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Abstract Schrödinger’s equation says that the Hamiltonian is the generator of time
translations. This seems to imply that any reasonable definition of time operator must
be conjugate to the Hamiltonian. Then both time and energy must have the same
spectrum since conjugate operators are unitarily equivalent. Clearly this is not always
true: normal Hamiltonians have lower bounded spectrum and often only have discrete
eigenvalues, whereas we typically desire that time can take any real value. Pauli con-
cluded that constructing a general a time operator is impossible (although clearly it
can be done in specific cases). Here we show how the Pauli argument fails when one
uses an external system (a “clock”) to track time, so that time arises as correlations
between the system and the clock (conditional probability amplitudes framework). In
this case, the time operator is conjugate to the clock Hamiltonian and not to the sys-
temHamiltonian, but its eigenvalues still satisfy the Schrödinger equation for arbitrary
system Hamiltonians.

Keywords Time · Quantum mechanics · Foundations of quantum mechanics · Time
operator

1 Introduction

There are many different ways in which a time operator [1–6] can be introduced
into quantum mechanics. These differences reflect the different physical meanings
that “time” may have. We recall the main ones (the following list is, by necessity,

B Lorenzo Maccone
maccone@unipv.it

1 Instituto de Física Fundamental, CSIC, Serrano 113-B, 28006 Madrid, Spain

2 Dip. Fisica and INFN Sez. Pavia, University of Pavia, via Bassi 6, 27100 Pavia, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10701-017-0115-2&domain=pdf


1598 Found Phys (2017) 47:1597–1608

incomplete and clearly the following categorizations are not clear-cut): (1) typical
time operators [7–11] represent a “time of arrival”, whose measurement represents
the time at which a system is in a certain location. This is dual [12] to the Newton–
Wigner [13] position operator whose measurement represents the position at which
a system is located at a certain time; (2) coordinate time [14–18]; (3) an arbitrary
parameter (also reinterpreted as “Newtonian absolute time”) [19–21]; (4) a dynamical
variable that parametrizes different Hilbert spaces [22–24]; (5) a classical parameter
that cannot be quantized [25–28]; (6) a parameter that can be quantized, but not using
self-adjoint operators (observables) [14–16,29,30]; (7) proper time [31]; (8) clock
time [32–54].

Herewill be dealingwith the clock time, mainly focusing on the Page–Wootters and
Aharanov–Kaufherr (PWAK) approach [34–38]. In this framework, time is defined as
“what is shown on a clock”, where a clock is some (external) physical system that is
taken as a time reference. Then, the measurement of time acts as a conditioning that
outputs the position in time of some event that is being gauged by the clock: namely
the emphasis is on the correlations between a system and the clock as in ‘the state of a
system given that the clock shows t’. As shown in [34–39] these correlations manifest
themselves as a “static” entangled global state that satisfies a Wheeler-de Witt [55]
equation. The PWAK approach is briefly reviewed in Sect. 2.

The Pauli objection [26] essentially states that since the energy is the generator
of (continuous) time translations, any time operator must be conjugate to an energy
operator (Hamiltonian) that has unbounded continuous spectrum, properties which
are not satisfied by the Hamiltonian of typical systems. The standard textbook answer
to this objection is that time in quantum mechanics cannot be represented by an
operator and is a parameter, external to the theory, e.g. [25,40,41]. A different, but
connected objection was put forth by Peres [56]: if the Hamiltonian is the generator
of time translations and the momentum is the generator of space translations, then
the Hamiltonian and the momentum must always commute, since space and time are
independent degrees of freedom. In this paper we show how the PWAK formalism
can easily bypass these objections and provide an acceptable time operator.

