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This dissertation is centrally concerned with exploring obituaries as

repositories of values. Obituaries are a publicly-available natural language source

that are variably written for members of communities that are wide (nation-

level) and narrow (city-level, or at the level of specific groups therein). Because

they are explicitly summative, limited in size, and written for consumption by

a public audience, obituaries may be expected to express concisely the aspects

of their subjects’ lives that the authors (often family members living in the same

communities) found most salient or worthy of featuring.

140,599 obituaries nested in 832 newspapers from across the USA were

scraped with permission from Legacy.com, an obituaries publisher. Obituaries

were coded for the age at death and gender (female/male) of the deceased using

automated algorithms. For each publishing newspaper, county-level median income,

educational achievement (operationalized as percent of the population with a

Bachelor’s degree or higher), and race and ethnicity were averaged across counties,

weighting by population size.

A Neo4J graph database was constructed using WordNet and the University

of South Florida Free Association Norms datasets. Each word in each obituary in
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the corpus was lemmatized. The shortest path through the WordNet graph from

each lemma to 30 Schwartz value prototype words published by Bardi, Calogero,

and Mullen (2008) was then recorded. From these path lengths, a new measure,

“word-by-hop,” was calculated for each Schwartz value to reflect the relative lexical

distance between each obituary and that Schwartz value.

Of the Schwartz values, Power, Conformity, and Security were most

indicated in the corpus, while Universalism, Hedonism, and Stimulation were least

indicated. A series of seven two-level regression models suggested that, across

Schwartz values, newspaper community accounted for the greatest amount of

word-by-hop variability in the corpus. The best-fitting model indicated a small,

negative effect of female status across Schwartz values. Unexpectedly, Hedonism

and Conformity, which had conceptually opposite prototype words, were highly

correlated, possibly indicating that obituary authors “compensate” for describing

the deceased in a hedonistic way by concurrently emphasizing restraint. Future

research could usefully further expand word-by-hop and incorporate individual-level

covariates that match the newspaper-level covariates used here.
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CHAPTER I

INTRODUCTION

Summary Statement

This dissertation is centrally concerned with exploring obituaries as

repositories of values. It seeks to lay a foundation for detecting values, defined from

the Schwartz values model (e.g., Schwartz, 2012), in obituaries, and to examine

their relation to characteristics of the individuals described in those obituaries,

and to their communities. Obituaries are a publicly-available natural language

source that are variably written for members of communities that are wide (nation-

level) and narrow (city-level, or at the level of specific groups therein). Because

they are explicitly summative, limited in size, and written for consumption by

a public audience, obituaries may be expected to express concisely the aspects

of their subjects’ lives that the authors (often family members living in the same

communities) found most salient or worthy of featuring.

This study of values using a natural language approach with obituaries

fundamentally takes a descriptive rather than normative stance. However, this

dissertation is founded in the idea that descriptive research into values can provide

insight into the normative makeup of the communities that espouse them and,

potentially, can allow useful relationships to be seen about the communities and

the individuals that they comprise (in this project, the obituaries’ subjects).

As, to some extent, rituals of praise, obituaries specifically can offer a route to

understanding the values of the communities that write them.
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Background on the Schwartz Values model

The Schwartz values paradigm (e.g., Schwartz, 2012) is widely cited1

in the values literature for its wide scope and a substantial body of evidence

demonstrating its ability to describe value priorities across cultures and social

groups therein. As Schwartz (2012) summarized, the model posits that 10 basic

categories reliably encompass differences in values across cultures. The model

defines values “as desirable, transsituational goals, varying in importance, that

serve as guiding principles in people’s lives” (Schwartz et al., 2001, p. 521). Thus,

in the model, value-categories are primarily differentiated by the “[primary end-

]goal[s] or motivation[s]” toward which they are oriented (Schwartz, 2012, p. 4;

Schwartz et al., 2001)2.

Graphical depictions of the model often arrange the value categories

circularly, conceptually allowing pairs of given categories to be complementary or

in opposition to one another, and to represent that they are more continuously

than rigidly defined3. The approximate quadrants of this circle can also be named

1As of September, 2016, Google Scholar recorded that Schwartz (1992) has been cited 12,544
times.

2Schwartz’ conceptualization of values is in line with that of Haybron and Tiberius (2012,
p. 9), who defined values as “relatively robust pro-attitudes [i.e., attitudes in favor of certain
actions], or clusters of pro-attitudes, that we take to generate reasons for action and furnish
standards for evaluating how our lives are going.”

Schwartz (1992, p. 4) further defined values as “(1) concepts or beliefs [that] (2) pertain
to desirable end states or behaviors, (3) transcend specific situations, (4) guide selection or
evaluation of behavior and events, and (5) are ordered by relative importance.” This definition
agrees with Haybron and Tiberius’ (2012) at least in its second and fourth parts. To Haybron
and Tiberius, values go beyond short-term preferences in generating impulses to action, to some
extent becoming ends for action in themselves in a way that preferences do not (Haybron and
Tiberius noted that values can be called “subjectively reason-grounding” in that they are used by
individuals to justify actions even when no good or otherwise justifiable reasons for those actions
exist).

3A pictorial representation of this model is provided by Schwartz (2012), whose report is freely
available under a Creative-Commons-family license (albeit one that prohibits reuse of the image
by itself in this document).

2



(All quotes below are from Schwartz, 2012, p. 5-9; the list below moves around the

image of the circular model presented by Schwartz, 2012, in a counter-clockwise

direction):

1. Openness to change

1. Self-Direction (“Defining goal: independent thought and action–

choosing, creating, exploring.”)

2. Stimulation (“Defining goal: excitement, novelty, and challenge in life.”)

3. Hedonism (“Defining goal: pleasure or sensuous gratification for

oneself.”)

2. Self-Enhancement

1. Hedonism (Also above, in Openness to change)

2. Achievement (“Defining goal: personal success through demonstrating

competence according to social standards.”)

3. Power (“Defining goal: social status and prestige, control or dominance

over people and resources.”)

3. Conservation

1. Security (“Defining goal: safety, harmony, and stability of society, of

relationships, and of self.”)

2. Conformity (“Defining goal: restraint of actions, inclinations, and

impulses likely to upset or harm others and violate social expectations

or norms.”)
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3. Tradition (“Defining goal: respect, commitment, and acceptance of the

customs and ideas that one’s culture or religion provides.”)

4. Self-Transcendence

1. Benevolence (“Defining goal: preserving and enhancing the welfare of

those with whom one is in frequent personal contact [the ‘in-group’].)”

2. Universalism (“Defining goal: understanding, appreciation, tolerance,

and protection for the welfare of all people and for nature.”)

While, Schwartz (2012) noted, the model does posit (and has accumulated

a large body of evidence for) 10 distinct values, the value-categories may more

usefully be thought of as pragmatically-defined boundaries along a continuum.

Thus, Schwartz argued, the value categories can be expected to blend into one

another, and can reasonably be subdivided (or superdivided) depending on the

goals of a particular project. Further, measures that assess values as defined in the

model seek to allow interpretation of “priorities” from among the value categories,

rather than of raw scores (Schwartz, 2012, p. 12; cf. Schwartz et al., 2001). With

this in mind, this dissertation project examines relative relationships among texts

in a corpus in the values that they express, and seeks to avoid taking an absolute

approach (e.g., x text is linguistically closer / expresses value y to a greater extent

than value z,” vs. “x text is about y value”).

Methods of Measuring the Schwartz Values

Self-Report Measures. The body of evidence in support of the

Schwartz model has primarily utilized self-report measures, to which it is useful

to devote attention in order to understand the history on which later attempts

to analyze values in natural language sources (such as Bardi et al., 2008,
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and the project reported below) are founded. The model has been assessed

primarily through the use of two self-report questionnaires, the Schwartz Values

Survey (SVS), which is appropriate for use with adults, and the Portrait Values

Questionnaire (PVQ), which is appropriate for use with children (Schwartz, 2012).

As summarized by Schwartz (2012, p. 10), the SVS contains an approximate total

of 56 items in two parts that describe “potentially desirable end-states in noun

form” and “ways of acting in adjective form,” respectively. The SVS assesses

motivations as “guiding principle[s] in MY life,” and is constructed with an

asymmetric response scale to account for respondents’ tendencies to rate all values

as at least somewhat important to them. In contrast, the PVQ assesses the same 10

values as the SVS, but in a more cognitively concrete (and thus child-friendly) way,

by asking respondents to rate hypothetical others for how similar they are to the

respondent. Further decreasing cognitive load, the PVQ, unlike the SVS, does not

explicitly identify itself as a measure of values (Schwartz et al., 2001).

Schwartz et al. (2001) introduced and evaluated a preliminary version of

the PVQ after finding that SVS samples from some areas of the world (specifically,

“sub-Saharan Africa, India, Malaysia, and rural areas of less developed nations”

[p. 519], as well as with “those with minimal schooling [and] the elderly” [p. 538])

had not fit the 10-value model well. Schwartz et al. sought to examine the extent

to which this lack of fit had been a measurement issue caused by the SVS rather

than an issue with the generalizability of the theory itself. Encouragingly, Schwartz

et al. did find that fit with the values model was related to the measure used (the

SVS vs. the PVQ), interpreting this as evidence for increased generalizability of the

model (since, even if the model is not able to be called “truly universal” [p. 538],
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the study showed that populations that previously had not been well-described by

the model could be assessed using the newer measure).

Schwartz (2012) reported on a variety of evidence that the model replicates

cross-culturally and across populations within cultures. Specifically, Schwartz

(p. 12) noted, across 82 countries, “each of the ten basic values [has been]. . .

distinguished in at least 90% of samples.” This body of evidence is not based on

sparse samples: as of their writing, Schwartz et al. (2001) stated that that the

circular values model had been supported by over 200 samples (at that time, in

60 or more countries), including several representative adult community samples

as well as samples with adolescents (Schwartz et al., 2001, e.g., reported on a

sample of 13- to 14-year-old girls from Uganda when examining the properties of

the PVQ).

Natural Language. More recently, in addition to self-report,

the Schwartz values paradigm has also been explored using natural language

corpora. Natural language, while messier to analyze than data from standardized

questionnaires such as the SVS and PVQ, opens a variety of new research

possibilities that would be more difficult using those traditional self-report

approaches, including looking across wider levels of society in an ecologically valid

way (Bardi et al., 2008). Natural Language Processing (NLP) allows not only

the use of data gathered from a variety of sources, at both individual and societal

levels (ibid.), but also allows the use of data that were not originally created as

research data. This report thus now briefly shifts to Bardi et al.’s (2008) approach

to bringing NLP concepts to the Schwartz values, and to expanding their approach

with obituaries, a type of corpus that can be expected to be particularly laden with

values.
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Obituaries as a type of document are a subset of newspapers, which Bardi

et al. (p. 486) analyzed4, noting that “there is evidence in previous studies. . . that

popular textual media in democratic societies largely represent the salient values,

opinions, and concerns of people.” Within not just newspapers but text sources

generally, obituaries can be expected to be particularly charged with values (even

if only expressed using positive wording). Bardi et al. applied their value lexicon

to a collection of newspapers from the United States between 1900 and 2000,

searching for instances of words from the lexicon across all newspaper pages. The

approach described below for the current project expands on this approach: instead

of solely searching for word instances in a given text, the approach below includes

calculating the lexical “distance” of every word in the text from each of the words

listed in Bardi et al.’s value lexicon, allowing for greater nuance in analyses and

conclusions.

Keeping in mind the current project’s use of the value lexicon, Bardi et

al.’s (2008) findings are encouraging. Bardi et al. examined the convergent and

discriminant validity of their lexicon by comparing the relationships between the 10

Schwartz values found in their newspaper corpus with patterns found in self-reports

by contemporary participants who had completed the Schwartz Values Survey.

Bardi et al. noted that they did not expect to find a perfect correspondence

between inter-correlations among Schwartz values as expressed in newspapers

vs. through the SVS; in line with this expectation, they did not find a perfect

relationship, but did find “the same general pattern of correlations” (p. 487).

4Bardi et al. did not specifically mention exploring obituaries. However, as of this
writing (albeit eight years after Bardi et al. published their report), the resource they used,
NewspaperArchive.com, notes on its home page that its holdings include “online historical and
genealogical newspaper articles, obituaries, [and] local and international old newspapers archives”
(NewspaperArchive.com, 2016).
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Further, and particularly interesting for the current project, Bardi et al.

examined the predictive validity of the lexicon by comparing changes in lexicon-

word usage over time with society-level behavioral indicators that could be

expected to share the same motivations as specific Schwartz values (for example,

for Power, the percentage of the population engaged in active military duty by

year; for Benevolence, the percentage of the population who had been deported by

year; and for Conformity, the number of births that occurred without the parents

being married). With the exception of Achievement (relating to successful patent

applications per capita) and Tradition (relating to churches per capita), which co-

occured regularly with words from other Schwartz values, Bardi et al. did observe

a “medium effect size” (p. 490) in the relationship between co-occurence of words

within and across Schwartz values in the newspaper corpus. Strikingly, Bardi et

al. demonstrated through a series of visualizations that usage of words from the

value lexicon over time did track major historical events in the United States (e.g.,

Security words increasing during the 1940s and early 2000s).

Bardi et al. (p. 490) concluded that, “overall, the value lexicon represents

words that can significantly discriminate between Schwartz’s values in natural

language use on the Internet.” Given their findings, the extension of their value

lexicon to allow for words that are not part of the lexicon but are nonetheless

related to the lexicon, especially using a corpus that can be expected to contain

heightened levels of value words, seems a useful path for new research. The

current project thus expands Bardi et al.’s (p. 493-495) goal of “facilitating the

measurement of values over time and in real-world settings” “without reliance on

self-report questionnaire responses,” in an ecologically-valid way (p. 495). Further,

given Bardi et al.’s conclusion that their value lexicon was sensitive enough to be
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used at both individual and group levels, this extension in the project described

below, which includes analyses of both individual-level (age, gender) and group-

level (income, education, and ethnicity and race) predictors, seems potentially

fruitful.

Why Obituaries

As briefly mentioned above, obituaries are a particularly useful source of

language for understanding the relative value priorities of communities.

A Context of Praising Examplars for Their Ideal Traits. When

they are written to be more than simple death notices by containing biographical

information, obituaries are part of a long tradition of education in both moral

and non-moral values through the use of exemplars, especially surrounding death.

In the tradition of Western philosophy, the admonishment “not to speak evil of

the dead” has been repeated at least since ancient Greece (Diogenes Laertius, c.

350/1853, p. 33).

Pappas and Zelcer (2014, p. 100 ff.) noted that in Plato’s dialogue The

Menexenus, which primarily repeats and comments on an apocryphal oration

by Pericles, moral education was explicitly referenced as a goal of the Athenian

tradition of funerary rites. Although the dialogue expresses skepticism on the

actual ability of stories about exemplary moral agents to produce substantive and

positive moral change in an audience – Pappas and Zelcer (p. 100) paraphrased

that “high praise for the dead will make the hearers who did not know those dead

envious[, especially about] whatever exceeds an accomplishment they would be

capable of,” and that, “where envy is the most natural response, emulation is

not likely to occur” – regardless of the actual pedagogical efficacy of funerary

stories, the inclusion of valued traits in such stories is clear in this tradition.
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Obituaries obviously share features with eulogies such as those in the Menexenus,

and exaggerate some features of eulogies: they are intended for public consumption,

but at a larger scale (whether for hundreds to thousands of people in the case of

obituaries published in local newspapers, or for millions of people in the case of

those published in national or international publications). In addition, they are

more versatile, typically running shorter in length than a transcribed eulogy, and

thus are presumably easier for audience members to digest; indeed, the publication

format of obituaries (with many together on a page) encourages reading more than

one in a sitting. The 153 obituaries published in December 2013 in The Eugene

Register-Guard, the primary newspaper in a university town of approximately

160,000 residents (and wider circulation to the surrounding county), averaged only

230 words in length. Despite their brevity, they comprised descriptions of a wide

variety of backgrounds and life experiences, with ages of the deceased ranging from

17 to 99 years. In aggregate, these smaller “snapshots” might form a much larger,

richer picture than a single eulogy of equivalent cumulative length.

Within the stream of Western civilization, the tradition of moral education

through stories has had additional intermediate steps to the present since Pericles’

oration. Reading hagiographies famously converted Ignatius Loyola, the founder

of the Jesuit order of Catholic priests (for a history, see, e.g., Decloux, 1991),

and formed a central part of his book Spiritual Exercises, several principles of

which historically prefaced many (including non-denominational) modern “spiritual

retreats.” Moral primers that include both fables and true stories about paragons

have also been used to educate children. The 1910 Ethics for Children (Cabot,

1910), as well as the more recent The Book of Virtues (Bennett, 1996), e.g.,
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include stories about personages such as Abraham Lincoln alongside accounts of

fictional characters.

Life-summaries of the dead are, as Fowler (2005, p. 53) argued, “more than

a series of recollections about random individuals.” Rather, Fowler (p. 56) noted,

obituaries, whether written by “friends, colleagues, or even journalists,” form

a foundation of “collective memory” that, as with Alfano’s (2013) conception

of Hacking’s (1995) “looping kinds,” “feed back and shape public [history].”

Berger (1969, p. 43) called “the confrontation with death (be it through

actually witnessing the death of others or anticipating one’s own death in the

imagination). . . what is probably the most important [‘]marginal situation,[’]”

in which not only individuals but entire communities “often. . . experience. . .

‘ecstasy’ (in the literal sense of ek-stasis — standing, or stepping, outside reality

as commonly defined).” As Berger implied, mourning or otherwise facing mortality

provokes a liminal experience through which current practices and closely-held

values are reconciled, and possibly challenged. In the 15th century, the Ars

Moriendi was produced to educate Christian mourners how to address and behave

around dying individuals, and to remind those experiencing death how to do so

virtuously (specifically by avoiding vices; see Nicholson, Caxton, & de Worde,

1891, which is an English translation of the original Latin text; this work is also

noted by Doughty, 2014).

For Berger (p. 44), a “ ‘good death’ ” means one that “retain[s] to the end

a meaningful relationship with the nomos [per p. 19, “a[n]. . . order. . . of common

meaning” imposed on individuals by their society]. . . — subjectively meaningful to

oneself and objectively meaningful in the minds of others.” Doughty (2014, p. 214)

drew a similar conclusion, stating that “every culture has death values. These
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values are transmitted in the form of stories and myths, told to children starting

before they are old enough to form memories. The beliefs children grow up with

give them a framework to make sense of and take control of their lives.” Berger

(p. 43) further asserted that the death anxiety experienced by a society needs

a ritualized, form-based method of reduction; mortality salience, Berger stated,

must be met with “legitimations of the reality of the social world,” presumably

including the moral world. Obituaries, especially through the process of authoring

them but also through that of reading them, may be seen from this perspective as

offering a chance to mourners within a community to declare the meaningfulness

and “goodness” of the lives of the deceased5, and of the shared values of those left

5Any informal survey of obituaries in a local newspaper in the USA will likely reveal that
obituaries are almost exclusively positive in disposition, apparently embracing the maxim to
“speak no evil of the dead” (this point was anecdotally substantiated in a formal [but not yet
published or fully-analyzed] survey of over 1,000 obituaries undertaken by this author and
advisors). Negative obituaries are rare enough to sometimes garner media attention specifically
for their novelty, as in the case of Marianne Theresa Johnson-Reddick, whose children wrote, in
part, “we celebrate her passing from this earth and hope she lives in the after-life reliving each
gesture of violence, cruelty, and shame that she delivered on her children. Her surviving children
will now live the rest of their lives with the peace of knowing their nightmare finally has some
form of closure.” (Mikkelson, 2013). As of this writing, a World Wide Web search for Johnson-
Reddick brings up numerous news articles reporting on her obituary and trying to make sense of
it: three of the first page of Google search results are (1) a post from Snopes.com, a website that
investigates “urban legends, folklore, myths, rumors, and misinformation” (Snopes.com, 2016),
examining the evidently difficult-to-believe claim that “[a] family member runs caustic obituary
about deceased parent” (Mikkelson, 2013); (2) a New York Daily News article titled, “Son who
helped write vicious obit for Reno mom insists ‘everything in there was completely true’ ” (The
Associated Press, 2013); and (3) a UK Daily Mail article which notes in its first summary point
that the child who authored the obituary is “completely unrepentant” (Bates, 2013). Given the
perceived newsworthiness of a negative obituary such as this, it seems reasonable to assume that
obituaries (at least in the USA, where the obituary was authored, but also possibly in the UK,
where the Daily Mail is published) carry a taboo against negative sentiments, and thus have a
function related to educating readers in shared values, typically through sharing positive traits
(and thus virtues). Indeed, an interview (McAndrew, 2014) published with Johnson-Reddick’s
son, who authored the obituary, began, “It did what obituaries don’t do. Instead of a celebration
of a life found in newspapers every day, the obituary for Marianne Theresa Johnson-Reddick was
scathing.” Notably, however, despite having violated this taboo against writing an obituary with
a negative tone, Johnson-Reddick’s son explicitly stated that he hoped to reinforce a shared value
(disgust with child abuse) in his readers: “ ‘People may see this as something we did to shame our
mother. . . . But this is to bring shame to the issue of child abuse. I want every single person to
realize this could be your obituary.’ ”
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living; following Berger’s vocabulary, obituaries could be understood as a type of

“theodicy,” a society-level mechanism for reassuring individuals of meaning; in this

view, the writing and reading of obituaries could be an approach to quiet “anomic”

discomfort (i.e., individuals’ discomfort based on personally having to face death or

other triggers that cause the nomos to come into question). Summarizing the lives

of decedents offers an opportunity to legitimize values by publicly invoking them in

a semi-ritualized way.

