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Modeling Economic Systems as

Locally-Constructive Sequential Games

Leigh Tesfatsion∗

Department of Economics, Iowa State University, Ames, IA 50011-1054

Abstract

Real-world economies are open-ended dynamic systems consisting of hetero-
geneous interacting participants. Human participants are decision-makers
who strategically take into account the past actions and potential future
actions of other participants. All participants are forced to be locally con-
structive, meaning their actions at any given time must be based on their
local states; and participant actions at any given time affect future local
states. Taken together, these essential properties imply real-world economies
are locally-constructive sequential games. This paper discusses a model-
ing approach, agent-based computational economics (ACE), that permits
researchers to study economic systems from this point of view. ACE mod-
eling principles and objectives are first concisely presented. The remainder
of the paper then highlights challenging issues and edgier explorations that
ACE researchers are currently pursuing.

Keywords: Economic systems, local constructivity, sequential game,
agent-based computational economics

1. Introduction

Real-world economies exhibit five essential properties. First, they consist
of heterogeneous interacting participants characterized by distinct local states
(data, attributes, methods) at each given time. Second, they are open-ended
dynamic systems whose dynamics are driven by the successive interactions of
their participants. Third, human participants are strategic decision-makers
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whose decision processes take into account past actions and potential future
actions of other participants. Fourth, all participants are locally constructive,
i.e., constrained to act on the basis of their own local states at each given
time. Fifth, the actions taken by participants at any given time affect future
local states and hence induce system reflexivity.1

These five essential properties imply that real-world economies are locally-
constructive sequential games.2 Two key questions can thus be posed. Do
modeling tools exist that permit real-world economies to be represented and
implemented as locally-constructive sequential games? If so, can these mod-
eling tools usefully advance the state of economic knowledge?

This study answers both of these questions in the affirmative, focusing
specifically on Agent-based Computational Economics (ACE) for concrete il-
lustration.3 ACE is the computational study of economic processes, including
whole economies, as open-ended dynamic systems of interacting agents (Tes-
fatsion, 2017a). The driving concern in the development of ACE has been
to provide a flexible modeling approach that enables a researcher to specify
and implement a model for a problem at hand with a degree of empirical
verisimilitude appropriate for this problem. In particular, modelers should
not be forced to rely on a priori model specifications whose only justification
is analytical tractability.

ACE is a specialization to economics of the more broadly conceived ap-
proach referred to as Agent-Based Modeling (ABM) (Axelrod and Tesfatsion,
2006). Although the precise meaning of ABM continues to be debated in the

1See Davis (2007, 2016) for a more precise definition and discussion of reflexivity for
economic systems.

2Sequential games, also referred to as extensive-form games, are dynamic games in
which multiple players undertake sequential decision making. Since decision-making play-
ers are informed, at a minimum, about their own decision histories, their states evolve
over time. For a basic introduction to game theory in general, and sequential games in
particular, see Eatwell et al. (1989).

3This study is an extended version of a keynote address given at the Duke Forest
Conference (Durham, NC, Nov. 11-13, 2016), titled “Economic Systems as Constructively
Rational Games: Oh, the Places We Could Go!.” Some of the materials in this study
are adapted from Axelrod and Tesfatsion (2006), Borrill and Tesfatsion (2011), LeBaron
and Tesfatsion (2008), and Tesfatsion (2017a). Annotated pointers to ACE tutorials,
publications, demos, software, research groups, and research area sites are posted at the
ACE website (Tesfatsion, 2017a). For broad ABM/ACE overviews, see Arthur (2015),
Chen (2016), Epstein (2006), Kirman (2011), and Tesfatsion (2006).
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ABM literature, seven specific modeling principles have been developed for
ACE that carefully distinguish it from other types of modeling and that
highlight its particular relevance for the study of economic systems.

The seven modeling principles underlying ACE model design are pre-
sented and explained in Section 2. Taken together, they express the fun-
damental goal of many agent-based modelers: namely, to be able to study
real-world systems as historical processes unfolding through time.

Section 3 discusses four key objectives currently being pursued by ACE
researchers: empirical understanding; normative design; qualitative insight
and theory generation; and methodological advancement. The achievement
of each of these objectives is critical for the overall success of ACE as a
modeling approach.

The next three sections highlight challenging opportunities for ACE mod-
elers. Section 4 considers distinct empirical validation aspects that researchers
tend to weight differently, depending upon their purpose: input validation;
process validation; in-sample fitting; and out-of-sample forecasting. Al-
though differential weighting by purpose is commonly done, it is argued that
ACE modeling permits researchers to strive for a more comprehensive ap-
proach to empirical validation that simultaneously considers all four aspects.

Section 5 discusses the increasingly important role that ACE models are
playing as computational laboratories for the development and testing of pol-
icy initiatives in advance of implementation. A taxonomy of Policy Readiness
Levels (PRLs) is proposed for policy initiatives ranging from conceptual pol-
icy formulation (PRL 1) to real-world policy implementation (PRL 9). ACE
modeling is helping to bridge the difficult gap between conceptual policy re-
search (PRLs 1-3), typically undertaken at universities, and large-scale policy
models incorporating numerous real-world features (PRL 7) that are favored
by industry, government, and regulatory agencies as a prelude to field studies
(PRL 8) and real-world policy implementations (PRL 9).

An additional potential benefit of the PRL taxonomy is addressed in
Section 6: namely, it could facilitate the development of presentation proto-
cols for economic policy models that appropriately take into account model
purpose and level of model development. This is particularly important for
newer modeling methodologies, such as ACE, which do not yet have estab-
lished presentation practices familiar to large numbers of economists.

Section 7 considers ways in which ACE permits edgier explorations of
critical real-world systems. These include: (i) the study of labor markets
as evolutionary sequential games with endogenous hiring, firing, and quits
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(Section 7.1); (ii) the study of macroeconomies with anticipatory learning by
locally-constructive consumers and firms attempting to achieve intertemporal
objectives (Section 7.2); (iii) the study of risk-management by strategically
interacting rural and urban decision-makers residing within a watershed af-
fected by climate and hydrological processes (Section 7.3); (iv) the study
of new market design features for U.S. electric power systems (Section 7.4);
and (v) the use of ACE modeling principles as design principles guiding
the development of decentralized “transactive energy” architectures for U.S.
transmission and distribution systems (Section 7.5).

In Section 8 it is shown how ACE can be viewed as a limit point of
a broad spectrum of experiment-based modeling approaches ranging from
100% human subject to 100% computer agent. By design, any decision-
making agent in an ACE model can be replaced by a real person. This
opens up huge mix-and-match opportunities to study human behaviors in
realistically rendered contexts as expressed both individually and in groups.
Concluding remarks are provided in Section 9.