The main idea is simple: the global Hamiltonian must contain both the system
Hamiltonian (which may have arbitrary spectrum) and the clock Hamiltonian, which
for an ideal clock must have unbounded continuous spectrum (physical clocks can
clearly only approximate this ideal situation). It is the clock Hamiltonian that is con-
jugate to the time operator, whereas it commutes with the system Hamiltonian which
acts on a different Hilbert space. Then the clock Hamiltonian Hc is the generator of
clock shifts, hence of “time” translations, whereas the system Hamiltonian Hs is the
generator of translations only of the system state, and not of time. Then [T̂ , Hs] = 0,
since the time operator T̂ acts on the clock’s Hilbert space whereas the system Hamil-
tonian Hs acts on the system Hilbert space. Hence, Hs and T̂ do not need to have the
same spectrum. To overcome Peres’ objection, one notes that the system Hamiltonian
indeed does commute with the momentum of the clock.

There are some arguments whose most extreme formulation says that in quantum
theory “time is not a quantity at all” [57], i.e., there is no way to attribute values
to time, be it an operator or a parameter indistinctly. All these arguments assume
that the spectrum of the Hamiltonian generating the time evolution in the state space
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is bounded from below. Indeed Halvorson ruled out the existence of subspaces of
states s(t1, t2) that can be associated to time intervals (t1, t2) and hence, dispensing
with the traditional notion of the passage of time in quantum theory. He concretely
derived [57] the contradiction that, as a consequence of the Hegerfeldt theorem [58],
∀|v〉 ∈ s(t1, t2) ⇒ |v〉 = 0. Again, the PWAK approach is immune to these kind of
arguments that, as Pauli’s, require boundedness of the Hamiltonian spectrum, which
is not the case of the clock Hamiltonian considered here.

While the basic mechanism to overcome the Pauli and Peres objections presented
here is clear, one has to be careful, since in the PWAK formalism (reviewed in Sect. 2)
the dynamics is imposed as a constraint and one must check that even in the space
of physical states the above properties still hold true: indeed, in the space of physical
states, the Wheeler-de Witt equation “forces” the clock Hamiltonian to coincide with
the systemHamiltonian. This analysis is given in Sects. 3 and 4 (that contains the more
technical parts). Even though the system Hamiltonian and the time operator commute
in this framework, it is still possible to give a time-energy uncertainty relation, as
shown in Sect. 5.

2 The PWAK Mechanism

The PWAKmechanismwas initially proposed by Page andWootters [34–36] and soon
after by Aharanov and Kaufherr [37] (but similar previous approaches can be found,
e.g. in [39,43–46]). A recent review, together with the solution to the objections that
were moved against it, can be found in [38].

To provide a quantization of time, one can simply define time as “what is shown
on a clock” and then use a quantum system as a clock. If one wants a continuous
time that goes from −∞ to +∞, a good candidate clock is to use the position of a
1-d particle [32,37,39]. Nonetheless, introducing explicitly a physical system is not
necessary (although it may help in visualizing the mechanism), and one can only
consider the time Hilbert space as an abstract space with no physical meaning, namely
one that does not describe any physical system. This abstract space is by no means
arbitrary as the global systemmust satisfy the constraint equation, but one can consider
it as a space that is disconnected from an actual physical system. In a sense this is
analogous to what happens when one introduces a purification Hilbert space to view
mixed states as pure states in a larger Hilbert space: the purification space can be either
seen as a true physical space and the we consider the system as mixed because we are
ignoring the correlations between the system and this additional physical system, or
alternatively it can be seen as a completely abstract space with no physical meaning
whatsoever.

The global Hilbert space is thenHT S = HT ⊗HS , where T represents the “time”
Hilbert space, typically the one for a particle on a line, L2(R). In HT we introduce
the position operator T̂ and its conjugate variable Ω̂ , with [T̂ , Ω̂] = i . We associate
Ω̂ to the energy of the clock (for a particle, this can be a good approximation for
sufficiently massive non relativistic particles [37], Appendix E). We can enforce that
T̂ represents the time operator which describes the evolution of a system by imposing
the following constraint equation, namely by requiring that the only states |Ψ 〉〉 of the
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joint Hilbert space HT S that represent physically relevant situations are the ones that
satisfy

(
h̄Ω̂ ⊗ IS + IT ⊗ Hs

)
|Ψ 〉〉 = 0 , (1)