More specifically within the cultural history of the USA, on which this paper

focuses because of the prevalence of obituaries from it as a data source, exemplars

have been publicly used and described as a means of values (re)affirmation

for decades if not centuries; witnessing death often requires individuals and

communities such discomfort that a reaffirmation is required. This need is

expressed variably, to the point that, as Doughty (2014, p. 225) described from

an interview with a supervising physician, medical students will sometimes choose

not to communicate terminal diagnoses rather than “ ‘face their own mortality. . .

[by] fac[ing] a dying person;’ ” cf. Rosel (1978), who also discussed at length the

difficulty faced by many contemporary Americans in acknowledging the existential

discomfort brought on by thinking about death with limited ritualized means.

Writing and reading obituaries are two processes that remain for addressing this

psychological discomfort. Given their cultural history, it makes sense that, among

all publicly-read media, obituaries would be among the best candidate bearers

of values. Because obituaries are succinct and explicitly intended to summarize

their subjects’ lives, they may be expected to include only the features that their

authors find most salient, to signal not only to their authors themselves as relatives
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or biographers of the deceased but also to others in the community aspects of the

character of the deceased that all in common might find important.

Obituaries are public and readily-available, not only in print newspapers

but also more accessibly through newspaper websites and databases, allowing,

with the ethical and legal caveats considered below, the ability to readily conduct

text-mining analyses without having first to transcribe the texts. While obituaries

are certainly not the only bearers of values, this ready availability makes them

an attractive option for research. This attraction is particularly salient for

ethnographic research to understand the differential values of geographically or

otherwise-distinct communities across the USA (e.g., compared not only by physical

location but also by gender). In addition, it provides a foundation for research

of a psychometric mindset (e.g., using prospective obituaries written by living

individuals to index their values “match” with different communities across the

USA based on those communities’ published obituaries, and to corroborate this

index with survey data using existing measures of values such as the Schwartz

Values Survey, Schwartz, 1992).

The Logistics of Using Obituaries as Values-Containing Data Sources

Obituaries and related formats of necrologies are not only a potential data

source for community values; rather, they are currently in use, both for their

existential weight and for their accessibility as public resources. Having argued

above that obituaries may be expected to contain community values, this paper

now turns to considering the logistical realities of extracting those values from this

format of data. Specifically, instances in which obituaries have directly been used

will be considered as examples from which to build new research.
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Necrologies are in use Prospectively in Clinical Practice

In clinical psychological practice, Hayes, Strosahl, and Wilson (2011, p. 304

ff.) defined a prospective exercise called “What do you want your life to stand

for?” for clinicians to use as part of an Acceptance and Commitment Therapy

treatment approach. In this exercise, a therapist asks a client to imagine having

died but being able to attend her own funeral. The client is encouraged to consider

the “eulogies offered by [her spouse,]. . . children,. . . friends, [and] the people

[she has]. . . worked with.” This exercise is explicitly centered on considering

what an ideal eulogy from each of those speakers would comprise, moving beyond

simply thinking about the immediate effects of one’s own death (e.g., one’s spouse

and children being distraught) and into the larger meanings that others in one’s

community might draw from one’s life. Implying the gravity of the characteristics

that eulogies (and, by extension, obituaries) typically include, Hayes et al.

encouraged clinicians to point out to clients that clients’ imagined eulogies typically

comprise different, larger goals and values than individuals are often concerned

with on a day-to-day basis — that is, these life-summaries are concerned more with

values that speak to moral, spiritual, and character accomplishments, rather than

things that a client might “berate [himself]. . . about and struggle with” on a more

local scale, such as annual income or feelings of personal inadequacy.

Hayes et al. (2011) also proposed an alternative exercise, in which a client

is encouraged to compose and then write an epitaph on an imagined or drawn

tombstone, noting that it also “often. . . reveals wide discrepancies between

the client’s values and his or her current actions.” Although Hayes et al. noted

that this exercise can be overwhelming for some individuals for the amount of

mortality salience it elicits, this writing of prospective epitaphs, eulogies, and, by

15



extension, obituaries, either about oneself or a loved one or friend, underscores the

psychological gravity associated with summarizing an individual’s life upon his or

her actual death.

Obituaries are in Use Retrospectively in Social Research.

Obituaries have also been used non-clinically to examine social processes. In

the last of a series of studies, Goodwin, Piazza, and Rozin (2014) used living

participants’ ratings of the individuals described in obituaries to examine the

importance of moral character and social warmth on individuals’ perceptions of

others. Bridging definitions of virtue, values, and personality, Goodwin et al.

(p. 148) defined “moral character” as “compris[ing] the moral6 dimensions of a

person’s personality,” implying its inclusion in modern personality research (as

Saucier, 2009, also noted). To Goodwin et al., traits exist on a continuum of

moral relevance, as well as on a continuum of general relevance in constructing

global perceptions about others. Goodwin et al. collected 250 recent obituaries

from The New York Times, which, as a major newspaper of record, typically

runs longer-format, professionally-written, more in-depth biographical accounts

than local newspapers. Obituaries published in The New York Times are also

predominantly about particularly noteworthy individuals – CEOs of major

companies, international military leaders (famous or infamous), well-known artists,

etc. Goodwin et al. noted that obituaries offer detailed views into the lives of their

subjects, and thus comprised a useful corpus for understanding person-perception

(while controlling for coders’ previous knowledge of the deceased).

Goodwin et al. (p. 162) employed (living) Research Assistants (RAs) and

participants from Amazon’s Mechanical Turk service to code the obituaries on

6Goodwin et al. did not define the word “moral.”
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several criteria. RAs first coded the obituaries on valenced Likert scales for the

obituary subject’s described “(1) abilities or lack of abilities, (2) moral character

or immoral character,. . . [and] (3) social warmth or coldness.” Twelve or more

Mechanical Turk workers then independently rated each obituary on a wider Likert

scale for overall impression. Goodwin et al. (p. 162) concluded, in part, that

“moral character impressions are conveyed more prominently in [these] summary

accounts of people’s lives than are impressions of social warmth,” implying that

obituaries did carry significant information about moral character. Further,

Goodwin et al. found that Mechanical Turk participants’ overall impressions of

obituary subjects were able to be predicted significantly using RA’s ratings of

“morality, warmth, and ability,” indicating (in addition to a satisfactory ICC

statistic among RA coders on these dimensions) that obituaries of this type carry

information about these qualities that is consistently accessible to readers. While

shorter-format obituaries from smaller newspapers almost certainly do not carry

this information about individual subjects to the same extent as the long-format

biographies of The New York Times, they may, in aggregate, similarly provide

useful information about the community of authors and readers among whom the

deceased may have lived.

Rodler, Kirchler, and Hölzl (2001, p. 829-831) used obituaries as an

“unobtrusive method” for examining longitudinal change in stereotypes about

male and female subjects who had, in life, occupied positions of organizational

power (e.g., “director[s] or head[s] of a business firm, school or other public

organization, chair[s] of a department, etc.”). Replicating and updating previous

work that sought to establish trends in the words used to describe male and female

leaders, Rodler et al. gathered 992 obituaries authored by the corporations or
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other organizations for which the deceased had served as leaders. The sample of

obituaries allowed immediate conclusions to be drawn about the male-to-female

leadership workforce distribution over the years included in the analysis: the corpus

was heavily lopsided, with 757 obituaries about male leaders and 137 about female

leaders, even after a second round of data collection to balance the sample as

much as possible. Rodler et al. [p. 831] coded “all verbs, adjectives, and nouns”

in each obituary for representation of 58 categories that had been established in

previous work (including, e.g., “Caring,” “Consensus-oriented,” “Decision-maker,”

and “Skillful”). An iterative correspondence analysis on the frequencies at which

obituaries of men vs. women invoked each of the categories revealed two primary

dimensions: first, an authority dimension, which included “attributes like servant,

committed, professional, and humane to intelligent, efficient, skillful, experienced,

and expert” (p. 831); and second, a competence dimension, which was, “at the one

pole, described by expert, experienced, professional, intelligent, and, at the other

pole, by venerable.” Rodler et al. concluded that while descriptions of male leaders

had remained largely consistent over time (during the years 1992 and 1998, which

were included in the sample, but also building on previous research that first used

these analysis methods on obituaries during the 1970s and then 1980s), descriptions

of female leaders moved from the 1970s to 1990s from focusing on “venerable”

qualities to “professional[ism] and commit[ment].”

Rodler et al. (2001) may be seen to have been studying (even if indirectly)

community values around gender. Additionally, Rodler et al.’s analyses included

several categories that meet definitions of virtue, including “courageous,”

“ethical,” “honest,” “patriotic,” “religious,” “unselfish,” and “venerable” (see their

Appendix). From this work, as well as work like that of Goodwin et al. (2014),
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obituaries may be seen by precedent to be an accessible, usable data source for

examining social dynamics, including the expression of values generally.

Obituaries are Biased in a Useful Way. As data sources, obituaries

likely reveal as much (and, regarding values, possibly more) about their authors

and readers as about the individuals whom they describe. In contrast to

existing measures of values and their antecedents such as the Moral Foundations

Questionnaire (Graham et al., 2011), which includes items that address disvalues

(i.e., negative values), but somewhat like the Schwartz Values Survey, which does

not, obituaries may be expected to be almost entirely positively biased in the traits

they ascribe to their subjects. Speaking conceptually on this type of sampling bias,

Fowler (2005, p. 61) noted that, “admittedly, there are limits to the obituary as

a form of witnessing, due to constraints on critical openness at the time of death

[i.e., a taboo on mentioning negative aspects of the deceased] and the conflicting

perspectives of different newspapers [(which might, e.g., each publish a death

notice of noteworthy individuals with a unique political spin)].” However, Fowler

suggested that obituaries presented together in newspapers and similar media

create a tapestry of a larger process of grieving and reflecting than any single

piece could show. In their values, two obituaries, individually read, might tell little

about a community, reflecting too strongly the idiosyncratic grief or values of the

authoring friend or family member (or, perhaps, the political or other ideological

agenda of the authoring journalist) as he or she attempts to reconcile the loss of

the deceased with some meaning in his or her own life (cf. Doughty (2014), who,

as noted above, writes at length about the meaning-making that death engenders

among the living, and the varied ways in which those left alive compensate for the

loss of and grieve the dead). In aggregate, though, obituaries “[supply] factual
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materials which can be read in terms of a wider relational perspective, [and

thus]. . . contribute a vital resource for actively shaping and demystifying collective

memory.”

Fowler (2005, p. 61 ff.) did note that newspaper obituaries have become

“less coded [and] more subtle” since the 19th century (i.e., less adherent to

historical “rigid aristocratic formulae” that sought to shape public political and

professional consciousness by offering “verdict[s]” and “last judgment[s]” about the

deceased’s professional and personal accomplishments). While obituaries of this

“coded” form certainly still exist (especially, as noted above, in the commissioned

biography-obituaries of major political figures in international newspapers such as

The New York Times), given that obituaries of who might be called “everyday

people” have become more available in major newspapers across the USA over

the last century, Fowler implies in her argument that in modern times, obituaries

are able to be read more at face value than in the past. However, obituaries in

many newspapers continue to exhibit a heavy sampling bias toward what Fowler

called “the dominants” of a community’s social hierarchy. Fowler reported from a

content analysis of approximately 100 British obituaries across major newspapers

that the individuals summarized were disproportionately well-educated (i.e., college

educated) and of a very high social class (i.e., “Oxbridge” educated).

Fowler also suggested that obituaries often disregard explicit mention of

communalistic values in favor of individualistic ones, portraying the deceased in

personal narratives that, even if not fully divorced from the social context that

facilitated that personal journey, fail to accurately reflect the importance of that

social context. Fowler interpreted this disregard as a remnant of the historical

bias, noted above, toward aristocratic and otherwise socially “dominant” figures.
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In line with this, Fowler (p. 63) also noted a decrease over time in the number of

prominent obituaries of individuals who served communalistic social organizations,

such as “military, clergy or elite civil servants,” with a concomitant increase in

focus on “artists, writers, musicians and actors, or academics and politicians.”

In future research, this discrepancy might be able to be controlled for or at least

understood empirically, however, using other markers of presumably communalistic

thinking on the part of obituary authors (e.g., percentage of family- and team-

related words used to describe the deceased).

In summary, the use of obituaries as markers or carriers of community values

may be expected to be beset by (at least partially) sampling bias in (a) the values

themselves (with a preference for positive terms), (b) the type of values (with a

preference for individualism over communalism), (c) the individuals described (with

a preference for higher-educated and especially influential individuals), and (d)

gender (at least in some contexts). These biases would be substantive sources of

limitation in a research project seeking to catalog community values (Goodwin et

al., 2014, also acknowledged the second form of bias in their work); however, once

acknowledged (and effectively taken into account), they would not invalidate this

research approach. One fourth type of bias that Fowler noted, but which would

be beneficial to the use of obituaries for the study of values in a given place and

time, is political motivation of authors, especially in highly-publicized obituaries.

Noting that biographical sketches in obituaries can be written either according to

or specifically to counter and raise awareness of changes in a prevailing societal

view, the ability of obituaries to change over time in their foci makes them stronger

candidates for longitudinal analyses of a given geographic or otherwise cultural

location.
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It should be noted that Fowler’s content analysis used four major London

newspapers, plus The New York Times and Le Monde (p. 70), all of which likely

print obituaries that have been chosen on a highly selective and topical basis

and have been written by professional, commissioned authors. With access to

smaller publications (e.g., local newspapers for small- to medium-sized towns

and cities across the USA), the causes of sampling bias in the larger papers could

potentially be used as a feature rather than a bug of research, as they could allow

the differential comparison of national-level values discourse with the discourse

of smaller communities, possibly following research such as that of Fu, Plaut,

Treadway, and Markus (2014), who analyzed and contrasted the value landscapes

of quadrants of the USA. This approach could allow the comparison of local-level

newspapers with major publishers of obituaries (such as The New York Times) that

controls for geographic and ideological similarity between the publications.

Publicly-Available, but Possibly Ethically Problematic

Considerations for the Deceased and Their Family Members

and Friends when Using Obituaries in Research. Obituaries aim not only

to broadcast to readers facts about the deceased but also to convey intimate,

summative life portraits. With that context in mind, it is worth consideration

that, especially for obituaries authored by friends and family with the intent to

publish in a local newspaper for consumption by community members only, the

work of “morality mining” (Christen, Alfano, Bangerter, & Lapsley, 2013) could

be interpreted as intrusive, especially when researchers are neither members of

authors’ local communities nor manually reading and interpreting each obituary

individually as a document of a once-living person. Aggregating public records

that were likely originally intended by their authors to be read singly, while legally
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unproblematic, could become emotionally distressing to authors or their relations

if they felt that their words were being taken out of context or used for purposes

for which they neither intended nor explicitly consented (such as generating profit

or, possibly, academic prestige, where focus might fall more on the researching

company or academic team than on the values of the authoring communities and

legacies of their decedent members).

Valeski (2012, p. 217) argued that understanding ethical implications of

the use of “new forms of communication” by third parties (including researchers)

often centers on considering what social norms have developed around those new

technologies’ predecessors. These norms, Valeski noted, often include dynamics of

control between authors and recipients (indeed, ownership and control of access are

two of the four “elements of big data ethics” proposed by Davis & Patterson, 2012,

p. 16). If obituaries are written not only to serve as official, public death notices

but also to facilitate the grieving processes of both readers and authors by shaping

reminiscence (i.e., if obituary authors are writing for themselves and their families

as much as or more so than for the readers), a sense of control over the use of the

text is likely important in that grieving process. It would be ethically problematic

for researchers, even if well-intentioned, to exploit the publicness of the medium at

the expense of authors’ (and deceased individuals’) interests.

This sentiment follows Tsvetovat and Kouznetsov (2011, p. 162), who argued

that any type of data collection “on human beings affects their lives, in hard-to-

perceive subtle ways.” This argument can be extended and applied to the use of

public datasets with previously-collected data (cf. O’Neil & Schutt, 2013, p. 354ff.,

who cite and re-print a “Hippocratic Oath of Modeling”). It also follows Scime and

Murray (2013), who posited that social scientists, especially using large, aggregated
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datasets, are responsible to the communities in which they are performing their

research, including remaining sympathetic to changing norms and expectations of

community members around data use. Tsvetovat and Kouznetsov’s argument would

also certainly apply in research that seeks to examine prospective obituaries from

living participants (e.g., using the Acceptance and Commitment Therapy exercises

proposed by Hayes et al., 2011).

A central theme around which ethical considerations for the use of public

but emotionally-charged data such as obituary texts can center is a socially-based

concept of privacy. In line with Scime and Murray (2013), Helbing (2015, p. 135)

noted that “ethical problems. . . are related to cultural values and social norms;”

following Solove (2007), this is especially the case with potential violations of

privacy. Solove (p. 754 ff.) noted that “traditional” attempts to define privacy have

done so, both narrowly and broadly, by searching for “the essence of privacy,” a

feature that extends across all contexts and types of concerns. Solove summarized

and argued for an alternative conceptualization in which privacy is understood

not merely in terms of individual rights but rather also with reference to social

good. In this conceptual approach, privacy is about “power relationships between

people and. . . institutions” (p. 757), and is often concerned with enabling “rules

of behavior, decorum, and civility” that may relate to expressions of “people’s

autonomy and dignity” (p. 761-3).

With this conception in mind, a researcher working with this type of

data may be seen to have a greater ethical responsibility than she otherwise

would, as “misuse” of these data could be defined by the very perception of their

misuse by members of the public, and could not only damage the experience of

privacy (as control of use of the data, regardless of the data’s public nature) of the
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obituaries’ authors and their relations, but could also diminish those and other

individuals’ future willingness to engage in this type of public ritual. Thus, for the

potential gain that could come from responsible, thoughtful use of this type of data,

there also exists a potential damage, born of perceived meddling in moments of

particular fragility. This is especially the case with obituary data, as many of the

recommendations provided by Helbing (2015, p. 137) “towards privacy-preserving

data analysis” are infeasible: the “participants” in this type of research are the

deceased individuals who are the subjects of the texts; they cannot consent to

research, and are specifically excluded from the federal definition of human research

subjects in the USA (Office for Human Research Protections, 2010, §46.102f).

Their data cannot be substantively anonymized or randomized, as the full text

even of an obituary scrubbed of names is often easily recoverable by searching the

World Wide Web for a phrase or sentence from it. As with this dissertation project,

it is possible to “coarse-grain” (p. 141) this type of data by performing analyses

only at aggregate levels and to release only datasets that are derived from (but

do not actually include) the original texts; this, however, comes at the cost of full

reproducibility by future researchers.

To some extent, ethical questions surrounding the use of this type of

data may be empirical ones: many authors, if asked, may be happy to have the

obituaries they authored be included in aggregative inquiry, especially if it is

performed with the goal of understanding community values. Regardless, values

research conducted with obituaries should take place with a mindset of sensitivity

and respect to the obituaries’ authors and their subjects, and should proceed

with as much transparency as possible, perhaps also including explicit licenses on

published datasets, clarifying expectations around data reuse. Ideally, these issues
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should be explicitly considered in a Data Management Plan before beginning a

project.

In summary, the potential for negative emotional reactions among authors

reveals an ethical weight associated with this class of data, and also points to the

value of intent in interacting with these records. In addition, this ethical weight

indicates the richness that this type of corpus may hold for research that seeks

to understand community values in order to promote the social good. Although

this type of research could be undertaken to manipulate a ritual of public grieving

into an abstract data-generating mechanism divorced from its original context,

those wishing to understand the moral language of local communities responsibly,

especially to perform value-relevant work within or translating across those

author communities, may find valuable insight in this approach. To this end, it

is worth reflecting on Schwartz’ (2012) argument that “the critical focus of value

transmission is to develop commitment to positive relations, identification with

the group, and loyalty to its members.” The potential importance of obituaries as

values-transmitting artifacts, at least within the United States, may be expected to

relate to the enormity of betrayal and upset that members of a community could

experience if they perceived a violation of propriety surrounding their use.