2. ACE Modeling Principles

The following seven modeling principles collectively characterize the ACE
modeling approach:

(MP1) Agent Definition: An agent is a software entity within a computa-
tionally constructed world capable of acting over time on the basis of
its own state, i.e., its own internal data, attributes, and methods.

(MP2) Agent Scope: Agents can represent individuals, social groupings,
institutions, biological entities, and/or physical entities.

(MP3) Agent Local Constructivity: The action of an agent at any given
time is determined as a function of the agent’s own state at that time.

(MP4) Agent Autonomy: Coordination of agent interactions cannot be ex-
ternally imposed by means of free-floating restrictions, i.e., restrictions
not embodied within agent states.

(MP5) System Constructivity: The state of the modeled system at any
given time is determined by the ensemble of agent states at that time.
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(MP6) System Historicity: Given initial agent states, all subsequent events
in the modeled system are determined solely by agent interactions.

(MP7) Modeler as Culture-Dish Experimenter: The role of the modeler is
limited to the setting of initial agent states and to the non-perturbational
observation, analysis, and reporting of model outcomes.

Considered as a collective whole, modeling principles (MP1)–(MP7) em-
body the idea that an ACE model is a computational laboratory permitting
users to explore how changes in initial conditions affect outcomes in a mod-
eled dynamic system over time. This exploration process is analogous to
biological experimentation with cultures in petri dishes. A user sets initial
conditions for a modeled dynamic system in accordance with some purpose at
hand. The user then steps back, and the modeled dynamic system thereafter
runs forward through time as a virtual world whose dynamics are driven by
the interactions of its constituent agents.

The explicit statement of these modeling principles permits ACE to be
distinguished more clearly and carefully from other modeling approaches,
such as general equilibrium and game theory modeling within economics,
and standard usages of state-space modeling by economists, engineers, and
physicists. It also permits more precise comparisons between ACE and im-
portant historical antecedents, such as system dynamics (Rahmandad and
Sterman, 2008) and microsimulation (Richiardi, 2013).

The first modeling principle (MP1) provides a concise definition of an
ACE agent as a software entity capable of taking actions based on its own
local state. Here, “state” refers broadly to three possibly-empty elemen-
tary categories: data (physical sensations, empirical observations, statistical
summaries,...); attributes (physical conditions, financial conditions, beliefs,
preferences...); and methods (data acquisition, physical laws, data interpre-
tation, logical deduction, optimization routines, learning algorithms, decision
rules, ...). There is no presumption here that the data acquired by an agent
are accurate or complete, or that the methods used by an agent to process
data are without error.

A person familiar with object-oriented programming (OOP) might won-
der why “agent” is used here instead of “object,” or “object template” (class),
since both agents and objects refer to computational entities that package
together data, attributes, and methods. “Agent” is used in ACE, and in
agent-based modeling more generally, to stress the intended application to
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problem domains that include entities capable of varying degrees of self-
governance and self-directed social interactions. In contrast, OOP has tra-
ditionally interpreted objects as passive tools developed by a user to aid the
accomplishment of a user-specified task.

On the other hand, in contrast to many agent definitions proposed in
the general ABM literature, (MP1) does not restrict agents to human repre-
sentations. Such a restriction would require modelers to make unnecessary
distinctions between human actions and the actions of all other kinds of enti-
ties. Instead, (MP1) is in accordance with the standard dictionary meaning
of agent as any entity, whether person or thing, able to take actions that affect
subsequent events. ACE researchers can thus represent agents at different
ontological levels in accordance with their purposes (Gräbner, 2015).

Also, the “state” conceptualization in (MP1) differs in two important
ways from state depictions in standard state-space modeling:

(i) Diversity of State Content: The expression of an agent’s state in terms
of data, attribute, and method categories is broader than the standard
depiction of states as vectors of real-valued variables;

(ii) Variability of State Dimension: An agent’s state is not restricted to lie
within a fixed finite-dimensional domain.

Regarding (ii), an agent’s state can evolve over time in open-ended ways.
For example, an agent can continue to augment its data D(t) over successive
times t without need to rely on fixed-dimensional sufficient statistics, and
its attributes α(t) can also vary over time. Moreover, the agent’s methods
M(t) might include a domain R(t) of possible decision rules plus a genetic
algorithm g that involves mutation and recombination operations. When g
operates on R(t), given D(t) and α(t), the result g(R(t);D(t), α(t)) could be
a modified decision-rule domain R(t + ∆t) that has different elements than
R(t) and possibly also a different dimension than R(t).

The second modeling principle (MP2) clarifies the intended broad scope
of the agent definition provided in (MP1). Another way of viewing (MP2)
is that it calls for a broad agent taxonomy, i.e., a broad classification of
agents into ordered groups or categories. As illustrated in Fig. 1, agents
in ACE models can span all the way from passive physical entities with no
cognitive function to active social entities with sophisticated decision-making
capabilities. Moreover, agents can have other agents as constituent members,
thus permitting the modeling and study of hierarchical organizations.
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Figure 1: Partial agent taxonomy for an ACE macroeconomic model. Up-pointing arrows
denote “is a” relationships and down-pointing arrows denote “has a” relationships.

The process of economic theorizing and model building would be on a
firmer basis if it could routinely be based on empirically grounded taxonomic
classification. What types of human needs and desires are relevant for un-
derstanding particular types of economic phenomena? What types of goods
and services meet or could meet these human needs and desires? What types
of facilities exist or could exist to produce these goods and services, and who
participates in these production activities? What kinds of institutions exist
or could exist to distribute these goods and services, and who participates in
these distribution activities? And what types of entities (if any) oversee the
design and/or operation of these institutions, and for what purposes?

ACE modeling per se provides no answers to these questions; it is a
methodological approach, not a theory. However, ACE modeling provides a
systematic way to incorporate whatever agent taxonomy a researcher believes
is useful for the exploratory study of a particular economic phenomenon. The
researcher is freed from the constrictive binds of analytical tractability and
from the need to rely on narrow fragmented taxonomies arising from artificial
disciplinary boundaries.

The remaining five ACE modeling principles (MP3)–(MP7) imply that
ACE models are state-space models in initial value form (Tesfatsion, 2016).
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Specifically, an ACE model specifies how an ensemble of agent states varies
over time, starting from a given ensemble of agent states at an initial time.
Modern economic theory also relies heavily on state-space modeling. How-
ever, modeling principles (MP3)–(MP7) sharply differentiate ACE models
from standard economic state-space models.

