurate, but it has succeeded 

in predicting the effective temperature of the planet—the temperature that the planet appears to 

be if we look at it from the outside.  What we need now is a way to figure out the difference 

between the planet’s effective temperature Tp and the temperature at the surface, which we can 

call Ts. 

     Let’s think about how we might integrate all that into the model we’ve been building.  It 

might be helpful to start with an explicit statement of the physical picture as it stands.  We’re still 

working with an energy balance model, so the most important thing to keep in mind is just the 
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location of radiative sources and sinks; we know that all the radiation that comes in has to go out 

eventually (we’re still assuming things are in equilibrium, or rather close to it).  So here’s what 

we have. 

     Incoming solar radiation reaches the Earth, passing mostly unimpeded through the 

atmosphere.   It reaches the surface of the Earth, where some of it is immediately reflected, 110

which we’ve accounted for already by building in a term for albedo.  The remainder is absorbed 

by the Earth.  Later, it is reradiated, but at a very different wavelength than it was when it came 

in.  On its way out, some of this radiation is absorbed by greenhouse gas molecules in the 

atmosphere, and the rest of it passes back out into space.  The radiation that is absorbed by the 

atmosphere creates (in effect) a new source of radiation, which radiates energy both back toward 

the surface and out to space.  Our picture, then, consists of three sources: the sun (which radiates 

energy to the surface), the surface (which radiates energy to the atmosphere and space), and the 

atmosphere (which radiates energy to the surface and space).  The true temperature of the surface 

Ts, then, is a function of both the radiation that reaches it from the sun and the radiation that 

reaches it from the atmosphere after being absorbed and re-emitted.  Let’s see how to go about 

formalizing that.  Recall that before we had the radiation balance of the planet, which predicts 

the effective temperature of the planet as seen from the outside: 

σT4
S (1−α)o =  4

p  (4d) 

OK, so how shall we find the actual surface temperature of the planet?  To start, let’s note that 

we can model the atmosphere and the surface of the Earth as two “slabs” that sit on top of one 

110 For simplification, we’ll just assume that all of it passes unimpeded; this is very close to being the case. 
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another, each with approximately the same area.  The surface of the Earth radiates energy 

upward only (i.e. to the atmosphere and space), while the atmosphere radiates energy in both 

directions (i.e. back to the surface and to space).  So far, recall, we’ve been treating the part of 

the Earth absorbing energy from the sun as a uniform disk with an area equal to the “shadow” of 

the sun (that is, ¼ the area of the entire Earth’s surface); this is a fairly good approximation, 

since we’re already disregarding variations in albedo and emissivity across different latitudes and 

longitudes (that’s part of what it means to be a zero-dimensional model).  We can think of the 

atmosphere, then, as consisting of another slab with approximately the same surface area as the 

surface itself.  This is not quite right, but it is also a fairly good approximation.  Since the 

atmosphere, as we’ve seen, absorbs energy only from the surface of the Earth, but emits energy 

both back toward the Earth and to space, we have to adjust its surface area accordingly in our 

model.  For the purposes of absorption, we can treat the atmosphere as having twice the area of 

the surface, since it radiates along both the inside and outside.  Just as with the surface of the 

Earth, the atmosphere radiates energy in accord with the Stefan-Boltzmann law.  That is, it 

radiates energy as a function of its surface area and temperature.  

     We also stipulate that (since this is an energy balance model), the atmosphere emits exactly as 

much as it absorbs.  We’ve already noted that the atmosphere isn’t entirely transparent from the 

perspective of the Earth: it absorbs some (but not all) of the outgoing radiation.  Let us add a 

term to our model to reflect the opacity of absorbing surfaces.  Call this term γ.  A surface that is 

totally opaque has γ = 1 (it absorbs all the energy that actually reaches it), and a surface that is 

totally transparent to incoming radiation has γ = 0.  Note that this term is independent of α: a 

surface’s opacity only comes into play with regard to the energy that isn’t just reflected outright. 
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That is, γ represents how likely a surface is to absorb some radiation that tries to pass through it; 

reflected energy never makes this attempt, and so does not matter here.  This behavior is intuitive 

if we think, to begin, about the surface of the planet: while it has a non-negligible albedo (it 

reflects some radiation), it is effectively opaque.  The planet’s surface does reflect some energy 

outright, but virtually all of the energy it doesn’t reflect is absorbed.  Very little E/M radiation 

simply passes through the surface of the planet.  We can thus set γs = 1.  We are interested in 

solving for γa—we’re interested in figuring out just how opaque the atmosphere is.  From all of 

this, we can deduce another equation: one for the energy emitted by the atmosphere (Fa). 

γ σTF a =  a
4
a  (4e) 

We have to include γ in this equation, as (recall) the atmosphere is transparent (or nearly so) only 

with respect to incoming solar radiation.  Radiation emitted both by the surface and by the 

atmosphere itself has a chance of being reabsorbed.  

     At last, then, we’re in a position to put all of this together.  We have an equation for the 

energy emitted by the atmosphere and an equation for the energy reaching the ground from the 

sun.  For the purposes of this model, this exhausts all the sources of radiative forcing on the 

surface of the Earth.  If we hold on to the supposition that things are at (or near) equilibrium, we 

know that the energy radiated by the surface (which we can calculate independently from the 

Stefan-Boltzmann law) must be in balance with these two sources.  The full balance for the 

surface at equilibrium, then, is: 

γ σT γ σT4
S (1−α)o +  a

4
a =  s s

4  (4f) 

128 



 

Moreover, we can deduce a second balance equation for the atmosphere alone.  Recall that the 

atmosphere receives energy only from the surface, and that it radiates with twice the area that it 

receives—it is “heated” from below only, but radiates heat in two directions.  With another 

application of the Stefan-Boltzmann law, then, we know that: 

γ σT γ σT2 a
4
a =  s s

4  (4j) 

A bit of algebraic manipulation to solve this system of equation—by inserting (4j) into (4f) and 

solving the resulting equation for Ts—gives us a final solution to the whole shebang (as noted 

above, we shall assume that the Earth is opaque and that  = 1):γs  

 √4 S (1−α)o

4σ(1− )2
γa = T s  (4k) 

  With no atmosphere at all, γa = 0 and the equation above just reduces to our original equation, 

giving us an answer of 255K.  By plugging in the observed temperature at the Earth’s surface 

(288K) and solving for γa, we obtain a value of γ = .76.  With that value in hand, then, we can 

actually use this model to explore the response of the planet to changes in albedo or greenhouse 

gas composition—we can make genuine predictions about what will happen to the planet if our 

atmosphere becomes more opaque to infrared radiation, more energy comes in from the sun, or 

the reflective profile of the surface changes.  This is a fully-developed ZDEBM, and while it is 

only modestly powerful, it is a working model that could be employed to make accurate, 

interesting predictions.  It is a real pattern. 
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4.2 The Philosophical Significance of the Hierarchy of Climate Models 

     While the model we have just constructed is a working model, the like of which one might 

encounter in an introductory course on climate science, it still represents only a tiny slice of the 

myriad of processes which underlie the Earth’s climate.  We went through the extended 

derivation of the last section for two reasons: first, to provide some structure to the introduction 

of central concepts in climate science (e.g. albedo, the greenhouse effect, opacity) and second, to 

demonstrate that even the simplest models of the Earth’s climate are incredibly complicated. 

The dialectical presentation (hopefully) provided an intuitive reconstruction of the thinking that 

motivated the ZDEBM, but things still got very messy very quickly.  Let us now turn from this 

relatively comprehensible model to other more complicated climate models.  As we’ve seen, the 

ZDEBM treats the entire planet as being completely uniform with respect to albedo, temperature, 

opacity, and so on.  However, the real Earth is manifestly not like this: there is a significant 

difference between land, water, and atmosphere, as well as a significant difference between the 

composition of different layers of the atmosphere itself.  Moreover, the shape and orientation of 

the Earth matters: the poles receive far less solar energy than the equator, and some of the energy 

that reaches the Earth is reflected in one location but not another, either by features of the 

atmosphere (clouds, for instance), or by the surface (white snow and ice is particularly 

reflective).  Representing the Earth as a totally uniform body abstracts away from these 

differences, and while zero-dimensional energy balance models are useful as first 

approximations, getting a more accurate picture requires that we insert more detail into our 

model,  but what kind of detail should we add?  How do we decide which parts of the world are 111

111 It’s important to note that increasing the sophistication of a model is a necessary but not sufficient condition for 
generating more accurate predictions.  While it seems intuitively apparent that more sophisticated models should be 
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important enough to deserve inclusion in our models, and which can be ignored?  These are 

incredibly deep questions—they represent some of the most difficult practical challenges that 

working scientists in any discipline face in designing their models—and giving a general answer 

to them is beyond the scope of our project here.  Still, it is worth our time to briefly examine the 

plethora of climate models that have sprung up in the last few decades, and to think about the 

conceptual underpinnings of this highly diverse collection of scientific tools.  Perhaps we can at 

least suggest the shape of an answer to these questions with respect to climate science in 

particular. 

     In practice, climate scientists employ a large family of models for different purposes. 

Zero-dimensional energy balance models like the one we just constructed are the most basic 

models actually used in the real world, and form what can be thought of as a the “lowest level” 

of a kind of “model pyramid.”  The logic of energy balance models is sound, and more 

sophisticated energy balance models add more detail to account for some of the factors we just 

enumerated; with every addition of detail, the model becomes capable of generating more 

accurate predictions but also becomes more difficult to work with.  For instance, we might move 

from the ZDEBM to a one-dimensional energy balance model, modeling the Earth not as a point 

but as a line, and expressing the parameters of the model (like albedo) not as single terms, but as 

differential equations whose value depends on where we are on the line.  This allows us to take 

the latitudinal variation of incoming solar energy into account, for example: in general, areas 

better models, it is also the case that more sophisticated models generally leave more room for failure, either as a result 
of measurement error, because the model accounts for only half of an important feedback loop, or for some other 
reason.  Recall the characterization of models as artifacts—in some ways, they are very like mechanical artifacts, and 
the old engineering adage that “anything that moves can break” applies here as well.  We will revisit this point in 
Chapter Five when we discuss the special difficulties of modeling complex systems. 
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near the equator receive more energy, and the incoming energy drops off as we move north or 

south toward the poles.  Alternatively, if we are interested in differences in radiation received by 

different levels of the atmosphere, we might implement a one-dimensional model that’s 

organized vertically, rather than horizontally.  Even more detailed models combine these 

approaches: two-dimensional models account for variation in incoming solar energy as a 

function of both height and latitude.  

     Energy balance models, though, are fundamentally limited by their focus on radiation as the 

only interesting factor driving the state of the climate.  While the radiative forcing of the sun 

(and the action of greenhouse gasses in the presence of that radiative forcing) is certainly one of 

the dominant factors influencing the dynamics of the Earth’s climate, it is equally certainly not 

the only such factor.  If we want to attend to other factors, we need to supplement energy balance 

models with models of a fundamentally different character, not just create increasingly 

sophisticated energy balance models.  McGuffie & Herderson-Sellers (2005) list five different 

components that need to be considered if we’re to get a full picture of the climate: radiation, 

dynamics, surface processes, chemistry, and spatio-temporal resolution.   While I will 112

eventually argue that this list is incomplete, it serves as a very good starting point for 

consideration of the myriad of climate models living in the wild today. 

     Radiation concerns the sort of processes that are capture by energy balance models: the 

transfer of energy from the sun to the Earth, and the release of energy back into space (in the 

form of infrared radiation) from the Earth.  As we’ve seen, careful attention to this factor can 

produce a model that is serviceable for some purposes, but which is limited in scope.  In 

112 McGuffie & Herderson-Sellers (2005), p. 49 
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particular, pure radiative models (energy balance models, for instance) neglect the transfer of 

energy by non-radiative processes and are unable to model any of the other more nuanced the 

dynamical processes that govern both the climate and weather on Earth.  A radiative model, for 

example, will be entirely silent on the question of whether or not increased greenhouse gas 

concentration is likely to change the behavior of ocean currents.  Even if we were to devise an 

energy balance that is sophisticated enough to model radiative transfer between the ocean, land, 

and atmosphere as separate energy reservoirs, the inclusion of facts about currents is simply 

beyond the scope of these models. 

     To include facts like those, we need to appeal to a new class of models—so-called 

“radiative-convective” (RC) models are designed to address these issues.  These models 

incorporate many of the same insights about radiation balance that we saw in the ZDEBM, but 

with the addition of dynamical considerations.  Basic RC models will treat the planet not just as a 

set of “lamps” which absorb and emit radiation, but rather will include enough detail to model 

the transfer of energy via convection—the movement of air—as well.  We can think of RC 

models as presenting the Earth as a set of connected boxes of various sizes containing gas of 

various temperatures.  While some energy is transferred between the boxes as a result of 

radiative forcing, the boundaries where one box meets another are equally important—there, the 

contents of the two boxes mix, and energy transfer as a result of convection becomes possible as 

well.  A simple one-dimensional RC model might treat the surface of the Earth as consisting of 

regions of different temperature arrayed along a line, calculating the interaction of different 

regions at their boundary by employing a fixed lapse-rate to model convective energy transfer. 

This information might then be incorporated into a relatively sophisticated energy balance 
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model, yielding an increase in the accuracy of radiative process models as a result of more 

precise information about temperature gradients and exchanges of air . 113

     While RC models offer an improvement in accuracy over simple radiative models (as a result 

of taking some dynamical processes into account), they are still far away from being robust 

enough to capture all the details of our complex climate.  Beyond RC models, the field becomes 

increasingly differentiated and heterogeneous—in the last 30 years in particular, a large number 

of so-called “Earth models of intermediate complexity” (EMIC) have sprung up in the literature. 

It is impossible to characterize these models in any general way, as each is constructed for a very 

particular purpose—to model some very specific aspect of the global climate based on a 

parameterization that fixes other potentially relevant factors as (more or less) constant.  As an 

example of the tremendous variability present in this class of models, EMICs include RC models 

that also model cloud formation (which is an important factor in determining albedo), sea-ice 

models that focus primarily on the surface processes that drive the formation (and break-up) of 

arctic and Antarctic ice, spatio-temporally constrained models of the short-term effect of 

volcanic aerosols on planetary albedo, and even ocean models that focus primarily on the 

procession of regular cycles of ocean temperatures and currents (e.g. the models used to predict 

the effects of the El Nino/Southern Oscillation on annual rainfall in the United States’ west 

coast).  The EMIC represent a veritable zoo of wildly different models developed for wildly 

different purposes.  The fact that all these can (apparently) peacefully coexist is worthy of 

philosophical interest, and warrants some consideration here . 114

113 As we shall see, this practice of using the output of one kind of model as input for another model is characteristic of 
much of contemporary climate science. 
114 In addition, the policy implications of this diverse zoo of important models will be the primary topic of Chapter 
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4.2.1 Climate Models and Complexity 

    Earlier in the history of climate science, even textbooks within the field were willing to 

attempt to rank various climate models in terms of ascending “complexity .”  While the sense 115

of the term ‘complexity’ doesn’t exactly mirror the concept of dynamical complexity developed 

in Chapter Three, there are enough parallels to be worth remarking on, and I shall argue that the 

important aspects of the climate modeler’s sense are, like the various approaches to complexity 

surveyed in Chapter Two, well-captured by the notion of dynamical complexity.  Interestingly, 

there’s at least some evidence that more recent work in climatology has backed off from the 

attempt to rank models by complexity.  While the hierarchical “climate pyramid” reproduced 

below appears in all editions of McGuffie & Herderson-Sellers’ work on climate modeling, by 

2005 (and the publication of the third edition of the work), they had introduced a qualification to 

its presentation:  

This constructed hierarchy is useful for didactic purposes, but does not reflect all the uses to which models are 
put, nor the values that can be derived from them.  The goal of developers of comprehensive models is to 
improve performance by including every relevant process, as compared to the aim of [EMIC] modelers who 
try to capture and understand processes in a restricted parameter space.  Between these two extremes there is a 
large territory populated, in part, by leakage from both ends.  This intermediate area is a lively and fertile 
ground for modeling innovation.  The spectrum of models [included in EMICs] should not be viewed as poor 
cousins to the coupled models . 116

 

     It is worth emphasizing that this egalitarian perspective on climate science—in which a 

multitude of perspectives (encoded in a multitude of models) are included without 

prejudice—fits nicely with the account of science in general we explored in Chapter One, and 

only serves to reinforce the view that contemporary scientific practice requires this multifarious 

Seven. 
115 See, e.g., McGuffie and Herderson-Sellers (op. cit.), though this treatment is far from unique 
116 Ibid. p. 117 
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foundation.  Their observation that EMICs should not be viewed as “poor cousins” of more 

elaborate models  similarly seems to support the view that we should resist the impulse to try to 117

decide which models are “more real” than others.  Any model which succeeds in capturing a real 

pattern in the time-evolution of the world (and which is of consequent predictive use) should be 

given equal standing. 

     The sense of “complexity” here also has more than a little in common with the notion we’ve 

been working with so far.  McGuffie & Henderson-Sellers chose to illustrate the climate model 

hierarchy as a pyramid for good reason; while they say that the “vertical axis [is] not intended to 

be qualitative, ” the pyramidal shape is intended to illustrate the eventual convergence of the 118

four different modeling considerations they give in a single comprehensive model.  A complex 

model in this sense, then, is one which incorporates patterns describing dynamics, radiative 

processes, surface processes, and chemical processes.  The parallels to dynamical complexity 

should be relatively clear here: a system that is highly dynamically complex will admit of a 

variety of different modeling perspectives (in virtue of exhibiting a plethora of different 

patterns).  For some predictive purposes, the system can be treated as a simpler system, 

facilitating the identification of (real) patterns that might be obfuscated when the system is 

considered as a whole.  I have repeatedly argued that this practice of simplification is a 

methodological approach that should not be underappreciated (and which is not overridden by 

the addition of complexity theory to mainstream science).  EMIC are fantastic case-study in this 

fact, a diverse mixture of idealizations and simplifications of various stripes that have been 

developed to explore particular climate subsystems, but whose outputs frequently are of use in 

117 We shall discuss these more elaborate models in detail in the next chapter. 
118 Ibid., p. 51 
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more global analyses.  We’ll explore the role that EMICs play in more comprehensive models in 

the next chapter (when we explore cutting-edge global circulation models and the tools climate 

scientists employ to create and work with them).  For now, though, I would like to end this 

chapter with a few words about the limitation of the analytic method that undergirds both the 

creation of EMICs and much of science in general.  We’ve seen a number of reasons why this 

analytic approach is worth preserving, but there are also good reasons to think that it cannot take 

us as far as we want to go.  

4.2.2  Limits of the Analytic Method 

     It might help to begin by thinking about the traditional scientific paradigm as it has existed 

from the time of Newton and Galileo.  The account that follows is simplified to the point of 

being apocryphal, but I think it captures the spirit of things well enough.  For our purposes here, 

that’s enough: I’m interested not in giving a detailed historical account of the progress of science 

(many who are more well-suited to that task have already done a far better job than I ever could), 

but in pointing to some general themes and assumptions that first began to take root in the 

scientific revolution.  It will be helpful to have these themes clearly in mind, as I think 

complexity theory is best understood as an approach to science that fills in the gaps left by the 

approach I’m about to describe.  If you are a historian of science, I apologize for the simplifying 

liberties that I take with this complicated story (see Chapter Zero for more on why you’re 

probably not alone in being dissatisfied with what I have to say). 

     The greatest triumph of the scientific revolution was, arguably, the advent of the kind of 

experimental method that still underlies most science today: the fundamental insight that we 
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could get a better handle on the natural world by manipulating it through experiment was, to a 

large degree, the most important conceptual leap of the era.  The idea that science could proceed 

not just through abstract theorizing about ideal cases (as many ancients had) nor just through 

passive observation of the world around us, but by systematically intervening in that world, 

observing the results of those interventions, and then generalizing those results into theories 

about how systems outside the laboratory behaved was unbelievable fruitful.  The control aspect 

of this is important to emphasize: the revolution was not primarily a revolution toward 

empiricism strictly speaking—people had been doing science by looking at the world for a long 

time—but a revolution toward empiricism driven by controlled isolation . 119

     This kind of interventionist approach to science was vital to the later theoretical 

breakthroughs: while Newton’s genius lay in realizing that the same patterns of motion lay 

behind the movement of bodies on Earth and in space, that insight wouldn’t have been possible if 

Galileo hadn’t first identified those patterns in terrestrial falling bodies.  It was Galileo’s genius 

to realize that by reducing a system of interest to its simplest form—by controlling the system to 

hold fixed as many variables as possible—patterns that might be obscured by the chaos and 

confusion of the unmodified natural world would become more apparent.  All of this is very 

well-known and (I take it) uncontroversial—at least if you take my simplifications in stride.  My 

purpose here is not to comment on the history of science per se but (in good classical scientific 

fashion) to isolate and emphasize a single thread in this narrative: that of isolated decomposition 

of systems. 