Legal Considerations for Research that Uses Obituaries. The

American Psychological Association’s (APA) Ethical Principles of Psychologists

and Code of Conduct guidelines (American Psychological Association, 2010, §8.14)

advise that,

After research results are published, psychologists do not withhold

the data on which their conclusions are based from other competent

professionals who seek to verify the substantive claims through
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reanalysis and who intend to use such data only for that purpose,

provided that the confidentiality of the participants can be protected

and unless legal rights concerning proprietary data preclude their

release” [emphasis added].

Whether considered for allowing publication of a dataset or for using the

dataset to begin with, the legal status of obituaries is unclear. Obituaries are to

some extent public records (and thus especially useful as research data), since

they are published in newspapers to serve as death notices (source: personal

correspondence with Legacy.com, one of the USA’s largest obituary publishers,

which contracts with newspapers nationally), but their actual legal status is

often ill-defined; e.g., many states in the USA do not require the publication of

death notices, meaning that obituaries’ publication is not necessarily protected

under public notice laws in those states. Russell (2012)7 noted that copyright of

obituaries typically remains with their original authors (unless the authors have

atypically signed over rights to the publishing newspaper), but that the Fair

Use doctrine in the USA also protects their inclusion in research under certain

circumstances. These points highlight that while obituary data begins “in the

open” (i.e., published for public consumption), their availability for re-use remains

uncertain, especially around issues of republication of datasets. Especially with

obituaries, if data are to be made available for further use by other researchers,

the admonitions from the APA’s guidelines above may be seen to require the

7The analysis of Russell (2012) is not a source of official legal advice, but is a useful summary
of legal issues specifically surrounding the use of obituaries.
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researchers who initially gather the data to serve as ethical “gatekeepers” for re-

use of the data8.

The Goals of this Project

This dissertation project has two purposes. First, the project examines the

Schwartz values paradigm in a naturalistic context (that of obituaries). To this end,

the project seeks to describe which values are discussed most across contemporary

newspaper-based “communities” across the United States, taking into account

potential individual- and group-level predictors of values-differentiation: at the

individual level, the age and gender of the deceased; and at the community level,

median income, education level, and ethnic and racial demographic composition in

the counties in which each obituary’s publishing newspaper(s) are based.

Second, this project seeks to develop tools for a novel method of assessing

the “fit” of obituary texts with the Schwartz values for future researchers to use.

The creation and documentation of a graph database from Princeton University’s

(2010) WordNet thesaurus9, following but expanding on the work of Nagi (2013),

as well as readily-usable algorithms for employing it in the analysis of this obituary

8Indeed, when I negotiated a data use agreement with Legacy.com, one of the largest obituary
warehousing websites in the USA, the agreement centered around avoiding breaches of public trust
not only in my own research (specifically by conducting analyses unlikely to cause resentment
or visceral unease on the part of obituary authors or other family members of the deceased) but
also in future research that others might perform from data gathered and processed through this
project (minimizing these through, e.g., data cleaning and partial anonymization techniques).

While, as discussed above, full anonymization of the obituaries would likely not be possible (as
a simple internet search of any of the obituary’s text would allow finding the original source),
names (e.g., surnames) could be stripped out of published versions of derivative datasets,
encouraging future researchers to perform analyses of the texts over potentially more problematic
analyses such as the race of obituary subjects.

9During the course of writing this dissertation, the official WordNet project released a
canonical Neo4J graph database, currently available at https://github.com/wordnet/wordnet. The
inclusion of the University of South Florida Free Association Norms dataset (Nelson, McEvoy, &
Schreiber, 1998) in this dissertation project’s database, as well as the documentation provided
as part of this project, will hopefully help to supplement this new, official Neo4J WordNet
implementation.
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corpus, can hopefully be utilized in future Natural Language Processing research in

psychology surrounding “linguistic distance.”

Although not its primary motivation, this project can also enable future

research that could make clear areas in which the Schwartz values paradigm may

not be comprehensive. By subtracting out of the corpus words that have low

“word-by-hop” values (defined below) for all Schwartz categories, future research

could use the graph database approach used in this project to examine new areas

of consistent speech across or within communities in the USA that could be

considered values without fitting well in the current Schwartz values paradigm

(e.g., by topic modeling the words that remain after removing those that are highly

connected to Bardi et al’s [2008] value lexicon words). The project could also, using

the same approach, potentially demonstrate wide comprehensiveness of the current

Schwartz values model, contributing to its wide body of existing evidence.

Research Questions of this Project

The current project seeks to answer two primary research questions, each of

which comprises additional sub-questions.

Research Question 1. First, the current project asks whether the

Schwartz values can be detected in obituaries, using a thesaurus-based expansion

of Bardi et al.’s (2008) value lexicon approach (described below). To this end, it

additionally asks the following questions:

1. Are all of the Schwartz values indicated in the corpus?

Given the nature of values in the Schwartz model as differentially prioritized

across communities, it is reasonable to expect that not all Schwartz values will be

equally represented in different communities; further, it is also reasonable to expect

that even in aggregate, not all Schwartz values will be equally represented in the
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obituaries corpus overall. Given that obituaries are subject to cultural taboos

around topic-appropriateness, as discussed above, I expect that Hedonism and

Power specifically will be represented less than other values in aggregate, if at all10.

2. In what relative proportions are the Schwartz values talked about in the

corpus?

3. For each of the 10 Schwartz values, what is the mean word-by-hop numerical

value across the obituary corpus?11

Research Question 2. Second, the current project asks the following

question:

To what extent is discussion of particular Schwartz values related to

characteristics of obituaries, at the levels of individuals and their communities?

The current project seeks to answer this question by expanding Bardi et al.’s

(2008) approach with word-by-hop calculations as a dependent measure.

Individual level.

10I do not mean to imply that Hedonism and Power, especially as defined in the Schwartz values
model, are “bad” values, but rather that they specifically may be indicated by a larger number
of potential anecdotes that would be less likely to be printed in an obituary than anecdotes that
reference the other values.

11In the originally-proposed version of this dissertation, Research Question 1 contained two
additional components, both of which “fell away” as nonsensical as the word-by-hop calculation
described below developed. First, sub-question 3 asked what the mean word-by-hop value
across all Schwartz values was. This became less relevant when word-by-hop became a relative
measure (i.e., one that is not meaningful unless compared with another word-by-hop value).
Second, a fourth sub-question asked what percentage of words found in the corpus are linked
with Schwartz values. This question became less relevant as it became clear that the WordNet
graph database described below was much more robust than expected: almost all words (> 90%)
in the corpus had a connection to at least one of the value lexicon words described in the Methods
section. Thus, to clarify, these additional questions have not been ignored in this complete draft;
rather, they have fallen away as the attention that was originally directed to them has turned to
exploring the properties of word-by-hop, in consultation with members of the Committee.
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Approximate age of the deceased Schwartz et al. (2001, p. 533) stated

that age is positively related to Tradition, Conformity and Security, and that it

is negatively related with Self-direction, Stimulation, and Hedonism. In line with

these past findings, Schwartz et al. found in an international pair of samples that

age correlated significantly with “self-transcendence (Benevolence, Universalism)

and negatively with self-enhancement (Power, Achievement).” It is reasonable to

expect that age should show similar main effects in the obituary corpus.

Gender Schwartz et al. (2001) found small correlations (primarily less than

or equal to .11) between several of the 10 Schwartz values and gender (defined

as male vs. female)12. The largest relationships reported by Schwartz et al. (r

> .11) included women over men in Benevolence and Tradition values, and men

over women in Stimulation. However, these were localized to specific cultures

from those that were sampled (Israel, South Africa, and Italy, respectively).

Similarly, Schwartz and Rubel (2005) found increased importance of Tradition

in women over men, and of Hedonism in men over women, but inconsistently in

both cases over four studies. Schwartz and Rubel presented evidence, however, that

this inconsistency may have been a result of a sample (student vs. community)

x measure (SVS vs. PVQ) interaction. When controlling for sample type and

measure, Schwartz and Rubel (p. 1019) found that men consistently rated

Stimulation, Hedonism, Achievement, and Self-Direction higher than women, while

12Schwartz and Rubel (2005) called this variable “sex” rather than “gender.” The current
project uses “gender;” thus, I have re-worded Schwartz and Rubel’s report in this summary,
despite the differences between the two concepts, given the rationale for using “gender” as a
binary variable in this project. Since obituaries are written about individuals as they presented
themselves to others, but typically lack the level of detail that would be required for more
nuanced classification than a simplified “man” vs. “woman” distinction, the current project refers
to “gender” but still uses a “sex”-like binary classification.
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women consistently rated Universalism and (to a lesser extent) Security higher

than men, especially in older (non-student) samples. As in Schwartz et al.’s (2001)

report, however, the effect sizes for these findings were small, and were not always

consistent across countries (for example, Schwartz and Rubel, p. 1022, noted, for

Self-Direction, “The sex difference (men higher) is smaller the more autonomous

versus embedded. . . and the more individualist. . . the culture of the country,” and

is “smaller. . . the richer the country”).

Thus, I expected gender to have a minimal main effect in the obituary

corpus. However, for communities that value Tradition highly overall, given the

ritual nature of obituaries as values-affirming documents intended to be read by

members of the community, it is possible that this particular corpus would show

higher gender effects than have been previously observed. Perhaps more usefully,

age and gender were allowed to interact in the models explored below, as well

as gender with community education level. These follow Schwartz and Rubel’s

(2005) call for future research to examine interactions between “[gender] and such

demographic variables as age, education,. . . and social class.”

Community level.

Median income and median education level Although education and

income13 could be aggregated into a single measure conceptually approaching

“wealth,” they were instead both included individually in the models below and

allowed to interact.

13The Gini coefficient of income inequality could be useful in these analyses, but was not
included. Instead, I chose to use median income level because obituaries are almost certain not
to reflect the full range of individuals on the wealth spectrum. Assuming that obituaries across
locations tend to be of those who are at a certain level of socio-economic status and above, it is
reasonable to expect that variability that would otherwise be related to the Gini coefficient would
not be available to a statistical model for explanation when using this corpus.

32



Schwartz et al. (2001, p. 534) found positive, significant relationships

between education (from none through college [“beyond high school”]) and “self-

direction and stimulation[,] and negative correlations with conformity and tradition

values.” I therefore expected similar effects in the corpus of obituaries.

Valuing Power, by its definition above, includes a motivation toward

“control[ling]. . . resources” (Schwartz et al., 2001, p. 5), which conceptually relates

to income. Thus, higher income was expected to be positively related to Power,

as well as possibly to Achievement (which, as above, includes a motivation to

“[demonstrate] competence according to social standards,” Schwartz, 2012, p. 5).

Ethnic/Racial demographics. Additionally, a coarse indicator of

the ethnic makeup of geographic communities will be included, in five covariates,

respectively reflecting the percentage of individuals classified as “American Indian

or Native Alaskan,” “Black or African American,” “Hispanic,” “Native Hawaiian

and other Pacific Islander,” and “White” (each in isolation or in combination with

other categories) by the United States Census Bureau in that area (at the county

level)14.

14The US Census dataset from which these data were gathered (United States Bureau of the
Census Population Division, 2015) uses variable names that sometimes conflate race and ethnicity
(e.g., “Black or African-American,” “White,” etc.). Thus, the admittedly vague phrase “racial and
ethnic groups/categories” is used throughout this report to accurately reflect the data used.
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CHAPTER II

METHODOLOGY

Data Collection and Initial Processing

Lexical Graph Database.

WordNet. Bardi et al. (2008) composed a “value lexicon” of three

“lexical indicators” (i.e., prototype words) for each of the 10 Schwartz values

categories, for a total of 36 words (1 category title + 3 prototype words for each

of the 10 categories, with some titles overlapping with prototype words). This

Schwartz values dictionary is reprinted in Table 1.

Table 1. The Schwartz value lexicon, reprinted from Bardi et al. (2008).

Value Lexical indicators for each value

Power power, strength, control

Achievement achievement, ambition, success

Hedonism luxury, pleasure, delight

Stimulation excitement, novelty, thrill

Self-direction independence, freedom, liberty

Universalism unity, justice, equality

Benevolence kindness, charity, mercy

Tradition tradition, custom, respect

Conformity restraint, regard, consideration

Security security, safety, protection

In order to quantify the extent to which obituaries in the current project’s

corpus were concerned with each of the 10 Schwartz values, I paired Bardi et al.’s

34



value lexicon with a network-graph-based dictionary/thesaurus of the full English

language. In doing so, I enabled analyses of “lexical distance,” as explained below

(see the section defining “word-by-hop”), between words in any given obituary and

the words from Bardi et al.’s value lexicon.

Beginning in 2005, and with updates periodically through 2010 (when it

released its current version as of this writing, 3.1), Princeton University (2010)

published WordNet, a computer-readable dictionary/thesaurus of 147,478 words

grouped in 117,791 definitions. WordNet version 3.1 was downloaded in SQLite1

format from the WordNet SQL (WNSQL) project (Bou & Princeton University,

2014), which repackaged the WordNet database for ready use. The database tables

were converted into separate CSV files, which were then imported into Neo4J v2.3.3

Community Edition, an open-source graph database platform.

A traditional “relational database” (e.g., WordNet in its original form),

which models data in a collection of linked “tables” (each conceptually equivalent

to a spreadsheet, with ID numbers from one table recorded in columns in linked

subsequent tables allowing related data to be joined during queries). In contrast,

a graph database models data directly as nodes and relationships between them.

Graph databases can thus be used more straightforwardly than traditional

relational databases to find paths between nodes of different types (for example,

from a word x through a series of definitions and words to a final word, y). This

graph approach is visualized in Figure 1, which shows Bardi et al.‘s “Power” words

in green, with the words’ definitions in blue.

The import of the WordNet tables into Neo4J expanded on work by Nagi

(2013), who published a schema for representing the primary tables of WordNet

1SQLite is an SQL database format that stores the entire database in a single file, and can thus
be more straightforward than other SQL database formats to manage and inspect.
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Figure 1. Bardi et al. (2008) value lexicon “Power” words (“power,” “strength,”
and “control;” lighter/green) with their definitions (darker/blue). Words are
connected to definitions, and some definitions are connected to other definitions.
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in Neo4J. Nagi’s schema specifically encompassed the Words, Senses, Synsets,

Semlinks, and Linktypes tables of WordNet; the graph database constructed for

this project additionally included WordNet’s Morphs and Morphmaps tables.

Lacking consistent documentation as of this writing, WordNet’s tables are

summarized here in Table 3. The graph database constructed for this project

used three WordNet-derived relationship types (“Is a form of,” “Is related to,”

and “Is defined as”), as well as one relationship type (not used in the analyses

reported below) derived from the University of South Florida Free Association

Norms dataset (Nelson et al., 1998, see below), “Is freely associated with.” These

relationships are summarized in Table 2. The full data schema is summarized

visually in Figure 2.

Table 2. Node and relationship types in the WordNet graph database.

From Node Relationship Name To Node

Word IS FREELY ASSOCIATED WITH Word

Morph IS A FORM OF Word

Synset IS RELATED TO Synset

Word IS DEFINED AS Synset

Table 3. WordNet table names and descriptions.

Table

Name Table Description

Words Lemmas (the basest forms of words – e.g., for “is,” “be”; for

“shouted,” “shout”)

Synsets Part of speech, lexdomain reference, definition
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Table

Name Table Description

Senses Linking table for words and synsets

Postypes Defines Part of Speech abbreviations

Semlinks Links synset meanings with each other using a list of types of

relationships

Linktypes Definitions for the types of relationships between semlinks (e.g.,

“similar,” “antonym,”2 “hypernym,” etc.)

Morphs Gives different/alternative forms (e.g., noun, verb) of words in the

Words table

MorphmapsRecords words and their different forms as written/recorded in the

Morphs table

The “Postypes” table was not imported into the graph database, but was

used when translating Part of Speech (POS) abbreviations between TreeTagger

(described below) and WordNet.

University of South Florida Free Associations Network.

In addition to WordNet, the graph database utilized Nelson, McEvoy, and

Schreiber’s (1998) University of South Florida word association, rhyme, and

word fragment norms dataset. As noted in the dataset’s introductory webpage

(http://w3.usf.edu/FreeAssociation/Intro.html), beginning in 1975, Nelson et

al. (1998) asked approximately 6,000 participants each to list one word that the

2All linktypes were included when calculating hop numbers between obituary lemmas and
value lexicon words, based on the understanding that (e.g., with antonyms), obituaries that
include words that are the opposite of a given value are nonetheless invoking that value (even
if with a negative disposition).
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Figure 2. Visualization of Neo4J data model used in this project. Node and
relationship attributes are printed in italics.
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participant freely associated with each of a sample of 5,019 target words. These

responses were then normed.

Because of its likely heavy dependence on the temporal and geographic

context of its participants, Nelson et al.’s dataset was not used in the analyses

described below; specifically, it was not used to generate “hop” numbers between

lemmas from the obituary corpus and each of Bardi et al.’s value lexicon lemmas.

However, because of the effort required to import the free association norms

dataset into the graph database, as well as Dr. Nelson’s generous permission to me

(personal correspondence, May 26, 2016) to republish the dataset under a WordNet

3.1 license, this dataset is included in the supplemental material made available as

part of this dissertation, and so is described here.

Legacy.com Newspaper Metadata. Legacy.com is an international

obituaries warehouser that contracts with 1,041 newspapers across 48 of the

50 United States, as well as Guam, to display newspapers’ obituaries online3.

Although, as discussed above, the copyright for a given obituary typically

remains the property of the obituary’s author, Legacy.com retains a transferable

license to republish and use the content that is displayed on its site. In February

2015, I negotiated and signed a data use agreement with Legacy.com’s Chief

Marketing Officer, who graciously allowed me to scrape and analyze obituaries from

Legacy.com’s website for this and related projects. Thus, a series of downloading

scripts was developed, first to scrape and process metadata about Legacy.com’s

3Legacy.com notes on its “About Legacy.com, Inc.” page (Legacy.com, 2016a; cf. Legacy.com’s
“Our International Newspaper Partners” page, Legacy.com, 2016c) that it partners with over
1,500 newspapers total, including newspapers in Canada, Australia, New Zealand, the United
Kingdom, and Bermuda. Legacy.com claims in the “About Us” page of their Memorial Websites
subdomain (Legacy.com, 2016b) that Legacy.com “partners with 76 of the 100 largest newspapers
in the U.S. and features obituaries and Guest Books for more than 60 percent of people who die in
the United States.”
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domestic affiliate newspapers, and then to locally download copies of obituaries

displayed for each of those newspapers for further processing and analysis.

Newspaper Names and States Downloader. First, a downloader

was written in Bash and used to scrape the Legacy.com map of affiliate

newspapers4 in order to record the website’s internal state/location ID values.

These ID values were then used to download each of a series of state- and territory-

specific pages listing affiliate newspapers. The locally-downloaded files were

subsequently scraped for each newspaper’s name, unique Legacy.com internal ID

shortcode, Legacy.com newspaper-specific website URL, and geographic state.

The geographic distribution of Legacy.com domestic newspaper affiliates can

be seen in Figure 3.

Figure 3. Newspaper sample size by state. WY and HI had 0 newspapers that
contract with Legacy.com.

4As of this writing, the map is located at http://www.legacy.com/ns/about/newspapers/.
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Finding Newspaper Distribution Points Using Google Maps. A

script was then written in R5 to query the Google Maps Application Programming

Interface (API) in order to retrieve all addresses available for each newspaper’s

name and state abbreviation (e.g., in response to the search term “The Register

Guard newspaper OR” for The Register Guard newspaper, which primarily

operates in Lane County, which encompasses Eugene, Oregon). This approach

was founded in the understanding that many newspapers have multiple counties of

primary coverage (for example, The Spokesman Review newspaper has main offices

in both Spokane county in Washington and Kootenai County in Idaho). Thus, this

approach allowed incorporating all addresses returned by Google Maps for each

newspaper; ideally, each of these addresses referred to a field or administrative

office for a given newspaper.

For newspapers for which Google Maps returned more than six results

(a threshold set simply by manually searching for several newspapers using the

query format given above and noting at what approximate level search result

sets became consistently filled with false positives), R’s agrep function was used

to selectively remove results. The agrep function allowed running a fuzzy (i.e.,

approximate) search among the list of returned business and place names for the

“canonical” name taken from the Legacy.com pages that listed newspaper affiliates.

maximum.distance, the argument that controlled the precision with which names

were treated as matching the canonical name, was set to 0.3 after iterative trial-

and-error tests with several high-search-result Google Maps queries (specifically,

“The Arizona Republic,” which yielded nine search results; the “Baltimore Sun,”

which yielded six search results; the “Times-News,” which yielded 20 search results;

5The version numbers of all R packages used in this project that are not presented in-text can
be found in the Appendix of this report.
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and “The Birmingham News,” which yielded 14 search results). This value was

chosen with the intent to run searches that were conservative but not overly

restrictive.