Specifically, (MP3)–(MP7) require agent autonomy conditional on initial
agent states. In contrast, standard economic state-space models incorporate
modeler-imposed rationality, optimality, and equilibrium conditions that are
not locally constructive; that is, these conditions could not (or would not) be
met by agents acting purely on the basis of their own local states at each suc-
cessive point in time. For example, rational expectations assumptions require
ex ante agent expectations to be consistent with ex post model outcomes.
Consequently, as detailed in (Tesfatsion, 2017b, Section 5), the derivation of
rational expectations solutions is a global fixed-point problem requiring the
simultaneous consideration of all time periods.

Moreover, (MP3)–(MP7) permit explicit consideration of emergent sys-
tem attributes, i.e., system attributes determined by the ensemble of agent
states that cannot be expressed as a simple summation of agent attributes.
For example, agents might acquire data on past emergent system attributes,
such as income inequality, that affect their current actions. In turn, these
actions could affect future agent income attributes, resulting in a changed
degree of income inequality.

The seven modeling principles (MP1)-(MP7) together require an ACE
model to be fully agent based. That is, all entities capable of acting within
an ACE computationally-constructed world must be modeled as some form of
agent. This requirement has two key advantages. First, it enhances concep-
tual transparency; all factors affecting world events must be clearly identified
as an agent or agent component. Second, it facilitates plug-and-play model
scalability. The number of previously-typed agents can easily be increased,
since this does not require changes to the interfaces between agent types.
Moreover, high-level architectures (HLAs)4 can be designed for ACE models
that facilitate the enlargement of their scope through the inclusion of new
agent types.

4An HLA is a general purpose framework that manages the interactions among a “fed-
eration” (collection) of “federates” (simulation entities) (IEEE, 2010). The goal is to
promote the interoperability and reuse of simulation systems.
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For ACE researchers, as for economists in general, the modeling of de-
cision methods for decision-making agents is a primary concern. Here it is
important to correct a major misconception still being expressed by some
commentators uninformed about the powerful capabilities of modern soft-
ware: namely, the misconception that ACE decision-making agents cannot
be as rational (or irrational) as real people.

To the contrary, the constraints on agent decision making implied by mod-
eling principles (MP1)–(MP7) are constraints inherent in every real-world
economic system. As seen in the ACE learning research linked at (Tes-
fatsion, 2017c), the decision methods used by ACE agents can range from
simple behavioral rules to sophisticated anticipatory learning algorithms for
the approximate achievement of intertemporal objectives. A more extended
discussion of this point is provided in Section 7.2.

A second misconception that needs countering is the incorrect belief that
modeling principles (MP1)–(MP7) rule out any consideration of stochastic
processes. To the contrary, stochastic processes can easily be represented
within ACE models by means of pseudo-random number generators (PRNGs)
typically consisting of a few lines of source code.

Specifically, PRNGs can be included among the methods of decision-
making agents, permitting them to randomize their behaviors. For example,
decision-making agents can use PRNGs to choose among equally preferred
actions or action delays, to construct mixed strategies in game situations
to avoid exploitable predictability, and to induce perturbations in action
routines in order to explore new action possibilities.

Also, PRNGs can be included among the methods of other types of agents,
such as physical or biological agents, in order to model stochastic processes
external to decision-making agents. For example, Fig. 2 depicts the agent
taxonomy for an ACE watershed model (Tesfatsion et al., 2017). The Climate
and Market agents randomly generate a weather scenario and market prices
as publicly observable events during each simulated year, which in turn af-
fect Hydrology outcomes (river water flow), Basin outcomes (water run-off),
Farmland outcomes (bushels per acre), Farmer outcomes (land allocation
decisions), and City Manager outcomes (budget allocation decisions).

An important constraint affecting the ACE modeling of stochasticity is
that the modeling principles (MP1)–(MP7) require an ACE model to be
dynamically complete. Thus, ACE modelers must identify the sources of any
stochastic shocks affecting events within their modeled worlds, not simply
their impact points, because all such shocks must come from agents actually
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Figure 2: Agent taxonomy for an ACE watershed model. Up-pointing arrows denote “is a”
relationships and down-pointing arrows denote “has a” relationships. Source: Tesfatsion
et al. (2017).

residing within these worlds. This requirement encourages ACE modelers
to think carefully about the intended empirical referents for any included
stochastic shock terms. It also facilitates successive model development.
For example, a Climate agent implemented as a highly simplified stochastic
process in a current modeling effort can easily be modified to have a more
empirically-compelling implementation in a subsequent modeling effort.

A key remaining question is whether the ACE modeling principles (MP1)–
(MP7) imply that ACE models are necessarily pre-statable. As stressed by
Longo et al. (2012) and Koppl et al. (2015), the real world “bubbles forth”
with an ever-evolving state space, driven in part by random (acausal) events.
This renders infeasible the pre-statement of accurate equations of motion for
real-world state processes.

ACE modeling addresses this issue in two ways. First, there is no require-
ment in ACE modeled worlds that the agents residing within these worlds be
able to accurately depict laws of motion for their states in equation form, or
in any other form. Second, real-world data can be streamed into ACE models
in a manner that prevents even the modeler from being able to accurately
pre-state future model outcomes.

More precisely, suppose an ACE model has no run-time interaction with
any external system during times t ∈ [to, T ] for some finite horizon T . Then,
in principle, the modeler at time to could pre-state all model outcomes over
the time interval [to, T ], conditional on a given specification of agent states at
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time to, in the same manner that he could in principle pre-state all possible
plays of a chess game with a given closure rule.

Nevertheless, (MP1)–(MP7) do not imply that ACE agents have complete
state information. Consequently, ACE agents can experience events over
time that they have no way of knowing in advance. For example, suppose
an ACE model consists of a Climate agent interacting over times t ∈ [to, T ]
with a variety of other agents, as depicted in Fig. 2. The modeler at time
to might know the particular weather scenario that the Climate agent will
generate over time, or be able to pre-state this weather scenario based on the
modeler’s knowledge of the Climate agent’s PRNG P and its initial random
seed so. However, if other agents have no access to this internal Climate state
information, they will experience weather over time as a stochastic process.

Alternatively, an ACE model can have run-time interactions with an ex-
ternal system. For example, as discussed by LeBaron and Tesfatsion (2008,
Section III) and Borrill and Tesfatsion (2011, Section 2.1), an ACE model
can be data driven; that is, it can include conduit agents permitting external
data to be streamed into the model during run-time that are unknown (or
unknowable) by the modeler at the initial time to. In this case the modeler at
time to will not be able to pre-state future model outcomes, even in principle.

A particularly intriguing case to consider is when the data streamed into
an ACE modeled world include sequences of outcomes extracted from real-
world processes. For example, real-world weather data could be streamed
into a Climate agent in an ACE modeled world that this agent then uses to
generate a weather scenario. Also, real-world thermal or atmospheric noise
data streamed into the Climate agent could be accessible to decision-making
agents, enabling them to use these data in place of PRNGs as sources of
“truly random” numbers for their decision-making processes.