     After the revolution that this approach precipitated in physics, the basic experimental method 

119 For more on the role of intervention in science, see Woodward (2011) 
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of intervening in the natural world to isolate variables for testing came to dominate virtually all 

of the natural sciences for hundreds of years.  Scientists in chemistry, biology, and even the 

social sciences attempted to copy (with varying degrees of success) the physics-inspired model 

of identifying single constituents of interesting systems, seeing how those constituents behaved 

when isolated from each other (and, a fortiori, from a complicated external environment), and 

using that information to deduce how collections of those constituents would behave in more 

realistic circumstances.  This approach was enormously, earth-shatteringly, 

adverb-confoundingly successful, and gave us virtually all the scientific advances of the 18th, 

19th, and 20th centuries, culminating in the triumph of physics that is quantum mechanics, as well 

as the more domain-specific (if no less impressive) advances of molecular biology (studying the 

gene to understand the organism), statistical mechanics (studying the particle to understand the 

thermodynamic system), and cognitive neuroscience (studying the neuron to understand the 

brain), just to name a few. 

     Moreover, this way of thinking about things came to dominate the philosophy of science (and 

scientifically-informed metaphysics) too.  Many of the influential accounts of science developed 

in the 19th and 20th centuries rely (more or less implicitly) on this kind of model of scientific 

work.  The logical positivists, for whom science was a matter of deduction from particular 

observations and a system of formal axioms perhaps exemplify this approach, though (as Hooker 

[2011a] argues), the Popperian model of theory generation, experimental data collection, and 

theory falsification also relies on this decomposition approach to scientific work, as it assumes 

that theorists will proceed by isolating variables to such a degree that cases of direct falsification 

will (at least sometimes) be clearly discernible.  The account of science developed in Chapter 
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One is intended to contribute to the beginning of a philosophy of science that moves beyond 

dogmatic clinging to decomposition, but it will likely still be some time before this thinking 

becomes part of the philosophical mainstream. 

     Part of the problem is that the primary opponents of the decomposition approach to science 

(at least before the 1970s) were the vitalists and the strong emergentists.   The common 120

criticism marshaled by these two camps was that the analytic approach championed by 

mainstream science was inevitably doomed to fail, as some aspect of the natural world (living 

things, for example) were sui generis in that their behavior was not governed by or deducible 

from the behavior of their parts, but rather anomalously emerged in certain circumstances.  The 

last major stronghold for this view—life—was dealt a critical blow by the advent of molecular 

biology, though: the discovery of genetic molecules showed that living things were not 

anomalous, sui generis systems, but rather were just as dependent on the coordinated action of 

simpler constituents as any physical system.  By the middle of the 20th century, vitalism had 

fallen far out of favor, and most mainstream scientists and philosophers held at least a vaguely 

reductionistic view of the world.  While quantum mechanics was busy overthrowing other pillars 

of classical physics, it seemed to only reinforce this one: the whole is nothing more than the sum 

of its parts.  While the behavior of that sum may be difficult (or even impossible) to predict 

sometimes just by looking at the parts, there’s nothing fundamentally new to be learned by 

looking at systems; any higher-level scientific laws are just special cases, course-grainings, or 

simplifications of the story that fundamental physics has to tell. 

     The moral of the science’s success in the 20th century is that the mainstream scientists were 

120 See, for instance, Morgan (1921) 
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right and the vitalists were wrong: living things (a fortiori, brains, democracies, economies) are 

really nothing over and above the sum of their parts—there is no vital spark, and no ghost in the 

machine, and no invisible hand.  The progress of science seems to have born this out, and in a 

sense it has: in looking for (say) living things to behave in ways that were not determined by the 

behavior of their cells and genes, vitalists were chasing ghosts.  Still, in the last few decades 

cracks have begun to appear in the hegemonic analytic approach: cracks that suggest not that the 

insights garnered by that approach were wrong, but that they were incomplete.  This is where 

complexity theory enters our story. 

     As an example, consider the highly computational theory of mind that’s been developed by 

some cognitive psychologists and philosophers of mind .  On this account, psychology as a 121

scientific practice is, in a very real sense, predicated on a very large misunderstanding: according 

to the most radical computationalists, what we take to be “psychological states” are really 

nothing more than formal computational operations being carried out by the firing of one or 

another set of neurons in our brain.  It’s worth emphasizing that this is a stronger thesis than the 

standard “metaphysical reduction” that’s rather more common in the philosophy of mind 

literature, and it is certainly a stronger thesis than a generally physicalist view of psychology 

(where psychological states in some sense are realized by or depend on the action of neurons). 

The strongest adherents of computational neuroscience argue that not only do mental states 

depend on brain states, but that (as a methodological dictum) we ought to focus our scientific 

efforts on mapping neuronal firings only.  That is, it’s not just necessary to understand the brain 

in order to get a grip on psychology—understanding how neurons work just is understanding 

121 See, for instance, Pinker (2000).  This position is also there at times in the work of Paul and Patricia Churchland, 
though it is also moderated at times when compared to the fairly hard-line computationalism of Pinker. 
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psychology.  There are no higher level patterns or processes to speak of.  This is a very 

substantive methodological thesis—one which (if it were true) would have significant 

implications for how research time and money ought to be allocated. 

     Increasingly, it is also a thesis that is being rejected by mainstream cognitive science.  In the 

decades since Pinker’s book was published, cognitive scientists have gradually come to 

recognize that neuronal firings, while surely central in determining the behavior of creatures like 

us, are far from the only things that matter.  Rather, the neurons (and their accompanying 

chemical neurotransmitters, action potentials, &c.) function as one sub-system in a far more 

complicated web of interrelated interactions between the brain, the rest of the body, and various 

aspects of the external environment.  While some cognitive mechanisms can be completely 

understood through the decompositionist approach,  the higher-level cognition of complicated 122

organisms embedded in dynamic environments (humans engaged in complex, conscious 

reasoning, for example) certainly cannot.  The gradual relaxation of the demand that all cognitive 

science be amenable to something like this radically eliminative computational hypothesis has 

produced an explosion of theoretical insights.  The appreciation of the importance of embodied 

cognition—that is, the importance of non-neurological parts of the body in shaping cognitive 

states—exemplifies this trend, as does the work of Andy Clark in exploring the “extended mind” 

hypothesis, in which environmental props can be thought of as genuine components of higher 

level cognitive processes .  123

122 Simple reflex behavior like the snapping of carnivorous plants (as well as basic reflexes of human beings), for 
instance, can be understood as a very simple mechanism of this sort, where the overall behavior is just the result of 
individual constituent parts operating relatively independently of one another.  See Moreno, Ruiz-Mirazo, & 
Barandiaran (2011) for more on this. 
123 See Clark (2001) and (2003) 
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     Similarly, contemporary biology has rejected the notion that the evolution of organism 

populations just is the evolution of individual genes in the organisms of the population.  This 

move away from “selfish gene” type approaches to evolutionary theory might be thought of as 

mirroring the move away from strict eliminative computationalism in cognitive neuroscience; the 

appreciation of epigenetic influences on evolution  exemplifies this trend in biology, as does 124

the proliferation of the “-omics” biological sciences (e.g. genomics, proteomics, biomics). 

     In rejecting the decompositionist approach to cognition (or evolution), though, neuroscientists 

(or biologists) have not returned to the vitalist or emergentist positions of the 19th and early 20th 

centuries—it is certainly not the case that the only alternative to the Pinker/Churchland position 

about the mind is a return to Cartesian dualism, or the sort of spooky emergentism of Morgan 

(1921).  Rejecting the notion that interesting facts about cognition are exhausted by interesting 

facts about neuronal firings need not entail embracing the notion that cognitive facts float free of 

physics and chemistry; rather, it just entails a recognition that neural networks (and the 

organisms that have them) are embedded in active environments that contribute to their states 

just as much as the behavior of the network’s (proper) parts do, and that the decompositionist 

assumption that an understanding of the parts entails an understanding of the whole need not 

hold in all cases.  In studying organisms as complex systems, we need not reject the vast and 

important insights of traditional decompositionist science (including biology, neuroscience, and 

124 Epigenetics is the study of how factors other than changes in the underlying molecular structure of DNA can 
influence the expression and heritability of phenotypic traits, and encompasses everything from the study of how 
environmental changes can affect the expression of different genes to the exploration of how sets of genes can function 
as regulatory networks within an organism, affecting each others’ behavior and expression in heritable ways without 
actually modifying genotypic code.  As a simple example, consider the way in which restricted calorie diets have been 
shown to modulate the activity of the SIR2/SIRT1 genes in laboratory rats, resulting in longer life-spans without 
change to the actual structure of the genes in question.  See Oberdoerffer et. al. (2008).  The most important point here 
is that these changes can be heritable, meaning that any account of evolution that treats evolution as a process that 
works strictly on genes can’t be the whole story. 
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others)—rather, we need only recognize that system-theoretic approaches supplement (but don’t 

supplant) existing paradigms within the discipline.  The recognition, to put the point another 

way, is not that Pinker was entirely wrong to think that neuronal computation played a central 

role in cognition, but only that his view was too limited—rather than evolution simply operating 

on an unconstrained string of genetic code, it operates in a “highly constrained (occasionally 

discontinuous) space of possible morphologies, whose formation requires acknowledging the 

environmental, material, self-organized and often random processes that appear at different 

scales.”  
125

     The move from an exclusively decompositionist approach to one incorporating both 

decompositionist and holistic work is underway in disciplines other than biology and 

neuroscience.  It’s particularly important for our purposes to note that the peaceful coexistence of 

EMICs with more comprehensive, high-level models (to be discussed in the next chapter) 

requires an appreciation both of the power of decomposition and of its limits.  Surveying all the 

areas in which this type of thinking has made an impact would require far more space than I have 

here, so I will let these two cases—the biological and the climatological—stand on their own, 

and refer the interested reader to the list of references provided here for further exploration of 

complexity theoretic approaches to cognitive science, economics, medicine, engineering, 

computer science, and others.  

4.2.2  Next Steps 

     This quiet conceptual revolution has proceeded more-or-less independently in these 

125 Moreno, Ruiz-Mirazo, & Barandiaran (2011) 
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disciplines until fairly recently.  Increasingly, though, the question of whether there might be 

general principles underlying these cases—principles that deal with how systems of many highly 

connected interactive parts behave, regardless of the nature of those parts—has started to surface 

in these discussions.  This is precisely the question that complexity theory aims to explore: what 

are the general features of systems for which the decompositionist approach fails to capture the 

whole story?  What rigorous methods might we adopt to augment traditional approaches to 

science?  How can we integrate holistic and analytic understanding into a unified scientific 

whole?  These are, I suspect, the questions that will come to define scientific progress in the 21st 

century, and they are questions that climate science—perhaps more than anything else—urgently 

needs to consider.  

     The contribution of EMICs shouldn’t be underestimated: they are very important tools in their 

own right, and they have much to contribute to our understanding of the climate.  Still, though, 

they’re highly specific tools, deliberately designed to apply to a very narrow range of 

circumstances.  EMICs are intentionally limited in scope, and while this limitation can take 

different forms (e.g. spatio-temporal restriction vs. restriction to a single climate sub-system 

considered more-or-less in isolation), it is a defining characteristic of the class of 

models—perhaps the only defining characteristic.  Such a narrow focus is a double-edged sword; 

it makes EMICs far easier to work with than their monstrously complicated big brothers, but it 

also limits the class of predictions that we can reasonably expect to get out of applying them.  If 

we’re going to get as complete a picture of the patterns underlying the time-evolution of the 

Earth’s climate as possible, then we’ll need as many tools as possible at our disposal: low-level 

energy balance models, EMICs, and high-level holistic models.  
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     In the next chapter, we’ll consider problems associated with these holistic models in detail, 

introducing a few of the more pressing puzzles that neither energy balance models nor EMICs 

are capable of resolving, and then surveying how more elaborate models are supposed to meet 

these challenges.  However, high-level climate models (and the methods scientists employ to 

work with them) are not without problems of their own; while they are capable of meeting some 

of the challenges that EMICs cannot meet, they face other challenges that EMICs do not face. 

Let us now turn to the problems that force us to supplement EMICs and examine how high-level 

models are designed and employed. 
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Chapter Five  

Complexity, Chaos, and Challenges in Modeling the Complex Systems 

5.0  A Road Map 

     We concluded the last chapter with something of a cliff-hanger: I argued that while the 

classical scientific method of decomposing systems into their constituent parts and studying the 

behavior of those parts in isolation has been spectacularly successful in the history of science, a 

number of contemporary problems have forced us to look for tools to supplement that approach. 

We saw that both biology and climate science have begun to explore more holistic models, with 

the hope that those perspectives will shed some light on issues that have stymied the 

decompositionalist approach.  The bulk of the last chapter was dedicated to exploring a 

simplified climate model—the zero-dimensional energy balance model—and to articulating the 

physical intuitions behind the mathematics of that model.  Near the end, we discussed the highly 

heterogeneous family of models called “Earth models of intermediate complexity,” and thought 

about the relationship between those models and the concept of dynamical complexity.  I 

suggested that while EMICs shouldn’t be thought of as inferior imitations of more 

comprehensive models, the project of getting a clear understanding of the patterns that underlie 

the global climate will involve recruiting all available tools.  To that end, I would like to spend 

this chapter discussing cutting-edge, high-level climate models, with particular attention to the 

computer simulations in which many of these models are implemented.  This chapter will be the 

first to engage with some of the more controversial aspects of climate science, and will constitute 

a direct response to the critique of climatology as a “cooked up” enterprise—a “science by 
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simulation.” 

     Here’s how things will go.  In Section 5.1, we’ll begin to examine some of the more difficult 

points of climate science, with special attention to features of the global climate system that 

contribute to its high dynamical complexity.  In particular, we’ll focus on two aspects of the 

global climate which, while neither necessary nor sufficient for high dynamical complexity in 

themselves, are characteristic of complex systems: the presence of non-linear feedback 

mechanisms, and the presence of chaotic behavior.  We’ll think about what it means for a system 

to be chaotic, and how the presence of feedback mechanisms (which are represented as 

non-linearities in the mathematics describing the system’s behavior) can contribute to chaos.  I 

shall argue that careful attention to these two factors can shed a tremendous amount of light on 

some of the vagaries of climatology.  We will see that the kind of model we constructed in 4.1 is 

incapable of handling these issues, and will survey some more robust models which attempt to 

come to terms with them. 

     After describing some of the problems endemic to the study of the Earth’s climate (and the 

models designed to solve them), we shall consider how climate scientists meet the 

methodological challenges they face in actually using more sophisticated models.  In Section 5.2, 

we will discuss one of the defining tools in the climatologist’s tool-kit: computer simulation. 

The construction of simulations—computer-solved models designed to be run repeatedly—is a 

methodological innovation common to many complex system sciences; we’ll think about why 

this is the case, and consider the relationship between the challenges presented by non-linearity 

and chaos, and the unprecedented methodological opportunities presented by modern 

supercomputers.  I will argue that while “science by simulation” is an absolutely indispensable 
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approach that climate science must take advantage of, it also comes with its own set of novel 

pitfalls, which must be carefully marked if they are to be avoided.  More specifically, I argue that 

careful attention to the nature of chaos should force us to attend to the limitations of science by 

simulation, even in ideal conditions.  It is worth emphasizing that these limitations are just that, 

though: limitations, and not absolute barriers.  Popular dissatisfaction with the role that 

computational models play in climate sciences is largely a result of conflating these two notions, 

and even some people who ought to know better sometimes confuse the existence of chaos with 

the impossibility of any significant forecasting.  We’ll think about the nature of the limitations 

imposed by chaos (especially in light of the method of computational model building), and see 

how those general limitations apply to climate science.  Finally, I’ll argue that even with these 

limitations taken into account, the legitimate predictions made by climate science have serious 

implications for life on Earth. 

5.1  The Challenges of Modeling Complexity 

     Individual special sciences have been increasingly adopting the concepts and methods of 

complexity theory, but this adoption has been a piecemeal response to the failures of the 

decompositionalist method in individual domains.  So far, there exists little in the way of an 

integrative understanding of the methods, problems, or even central concepts underlying the 

individual approaches.  Given the highly practical nature of science, this should not be terribly 

surprising: science does the best with the tools it has, and creates new tools only in response to 

new problems.  The business of science is to figure out patterns in how the world changes over 

time, and this business requires a degree of specialized knowledge that makes it natural to focus 

on the trees rather than the forest (unless you happen to be working in forestry science).  As a 
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result, we’re at one of those relatively unusual (so far) junctures where there is genuinely 

important multidisciplinary conceptual clarification waiting to be done.  

    We’ve been in this situation before.  The mechanistic revolution of the scientific 

enlightenment forced us to confront the question of how humanity might fit into a world that was 

fundamentally physical, leading to an explosion of new philosophical ideas about man and his 

place in nature.  More recently, the non-classical revolution in the early 20th century forced us to 

refine concepts that we’d taken to be rock-solid in our conception of the world, and the 

philosophical implications of quantum mechanics and relativity are still being fought out in ways 

that are actually relevant to the progress of science.   There is similar room for conceptual work 126

here.  The time is ripe for philosophical analysis, which makes it all the more distressing that so 

little philosophical attention has been paid to the topic of complexity. 

     One of the consequences of the piecemeal way in which complexity-theoretic considerations 

have taken hold in the special sciences is that there’s a good deal of confusion about how to use 

some of the central concepts.  It is instructive to note that many of the same terms (e.g. 

“emergence,” “self-organized,” “chaotic”) show up in complexity-motivated discussions of very 

diverse sciences, and there’s surely a sense in which most variations of those terms show a kind 

of family resemblance.  Still, the fact that they are often defined with a specific context in mind 

means that it is not always easy to explicitly state the common core of these important terms as 

126 The question of how to interpret the formalism of non-relativistic quantum mechanics, for instance, still hasn’t been 
answered to the satisfaction of either philosophers or physicists.  Philosophical attention to the measurement problem in 
the mid-20th century led directly to the overthrow of the Copenhagen Interpretation, and (more recently) to work on 
decoherence and einselection (e.g. Zurek [2003]).  For an accessible survey of some of the ways in which philosophical 
thinking has contributed to physics in the 20th century, see Maudlin (2007).  For examples of excellent current work in 
these areas, see Wallace (2011) and (2009), as well as Albert (2000). 
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they appear across disciplines.  Articulating this common core in a systematic way is one of the 

most important foundational contributions that remains to be made, as it will provide a common 

language in which scientists interested in complexity (but trained in different disciplines) can 

come together to discuss their work.  Doing this ground-clearing work is also a necessary 

precursor to the more daunting task of defining complexity itself.  While I cannot hope to 

disentangle all the relevant concepts here, I would like to now turn to an examination of two of 

the most important for our purposes: non-linearity and chaos.  Where our discussions of 

complexity have thus far been principally focused on defining complexity, this section focuses 

on the practical challenges of actually working with dynamically complex systems.  We would 

do well to keep the distinction between these two lines of discussion clear in our minds, 

though—while the issues we’ll be discussing in this chapter are characteristic of complex 

systems, they are not definitive of them.  That is, neither non-linearity nor chaos (nor the 

conjunction of the two) is sufficient for dynamical complexity . 127

5.1.1 Non-Linearity 

     Before we can tackle what it means to say that a system’s behavior is non-linear, we need to 

get some basic terminology under our belt.  Complex systems theory is built largely on the back 

of a more general approach to scientific modeling called dynamical systems theory, which deals 

127 Whether or not either of these two features is a necessary feature of dynamically complex systems is a more 
complicated question.  As we shall see, both non-linearity and chaos are best understood as properties of particular 
models rather than of systems themselves.   Dynamically complex systems are (by definition) those which admit of 
sensible and useful consideration from a large variety of different perspectives; many interesting dynamically complex 
systems might exhibit chaotic behavior from some perspectives but not others.  We should resist the temptation to even 
consider the question of whether systems like that are “really” chaotic or not in just the same way that we should resist 
the temptation to generally privilege one set of real patterns describing a system’s time-evolution over the others. 
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with the creation of mathematical models describing change (“dynamics”) in parts of the world 

(“systems”) as time progresses.  For our purposes, a few of the methods of dynamical systems 

theory (DyST) are particularly worth flagging.  

     First, it’s important to note that DyST takes change as its primary object of interest.  This 

might seem obvious given the name of the field, but it is vital that we appreciate the degree to 

which this assumption colors the DyST approach to scientific model-building.  Rather than 

focusing on particular instantaneous states of systems—say, the position and momentum of each 

particle in a box of gas, or particular weather-states (the like of which were the focus of the 

qualitative approach to weather forecasting discussed in Chapter Four)—DyST focuses on 

ensembles of states that describe a system over some time period, not just at a single instant.  The 

central mathematical tool of DyST is an equation that describes how different physical quantities 

of a system (e.g. force, mass, and velocity in Newtonian physics; populations of predator animals 

and prey animals in ecology; presence and concentration of certain atmospheric chemicals and 

global temperature in climatology) vary in relation to one another over time.  That is, DyST is 

concerned with modeling how physical quantities differ with respect to one another at different 

times in a system’s lifetime—in most systems, this is accomplished through the use of 

differential equations, which describe how variables change in response to one another .  The 128

familiar Newtonian equation of motion (F = ma) is a simple differential equation, as it relates the 

128 Strictly speaking, differential equations are only applicable to systems in which the values in question can be 
modeled as varying continuously.  In discrete-time systems, a separate (but related) mathematical tool called a 
difference equation must be used.  For our purposes here, this distinction is not terribly important, and I will restrict the 
rest of the discussion to cases where continuous variation of quantities is present, and thus where differential equations 
are the appropriate tool. 
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change in velocity  (acceleration) to other quantities of interest (force and mass) in physical 129

systems. 