In these cases of high search results, a three-step process was used:

1. Always accept the first result (this was based on the assumption that Google

Maps returned results ordered by relevance).

2. Search among the remaining returned business/place names for the canonical

name of the newspaper, as defined using Legacy.com’s affiliate newspaper list.

3. Filter for unique place names in the remaining Google Maps search set.

Each result’s address, Google Maps place name, latitude, longitude,

Legacy.com newspaper code, and date of download were recorded.

Of the original sample of 1,041 newspapers, 1.441% (15 newspapers)

returned no search results, and thus were excluded from further analyses. Thus,

1,026 newspapers were included in the subsequent analyses. Excluded newspapers

were not isolated to a single geographic region, as is shown in Table 4.

Table 4. State Abbreviations and Names of newspapers that did not return address
results from the automated Google Maps query procedure and thus were excluded
from further analyses.

State Abbreviation Newspaper Name Shortcode

CA Pomerado News pomeradonews

CA Inside Bay Area insidebayarea

IL Chicago Sun-Times chicagosuntimes

IL Daily Southtown daily-southtown

MA The Country Gazette - Plainville wickedlocal-plainville
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State Abbreviation Newspaper Name Shortcode

MA Falmouth Bulletin wickedlocal-falmouth

MA Waltham News Tribune WalthamNewsTribune

MI Muskegon Chronicle muskegon

NJ South Jersey Times southjerseytimes

OH The Marion Star marionstar

OR Hillsboro Argus/ Forest Grove Leader /

Beaverton Leader

argus

PA Susquehanna County Independent independentweekender

SC The Cheraw Chronicle thecherawchronicle

VA RichmondObitNews.com richmond-VA

WI Kenosha News kenoshanews

Finding United States Census County Codes for Newspaper

Locations Using the Federal Communications Commission’s (FCC’s)

Data Conversions API. I then submitted the latitude and longitude of each

unique recorded Google Maps search result to the Federal Communications

Commission’s (FCC’s) Data Conversions API6, a service provided by the FCC to

translate location data such as latitude and longitude into United States Census

Federal Information Processing Standard (FIPS) codes, unique numeric identifiers

used by the United States Census Bureau for places down to the county level.

FIPS codes are embedded in many US Census Bureau datasets and, further, are

standardized geographically and temporally, unlike ZIP codes, the boundaries

6As of this writing, the API can be found at https://www.fcc.gov/general/census-block-
conversions-api.
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of which can be amended by the US Postal Service as postal requirements of a

community change (put differently, FIPS codes seemed more appropriate than

ZIP codes for use in this project given the relative stability of the former). The

FCC’s Data Conversions API provides a 15-digit FIPS code for a given latitude and

longitude, which includes the following geographic identifiers:

– State (2 digits)

– County (3 digits)

– Census tract (6 digits)

– Block group (1 digit)

– Block (3 digits)

Thus, with an interest in the county level, the first five digits (State +

County) of each location’s FIPS code were recorded for further analyses.

Figure 3, a map displaying newspaper sample size by state, could be re-

visualized with these county-level results as in Figure 4. Given the range of

newspapers by county, Figure 4 is accompanied by Figure 5, which provides a

histogram of newspaper frequency by county. Figure 3 is also accompanied by

Figure 6, a visualization of US population by county in 2014, the latest year for

which data was available at the time of writing (data is from the US Census

Bureau Population Division’s “Annual County Resident Population Estimates by

Age, Sex, Race, and Hispanic Origin: April 1, 2010 to July 1, 2014” dataset, United

States Bureau of the Census Population Division, 2015).
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Figure 4. Newspaper sample size by county. WY and HI had 0 newspapers that
contract with Legacy.com.
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Figure 5. Histogram of newspaper sample size by county.
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Figure 6. The United States’ population by county in 2014, using the US Census
Bureau Population Division’s “Annual County Resident Population Estimates
by Age, Sex, Race, and Hispanic Origin: April 1, 2010 to July 1, 2014” dataset
(United States Bureau of the Census Population Division, 2015).
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Legacy.com Obituaries Downloader. A Bash script was written to

use the Legacy.com newspaper-affiliate-specific URLs gathered as described above,

appending to them query arguments to request the newspaper’s “Last 7 Days”

of results. Results from these requests were returned from Legacy.com’s servers

in pages of up to 10 results, and were wrapped in HTML <entryContainer>

elements. Page numbers in the URLs being queried were incremented by 1 (e.g.,

“page=1”, “page=2”, etc.) until the most recently downloaded page contained

no results (defined as a lack of <entryContainer> elements). The final (empty)

downloaded page was then discarded, and the process re-started for the next

newspaper. Downloads were rate-limited (all queries spaced two seconds apart)

to minimize the intrusiveness of the process on Legacy.com’s servers, and were

launched during weekend nights. Downloads were run over seven consecutive weeks,

on the following dates:

– Saturday, April 16, 2016

– Sunday, April 24, 2016

– Saturday, April 30, 2016

– Saturday, May 07, 2016

– Friday, May 13, 2016, to Saturday, May 14th, 2016

– Friday, May 20, 2016, to Saturday, May 21, 2016

– Friday, May 27, 2016, to Saturday, May 28, 2016
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Combined, these downloads yielded 34,640 search result pages, totaling

9.1 GB of HTML data (i.e., the not-yet-scraped obituaries, as well as all of their

HTML markup), including 313,607 obituaries7.

Legacy.com Obituaries Data Scraper. Using R, a scraper was

developed to take the raw HTML content of each locally-downloaded search results

pages and, for each result, extract the name of the deceased, the obituary text,

the date of download, the URL of the individual obituary, and the name and

state of the publishing newspaper. In addition, the scraper included algorithms for

automatically coding the gender and age of the deceased (as necessary, calculating

the latter by guessing date of birth from the information included in the obituary).

Reliability statistics for these algorithms are included below.

Development of the Gender-Guessing Algorithm. The gender-

coding algorithm utilized a two-pass approach to infer the gender of the deceased

from the obituary text. Given the limited information available in obituaries

and the fact that obituaries are very rarely written by the deceased and do not

typically contain direct statements of gender identity, gender was coded using three

categories: “female,” “male,” and “uncertain.”

In the first pass, the gender algorithm counted the number of masculine

(“he,” “his,” “him”) and feminine (“she,” “her”) pronouns in the obituary text. If

the obituary text contained more masculine than feminine pronouns, the gender of

the deceased was coded as “male;” if more feminine than masculine pronouns were

counted, the gender of the deceased was coded as “female.”

In cases in which there were no gendered pronouns, or an equal number

of masculine and feminine pronouns, the gender algorithm undertook a second

7It should be noted that, given date overlaps, this number includes some obituaries that were
downloaded more than once. Pruning of obituaries is described in the Results section below.
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pass, in which it attempted to use historical Census data to guess gender based

on the forename of the deceased. The gender package for R was used for this

purpose. While the package’s gender function can tailor its guesses based on the

approximate date of birth of the deceased, in order to keep the gender- and age-

guessing algorithms separate from one another (such that imperfections in one

would not unduly affect the output of the other), no date information was passed

to the gender function, causing it to make a guess using Census data from across

the timespan encompassed in its dataset.

In all cases, the gender-guessing algorithm recorded the source of its final

output (pronouns vs. pronouns followed by forename), to facilitate debugging

during the development process. Additionally, the gender algorithm was

constructed to find and strip leading initials (e.g., “J. Henry Doe”), which were

not usable by the gender Census-lookup function, from all names before sending

them to the function.

Development of the Age-Guessing Algorithm. In order to guess

age at death (or, as necessary, to calculate it by guessing year of birth), the age-

guessing algorithm completed four separate searches through the text of each

obituary and combined the information gathered from each to code age:

1. The lowest four-digit number (as a possible year of birth) in the obituary text

2. The first instance (if available) of the phrase “born. . . x,” where x was a

four-digit number.

3. A one- to three-digit number (as possible age at death) after a space and

before a comma or period (for phrases such as “John Doe, 82, passed

away. . . ”). Candidate numbers needed to meet the following criteria:
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1. Not be immediately preceeded by any long- (“January”) or short-form

(“Jan”) month name or a one- to four-digit number followed by a space

or forward-slash (e.g., “10/12,” which likely signified a date rather than

an age).

2. Be immediately preceeded by a space.

3. Be immediately followed by either one or more spaces or a comma.

4. Not be immediately followed by zero or more spaces followed by “AM,”

“am,” “PM,” “pm,” or any combination of these abbreviations using

uppercase and lowercase letters. This search also checked for versions

of these abbreviations that included periods (e.g., “p.m.”). This search

avoided recognizing numbers in phrases such as “5 pm”) as candidate

ages.

5. Not be immediately followed by whitespace or a comma and then the

year of the obituary’s download (2016). This search avoided recognizing,

e.g., the “9” in “April 9, 2016,” which was assumed to be more likely

a date of death or of scheduled funerary services. This search had the

notable downside of systematically missing children who died as infants

at less than one year. This decision was made after reading several

hundred obituaries manually and seeing few infant obituaries, especially

with a date of birth printed explicitly.

4. A two- to four-digit number that might be a year in the US-common date

form of MM/DD/YY[YY] or MM-DD-YY[YY].

The age algorithm then removed any candidate year of birth numbers (not

candidate age at death numbers) higher than the year of download (e.g., 2016) or
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lower than the year of download minus 110, which was expected to be a liberal

estimate of the highest age at death to be found in the corpus. Since no individuals

were expected to be older than 1108, potential age at death numbers higher than

110 were thus assumed to be misidentified, and were discarded.

The algorithm then considered all of the gathered candidate years for each

obituary, and for each obituary, took the lowest candidate year as the likeliest year

of birth. This choice was based on the assumption that, since obituaries typically

craft a narrative around the life of the deceased, the earliest date was likely to be

the correct one to use.

Following the rationale described above for systematically excluding guesses

for infant children less than one year old at death, the age algorithm declined to

make an age guess if the only guess to make was the year of download (e.g., 2016).

In cases in which the algorithm made a guess for year of birth but not for

age, approximate age was calculated using the equation

year of publication− year of birth = approximate age

Validation of the Gender- and Age-Guessing Algorithms. The

algorithms for categorizing gender and age did not need to be perfect; they did,

however, need to be approximately as accurate as would be expected from a human

coder working as part of a team (for example, a Research Assistant).

8Following a sample in Spain, Gómez-Redondo and Garćıa González (2010, p. 164-165)
concluded that “there is no relationship between the population size of the regions or provinces,
and the number of supercentenarians[, individuals who are 110 years or older].” With that in
mind, it can be useful to consider historical rates of supercentenarianship. Kestenbaum and
Ferguson (2010) found 325 individuals who had died at age 110 or greater between 1980 and
2003, a span of over two decades in a country of a minimum of 226.5 million (at the beginning
of that span, in 1980, as reported by Forstall & United States Bureau of the Census Population
Division, 1996).
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Using a “development” corpus of 27,923 additional obituaries that were

downloaded and scraped separately by approximately two weeks from the larger

“production” corpus (on June 11th, 2016; this “development” corpus was not

included in the final analyses reported below; rather, it was downloaded and

scraped specifically for use in the code development required to enable those

analyses), I randomly selected and manually coded 50 obituaries for gender and

age or date of death (whichever was easiest given the information presented in each

obituary) before looking at the guesses made by the automated algorithms. This

allowed me to see initially whether the algorithms needed major adjustment. Seeing

that inter-rater reliability estimates were high with this sample of 50 (following

calculations described below), I took a new random sample (with replacement) of

100 obituaries. This new sample was coded separately (and, as before, without

knowledge of the automated algorithms’ output) by two coders: a member of the

Dissertation Committee (Mark Alfano) and me.

Initial Data Processing Steps for Calculating Reliability

Statistics. In order to increase the meaningfulness of the reliability statistics to

be computed, the matrix of automatically- and manually-coded genders and ages

was first processed using the following steps. These steps were performed separately

between each of the two humans’ codes and the automated algorithm’s codes.

1. I replaced all blank values with 0s, in order that rows in which the computer

or the human coder did not have enough information to make a guess would

not be skipped in the calculations. This had the effect of penalizing cases in

which the human coder made a guess and the automated algorithm did not,
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and rewarding cases in which both the computer and the human coder agreed

that there was no basis for a guess.9

2. For rows in which the automated algorithm and human coder’s age guesses

were within one year of each other, the two guesses were considered the same

(by setting them equal to one another). This step was warranted because for

both the human and computer coders, age guesses were sometimes calculated

from a guess of year of birth. In those cases, age was calculated as “2016

[the current year] - year of birth”. This equation yields a result one year off

in cases in which the birthday of the deceased has not yet occurred in the

current year.10

Gender Coding Reliability. Cohen’s κ, computed between the

automated algorithm and me was 0.886, and was 0.881 between the automated

algorithm and Mark Alfano for gender codes. Percent agreement was 94% between

the automated algorithm and each of the human coders.

Age Coding Reliability. Cohen’s κ for age codes between the

automated algorithm and Mark Alfano was 0.803, and was 0.865 between the

automated algorithm and me. Respectively, percent agreement was 81% and 87%

between the automated algorithm and the two coders. Respectively, the correlation

of age guesses between the automated algorithm and the two coders was 0.760

9This processing step had the downside of making Pearson’s correlation statistics less
meaningful in this context (nevertheless, Pearson’s correlations are still reported below, for
completeness), in cases in which the computer made a guess and the human coder did not, or
vice versa.

10For example, if an individual’s date of birth were February 20th, 1987, and the person were 28
years old at the time of death, this equation would yield a date of birth one year off (2016 - 1987
= 29), until after February 20th (when the individual would have turned 29). I considered the
potential one-year difference acceptable for the analyses described later in this report; for assessing
reliability of the coding algorithm, however, it seemed necessary to allow a one-year tolerance
when evaluating computer and human age guesses as matching.
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and .830. While this statistic is reported for completeness, it is not as useful as

the above statistics in this context, given that the data processing steps described

above could cause disproportionate decreases in any case in which the automated

algorithm guessed the age of the deceased in an obituary that a human coder

decided did not contain sufficient information to support a guess, or vice versa.

Filtering of Obituaries by Word Length. Obituaries published

in the USA follow two primary formats (defined as endpoints on a continuum).

First, some obituaries comprise short-form death notices, which often contain

the deceased’s name and age or date of birth, but no or almost no biographical

content. These short-form obituaries seem primarily motivated to serve as public

notices and to provide logistical information about funerary rites for the deceased

(e.g., the date and time of a wake or funeral, locations to which to send flowers,

and the name of the managing funeral home). Short-form obituaries of this type

might also contain limited familial information (using phrases such as “Survived

by. . . ”). Long-form obituaries, which might be several hundred words in length, by

contrast, contain all of the information expected in a short-form obituary, but also

include a richer biographical sketch of the deceased. In some newspapers, such as

The New York Times, long-form obituaries can be commissioned and professionally-

authored, reading much more like biographies possibly to the exclusion of more

detailed logistical or familial information. Many obituaries, however, are written

by friends or family members of the deceased (and occasionally by the deceased

him- or herself in advance of death, perhaps during a long illness), either following

templates provided by the publishing newspaper or an assisting funeral home

(supplying unique biographical information but in a consistent format), or

composed wholly by the author.

56



I expected that short-form obituaries, as death notices, would likely

not contain information useful for understanding values that might differ from

community to community, or from author to author; short-form death notices

can be thought of as demonstrating shared values about notifying community

members about deaths, sharing with community members in funerary rites, and

enumerating ties to still-living relations, but these values are, by the very fact

that obituaries are published across the USA, not likely to vary or be unique to

particular communities nearly as much as richer biographical information. For this

reason, I filtered obituaries from the corpus gathered over the seven-week recording

period to contain as few short-form death notices as possible. Since short-form

necrologies are defined in part by their length, obituaries were filtered based on

word count. It should be noted that this filtering decision was quite granular: it is

possible, for example, that an obituary could comprise a brief biographical sketch

and eschew any logistical funeral information in such a way that it would not solely

be a death notice but would still be excluded from the final corpus based on the

word-count filter. I made the decision to use word count as a useful indicator

simply from having read many obituaries manually and not remembering having

seen any short-form obituaries that did not contain only logistical and basic familial

information. While constructing a more advanced algorithm for pruning obituaries

could be useful fodder for future research, the decision can be seen as valid for

this project in its pragmatic, bottom-up approach (from manual reading), which

enabled progression towards the project’s larger questions and goals.

In order to set a word-count threshold below which to exclude obituaries

from further analyses, I qualitatively examined a series of obituary word-count

histograms of successively finer granulation (two of these are reproduced here as
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Figures 7 and 8). An initial histogram of word-counts across the corpus showed

a notable drop-off in obituaries just below the 100-word mark. Creating further

histograms with smaller x-axis ranges and finer-grained bins suggested that a

qualitative change might take place in obituaries (from the highly-templated and

thus consistent-length short-form death notices to longer-form obituaries in which

authors wrote about the deceased in more detail and with more idiosyncrasy) at

lengths somewhere between 40 words and 120 words.

I thus took random samples (for each sample, n = 30) of obituaries within

ranges of 10 words, starting with the range of 21 to 30 words, and manually read

every obituary in the sample to look for non-templated biographical content. The

intent of this approach was to stop sampling in this way and set a filter cutoff as

soon as I began to see biographical information (even in just one or two obituaries

in these small samples) in order to set the cutoff as conservatively as possible. This

approach relied on the assumption that a random sample of 30 obituaries (from

a larger corpus of several thousand for that 10-word range) would be sufficient to

manually detect this qualitative change in the corpus from all or almost all short-

form death notices to longer-form biographical obituaries. While this approach was

admittedly imprecise, it was also highly functional. After examining samples of

obituaries in the ranges of 21 to 30 words, 31 to 40 words, 41 to 50 words, 51 to 60

words, and greater than 100 words, I set the filter cutoff at 60 words.

Construction of a Matrix of Lemma - Part-of-Speech Distances

from Bardi et al.’s Dictionary. Of the original 313,607 obituaries in the corpus

gathered during the five-week collection period, 211,963 obituaries were above the
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Figure 7. Histogram of obituary word counts, cut off at 600 words (the actual
maximum word count in the corpus was 3,502 words, at the end of a long
positively-skewed tail in the full histogram’s distribution).
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Figure 8. Histogram of obituary word counts, cut off at 100 words (the actual
maximum word count in the corpus was 3,502 words, at the end of a long
positively-skewed tail in the full histogram’s distribution).
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minimum word count cutoff, and were thus retained for further analyses11. For each

of these remaining obituaries, the following steps were taken:

1. The text of the obituary was lower-cased (e.g., “John Doe was very brave”

became “john doe was very brave”) in order to normalize text across

obituaries to correct for possible inconsistencies in capitalization, whether

from typos or noun usage (e.g., “. . . was a member of the Methodist church”

[a particular church building in an area] vs. “. . . was a member of the

Methodist Church” [an overall religious organization]).

2. All words in the obituary were tagged for Part of Speech (POS) using

TreeTagger (Schmid, 2013), an open-source, cross-platform language tagging

and processing tool.

3. TreeTagger’s POS dictionary (i.e., the list of Parts of Speech it had available

for use) was substantially more detailed than WordNet’s. Thus, in order to

enable compatibility with the WordNet graph database (the usage of which is

described below), TreeTagger POS tags were “translated” into WordNet POS

tags, using a conversion table (Table 5).

Table 5. TreeTagger to WordNet Part Of Speech (POS) conversions.

TreeTagger POS WordNet POS

verb v

adjective a, s

adverb r

11The “development” dataset was similarly cleaned: of its initial 23,946 rows, 33.241% were
removed for being under the minimum word length, leaving 15,986 obituaries.
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TreeTagger POS WordNet POS

noun n

The TreeTagger “adjective” tags were given two matching WordNet tags,

signifying WordNet’s “adjective” and “adjective satellite” categories. In the

WordNet query used in the steps below, these two tags were combined in an “OR”

statement (e.g., “match any word in the WordNet database that is tagged as an

adjective OR as an adjective satellite.”).

4. TreeTagger was used to “lemmatize” all of the words in the obituary. Unlike

coarser “stemming” methods (e.g., using the Porter stemming algorithm12

– see, e.g., Porter, 1980), which normalizes words in a corpus by removing

endings (changing “speaking” and “speaker” into “speak,” and “happy”

and “happiness” to “happ”), “lemmatizing” seeks to change a word into its

most basic form, given its identified POS (e.g., for “saw” as a noun, “saw;”

for “saw” as a verb, “see;” for “was” as a verb, “is”). Because it requires

knowledge about POS, lemmatizing is more difficult than stemming, but also

potentially more useful for its increased nuance (assuming the accuracy of the

POS tags that it uses).