3. ACE Objectives and Scope

Current ACE research divides roughly into four strands differentiated by
objective. One primary objective is empirical understanding : What explains
the appearance and persistence of empirical regularities? ACE researchers
seek possible causal mechanisms grounded in the successive interactions of
agents operating within computationally-rendered virtual worlds. A virtual
world capable of generating an empirical regularity of interest provides a can-
didate explanation for this regularity. If distinct virtual worlds are found to
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have equivalent generative capability, further work must be done to adjudi-
cate among these candidate explanations based on the empirical plausibility
of their inputs and modeled processes (Epstein, 2006, pp. 8-10).

A second primary objective of ACE researchers is normative design: How
can ACE models be used as computational laboratories to facilitate the de-
sign of structures, institutions, and policies resulting in socially desirable
system performance over time? The ACE approach to normative design is
akin to filling a bucket with water to determine if it leaks. An ACE model
is constructed that captures essential properties of a system operating under
a design of interest. The modeled system is then permitted to develop over
time, driven solely by agent interactions.

One key issue for ACE normative design is the extent to which resulting
outcomes are efficient, fair, and orderly, despite possible attempts by strategic
decision-making agents to game the design for personal advantage. A sec-
ond key issue is a cautionary concern for adverse unintended consequences.
Optimal design might not always be a realistic goal, especially for large com-
plex systems; but ACE models can facilitate robust design (avoidance of bad
outcomes), a goal that is both feasible and highly desirable.

A third primary objective of ACE researchers is qualitative insight and
theory generation: How can ACE models be used to study the potential
behaviors of dynamic systems over time? Ideally, what is needed is a dynamic
system’s phase portrait, i.e., a representation of its potential state trajectories
starting from all feasible initial states. Phase portraits reveal not only the
possible existence of equilibria but also the basins of attraction for any such
equilibria. Phase portraits thus help to clarify which regions of a system’s
state space are credibly reachable, hence of empirical interest, and which
are not. An ACE modeling of a dynamic system can be used to conduct
batched runs starting from multiple feasible initial states, thus providing a
rough approximation of the system’s phase portrait.

A fourth primary objective of ACE researchers is methodological advance-
ment : How best to provide ACE researchers with the methods and tools they
need to undertake theoretical studies of dynamic systems through systematic
sensitivity studies, and to examine the compatibility of sensitivity-generated
theories with real-world data? ACE researchers are exploring a variety of
ways to address this objective ranging from careful consideration of method-
ological principles to the practical development of programming, visualiza-
tion, and empirical validation tools.
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4. Enabling Comprehensive Empirical Validation

Modelers concerned with the scientific understanding of real-world sys-
tems want their models to have empirical validity (“consistency with real
world data”). Below are four distinct aspects of empirical validation which,
ideally, a model intended for scientific understanding should simultaneously
achieve:

EV1. Input Validation: Are the exogenous inputs for the model (e.g.,
functional forms, random shock realizations, data-based parameter es-
timates, and/or parameter values imported from other studies) empir-
ically meaningful and appropriate for the purpose at hand?

EV2. Process Validation: How well do the physical processes, biological
processes, institutional arrangements, and social behaviors represented
within the model reflect real-world aspects important for the purpose
at hand?

EV3. Descriptive Output Validation: How well are model-generated
outputs able to capture the salient features of the sample data used for
model identification? (in-sample fitting)

EV4. Predictive Output Validation: How well are model-generated out-
puts able to forecast distributions, or distribution moments, for sample
data withheld from model identification or for data acquired at a later
time? (out-of-sample forecasting)

In practice, economists relying solely on standard analytical modeling
tools do not place equal weight on these four aspects of empirical validation.
Particularly for larger-scale economic systems, such as macroeconomies, an-
alytical tractability issues and a desire to adhere to preconceived rationality,
optimality, and equilibrium ideals have forced severe compromises.

In contrast, an ACE model is an open-ended dynamic system. Starting
from an initial state, outcomes are determined forward through time, one
state leading to the next, in a constructive causal manner. This process does
not depend on the determination, or even the existence, of equilibrium states.
ACE thus provides researchers with epistemological flexibility, permitting
modeled agents to be tailored for particular purposes.

In particular, ACE modelers can position agents within computational
worlds whose physical, biological, institutional, and social constraints mimic
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the constraints faced by the empirical counterparts of these agents in the
real world. This ability to match modeled agents against empirical counter-
parts, important for scientific understanding, is also critical for policy design
purposes. Robustness of proposed policies against strategic manipulation can
only be assured in advance of implementation if the modeled decision-making
agents used to test the performance of these policies have the same degree
of freedom to engage in strategic behaviors as their empirical counterparts.

ACE modeling thus permits researchers to strive for the simultaneous
achievement of all four empirical validation aspects EV1 through EV4. This
pursuit of comprehensive empirical validation will of course be tempered in
practice by data limitations. Even in an era of Big Data advances, data
availability and quality remain important concerns (D’Orazio, 2016).

Computational limitations, such as round-off error, truncation error, and
error propagation, are also a concern. Advances in computer technology and
numerical approximation procedures are rapidly relaxing these limitations.
In the interim, however, as elegantly expressed by Judd (2006, p. 887), nu-
merical error must be traded off against specification error:

“The key fact is that economists face a trade-off between the
numerical errors in computational work and the specification er-
rors of analytically tractable models. Computationally intensive
approaches offer opportunities to examine realistic models, a valu-
able option even with the numerical errors. As Tukey (1962) puts
it, ‘Far better an approximate answer to the right question ...
than an exact answer to the wrong question ...’.”

Empirical validation of ACE models in the sense of EV1 through EV4 is a
highly active area of research. Extensive annotated pointers to this research
can be found at Tesfatsion (2017d).