(Hs being the arbitrary Hamiltonian of the system s and I the identity) which can
be interpreted as a Wheeler-de Witt equation [55]. The double ket notation serves
only as a reminder that |Ψ 〉〉 is a state on the joint Hilbert space HT S . Note that, the
system Hamiltonian Hs may have arbitrary but bounded spectrum. As eigenstates of
theWheeler-deWitt equation, the physical states |Ψ 〉〉 are “static” in the sense that they
do not evolve with respect to an “external” time. However, the system evolves with
respect to the clock and viceversa, in the sense that the correlations (entanglement)
between system and clock track the system evolution. Indeed the solutions of (1)
are

|Ψ 〉〉 =
∫ +∞

−∞
dω |ω〉|ψ̃(ω)〉 , (2)

where |ω〉 is the eigenstate of Ω̂ with eigenvalue ω, |ψ̃(ω)〉 is the (un-normalized)
Fourier transform of the system state |ψ(t)〉. [Note that the state (2) is not uniform in
|ω〉, as the eventual weight is implicit in the norm of |ψ̃(ω)〉, e.g. such weight selects
the solutions of (1).] Indeed,

|ψ̃(ω)〉 = 1√
2π

∫ +∞

−∞
dt e−iωt |ψ(t)〉 ⇒ (3)

Hs |ψ̃(ω)〉 = √
2π

∑
k

δ(ωk + ω)ψk h̄ωk |ek〉 = −h̄ω|ψ̃(ω)〉, (4)

where we have used the expansion |ψ(t)〉 = ∑
k ψke−iωk t |ek〉 in terms of the sys-

tem Hamiltonian eigenstates |ek〉 of eigenvalue h̄ωk . If the system Hamiltonian has a
continuous spectrum, an analogous expression holds:

Hs |ψ̃(ω)〉 = √
2π

∫
dω′δ(ω′ + ω)ψ(ω′)h̄ω′|ω′〉

= −h̄ω
√
2πψ(−ω)| − ω〉 = −h̄ω|ψ̃(ω)〉, (5)

where |ω〉 is the δ-normalized energy eigenstate of eigenvalue h̄ω. It is clear from
these expressions that |ψ̃(ω)〉 is the null vector if ω is not an eigenvalue of the system
Hamiltonian. The solutions (2) can be written as

|Ψ 〉〉 =
∫ +∞

−∞
dω |ω〉|ψ̃(ω)〉 =

∫ +∞

−∞
dt |t〉|ψ(t)〉 , (6)

where |t〉 = ∫
dω e−iωt |ω〉/√2π is the position eigenstate in HT and |ψ(t)〉 is the

system state at time t in HS , with normalization 〈ψ(t)|ψ(t)〉 = 1 for all t . [Note
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that any nontrivial probability amplitude φ(ω) in the integral (2) can be absorbed
in the definition of the system state |ψ̃(ω)〉 as ψk → φ(ωk)ψk .] The states (6)
are improper (non-normalizable) states that reduce to the “momentum” eigenstate√
2π |ω = 0〉 = ∫

dt |t〉 inHT whenever the system is in an eigenstate of its Hamilto-
nian Hs . Starting from the state (6) and conditioning the clock system to the state |t〉,
we recover the Schrödinger equation: indeed, Eq. (1) in the position representation
becomes

〈t |h̄Ω̂ + Hs |Ψ 〉〉 = 0 ⇔ (−i h̄ ∂
∂t + Hs

) |ψ(t)〉 = 0 , (7)

where we wrote the “momentum” Ω̂ in the position representation 〈t |Ω̂ =
(−i∂/∂t)〈t |, and we used 〈t |Ψ 〉〉 = |ψ(t)〉 which follows from (6). One can simi-
larly also derive the unitary evolution for the system [38].

One of the many advantages of this approach is that it renders explicit the problem
that, when an event is gauged by a quantum clock or a system is controlled by a
quantum clock, a feedback (disturbance) to the clock must occur [33].