5. Words of the following Parts of Speech were removed from the list of

lemmatized words, on the assumption that they would not be relevant for

calculating distance from Bardi et al. words:

12As of this writing, the official website for the Porter stemming algorithm is at http://
tartarus.org/~martin/PorterStemmer/. The citation provided here is for one of the algorithm’s
canonical publications.
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1. “Cardinal numbers” (e.g., “76”) were excluded, since the “lemma” value

of each was replaced by TreeTagger with the string “@card@”, and so

was not expected to contribute to this project’s analyses.

2. “Modal” lemmas (e.g., “will” in “will follow”) were also excluded on

the expectation that they would also not be relevant (especially as

compared to the verbs they were paired with) for this project’s analyses

of distances from value lexicon words.

6. Stopwords were removed, following the R tm (“TextMining,” v. 0.6.2)

package’s standard English stopword list: “i”, “me”, “my”, “myself”, “we”,

“our”, “ours”, “ourselves”, “you”, “your”, “yours”, “yourself”, “yourselves”,

“he”, “him”, “his”, “himself”, “she”, “her”, “hers”, “herself”, “it”, “its”,

“itself”, “they”, “them”, “their”, “theirs”, “themselves”, “what”, “which”,

“who”, “whom”, “this”, “that”, “these”, “those”, “am”, “is”, “are”, “was”,

“were”, “be”, “been”, “being”, “have”, “has”, “had”, “having”, “do”, “does”,

“did”, “doing”, “would”, “should”, “could”, “ought”, “i’m”, “you’re”, “he’s”,

“she’s”, “it’s”, “we’re”, “they’re”, “i’ve”, “you’ve”, “we’ve”, “they’ve”, “i’d”,

“you’d”, “he’d”, “she’d”, “we’d”, “they’d”, “i’ll”, “you’ll”, “he’ll”, “she’ll”,

“we’ll”, “they’ll”, “isn’t”, “aren’t”, “wasn’t”, “weren’t”, “hasn’t”, “haven’t”,

“hadn’t”, “doesn’t”, “don’t”, “didn’t”, “won’t”, “wouldn’t”, “shan’t”,

“shouldn’t”, “can’t”, “cannot”, “couldn’t”, “mustn’t”, “let’s”, “that’s”,

“who’s”, “what’s”, “here’s”, “there’s”, “when’s”, “where’s”, “why’s”, “how’s”,

“a”, “an”, “the”, “and”, “but”, “if”, “or”, “because”, “as”, “until”, “while”,

“of”, “at”, “by”, “for”, “with”, “about”, “against”, “between”, “into”,

“through”, “during”, “before”, “after”, “above”, “below”, “to”, “from”, “up”,

“down”, “in”, “out”, “on”, “off”, “over”, “under”, “again”, “further”, “then”,
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“once”, “here”, “there”, “when”, “where”, “why”, “how”, “all”, “any”,

“both”, “each”, “few”, “more”, “most”, “other”, “some”, “such”, “no”, “nor”,

“not”, “only”, “own”, “same”, “so”, “than”, “too”, “very”

7. Punctuation was removed using the following list: “.”, “,”, [single quote],

[double quote], “;”, “:”, “!”, “[”, “]”, “{”, “}”, “/”, “ ”, “&”, “$”, “#”, “!”,

“(”, “)”.

8. For each lemma-POS combination (e.g., “see” used as a verb), the WordNet

graph database was queried to find the shortest distance through the graph

between the lemma and each of the 36 words in Bardi et al.’s dictionary.

Candidate paths were capped at 15 total hops (counting all node types).

Within this 15-hop cap, separate counts were performed for the following

(all from the same shortest path):

1. Total number of hops

2. Number of hops only counting Word nodes

3. Number of hops only counting Morph nodes

4. Number of hops only counting Synset nodes

5. Number of Synset-to-Synset relationships

6. Number of Word-to-Synset relationships

7. Number of Morph-to-Word relationships

8. Number of Free Association relationships (this was expected to be zero

in every case, given the decision to exclude IS FREELY ASSOCIATED WITH

relationships from the current project’s analyses, and was included
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to both check that expectation, and to provide ready code for future

projects that release this constraint)

Put differently, in the path x:Word --> y:Synset --> z:Word -->

a:Synset --> b:Word (where “x:Word” means “a node, x, which is a Word”),

the count of Word nodes between x and b would be 2, and the count of total hops

would be 4. The cap of 15 total hops was based on an arbitrary but arguably

common-sense decision that words more than 15 hops distant from each other

would not be reasonably defined as “related” in a meaningful way in the context

of this project13. The lemma’s POS tag was used to filter the first Synset (i.e.,

definition) encountered in the shortest path (in plain language, this aspect of the

query would have read, “Find the shortest path between ‘saw’ and ‘benevolence,’

where the first Synset node encountered is tagged as a ‘verb.’ ”14 Lemmas that were

not successfully POS-tagged by TreeTagger were also queried, without the first-

Synset filter (allowing any POS/definitions in the first hop). Since the words in

Bardi et al.’s dictionary were not POS tagged by Bardi et al., their definitions in

the graph were not filtered during these queries. The Bardi et al. words were not

13Although in this case doing so would be preferable, as of this writing, Neo4J is not capable
of filtering to, e.g., 15 Word hops specifically, without setting a maximum constraint on
total number of hops at an arbitrarily larger threshold. Setting such a threshold would be
computationally expensive without necessarily succeeding in allowing the desired maximum
number of Word hops, e.g., if a network path between a lemma and a value lexicon word
contained enough Synset-to-Synset relationships.

14Unlike the constraint imposed on the first Synset encountered in the shortest path between a
given obituary lemma and a target value lexicon word, I decided not to constrain the final Synset
encountered before a value lexicon word to be a noun (i.e., the POS type of all of the value lexicon
words: per Bardi et al., 2008, p. 485, “In order to hold part of speech constant across different
values, we considered only nouns. For example,for the value Hedonism, the noun pleasure was
used rather than the adjective pleasing.”). While Bardi et al’s value lexicon words are all nouns,
given the exploratory aspect of this project, I decided not to impose this constraint in order that
traversal through the network initially be allowed to be liberal rather than conservative (put
differently, to allow more rather than fewer connections). However, POS of the final Synset was
recorded when computing shortest paths, in order to explore whether the final Synset POS was
notably variable without this constraint.
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lemmatized during this graph query process, as they were understood to have been

published as lemmas.

The graph database query was parallelized using an Amazon Web Services

Virtual Machine running Ubuntu Linux 14.04 with 40 virtual CPUs and 160GB of

memory. Query results were appended to a 12-column matrix:

1. From (the lemma in the corpus)

2. To (the target value lexicon word)

3. Part of Speech of first hop Synset (the POS of the lemma as it was used in

the corpus)

4. POS of final Synset encountered (used to check whether not constraining the

final Synset to be of a noun POS was likely to affect analysis outcomes)

5. Total number of hops in the shortest path

6. Shortest number of hops, only counting Word nodes

7. Shortest number of hops, only counting Morph nodes

8. Shortest number of hops, only counting Synset nodes

9. Number of Synset-to-Synset relationships in the shortest path

10. Number of Word-to-Synset relationships in the shortest path

11. Number of Morph-to-Word relationships in the shortest path

12. Number of free association relationships in the shortest path (this was used

to check the constraint that free association relationships not be allowed in

queries for this project, as explained above)

66



Lemma-POS combinations that did not connect to any Bardi et al. words

were appended with a null value in all count columns, in order that they not

be looked up again from subsequent obituaries.

Calculation of Schwartz Value Distances from Lemma - Bardi et

al. Word Distances. The final matrix of terms showed that the filtered obituary

corpus comprised 98,499 unique lemma-POS combinations, with 1,148,983 total

rows (each for a unique lemma-POS-Bardi et al. word combination)15. The matrix

of these combinations was grouped by the Schwartz values of the value lexicon

words and aggregated using a new calculation, “word-by-hop,” which is defined

below.

15The “development” dataset contained 42,784 unique lemma-POS combinations, with 635,124
total rows (each for a unique lemma-POS-Bardi et al. word combination).
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CHAPTER III

RESULTS

Further Cleaning and Pruning the Dataset

Beyond the initial data “cleaning” steps described above in the Methods

section, I took several steps to better organize the dataset to make it more ready

for use in analyses.

Pruning Within-Newspaper Duplicate Obituaries. As noted

above, overlap in obituary download dates caused some obituaries to be

downloaded twice. In addition, several obituaries were downloaded repeatedly

from the same newspapers because they appeared over time in multiple forms

in Legacy.com’s search results. Several of these forms are non-exhaustively listed

below:

– “Teaser” obituaries, which seemed to serve as placeholders for full,

biographical texts, but presented only logistical death notice information

(e.g., time and location of funerary services). These obituaries also sometimes

contained a note that the full obituary would be published on a given date.

– Variants of the same text, but including a nickname of the deceased (e.g.,

“John Doe. . . ” vs. “John ‘Johnny’ Doe. . . ”)

– Variants of the same text, but including spelling corrections (especially for

place names).

To remove these duplicates, I grouped obituaries by newspaper and

obituary text (i.e., condensing by exactly-matching obituary text strings)1. This

1I compared this method to grouping by newspaper, obituary text, and name of the deceased.
The two methods produced a difference of 218 rows. I then compared the names of the deceased
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removed approximately 16% of the original dataset’s rows, leaving 177,272 rows.

I then further condensed the dataset using the URL of each obituary (as each

obituary listed in a Legacy.com search result page contains a link to a unique

page comprising only that obituary). 1.66% of the remaining dataset contained

a duplicate URL (e.g., from the “teaser” obituaries mentioned above). After

confirming that no URLs were duplicated across newspapers (cross-newspaper

duplicates are discussed below, as a separate area of consideration), for each URL

in the dataset, I retained the obituary with the longest word count, assuming it to

be the most updated version of the obituary text. This removed an additional 1,482

rows (0.836% of the remaining dataset) from the dataset (a portion of the 1.66%

mentioned above), leaving 175,790 rows2.

Removing Obituaries of Individuals of Unknown Age. Of the

remaining dataset, 6.256% did not contain sufficient information for the automated

age-coding algorithm to make a guess. Given the relatively low percentage of the

dataset lacking an age guess, and the intention to use age as a predictor in the

regression models below, I excluded these data from further analyses, rather than

attempt (likely problematically) to impute age values. This left 164,792 rows in the

dataset3.

for each pair of rows that contained matching obituary text but non-matching names (in order to
confirm that obituaries of two separate people had not both been written from similar templates,
e.g.), and found that in all cases, the paired obituaries qualitatively obviously referred to the same
individuals, differing only in punctuation, capitalization, or other minor differences in the printed
name of the deceased.

2The “development” dataset was similarly cleaned: of its remaining rows, 0.181% were
removed, leaving 15,957 rows (zero rows were removed from the development dataset for
containing duplicate URLs).

3The “development” dataset was similarly cleaned: of its remaining rows, 5.634% were removed
for being of uncertain age, leaving 15,058 rows.
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Removing Obituaries of Individuals of Uncertain Gender. Of

the remaining dataset, 0.439% (724 rows) were assigned a gender category of

“uncertain” by the automated coding algorithm. Given the low percentage of data

in this third category (vs. “female,” which 48.867% of the remaining dataset was

coded as; and “male,” which 50.694% of the remaining dataset was coded as), I

excluded those rows from further analyses. This left 164,068 rows in the dataset4.

Assessing Across-Newspaper Duplicate Obituaries. A frequency

table of obituary text strings (i.e., collapsing exactly-matching obituary texts and

counting the frequency of each) revealed that 20.294% of the remaining dataset

were duplicate obituaries across newspapers (within-newspaper duplicates having

been removed following the description above; a check was also performed at this

step to confirm that no within-newspaper duplicate obituary texts remained in the

dataset).

These duplicate obituaries were not isolated to only a small number of

newspapers: 393 papers in the sample printed at least one duplicate obituary. This

is not conceptually problematic: it is understandable that an obituary be published

in more than one newspaper, depending on the notoriety or width of the social

circle of the deceased, and/or the number of newspapers operating simultaneously

in the same geographic region. However, from an analysis perspective, this overlap

required consideration. Steps taken to accommodate these duplicate obituaries are

described further below.

4The “development” dataset was similarly cleaned: of its remaining rows, 0.578% were removed
for being of uncertain gender, leaving 14,971 rows (before removing these unknown rows, the
percentages of obituaries coded as female vs. male were 49.416% and 50.001%, respectively).
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Analyses

Calculation of a Measure of Network Distance, “Word-by-

Hop”. Because not all lemmas contained in the obituary corpus were related

to all Schwartz values (or, more specifically, to all of the words from Bardi et

al.’s [2008] value lexicon), it was necessary to calculate a numeric value for each

word’s relationship with each of the value lexicon words that was able to represent

“no relationship.” Number of hops through the WordNet graph, while intuitive

to use when answering Research Question 1, was inapposite for use especially in

the regression context of Research Question 2, since it was only able to represent

a lack of relationship (i.e., no path within 15 hops between two lemmas) with

missing values; “0” hops, rather than signifying no relationship, signified a perfect

relationship, that the lemmas being compared were identical. Thus, in a regression

context, lemmas that were unrelated to given Bardi words would need to be

either a) excluded from analyses in either a listwise or pairwise fashion, or b)

imputed with an arbitrary value (such as 100). Neither of these solutions seemed

satisfactory; therefore, a new calculation, called “word-by-hop5,” was used.

Word-by-hop values are not meaningful in isolation, but can be compared to

one another to determine the relative fit between different pairs of lemmas. Larger

word-by-hop values represent better “fit” with a Schwartz value, where fit is defined

as “greater connection,” rather than solely by “fewer hops.”

Final Calculation Formula for Word-by-Hop. This report first

presents the final calculation for “word-by-hop,” in order that it be presented as

early as possible. Following that, it explains the step-by-step development of the

calculation.

5“Word-by-hop” is a shorthand for “Words divided by median hops.”
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The equation for word-by-hop is as follows:

word-by-hop =

Number of words that have a path to Value v
Total number of words in the obituary

1 + Median number of hops of the connected words to Value v

Word-by-hop has boundaries at [0, 1]6.

Initial Calculation of Word-by-Hop. In its first stage of

development, word-by-hop was initially calculated by counting the total number of

lemmas (including repeats) in an obituary that have any path to a given word from

Bardi et al.’s value lexicon (i.e., in this project, from 0 to 15 hops) and dividing

that count by one plus the median number of hops in each lemma’s shortest path

to the given word. In cases in which there are no connections, word-by-hop was set

to 0.

The addition of one to the median number of hops corrects for cases in

which there is complete overlap between obituary and value lexicon words (i.e.,

a median hop number of 0) – rather than dividing by 0 or a fraction less than 1

(which would multiply the count of words unlike for non-zero median hop values),

an ideal word-by-hop value is simply not penalized, by dividing by 1.

An example word-by-hop calculation between a hypothetical obituary that

comprises only a single lemma and three Schwartz values is illustrated in Tables 6

and 7.

Table 6. Example data showing the number of hops through WordNet between
“business” and words for three Schwartz values from Bardi et al’s (2008) value
lexicon

Lemma in Obituary Value Lexicon Word Number of Word Hops

business novelty 6

6The notation is meant to denote a “closed” interval, i.e., one that includes its endpoints.
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Lemma in Obituary Value Lexicon Word Number of Word Hops

business excitement 5

business thrill 4

business charity (No path)

business kindness (No path)

business mercy (No path)

business tradition (No path)

business custom 7

business respect 4

Table 7. Example implementations of the initial word-by-hop calculation, using
data from Table 6.

Schwartz Value word-by-hop calculation word-by-hop value

Stimulation 3 words ÷ (1 + median[6, 5, 4]) hops 0.500

Benevolence 0 words 0

Tradition 2 words ÷ (1 + median[7, 4]) hops 0.308

Table 7 illustrates that the hypothetical obituary (which, in this example,

contains only one word, “business”), is more connected to Stimulation (word-by-

hop = 0.500) than to Tradition (word-by-hop = 0.308), and that it is not connected

to benevolence (word-by-hop = 0), using this initial word-by-hop calculation.
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This process can be aggregated over as many lemmas in the obituary that

have a path to words from the value lexicon. Other, more informal, example

calculations illustrate the properties of this initial version of word-by-hop:

– For a given Schwartz value, 1 connected word ÷ (1 + median 3 hops) =

.250, whereas 5 connected words ÷ (1 + median 3 hops) = 1.250 (a higher

value). Thus, the calculation considers obituaries that contain larger numbers

of connected words “more connected” to a Schwartz value than those that

contain smaller numbers of similarly-connected words.

– For a given Schwartz value, 7 connected words ÷ (1 + median 3 hops) =

1.75, whereas 4 connected words ÷ (1 + median 2 hops) = 1.333. Thus, the

calculation considers obituaries that contain a larger number of connected

words at a slightly larger median graph distance “more connected” to a

Schwartz value than those that contain a smaller number of connected words

at a slightly smaller median graph distance. This is unlike using median hop

count only, as hop count would prefer the latter case over the former.

This word-by-hop approach is partially conceptually similar to Bardi et al.’s

(2008), which included a preference for more vs. fewer indicator words (Bardi et

al. only counted pages in their newspaper corpus that included all three indicator

words for a given value).

The initial word-by-hop calculation defined above required several

corrections for use in the current project, however, as described below.

Correcting Word-by-Hop Values for Discrepant Numbers

of Value Lexicon Words. Bardi et al.’s (2008) value lexicon includes three

indicators for each Schwartz value. For some Schwartz values, but not all, the name
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of the Schwartz value could be included as an additional (fourth) indicator: for

some Schwartz values, Bardi et al.’s lexicon uses the value’s name as an indicator

(e.g., for Power, “power,” “strength,” and “control”), while for others, the value’s

name is not included (e.g., for Hedonism, “luxury,” “pleasure,” and “delight”).

Thus, in total, Bardi et al.’s value lexicon contains 36 words, comprising four

Schwartz values of three indicators, and six Schwartz values of four indicators

(when the value’s name is included)7.

Word-by-hop calculations could be affected by the inclusion of a fourth

indicator for a given value by providing additional opportunities for connections

to a value lexicon word. Thus, the analyses described below were run with only the

three primary indicator words for each Schwartz value8.

Correcting Word-by-Hop Values for Discrepant Numbers of

Words across Obituaries. Calculating word-by-hop values using the count of

words that have a connection to a given Schwartz value through Bardi et al.’s value

lexicon potentially preferences longer obituaries over shorter obituaries.

This preference could be conceptually problematic, given that newspapers

may charge fees to publish obituaries based on word count (potentially confounding

wealth with word-by-hop calculations). This was remedied by replacing count of

words that have a connection to a Schwartz value with that count divided by the

total number of words in the obituary (i.e., using percentage of total words in

7Bardi et al. (2008, p. 485) explained this discrepancy in their report, stating, “A preference
was given to use the value label itself (e.g., power, security) as one of the words to represent
each value; however, this was not always possible because some of these value labels yielded
prohibitively low word frequencies (e.g., universalism, hedonism).”

8Future follow-up work could repeat the analyses, including the fourth indicator words to
examine the results’ robustness. Given Bardi et al.‘s (2008, p. 485) note that the value titles that
were not used as indicators were not included because they were seen infrequently in their corpus,
however, those value titles’ addition can likely be expected not to change the results dramatically.
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the obituary, and subsequently dividing that percentages by one plus the median

number of hops of those words)9.

This adjustment has the secondary effect of causing the word-by-hop

calculation to be bounded at [0, 1], as can be seen in these examples:

– An obituary with “perfect” connection with a Schwartz value would be one

that contained only words that exactly matched those from the value lexicon

for that Schwartz value: for example, 10 words (including repeated words)

that exactly correspond with value lexicon words for a given value ÷ 10 total

words in the obituary ÷ (1 + 0 median hops) = 1.000

– 15 words (including repeated words) that have a connection to a given value

÷ 120 total words in the obituary ÷ (1 + 4 median hops) = 0.025, whereas

10 words (including repeated words) ÷ 120 total words in the obituary ÷

(1 + 4 median hops) = 0.0167, representing that the first case is “better

connected” to the value than the second.

– 15 words (including repeated words) that have a connection to a given value

÷ 120 total words in the obituary ÷ (1 + 4 median hops) = 0.025, whereas

10 words (including repeated words) ÷ 120 total words in the obituary ÷ (1

+ 3 median hops) = 0.021, representing that, as above, the calculation still

considers obituaries that contain a larger number of connected words at a

slightly larger median distance “more connected” to a Schwartz value than

9Alternatively, I could have replaced count with count divided by the number of words in the
obituary that have a connection to any Schwartz value (i.e., using percentage of values words in
the obituary, and subsequently dividing that by one plus the median number of hops of those
words. However, this could build into the calculation the possibly hazardous assumption that that
all obituaries are equally laden with Schwartz values overall.
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those that contain a smaller number of connected words at a slightly smaller

median distance.