     We can think of a system of interest (for example, a box of gas) as being represented by a 

very large space of possible states that the system can take.  For something like a box of gas, this 

space would be composed of points, each of which represents the specific position and velocity 

of each molecule in the system.   For Newtonian systems like gasses, this space is called a 130

phase space.  More generally, a space like this—where the complete state of a system at a 

particular time is represented by a single point—is called a configuration space or state space. 

Since DyST is concerned with modeling not just a system at a particular time (but rather over 

some stretch of time), we can think of a DyST model as describing a path that a system takes 

through its state space.  The succession of points represents the succession of states that the 

system goes through as it changes over time. 

     Given a configuration space and a starting point for a system, then, DyST is concerned with 

watching how the system moves from its starting position.  The differential equations describing 

the system give a kind of “map”—a set of directions for how to figure out where the system will 

go next, given a particular position.  The configuration space and the differential equations work 

together as a tool-kit to model the behavior of the system in question over time.  The differential 

129 Of course, velocity too is a dynamical concept that describes the change in something’s position over time.  The 
Newtonian equation of motion is thus a second order differential equation, as it describes not just a change in a basic 
quantity, but (so to speak) the change in the change in a basic quantity. 
130 This means that for a system like that, the space would have to have 6n dimensions, where n is the number of 
particles in the system.  Why six?  If each point in our space is to represent a complete state of the system, it needs to 
represent the x, y, and z coordinates of each particle’s position (three numbers), as well as the x, y, and z coordinates of 
each particle’s velocity (three more numbers).  For each particle in the system, then, we must specify six numbers to get 
a complete representation from this perspective. 

153 



 

equation describes how interesting quantities (e.g. position and velocity) of the system change, 

and the configuration space is a representation of all the different possible values those quantities 

can take.  The advantage of this approach should be obvious: it lets us reduce difficult questions 

about how complicated systems behave to mathematically-tractable questions about tracing a 

path through a space according to a rule.  This powerful modeling tool is the heart of DyST. 

     Some systems can be modeled by a special class of differential equations: linear differential 

equations.  Intuitively, a system’s behavior can be modeled by a set of linear differential 

equations if: (1) the behavior of the system is (in a sense that we shall articulate more precisely 

soon) the sum of the behavior of the parts of the system, and (2) the variables in the model of the 

system vary with respect to one another at constant rates .  (1)  should be relatively familiar: 131

it’s just the decompositionalist assumption  we discussed back at the end of Chapter Four! 132

This assumption, as we saw, is innocuous in many cases.  In the case of a box of gas, for 

example, we could take the very long and messy differential equation describing how all the 

trillions of molecules behave together and break it up into a very large collection of equations 

describing the behavior of individual molecules, and (hopefully) arrive at the very same 

predictions.  There’s no appreciable  interaction between individual molecules in a gas, so 133

131 In mathematical jargon, these two conditions are called “additivity” and “degree 1 homogeneity,” respectively.  It 
can be shown that degree 1 homogeneity follows from additivity given some fairly (for our purposes) innocuous 
assumptions, but it is heuristically useful to consider the two notions separately.  
132 Ladyman,  Lambert, & Wiesner (2011) quite appropriately note that “a lot of heat and very little light” has been 
generated in philosophical treatments of non-linearity.  In particular, they worry about Mainzer (1994)’s claim that 
“[l]inear thinking and the belief that the whole is only the sum of its parts are evidently obsolete” (p. 1).  Ladyman, 
Lambert, & Wiesner reasonably object that very little has been said about what non-linearity has to do with ontological 
reductionism, or what precisely is meant by “linear thinking.”  It is precisely this sort of murkiness that I am at pains to 
dispel in the rest of this chapter. 
133 Fans of Wikipedia style guidelines might call “appreciable” here a “weasel-word.”  What counts as an appreciable 
interaction is, of course, the really difficult question here.  Suffice it to say that in practice we’ve found it to be the case 
that assuming no interaction between the molecules here gives us a model that works for certain purposes.  A whole 
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breaking the system apart into its component parts, analyzing the behavior of each part, and then 

taking the system to be (in some sense) the “sum” of that behavior should yield the same 

prediction as considering the gas as a whole. 

     It’s worth briefly considering some of the technicalities behind this condition.  Strictly 

speaking, the additvity condition on linearity makes no reference to “parts,” as it is a condition 

on equations, not physical systems being modeled by equations.  Rather, the condition demands 

that given any set of valid solutions to the equation describing the behavior of the system, the 

linear combination of those solutions is itself a solution.  This formal statement, though more 

precise, runs the risk of obfuscating the physical (and philosophical) significance of linearity, so 

it is worth thinking more carefully about this condition with a series of examples. 

     Linearity is sometimes referred to as “convexity,” especially in discussions that are grounded 

in set-theoretic ways of framing the issue .  In keeping with our broadly geometric approach to 134

thinking about these issues, this is perhaps the most intuitive way of presenting the concept. 

Consider, for instance, the set of points that define a sphere in Euclidean space.  This set is 

convex (in both the ordinary sense and the specialized sense under consideration here), since if 

we take any two points that are inside the sphere, then the linear combination—the weighted 

average of the two points—is also inside the sphere.  Moreover, the line connecting the two 

points will be inside the sphere, the triangle defined by connecting any three points will lie 

entirely inside the sphere, and so on.  More formally, we can say that a set of points is convex if 

separate paper could be written on the DyST account of these ceteris paribus type hedges, but we shall have to set the 
issue aside for another time. 
134 For a nice case-study in the benefits of framing discussions of non-linearity in terms of convexity, see Al-Suwailem 
(2005)’s discussion of non-linearity in the context of economic theory and preference-ranking. 
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for all points xi in the set,  

    x ∑
 

 
ai i  5(a) 

is also in the set as long as 

                                                                                         5(b)   ∑
 

 
ai = 1  

 

(2) is necessary to ensure that the summation in (1) is just a weighted average of the values of the 

points, otherwise we could always define sets that were outside the initial set just by multiplying 

the points under consideration by arbitrarily large values.  It’s easy to see that while the set of 

points defining a sphere is convex, the set of points defining a torus—a donut shape—is not. 

Two points can be inside the set, while their weighted average--the line connecting them--is 

outside the set (think of two points on either side of the “hole” in the middle of a donut, for 

instance). 

     Why is this particular sort of geometric structure relevant to our discussion here?  What is it 

about sets that behave like spheres rather than like donuts that make them more well-behaved 

mathematical representations of physical systems?  We’ll return to that question in just a 

moment, but first let’s briefly examine the other way of articulating the linearity condition—(2) 

described above.  Ultimately, we shall see that these two conditions are, at least in most cases of 

relevance to us, just different ways of looking at the same phenomenon.  For the moment, 

though, it is dialectically useful to examine each of the two approaches on its own.  
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     The second condition for linearity given above is a condition not on the relationship between 

the parts of the system, but on the relationship between the quantities described by the 

differential equation in question.  (2) demands that the way that the quantities described by the 

equation vary with respect to one another remain constant.  To get a sense of what that means, 

it’s probably easiest to think about some cases where the requirement holds, and then think about 

some cases where the requirement doesn’t hold.  Suppose you’re walking on a treadmill, and 

want to vary the speed at which the belt is moving so that you walk more quickly or more 

slowly.  You can do this by pressing the up and down arrows on the speed control; each time you 

press one of the arrows, the speed of the belt will change by (say) .1 MPH.  This is an example of 

a variation that satisfies condition (2).  We could write down a simple differential equation 

relating two quantities: the number of times you’ve pressed each button, and the speed at which 

the treadmill’s belt is moving.  No matter how many times you press the button, though, the 

value of the button press will remain constant: the amount by which pressing the up arrow varies 

the speed doesn’t depend on how many times you’ve pressed the button, or on how fast the 

treadmill is already turning.  Whether you’re walking slowly at one mile per hour or sprinting at 

15 miles per hour, pressing that button will always result in a change of .1 mile per hour. 

Condition (2) is satisfied.  135

     OK, with an understanding of what a system must look like in order to be linear, let’s think 

about what sorts of systems might fail to satisfy these requirements.  Let’s return to the treadmill 

135 Actually, this case satisfies both conditions.  We’ve just seen how it satisfies (2), but we could also break the system 
apart and consider your “up arrow” presses and “down arrow” presses independently of one another and still calculate 
the speed of the belt.  Treadmill speed control is a linear system, and this underscores the point that conditions (1) and 
(2) are not as independent as this presentation suggests. 
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example again, and think about how it might be designed so that it fails to satisfy (2).  Suppose 

that we were designing a treadmill to be used by Olympic sprinters in training.  We might decide 

that we need fine-grained speed control only at very high speeds, and that it’s more important for 

the athletes to get up to sprint speed quickly than to have fine control over lower speeds.  With 

that in mind, we might design the treadmill such that if the speed is less than (say) 10 MPH, each 

button press increments or decrements the speed by 2 MPH.  Once the speed hits 10 MPH, 

though, we need more fine grained control, so each button press only changes the current speed 

by 1 MPH.  At 15 MPH, things get even more fine grained, and each press once again changes 

things by .1 MPH.  In this case, condition (2) is not satisfied: the relationship between the 

quantities of interest in the system (number of button presses and speed of the belt) doesn’t vary 

at a constant rate.  Just knowing that you’ve pressed the “up arrow” button three times in the last 

minute is no longer enough for me to calculate how much the speed of the belt has changed: I 

need to know what the starting speed was, and I need to know how the relationship between 

button presses and speed changes varies with speed.  Predicting the behavior of systems like this 

is thus a bit more complicated, as there is a higher-order relationship present between the 

changing quantities of the system. 

5.1.2  Two Illustrations of Non-Linearity 

     The logistic function for population growth in ecology is an oft-cited example of a real-world 

non-linear system.  The logistic function models the growth of a population of individuals as a 

function of time, given some basic information about the context in which the population exists 

(e.g. the carrying-capacity of the environment).  One way of formulating the equation is: 
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                                     N  (1 )dt
dN = r −  K

N                   5(c) 

     N represents the number of individuals in the population, r represents the relative rate at 

which the members of the population reproduce when unchecked, and K represents the carrying 

capacity of the environment.  Though quite simple, the logistic equation displays quite 

interesting behavior across a wide spectrum of circumstances.  When N is low—when there are 

relatively few members of a population—growth can proceed almost unchecked, as the first term 

on the right side of the equation dominates.  As the population grows in size, though, the value of 

 increases, making the carrying capacity of the environment—how many (say) deer the woodsK
N  

can support before they begin to eat themselves out of house and home—becomes increasingly 

important. Eventually, the contribution of   outpaces the contribution of rN, putting a check onK
N  

population growth.  More sophisticated versions of the logistic equation—versions in which, for 

instance, K itself varies as a function of time or even as a function of N—show even stronger 

non-linear behavior.   It is this interrelationship between the variables in the equation that 136

makes models like this one non-linear.  Just as with the Olympian treadmill we described above, 

the values of the relevant variables in the system of differential equations describing the system 

depend on one another in non-trivial ways; in the case of the treadmill, the value of a 

button-press varies with (and affects) the speed of the belt, and in the case of the logistic 

equation, the rate of population growth varies with (and affects) extant population.  This general 

136 Consider, for instance, a circumstance in which the carrying capacity of an environment is partially a function of 
how much food is present in that environment, and in which the quantity of food available is a function of the present 
population of another species.  This is often the case in predator-prey models; the number of wolves an environment 
can support partially depends on how many deer are around, and the size of the deer population depends both on how 
much vegetation is available for the deer to eat and on how likely an individual deer is to encounter a hungry wolf 
while foraging. 
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behavior—the presence of feedbacks—is characteristic of non-linear systems.  

     Let us consider a more realistic concrete example by way of illustration: the relationship 

between material wealth and subjective utility.  On the face of it, we might assume that the 

relationship between these two quantities is linear, at least in most cases.  It seems reasonable, 

that is, to think that getting $10 would not only leave you with more utility--make you 

happier--than getting $5 would, but also that it would leave you with twice as much utility. 

Empirical investigation has not supported this idea, though, and contemporary economic theory 

generally holds that the relationship between wealth and utility is non-linear. 

     This principle, called the principle of diminishing marginal utility, was originally developed 

as a response to the St. Petersburg Paradox of decision theory.  Consider a casino game in which 

the pot begins at a single dollar, and a fair coin is tossed repeatedly.  After each toss, if the coin 

comes up heads the quantity of money in the pot is doubled.  If the coin comes up tails, the game 

ends and the player wins whatever quantity is in the pot (i.e. a single dollar if the first toss comes 

up tails, two dollars if the second toss comes up tails, four if the third toss comes up tails, &c.). 

The problem asks us to consider what a rational gambler ought to be willing to pay for the 

privilege of playing the game.  On the face of it, it seems as if a rational player ought to be 

willing to pay anything less than the expected value of a session of the game--that is, if the 

player wants a shot at actually making some money, she should be willing to pay the casino 

anything less than the sum of all the possible amounts of money she could win, each multiplied 

by the probability of winning that amount.  The problem is that the value of this sum grows 

without bound: there is a probability of one-half that she will win one dollar, probability 

one-fourth that she’ll win two dollars, probability one-eighth that she’ll win four dollars, &c. 
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More formally, the probability of winning n dollars is  and so the overall expected value ofn
2n  

playing the game (assuming that the house has unlimited resources and will allow the game to 

continue until a flip comes up tails) is given by: 

                                                           ∑
∞

1
2
1                                               5(d) 

     If the amount of money that our gambler should be willing to pay to play a game is 

constrained only by the demand that it be less than the expected return from the game, then this 

suggests that she should pay any finite amount of money for a chance to play the game just once. 

That seems very strange.  While there are a number of solutions to this problem, the one of most 

immediate interest to us was proposed in Bernoulli (1738).   Bernoulli suggested that we ought 137

to think of utility gained from the receipt of a quantity of some good (in this case money) as 

being inversely proportional to the quantity of that same good already possessed.  He justifies 

this by pointing out that  

The price of the item is dependent only on the thing itself and is equal for everyone; the 
utility, however, is dependent on the particular circumstances of the person making the 
estimate. Thus there is no doubt that a gain of one thousand ducats is more significant to 
a pauper than to a rich man though both gain the same amount  138

Bernoulli’s original suggestion of this fairly straightforward (albeit still non-linear) relationship 

between wealth and utility has been refined and expanded by a number of thinkers.   The 139

137 Translation by Sommer (1954). 
138 Op. cit., pp. 158-159 
139 The principle of diminishing marginal utility was developed by a number of economists over the course of several 
decades, and continues to be refined to this day.  See, for example, Menger (1950), Bohm-Bawerk (1955), and 
McCulloch (1977).  While the originators of this principle (particularly Menger and Bohm-Bawerk) were associated 
with the Austrian school of economics, diminishing marginal utility has found its way into more mainstream 
neoclassical economic theories (Kahneman and Deaton, 2010). 
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failure of variations in utility to be tied linearly to variations in wealth, though, can be 

understood as a failure of condition (2) from Section 5.1.1—the wealth/utility relationship is like 

the Olympic treadmill.    More recently, empirical work in the social sciences has gone even 

further.  Kahneman and Deaton (2010) argue that utility (or, as they put it, “emotional 

well-being”) increases with the logarithm of wealth, but only up to a point.  On their account, 

plotting the relationship between utility and wealth yields a strongly concave function, which is 

what we ought to expect.  However, they also argue that there is a leveling off point in the 

function, beyond which “there is no improvement whatever in any of the three measures of 

emotional well-being .” 140

     Of course, it is worth noting that Kahneman and Deaton’s investigation involved observation 

only of residents of the United States.  Interestingly, as Kahneman and Deaton point out, the 

mean income in the United States at the time in which they conducted their research was just 

under $72,000: very close to the mark at which they observed the disappearance of any impact of 

increased income on emotional well-being.   There is at least some reason to think that this is 141

not entirely a coincidence.  McBride (2001) argues that the impact of changes in wealth on an 

agent’s subjective utility depends not just on how much wealth the subject already possesses, but 

also on wealth possessed by others in the agent’s social circles.  That is, being wealthier than 

those around you might itself have a positive impact on your subjective utility--an impact that is 

at least partially independent of the absolute quantity of wealth you possess.  McBride found that 

people are made happier by being the richest people in a poorer neighborhood, and that 

increasing their wealth (but moving them to a cohort where they’d be among the poorest 

140 Kahneman and Deaton (2010), p. 16491 
141 Op. cit., p. 16492 
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members) might result in a decrease in subjective utility!  This hints at what might be partial 

explanation for the effect described by Kahneman and Deaton: being less wealthy than average is 

itself a source of negative subjective utility.  

     This suggests that the relationship between wealth and utility also fails to satisfy condition (1) 

from Section 5.1.1.  Given a group of people (neighbors, for instance), the differential equations 

describing the change in utility of members of the group relative to their changes in wealth will 

resist decomposition, because their utilities are a function not just of their own wealth, but of the 

wealth of other members of the community as well.  By decomposing the system into component 

parts, we would miss this factor, which means that even if we took the principle of diminishing 

marginal utility into account in our calculations, the decompositionalist approach would still fail 

to capture the actual dynamics of the overall system.  A more holistic approach is required. 

     This suggests an important lesson for the study of natural systems in which non-linearities 

play a significant role: the presence of unexpected feedback and variable degrees of mutual 

influence between different components of a system might well mean that attempts to model the 

system’s behavior by way of aggregating models of the components are, if not exactly doomed to 

failure, at least of very limited use.  We must be extraordinarily careful when we attempt to tease 

general predictions about the future of the global climate out of families of EMICs for precisely 

this reason.  We shall return to this point in  Section 5.2, but first let us turn our attention to the 

other central challenge to be discussed here: chaotic behavior. 
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5.1.3  Chaos 

     Like non-linearity, chaos is best understood as a dynamical concept—a feature of how 

systems changed over time that is represented by certain conditions on the DyST models of those 

systems.  Chaos has played an increasingly central role in a number of sciences since the coinage 

of the term “butterfly effect” in the mid 20th century as a response to Lorenz (1963) .  Indeed, 142

the evocative idea of the butterfly effect—that idea that the flapping of a butterfly’s wings on one 

side of the world can lead to a hurricane on the other side of the world days later—has percolated 

so thoroughly into popular culture that the broad strokes of the concept are familiar even to many 

laypeople.  Still, the specifics of the concept are often misunderstood, even by many 

philosophers of science.  In particular, chaotic systems are sometimes thought to be 

indeterministic, a mistake which has the potential to create a great deal of confusion.  Let’s think 

things through slowly, and add on the formalism as we get a better handle on the concept. 

     Let’s start here: suppose that it is in fact true that the flapping of a butterfly’s wings in 

Portugal can spawn a hurricane off the coast of Mexico days later.  Here’s a question that should 

immediately jump out at us: under what conditions does something like this happen?  Clearly, it 

cannot be the case that every butterfly’s flapping has this sort of catastrophic effect, as there are 

far more butterfly flaps than there are hurricanes.  That is, just saying that a tiny change (like a 

flap) can cause a big change (like a hurricane) doesn’t tell us that it will, or give us any 

information about what the preconditions are for such a thing to happen.  This point is worth 

142Lorenz (1963) never employs this poetic description of the effect, and the precise origin of the phrase is somewhat 
murky.  In 1972, Lorenz delivered an address to the American Association for the Advancement of Science using the 
title “Does the Flap of a Butterfly’s Wings in Brazil Set Off a Tornado in Texas?”  The resemblance between the 
Lorenz system’s state space graph (Figure 2) and a butterfly’s wings is likely not coincidental. 
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emphasizing: whatever a chaotic system is, it is not a system where every small change 

immediately “blows up” into a big change after a short time.  We’ll need to get more precise. 

     Let’s stick with the butterfly effect as our paradigm case, but now consider things from the 

perspective of DyST.  Suppose we’ve represented the Earth’s atmosphere in a state space that 

takes into account the position and velocity of every gas molecule on the planet.  First, consider 

the trajectory in which the nefarious butterfly doesn’t flap its wings at some time t1, and the 

hurricane doesn’t develop at a later time t2.  This is a perfectly well-defined path through the 

state space of the system that can be picked out by giving an initial condition (starting point in 

the space), along with the differential equations describing the behavior of the air molecules. 

Next, consider the trajectory in which the butterfly does flap its wings at t1, and the hurricane 

does develop at t2.  What’s the relationship between these two cases?  Here’s one obvious 

feature: the two trajectories will be very close together in the state space at t1—they’ll differ only 

with respect to the position of the few molecules of air that have been displaced by the 

butterfly’s wings—but they’ll be very far apart at t2.  Whatever else a hurricane does, it surely 

changes the position and velocity of a lot of air molecules (to say the least!).  This is an 

interesting observation: given the right conditions, two trajectories through state space can start 

off very close together, then diverge as time goes on.  This simple observation is the foundation 

of chaos theory. 