3 Bypassing the Pauli Objection

The Pauli objection is just an argument and is not really rigorous. There are many
counterexamples in the literature (e.g. [59]), but it can also be made into a rigorous
statement if one is careful enough (e.g. [60]). It basically says that if one introduces a
time operator, then time and energy are conjugate operators through the Schrödinger
equation. Then their spectrum must be the same. This is a consequence of the Stone-

von Neumann theorem: if
[
T̂ , Hs

]
= i then T̂ and Hs have the same spectrum.

The PWAK mechanism is immune to this, since we are requesting that [T̂ , Ω̂] = i
and then enforcing that Ω̂ is equal to Hs only on the physical states through the
constraint Eq. (1). Such equation is saying that in this subspace Ω̂ = Hs! So it seems
that in the space of physical states, the Pauli argument should apply: T̂ has the same
spectrum as Ω̂ which (in the subspace) has the same spectrum as Hs . So we must
conclude that in the subspace of physical states T̂ has the same spectrum as Hs!

Luckily this statement is false, although it is not immediately trivial to see. To see
why that statement is false, we must formalize it very carefully. We start by defining
T̂ and Ω̂ as

T̂ ≡
∫ +∞

−∞
dt t |t〉〈t |, Ω̂ ≡

∫ +∞

−∞
dω ω |ω〉〈ω|

|ω〉 ≡
∫ +∞

−∞
dt√
2π

e−iωt |t〉, ⇒ |t〉 =
∫ +∞

−∞
dω√
2π

eiωt |ω〉. (8)

The Pauli objection can be formalized as follows:

1. The definitions of T̂ and Ω̂ imply that [T̂ , Ω̂] = i .
2. Introduce the Hilbert space of physical states Hc as the ones that satisfy Eq. (1),(

h̄Ω̂ + Hs

)
|Ψ 〉〉 = 0.
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3. Since (h̄Ω̂ + Hs)|Ψ 〉〉 = 0, then∗ also T̂ (h̄Ω̂ + Hs)|Ψ 〉〉 = 0, and 〈〈Φ|T̂ (h̄Ω̂ +
Hs)|Ψ 〉〉 = 0 for all |Φ〉〉, |Ψ 〉〉 ∈ HT S .

4. The point above implies that

0 = 〈〈Φ|T̂ (h̄Ω̂ + Hs)|Ψ 〉〉 − 〈〈Φ|(h̄Ω̂ + Hs)T̂ |Ψ 〉〉 (9)

= 〈〈Φ|h̄[T̂ , Ω̂] + [T̂ , Hs]|Ψ 〉〉, (10)

so 〈〈Φ|h̄[T̂ , Ω̂]|Ψ 〉〉 = −〈〈Φ|[T̂ , Hs]|Ψ 〉〉 (11)

5. Since
[
T̂ , Ω̂

]
= i , this means that, when restricting to the physical states space

Hc, we have [T̂ , Hs] = −i h̄, which through the Stone-von Neumann theorem
implies that T̂ has the same spectrum as Hs in this Hilbert space Hc, the Pauli
objection!

We note that Dirac had introduced an equation of the type (1) in [61], but he did
not consider it as a constraint on the physical states. This meant that he ran into an
inconsistency similar to the one emphasized above. Dirac never gave a solution [54].
We show here that a solution is provided by the PWAK mechanism.

This above argument is clearly wrong since
[
T̂ , Hs

]
= 0 because they are oper-

ators acting on different Hilbert spaces. In fact, the implication indicated with an

asterisk at point 3 fails: even though it is true that
(
h̄Ω̂ + Hs

)
|Ψ 〉〉 = 0, this

does not imply that T̂ (h̄Ω̂ + Hs)|Ψ 〉〉 = 0. This comes from the fact that the
spectrum of T̂ is unbounded, see the definition (8). We prove this in the following
section (using two different regularizations for the physical states |Ψ 〉〉 which are
un-normalizable).

One can also give a physical interpretation to this: one should expect that the
expectation value of T̂ must be undefined in the space of physical states. In fact 〈T̂ 〉
has as value the result to the question “what is the time?” which is a meaningless
question per se in physics. Meaningful questions are “what is the time when the spin
is up?” or “what is the time now that you’re reading this?”, etc. So, one must expect
that 〈〈Φ|T̂ |Ψ 〉〉will be undefined in the space of physical states, which is indeed what
happens.