Word-by-hop is conceptually related to several other measures of

graph connectedness. Unlike in-degree and out-degree, which respectively

measure the number of incoming and outgoing edges from a given node

in a directed graph, word-by-hop ignores the direction of relationships

in the graph, allowing bidirectional traversal between source and target

lemmas. Word-by-hop does not consider the centrality of a given node, since

it is primarily concerned with the existence and distance of relationships

between a source node and a given set of target nodes, rather than

whether a given node is a hub for other nodes; however, it does incorporate

some elements that are similar to those used to calculate betweenness

centrality, the equation for which is how many of the paths include node n
number of shortest paths between node a and node b

(assuming that nodes a, b, and n are not the same) (see, e.g., O’Neil

& Schutt, 2013, p. 258). Word-by-hop’s equation could be re-written

number of shortest paths between obituary word a and the value lexicon words b, c, and d for a given value
the median distance of those shortest paths

; like

betweenness centrality, word-by-hop incorporates information about the number of

paths between a set of nodes. Although word-by-hop is not the same as measures of

cross-clique centrality, it does share the approach of assessing the extent to which

a given node connects to “cliques” of nodes (here, defined using the value lexicon,

which is divided following the Schwartz values paradigm; it is not necessarily the

case, however, that all words in the value lexicon for a given value connect to one

another).

Two potential limitations of word-by-hop are that it does not take into

account the clustering coefficient of nodes (i.e., how prone to clustering an
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obituary’s words are) nor the baseline frequency of words as they are used in

written English. These are both additions that would be useful to consider in

future projects.

Statistically Modeling Word-by-Hop Values. Because it is a

proportion, word-by-hop is theoretically bounded at [0, 1]. Although word-by-hop

values of 1.0 are almost certain never to be seen in this type of corpus (as it would

require that every word in an obituary exactly matched a word from the value

lexicon for a particular Schwartz value), word-by-hop values of 0 are realistically

possible; these values would indicate that a given obituary has no words that have

any connection (within 15 hops through the lexical graph database) to any of the

value lexicon words for a given Schwartz value. Although no word-by-hop values

of 0 were observed in the dataset used for this project (see below, in response to

Research Question 1), it is worth pausing to consider the analytic approaches that

would be best suited to modeling this new measure, in case zeros are observed in

future datasets to which it is applied.

The [0, 1] boundaries of the corrected word-by-hop calculation defined above

could be problematic to use in a typical multiple regression (including multi-level

multiple regression) context, for two reasons. First, multiple regression could poorly

predict word-by-hop as a dependent measure if, as is reasonable to expect, much of

the dataset pools at the bottom of its range. Put differently, the expectation that

there will be a substantial number of values at and near 0 could cause difficulty for

a regression model, which would otherwise mathematically assume that the model’s

Dependent Variable (DV) has a theoretical range from −inf to inf and thus might

present predicted values that are beyond the actual boundaries of the DV (Ferrari

& Cribari-Neto, 2004). Second, beyond pooling near 0, word-by-hop values could
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be considered more aptly described by a beta distribution than by the normal

distribution assumed in a typical multiple regression context. Beta distributions

can take a variety of both normal and non-normal shapes, and are bounded at (0,

1) (i.e., between 0 and 1, without including values of exactly 0 or 1).

For datasets that include word-by-hop as a dependent measure but do not

include values of 0 or 1, several analytic possibilities exist. Using a Generalized

Linear Model (GLM), word-by-hop values may be modeled directly as beta-

distributed, using, for example, the betareg, glmmADMB, and zoib packages for R,

each of which allows beta-distributed dependent variables as well as the inclusion

of random effects (here, e.g., the newspaper that published a given obituary). This

approach is described in the literature as a “beta regression,” and was introduced

by Ferrari and Cribari-Neto (2004). Alternatively, the data may be modeled using

a wider variety of tools (such as R’s glmer package) using a logit link function and

a binomial distribution (University of California, Los Angeles Institute for Digital

Research and Education, 2016). A test model had trouble converging using this

approach, however, with the full obituaries dataset, possibly due to a large number

of small (non-zero, but near zero) word-by-hop values10.

As a third alternative, the data may be logit-transformed, using the formula

log word-by-hop
1−word-by-hop . The logit-transformation will re-scale values to be bounded at

(−inf , inf), allowing them to be used in a normal multi-level regression.

For future datasets that do include word-by-hop values of 0, the DV

will not be able to be directly modeled by either a beta regression as described

above or a normal regression using logit-transformed data, as in the former case,

10I include this speculative explanation because applying a test transformation to word-by-hop
values such that all values were moved up by a constant until the maximum value was just below
1 caused the warning produced when modeling the raw word-by-hop values with this approach to
cease.
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the beta distribution cannot include zeros, and in the latter case, the normal

distribution cannot include −inf (which is the result of logit-transforming 0).

Ospina and Ferrari (2010; cf. Ospina & Ferrari, 2012) proposed a “zero-inflated”

beta regression for this case, which simultaneously models non-zero values of the

DV as beta-distributed and DV values of 0 as binomial-distributed. The zoib

package for R allows for zero-inflation (Liu & Kong, 2015); however, it is built on

JAGS and rjags, which perform Markov-Chain Monte Carlo (MCMC) estimation,

and thus performed very slowly in tests even for simple models when adding a

random effect for newspaper with the development dataset of ˜15,000 obituary

rows. As of this writing, R’s glmmADMB package also allows for zero-inflation, but,

per its documentation, only when modeling outcome variables using Poisson or

binomial distributions.

For future datasets that do include word-by-hop values of 0, in contexts

in which performing a zero-inflated beta regression is either not desirable or (as

with this project) logistically untenable because of dataset size causing large model

convergence times, Smithson and Verkuilen (2006, p. 55) proposed transforming the

data using the formula
y×(n−1)+ 1

2

n
, “where n is the sample size,” in order to slightly

inflate values of 0 and slightly deflate values of 1 (cf. the R betareg package

vignettes documentation, Cribari-Neto & Zeileis, n.d., p. 3, which quotes Smithson

and Verkuilen).

The current project featured 10 DVs, each comprising word-by-hop values

for a different Schwartz value. Thus, each regression model that I sought to test

in the current project needed to be run 10 times, once for each DV (e.g., in an

iterative model-building exercise in which seven models were compared to one

another, 70 total regressions would need to be run). Numerous tests indicated
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that, even under conditions of parallelization, all beta regression options for R

described above performed too slowly on the full dataset to be usable, particularly

when adding a random intercept term for newspaper (even without random slope

components for age of the deceased, gender of the deceased, and their interaction).

Thus, for the regression analyses described below, word-by-hop values were logit-

transformed and then passed into R’s lme4 package’s lmer function, which is

designed for more traditional multi-level modeling.

Logit-transforming the data in this way presents several potential issues.

First, any deviation from modeling the data directly (i.e., as beta-distributed)

is open to a rightful conceptual criticism that interpretation of the resulting

models’ output may be more difficult. In this case, however, it is useful to consider

that word-by-hop is a new measure, which could be made to include the logit

transformation in its definition. More strongly, word-by-hop values are not meant

to be interpreted in isolation, but rather relative to one another (as higher values

indicate greater “connectedness” to the target words). As higher word-by-hop

values correspond to higher logit-transformed word-by-hop values, the potential

issue of interpretation is minimized in this case. Second, logit-transforming data

does not cause them to become normally-distributed. Thus, while word-by-hop

values for several Schwartz values do appear to be normally distributed, several

appear binomially-distributed at least in some newspapers (See Figures 23, 24, 25,

and 26, which are further explored below); output from models that utilized those

non-normal word-by-hop variables should be interpreted with this in mind. Future

work could also usefully compare the results of using this analysis approach vs. a

beta regression approach on a subset of word-by-hop data.
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Multiple Membership Analysis Rationale. As noted above,

20.294% of the remaining dataset comprised obituaries that had been published

across more than one newspaper. Because “communities” in this project

were defined by newspaper, these data would ideally be modeled as “multiple

members11” of the newspaper-communities (henceforward called simply

“newspapers”) that published them, following Leckie’s (2013) terminology.

Incorporating the multiple membership of obituaries in newspapers would

include explicitly modeling obituaries (at level 1 of the model), collapsed by their

text strings such that duplicate obituaries were all counted as a single row, as

potentially having been published in more than one newspaper (at level 2 of the

model), rather than being strictly nested each within one newspaper. Following the

approach advocated by Leckie (2013), this process could also include weights to

show each obituary’s percentage of “membership” in each of the newspapers that

published it (e.g., weighting could be done by the newspapers’ counties’ relative

population sizes). In this case, a random-intercepts regression model with age and

gender as obituary-level predictors and newspapers’ counties’ median income as a

newspaper-level predictor would be of the following form:

11Leckie (2013) and the Center for Multilevel Modelling at the University of Bristol use the
term “multiple membership” to describe this data structure. In other literatures, the same
structure is alternatively called “mixed membership” and (in some cases) a “non-nested” design.
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word-by-hopSchwartz valuev =

β0

+ β1ageo

+ β2maleo

+ β3newspaper median incomeo

+
∑

n∈newspapers(o)

w(2)
n,ou

(2)
0n

+ eo

In this equation, each β functions as in a typical regression, as a measure

of the expected logit-transformed word-by-hop change for a one-unit increase in

the associated predictor, holding all other predictors at a constant level (e.g., 0).

“(2)” superscripts denote terms at level 2 of the model (the newspaper level).

newspaper median incomeo denotes the median income of the counties in which a

newspaper is published. Following Leckie’s approach and terminology, this term

would be defined for each obituary as the weighted sum of the income values of

each of the newspapers that published the obituary:

newspaper median incomeo =∑
n∈newspapers(o)︸ ︷︷ ︸

Sum over obituary o’s newspapers...

w(2)
n,onewspaper median incomeo︸ ︷︷ ︸

For each newspaper, weight the median income (e.g., by population)

u
(2)
on would denote a random effect at the newspaper level (i.e., the variance

attributable to newspaper membership).

The term
∑

c∈counties(o)w
(3)
c,ou

(3)
0c could also be added to the first equation

above to explicitly model newspapers as being multiple members of counties (rather
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than manually computing a weighted average by population size for each newspaper

across the counties in which it operates, as was done for this project’s analyses).

Unfortunately, as of this writing, software available for conducting analyses

was not readily able to combine this type of multiple membership approach with

the beta regression approach described above, or, in the case of R, to readily

incorporate multiple membership data structures generally. Given that it was

not logistically feasible (although it would be ideal) to incorporate multiple

membership in either a weighted or non-weighted way, two primary options for

analyses were considered. First, the multiple membership structure of the data

could be ignored. In this approach, obituaries that were in fact duplicates across

newspapers would be treated in each of their instances as unique. Previous research

has demonstrated that ignoring multiple membership structure underestimates

higher-level variance while overestimating level-1 variance (see Leckie, 2013),

which would be especially problematic in this case, since the newspaper level was

of primary interest. Alternatively choosing to consider only one instance of each

obituary would be, according to Leckie, a “naive” approach (p. 3); nonetheless,

this alternative approach seemed preferable to proceeding while ignoring the

data’s multiple membership structure. Systematically selecting a single obituary

for each set of duplicates (e.g., by the newspaper serving the counties with

largest populations) would be conceptually problematic, as it would build into all

downstream models the assumption that obituaries are most intended for as wide

an audience as possible (vs., e.g., being intended first for a smaller community,

with which the deceased may have had particularly close ties, and secondly for

a larger community). Thus, each set of across-newspaper duplicate obituaries

was randomly downsampled to one instance of the obituary. This approach did
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essentially discard data; however, it retained as much data as possible while not

ignoring the data’s multiple membership structure. Conceptually, this approach

is equivalent in Leckie’s schema to randomly weighting newspaper membership

to 0, 0, and 1, vs. an (e.g., arbitrary) weighting scheme of 1
3
, 1

3
, 1

3
, for an obituary

published in three newspapers.

As mentioned above, county-level predictors for the analyses below

were manually aggregated to the newspaper level by creating averages for each

newspaper weighted by county population size. The newspaper-in-county data

structure could itself be modeled using a multiple-membership approach. Failing

to do this likely resulted in shunting county-level variance elsewhere in the model

(hopefully, but not necessarily, to the newspaper level). However, since counties

were not the focus of this project (and were originally incorporated with the

erroneous understanding that newspapers primarily would operate in only one

county), this decision, which also simplified the regression models used below,

seemed appropriate. With this in mind, future work focused more directly on

these decisions’ analytic implications could determine the extent to which choosing

not to include a random county-level variance component substantially alters

conclusions. Future work could also re-downsample the duplicate obituaries and

re-run the regression models below in order to explore the analyses’ robustness to

this approach.

Covariate Descriptive Statistics. After randomly down-sampling

obituaries published in multiple newspapers to single instances (as described

above), the dataset contained 140,599 obituaries, nested in 832 newspapers. The

remaining newspapers and their associated obituaries were eliminated for the

analyses presented below because county-level information for them was unavailable
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(i.e., for the remaining newspapers, an SQL JOIN of the newspaper data onto the

county-level data using the Google Maps-derived county FIPS codes as shared

identifiers returned no matches).

Age at death (as coded by the automated algorithm described above)

ranged from 1 to 110 (M = 73.5, SD = 21). The percentages of obituaries coded as

having been written about women vs. men in the final sample were approximately

even, with 49.1% female and 50.9% male. 71.3% of gender codes (which were all

assigned using the automated algorithm described above) were made solely using

counts of gendered pronouns in the obituary text, while 27.9% were made using

the gender package for R. 0.892% of codes were assigned using a combination of

pronoun-counting and the gender package. Descriptive statistics for all newspaper-

level predictors (mixed ethnic/racial demographic variables; county population

size; median household income; and education, operationalized as percent of the

population with a Bachelor’s degree or higher) are presented in Table 8.

Table 8. Descriptive statistics for newspaper-level covariates.

Variable min max mean sd

Race/Ethnicity: “White” 20.210 99.08 79.634 13.687

Race/Ethnicity: “Black & African American” 0.569 79.14 16.157 13.251

Race/Ethnicity: “American Indian & Native Alaskan” 0.400 41.31 1.639 2.302

Race/Ethnicity: “Native Hawaiian & Pac. Islander” 0.020 3.14 0.273 0.334

Race/Ethnicity: “Hispanic” 0.496 88.69 12.639 12.852

Income (divided by 1,000 for this table) 26.351 108.48 54.245 12.115

Percentage with Bachelor’s degree or higher 7.300 64.00 30.046 8.886
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Figure 9 visualizes the densities of median household income (United States

Bureau of the Census, 2015b) and education level (United States Bureau of the

Census, 2015a). Education was operationalized as percentage of the population

with a Bachelor’s degree or higher after comparing its distribution across counties

to the percentage of the population with a high school degree or higher, and finding

the variability of the former to be greater than that of the latter, and thus of

greater use in a regression context.

Figure 9. Density curves for median household income and education level
(operationalized as percent of the population with a bachelor’s degree or higher)
from US census data averaged across counties for each newspaper (after weighting
by county population size).

Figure 10 visualizes the densities of racial and ethnic groups across

newspapers (United States Bureau of the Census Population Division, 2015).
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Figure 10. Density curves for each race or ethnicity variable from US census data
averaged across counties for each newspaper (after weighting by county population
size). Category titles are taken from the Census dataset, and are of that category
“Alone or in Combination” with other race/ethnicity categories (i.e., an individual
included in the “White” category could have self-described herself as both “White”
and “Hispanic”).
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Exploring the Properties of the New Word-by-Hop Measure.

Because word-by-hop is a new measure, it is worthwhile to pause here to explore

its properties before reporting statistics directly relevant to the project’s two major

research questions.

As noted in the Methods section above, for each shortest path between

an obituary lemma-POS combination and a target value lexicon word, eight hop

counts were recorded, each following a different definition of “shortest path” that

could be relevant as part of this project:

1. Total number of hops

2. Number of hops only counting Word nodes

3. Number of hops only counting Morph nodes

4. Number of hops only counting Synset (i.e., Definition) nodes

5. Number of Synset-to-Synset relationships

6. Number of Word-to-Synset relationships

7. Number of Morph-to-Word relationships

8. Number of Free Association relationships

In order to facilitate understanding of word-by-hop computations, raw hop

numbers for each of these definitions of “shortest path” are summarized in Table

9. The number of free association relationships was 0 across shortest paths, as

expected; as noted above, because free association edges were excluded from the

graph queries for this project, this descriptive statistic was included as a check

that the query was working properly. Morph nodes were seen infrequently in the
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shortest paths, as also expected, given that Morphs are uncommon variants of

Words, and only connect to Words.

Table 9. Descriptive statistics for hop numbers in the shortest paths between
obituary lemma-POS combinations and value lexicon words.

min max mean sd

Total Number of Hops 0 15 8.305 1.516

Shortest Number of Hops Only Counting Words 0 7 1.723 0.710

Shortest Number of Hops Only Counting Morphs 0 1 0.000 0.017

Shortest Number of Hops Only Counting Synsets 0 14 6.581 1.468

Number of Synset to Synset Relationships in Shortest Path 0 13 4.859 1.737

Number of Word to Synset Relationships in Shortest Path 0 14 3.445 1.420

Number of Morph to Word Relationships in Shortest Path 0 2 0.001 0.034

Number of Free Association Relationships in Shortest Path 0 0 0.000 0.000

The liberal decision not to constrain the final Synset node encountered

in each shortest path when calculating hop numbers through WordNet can be

evaluated with reference to Table 10, which indicates that although in the majority

(˜95%) of cases, the final Synset encountered was of POS noun, some paths did

finish on verb or adjective Synsets. This table suggests that allowing the final

Synset POS to be unconstrained was likely useful given the exploratory nature of

this work, but that future work that chooses to add a noun constraint to the final

Synset POS encountered in each shortest path would likely not affect hop counts

(and thus derived word-by-hop values) substantively.
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Table 10. Percentage of final Synset (i.e., definition) node POS in shortest paths
between obituary lemma-POS combinations and value lexicon word (excluding
cases in which no path existed).

POS Frequency as Percentage

a 0.105

n 94.501

v 5.393

Of the eight measurements above for shortest path length, the two that

I considered most relevant for this project were number of hops only counting

Word nodes, and number of hops counting only Synset-to-Synset relationships,

as they seem especially to follow lay definitions of word closeness12. Thus, for

each obituary, the word-by-hop value for each Schwartz value was calculated and

recorded twice, first using Word node counts, and then using Synset-to-Synset

relationship counts. These two word-by-hop calculations for each Schwartz value

are compared below, both in response to Research Question 1 and because these

comparisons created a foundation for choosing one computation over the other

for use in the regressions reported below in response to Research Question 2.

Table 11 presents the minimum, maximum, mean, and standard deviation for each

computation of word-by-hop.

12Free association also seems to me to follow a lay definition of word closeness; for this project’s
analyses, however, free associations were not included in the graph, following the rationale above.
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Table 11. Descriptive statistics for word-by-hop calculations, ordered by mean
(descending) followed by standard deviation (ascending).

Schwartz Value Calculated Using min max mean sd

power word hop 0.005 0.320 0.207 0.029

conformity word hop 0.005 0.320 0.202 0.033

security word hop 0.005 0.320 0.201 0.034

self direction word hop 0.005 0.320 0.190 0.039

benevolence word hop 0.005 0.320 0.176 0.042

achievement word hop 0.005 0.320 0.170 0.041

tradition word hop 0.004 0.320 0.156 0.037

universalism word hop 0.004 0.317 0.142 0.025

hedonism word hop 0.004 0.269 0.139 0.018

stimulation word hop 0.004 0.213 0.139 0.018

power synset to synset relationship 0.002 0.148 0.086 0.013

universalism synset to synset relationship 0.002 0.143 0.084 0.011

stimulation synset to synset relationship 0.002 0.148 0.083 0.011

achievement synset to synset relationship 0.002 0.130 0.081 0.012

security synset to synset relationship 0.002 0.138 0.081 0.012

conformity synset to synset relationship 0.002 0.136 0.081 0.012

tradition synset to synset relationship 0.002 0.143 0.077 0.012

self direction synset to synset relationship 0.002 0.123 0.076 0.013

hedonism synset to synset relationship 0.002 0.122 0.075 0.012

benevolence synset to synset relationship 0.002 0.123 0.071 0.010
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Table 9 demonstrates that counts of Word nodes were smaller on average

and with a smaller range than counts of Synset-to-Synset relationships. This had

the effect of producing larger word-by-hop values with larger ranges, as can be

seen in Table 11 and many of the figures below. Because the Word node count

calculation provided higher levels of variance for to account for, word-by-hop values

derived from Word node counts were chosen over those derived from Synset-to-

Synset relationship counts for use in the regression models reported below.