5. Avoiding Premature Jumps to Policy Implementation

Ideally, changes in a society’s current institutional and regulatory poli-
cies should be guided by research that is strongly supported by empirical
evidence. Reaching a point where a proposed new policy is ready for real-
world implementation will typically require a series of modeling efforts at
different scales and with different degrees of empirical verisimilitude. Mov-
ing too soon to policy implementation on the basis of too-simple models
entails major risk of adverse unintended consequences.
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Table 1: Policy Readiness Level (PRL) Classifications for Policy Models

Development Level PRL Description

Conceptual policy idea PRL 1 Conceptual formulation of a
policy with desired attributes

Analytic formulation PRL 2 Analytic characterization of a
policy with desired attributes

Modeling with PRL 3 Analysis of policy performance
low empirical fidelity using a highly simplified model

Small-scale modeling PRL 4 Policy performance tests using
with moderate a small-scale model embodying
empirical fidelity several salient real-world aspects

Small-scale modeling PRL 5 Policy performance tests using
with high empirical fidelity a small-scale model embodying

many salient real-world aspects

Prototype small-scale PRL 6 Policy performance tests
modeling using a small-scale model

reflecting expected field
conditions apart from scale

Prototype large-scale PRL 7 Policy performance tests using
modeling a large-scale model reflecting

expected field conditions

Field study PRL 8 Performance tests of policy
in expected final form under
expected field conditions

Real-world PRL 9 Implementation of policy in
implementation final form under a full range

of operating conditions
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Consider, for example, the Policy Readiness Levels (PRLs)5 proposed in
Table 1 for research directed towards the design of institutional and/or regu-
latory policies. Due to relatively limited data and computational capabilities,
policy researchers at universities tend to work at PRLs 1-3. In contrast, pol-
icy researchers within industry, government, and regulatory agencies tend to
work at PRLs 7-9.

The interim PRLs 4-6 thus constitute a “valley of death” that hinders the
careful step-by-step development and testing of policy proposals from con-
ceptual formulation all the way to real-world implementation. Fortunately,
ACE modeling is well suited for bridging this valley because it facilitates the
construction of computational platforms6 permitting policy model develop-
ment and testing at PRLs 4-6. Examples are discussed in Section 7.

All nine levels in the PRL taxonomy are essential for ensuring concep-
tual policy ideas are brought to real-world fruition. Explicit recognition and
acceptance of this tiered model valuation could encourage policy researchers
to become more supportive of each other’s varied contributions.

6. Towards Standardized Protocols for Policy Model Presentations

The classification of policy models in accordance with policy readiness
levels (PRLs), as proposed in Section 5, could also help with another issue
bedeviling ACE policy researchers. Specifically, how can ACE models and
model findings undertaken for policy purposes be presented to stakeholders,
regulators, and other interested parties in a careful, clear, and compelling
manner (Wallace et al., 2015, Sections 3-4,6)?

A critical point that needs to be stressed is that many ACE models are
directly developed in software code; they are not simply the computational
implementation of a model developed in equation form. In this case the
software code is the model. On the other hand, it follows from the modeling
principles presented in Section 2 that ACE models are initial-value state
space models. Consequently, in principle, the software code for any ACE

5These PRLs mimic, in rough form, the Technology Readiness Levels (TRLs) devised
by the U.S. Department of Energy (DOE, 2011, p. 22) to rank the readiness of proposed
new technologies for commercial application.

6In the current study the term computational platform is used to refer to a software
framework together with a library of software classes that permit the plug-and-play de-
velopment and study of a family of computational models.
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model can equivalently be expressed in abstract form as a system of discrete-
time or discrete-event difference equations, starting from user-specified initial
conditions.7 An example of such a presentation is given in Tesfatsion et al.
(2017, Section 6.3).

Nevertheless, analytical representation of ACE models becomes increas-
ingly complex as the number of agents increases. The practical challenge
facing ACE researchers then becomes how best to present approximations of
their models to interested parties who are unable or unwilling to understand
these models in coded or analytical form. Most ACE researchers resort to fig-
ures, verbal descriptions, Unified Modeling Language (UML) diagrams, flow
diagrams, and/or pseudo-code expressing structural model aspects and the
logical flow of agent processes and interactions over time. Readers wishing
to replicate results are pointed to the original source code.

The lack of standard presentation protocols for ACE models (and for
agent-based models more generally) has been severely criticized by economists
who directly specify their models in analytical or statistical terms using com-
monly accepted approaches. At the very least, it complicates efforts to com-
municate ACE model features and findings with clarity, thus hindering the
accumulation of knowledge across successive ACE modeling efforts.

Fortunately, the development of presentation protocols for ACE/ABM
is now an active area of research (Tesfatsion, 2016, 2017e). For example,
the ODD (Overview, Design concepts, and Details) protocol developed by
Grimm et al. (2006, 2010) has been widely adopted by ecologists who use
agent-based computational models.

To date, however, proposed presentation protocols such as ODD have
attempted to provide “one size fits all” requirements for the presentation of
agent-based computational models, regardless of purpose and development
level. The insistence on a single set of presentation requirements can make
it difficult to apply these protocols to particular modeling efforts.

For example, a serious effort is undertaken by Tesfatsion et al. (2017)
to present an ACE watershed model in strict accordance with the ODD
protocol. As explained in Grimm et al. (2010, Table 1), the “overview” part of
the ODD protocol requires researchers to present a relatively detailed model

7As discussed in Section 2, the ability to express an ACE model in abstract equation
form at an initial time to does not necessarily imply that the future outcomes of this model
are pre-statable at to, even in principle.
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summary that covers purpose, entities, state variables, scales, processes, and
process scheduling. The “design concepts” part of the ODD protocol requires
researchers to discuss the basic principles underlying their model designs
and the extent to which these designs embody ten specific design principles
(e.g., emergence, adaptation, ...). The “details” part of the ODD protocol
requires researchers to provide complete technically accurate descriptions of
their models, including initialization, input data, and submodels (processes).

While the effort by Tesfatsion et al. (2017) to abide by the ODD protocol
did significantly improve the clarity of their model presentation, the following
serious problems were encountered:

� Too many reporting requirements for journal outlets: The three ODD
protocol requirements could not be met within the normal page lim-
its for Environmental Modelling & Software. Fortunately the editor
permitted publication even though the length of the published paper
exceeded normal page limits.

� Breakage of encapsulation: The ODD protocol defines agent states
solely in terms of agent attributes and requires separate reporting of
agent attributes from agent data and agent methods. In contrast, an
important property of ACE models is agent encapsulation, i.e., the
modeling of an agent as a bundle of data, attributes, and methods that
can be partially or completely protected from direct access by other
agents. Although the authors fulfilled this ODD protocol requirement,
they also presented figures and text descriptions that expressed and
explained agents as encapsulated entities.

� Presentation requirements not suitable for general readers: The “De-
tails” part of the ODD protocol requires submodels (processes) to be
presented in their entirety, using actual code names for parameters,
variables, and functional forms. The authors deviated from this re-
quirement in their journal article to preserve general readability. The
processes for the ACE watershed model are carefully expressed in an-
alytical form using standard mathematical notation for functions and
variables. Readers desiring to replicate and extend results reported
for test-case8 simulations of the ACE watershed model are directed

8A test case for an ACE model is a particular numerical specification for initial agent
states that permits the model to be simulated on a computer.
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to a website repository providing complete source code and test-case
initialization data.