     Contrast this case with the case of a clearly non-chaotic system: a pendulum, like the arm on a 

grandfather clock.  Suppose we define a state space where each point represents a particular 

angular velocity and displacement angle from the vertical position for the pendulum.  Now, look 

at the trajectory that the pendulum takes through the state space based on different initial 
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conditions.  Suppose our initial condition consists in the pendulum being held up at 70 degrees 

from its vertical position and released.  Think about the shape that the pendulum will trace 

through its state space as it swings.  At first, the angular velocity will be zero (as the pendulum is 

held ready).  As the pendulum falls, its position will change in an arc, so its angular displacement 

will approach zero until it hits the vertical position, where its angular velocity will peak.  The 

pendulum is now one-quarter of the way through a full period, and begins its upswing.  Now, its 

angular displacement starts to increase (it gets further way from vertical), while its angular 

momentum decreases (it slows down).  Eventually, it will hit the top of this upswing, and pause 

for a moment (zero angular velocity, high angular displacement), and then start swinging back 

down.  If the pendulum is a real-world one (and isn’t being fed by some energy source), it will 

repeat this cycle some number of times.  Each time, though, its maximum angular displacement 

will be slightly lower—it won’t make it quite as high—and its maximum angular velocity (when 

it is vertical) will be slightly smaller as it loses energy to friction.  Eventually it will come to rest. 

     If we plot behavior in a two-dimensional state space (with angular displacement on one axis 

and angular momentum on the other), we will see the system trace a spiral-shaped trajectory 

ending at the origin.  Angular velocity always falls as angular displacement grows (and 

vice-versa), so each full period will look like an ellipse, and the loss of energy to friction will 

mean that each period will be represented by a slightly smaller ellipse as the system spirals 

toward its equilibrium position of zero displacement and zero velocity: straight up and down, and 

not moving.  See Figure 5.1 for a rough plot of what the graph of this situation would look like in 

a state-space for the pendulum. 
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Fig. 5.1 

 

     Now, consider the difference between this case and a case where we start the pendulum at a 

slightly smaller displacement angle (say, 65 degrees instead of 70).  The two trajectories will (of 

course) start in slightly different places in the state space (both will start at zero angular velocity, 

but will differ along the other axis).  What happens when you let the system run this time? 

Clearly, the shape it traces out through the state space will look much the same as the shape 

traced out by the first system: a spiral approaching the point (0,0).  Moreover, the two 

trajectories should never get further apart, but rather will continue to approach each other more 

and more quickly as they near their point of intersection .  The two trajectories are similar 143

enough that it is common to present the phase diagram like Figure 5.1: with just a single 

trajectory standing in for all the variations.  Trajectories which all behave similarly in this way 

are said to be qualitatively identical.  The trajectories for any initial condition like this are 

sufficiently similar that we simplify things by just letting one trajectory stand in for all the others 

143 This is a defining characteristic of dissipative systems.  Conservative systems—undamped pendulums that don’t lose 
energy to friction—will feature trajectories that remain separate by a constant amount. 
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(this is really handy when, for instance, the same system can show several different classes of 

behavior for different initial conditions, and keeps the phase diagram from becoming too 

crowded) .  144

     Contrast this to the butterfly-hurricane case from above, when trajectories that started very 

close together diverged over time; the small difference in initial conditions was magnified over 

time in one case, but not in the other.  This is what it means for a system to behave chaotically: 

small differences in initial condition are magnified into larger differences as the system evolves, 

so trajectories that start very close together in state space need not stay close together. 

     Lorenz (1963) discusses a system of equations first articulated by Saltzman (1962) to describe 

the convective transfer of some quantity (e.g. average kinetic energy) across regions of a fluid: 

                               (5e)dt
dx σ(y )=  − x  

                                                                     (5f) x  (ρ ) dt
dy =  − z − y   

                                                                             (5g) xy βzdt
dz =  −   

     In this system of equations, x, y, and z represent the modeled system’s position in a 

three-dimensional state space   represents the intensity of convective motion, while , , andσ ρ  145

 are parameterizations representing how strongly (and in what way) changes in each of theβ  

144 Indeed, even our pendulum is like this!  There is another possible qualitatively identical class of trajectories that’s 
not shown in Figure 1.  Think about what would happen if we start things not by dropping the pendulum, but by giving 
it a big push.  If we add in enough initial energy, the angular velocity will be high enough that, rather than coming to 
rest at the apex of its swing toward the other side and dropping back down, the pendulum will continue on and spin 
over the top, something most schoolchildren have tried to do on playground swings.  Depending on the initial push 
given, this over-the-top spin may happen only once, or it may happen several times.  Eventually though, the behavior of 
the pendulum will decay back down into the class of trajectories depicted here, an event known as a phase change.  
145 Precisely what this means, of course, depends on the system being modeled.  In Lorenz’s original discussion, x 
represents the intensity of convective energy transfer, y represents the relative temperature of flows moving in opposite 
directions, and z represents the the degree to which (and how) the vertical temperature profile of the fluid diverges from 
a smooth, linear flow. 

168 



 

state variables are connected to one another. 

     The important feature of Lorenz’s system for our discussion is this: the system exhibits 

chaotic behavior only for some parameterizations.  That is, it’s possible to assign values to , ,σ ρ  

and such that the behavior of the system in some sense resembles that of the pendulumβ  

discussed above: similar initial conditions remain similar as the system evolves over time.  This 

suggests that it isn’t always quite right to say that systems themselves are chaotic.  It’s possible 

for some systems to have chaotic regions in their state spaces such that small differences in 

overall state not when the system is initialized, but rather when (and if) it enters the chaotic 

region are magnified over time.  That is, it is possible for a system’s behavior to go from 

non-chaotic (where trajectories that are close together at one time stay close together) to chaotic 

(where trajectories that are close together at one time diverge) .  Similarly, it is possible for 146

systems to find their way out of chaotic behavior.  Attempting to simply divide systems into 

chaotic and non-chaotic groups drastically over-simplifies things, and obscures the importance of 

finding predictors of chaos—signs that a system may be approaching a chaotic region of its state 

space before it actually gets there .  147

     Another basic issue worth highlighting is that chaos has absolutely nothing to do with 

indeterminism: a chaotic system can be deterministic or stochastic, according to its underlying 

dynamics.  If the differential equations defining the system’s path through its state space contain 

146 The Phillips curve in economics, which describes the relationship between inflation and unemployment, is a good 
real-world example of this.  Trajectories through economic state space described by the Phillips curve can fall into 
chaotic regions under the right conditions, but there are also non-chaotic regions in the space.  
147 A number of authors have succeeded in identifying the appearance of a certain structure called a “period-doubling 
bifurcation” as one predictor of chaotic behavior, but it is unlikely that it is the only such indicator.  
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no probabilistic elements, then the system will be deterministic.  Many (most?) chaotic systems 

of scientific interest are deterministic.  The confusion here stems from the observation that the 

behavior of systems in chaotic regions of their state space can be difficult to predict over 

significant time-scales, but this is not at all the same as their being non-deterministic.  Rather, it 

just means that the more unsure I am about the system’s exact initial position in state space, the 

more unsure I am about where it will end up after some time has gone by.  The behavior of 

systems in chaotic regions of their state space can be difficult to forecast in virtue of uncertainty 

about whether things started out in exactly one or another condition, but that (again) does not 

make them indeterministic.  Again, we will return to this in much greater detail in Section 3 once 

we are in a position to synthesize our discussions of chaos and path-dependence. 

     Exactly how hard is it to predict the behavior of a system once it finds its way into a chaotic 

region?  It’s difficult to answer that question in any general way, and saying anything precise is 

going to require that we at least dip our toes into the basics of the mathematics behind chaotic 

behavior.  We’ve seen that state space trajectories in chaotic region diverge from one another, 

but we’ve said nothing at all about how quickly that divergence happens.  As you might expect, 

this is a feature that varies from system to system: not all chaotic behavior is created equal.  The 

rate of divergence between two trajectories is given by a particular number—the Lyapunov 

exponent—that varies from system to system (and from trajectory to trajectory within the system

).  The distance between two trajectories x0 → xt and y0 → yt at two different times can, for any 148

148 Because of this variation—some pairs of trajectories may diverge more quickly than others—it is helpful to also 
define the maximal Lyapunov exponent (MLE) for the system.  As the name suggests, this is just the largest Lyapunov 
exponent to be found in a particular system.  Because the MLE represents, in a sense, the “worst-case” scenario for 
prediction, it is standard to play it safe and use the MLE whenever we need to make a general statement about the 
behavior of the system as a whole.  In the discussion that follows, I am referring to the MLE unless otherwise specified. 
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given system, be expressed as: 

 x | e |x || t − yt =  λt
0 − y0                                          5(h) 

 

where λ is the “Lyapunov exponent,” and quantifies the rate of divergence.  The time-scales at 

which chaotic effects come to dominate the dynamics of the system, then depend on two factors: 

the value of the Lyapunov exponent, and how much divergence we’re willing to allow between 

two trajectories before we’re willing to consider it significant.  For systems with a relatively 

small Lyapunov exponent, divergence at short timescales will be very small, and will thus likely 

play little role in our treatment of the system (unless we have independent reasons for requiring 

very great precision in our predictions).  Likewise, there may be cases when we care only about 

whether the trajectory of the system after a certain time falls into one or another region of state 

space, and thus can treat some amount of divergence as irrelevant. 

     This point is not obvious but it is very important; it is worth considering some of the 

mathematics in slightly more detail before we continue on.  In particular, let’s spend some time 

thinking about what we can learn by playing around a bit with the definition of a chaotic system 

given above.  

     To begin, let D be some neighborhood on ℛn such that all pairs of points  iff , y ∈ D< x0  0 >   

                                                                5(i)x | ≤  ε| 0 − y0  

That is, let D be some neighborhood in an n-dimensional space such that for all pairs of points 

that are in D, the distance between those two points is less than or equal to some small value 

epsilon.  If ℛn is the state space of some dynamical system S with Lyapunov exponent λ, then 
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combining (5) and (6) lets us deduce 

 

                                 ∀(t > 0) :       5(j) , y ∈ D< xt  t >  x y | ≤  ε(e )| t −  t
λt  

     In other (English) words, if the space is a state space for some dynamical system with chaotic 

behavior, then for all times after the initialization time, the size of the smallest neighborhood that 

must include the successors to some collection of states that started off arbitrarily close together 

will increase as a function of the fastest rate at which any two trajectories in the system could 

diverge (i.e. the MLE) and the amount of time that has passed (whew!).  That’s a mouthful, but 

the concepts behind the mathematics are actually fairly straightforward.  In chaotic systems, the 

distance between two trajectories through the state space of the system increases exponentially as 

time goes by—two states that start off very close together will eventually evolve into states that 

are quite far apart.  How quickly this divergence takes place is captured by the value of the 

Lyapunov exponent for the trajectories under consideration (with the “worst-case” rate of 

divergence defining the MLE).  Generalizing from particular pairs of trajectories, we can think 

about defining a region in the state space.  Since regions are just sets of points, we can think 

about the relationship between our region’s volume at one time and the smallest region 

encompassing the end-state of all the trajectories that started in that region at some later time. 

This size increase will be straightforwardly related to the rate at which individual trajectories in 

the region diverge, so the size of the later region will depend on three things: the size of the 

initial region, the rate at which paths through the system diverge, and the amount of time elapsed

.  If our system is chaotic, then no matter how small we make our region the trajectories 149

149 If we have some way of determining the largest Lyapunov exponent that appears in D, then that can stand in for the 
global MLE in our equations here.  If not, then we must use the MLE for the system as a whole, as that is the only way 
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followed by the states that are included in it will, given enough time, diverge significantly . 150

     How much does this behavior actually limit the practice of predicting what chaotic systems 

will do in the future?  Let’s keep exploring the mathematics and see what we can learn. 

Consider two limit cases of the inequality in 5(j).  First: 

                                                                                5(k)lim  ε(e )  ε→0
λt = 0  

     This is just the limiting case of perfect measurement of the initial condition of the system—a 

case where there’s absolutely no uncertainty in our first measurement, and so the size of our 

“neighborhood” of possible initial conditions is zero.  As the distance between the two points in 

the initial pair approaches zero, then the distance between the corresponding pair at time t will 

also shrink.  Equivalently, if the size of the neighborhood is zero—if the neighborhood includes 

one and only one point—then we can be sure of the system’s position in its state space at any 

later time (assuming no stochasticity in our equations).  This is why the point that chaotic 

dynamics are not the same thing as indeterministic dynamics is so important. However: 

                   5(l)lim  ε(e )                         λ→0
λt = ε  

     As the Lyapunov exponent λ approaches zero, the second term on the right side of the 

inequality in 5(j) approaches unity. This represents another limiting case—one which is perhaps 

even more interesting than the first one.   Note that 5(k) is still valid for non-chaotic systems: the 

MLE is just set to zero, and so the distance between two trajectories will remain constant as 

those points are evolved forward in time .  More interestingly, think about what things look like 151

of guaranteeing that the region at the later time will include all the trajectories. 
150 Attentive readers will note the use of what Wikipedia editors call a “weasel word” here.  What counts as 
“significant” divergence?  This is a very important question, and will be the object of our discussion for the next few 
pages.  For now, it is enough to note that “significance” is clearly a goal-relative concept, a fact which ends up being a 
double-edged sword if we’re trying to predict the behavior of chaotic systems.  We’ll see how very soon. 
151 If the Lyapunov exponent is negative, then the distance between two paths decreases exponentially with time. 
Intuitively, this represents the initial conditions all being “sucked” toward a single end-state.  This is, for instance, the 
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if λ > 0 (the system is chaotic) but still very small.  No matter how small λ is, chaotic behavior 

will appear whenever t ≫ : even a very small amount of divergence becomes significant on1
 λ    

long enough time scales.  Similarly, if  t ≪  then we can generally treat the system as if it is1
 λ  

non-chaotic (as in the case of the orbits of planets in our solar system).  The lesson to be drawn is 

that it isn’t the value of either t or λ that matters so much as the ratio between the two values. 

5.1.4  Prediction and Chaos 

     It can be tempting to conclude from this that if we know λ, ε, and t, then we can put a 

meaningful and objective “horizon” on our prediction attempts.  If we know the amount of 

uncertainty in the initial measurement of the system’s state (ε), the maximal rate at which two 

paths through the state space could diverge (λ), and the amount of time that has elapsed between 

the initial measurement and the time at which we’re trying to make our prediction (t), then 

shouldn’t we be able to design things to operate within the uncertainty by defining relevant 

macroconditions of our system as being uniformly smaller than ?  If this were true, it(e )ε λt  

would be very exciting—it would let us deduce the best way to construct our models from the 

dynamics of the system under consideration, and would tell us how to carve up the state space of 

some system of interest optimally given the temporal scales involved. 

     Unfortunately, things are not this simple.  In particular, this suggestion assumes that the state 

space can be neatly divided into continuously connected macroconditions, and that it is not 

possible for a single macrostate’s volume to be distributed across a number of isolated regions. 

It assumes, that is, that simple distance in state-space is always going to be the best measure of 

qualitative similarity between two states.  This is manifestly not the case.  Consider, for instance, 

case with the damped pendulum discussed above—all initial conditions eventually converge on the rest state. 
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the situation in classical statistical mechanics.  Given some macrocondition M* at t0 , what are 

the constraints on the system’s state at a later time t1?  We can think of M* as being defined in 

terms of 5(j)—that is, we can think of M* as being a macrocondition that’s picked out in terms 

of some neighborhood of the state space of S that satisfies 5(j).  

     By Liouville’s Theorem, we know that the total density ρ of states is constant along any 

trajectory through phase space.  That is: 

                                                                                                  5(m)dt
dρ = 0  

However, as Albert (2000) points out, this only implies that the total phase space volume is 

invariant with respect to time.  Liouville’s theorem says absolutely nothing about how that 

volume is distributed; it only says that all the volume in the initial macrocondition has to be 

accounted for somewhere in the later macrocondition(s).  In particular, we have no reason to 

expect that all the volume will be distributed as a single path-connected region at t1: we just 

know that the original volume of M* must be accounted for somehow.  That volume could be 

scattered across a number of disconnected states, as shown in Figure 5.2.  
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Fig. 5.2 

 

While the specifics of this objection are only relevant to statistical mechanics, there is a more 

general lesson that we can draw: the track that we started down a few pages ago—of using 

formal features of chaos theory to put a straight-forward cap on the precision of our predictions 

on a given system after a certain amount of time—is not as smooth and straight as it may have 

initially seemed.  In particular, we have to attend to the fact that simple distance across a 

state-space may not always be the best measure of the relative “similarity” between two different 

states; the case of thermodynamics and statistical mechanics provides an existence proof for this 

claim.  Without an independent measure of how to group regions of a state space into 

qualitatively similar conditions—thermodynamic macroconditions in this case—we have no way 

of guaranteeing that just because some collection of states falls within the bounds of the region 

defined by 5(j) they are necessarily all similar to one another in the relevant respect.  This 

account ignores the fact that two states might be very close together in state space, and yet differ 
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in other important dynamical respects. 

     Generalizing from this case, we can conclude that knowing λ, ε, and t is enough to let us put a 

meaningful cap on the resolution of future predictions (i.e. that they can be only as fine-grained 

as the size of the neighborhood given by ) only if we stay agnostic about the presence (and(e )ε λt  

location) of interesting macroconditions when we make our predictions.  That is, while the 

inequality in 5(j) does indeed hold, we have no way of knowing whether or not the size and 

distribution of interesting, well-behaved regions of the state-space will correspond neatly with 

size of the neighborhoods defined by that inequality.  

     To put the point another way, restricting our attention to the behavior of some system 

considered as a collection of states can distract us from relevant factors in predicting the future 

of the system.  In cases where the dynamical form of a system can shift as a function of time, we 

need to attend to patterns in the formation of well-behaved regions (like those of thermodynamic 

macroconditions)—including critical points and bifurcations—with just as much acumen as we 

attend to patterns in the transition from one state to another.  Features like those are obscured 

when we take a static view of systems, and only become obvious when we adopt the tools of 

DyST.  

           5.1.5  Feedback Loops 

     In Section 5.1.2, we considered the relationship between non-linearities in the models of 

dynamical systems and the presence of feedback generally.  Our discussion there, however, 

focused on an example drawn from economics.  Moreover, we didn’t discuss feedback 

mechanisms themselves in much detail.  Let us now fill in both those gaps.  While CGCMs are 
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breathtakingly detailed models in many respects, their detailed incorporation of feedback 

mechanisms into their outputs--a task that is impossible for EBMs and met by individual EMICs 

only for their narrow domains of application (if it is met at all).  Since CGCMs are characterized 

as a group by their melding of atmospheric, oceanic, and land-based models, let’s begin by 

considering a representative sample of an important feedback mechanism from each of these 

three domains. 

     While feedback mechanisms are not definitive of complex systems like the climate, they are 

frequently the sources of non-linear behavior in the natural world, and so are often found in 

real-world complex systems.  It’s not difficult to see why this is the case; dynamically complex 

systems are systems in which interesting behavioral patterns are present from many perspectives 

and at many scales (see Chapter Three), and thus their behavior is regulated by a large number 

of mutually interacting constraints.   Feedback mechanisms are a very common way for 152

natural systems to regulate their own behavior.  Dynamically complex systems, with their layers 

of interlocking constraints, have ample opportunity to develop a tangled thicket of feedback 

loops.  Jay Forrester, in his 1969 textbook on the prospects for developing computational models 

of city growth, writes that “a complex system is not a simple feedback loop where one system 

state dominates the behavior.  It is a multiplicity of interacting feedback loops [the behavior of 

which is] controlled by nonlinear relationships. ”  The global climate is, in this respect, very 153

152 The fact that a particular complex system exhibits interesting behavior at many scales of analysis implies this kind of 
inter-scale regulation: the features of a given pattern in the behavior of the system at one scale can be thought of a 
constraint on the features of the patterns at each of the other scales.  After all, the choice of a state space in which to 
represent a system is just a choice of how to describe that system, and so to notice that a system’s behavior is 
constrained in one space is just to notice that the system’s behavior is constrained period, though the degree of 
constraint can vary.  
153 Forrester (1969), p. 9 
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similar to an active urban center.  

     Feedback mechanisms are said to be either positive or negative, and the balance and interplay 

between these two different species of feedback is often the backbone of self-regulating 

dynamical systems: the global climate is no exception.  Positive feedback mechanisms are those 

in which the action of the mechanism serves to increase the parameter representing the input of 

the mechanism itself.  If the efficacy of the mechanism for producing some compound A depends 

(in part) on the availability of another compound B and the mechanism which produces 

compound B also produces compound A, then the operation of these two mechanisms can form a 

positive feedback loop—as more B is produced, more A is produced, which in turn causes B to 

be produced at a greater rate, and so on.  Consider, for example, two teenage lovers (call them 

Romeo and Juliet) who are particularly receptive to each other’s affections.  As Romeo shows 

more amorous interest in Juliet, she becomes more smitten with him as well.  In response, 

Romeo—excited by the attention of such a beautiful young woman—becomes still more 

affectionate.  Once the two teenagers are brought into the right sort of contact—once they’re 

aware of each other’s romantic feelings—their affection for each other will rapidly grow. 