The relationship between the two calculations of word-by-hop is visualized

in Figures 11, 12, 13, and 14. These figures indicate a clear positive relationship

between the two calculations, such that word-by-hop values calculated from

Word node counts do tend to correspond to higher word-by-hop values calculated

from Synset-to-Synset relationship counts. However, these figures also show a

consistently multi-linear relationship between the two calculations, resulting in a

low linear correlation value between the means of each calculation across Schwartz

values (taken from Table 9), r = 0.122.

Answering Research Question 1: Which Values are Present in

Relation to One Another in Obituaries. The distributions of male vs. female

word-by-hop values plotted by age at death are visualized in Figures 15, 16, 17,

and 18. These figures illustrate the differential variances of the two word-by-hop

calculation approaches, and also, surprisingly, suggest that if an age effect exists

in the data at a statistically noteworthy level, it is small enough perhaps not to

pass the threshold for conceptual noteworthiness. Overall, the figures suggest that

obituaries coded as written about women also tended to be coded as written about

older individuals; it is worth noting, however, that the range of ages displayed

in the figures (from 1, the minimum age allowed by the automated age-guessing
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Figure 11. Schwartz “openness to change” values (Self-direction, Stimulation,
and Hedonism) plotted by gender to compare word-by-hop values as computed
using the number of Word nodes between each obituary lemma / Part-of-Speech
combination and a value lexicon word, less one (i.e., the number of Word node hops
in the shortest path between a given source and target word) vs. as computed using
the number of Synset-to-Synset edges in the shortest path between a given source
and target word. Pink/lighter points represent obituaries coded as written about
women.
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Figure 12. Schwartz “self-enhancement” values (Hedonism, Achievement, and
Power) plotted by gender to compare word-by-hop values as computed using the
number of Word nodes between each obituary lemma / Part-of-Speech combination
and a value lexicon word, less one (i.e., the number of Word node hops in the
shortest path between a given source and target word) vs. as computed using the
number of Synset-to-Synset edges in the shortest path between a given source
and target word. Pink/lighter points represent obituaries coded as written about
women.
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Figure 13. Schwartz “conservation” values (Security, Conformity, and Tradition)
plotted by gender to compare word-by-hop values as computed using the number
of Word nodes between each obituary lemma / Part-of-Speech combination and a
value lexicon word, less one (i.e., the number of Word node hops in the shortest
path between a given source and target word) vs. as computed using the number
of Synset-to-Synset edges in the shortest path between a given source and target
word. Pink/lighter points represent obituaries coded as written about women.
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Figure 14. Schwartz “self-transcendence” values (Benevolence and Universalism)
plotted by gender to compare word-by-hop values as computed using the number
of Word nodes between each obituary lemma / Part-of-Speech combination and a
value lexicon word, less one (i.e., the number of Word node hops in the shortest
path between a given source and target word) vs. as computed using the number
of Synset-to-Synset edges in the shortest path between a given source and target
word. Pink/lighter points represent obituaries coded as written about women.
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algorithm, to 110, the maximum age allowed) suggest that a sizable number of

obituaries may have been misclassified (as it is unlikely that so many 110-year-

olds actually died during the data collection period, which covered approximately

one month). This is to be expected, given that the validation exercise for the

age-coding algorithm reported above in the Methods section indicated that the

algorithm was in high but not perfect agreement with the human coders, and

because the full dataset is large (and thus provided ample opportunities for

misclassification, even at a low overall level); however, it does suggest that age-

related results should be interpreted with caution.

Consistent “banding” can be observed at the bottom of several of Figures

15, 16, 17, and 18. The obituaries that these bands comprise are low in Schwartz

value connectedness but tend to be written for individuals who are of higher ages at

death. It is possible that these indicate a particular template of obituary, which

deflates its word-by-hop values while inflating its word count by naming large

numbers of family members (cf. Figures 19, 20, 21, and 22, which are discussed

below, and which also show banding at consistent ranges of word counts).

The distributions of male vs. female word-by-hop values plotted by obituary

word count are visualized in Figures 19, 20, 21, and 22. The consistent conical

distribution shapes in these figures may indicate several properties of word-by-

hop. First, it is possible that the cones show that obituaries at lower word counts

contain more “noise” in relation to clearly understanding their relationship to

a given Schwartz value. This is reasonable, given that obituaries are generally

expected to perform several roles simultaneously, including providing biographical

information about the deceased, naming surviving family members, and providing

logistical information about funerary services. Thus, obituaries with lower word

98



Figure 15. Schwartz “openness to change” values (Self-direction, Stimulation,
and Hedonism) plotted by gender and age at death, as both coded using the
automated algorithm described in the Methods section. Pink/lighter points
represent obituaries coded as written about women. The top row plots word-by-
hop values as computed using the number of Word nodes between each obituary
lemma / Part-of-Speech combination and a value lexicon word, less one (i.e., the
number of Word node hops in the shortest path between a given source and target
word). The bottom row plots word-by-hop values as computed using the number
of Synset-to-Synset edges in the shortest path between a given source and target
word.
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Figure 16. Schwartz “self-enhancement” values (Hedonism, Achievement, and
Power) plotted by gender and age at death, as both coded using the automated
algorithm described in the Methods section. Pink/lighter points represent
obituaries coded as written about women. The top row plots word-by-hop values
as computed using the number of Word nodes between each obituary lemma /
Part-of-Speech combination and a value lexicon word, less one (i.e., the number of
Word node hops in the shortest path between a given source and target word). The
bottom row plots word-by-hop values as computed using the number of Synset-to-
Synset edges in the shortest path between a given source and target word.
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Figure 17. Schwartz “conservation” values (Security, Conformity, and Tradition)
plotted by gender and age at death, as both coded using the automated algorithm
described in the Methods section. Pink/lighter points represent obituaries coded
as written about women. The top row plots word-by-hop values as computed
using the number of Word nodes between each obituary lemma / Part-of-Speech
combination and a value lexicon word, less one (i.e., the number of Word node hops
in the shortest path between a given source and target word). The bottom row
plots word-by-hop values as computed using the number of Synset-to-Synset edges
in the shortest path between a given source and target word.
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Figure 18. Schwartz “self-transcendence” values (Benevolence and Universalism)
plotted by gender and age at death, as both coded using the automated algorithm
described in the Methods section. Pink/lighter points represent obituaries coded
as written about women. The top row plots word-by-hop values as computed
using the number of Word nodes between each obituary lemma / Part-of-Speech
combination and a value lexicon word, less one (i.e., the number of Word node hops
in the shortest path between a given source and target word). The bottom row
plots word-by-hop values as computed using the number of Synset-to-Synset edges
in the shortest path between a given source and target word.
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counts may be more variable in their word-by-hop values because they include

a higher percentage of words that may be only incidentally value-relevant while

serving one of the more logistical functions of obituaries as death notices. Following

this, it is possible that longer obituaries converge on a “true” level of connectedness

with a Schwartz value, as expressed in their word-by-hop values. Less strongly,

this may indicate that there exists a minimum word count threshold beyond which

value words become more likely to appear, and that the 60-word threshold applied

in this project for biographical content is below that threshold for values. If such an

additional threshold exists, however, it is likely to be more complicated than based

simply on word count (anecdotally, many obituaries of only a few hundred words

can be seen readily to invoke values).

Second, it is possible that the cone-shaped distributions indicate a property

of the word-by-hop formula itself, such that longer obituaries are less able to fit

a larger number of word-by-hop values. This possibility is one that would be

particularly useful to explore in follow-up research. The bimodal distributions of

word-by-hop values in these figures for Self-direction, Achievement, and all of the

Schwartz “conservation” values (Security, Conformity, and Tradition) and “self-

transcendence” values (Benevolence and Universalism) are also noteworthy, and

potentially point to differences across communities particularly in those Schwartz

values (as explored below in the random-intercepts regression models, in which

word-by-hop values are estimated for each newspaper separately). Looking from a

different perspective, it is worth noting that only two Schwartz values (Stimulation,

Hedonism, as well as, to a lesser extent, Power) lack a bimodal distribution when

plotted against word count. This widespread bimodality could be an artifact of an

interaction between the use of templates by obituary authors and the connections
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between words in the WordNet graph. If a small number of highly-connected words

tended to be used by obituary authors to describe the deceased (perhaps as part of

a templated phrase), the inclusion of a small number of additional highly-connected

words could presumably “bump up” the word-by-hop value for that obituary by

a consistent level. If this were true, Hedonism and Stimulation, as values that

occur less frequently, might have fewer templates available and thus show greater

normality. This explanation is bolstered by the fact that bimodality is not seen

in these figures where Synset-to-Synset-derived word-by-hop values are used as

DVs; this difference in plots between the two calculations implies that distribution

is linked to Word connectedness (as well as, possibly, an inherent property of the

word-by-hop formula that manifests more when the median number of hops is

lower, as when using Word node counts).

Figures 23, 24, 25, and 26 illustrate the densities of word-by-hop values

by Schwartz value, showing distributions without reference to any covariates.

These figures are plotted by newspaper (with darker areas indicating greater

overlap among separate newspapers), and also show distributional variability

(e.g., bimodality vs. normality) across communities not only in Self-direction,

Achievement, Tradition, and Benevolence, but in every value when looking across

newspapers.

The correlation matrix of word-by-hop values is presented in Figure 27.

The minimum correlation was 0.462. Schwartz values in this matrix are listed

following the Schwartz circumplex model in a counter-clockwise direction. A

visual inspection of this matrix does indicate that, generally, Schwartz values as

reconstructed using word-by-hop values do tend to correlate more highly with

values that are closer to them in the circle (i.e., the beginning and end of each
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Figure 19. Schwartz “openness to change” values (Self-direction, Stimulation,
and Hedonism) plotted by gender and obituary word count, as both coded using
the automated algorithm described in the Methods section. Pink/lighter points
represent obituaries coded as written about women. The top row plots word-by-
hop values as computed using the number of Word nodes between each obituary
lemma / Part-of-Speech combination and a value lexicon word, less one (i.e., the
number of Word node hops in the shortest path between a given source and target
word). The bottom row plots word-by-hop values as computed using the number
of Synset-to-Synset edges in the shortest path between a given source and target
word.
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Figure 20. Schwartz “self-enhancement” values (Hedonism, Achievement, and
Power) plotted by gender and obituary word count, as both coded using the
automated algorithm described in the Methods section. Pink/lighter points
represent obituaries coded as written about women. The top row plots word-by-
hop values as computed using the number of Word nodes between each obituary
lemma / Part-of-Speech combination and a value lexicon word, less one (i.e., the
number of Word node hops in the shortest path between a given source and target
word). The bottom row plots word-by-hop values as computed using the number
of Synset-to-Synset edges in the shortest path between a given source and target
word.
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Figure 21. Schwartz “conservation” values (Security, Conformity, and Tradition)
plotted by gender and obituary word count, as both coded using the automated
algorithm described in the Methods section. Pink/lighter points represent
obituaries coded as written about women. The top row plots word-by-hop values
as computed using the number of Word nodes between each obituary lemma /
Part-of-Speech combination and a value lexicon word, less one (i.e., the number of
Word node hops in the shortest path between a given source and target word). The
bottom row plots word-by-hop values as computed using the number of Synset-to-
Synset edges in the shortest path between a given source and target word.
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Figure 22. Schwartz “self-transcendence” values (Benevolence and Universalism)
plotted by gender and obituary word count, as both coded using the automated
algorithm described in the Methods section. Pink/lighter points represent
obituaries coded as written about women. The top row plots word-by-hop values
as computed using the number of Word nodes between each obituary lemma /
Part-of-Speech combination and a value lexicon word, less one (i.e., the number of
Word node hops in the shortest path between a given source and target word). The
bottom row plots word-by-hop values as computed using the number of Synset-to-
Synset edges in the shortest path between a given source and target word.
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Figure 23. Densities of word-by-hop for Schwartz “openness to change” values
(Self-direction, Stimulation, and Hedonism), plotted by newspaper to allow visual
inspection of both overall distribution and variability across communities. The
top row plots word-by-hop values as computed using the number of Word nodes
between each obituary lemma / Part-of-Speech combination and a value lexicon
word, less one (i.e., the number of Word node hops in the shortest path between
a given source and target word). The bottom row plots word-by-hop values as
computed using the number of Synset-to-Synset edges in the shortest path between
a given source and target word. Darker areas indicate higher newspaper overlap.
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Figure 24. Densities of word-by-hop for Schwartz “self-enhancement” values
(Hedonism, Achievement, and Power), plotted by newspaper to allow visual
inspection of both overall distribution and variability across communities. The
top row plots word-by-hop values as computed using the number of Word nodes
between each obituary lemma / Part-of-Speech combination and a value lexicon
word, less one (i.e., the number of Word node hops in the shortest path between
a given source and target word). The bottom row plots word-by-hop values as
computed using the number of Synset-to-Synset edges in the shortest path between
a given source and target word. Darker areas indicate higher newspaper overlap.
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Figure 25. Densities of word-by-hop for Schwartz “conservation” values (Security,
Conformity, and Tradition), plotted by newspaper to allow visual inspection of both
overall distribution and variability across communities. The top row plots word-by-
hop values as computed using the number of Word nodes between each obituary
lemma / Part-of-Speech combination and a value lexicon word, less one (i.e., the
number of Word node hops in the shortest path between a given source and target
word). The bottom row plots word-by-hop values as computed using the number
of Synset-to-Synset edges in the shortest path between a given source and target
word. Darker areas indicate higher newspaper overlap.
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Figure 26. Densities of word-by-hop for Schwartz “self-trancendence” values
(Benevolence and Universalism), plotted by newspaper to allow visual inspection
of both overall distribution and variability across communities. The top row plots
word-by-hop values as computed using the number of Word nodes between each
obituary lemma / Part-of-Speech combination and a value lexicon word, less one
(i.e., the number of Word node hops in the shortest path between a given source
and target word). The bottom row plots word-by-hop values as computed using the
number of Synset-to-Synset edges in the shortest path between a given source and
target word. Darker areas indicate higher newspaper overlap.

112



row of the matrix) than with those that are further away. The matrix does not

always follow this pattern, however: Benevolence and Universalism, which exist

side-by-side in the circumplex model, had a low correlation with each other. It may

be that the value lexicon words for Benevolence and Universalism (Table 1), while

related, would be invoked in different contexts, especially based on the occupation

of the deceased. “Kindness,” “charity,” and “mercy,” the prototype words for

Benevolence, seem able to be applied to a variety of individuals. The prototype

words for Universalism, however, “unity,” “justice,” and “equality,” might be

invoked more for individuals of particular professions (e.g., lawyers, judges, and

activists), diminishing the overall correlation between the two values.

Similarly, Hedonism was highly correlated with Conformity, its polar

opposite in the circumplex model. Hedonism’s relationship to Conformity does

make sense with reference to Bardi et al.’s lexicon words for these two values. The

lexicon words for Hedonism, “luxury,” “pleasure,” and “delight,” are conceptually

opposite of those for Conformity, “restraint,” “regard,” and “consideration.” Given

the expectation in this project that Hedonism is a taboo value to invoke in an

obituary, this correlation may indicate that obituary authors “compensate” for

describing the deceased in a hedonistic way by concurrently emphasizing restraint

(and therefore Conformity).

Because it is possible that income and education might be associated with

obituary word counts, which are used when calculating word-by-hop values, Figure

28 visualizes the relevant relationships between these variables. Visual inspection

of this figure suggests that no noteworthy relationship exists (put differently, it

does not appear to be the case that wealthier or more highly-educated communities

systematically produced longer obituaries).
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Figure 27. Correlation matrix of word-by-hop (calculated using number of Word
nodes between a source and target word, rather than the number of Synset-to-
Synset edges) for each pair of Schwartz values. Schwartz values in this matrix are
listed following the Schwartz circumplex model in a counter-clockwise direction.
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Figure 28. Scatterplot of median household income and education level
(operationalized as percent of the population with a bachelor’s degree or higher)
from US census data averaged across counties for each newspaper (after weighting
by county population size) vs. obituary word count.
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Overall, these results demonstrate that all 10 Schwartz values are present in

this obituary corpus, but that some Schwartz values are more lexically indicated

than others13. Following Table 11, as expected, Hedonism was among the least-

indicated Schwartz values in the corpus. However, counter to predictions, Power,

rather than also being low in its mean word-by-hop value, was the single most

indicated Schwartz value in the corpus. Schwartz “conservation” values (Conformity

and Security) were also particularly highly-indicated in the corpus overall. With

this in mind, it is useful to note that a substantial amount of variability exists

across newspapers. This variability is addressed below in response to Research

Question 2.

Answering Research Question 2: Does Match with the Schwartz

Values Vary in Relation to Age, Gender, Race or Ethnicity, Income,

and/or Education. Following the rationale discussed above, word-by-hop values

were logit-transformed and entered into a series of two-level linear models, with

obituaries as level 1 and newspapers as level 2. Also as discussed above, across-

newspaper duplicate obituaries were randomly downsampled until one per duplicate

set remained in the dataset. For each model, 10 regression analyses were performed,

each using a word-by-hop DV aligned with a different Schwartz value. To be

interpreted alongside Table 11, Table 12 presents the minimum, maximum, mean,

and standard deviation for each Word-hop-derived logit-transformed word-by-hop

DV.

13All results discussed from this point forward employed word-by-hop values calculated using
the number of Word nodes between a source and target word, rather than the number of Synset-
to-Synset edges.
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Table 12. Descriptive statistics for Word-hop-derived, logit-transformed word-by-
hop calculations, ordered by mean (descending) followed by standard deviation
(ascending).

Schwartz Value min max mean sd

power -5.21 -0.753 -1.36 0.230

conformity -5.21 -0.753 -1.39 0.252

security -5.21 -0.753 -1.40 0.259

self direction -5.21 -0.753 -1.48 0.296

benevolence -5.21 -0.753 -1.58 0.326

achievement -5.21 -0.753 -1.61 0.318

tradition -5.62 -0.753 -1.72 0.303

universalism -5.62 -0.765 -1.81 0.234

hedonism -5.62 -1.001 -1.84 0.205

stimulation -5.62 -1.304 -1.84 0.205

Five predictors were prepared for use in the regression models:

– Level 1 (Obituaries):

∗ Age of the deceased (automatically coded using the algorithm described

above)

∗ Gender (female/male) of the deceased (automatically coded using the

algorithm described above). This variable was dummy-coded (0 = male,

1 = female)

117



– Level 2 (Newspaper) (as described above, computed from data from the

counties in which each newspaper operated, using a weighted average by

county population size):

∗ Median household income (United States Bureau of the Census, 2015b)

∗ Education, operationalized as percentage of the population with a

Bachelor’s degree or higher (United States Bureau of the Census, 2015a)

∗ Percentage of the population that identified (in isolation or in

combination) as one of five racial and/or ethnic identities (each category

was represented with its own predictor variable): “American Indian or

Native Alaskan,” “Black or African American,” “Hispanic,” “Native

Hawaiian and other Pacific Islander,” and “White” (United States

Bureau of the Census Population Division, 2015)

This project’s analyses were focused not only on the fixed effects of these

predictors, but also centrally on the effects of adding random intercepts by

newspaper, and random slopes by gender, age, and the interaction between gender

and age. Thus, a series of seven nested or semi-nested regression models were run

(for a total of 70 regression analyses, one for each word-by-hop Schwartz value DV).

These models were written and run before the results of each were analyzed (put

differently, these models were written in an a priori fashion), with the exception of

one final model (listed as model 3 below, given that it conceptually builds on model

2), which was developed after viewing the results of the others. Given the number

of models run, p-values are eschewed in the report below in favor of considering

estimates and their standard errors directly, with a particular additional focus

on comparing Akaike Information Criterion (AIC) values across models to aid
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in determining fit. All models were run using the lmer function from R’s lme4

package, with the exception of the first, most basic model, which did not include

any random effects and was thus run with R’s related lm (“linear model”) function.

Because of the vast difference in scales among the predictor variables (e.g., income,

which had a mean in the tens of thousands, vs. age at death, which had a mean

in the tens), all continuous predictor variables were z-scored (i.e., made to have a

mean of 0 and a Standard Deviation of 1).

The seven models are described below. Although the model descriptions do

not mention it, all models contained an individual-level error term, as is standard

in multiple regression. All formulae are in R’s lm/lmer format, where a tilde “˜”

separates a DV from the rest of the formula, and a pipe symbol (“|”) indicates a

random factor grouped by the term on the right side of the pipe (in this notation,

“(1 | group)” would indicate a random intercept, and “(predictor | group)” would

indicate a random slope for the predictor).