Given these difficulties with the “one size fits all” ODD protocol, a bet-
ter way to proceed would seem to be the adoption of a nested sequence of
presentation protocols tailored to the purpose and development level of a
modeling effort. For example, for policy models, use could be made of the
PRL taxonomy presented in Table1.

Specifically, a presentation protocol could be designed for PRL 1-3 models
that requires extensive model details to be reported in a particular form
suitable for a typical working paper or journal article. In contrast, for PRL
4-7 models, a presentation protocol could be designed that provides two sets
of presentation requirements: one set for a summary model description to be
reported within the confines of a typical working paper or journal article; and
a second set for a complete model description (source code) to be reported
at a supplementary website repository. Another important need for PRL 4-7
models is the development of presentation protocols for test-case simulation
studies, a need not specifically addressed by the ODD protocol.

7. Edgier Explorations

In the early years of agent-based modeling, back in the 1990s, researchers
created and explored agent-based models populated with agents whose fea-
tures far exceeded traditional economic specifications. Agents could com-
municate with each other using adaptively scripted messages, endogenously
form their interaction networks based on choice and refusal of interaction
partners, move around in spatially configured landscapes, use vision to locate
resources, and even reproduce in a manner mimicking genetic procreation.
See, for example, Epstein and Axtell (1996), Belew and Mitchell (1996), and
Arthur et al. (1997).

In the process of tailoring studies for publication in economic journals,
these features have been trimmed or eliminated to the point that computa-
tional agents simply appear to be boundedly rational variants of traditional
economic agents. Readers could rightly wonder: Where is the revolution?

This section highlights a number of ways in which ACE models incor-
porating non-traditional specifications for computational agents could both
advance traditional economic research goals and expand research horizons.
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7.1. ACE Modeling of Labor Markets as Evolutionary Sequential Games

The rightly celebrated work by Pissarides (2000) exploits data on job and
worker flows at a micro level in order to provide a better understanding of
critical labor market issues, such as endogenous job creation and destruc-
tion. This work relies on the use of an exogenously specified aggregate job-
matching function to approximate the process by which workers match with
employers in actual labor markets.

A number of ACE researchers have instead modeled worker-employer
matching as an endogenous process. For example, in (Tesfatsion, 2001) a
group of workers and employers participate in a sequential labor market game
with adaptive job search and incomplete contracts, implemented in C++ via
the Trade Network Game Laboratory (Tesfatsion, 2017f). The Pissarides
aggregate job-matching function is replaced with an endogenous preferen-
tial worker-employer matching process based on the Gale-Shapley deferred
acceptance algorithm (Roth, 2008).

Figure 3: An ACE sequential labor market game. Hiring, firing, and quits are endoge-
nously determined by the successive strategic decisions of workers (W) and employers (E)
based on past work-site interactions. Dark (black) arrows indicate accepted work offers,
and lighter (purple) arrows indicate refused work offers. Source: Tesfatsion (2001).

More precisely, as depicted in Fig. 3, at the beginning of each work pe-
riod the workers communicate work offers to their most preferred employers
deemed acceptable on the basis of past work-site interactions (or prior judg-
ments). Employers immediately refuse work offers from applicants deemed
unacceptable on the basis of past work-site interactions (or prior judgments)
and place all remaining work offers in their applicant pools. Refused workers

20



either redirect their work offers to acceptable next-most-preferred employers
(if any such employers exist) or become unemployed. Once all employer ap-
plicant pools have stabilized, each employer accepts work offers from among
the most preferred workers in his applicant pool (up to his hiring capacity)
and refuses the rest. This determines worker-employer matches, vacancies,
and unemployment for the current work period.

Matched workers and employers then participate in work-site games.
Workers and employers use the outcomes of their work-site game interactions
to update: (i) their preference orderings over potential work-site partners,
hence the manner in which they make, choose, and/or refuse work offers in
the next work period; and (ii) their game strategies for work-site interactions
in the next work period.

In subsequent mentions of this work in the economics literature, the fol-
lowing non-traditional aspects have typically not been noted. Workers and
employers engage in direct adaptive communication to implement an en-
dogenous matching process. Workers and employers use genetic algorithms
to evolve “new ideas” regarding appropriate game strategies for use in work-
site interactions. Matching theory is blended with game theory in order to
permit the endogenous choice and refusal of game partners.

Various other ACE modelers have exploited agent capabilities to open
up new labor market research directions as well; see Tesfatsion (2017g) for
annotated pointers to this research. However, to date, most of these efforts
have appeared in specialized outlets and have not had a major impact on
mainstream labor market research.

7.2. ACE Macroeconomic Modeling with Anticipatory Learning

A growing number of researchers have become interested in the study
of macroeconomic systems for which agents are forward-looking optimizers
with incomplete knowledge about the structure of the economy. As surveyed
in Evans and Honkapohja (2013), the standard context assumed in this lit-
erature is that a representative consumer with learning capabilities resides
in a dynamic world consisting of itself, a representative firm, and a govern-
ment policy-maker. The representative consumer has incomplete information
about the structure of its world, and it behaves as an econometrician in its
attempts to learn about its world from observed data.

Specifically, the representative consumer makes consumption and labor
decisions in each successive time period conditional on intertemporal budget
constraints. These budget constraints depend on current state variables (e.g.,
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financial and physical asset values), on current and forecasted future values
for system variables (e.g., goods prices, wages, and interest rates), and on
current and forecasted future values for government policy variables (e.g.,
tax rates). The consumer’s system variable forecasts are obtained from a
reduced-form econometric model. The consumer estimates and updates the
parameters of this econometric model over time, often by means of a least-
squares or Bayesian learning method. The consumer’s government policy
variable forecasts are generated by means of the latest announced government
policy rule, assumed to be credible common knowledge.

Functional forms and calibrated maintained parameter values are spec-
ified in the initial time period to guarantee the existence of a steady-state
solution, assumed to be common knowledge. A temporary equilibrium solu-
tion for the macroeconomic model is then approximately determined in dif-
ferenced form (i.e., differenced from steady-state values) in each successive
time period. A key concern is to analyze how different learning specifications
affect the properties of these temporary equilibria, e.g., will they converge
over time to the steady-state solution (in either a global or local stability
sense), or will they persistently deviate from this solution.

Clearly this literature takes an important step towards more realistic
macroeconomic modeling by recognizing the constrained information and
computational capabilities of decision-making agents. Nevertheless, locally-
constructive decision-making is still not ensured; external coordination and
optimality conditions are imposed on agents both intertemporally and cross-
sectionally in order to obtain model solutions. Examples of such conditions
include: single representative consumer assumptions; the assumed coordi-
nation of agents on a single temporary equilibrium solution in each time
period; non-constructive transversality conditions; the assumed absence of
interest-rate arbitrage opportunities; the assumed absence of ponzi-game op-
portunities such as persistent debt roll-over; and the assumed absence of
excess supplies and demands in markets.