Positive feedback mechanisms are perhaps best described as “runaway” mechanisms; unless 

they’re checked (either by other mechanisms that are part of the system itself or by a change in 

input from the system’s environment), they will tend to increase the value of some parameter of 

the system without limit.  In the case of Romeo and Juliet, it’s easy to see that once the cycle is 

started, the romantic feelings that each of them has toward the other will, if left unchecked, grow 

without bound.  This can, for obvious reasons, lead to serious instability in the overall 

system—most interesting systems cannot withstand the unbounded increase of any of their 

179 



 

parameters without serious negative consequences.  The basic engineering principles underlying 

the creation of nuclear weapons exploit this feature of positive feedback mechanisms: the 

destructive output of nuclear weapons results from the energy released during the fission of 

certain isotopes of (in most cases) uranium or plutonium.  Since fission of these heavy isotopes 

produces (among other things) the high-energy neutrons necessary to begin the fission process in 

other nearby atoms of the same isotope, the fission reaction (once begun) can—given the right 

conditions—become a self-sustaining chain reaction, where the result of each step in the cycle 

causes subsequent steps, which are both similar and amplified.  Once the fission reaction begins 

it reinforces itself, resulting in the rapid release of energy that is the nominal purpose of nuclear 

weapons. 

     Of course, in most real-world cases the parameters involved in positive feedback loops are not 

able to increase without bound.  In most cases, that is, dynamical systems that include positive 

feedback loops also include related negative feedback loops, which provide a check on the 

otherwise-unbounded amplification of the factors involved in the positive feedback loops.  While 

positive feedback loops are self-reinforcing, negative feedback loops are self-limiting; in the 

same way that positive loops can lead to the rapid destabilization of dynamical systems in which 

they figure, negative loops can help keep dynamical systems in which they figure stable.  

     Consider, for instance, a version of the story of Romeo and Juliet in which the teenage lovers 

are somewhat more dysfunctional.  In this version of the tale, Romeo and Juliet still respond to 

each others’ affections, but they do so in the opposite way as in the story told above.  Romeo, in 

this story, likes to “play hard to get:” the more he sees that Juliet’s affections for him are 

growing, the less interested he is in her.  Juliet, on the other hand, is responsive to 
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encouragement: the more Romeo seems to like her, the more she likes him.  It’s easy to see that 

the story’s outcome given this behavior will be far different than the outcome in which their 

affections are purely driven by mutually reinforcing positive feedback loops.  Rather than 

growing without bound, their affections will tend to stabilize at a particular level, the precise 

nature of which is determined by two factors: the initial conditions (how much they like each 

other to begin with), and the level of responsiveness by each teen (how much Juliet’s affection 

responds to Romeo’s reciprocity, and how much Romeo’s affection responds to Juliet’s 

enthusiasm).  Depending on the precise tuning of these values, the relationship may either 

stabilize in a mutually congenial way (as both lovers are drawn toward a middle ground of 

passion), or it may stabilize in a way that results in the relationship ending (as Romeo’s lack of 

interest frustrates Juliet and she gives up).  In either case, the important feature of the example is 

its eventual movement toward a stable attractor.  154

5.2.2  The Role of Feedback Loops in Driving Climate Dynamics 

     Similar feedback mechanics play central roles in the regulation and evolution of the global 

climate system.  Understanding the dynamics and influence of these feedback mechanics is 

essential to understanding the limitations of basic models of the sort considered in Chapter 

Four.  Some of the most important positive feedback mechanics are both obvious and troubling 

154 Under some conditions, the situation described here might fall into another class of attractors: the limit cycle.  It is 
possible for some combinations of Romeo and Juliet’s initial interest in each other to combine with features of how 
they respond to one another to produce a situation where the two constantly oscillate back and forth, with Romeo’s 
interest in Juliet growing at precisely the right rate to put Juliet off, cooling his affections to the point where she once 
again finds him attractive, beginning the cycle all over again.  In either case, however, the stability of the attractor is the 
important feature is the attractor’s stability.  Both the two fixed-point attractors described in the text (the termination of 
the courtship and the stabilization of mutual attractiion) result in the values of the relevant differential equations 
“settling down” to predictable behavior.  Similarly, the duo’s entrance into the less fortunate (but just as stable) limit 
cycle represents predictable long-term behavior. 
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in their behavior.  Consider, for instance, the relationship between planetary albedo and 

warming.  Albedo, as you may recall from Chapter Four is a value representing the reflectivity 

of a given surface.  Albedo ranges from 0 to 1, with higher values representing greater 

reflectivity.  Albedo is associated with one of the most well-documented positive feedback 

mechanisms in the global climate.  As the planet warms, the area of the planet covered by snow 

and ice tends to decrease.   Snow and ice, being white and highly reflective, have a fairly high 155

albedo when compared with either open water or bare land.  As more ice melts, then, the 

planetary (and local) albedo decreases.  This results in more radiation being absorbed, leading to 

increased warming and further melting.  It’s easy to see that unchecked, this process could 

facilitate runaway climate warming, which each small increase in temperature encouraging 

further, larger increases.  This positive feedback is left out of more basic climate models, which 

lack the formal structure to account for such nuanced behavior. 

     Perhaps the most significant set of positive feedback mechanisms associated with the 

long-term behavior of the global climate are those that influence the capacity of the oceans to act 

as a carbon sink.   The planetary oceans are the largest carbon sinks and reservoirs in the global 156

climate system, containing 93% of the planet’s exchangeable  carbon.  The ocean and the 157

atmosphere exchange something on the order of 100 gigatonnes (Gt) of carbon (mostly as CO2) 

each year via diffusion (a mechanism known as the “solubility pump”) and the exchange of 

155 At least past a certain tipping point.  Very small amounts of warming can (and have) produced expanding sea ice, 
especially in the Antarctic.  The explanation for this involves the capacity of air of different temperatures to bear 
moisture.  Antarctica, historically the coldest place on Earth, is often so cold that snowfall is limited by the temperature 
related lack of humidity.  As the Antarctic continent has warmed slightly, its capacity for storing moisture has 
increased, leading to higher levels of precipitation in some locations.  This effect is, however, both highly localized and 
transient.  Continued warming will rapidly undo the gains associated with this phenomenon. 
156 Feely et. al. (2007) 
157 That is, 93% of the carbon that can be passed between the three active carbon reservoirs (land, ocean, and 
atmosphere), and thus is not sequestered (e.g. by being locked up in carbon-based minerals in the Earth’s mantle). 
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organic biological matter (a mechanism known as the “biological pump), with a net transfer of 

approximately 2 Gt of carbon (equivalent to about 7.5 Gt of CO2) to the ocean.  Since the 

industrial revolution, the planet’s oceans have absorbed roughly one-third of all the 

anthropogenic carbon emissions.   Given the its central role in the global carbon cycle, any 158

feedback mechanism that negatively impacts the ocean’s ability to act as a carbon sink is likely 

to make an appreciable difference to the future of the climate in general.  There are three primary 

positive warming feedbacks associated with a reduction in the oceans’ ability to sequester 

carbon:  

     (1) As anyone who has ever left a bottle of soda in a car on a very hot day (and ended up with 

an expensive cleaning bill) knows, liquid’s ability to store dissolved carbon dioxide decreases as 

the liquid’s temperature increases.  As increased CO2 levels in the atmosphere lead to increased 

air temperatures, the oceans too will warm.  This will decrease their ability to “scrub” excess 

CO2 from the atmosphere, leading to still more warming.  

     (2) This increased oceanic temperature will also potentially disrupt the action of the Atlantic 

Thermohaline Circulation.  The thermohaline transports a tremendous amount of 

water--something in the neighborhood of 100 times the amount of water moved by the Amazon 

river--and is the mechanism by which the cold anoxic water of the deep oceans is circulated to 

the surface.  This renders the thermohaline essential not just for deep ocean life (in virtue of 

oxygenating the depths), but also an important component in the carbon cycle, as the water 

carried up from the depths is capable of absorbing more CO2 than the warmer water near the 

surface.  The thermohaline is driven primarily by differences in water density, which in turn is a 

158 Dawson and Spannagle (2007), p. 303-304 
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function of temperature and salinity .  The heating and cooling of water as it is carried along by 159

the thermohaline forms a kind of conveyor belt that keeps the oceans well mixed through much 

the same mechanism responsible for the mesmerizing motion of the liquid in a lava lamp. 

However, the fact that the thermohaline’s motion is primarily driven by differences in salinity 

and temperature means that it is extremely vulnerable to disruption by changes in those two 

factors.  As CO2 concentration in the atmosphere increases and ocean temperatures increase 

accordingly, melting glaciers and other freshwater ice stored along routes that are accessible to 

the ocean can result in significant influxes of fresh (and cold) water.  This alters both 

temperature and salinity of the oceans, disrupting the thermohaline and inhibiting the ocean’s 

ability to act as a carbon sink.  Teller et. al. (2002) argue that a similar large-scale influx of cold 

freshwater (in the form of the destruction of an enormous ice dam at Lake Agassiz) was partially 

responsible for the massive global temperature instability seen 15,000 years ago during the last 

major deglaciation .  160

    (3) Perhaps most simply, increased acidification of the oceans (i.e. increased carbonic acid 

concentration as a result of CO2 reacting with ocean water) means slower rates of new CO2 

absorption, reducing the rate at which excess anthropogenic CO2 can be scrubbed from the 

atmosphere. 

     Examples like these abound in climatology literature.  As we suggested above, though, 

perhaps the most important question with regard to climate feedbacks is whether the net 

159 Vallis and Farnetti (2009) 
160 In this case, the temporary shutdown of the thermohaline was actually responsible for a brief decrease in average 
global temperature--a momentary reversal of the nascent warming trend as the climate entered an interglacial period. 
This was due to differences in atmospheric and oceanic carbon content, and were a similar event to occur today it 
would likely have the opposite effect. 
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influence is positive or negative with respect to climate sensitivity.  Climate sensitivity, recall, is 

the relationship between the change in the global concentration of greenhouse gases (given in 

units of CO2-equivalent impacts on radiative forcings) and the change in the annual mean 

surface air temperature (see Chapter Four).  If the Earth were a simple system, free of 

feedbacks and other non-linearly interacting processes, this sensitivity would be a 

straightforwardly linear one: each doubling of CO2-e concentration would result in an increase 

of ~.30 , which would correspond to a mean surface temperature change of 1.2 degrees CK
(W /m2)  

at equilibrium . 161

     Unfortunately for climate modelers, things are not so simple.  The net change in average 

surface air temperature following a CO2-e concentration doubling in the atmosphere also 

depends on (for instance) how the change in radiative forcing that doubling causes impacts the 

global albedo.  The change in the global albedo, in turn, impacts the climate sensitivity by 

altering the relationship between radiative flux and surface air temperature.  

     Just as with albedo, we can (following Roe & Baker [2007]) introduce a single parameter ᵱ� 

such that the net influence of feedbacks on the equation describing climate sensitivity: 

                              = )                                5(n) dt
dT φ( dt

dR  

In a feedback-free climate system, we can parameterize 5(n) such that  ᵱ� = 1, and such that 

That is, we can assume that the net impact of positive and negative feedbacks on the.  φ0 =  φt  

total radiative flux is both constant and non-existent.  However, just as with albedo, observations 

suggest that this simplification is inaccurate; ≠ .  Discerning the value of is one of the φ0  φt  φ  

161 Roe & Baker (2007), p. 630 
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most challenging (and important) tasks in contemporary climate modeling.  

     The presence of so many interacting feedback mechanisms is one of the features that makes 

climatology such a difficulty science to get right.  It is also characteristic of complex systems 

more generally.  How are we to account for these features when building high-level models of 

the global climate?  What novel challenges emerge from models designed to predict the behavior 

of systems like this?  In Chapter Six, we shall examine Coupled General Circulation Models 

(CGCMs), which are built to deal with these problems. 
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Chapter Six  

Why Bottle Lightning? 

6.0  A Different Kind of Model 

     We’ve now explored several significant challenges that climatologists must consider when 

attempting to create models of the global climate that even approach verisimilitude.  The global 

climate is chaotic in the sense that very small perturbations of its state at one time lead to 

exponentially diverging sequences of states at later times.  The global climate is also non-linear 

in the sense that equations describing its behavior fail both the additivity and degree-1 

homogeneity conditions.  They fail these conditions primarily in virtue of the presence of a 

number of distinct feedbacks between the subsystems of the global climate.  

     In Chapter Four, we noted that while energy balance models in general are useful in virtue 

of their simplicity and ease of use, they fail to capture many of the nuances responsible for the 

behavior of the Earth’s climate: while things like radiative balance are (generally speaking) the 

dominant features driving climate evolution, attending only to the most powerful influences will 

not always yield a model capable of precise predictive success.  We saw how the more 

specialized EMIC-family of models can help ameliorate the shortcomings of the simplest 

models, and while the breadth and power of EMICs is impressive, there is surely a niche left to 

be filled in our modeling ecosystem: the comprehensive, high-fidelity, 

as-close-to-complete-as-we-can-get class of climate models.  Coupled global circulation models

 (CGCMs) fill that niche, and strive for as much verisimilitude as possible given the 162

162 The term “coupled general circulation models” is also occasionally used in the literature.  The two terms are 
generally equivalent, at least for our purposes here. 
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technological constraints.  In contrast to the rough-and-ready simplicity energy balance models 

and the individual specialization of EMICs, CGCMs are designed to be both general and 

detailed: they are designed to model as many of the important factors driving the Earth’s climate 

as well as they possibly can.  This is a very tall order, and the project of crafting CGCMs raises 

serious problems that EBMs and EMICs both manage to avoid.  Because of their 

comprehensiveness, though, they offer the best chance for a good all-things-considered set of 

predictions about the future of Earth’s climate. 

       The implementation of CGCMs is best understood as a careful balancing act between the 

considerations raised in Chapter Five.  CGCMs deliberately incorporate facts about the 

interplay between atmospheric, oceanic, and terrestrial features of the global climate system, and 

thus directly confront many of the feedback mechanisms that regulate the interactions between 

those coupled subsystems of the Earth’s climate.  It should come as no surprise, then, that most 

CGCMs prominently feature systems of nonlinear equations, and that one of the primary 

challenges of working with CGCMs revolves around how to handle these non-linearities.   While 

the use of supercomputers to simulate the behavior of the global climate is absolutely essential if 

we’re to do any useful work with CGCMs, fundamental features of digital computers give rise to 

a set of serious challenges for researchers seeking to simulate the behavior of the global climate. 

The significance of these challenges must be carefully weighed against the potentially 

tremendous power of well-implemented CGCMs. In the end, I shall argue that CGCMs are best 

understood not as purely predictive models, but rather as artifacts whose role is to help us make 

decisions about how to proceed in our study of (and interaction with) the global climate.  
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6.1  Lewis Richardson’s Fabulous Forecast Machine 

     The dream of representing the world inside a machine--of generating a robust, detailed, 

real-time forecast of climate states--reaches all the way back to the early days of meteorology. 

In 1922, the English mathematician Lewis Richardson proposed a thought experiment that he 

called “the forecast factory.”  The idea is so wonderfully articulated (and so far-seeing) that it is 

worth quoting at length here: 

Imagine a large hall like a theatre, except that the circles and galleries go right round through the space 
usually occupied by the stage.  The walls of this chamber are painted to form a map of the globe.  The ceiling 
represents the north polar regions, England is in the gallery, the tropics in the upper circle, Australia on the 
dress circle, and the Antarctic in the pit.  A myriad computers  are at work upon the weather of the part of 163

the map where each sits, but each computer attends only to one equation or one part of an equation.  The work 
of each region is coordinated by an official of higher rank.  Numerous little ‘night signs’ display the 
instantaneous values so that neighboring computers can read them.  Each number is thus displayed in three 
adjacent zones so as to maintain communication to the North and South on the map.  From the floor of the pit 
a tall pillar rises to half the height of the hall.  It carries a large pulpit on its top.  In this sits the man in charge 
of the whole theatre; he is surrounded by several assistants and messengers.  One of his duties is to maintain a 
uniform speed of progress in all parts of the globe.  In this respect he is like the conductor of an orchestra in 
which the instruments are slide-rules and calculating machines.  But instead of waving a baton he turns a 
beam of rosy light upon any region that is running ahead of the rest, and a beam of blue light upon those who 
are behindhand. 

Four senior clerks in the central pulpit are collecting the future weather as fast as it is being computed, and 
dispatching it by pneumatic carrier to a quiet room.  There it will be coded and telephoned to the radio 
transmitting station.  Messengers carry piles of used computing forms down to a storehouse in the cellar. 

In a neighboring building there is a research department, where they invent improvements.  But there is much 
experimenting on a small scale before any change is made in the complex routine of the computing theatre.  In 
a basement an enthusiast is observing eddies in the liquid lining of a huge spinning bowl, but so far the 
arithmetic proves the better way.   In another building are all the usual financial, correspondence, and 164

163 At the time when Richardson wrote this passage, the word ‘computer’ referred not to a digital computer--a 
machine--but rather to a human worker whose job it was to compute the solution to some mathematical problem. 
These human computers were frequently employed by those looking to forecast the weather (among other things) well 
into the 20th century, and were only supplanted by the ancestors of modern digital computers after the advent of punch 
card programming near the end of World War II. 
164 Here, Richardson is describing the now well-respected (but then almost unheard of) practice of studying what might 
be called “homologous models” in order to facilitate some difficult piece of computation.  For example, Bringsjord and 
Taylor (2004) propose that observation of the behavior of soap bubbles under certain conditions might yield greater 
understanding of the Steiner tree problem in graph theory.  The proposal revolves around the fact that soap bubbles, in 
order to maintain cohesion, rapid relax their shapes toward a state where surface energy (and thus area) is minimized. 
There are certain structural similarities between the search for this optimal low-energy state and the search for the 
shortest-length graph in the Steiner tree problem.  Similarly, Jones and Adamatzsky (2013) show slime molds’ growth 
and foraging networks show a strong preference for path-length optimization, a feature that can be used to compute a 
fairly elegant solution to the Traveling Salesman problem. 
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administrative offices.  Outside are playing fields, houses, mountains, and lakes, for it was thought that those 
who compute the weather should breathe of it freely. 

 

Fig. 6.1  
Artist’s conception of Lewis Richardson’s forecast factory  165

 
  Richardson’s forecast factory (Fig. 6.1) was based on an innovation in theoretical meteorology 

and applied mathematics: the first step toward integrating meteorology with atmospheric physics, 

and thus the first step toward connecting meteorology and climatology into a coherent discipline 

united by underlying mathematical similarities.  Prior to the first decade of the 20th century, 

meteorologists spent the majority of their time each day charting the weather in their 

region--recording things like temperature, pressure, wind speed, precipitation, humidity, and so 

on over a small geographical area.  These charts were meticulously filed by day and time, and 

when the meteorologist wished to make a forecast, he would simply consult the most current 

chart and then search his archives for a historical chart that was qualitatively similar.  He would 

then examine how the subsequent charts for the earlier time had evolved, and would forecast 

something similar for the circumstance at hand.  

     This qualitative approach began to fall out of favor around the advent of World War I.  In the 

165 Image by Francois Schuiten, drawn from Edwards (2010), p. 96 
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first years of the 20th century, a Norwegian physicist named Vilhelm Bjerknes developed the 

first set of what scientist today would call “primitive equations” describing the dynamics of the 

atmosphere.  Bjerknes’ equations, adapted primarily from the then-novel study of fluid 

dynamics, tracked four atmospheric variables--temperature, pressure, density, and humidity 

(water content)--along with three spatial variables, so that the state of the atmosphere could be 

represented in a realistic three-dimensional way.  Bjerknes, that is, defined the first rigorous state 

space for atmospheric physics .  166

     However, the nonlinearity and general ugliness of Bjerknes’ equations made their application 

prohibitively difficult.  The differential equations coupling the variables together were far too 

messy to admit of an analytic solution in any but the most simplified circumstances. 

Richardson’s forecast factory, while never actually employed at the scale he envisioned, did 

contain a key methodological innovation that made Bjerknes’ equations practically tractable 

again:  the conversion of differential equations to difference equations.  While Bjerknes’ 

atmospheric physics equations were differential--that is, described infinitesimal variations in 

quantities over infinitesimal time-steps--Richardson’s converted equations tracked the same 

quantities as they varied by finite amounts over finite time-steps.  Translating differential 

equations into difference equations opens the door to the possibility of generating numerical 

approximation of answers to otherwise intractable calculus problems.  In cases like Bjerknes’ 

where we have a set of differential equations for which it’s impossible to discern any 

closed-form analytic solutions, numerical approximation by way of difference equations can be a 

godsend: it allows us to transform calculus into repeated arithmetic.  More importantly, it allows 

166 Edwards (2010), pp. 93-98 
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us to approximate the solution to such problems using a discrete state machine--a digital 

computer. 