4 Regularization

Here we provide the regularizations necessary to prove the relations introduced in
Sect. 3.

The state (6) is the solution of the eigenvalue equation (1). The eigenvalue λ = 0
is an essential eigenvalue of the self-adjoint constraint operator Ĵ = h̄Ω̂ + Hs . This
can be shown through Weyl’s criterion [62, Sect. 7], since ‖(Ĵ − λ)|Ψn〉〉‖ → 0 for
n → ∞ where |Ψn〉〉 is a Weyl sequence, i.e. a normalized sequence of vectors that
weakly converges to zero (namely, ∀|θ〉〉 ∈ H we have 〈〈θ |Ψn〉〉 → 0).
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We will show this using two different Weyl sequences which can be considered as
approximate eigenvectors (as expected, both give the same results):

|Ψn〉〉 ≡ ( 2
πn

)1/4 ∫
dt e−t2/n|t〉|ψ(t)〉 (12)

|Ψ ′
m〉〉 ≡ 1√

m

∫
dt β(t/m)|t〉|ψ(t)〉 , (13)

where the first uses a Gaussian whose width diverges for n → ∞, the second uses the
box function β whose width diverges for m → ∞, with β(x) = 1 if − 1

2 < x < 1
2 ,

β(− 1
2 ) = β( 12 ) = 1

2 , and β(x) = 0 otherwise. It has derivative ∂β(x)/∂x = δ(x +
1/2)−δ(x−1/2). These are bothWeyl sequences (see [62], pp. 71 and74 respectively).

All states inHc can be obtained from these as

|Ψ 〉〉 = lim
n→∞

(
πn
2

)1/4 |Ψn〉〉 = lim
m→∞

√
m|Ψ ′

m〉〉. (14)

Note that the state |Ψ 〉〉 is un-normalizable: it does not live in a Hilbert space, but one
has to resort to rigged Hilbert spaces, where the Hilbert space containing normalized
vectors (and the limit of sequences of normalized vectors) is incremented with vectors
of infinite norm [63].

First we show that |Ψn〉〉 and |Ψ ′
m〉〉 are indeed Weyl sequences for Ĵ and λ = 0,

namely they are “proper” approximations of the improper eigenvectors of Ĵ with
eigenvalue λ = 0. (We already know that, this is just a consistency check.) Let us start
with |Ψn〉〉. We have to show that ‖(Ĵ − λ)|Ψn〉〉‖ → 0 for n → ∞. Indeed,

lim
n

(h̄Ω̂ + Hs)|Ψn〉〉 = lim
n

2i
n

( 2
πn

)1/4 ∫
dt t e−t2/n|t〉|ψ(t)〉.

That this is a null vector can be seen by taking its modulus:

‖(h̄Ω̂ + Hs)|Ψn〉〉‖2 = 4
n2

√
2

πn

∫
dt t2 e−2t2/n → 0,

where we used the fact that
∫
dt t2 e−at2 = √

π/a3/2 and 〈ψ(t)|ψ(t)〉 = 1. The
same result applies using the other regularization: (h̄Ω̂ +Hs)|Ψ ′

m〉〉 → 0 form → ∞.
Indeed, for all vectors |θ〉〉 = ∫

dtθ(t)|t〉|φ(t)〉 in the Hilbert space, we find

|〈〈θ |(h̄Ω̂ + Hs)|Ψ 〉〉|
= lim

m
|〈〈θ |

∫
dt |t〉|ψ(t)〉 [

δ
(
t − m

2

) − δ
(
t + m

2

)]
(15)

= lim
m

|〈φ(0)|ψ(0)〉 [
θ∗ (m

2

) − θ∗ (−m
2

)] | = 0 , (16)

where we used (14), and the fact that 〈φ(t)|ψ(t)〉 is constant and that all square
integrable functions θ(t) → 0 for t → ±∞.
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Now the crucial point: what happens when we multiply these null vectors by the
unbounded operator T̂ ? We obtain a non-null vector! Indeed,