This failure to ensure local constructivity has important consequences.
Real-world decision makers are forced to be locally constructive, which places
limits on their expressed behaviors. Idealized behavioral benchmarks are use-
ful for the specification of performance metrics, providing upper limits for
such metrics; but an insistence on idealized behavioral specifications for all
modeled economic decision-makers hinders understanding of real-world eco-
nomic systems. For scientific modeling purposes, the relevant set of decision-
making processes lies within the set of locally-constructive decision-making
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processes; and “rationality” should properly be defined relative to this set.
ACE macroeconomic modeling permits the systematic study of locally-

constructive decision processes in macroeconomic contexts. Extensive anno-
tated pointers to this work can be accessed at Tesfatsion (2017h).

To date, however, most ACE macroeconomic researchers have postulated
decision rules for decision-making agents that are not explicitly derived as
solutions for optimization problems, although they are sometimes motivated
as heuristic approximations for such solutions. This has led some macroe-
conomists to dismiss ACE macroeconomic modeling based on the incor-
rect belief that ACE decision-making agents must necessarily be reactive
stimulus-response agents with myopic objectives. To the contrary, how-
ever, as concretely demonstrated in Sinitskaya and Tesfatsion (2015), the
locally-constructive decision processes used by ACE decision-making agents
can range from simple fixed rules to intertemporal optimization based on
sophisticated anticipatory learning algorithms.

Figure 4: Locally constructive trading sequence in each period t for consumers and firms
in an ACE macroeconomic model who have learning capabilities and seek to maximize
intertemporal utility and profits. Source: Sinitskaya and Tesfatsion (2015).

Specifically, Sinitskaya and Tesfatsion (2015) take a standard macroe-
conomic model in which consumers and firms have intertemporal utility-
maximizing and profit-maximizing objectives and introduce four important
changes. First, all externally imposed market clearing and rational expecta-
tions assumptions are removed. Second, consumers and firms are modeled
as locally constructive agents with learning methods. Third, as depicted in
Fig. 4, consumers and firms attempt to satisfy their objectives through par-
ticipation in an open-ended sequence of locally constructive market activities
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for which every purchase must be backed by actual purchasing power (money
balances). Fourth, firms that become insolvent must exit the economy.

Four learning methods are tested for consumers and firms:9 (i) A simple
reactive reinforcement learning algorithm due to Roth and Erev (1995) that
asks “if this happens, what should I do?”; (ii) Q-learning (Watkins, 1989), a
well-known anticipatory learning algorithm that asks “if I do this, what will
happen?”; (iii) an anticipatory rolling-horizon learning method; and (iv) an
anticipatory stochastic dynamic programming learning method involving the
adaptive updating of value functions approximated by basis functions.

Welfare outcomes for consumers and firms are generated under 44 differ-
ent learning-method combinations. The best combination turns out to be
when all consumers and firms engage in rolling-horizon learning; the welfare
outcomes for this combination are shown to constitute a Pareto-optimal Nash
equilibrium relative to set of all tested learning combinations.

7.3. ACE Modeling of Coupled Natural and Human Systems

ACE modeling enables researchers to study economic processes as critical
components of coupled natural and human (CNH) systems. This permits
consideration of a broader range of potential causal factors for economic
outcomes of interest. Extensive annotated pointers to ACE CNH research
can be accessed at (Tesfatsion, 2017i).

For example, Tesfatsion et al. (2017) develop an ACE computational plat-
form for the study of watersheds under evolving climate conditions, referred
to as the W ater And C limate C hange Watershed (WACCShed) Platform.
This Java platform permits a careful modeling of the natural and institu-
tional environment that shapes and channels the actions of human watershed
participants. In turn, as advocated by An (2012), the platform permits a wa-
tershed environment to be affected by the actions of its human participants.

A watershed test system implemented by means of the WACCShed Plat-
form is presented in detail in order to demonstrate, in concrete terms, the
capabilities and use of the WACCShed Platform. As depicted in Fig. 2 and
Fig. 5, this test system captures, in highly simplified form, the structural
attributes of the Squaw Creek watershed in central Iowa.

The watershed test system restricts attention to two types of decision
makers, a representative farmer and a city manager, in order to identify with

9Source code (C++) and initialization data for this study can be accessed at
https://github.com/wilfeli/DMGameBasic.
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Figure 5: A watershed test system, implemented by means of the WACCShed Platform,
that focuses on local governance issues for the Squaw Creek watershed in central Iowa.
Source: Tesfatsion et al. (2017).

care the manner in which their strategic interactions and risk-management
practices result in an intrinsic dynamic coupling of natural and human sys-
tems over time. Illustrative findings are reported showing the sensitivity of
farmer and city social welfare outcomes to changes in three key treatment fac-
tors: farmer land-allocation decision method; farmer targeted savings level;
and levee quality effectiveness for the mitigation of city flood damage.

WACCShed source code and initialization data for the watershed test
system can be accessed at the WACCShed homepage (Jie et al., 2016).

7.4. ACE Modeling of Critical Infrastructure Systems

As stressed in Section 5, ACE computational platforms are increasingly
being used to study policy designs in advance of implementation. This section
illustrates this use for a complex critical infrastructure system: namely, U.S.
centrally-managed wholesale electric power markets.

The AMES (Agent-based M odeling of E lectricity Systems) Test Bed is
an ACE computational platform permitting the open-ended dynamic study
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Figure 6: ACE computational platform permitting study of U.S. ISO-managed wholesale
electric power markets. Source: Tesfatsion (2017j).

of wholesale electric power markets operating over AC transmission grids
subject to grid congestion (Tesfatsion, 2017j). AMES incorporates, in sim-
plified form, the core features of the two-settlement system design proposed
by the U.S. Federal Energy Regulatory Commission for U.S. wholesale elec-
tric power markets. To date, this design has been adopted in seven U.S.
energy regions (CAISO, ERCOT, ISO-NE, MISO, NYISO, PJM, SPP) en-
compassing over 60% of U.S. generation capacity.

The current version of AMES (V4.0) is a modular extensible platform
developed in Java and Python. As depicted in Fig. 6, the key features of
AMES (V4.0) are as follows:

1. Market Participants: These include Load Serving Entities (LSEs)
that demand electric power in order to service the loads of their retail
customers as well as generators that produce and supply electric power
from both dispatchable and non-dispatchable resources. Each partici-
pant is modeled as a private business entity whose goal is to secure the
highest possible net earnings from its market activities over time. At
the beginning of each simulation run, the user-specified methods of the
LSEs and dispatchable generators include demand bid and supply offer
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functions, and they can also include learning algorithms permitting the
endogenous updating of these functions over time.