6.2.0  General Circulation Models 

     Contemporary computational climate modeling has evolved from the combined insights of 

Bjerknes and Richardson.  Designers of high-level Coupled General Circulation Models 

(CGCMs) build on developments in atmospheric physics and fluid dynamics.  In atmospheric 

circulation models, the primitive equations track six basic variables across three dimensions : 167

surface pressure, horizontal wind components (in the x and y directions), temperature, moisture, 

and geopotential height.  Oceanic circulation models are considerably more varied than their 

atmospheric cousins, reflecting the fact that oceanic models’ incorporation into high-level 

climate models is a fairly recent innovation (at least compared to the incorporation of 

atmospheric models).  Until fairly recently, even sophisticated GCMs treated the oceans as a set 

of layered “slabs,” similar to the way the atmosphere is treated in simple energy balance models 

(see Chapter Four).  The simple “slab” view of the ocean treats it as a series of 

three-dimensional layers stacked on top of one another, each with a particular heat capacity, but 

with minimal (or even no) dynamics linking them.  Conversely (but just as simply), what ocean 

modelers call the “swamp model” of the ocean treats it as an infinitely thin “skin” on the surface 

of the Earth, with currents and dynamics that contribute to the state of the atmosphere but with 

no heat capacity of its own.  Early CGCMs thus incorporated ocean modeling only as a kind of 

adjunct to the more sophisticated atmospheric models: the primary focus was on impact that 

167 Ibid., p. 178 
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ocean surface temperatures and/or currents had on the circulation of air in the atmosphere. 

     Methodological innovations in the last 15 years--combined with theoretical realizations about 

the importance of the oceans (especially the deep oceans) in regulating both the temperature and 

the carbon content of the atmosphere (see Section 5.2.2)--have driven the creation of more 

sophisticated oceanic models fusing these perspectives.  Contemporary general ocean circulation 

models are at least as sophisticated as general atmospheric circulation models--and often more 

sophisticated.  The presence of very significant constant vertical circulation in the oceans (in the 

form of currents like the thermohaline discussed in 5.2.2) means that there is a strong circulation 

between the layers (though not as strong as the vertical circulation in the atmosphere). 

Moreover, the staggering diversity and quantity of marine life--as well as the impact that they 

have on the dynamics of both the ocean and atmosphere--adds a wrinkle to oceanic modeling 

that has no real analog in atmospheric modeling. 

     Just as in Richardson’s forecast factory, global circulation models (both in the atmosphere 

and the ocean) are implemented on a grid (usually one that’s constructed on top of the 

latitude/longitude framework).  This grid is constructed in three dimensions, and is divided into 

cells in which the actual equations of motion are applied.  The size of the cells is constrained by 

a few factors, most significantly the computational resources available and the desired length of 

the time-step when the model is running.  The first condition is fairly intuitive: smaller grids 

require both more computation (because the computer is forced to simulate the dynamics at a 

larger number of points) and more precise data in order to generate reliable predictions (there’s 

no use in computing the behavior of grid cells that are one meter to a side if we can only 
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resolve/specify real-world states using a grid 1,000 meters to a side).  

     The link between time-step length and grid size, though, is perhaps slightly less obvious.  In 

general, the shorter the time-steps in the simulation--that is, the smaller ᵱ�t is in the difference 

equations underlying the simulation--the smaller the grid cells must be.  This makes sense if we 

recall that the simulation is supposed to be modeling a physical phenomenon, and is therefore 

constrained by conditions on the transfer of information between different physical points.  After 

all, the grid must be designed such that during the span between one time-step and the next, no 

relevant information about the state of the world inside one grid cell could have been 

communicated to another grid cell.  This is a kind of locality condition on climate simulations, 

and must be in place if we’re to assume that relevant interactions--interactions captured by the 

simulation, that is--can’t happen at a distance.  Though a butterfly’s flapping wings might 

eventually spawn a hurricane on the other side of the world, they can’t do so instantly: the signal 

must propagate locally around the globe (or, in the case of the model, across grid cells).  This 

locality condition is usually written: 

                                                   ᵱ�t ≤ ᵱ�x / c                               6(a)  

In the context of climate modeling, c refers not to the speed of light in a vacuum, but rather the 

maximum speed at which information can propagate through the medium being modeled  Its 

value thus is different in atmospheric and oceanic models, but the condition holds in both cases: 

the timesteps must be short enough that even if it were to propagate at the maximum possible 

speed, information could not be communicated between one cell and another between one time 

step and the next.  
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     One consequence of 6(a) is that smaller spatial grids also require shorter time steps.  This 

means that the computational resources required to implement simulations at a constant speed 

increase not arithmetically, but geometrically as the simulation becomes more precise . 168

Smaller grid cells--and thus more precision--require not just more computation, but also faster 

computation; the model must generate predictions for the behavior of more cells, and it must do 

so more frequently .  169

     Implementing either an atmospheric or oceanic general circulation model is a careful 

balancing act between these (and many other) concerns.  However, the most sophisticated 

climate simulations go beyond even these challenges, and seek to couple different fully-fledged 

circulation models together to generate a comprehensive CGCM. 

6.2.1  Coupling General Circulation Models 

  We can think of CGCMs as being “meta-models” that involve detailed circulation models of the 

atmosphere and ocean (and, at least sometimes, specialized terrestrial and cryosphere models) 

being coupled together.  While some CGCMs do feature oceanic, atmospheric, cryonic, and 

terrestrial models that interface directly with one another (e.g. by having computer code in the 

atmospheric model “call” values of variables in the oceanic model), this direct interfacing is 

incredibly difficult to implement.  Despite superficial similarities in the primitive equations 

underlying both atmospheric and oceanic models--both are based heavily on fluid 

168 In practice, halving the grid size does far more than double the computational resources necessary to run the model 
at the same speed.  Recall that in each grid, at least six distinct variables are being computed across three dimensions, 
and that doubling the number of cells doubles the number of each of these calculations. 
169 Of course, another option is to reduce the output speed of the model--that is, to reduce the ratio of “modeled time” to 
“model time.”  Even a fairly low-power computer can render the output of a small grid / short time step model given 
enough time to run.  At a certain point, the model output becomes useless; a perfect simulation of the next decade of the 
global climate isn’t much use if it takes several centuries to output. 
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dynamics--differences in surface area, mass, specific heat, density, and a myriad of other factors 

lead to very different responses to environmental inputs.  Perhaps most importantly, the ocean 

and atmosphere have temperature response and equilibrium times that differ by several orders of 

magnitude.  That is, the amount of time that it takes the ocean to respond to a change in the 

magnitude of some climate forcing (e.g. an increase in insolation, or an increase in the 

concentration of greenhouse gases) is significantly greater than the amount of time that it takes 

the atmosphere to respond to the same forcing change.  This is fairly intuitive; it takes far more 

time to heat up a volume of water by a given amount than to heat up the same volume of air by 

the same amount (as anyone who has attempted to boil a pot of water in his or her oven can 

verify).  This difference in response time means that ocean and atmosphere models which are 

coupled directly together must incorporate some sort of correction factor, or else run 

asynchronously most of the time, coupling only occasionally to exchange data at appropriate 

intervals.   Were they to couple directly and constantly, the two models’ outputs would 170

gradually drift apart temporally. 

     In order to get around this problem, many models incorporate an independent module called a 

“flux coupler,” which is designed to coordinate the exchange of information between the 

different models that are being coupled together.  The flux coupler is directly analogous to the 

“orchestra conductor” figure from Richardson’s forecast factory.  In just the same way that 

Richardson’s conductor used colored beams of light to keep the various factory workers 

synchronized in their work, the flux coupler transforms the data it receives from the component 

models, implementing an appropriate time-shift to account for differences in response time (and 

170 McGuffie and Anderson-Sellers (2010), p. 204-205 
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other factors) between the different systems being modeled.  

     A similarly named (but distinct) process called “flux adjustment” (or “flux correction”) has 

been traditionally employed to help correct for local (in either the temporal or spatial sense) 

cyclical variations in the different modeled systems, and thus help ensure that the model’s output 

doesn’t drift too far away from observation.  Seasonal temperature flux is perhaps the most 

significant and easily-understood divergence for which flux adjustment can compensate.  Both 

the atmosphere and the ocean (at least the upper layer of the ocean) warm during summer months 

and cool during winter months.  In the region known as the interface boundary--the spatial 

region corresponding to the surface of the ocean, where water and atmosphere meet--both 

atmospheric and oceanic models generate predictions about the magnitude of this change, and 

thus the fluctuation in energy in the climate system.  Because of the difficulties mentioned above 

(i.e. differences in response time between seawater  and air), these two predictions can come 

radically uncoupled during the spring and fall when the rate of temperature change is at its 

largest.  Left unchecked, this too can lead to the dynamics of the ocean and atmosphere 

“drifting” apart, magnifying the error range of predictions generated through direct couplings of 

the two models.  Properly designed, a flux adjustment can “smooth over” these errors by 

compensating for the difference in response time, thus reducing drift. 

6.2.2 Flux Adjustment and “Non-Physical” Modeling Assumptions 

     Flux adjustment was an early and frequent object of scrutiny by critics of mainstream 

climatology.  The “smoothing over” role of the flux adjustment is frequently seized upon by 

critics of simulation-based climate science as unscientific or ad-hoc in a problematic way.  The 
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NIPCC’s flagship publication criticizing climate science methodology cites Sen Gupta et. al. 

(2012), who write that “flux adjustments are nonphysical and therefore inherently undesirable... 

[and] may also fundamentally alter the evolution of a transient climate response. ”  Even the 171

IPCC’s Fourth Assessment Report acknowledges that flux adjustments are “essentially empirical 

corrections that could not be justified on physical principles, and that consisted of arbitrary 

additions of surface fluxes of heat and salinity in order to prevent the drift of the simulated 

climate away from a realistic state. ”  172

     What does it mean to say that flux adjustments are “non-physical?”  How do we know that 

such adjustments shift the climate system away from a “realistic state?”  It seems that the most 

plausible answer to this question is that, in contrast to the other components of climate 

simulations, the flux adjustment fails to correspond directly with quantities in the system being 

modeled.  That is, while the parameters for (say) cloud cover, greenhouse gas concentration, and 

insolation correspond rather straightforwardly to real aspects of the global climate, the action of 

the flux adjustment seems more like an ad hoc “fudge factor” with no physical correspondence. 

The most forceful way of phrasing the concern suggests that by manipulating the 

parameterization of a flux adjustment, a disingenuous climate modeler might easily craft the 

output of the model to suit his biases or political agenda. 

     Is the inclusion of a flux adjustment truly ad hoc, though?  Careful consideration of what 

we’ve seen so far suggests that it is not.  Recall the fact that the patterns associated with 

coarse-grained climate sensitivity have been well-described since (at least) Arrhenius’ work in 

171 Sen Gupta et. al. (2012), p. 4622, quoted in Lupo and Kininmonth and (2013), p. 19 
172 IPCC AR4: 1.5.3 
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the late 19th century.  Moreover, the advent of quantum mechanics in the 20th century has 

provided a succinct physical explanation for Arrhenius’ observed patterns (as we saw in 

Chapter Four).  Changes in the concentration of CO2-e greenhouse gases in the Earth’s 

atmosphere have a deterministic impact on the net change in radiative forcing--an impact that is 

both well understood and well supported by basic physical theory. 

     But what of the arguments from Chapter One, Two, and Three about the scale relative 

behavior of complex systems?  Why should we tolerate such an asymmetrical “bottom-up” 

constraint on the structure of climate models?  After all, our entire discussion of dynamical 

complexity has been predicated on the notion that fundamental physics deserves neither 

ontological nor methodological primacy over the special sciences.  How can we justify this sort 

of implied primacy for the physics-based patterns of the global climate system?  

     These questions are, I think, ill-posed.  As we saw in Chapter One, there is indeed an 

important sense in which the laws of physics are fundamental.  I argued there that they are 

fundamental in the sense that they “apply everywhere,” and thus are relevant for generating 

predictions for how any system will change over time, no matter how the world is “carved up” to 

define a particular system.  At this point, we’re in a position to elaborate on this definition a bit: 

fundamental physics is fundamental in the sense that it constrains each system’s behavior at all 

scales of investigation. 

6.3.1 Constraints and Models 

The multiplicity of interesting (and useful) ways to represent the same system—the fact 

that precisely the same physical system can be represented in very different state spaces, and that 
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interesting patterns about the time-evolution of that system can be found in each of those state 

spaces—has tremendous implications.  Each of these patterns, of course, represents a constraint 

on the behavior of the system in question; if some system’s state is evolving in a way that is 

described by some pattern, then (by definition) its future states are constrained by that pattern. 

As long as the pattern continues to describe the time-evolution of the system, then states that it 

can transition into are limited by the presence of the constraints that constitute the pattern.  To 

put the point another way: patterns in the time-evolution of systems just are constraints on the 

system’s evolution over time.  

It’s worth emphasizing that all these constraints can (and to some degree must) apply to 

all the state spaces in which a particular system can be represented.  After all, the choice of a 

state space in which to represent a system is just a choice of how to describe that system, and so 

to notice that a system’s behavior is constrained in one space is just to notice that the system’s 

behavior is constrained period.  Of course, it’s not always the case that the introduction of a new 

constraint at a particular level will result in a new relevant constraint in every other space in 

which the system can be described.  For a basic example, visualize the following scenario.  

Suppose we have three parallel Euclidean planes stacked on top of one another, with a 

rigid rod passing through the three planes perpendicularly (think of three sheets of printer paper 

stacked, with a pencil poking through the middle of them).  If we move the rod along the axis 

that’s parallel to the planes, we can think of this as representing a toy multi-level system: the rod 

represents the system’s state; the planes represent the different state-spaces we could use to 

describe the system’s position (i.e. by specifying its location along each plane).  Of course, if the 

paper is intact, we’d rip the sheets as we dragged the pencil around.  Suppose, then, that the rod 

200 



 

can only move in areas of each plane that have some special property—suppose that we cut 

different shapes into each of the sheets of paper, and mandate that the pencil isn’t allowed to tear 

any of the sheets.  The presence of the cut-out sections on each sheet represents the constraints 

based on the patterns present on the system’s time-evolution in each state-space: the pencil is 

only allowed in areas where the cut-outs in all three sheets overlap. 

Suppose the cut-outs look like this.  On the top sheet, almost all of the area is cut away, 

except for a very small circle near the bottom of the plane.  On the middle sheet, the paper is cut 

away in a shape that looks vaguely like a narrow sine-wave graph extending from one end to 

another.  On the bottom sheet, a large star-shape has been cut out from the middle of the sheet. 

Which of these is the most restrictive?  For most cases, it’s clear that the sine-wave shape is: if 

the pencil has to move in such a way that it follows the shape of the sine-wave on the middle 

sheet, there are vast swaths of area in the other two sheets that it just can’t access, no matter 

whether there’s a cut-out there or not.  In fact, just specifying the shape of the cut-outs on two of 

the three sheets (say, the top and the middle) is sometimes enough to tell us that the restrictions 

placed on the motion of the pencil by the third sheet will likely be relatively unimportant—the 

constraints placed on the motion of the pencil by the sine-wave sheet are quite stringent, and 

those placed on the pencil by the star-shape sheet are (by comparison) quite lax.  There are 

comparatively few ways to craft constraints on the bottom sheet, then, which would result in the 

middle sheet’s constraints dominating here: most cutouts will be more restrictive than the top 

sheet and less restrictive than the middle sheet   173

The lesson here is that while the state of any given system at a particular time has to be 

173 Terrance Deacon (2012)’s discussion of emergence and constraint is marred by this confusion, as he suggests that 
constraints in the sense of interest to us here just are boundary conditions under which the system operates.  
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consistent with all applicable constraints (even those resulting from patterns in the state-spaces 

representing the system at very different levels of analysis), it’s not quite right to say that the 

introduction of a new constraint will always affect constraints acting on the system in all other 

applicable state spaces.  Rather, we should just say that every constraint needs to be taken into 

account when we’re analyzing the behavior of a system; depending on what collection of 

constraints apply (and what the system is doing), some may be more relevant than others. 

The fact that some systems exhibit interesting patterns at many different levels of 

analysis—in many different state-spaces—means that some systems operate under far more 

constraints than others, and that the introduction of the right kind of new constraint can have an 

effect on the system’s behavior on many different levels. 

6.3.2  Approximation and Idealization 

     The worry is this: we’ve established a compelling argument for why we ought not privilege 

the patterns identified by physics above the patterns identified by the special sciences.  On the 

other hand, it seems right to say that when the predictions of physics and the predictions of the 

special sciences come into conflict, the predictions of physics ought to be given primacy at least 

in some cases.  However, it’s that last clause that generates all the problems: if what we’ve said 

about the mutual constraint (and thus general parity) of fundamental physics and the special 

sciences is correct, then how can it be the case that the predictions of physics ever deserve 

primacy?  Moreover, how on earth can we decide when the predictions of physics should be able 

to overrule (or at least outweigh) the predictions of the special sciences?  How can we reconcile 

these two arguments? 

     Here’s a possible answer: perhaps the putative patterns identified by climate science in this 
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case are approximations or idealizations of some as-yet unidentified real patterns.  If this is the 

case, then we have good reason to think that the patterns described by (for instance) Arrhenius 

deserve some primacy over the approximated or idealized erstaz patterns employed in the 

construction of computational models. 

     What counts as an approximation?  What counts as an idealization?  Are these the same 

thing?  It’s tempting to think that the two terms are equivalent, and that it’s this unified concept 

that’s at the root of our difficulty here.  However, there’s good reason to think that this 

assumption is wrong on both counts: there’s a significant difference between approximation and 

idealization in scientific model building, and neither of those concepts accurately captures the 

nuances of the problem we’re facing here. 

     Consider our solar system.  As we discussed in Chapter Five, the equations describing how 

the planets’ positions change over time are technically chaotic.  Given the dynamics describing 

how the positions of the planets evolves, two trajectories through the solar system’s state space 

that begin arbitrarily close together will diverge exponentially over time.  However, as we noted 

before, just noting that a system’s behavior is chaotic leaves open a number of related questions 

about how well we can predict its long-term behavior.  Among other things, we should also pay 

attention to the spatio-temporal scales over which we’re trying to generate interesting 

predictions, as well as our tolerance for certain kinds of error in those predictions.  In the case of 

the solar system, for instance, we’re usually interested in the positions of the planets (and some 

interplanetary objects like asteroids) on temporal and spatial scales that are relevant to our 

decidedly humanistic goals.  We care where the planets will be over the next few thousand years, 

and at the most are interested in their very general behavior over times ranging from a few 
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hundred thousand to a few million years (to study the impact of Milankovitch cycles on the 

global climate, for instance).  Similarly, we’re usually perfectly comfortable with predictions that 

introduce errors of (say) a few thousand kilometers in the position of Mercury in the next century

.   The fact that we can’t give a reliable prediction about where Mercury will be in its orbit at 174

around the time Sol ceases to be a main-sequence star--or similarly that we can’t give a 

prediction about Mercury’s position in its orbit in five years that gets things right down to the 

centimeter--doesn’t really trouble us most of the time.  This suggests that we can fruitfully 

approximate the solar system’s behavior as non-chaotic, given a few specifications about our 

predictive goals. 

     Norton (2012) argues that we can leverage this sort of example to generate a robust 

distinction between approximation and idealization, terms which are often used interchangeably. 

He defines the difference as follows: “approximations merely describe a target system inexactly” 

while “[i]dealizations refer to new systems whose properties approximate those of the target 

system.”  Norton argues that the important distinction here is one of reference, with 

“idealizations...carry[ing] a novel semantic import not carried by approximations.”   The 175

distinction between approximation and idealization, on Norton’s view, is that idealization 

involves the construction of an entirely novel system, which is then studied as a proxy for the 

actual system of interest.  Approximation, on the other hand, involves only particular 

parameterizations of the target system--parameterizations in which assigned values describe the 

174 Of course, there are situations in which we might demand significantly more accurate predictions than this.  After 
all, the difference between an asteroid slamming into Manhattan and drifting harmlessly by Earth is one of only a few 
thousand kilometers! 
175 Norton (2012), pp. 207-208 
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original system inexactly in some sense. 

     It’s worth pointing out that Norton’s two definitions will, at least sometimes, exist on a 

continuum with one another: in some cases, approximations can be smoothly transformed into 

idealizations.  176

  This interconversion is possible, for instance, in cases where the limits used in constructing 

idealized parameterizations are “well-behaved” in the sense that the exclusive use of limit 

quantities in the construction of the idealized system still results in a physically realizable 

system.  This will not always be the case.  For example, consider some system S whose complete 

state at a time t is described by an equation of the form  

                                                                                                        6(b)(t) ( )S = α n
1  

    In this case, both ᵯ� and n can be taken as parameterizations of S(t).  There are a number of 

approximations we might consider.  For instance, we might wonder what happens to S(t) as ᵯ� 

and n both approach 0.  This yields a prediction that is perfectly mathematically consistent; S(t) 

approaches a real value as both those parameters approach 0.  By Norton’s definition this is an 

approximation of S(t), since we’re examining the system’s behavior in a particular limit case. 