‖T̂ (h̄Ω̂ + Hs)|Ψn〉〉‖2 = 4
n2

√
2

πn

∫
dt t4 e−2t2/n = 3

4 ,

for all n, since
∫
dt t4 e−at2 = 3

√
π/a5/4. This implies that |Ψn〉〉 is not an approxi-

mate eigenvector for the λ = 0 eigenvalue of the operator T̂ (h̄Ω̂ + Hs), even though
it was an approximate eigenvector for the operator (h̄Ω̂ + Hs). This also means that
in the rigged Hilbert space we cannot consider |Ψ 〉〉 as eigenvector of this operator.

One can also show that

〈〈Ψn|(h̄Ω̂ + Hs)T̂ |Ψn〉〉 (17)

= i
√

2
πn

∫
dt

(
e−2t2/n − 2t2

n e−2t2/n
)

= i
2 , (18)

which suggests that |Ψ 〉〉 is an (improper) eigenstate of (h̄Ω̂ + Hs)T̂ with eigenvalue
i/2. Indeed, the above results imply

‖[(h̄Ω̂ + Hs)T̂ − λ]|Ψn〉〉‖ → 0 (19)

for λ = i/2 (actually the modulus is equal to 0 for all n). Note that this is the value
that is necessary in Eq. (9) to avoid the contradiction!

Analogous considerations hold for the other regularization since

〈〈θ |T̂
(
h̄Ω̂ + Hs

)
|Ψ 〉〉 = lim

m
i m2

[
θ∗ (m

2

) + θ∗ (−m
2

)]
, (20)

where we used |Ψ 〉〉 = limm
√
m|Ψ ′

m〉〉. This does not tend to zero as m → ∞ for
all square integrable functions θ(t), since square integrable functions must go to zero
faster than 1/

√
t for t → ∞.

In conclusion, not onlywehave shown that point 3 of thePauli argument fails, butwe
have also recovered the expected values of the scalar products 〈〈Ψ |T̂ (h̄Ω̂+Hs)|Ψ 〉〉 =
i/2 that are necessary in Eq. (9) if it has to be consistent with the fact that [T̂ , Ω̂] = i .

5 Unbounded-Energy Clocks?

Thewaywe thePWAKmechanismbypasses thePauli objection is byusing a clockwith
an unbounded Hamiltonian equal to its “momentum” [37]. Clearly this is unphysical
and one could object that our resolution is not a resolution after all. However, it is
important to notice that all quantum experiments to date have been performed with
macroscopic “classical” clocks (except for especially crafted situations [53]). These
have energy so large compared to the time uncertainties that can be tracked in practice
that their spectrum can be considered unbounded for all practical purposes. Moreover,
macroscopic systems get very quickly correlated to astronomical distances (e.g., the
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motion of one gram of matter on the star Sirius by one meter sensibly influences the
particle trajectories in a box of gas on earth on a time-scale of μs after the transit
time [64]) so that a pure-state analysis as performed above will break down unless one
is able to track all the correlated degrees of freedom, a practical impossibility.

In this section we study how good is the approximation of considering a clock
with unbounded spectrum. We show that if the energy spread is �E the time can be
measured up to a precision �t = h̄/2�E . This is a direct consequence of the time-
energy uncertainty relation [28,65,66] which says that, if the energy spread is �E ,
then theminimum time interval it takes to evolve to an orthogonal state is τ � h̄/2�E .
Hence no smaller time interval can be measured with accuracy.