2. Central Management: Grid and market operations are centrally
managed by a non-profit Independent System Operator (ISO) whose
goal is to maintain the reliable, efficient, and fair operation of the
wholesale electric power system over time.

3. Two-Settlement System: On each successive day the ISO conducts
a bid/offer-based Day-Ahead Market (DAM) to determine hourly re-
source commitments and dispatch levels for next-day operations as well
as a Real-Time Market (RTM) to correct for any imbalances between
day-ahead dispatch schedules and real-time power needs. Each market
is separately settled by Locational Marginal Pricing (LMP), i.e., the
pricing of power by the timing and location of its withdrawal from, or
injection into, the transmission grid.

4. AC Transmission Grid. The LSEs and generators are located at
user-specified locations across the AC transmission grid. Grid conges-
tion is managed via LMP.

The AMES Test Bed has been used to study a number of policy is-
sues, including: stochastic versus deterministic market-clearing methods for
day-ahead markets; effects of increasing wind power penetration and price-
responsive demands on the efficiency, reliability, and fairness of system op-
erations; and the effects of locational marginal pricing on the amounts of
net surplus extracted from market operations by LSEs, generators, and the
ISO. Software downloads, manuals, tutorials, and publication links can be
accessed at the AMES homepage (Tesfatsion, 2017j).

As discussed in Section 7.5, AMES is being linked to a distribution-system
framework developed by the Pacific Northwest National Laboratory (PNNL).
The resulting integrated transmission and distribution platform will be used
to study new types of “transactive energy system” architectures for electric
power systems that are based more fully on economic transactions.

7.5. ACE Modeling Principles as Real-World Design Principles

As stressed by Borrill and Tesfatsion (2011, Section 2.1), real-world sys-
tems whose architectures are designed in accordance with agent-based model-
ing principles can, in turn, be simulated by agent-based models that embody
their basic architecture and constituent agent types. This duality provides
unprecedented opportunities for deep empirical validation.
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In recent years, agent-based modeling principles are increasingly being
used to design “bottom up” Transactive Energy System (TES) architectures
for electric power systems (GAC, 2015; Tesfatsion, 2017k). TES architec-
tures are decentralized market-based mechanisms that permit electric power
systems to operate more fully in accordance with core economic principles.

More precisely, a TES architecture is a set of economic and control mech-
anisms that permits the balancing of power supplies and demands across
an entire electric power system, consistent with system reliability. The in-
tent is to enhance value for all participants subject to physical and security
constraints. A key characteristic of TES architectures is a stress on decen-
tralization. Information technology is viewed as the nervous system that will
permit management of an electric power system to be shared by a society
of distributed resource owners, customers, and other stakeholders. The ulti-
mate TES objective is to achieve “a loosely coupled set of controls with just
enough information exchange to allow for stability and global optimization
through local action” (GAC, 2015, p. 10).

For example, TES researchers such as Kok (2013) are investigating the
possibility of introducing various forms of aggregators able to harness ancil-
lary services from collections of distributed energy resources (DERs) owned
by businesses and households connected to distribution grids. Examples of
DERs include distributed generation (e.g., rooftop photovoltaic panels), plug-
in electric vehicles, battery storage systems, and household appliances with
energy storage capabilities and flexible power needs that permit collections
of these appliances to function as prosumers, i.e., as entities that can produce
or consume power depending on local conditions.

Harnessing of services from DERs for real-time operations requires vol-
untary participation by DER owners, hence it requires the creation of value
streams that can be used to compensate DER owners appropriately for pro-
vided DER services. In addition, it requires technological developments such
as local device management by intelligent software agents to ensure DER
response to real-time electronic signals in a timely and accurate manner.

Figure 7 depicts an ACE computational platform that permits the perfor-
mance study of integrated transmission and distribution systems operating
under TES designs.10 An ISO-managed wholesale electric power market op-

10This platform is currently under development by a team of researchers from Iowa State
University (ISU) and the Pacific Northwest National Laboratory (PNNL).
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Figure 7: An ACE computational platform permitting the study of transactive energy
system designs for U.S. electric power systems. Source: Tesfatsion (2017k)

erating over a transmission grid is tightly linked through DER and load ag-
gregators to a distribution system with distributed generation and prosumers
locally managed by intelligent software agents. An important characteristic
of such a system is that power and data can flow up as well as down between
the wholesale and retail electric power sectors.

8. A Spectrum of Experiment-Based Models

As depicted in Fig. 8, it is now feasible to develop experiment-based mod-
els that permit decision makers to range all the way from 100% real people
to 100% computer agents. The key question is whether it is worthwhile.

The arguments in favor are many. Experiments based entirely on hu-
man subjects must typically be kept short, with relatively simple experi-
mental settings, to avoid excessive subject compensation costs and subject
misunderstanding of instructions. In contrast, experiments based purely on
computer agents can generate simulated outcomes for complex problem envi-
ronments over long time horizons at relatively low expense. Nevertheless, if
human behaviors are misspecified, these simulated outcomes can be seriously
misleading.
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Figure 8: Spectrum of experiment-based models with subjects ranging from 100% human
to 100% computer agents.

Mixed experiment-based models that combine human subjects and com-
puter agents permit experimenters to postulate more realistic experimental
settings for their human subjects by letting computer agents represent crit-
ical but complicated real-world aspects. They also permit the systematic
study of human behaviors within controlled group settings, from small to
large, by letting computer agents represent “others” in these groups. In
addition, they provide a way for computer agents to be trained in situ to
embody human decision-making behaviors before they are used to represent
human decision-making behaviors in longer-run studies. Annotated links to
economic research using mixed experiment-based models can be found at
(Tesfatsion, 2017l).

An interesting related topic is serious gaming, i.e., the development of
game environments that are designed for teaching, training, and research
purposes and not simply for entertainment. While by no means a new topic,
serious gaming has attracted increased attention since 2002 due to both eco-
nomic and technological factors (Djaouti et al., 2011). Current serious game
releases typically take the form of computerized games that involve mixed
play among human and computer-implemented participants.
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9. Concluding Remarks

This study starts with the claim that real-world economic systems are
locally-constructive sequential games. It then strives to demonstrate, through
general analysis and concrete examples, that ACE modeling provides a prac-
tical useful way for economists to represent and study real-world economic
systems as locally-constructive sequential games.

The ultimate goal of this study is the routine inclusion of ACE modeling
within the toolkits of economists as a useful complement to current model-
ing approaches. Expansions of toolkits with new modeling tools providing
additional research capabilities should be embraced, not fought, as Pareto-
improving evolutions of economic methodology.
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