     However, consider the difference between this approximation and the idealization of S in 

which ᵯ� = 0 and n = 0.  Despite the fact that the approximation yielded by considering the 

system’s behavior as ᵯ� and n both approach 0 is perfectly comprehensible (and hopefully 

informative as well), actually setting those two values to 0 yields a function value that’s 

undefined.  The limits involved in the creation of the approximation are not “well behaved” in 

176 Norton (2012), p. 212 
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Norton’s sense, and so cannot be used directly to create an idealization.  Norton argues that 

qualitatively similar behavior is common in the physical sciences--that perfectly respectable 

approximations of a given system frequently fail to neatly correspond to perfectly respectable 

idealizations of the same system. 

     Of course, we might wonder what it even means in those cases to say that a given system is 

an idealization of another system.  If idealization involves the genesis of a novel system that can 

differ not just in parameterization values but in dynamical form the original target system, then 

how do idealizations represent at all?  The transition from an approximation to its target system 

is clear, as such a transition merely involves reparameterization; the connection between target 

system and idealization is far more tenuous (if it is even coherent).  Given this, it seems that we 

should prefer (when possible) to work with approximations rather than idealizations.  Norton 

shares this sentiment, arguing that since true idealizations can incorporate “infinite systems” of 

the type we explored above and “[s]ince an infinite system can carry unexpected and even 

contradictory properties, [idealization] carries considerably more risk [than approximation]. [...] 

If idealizations are present, a dominance argument favors their replacement by approximations.”

 177

6.3.3  Idealization and Pragmatism 

     It’s interesting to note that the examples in Norton (2012) are almost uniformly drawn from 

physics and statistical mechanics.  These cases provide relatively easy backdrops against which 

to frame the discussion, but it’s not immediately apparent how to apply these lessons to the 

177 Norton (2012), p. 227 
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messier problems in the “high level” special sciences--particularly those concerned with complex 

systems.  Weisberg (2007) suggests a framework that may be more readily applicable to projects 

like climate modeling.  Weisberg discusses a number of different senses of ‘idealization,’ but for 

our purposes the concept that he calls “multiple-model idealization” (MMI) is the most 

interesting.  Weisberg defines MMI as ”the practice of building multiple related but incompatible 

models, each of which makes distinct claims about the nature and causal structure giving rise to a 

phenomenon.”   He presents the model building practice of the United States’ National 178

Weather Service (NWS) as a paradigmatic example of day-to-day MMI: the NWS employs a 

broad family of models that can incorporate radically different assumptions not just about the 

parameters of the system being modeled, but of the dynamical form being modeled as well.  

     This pluralistic approach to idealization sidesteps the puzzle we discussed at the close of 

Section 6.3.2.  On Norton’s view, it’s hard to see how idealizations represent in the first place, 

since the discussion of representation can’t even get off the ground without an articulation of a 

“target system” and the novel idealized system cooked up to represent it.  Weisberg-style 

pluralistic appeals like MMI are different in subtle but important ways.    Weisberg’s own 

formulation makes reference to a “phenomenon” rather than a “target system:” a semantic 

difference with deep repercussions.  Most importantly, MMI-style approaches to modeling and 

idealization let us start with a set of predictive and explanatory goals to be realized rather than 

some putative target system that we may model/approximate/idealize more-or-less perfectly.  

     By Norton’s own admission, his view of approximation and idealization is one that grounds 

the distinction firmly in representational content.  While this approach to the philosophy of 

178 Weisberg (2007), p. 647 
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science is the inheritor of a distinguished lineage, the more pragmatically oriented approach 

sketched by Weisberg is more suitable for understanding contemporary complex systems 

sciences.  As we saw in Section 6.3.2, the question of whether or not a non-chaotic 

approximation of our solar system’s behavior is a “good” approximation is purpose-relative. 

There’s no interesting way in which one or another model of the solar system’s long-term 

behavior is “good” without reference to our predictive goals. Pragmatic idealization lets us start 

with a goal--a particular prediction, explanation, or decision--and construct models that help us 

reach that goal.  These idealizations are good ones not because they share a particular kind of 

correspondence with an a priori defined target system, but because they are helpful tools.  We 

will revisit this point in greater detail Section 6.4.2. 

6.3.4  Pragmatic Idealization 

     The solar system, while chaotic, is a system of relatively low dynamical complexity.  The 

advantages of pragmatic MMI-style accounts of idealization over Norton-style hard-nosed realist 

accounts of idealization become increasingly salient as we consider more dynamically complex 

systems.  Let’s return now to the question that prompted this digression.  How can we reconcile a 

strongly pluralistic view of scientific laws with the assertion that the greenhouse effect’s 

explanatory grounding in the patterns of physics should give us reason to ascribe a strong 

anthropogenic component to climate change even in the face of arguments against the veracity of 

individual computational climate simulations?  At the close of Section 6.3.1, I suggested that 

perhaps the resolution to this question lay in a consideration of the fact that models like the GISS 

approximate the dynamics of the global climate.  In light of the discussion in Sections 6.3.2 and 

6.3.3, though, this doesn’t seem quite right.  Computational models are not approximations of the 
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global climate in any interesting sense; they are not mere limit-case parameterizations of a single 

complete model.  Neither, though, are they idealizations in Norton’s sense.  It seems far more 

accurate to think of general circulation models (coupled or otherwise) as pragmatic idealizations 

in the sense described above. 

     More strongly, this strikes me as the right way to think about climate models in general--as 

tools crafted for a particular purpose.  This lends further credence to the point that I’ve argued 

for repeatedly here: that the pluralistic and heterogeneous character of the climate model family 

reflects not a historical accident of development or a temporary waystation on the road to 

developing One Model to Rule them All.  Rather, this pluralism is a natural result of the 

complexity of the climate system, and of the many fruitful perspectives that we might adopt 

when studying it. 

     The project of modeling the global climate in general, then, is a project of pragmatic 

idealization.  The sense of ‘idealization’ here is perhaps somewhere between Weisberg’s and 

Norton’s.  It differs most strongly from Norton’s in the sense that the values of parameters in a 

pragmatic idealization need not approximate values in the “target system” of the global climate 

at all.  Some apsects of even the best models, in fact, will have explicitly non-physical 

parameters; this was the worry that kicked off the present discussion to begin with, since it seems 

that processes like flux adjustment have no direct physical analogues in the global climate itself. 

Rather, they are artifacts of the particular model--the particular approach to pragmatic 

idealization--under consideration.  

     How problematic is it, then, that the flux adjustment has no direct physical analog in the 
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system being modeled?  It seems to me that the implication is not so dire as Lupo and Kinimouth 

make it out to be.  This is one sense in which the pragmatic idealization approach shares 

something in common with Norton’s story--when we create any climate model (but especially a 

CGCM like the GISS), we have done more than approximate the behavior of the climate system. 

We’ve created a novel system in its own right: one that we hope we can study as a proxy for the 

climate itself.  The objection that there are aspects of that novel system that have no direct 

analogue in the global climate itself is as misguided as the objection that no climate model 

captures every aspect of the climate system.  The practice of model building--the practice of 

pragmatic idealization--involves choices about what to include in any model, how to include it, 

what to leave out, and how to justify that exclusion.  These questions are by no means trivial, but 

neither are they insurmountable. 

6.3.5 Ensemble Modeling and CGCMs 

     Our discussion so far has focused on the advantages of studying feedback-rich nonlinear 

systems via computational models: numerical approximation of the solutions to large systems of 

coupled nonlinear differential equations lets us investigate the global climate in great detail, and 

through the use of equations derived from well-understood low-level physical principles. 

However, we have said very little so far about the connection between chaotic behavior and 

computational modeling.  Before we turn to the criticisms of this approach to modeling, let’s say 

a bit about how simulation is supposed to ameliorate some of the challenges of chaotic dynamics 

in the climate.  

     Chaos, recall, involves the exponential divergence of the successors to two initial conditions 
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that are arbitrarily close together in the system’s state space.  The connection to climate 

modeling is straightforward.  Given the difficulty--if not impossibility--of measuring the current 

(not to mention the past) state of the climate with anything even approaching precision, it’s hard 

to see how we’re justified in endorsing the predictions made by models which are initialized 

using such error-ridden measurements for their initial conditions.  If we want to make accurate 

predictions about where a chaotic system is going, it seems like we need better measurements--or 

a better way to generate initial conditions . 179

     This is where the discussion of the “predictive horizon” from Section 5.1.3 becomes salient. 

I argued that chaotic dynamics don’t prevent us from making meaningful predictions in general; 

rather, they force us to make a choice between precision and time.  If we’re willing to accept a 

certain error range in our predictions, we can make meaningful predictions about the behavior of 

a system with even a very high maximal Lyapunov exponent out to any arbitrary time. 

     This foundational observation is implemented in the practice of ensemble modeling. 

Climatologists don’t examine the predictions generated by computational models in isolation--no 

single “run” of the model is treated as giving accurate (or even meaningful) output.  Rather, 

model outputs are evaluated as ensembles: collections of dozens (or more) of runs taken as a 

single unit, and interpreted as defining a range of possible paths that the system might take over 

the specified time range. 

     Climate modelers’ focus is so heavily on the creation and interpretation of ensembles that the 

179 This problem is compounded by the fact that we often want to initialize climate models to begin simulating the 
behavior of the climate at times far before comprehensive measurements of any kind--let alone reliable 
measurements--are available.  While we can get some limited information about the climate of the past through certain 
“proxy indicators” (see Michael Mann’s work with glacial air bubbles, for instance), these proxy indicators are blunt 
tools at best, and are not available at all for some time periods. 
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in most cases CGCMs aren’t even initialized with parameter values drawn from observation of 

the real climate’s state at the start of the model’s run.  Rather, GCMs are allowed to “spin up” to 

a state that’s qualitatively identical to the state of the global climate at the beginning of the 

model’s predictive run.  Why add this extra layer of complication to the modeling process, rather 

than just initializing the model with observed values?  The spin up approach has a number of 

advantages; in addition to freeing climate modelers from the impossible task of empirically 

determining the values of all the parameters needed to run the model, the spin up also serves as a 

kind of rough test of the proposed dynamics of the model before it’s employed for prediction and 

ensures that parameter values are tailored for the grid-scale of the individual model.  

     A typical spin up procedure looks like this.  The grid size is defined, and the equations of 

motion for the atmospheric, oceanic, terrestrial, and cryonic models are input.  In essence, this 

defines a “dark Earth” with land, sky, and water but no exogenous climate forcings.  The climate 

modelers then input relevant insolation parameters--they flip on the sun.  This (unsurprisingly) 

causes a cascade of changes in the previously dark Earth.  The model is allowed to run for (in 

general) a few hundred thousand years of “model time” until it settles down into a relatively 

stable equilibrium with temperatures, cloud cover, and air circulation patterns that resemble the 

real climate’s state at the start of the time period under investigation.  The fact that the model 

does settle into such a state is at least a prima facie proof that it’s gotten things relatively right; if 

the model settled toward a state that looked very little like the state of interest (if it converged on 

a “snowball Earth” covered in glaciers, for instance), we would take it as evidence that 

something was very wrong indeed.  Once the model has converged on this equilibrium state, 

modelers can feed in hypothetical parameters and observe the impact.  They can change the 
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concentration of greenhouse gases in the atmosphere, for instance, and see what new equilibrium 

the system moves to (as well as what path it takes to get there).  By tinkering with the initial 

equations of motion (and doing another spin up), the length of the spin-up, and the values of 

parameters fed in after the spin up, modelers can investigate a variety of different scenarios, 

time-periods, and assumptions. 

     The use of spin up and ensemble modeling is designed to smooth over the roughness and 

error that results from the demonstrably tricky business of simulating the long-term behavior of a 

large, complex, chaotic system; whether simple numerical approximations of the type discussed 

above or more sophisticated methods are used, a degree of “drift” in these models is inevitable. 

Repeated runs of the model for the same time period (and with the same parameters) will 

invariably produce a variety of predicted future states as the sensitive feedback mechanisms and 

chaotic dynamics perturb the model’s state in unexpected, path-dependent ways.  After a large 

number of runs, though, a good model’s predictions will sketch out a well-grouped family of 

predictions--this range of predictions is a concrete application of the prediction horizon 

discussion from above.  Considered as an ensemble, the predictions of a model provide not a 

precise prediction for the future of the climate, but rather a range of possibilities.  This is true in 

spite of the fact that there will often be significant quantitative differences between the outputs of 

each model run.  To a certain extent, the name of the game is qualitative prediction here. 

     This is one respect in which the practices of climatology and meteorology have become more 

unified since Richardson’s and Bjerknes’ day.  Meteorologists--who deal with many of the same 

challenges that climatologists tackle, albeit under different constraints --employ nearly 180

180 This too is a practical illustration of the concept of the predictive horizon.  Weather prediction must be far more 
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identical ensemble-based approaches to weather modeling and prediction.  In both cases, the 

foundation of the uncertainty terms in the forecast--that is, the grounding of locutions like “there 

is a 70% chance that it will rain in Manhattan tomorrow” or “there is a 90% chance that the 

global average temperature will increase by two or more degrees Celsius in the next 20 years”--is 

in an analysis of the ensemble output.  The methods by which the output of different models (as 

well as different runs of the same model) are concatenated into a single number are worthy of 

investigation (as well as, perhaps, criticism), but are beyond the scope of this dissertation. 

     6.4  You Can’t Get Struck By Lightning In a Bottle: Why Trust Simulations? 

     How do we know that we can trust what these models tell us?  After all, computational 

models are (at least at first glance) very different from standard scientific experiments in a 

number of different ways.  Let us close this chapter with a discussion of the reliability of 

simulation and computational models in general.  

     6.4.1 Something Old, Something New 

      Oreskes (2000) points out that some critics of computational modeling echo a species of 

hard-line Popperian verificationism. That is, some critics argue that our skepticism about 

computational models should be grounded in the fact that, contra more standard models, 

computational models can’t be tested against the world in the right way.  They can’t be falsified, 

as by the time evidence proves them inadequate, they’ll be rendered irrelevant in any case.  The 

precise than climate prediction in order to be interesting.  However, it also need only apply to a timeframe that is many, 
many order of magnitude shorter than climate predictions.  Meteorologists are interested in predicting with relatively 
high accuracy whether or not it will rain on the day after tomorrow.  Climatologists are interested in predicting--with 
roughly the same degree of accuracy--whether or not average precipitation will have increased in 100 years.  The 
trade-off between immediacy and precision in forecasting the future of chaotic systems is perfectly illustrated in this 
distinction. 
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kind of parameterization and spin up procedure discussed above can be seen, in this more critical 

light, as a pernicious practice of curve-fitting: the CGCMs are designed to generate the 

predictions that they do, as model builders simply adjust them until they give the desired outputs.  

   However, as Oreskes argues, even the basic situation is more complicated than the naive 

Popperian view implies: in even uncontroversial cases, the relationship between observation and 

theory is a nuanced (and often idiosyncratic) one.  It’s often non-trivial to decide whether, in 

light of some new evidence, we ought to discard or merely refine a given model.  Oreskes’ 

discussion cites the problem of the observable parallax for Copernican cosmology and Lord 

Kelvin’s proposed refutation of old-earth gradualism in geology and biology--which was 

developed in ignorance of radioactivity as a source of heat energy--as leading cases, but we need 

not reach so far back in history to see the point.  The faster-than-light neutrino anomaly of 

2011-2012 is a perfect illustration of the difficulty.  In 2011, the OPERA lab at CERN in Geneva 

announced that it had observed a class of subatomic particles called “neutrinos” moving faster 

than light.  If accurate, this observation would have had an enormous impact on what we thought 

we knew about physics: light’s role in defining the upper limit of information transmission is a 

direct consequence of special relativity, and is a direct consequence of geometric features of 

spacetime defined by general relativity.  However, this experimental result was not taken as 

evidence falsifying either of those theories: it was greeted with (appropriate) skepticism, and 

subjected to analysis.  In the end, the experimenters found that the result was due to a faulty fiber 

optic cable, which altered the recorded timings by just enough to give a significantly erroneous 

result. 

     We might worry even in standard cases, that is, that committed scientists might appropriately 
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take falsifying observations not as evidence that a particular model ought to be abandoned, but 

just that it ought to be refined.  This should be taken not as a criticism of mainstream scientific 

modeling, but rather as an argument that computational modeling is not (at least in this respect) 

as distinct from more standardly acceptable cases of scientific modeling DMS might suggest. 

The legitimacy of CGCMs, from this perspective, stands or falls with the legitimacy of models in 

the rest of science.  Sociological worries about theory-dependence in model design are, while not 

trivial, at least well-explored in the philosophy of science.  There’s no sense in holding 

computational models to a higher standard than other scientific models.  Alan Turing’s seminar 

1950 paper on artificial intelligence made a similar observation when considering popular 

objections to the notion of thinking machines: it is unreasonable to hold a novel proposal to 

higher standards than already accepted proposals are held to. 

     We might do better, then, to focus our attention on the respects in which computational 

models differ from more standard models.  Simons and Boschetti (2012) point out that 

computational models are unusual (in part) in virtue of being irreversible: “Computational 

models can generally arrive at the same state via many possible sequences of previous states .” 181

Just by knowing the output of a particular computational model, in other words, we can’t say for 

sure what the initial conditions of the model were.  This is partially a feature of the predictive 

horizon discussed in Chapter Five: if model outputs are interpreted in ensemble (and thus seen 

as “predicting” a range of possible futures), then it’s necessarily true that they’ll be 

irreversible--at least in an epistemic sense.  That’s true in just the same sense that 

thermodynamic models provide predictions that are “irreversible” to the precise microconditions 

181 Simons and Boschetti (2012), p. 810 
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with which they were initialized.  However, the worry that Simons and Boschetti raise should be 

interpreted as going deeper than this.  While we generally assume that the world described by 

CGCMs is deterministic at the scale of interest--one past state of the climate determines one and 

only one future state of the climate--CGCMs themselves don’t seem to work this way.  In the 

dynamics of the models, past states underdetermine future states.  We might worry that this 

indicates that the non-physicality that worried Sen Gupta et. al. runs deeper than flux couplers: 

there’s a fundamental disconnect between the dynamics of computational models and the 

dynamics of the systems they’re purportedly modeling.  Should this give comfort to the 

proponent of DMS? 

6.4.3  Tools for Deciding 

     This is a problem only if we interpret computational models in general--and CGCMs in 

particular--as designed to generate positive and specific predictions about the future of the 

systems they’re modeling.  Given what we’ve seen so far about the place of CGCMs in the 

broader context of climate science, it may be more reasonable to see them as more than 

representational approximations of the global climate, or even as simple prediction generating 

machines.  While the purpose of science in general is (as we saw in Chapter One) to generate 

predictions in how the world will change over time, the contribution of individual models and 

theories need not be so simple. 

     The sort of skeptical arguments we discussed in Section 6.4.2 can’t even get off the ground if 

we see CGCMs (and similar high-level computational models) not as isolated 

prediction-generating tools, but rather tools of a different sort: contextually-embedded tools 
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designed to help us figure out what to do.  On this view, computational models work as (to 

modify a turn of phrase from Dennett [2000]) tools for deciding. .  Recall the discussions of 182

pragmatic idealization and ensemble modeling earlier in this chapter. I argued that  CGCMs are 

not even intended to either approximately represent the global climate or to produce precise 

predictions about the future of climate systems.  Rather, they’re designed to carve out a range of 

possible paths that the climate might take, given a particular set of constraints and assumptions. 

We might take this two ways: as either a positive prediction about what the climate will do, or as 

a negative prediction about what it won’t do. 

     This may seem trivial to the point of being tautological, but the two interpretations suggest 

very different roles for pragmatic idealization generally (and CGCMs in particular) to play in the 

larger context of climate-relevant socio-political decision making.  If we interpret CGCMs as 

generating information about paths the global climate won’t take, we can capitalize on their 

unique virtues and also avoid skepical criticisms entirely.  On this view, one major role for 

CGCMs’ in the context of climate science (and climate science policy) as a whole is to proscribe 

the field of investigation and focus our attention on proposals worthy of deeper consideration. 

Knowledge of the avenues we can safely ignore is just as important to our decision making as 

knowledge of the details of any particular avenue, after all. 

     I should emphasize again that this perspective also explains the tendency, discussed in 

Chapter Four, of progress in climatology to involve increasing model pluralism rather than 

convergence on any specific model.  I argued there that EMICs are properly seen as specialized 

182  This view is not entirely at odds with mainstream contemporary philosophy of science, which has become 
increasingly comfortable treating models as a species of artifacts.  van Fraassen (2009) is perhaps the mainstream 
flagship of this nascent technological view of models. 
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tools designed to investigate very different phenomena; this argument is an extension of that 

position to cover CGCMs as well.  Rather than seeing CGCMs as the apotheosis of climate 

modeling--and seeking to improve on them to the exclusion of other models--we should 

understand them in the context of the broader practice of climatology, and investigate what 

unique qualities they bring to the table.  