Clearly, a spread in energy is by itself insufficient to obtain a clock: one also needs
good time correlation. However, in the absence of energy spread, a clock in the state
|Ψ 〉〉 of (2) cannot keep time, and with limited energy spread, it can only keep time up
to some accuracy since the correlation in time cannot be sufficiently high. Consider
first what happens if we keep the unbounded Hamiltonian of the clock h̄Ω̂ , but reduce
the energy spread by making explicit the spectral function φ(ω) which was absorbed
into |ψ̃(ω)〉 in (2) as |ψ̃(ω)〉 = φ(ω)|χ̃(ω)〉. Consider �ω = �E/h̄ the standard
deviation of the probability |φ(ω)|2. Since the clock and the system are entangled,
this spectral function does not refer exclusively to the clock, but to both the clock
and the system. As expected from the time-energy uncertainty relation, a limited-
bandwidth spectral function φ(ω) will reduce the speed of evolution (time resolution
of the global system). Indeed (neglecting multiplicative constants) we have

|Ψ 〉〉 =
∫

dω φ(ω)|ω〉|χ̃(ω)〉 ∝
∫

dtdt ′ φ̃(t − t ′)|t〉|χ(t ′)〉,

where φ̃ and |χ(t)〉 are the Fourier transforms of φ and |χ̃(ω)〉. Even though this seems
to be incompatible with Eq. (6), it is not as can be seen by writing

|ψ(t)〉 ∝
∫

dt ′φ̃(t − t ′)|χ(t ′)〉 . (21)

This can be interpreted as if |ψ(t)〉 is obtained by “averaging” |χ(t)〉 over time with a
probability amplitude φ̃. Then the smallest time interval during which |ψ(t)〉 can vary
appreciatively is of the order of h̄/�E , i.e. the inverse of the spread of the probability
|φ(ω)|2. Indeed

〈ψ(t)|ψ(t ′)〉 ∝
∫

dτdτ ′ φ̃(t − τ)φ̃∗(t ′ − τ ′)〈χ(τ ′)|χ(τ)〉,

whence, even supposing instantaneous change of |χ〉, namely 〈χ(τ ′)|χ(τ ′)〉 ∝ δ(τ −
τ ′), we have

〈ψ(t)|ψ(t ′)〉 ∝
∫

dω|φ(ω)|2eiω(t−t ′). (22)
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If |φ(ω)|2 has a spread � �E/h̄, then its Fourier transform will have a spread of
the order of h̄/�E . This means that the scalar product 〈ψ(t)|ψ(t ′)〉 cannot change
appreciatively in a smaller interval, namely the time scale of change of the system state
must be larger than h̄/�E , in accordance with the time-energy uncertainty relation.

Thanks to its linearity, the Schrödinger equation holds for the “averaged” |ψ(t)〉
of Eq. (21), which implies that eventual imperfect correlations between system and
clock will not induce a fundamental decoherence effect in this case.

However, if we drop the (unphysical) assumption that the clock Hamiltonian is
unbounded Ĥc = h̄Ω̂ , then the above analysis fails. Indeed, the clock’s energy bound-
edness will induce a, model-dependent decoherence effect in the system evolution: we
will not be able to reproduce the Schrödinger equation. Since it is a model-dependent
effect (e.g., see [37], Appendix E), we will not further elaborate here, except to note
that in practical situations this effect will be completely negligible for all quantum
experiments performed to date where classical clocks (i.e., macroscopic quantum sys-
tems) have been employed to time the experiment. In these cases, the spectrum of the
clock is so large as to make it effectively unbounded over the limited time duration
of any reasonable quantum experiment. So any decoherence effect due to the limited
energy spectrumof the clockwill be completely negligible.Moreover,we point out that
macroscopic clocks will quickly correlate with other systems, so it quickly becomes
meaningless to consider as “clock” just the actual clock, which very rapidly becomes
entangled to external degrees of freedom of the rest of the laboratory and beyond:
when considering the clock energy, one would then have to consider the energy of all
these additional degrees of freedom. Then, the approximation of considering the clock
energy as unbounded is even better than what would be by considering the clock by
itself.

We note that this fundamental decoherence is of a different nature with respect
to the one present in the Gambini et al. framework [50–52] which also presents an
interesting fundamental decoherence due to the unobservability of the time parameter.

6 Conclusions

In this paper we have shown how one can easily bypass the Pauli and the Peres
objections to a quantum operator for time using the conditional probability amplitude
framework of Page, Wootters, Aharanov and Kaufherr. Moreover we have detailed
how the time-energy uncertainty relation arises in this framework.
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