     This is a strong argument in favor of ineliminable pluralism in climatology, as supported by 

Parker (2006), Lenhard & Winsberg (2010), Rotmans & van Asselt (2001), and many others.  I 

claim that the root of this deep pluralism is the dynamical complexity of the climate system, a 

feature which necessitates the kind of multifarious exploration that’s only possible with the sort 

of model hierarchy discussed in Chapter Four.  Under this scheme, each model is understood as 

a specialized tool, explicitly designed to investigate the dynamics of a particular system 

operating under certain constraints.  High-level general circulation models are designed to 

coordinate this focused investigation by concatenating, synthesizing, and constraining the broad 

spectrum of data collected by those models.  Just as in the scientific project as a whole, 

“fundamentalism” is a mistake: there’s room for a spectrum of different mutually-supporting 

contributions 
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Coda - Modeling and Public Policy 

 

1.  

     In 1989, a relatively young software company released their first hit video game, which dealt 

with the unlikely topic of urban planning.  Players of the game—which was called 

SimCity—took on the role of a semi-omnipotent mayor: sort of a cross between an all-powerful 

god, a standard city planner, and a kid playing in a sandbox.  The player could set tax rates, 

construct (or demolish) various structures, set up zoning ordinances, and so on, all while trying 

to keep the city’s residents happy (and the budget balanced).  Even in its first iteration (the 

success of the original spawned generations of successor games that continue to be produced 

today), the simulation was startlingly robust: incorrect tax rates would result in bankruptcy for 

the city (if they were too low), or stagnation in growth (if they were too high).  If you failed to 

maintain an adequate power grid—both by constructing power plants to generate enough 

electricity in the first place and by carefully managing the power lines to connect all homes and 

businesses to the grid—then the city would experience brownouts or blackouts, driving down 

economic progress (and possibly increasing crime rates, if you didn’t also carefully manage the 

placement and tasking of police forces).  Adequate placement (and training) of emergency forces 

were necessary if your city was to survive the occasional natural disaster—tornados, 

earthquakes, space-monster attacks , &c.. 183

      The game, in short, was a startlingly well thought-out and immersive simulation of city 

183 If the player was feeling malicious (or curious), she could spawn these disasters herself and see how well her police 
and fire departments dealt with a volcanic eruption, a hurricane, Godzilla on a rampage, or all three at the same time. 
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planning and management, though of course it had its limitations.  As people played with the 

game, they discovered that some of those limitations could be exploited by the clever player: 

putting coal power-plants near the edge of the buildable space, for instance, would cause a 

significant portion of the pollution to just drift “off the map,” with no negative impact on the air 

quality within the simulation.  Some of these issues were fixed in later iterations of the game, but 

not all were: the game, while a convincing (and highly impressive) model of a real city, was still 

just that—an imperfect model.  However, even imperfect models can be incredibly useful tools 

for exploring the real world, and SimCity is a shining example of that fact.  The outward goal of 

the game—to construct a thriving city—is really just a disguised exercise in model exploration. 

Those who excel at the game are those who excel at bringing their mental models of the structure 

of the game-space into the closest confluence with the actual model the designers encoded into 

the rules of the game. 

     The programmers behind the Sim-series of games have given a tremendous amount of 

thought to the nature of their simulations; since the first SimCity, the depth and sophistication of 

the simulations has continued to grow, necessitating a parallel increase in the sophistication of 

the mechanics underlying the games.  In a 2001 interview,  lead designer Will Wright 184

described a number of the design considerations that have gone into constructing the different 

simulations that have made up the series.  His description of how the design team viewed the 

practice of model building is, for our purposes, perhaps the most interesting aspect of the 

interview: 

The types of games we do are simulation based and so there is this really elaborate simulation 
of some aspect of reality. As a player, a lot of what you’re trying to do is reverse engineer the 

184 Pearce (2001) 
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simulation. You’re trying to solve problems within the system, you’re trying to solve traffic in 
SimCity, or get somebody in The Sims to get married or whatever. The more accurately you 
can model that simulation in your head, the better your strategies are going to be going forward. 
So what we’re trying to as designers is build up these mental models in the player. The 
computer is just an incremental step, an intermediate model to the model in the player’s head. 
The player has to be able to bootstrap themselves into understanding that model. You’ve got 
this elaborate system with thousands of variables, and you can’t just dump it on the user or else 
they’re totally lost. So we usually try to think in terms of, what’s a simpler metaphor that 
somebody can approach this with? 

     This way of looking at models—as metaphors that help us understand and manipulate the 

behavior of an otherwise intractably complicated system—might be thought of as a technological 

approach to models.  On this view, models are a class of cognitive tools: constructions that work 

as (to borrow a turn of phrase from Daniel Dennett) tools for thinking .  This is not entirely at 185

odds with mainstream contemporary philosophy of science either; van Fraassen, at least, seems 

to think about model building as an exercise in construction of a particular class of artifacts 

(where ‘artifact’ can be construed very broadly) that can be manipulated to help us understand 

and predict the behavior of some other system .  Some models are straightforwardly artifacts 186

(consider a model airplane that might be placed in a wind tunnel to explore the aerodynamic 

properties of a particular design before enough money is committed to build a full-scale 

prototype), while others are mathematical constructions that are supposed to capture some 

interesting behavior of the system in question (consider the logistic equation as a model of 

population growth).  The important point for us is that the purpose of model-building is to create 

something that can be more easily manipulated and studied than the system of interest itself, with 

the hope that in seeing how the model behaves, we can learn something interesting about the 

system the model is supposed to represent. 

185 Dennett (2000) 
186 See, e.g., Van fraasen  (2009) 
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     All of this is rather straightforward and uncontroversial (I hope), and noting that simulations 

like SimCity might work as effective models for actual cities is not terribly interesting—after all, 

this is precisely the purpose of simulations in general, and observing that the programmers at 

Maxis have created an effective simulation of the behavior of a real city is just to say that they’ve 

done their job well.  Far more interesting, though, is a point that Wright makes later in the 

interview, comparing the considerations that go into the construction of models for simulation 

games like SimCity and more adversarial strategy games. 

     In particular, Wright likens SimCity to the ancient board game Go,  arguing that both are 187

examples of games that consist in externalizing mental models via the rules of the game.  In 

contrast to SimCity, however, Go is a zero-sum game played between two intelligent opponents, 

a fact that makes it more interesting in some respects.  Wright suggests that Go is best 

understood as a kind of exercise in competitive model construction: the two players have 

different internal representations of the state of the game,  which slowly come into alignment 188

with each other as the game proceeds.  Indeed, except at the very highest level of tournament 

play, games of Go are rarely formally scored: the game is simply over when both players 

recognize and agree that one side is victorious.  It’s not unusual for novice players to be beaten 

187 Go is played on a grid, similar to a chess board (though of varying size).  One player has a supply of white stones, 
while the other has a supply of black stones.  Players take turns placing stones at the vertices of the grid (rather than in 
the squares themselves, as in chess or checkers), with the aim of capturing more of the board by surrounding areas with 
stones.  If any collections of stones is entirely surrounded by stones of the opposite color, the opponent “captures” the 
stones on the inside, turning them into the stones of her color.  Despite these simple rules (and in contrast to chess, with 
its complicated rules and differentiated pieces), incredibly complex patterns emerge in games of Go.  While the best 
human chess players can no longer defeat the best chess computers, the best human Go players still defeat their digital 
opponents by a significant margin.  
188 It’s important to note that this is not the same as the players having different models of the board.  Go (like chess) is 
a game in which all information is accessible to both players.  Players have different functional maps of the board, and 
their models differ with regard to those functional differences—they might differ with respect to which areas are 
vulnerable, which formations are stable, which section of an opponent’s territory might still be taken back, and so on.  
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by a wide margin without recognizing the game is over—a true beginner’s mental model of the 

state of play might be so far off that he might not understand his defeat until his more skilled 

opponent shows him the more accurate model that she is using.  A large part of becoming 

proficient at playing Go consists in learning how to manipulate the relevant mental models of the 

board, and learning how to manipulate the pieces on the board such that your opponent is forced 

to accept your model. 

     Of course, disagreement about model construction and use has consequences that range far 

beyond the outcome of strategy games.  In the late 1990s, the designers behind the Sim series 

created a project for the Markle Foundation called “SimHealth.”  SimHealth worked much like 

SimCity, but rather than simulation the operation of a city, it simulated the operation of the 

national healthcare system—hospitals, doctors, nurses, ambulances, &c.  Even more 

interestingly, it exposed the assumptions of the model, and opened those up to tinkering: rather 

than working with a single fixed model and tinkering with initial/later conditions (as in SimCity), 

SimHealth’s “players” could also change the parameters of the model itself, experimenting with 

how the simulation’s behavior would change if (for example) hospitals could be efficiently run 

only a dozen doctors, or if normal citizens only visited the emergency room for life-threatening 

problems.  Wright argued that tools of this type made the process of health care policy debate 

explicit in a way that simple disagreement did not—that is, it exposed the fact that the real nature 

of the disagreement was one about models. 

WW:  When people disagree over what policy we should be following, the disagreement 
flows out of a disagreement about their model of the world. The idea was that if people 
could come to a shared understanding or at least agree toward the model of the world, then they 
would be much more in agreement about the policy we should take. 

CP: So in a way, a system like that could be used to externalize mental models and create a 
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collective model….you have an externalized model that everyone agrees to abide by. 

WW: Yeah, which is exactly the way science works . 189

     There’s a fantastically deep point here: one that (it seems to me) has been underemphasized 

by both philosophers of science and political philosophers: to a very great extent, policy 

disagreement is model disagreement.  When we disagree about how to solve some social 

problem (or even when we disagree about what counts as a social problem to be solved), our 

disagreement is—at least in large part—a disagreement about what model to apply to some 

aspect of the world, how to parameterize that model, and how to use it to guide our interventions

.  Nowhere is this clearer than when public policy purports to be guided by scientific results. 190

Taking the particular values that we do have as given,  a sound public policy that aims to make 191

the world a certain way (e.g. to reduce the heavy metal content of a city’s drinking water) is best 

informed by careful scientific study of the world—that is, it is best informed by the creation and 

examination of a good model of the relevant aspects of the world. 

     One consequence of this is that some of the difficulties of designing good public policy—a 

practice that we can think of, in this context, as a kind of social engineering—are inherited from 

difficulties in model building.  In our deliberations about which laws to enact, or which policies 

to reform, we may need to appeal to scientific models to provide some relevant data, either about 

the way the world is now, or about how it will be after a proposed intervention is enacted.  We 

189 Ibid., emphasis mine 
190 This is not to suggest that policy can be straightforwardly “read off” of scientific models.  Understanding relevant 
science, however, is surely a necessary condition (if not a sufficient one) for crafting relevant public policy.  See 
Kitcher (2011) for a more detailed discussion of this point.  For now, we shall simply take it as a given that 
understanding scientific models play a role (if not the only role) in deciding public policy. 
191 I want to avoid becoming mired in debates about the fact/value distinction and related issues.  None of what follows 
rests on any particular theory of value, and the reader is encouraged to substitute his favored theory.  Once we’ve 
identified what we in fact ought to do (whether by some utilitarian calculus, contemplation of the virtues, application of 
Kant’s maxim, an appeal to evolution, or whatever), then we still have the non-trivial task of figuring out how to do it. 
Public policy is concerned with at least some of the actual doing.  
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may need to rely on models to allow us to explore the consequences of some proposed 

intervention before we try out a new policy in socio vivo; that was the intended application of 

SimHealth, but the model in question need not be so explicit as a computer simulation.  If we 

disagree about which model to use, what the model implies, or how to tune the model 

parameters, then it may be difficult (or even impossible) to come to a policy agreement.  In many 

cases, the lack of scientific consensus on a single model to be used (or at least on relatively small 

family of models to be used) when working with a particular system is a sign that more work 

needs to be done: we may not agree, for instance, about whether or not the Standard Model of 

particle physics is the one we ought to work with in perpetuity, but this disagreement is widely 

appreciated to be an artifact of some epistemic shortcoming on our part.  As we learn more about 

the world around us, the scientific community will converge on a single model for the behavior 

of sub-atomic systems. 

     However, this is not always the case.  Suppose we have a pressing public policy decision to 

make, and that the decision needs to be informed by the best science of the day.  Suppose further 

that we have good reason to think that the sort of singular consensus trajectory that (say) 

sub-atomic particle models seem to be on is unlikely to appear in this case.  Suppose, that is, that 

we’re facing a policy decision that must be informed by science, but that the science seems to be 

generating a plethora of indispensable (but distinct) models rather than converging on a single 

one.  If we have good reason to think that this trend is one that is unlikely to disappear with 

time—or, even more strongly, that it is a trend that is an ineliminable part of the science in 

question—then we will be forced to confront the problem of how to reform the relationship 

between science and policy in light of this new kind of science.  Wright’s pronouncement that 
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model convergence is “just how science works” might need to be reexamined, and we ignore that 

possibility at our peril.  As we shall see, policies designed to deal with complex systems buck 

this trend of convergence on a single model, and thus require a novel approach to policy 

decision-making. 

     If there is any consensus at all in climate science, it is this: the window for possibly 

efficacious human intervention is rapidly shrinking, and if we don’t make significant (and 

effective) policy changes within the next few years, anthropogenic influence on the climate 

system will take us into uncharted waters, where the best case scenario—complete uncertainty 

about what might happen—is still rather unsettling.  Critics of contemporary climate science 

argue that the uncertainty endemic to our “best” current models suggests that we should adopt a 

wait-and-see approach—even if the climate is warming, some argue  that the fact that our 192

current models are scattered, multifarious, and imperfect mandates further work before we 

decide on how (or if) we should respond. 

     This position, I think, reflects a mistaken assumption about the trajectory of climate science. 

The most important practical lesson to be drawn here is this: if we wait for climate scientists to 

agree on a single model before we try to agree on policy, we are likely to be waiting forever. 

Climate scientists seem interested in diversifying, not narrowing, the field of available models, 

and complexity-theoretic considerations show that this approach is conceptually on firm ground. 

192 Again, Isdso & Singer (2009) is perhaps a paradigm case here, given the repeated criticism of climate modeling on 
the grounds that no single model captures all relevant factors.  This argument has also been repeated by many 
free-market-leaning economists.  Dr. David Friedman (personal communication), for instance, argued that “even if we 
were confident that the net effect was more likely to be negative than positive, it doesn't follow that we should act now. 
It's true that some actions become more difficult the longer we wait. But it's also true that, the longer we wait, the more 
relevant information we have.”  Reading this charitably (such that it isn’t trivially true), it suggests a tacit belief that 
climate science will (given enough time) converge on not just more particular information, but a better model, and that 
the gains in predictive utility in that model will make up for losses in not acting now. 
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Our policy-expectations must shift appropriately.  This is not to suggest that we should uncouple 

our policy decisions from our best current models—quite the opposite.  I believe that the central 

point that Will Wright makes in the quotation from his discussion of SimCity and SimHealth is 

still sound: disagreement about policy represents disagreement about models.  However, the 

nature of the disagreement here is different from that of the past: in the case of climate science, 

we have disagreement not about which model to settle on, but about how to sensibly integrate the 

plurality of models we have.  The disagreement, that is, revolves around how to translate a 

plurality of models into a unified public policy. 

     My suggestion is: don’t.  Let the lessons learned in attempts to model the climate guide our 

attempts to shape our influence on the climate.  Rather than seeking a single, unified, top-down 

public policy approach (e.g. the imposition of a carbon tax at one rate or another), our policy 

interventions should be as diverse and multi-level as our models.  Those on both sides of the 

climate policy debate sometimes present the situation as if it is a choice between 

mitigation—trying to prevent future damage—and adaptation—accepting that damage is done, 

and changing the structure of human civilization to respond.  It seems to me that the lesson to be 

drawn here is that all these questions (which strategy is best? Should we mitigate or adapt?) are 

as misguided as the question “which climate model is best?”  We should, rather, take our cue 

from the practice of climate scientists themselves, encouraging innovation generally across many 

different levels of spatio-temporal resolution.  

     By way of a single concrete example, consider the general emphasis (at least at the political 

level) on funding for alternative energy production (e.g. solar, hydrogen fuel cells).  It is easy to 

see why this is a relevant (and important) road to explore—even if the possible threat of climate 
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change turns out to (so to speak) blow over, fossil fuels will not last forever.  However, 

engineering viable replacements to fossil fuel energy is an expensive, long-term investment. 

While important, we should not allow ourselves to focus on it single-mindedly—just as 

important are more short-term interventions which, though possibly less dramatic, have the 

potential to contribute to an effective multi-level response to a possible threat.  For instance, 

directing resources toward increases in efficiency of current energy expenditure might be more 

effective (at least in the short run) at making an impact.  Innovations here can, like EMICs, take 

the form of highly specialized changes: the current work on piezoelectric pedestrian walkways 

(which harvest some of the kinetic energy of human foot impacting sidewalk or hallway and 

store it as electrical energy) is an excellent example .  Unfortunately, research programs like 193

this are relatively confined to the sidelines of research, with the vast majority of public attention 

(and funding) going to things like alternative energy and the possibilities of carbon taxes.  A 

more appropriate response requires us to first accept the permanent pluralism of climate science 

models, and to then search for a similarly pluralistic set of policy interventions. 

2.  

     There’s one last point I’d like to make connecting complexity modeling and public policy.  In 

a way, it is the simplest point of the whole dissertation, and it has been lurking in the background 

of all of the preceding 200-some-odd pages.  Indeed, it was perhaps best phrased way back in the 

first chapter: the world is messy, and science is hard.  We’ve examined a number of senses in 

which that sentence is true, but there’s one sense in particular that’s been illuminated in the 

course of our discussion here.  I want to close with a brief discussion of that sense. 

193 See, for example, Yi et. al. (2012) 
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     The advent of what the loosely related family of concepts, methods, theories, and tools that 

I’ve been referring to collectively as “complexity science” or “complexity theory” has changed 

the face of scientific practice in ways that are only beginning to be appreciated.  Just as when 

quantum theory and relativity overthrew the absolute rule of classical physics in the first part of 

the 20th century, much of what we previously took ourselves to know about the world (and our 

place in it) is now being shown to be if not exactly wrong then at least tremendously 

impoverished.  The view that I’ve associated variously with traditions in reductionism, 

eliminativism, and mechanism--the view that the world consists in nothing over and above, as 

Hume put it, “one little thing after another”--is proving increasingly difficult to hold onto in the 

face of contrary evidence.  Novel work in a variety of fields--everything from ecology to 

network science to immunology to economics to cognitive science--is showing us that many 

natural systems exhibit behavior that is (to put it charitably) difficult to explain if we focus 

exclusively on the behavior of constituent parts and ignore more high-level features.  We’re 

learning to think scientifically about topics that, until recently, were usually the province of 

metaphysicians alone, and we’re learning to integrate those insights into our model building. 

     While this complexity revolution has changed (and will continue to change) the practice of 

scientific model building, it must also change the way we talk about science in public, and the 

way we teach science in schools.  The future impact of complexity must be neither confined to 

esoteric discussions in the philosophy of science, nor even to changes in how we build or 

scientific models.  Rather, it must make an impact on how the general public thinks about the 

world around them and their place in that world.  Moreover, it must make an impact on how the 

general public evaluates scientific progress, and what they expect out of their scientific theories. 
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    I’ve emphasized a number of times here that many of the criticisms of climate science are, to 

some extent, founded on a failure to appreciate the unique challenges of modeling such a 

complex system.  The scientists  at work building working climate models, of course, by and 

large appreciate these challenges.  The public, however, very clearly does not.  The widespread 

failure to accept the urgency and immediacy of the call to act to avert a climate change disaster is 

one symptom of this failure to understand. 

     This is not just a matter of clear presentation of the data, or of educating people about what 

climate models say--though these are certainly very important things.  Instead, the disconnect 

between the scientific consensus and the public opinion about the reliability and effectiveness of 

climate models is a symptom of science education and science journalism that has been left 

behind by scientific progress.  The demands for more data, better models, further research, a 

stronger consensus, and so on would be perfectly sensible if we were dealing with predictions 

about a less complex system.  Science is presented to the public--both in primary/secondary 

education and in most popular journalistic accounts--as aiming at certainty, analytic 

understanding, and tidy long term predictions: precisely the things that complexity theory often 

tells us we simply cannot have.  Is it any wonder, then, that the general public fails to effectively 

evaluate the reliability of climate predictions and models?  Climatology (like economics, another 

widely mistrusted complex systems science) does great violence to the public perception of what 

good science looks like.  The predictions and methods of science bear little resemblance to the 

popular paradigm cases of science: Issac Newton modeling the fall of an apple with a neat set of 

equations, or Jonas Salk working carefully in a forest of flasks and beakers to isolate a vaccine 

for polio.  
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     If we’re to succeed in shifting the public opinion of climate science--and if we’re to avoid 

engaging in a precisely analogous public fight over the reliability of the next complex system 

science breakthrough--then we need to communicate the basics of complexity-based reasoning, 

and we need to help the public understand that science is a living enterprise.  We need to 

communicate to the average citizen the truth of the maxim from Chapter One: the world is 

messy and science is hard.  
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