1. A basic model, consisting of only a single fixed intercept (i.e., for each DV,

modeling word-by-hop values using only the mean word-by-hop value).

Labeled in tables and plots below as “Model with only intercept.”

2. A model consisting of a random intercept term (i.e., for each DV, modeling

word-by-hop values for each newspaper separately using the mean word-by-

hop value of that newspaper). Labeled in tables and plots below as “Model

with random intercept.” The formula for this model was (for an example

Schwartz value word-by-hop DV) “Achievement ˜ (1 | newspaper shortcode)”.

3. Model #2 expanded to include both level-1 predictors (age and gender), as

well as random slopes for age, gender, and the interaction of age and gender
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(i.e., allowing the individual and interactive effects of age and gender to

differ across newspapers in the same way that the intercept was allowed

to vary across newspapers). Labeled in tables and plots below as “Full

model with random interaction effects without level-2 predictors.” The

formula for this model was (for an example Schwartz value word-by-hop

DV) “Achievement ˜ Female + Age at death + (1 + Female * Age at death |

newspaper shortcode)”.

4. Model #3 without the random effects for age, gender, and age-by-gender

interaction (i.e., a model consisting of a random intercept by newspaper and

fixed effects for age and gender, without their interaction; this modeled the

effect of age and gender as being the same for every newspaper). Labeled

in tables and plots below as “Full model except for random interaction and

level-2 predictors.” The formula for this model was (for an example Schwartz

value word-by-hop DV) “Achievement ˜ Female + Age at death + (1 |

newspaper shortcode)”.

5. Model #2 with fixed effects for gender and age, and fixed effects for income,

education, the interaction between income and education, and the interaction

between gender and education. Labeled in tables and plots below as “Full

model except for random interaction and race/ethnicity.” The formula for this

model was (for an example Schwartz value word-by-hop DV) “Achievement

˜ Female + Age at death + Income + Education + Female * Education +

Income * Education + (1 | newspaper shortcode)”.

6. Model #5 with all race/ethnicity predictors added as fixed effects. Adding

these as a block allowed examining the overall effect of race/ethnicity.
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Labeled in tables and plots below as “Full model except for random

interactions.” The formula for this model was (for an example Schwartz

value word-by-hop DV) “Achievement ˜ Female + Age at death +

Income + Education + Female * Education + Income * Education +

Race/Ethnicity:”White” + Race/Ethnicity: “Black or African American”

+ Race/Ethnicity: “American Indian or Native Alaskan” + Race/Ethnicity:

“Native Hawaiian and Other Pac. Islander” + Race/Ethnicity: “Hispanic” +

(1 | newspaper shortcode)“.

7. Model #6 combined with Model #3. Labeled in tables and plots below as

“Full model.” The formula for this model was (for an example Schwartz

value word-by-hop DV) “Achievement ˜ Female + Age at death +

Income + Education + Female * Education + Income * Education +

Race/Ethnicity:”White” + Race/Ethnicity: “Black or African American”

+ Race/Ethnicity: “American Indian or Native Alaskan” + Race/Ethnicity:

“Native Hawaiian and Other Pac. Islander” + Race/Ethnicity: “Hispanic” +

(1 + Female * Age at death | newspaper shortcode)“.

Given the large number of AIC values to present (as 70 regression analyses

were run in total), rather than presenting these results in a table, Figure 29

graphically shows AIC values across models and Schwartz values. Figure 30

removes the worst-fitting model (Model #1, which included only a fixed intercept)

from Figure 29 in order to show with more detail the differences among the

remaining models for each Schwartz value.

Lower AIC values indicate better model fit. AIC incorporates both the

number of parameters and the model’s deviance; thus, given two models with

similar deviance, AIC will prefer the more parsimonious model (i.e., the model with
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Figure 29. AIC values plotted across models and Schwartz values. The highest AIC
(indicating worst fit) was found consistently across Schwartz values in the intercept-
only model (Model #1). The lowest AIC was not in the full model (Model #7), but
rather the full model lacking level-2 predictors (Model #3).
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Figure 30. AIC values plotted across models and Schwartz values. The lowest AIC
was not in the full model (Model #7), but rather the full model lacking level-2
predictors (Model #3).
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fewer parameters). Looking at Figure 29, it is striking that, by far, the greatest

amount of variability across Schwartz values, as measured using word-by-hop, was

accounted for simply by including a random intercept by newspaper (moving from

Model #1 to Model #2). As expected, this indicates, either or together, that,

as expected, obituaries within a given newspaper do cluster around particular

value levels, and that word-by-hop as a measure is sensitive to these differences.

Figure 30 shows more clearly that, surprisingly, AIC values were consistently lowest

across Schwartz values not for the full model (Model #7), but for Model #3, which

allowed random slopes for age, gender, and their interaction, but excluded level-2

covariates. The full model consistently showed the next-lowest AIC values. While

it is to be expected that adding parameters (even poorly predictive ones) to a

model will increase its fit, AIC’s penalization of larger numbers of parameters likely

resulted in Model #3, which is more parsimonious, being given the smaller AIC

values. Models #4 and #6 shows that it was not age and gender in themselves as

fixed effects that resulted in better model fit, but specifically their being modeled

as random effects.

Models #5 and #6, which lacked those random effects but differed from

each other only in the inclusion of the race/ethnicity variables, indicate that the

race/ethnicity covariates were not useful additions to this model. Taken together

with Model #7, which had a higher AIC value than the model that lacked those

covariates as well as income and education (Model #3), this could indicate that

value levels in obituaries do not vary systematically by income, education, or

race/ethnicity. However, this could also indicate that the measurement of these

covariates was problematic in some way, perhaps either in that counties were

not explicitly modeled and were instead aggregated by newspaper, or in that the
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automated newspaper-location lookup algorithm included a large number of false

positives and/or false negatives.

It is also worth remarking on the fact that AIC values were different

across Schwartz values. This is likely the result of the word-by-hop DVs having

different levels of variability for the models to account for. Word-by-hop values for

Hedonism, for example, had higher uniformity (i.e., a lower Standard Deviation)

than other values (as shown in Tables 11 and 12), perhaps because of norms

against invoking Hedonism in obituaries (see the Discussion section below). For

Benevolence, by contrast, the regression models had larger amounts of variability

(indicated by a larger Standard Deviation) to account for: more so than Hedonism,

it seems reasonable to expect that descriptions of the deceased in some obituaries

would be much more indicative of Benevolence than in others.

As above, given the large number of analyses, Figures 31 and 33 graphically

present the estimates and their standard errors for Models #3 and #7, respectively

(i.e., the best-fitting model and the next-best fitting, full, model). Figures 32

and 34 feature the same respective information, but lacking the models’ intercept

estimates, allowing more detailed inspection.

Figure 34 indicates that in Model #3, of gender and age, gender was

estimated to have had a lower but consistently non-zero effect across Schwartz

values. This effect was most pronounced in Self-direction (with females having

˜.04 lower logit-transformed word-by-hop values than men, holding age constant),

while the effect was least pronounced in Achievement. The estimates of age’s effect

encompassed zero for several values, and were not consistently positive or negative

for the rest.
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Figure 31. Plot showing coefficient estimates and standard errors for all Schwartz
value word-by-hop Dependent Variables and all model predictors for Model #7,
the full model. Note that all predictors were z-scored before being entered into the
model, and that the word-by-hop DV was logit-transformed.

Figure 32. Plot showing coefficient estimates and standard errors for all Schwartz
value word-by-hop Dependent Variables and all model predictors for Model #7,
the full model, excluding the intercept (in order to see the other estimates in more
detail). Note that all predictors were z-scored before being entered into the model,
and that the word-by-hop DV was logit-transformed.
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Figure 33. Plot showing coefficient estimates and standard errors for all Schwartz
value word-by-hop Dependent Variables and all model predictors for Model #3,
the model with the lowest AIC. Note that all predictors were z-scored before being
entered into the model, and that the word-by-hop DV was logit-transformed.

Figure 34. Plot showing coefficient estimates and standard errors for all Schwartz
value word-by-hop Dependent Variables and all model predictors for Model #3,
the model with the lowest AIC, excluding the intercept (in order to see the other
estimates in more detail). Note that all predictors were z-scored before being
entered into the model, and that the word-by-hop DV was logit-transformed.
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Figure 32 indicates that, for the full model (Model #7), some race/ethnicity

percentages did vary consistently with logit-transformed word-by-hop across

Schwartz values. An increase of one SD in the county-level percentage of the

population categorizing itself as “Black or African American” was associated

with an estimated increase of over .10 logit-transformed word-by-hop values for

Achievement, holding all other predictors constant. Percentage of the population

that categorized itself as “White” consistently had the next-highest effect estimates

across Schwartz values. Having said that, it is worth keeping in mind that race

and ethnicity as a whole (i.e., as a set of predictors) did not substantially increase

model fit.
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CHAPTER IV

DISCUSSION

The current project explored the extent to which a sample of contemporary

obituaries from across the USA used words related to values from Schwartz’ (e.g.,

2012) model. To do this, it employed word-by-hop, a new measure of lexical

distance from a given set of target words and the Schwartz values they indicate.

Obituaries were expected to be a particularly useful potential repository of values

when viewed in aggregate, as, given their place in death-related ritual in the USA,

they could be expected to be particularly charged with value-expressions (even if

only of a positive valence), more so than general newspaper texts (such as those

used by Bardi et al., 2008) or other public corpora.

The approach used in this project did reveal differences across Schwartz

values as operationalized using word-by-hop. Power, the most-indicated Schwartz

value, had a mean word-by-hop value across the corpus that was substantially

(more than 2.25 of its Standard Deviations) above Hedonism and Stimulation,

the least-indicated Schwartz values. Word-by-hop values were consistently small,

as expected (as a value of 1 would indicate perfect overlap between lemmas from

an obituary and target value lexicon words); despite this, it is encouraging and

reasonable to interpret these findings as evidence that the word-by-hop measure is

sensitive to relative variation, at least in aggregate, in the values (or at least the

template-expressions of values) that a corpus indicates.

Stimulation and Hedonism were the least-indicated Schwartz values in the

corpus. This value ordering makes sense with reference to Berger (1969, p. 43),

who, as discussed above in this dissertation’s introduction, argued that responses

to death rely on “legitimations of the reality of the social world,” presumably
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including the moral world. Many systems of morality have to do with regulating

Hedonism and Stimulation specifically, more so than the other Schwartz values.

Further, compared with the other Schwartz values (including Power, Conformity,

and Security, which were most indicated in the corpus), Hedonism and Stimulation

are perhaps the least-social (even Self-direction, which, according to Schwartz,

2012, p. 5, is motivated by “independent thought and action–choosing, creating,

exploring,” is defined as belonging to a social context, even if eschewing it). These

moral and less-social aspects of Hedonism and Stimulation may also interact with

the ritual nature of obituary-writing in the USA, which places taboos on including

statements that could be perceived by readers as immoral.

Power was the most-indicated value in the corpus. This result was

unexpected, but does make sense following Berger, as above, as well as Fowler

(2005), who noted that obituaries tend to emphasize individualism over

communalism. Within Berger’s framework of responding to death by emphasizing

the social over the anti-social, Power is the Schwartz value that could be seen as

the most individualistic while also social. While Achievement, e.g., is motivated by

“personal success” (also emphasizing individualism; Schwartz, 2012, p. 5-9), Power

is motivated by “social status and prestige, control or dominance over people and

resources,” emphasizing a distinct, more direct social concern.

One central question to address in follow-up work is what causes the

bimodality seen when plotting word-by-hop values against obituary word-count

(as in Figures 19, 20, 21, and 22). As noted above in the Results section, bimodal

distributions were seen at least somewhat in all Schwartz values except for

Hedonism and Stimulation, the two least-indicated values in the corpus. This

could suggest that writing obituaries from templates is more common in longer
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obituaries. If this is the case, it presents an interesting additional impetus for

future research: following a template, whether explicit (e.g., “Fill in the names

of the spouse, children, etc. of the deceased”) or implicit (e.g., “Many people use

the phrase ‘Went to her eternal home,’ so I will, as well”), is inherently a cultural

act: it is based in imitation of others in one’s community. Future work could

thus not only explore obituaries from this corpus for markers of greater linguistic

similarity (which could indicate that authors tended to follow an implicit or explicit

template), but also the traits of authors of prospective obituaries, whose writing

process could be observed in a more controlled setting. Incorporating the clustering

coefficient of nodes (i.e., how prone to clustering an obituary’s words are) into

future analyses and even the word-by-hop calculation itself would be one way to

assess templating tendencies.

In the best-fitting regression model, gender (male/female) had a consistently

non-zero estimated effect on predicted logit-transformed word-by-hop values.

This finding is in line with those of Rodler et al. (2001), who observed different

changes over time in the attributes used in obituaries to describe male vs. female

leaders. Given that the effect was small even in the most extreme case (for Self-

direction), however, they also follow Schwartz et al. (2001), who observed that

gender tended to be useful for explaining variance in Schwartz values data, but

not to a large extent (and not in all cultures). Interestingly, disregarding the

idiosyncrasy of individual newspapers, female status resulted in lower predictions

across all Schwartz values. Acknowledging that these differences were small

(the effect estimates are on the scale of logit-transformed word-by-hop values),

this finding is in contrast with Schwartz and Rubel (2005), who found (albeit

possibly as the result of a sample/measurement interaction) that women did tend
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to place higher emphasis on some values (such as Universalism) than men. If

this result in the current project is both accurate and large enough to warrant

conceptual attention (vs. solely statistical attention), however, it is useful to note

that obituaries as a data source are unlike typical self-report measures of Schwartz

values: most relevantly, they are written by informants (family members, friends, or

colleagues, commissioned biographers), and are possibly written not actually about

the deceased individual herself, but rather about an idealized (or at least curated)

version of the individual, reflecting perhaps as much in this context about the

author as about the individual. Thus, this finding prompts the question, Regardless

of whether women report prioritizing certain values at a higher rate than men

at the individual level (as in Schwartz and Rubel’s report), do authors (whether

women or men) express these same value preferences when publicly signalling

them about a gendered other (such as a decedent)? If not, obituaries could be

expected to show higher gender differences for communities that have higher levels

of Tradition, and could possibly indicate that some communities culturally see men

more than women as containers of values when described by others.

The best-fitting statistical model (considering AIC) for predicting word-by-

hop values was one that excluded all newspaper/county-level covariates, including

race/ethnicity, income, and education. Given findings reported in previous

literature, this result was unexpected. Specifically, it is counter to Schwartz et

al. (2001, p. 534), who found positive, significant relationships between education

and Self-direction and Stimulation: in the full model that included it, education

had a predicted near-zero or negative effect for both of these values as measured

through word-by-hop. It is also not in line with Schwartz et al.‘s finding of negative

correlations between education and Conformity and Tradition: while education’s
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predicted relationship in the full model was negative for both of these Schwartz

values, the models that included education were not the best-fitting. It is worth

considering, however, that education was operationalized in this project quite

differently than in Schwartz et al.’s report. First, this project considered the

percentage of the population with a Bachelor’s degree or higher, rather than, as in

Schwartz et al.’s report, a scale between no educational experience and experience

“beyond high school” (p. 534). Second, in the current project, education was

measured not at the individual level but at the county level. The inclusion of

this covariate, as well as those for income and race/ethnicity, was based on the

assumption that, in aggregate, community-level demographic indicators would

provide a “signal” detectable even through the “noise” introduced by not modeling

these characteristics at the individual level, which would have been infeasible

or impossible to do with this dataset. The current project’s findings cast doubt

on this assumption and suggest that future research with a smaller number of

obituaries that can be manually coded for at least some of these and related

covariates (e.g., education, even if not income or self-identified race/ethnicity) could

be fruitful for re-examining those covariates’ statistical utility. As it was modeled

in this project, even income, which, as discussed above in this dissertation’s

introduction, seemed definitionally related to Power, had among the lowest fixed

effect estimates for Power in the full model.

Having acknowledged that the race/ethnicity covariates did not contribute

to the model overall, it is worthwhile to tentatively interpret the full model (Model

#7; Figure 32) as a starting point for future work. Even with a small effect, the

model indicated most notably that for every increase of 1 SD in the community-

level percentage of individuals who self-identified as “Black or African American”
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and, to a lesser extent, of those who self-identified as “White,” estimated logit-

transformed word-by-hop values were expected to increase by a non-zero amount

for all Schwartz values. This may indicate that areas with higher percentages

of individuals who identify as part of those groups may have norms for less

formalization or greater vividness in their language. However, they may also

indicate an effect that may be true for other racial/ethnic groups as well but is

masked by the data. Only English-language newspapers were considered in this

project, possibly heavily misestimating the “true” word-by-hop values that would

result from incorporating obituaries from Spanish-speaking media in areas with

high populations that identify as “Hispanic.” Somewhat similarly, Figure 10

indicates that most communities included in the sample contained less than 0.5%

individuals who self-identified as “Native Hawaiian and Other Pacific Islander.” It

is an open question whether the effect estimate for this group would be similar if a

newspaper from Hawaii had been included in the sample (as the caption for Figure

3 notes, Legacy.com does not currently contract with any newspapers in Hawaii).

This project expands Bardi et al.’s (2008) approach of understanding values

through ecologically-valid text analysis in two primary aspects. First, the obituaries

used in this project may be expected to comprise a more values-focused corpus

than newspaper texts in general, potentially amplifying the ability to detect values

in the text. Second, this project expands the approach of values-detection from

counting instances of specific words to analyzing the lexical distance for every

word in a text to those words, even if they do not appear explicitly in a given

text. The development of word-by-hop will, I hope, be of use for future research

not only in its concept but also in its implementation: the code that was written

and documented as part of this project will be released alongside this dissertation
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under an open license, ideally enabling future analyses of other sources of natural

language, possibly with expanded or alternative target lexica. Additionally, the

codebase includes automated algorithms for guessing gender and age; a WordNet

specification (and documentation) for the Neo4J graph database platform; the

University of South Florida Free Associations dataset released (to this author’s

knowledge) for the first time publicly under an explicit and open license, thanks to

the generosity of Nelson, McEvoy, and Schreiber (2004); and the hop count dataset

derived from the obituaries corpus1.

The approach taken by this project included several notable limitations,

several of which may serve as fodder for follow-up research. Most sweepingly,

this project necessarily incorporated several conceptually “fuzzy” methodological

assumptions and approaches, as is common in analyses of free-text data. As

noted above, Figures 15, 16, 17, and 18 suggest that some obituaries were

misclassified by the automated age-guessing algorithm (and thus likely also by

the automated gender-coding algorithm). The use of some non-noun final Synset

nodes when calculating word-by-hop values (as shown in Table 10) reflects the

open, exploratory conceptual approach of this project, which had to release some

definitional rigidity in order to utilize the free-text dataset. The lack of readily-

available baseline English-language word frequency data (such as from the Corpus

of Contemporary American English) prevented word-by-hop values from being

normalized using lemmas’ baseline frequencies; it is possible that future inclusion of

this type of auxiliary data could substantively improve the word-by-hop calculation.

These aspects require that this project be seen accurately as a first step toward

expanding values research that uses this type of corpus. Moving forward from the

1With Legacy.com’s permission, raw obituary data may also be released in the future.
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foundation provided by this project, including not only its findings but also its

associated code, algorithmic refinements would be a fruitful next area of focus.

This project’s findings point toward several additional exciting areas of

future research. Having demonstrated in a fully free-text corpus that word-by-hop

values do show sensitivity to relative differences in value-expressions, future work

could further explore both the properties of word-by-hop (seeking to explain, e.g.,

the cone-shaped distributions seen in Figures 19, 20, 21, and 22), and new ways

to model it (e.g., comparing the logit-transformation approach used in the models

for this project with beta- and/or multiple-membership regression approaches).

Future analyses on this obituary corpus could explore additional individual-level

characteristics, such as veteran status (e.g., by searching for phrases such as

“Army,” “Navy,” etc.), family membership (by attempting to create a graph of

types of familial relations from the descriptions of surviving family members),

and the overall sentiment of words in each obituary (using, e.g., SentiWordNet,

a fork of the WordNet database used in this project with an additional positive-

vs. negative-sentiment layer; see Baccianella, Esuli, & Sebastiani, 2010). While

obituaries may be expected to be generally positive in tone, i.e., not disparaging

the deceased, they may vary in positive vs. negative word choice.

Given that newspaper/county-level predictors were not statistically useful

(comparing models that included them with a model that excluded them), future

work could usefully explore the effects of aggregating covariates either by larger

geographic regions or, perhaps most likely to alter results, by explicitly modeling

newspapers as multiple members of counties (and, relatedly, obituaries as multiple

members of newspapers, and therefore counties; see Leckie, 2013). Alternatively,

and given the gender-related question posed above, a future project could compare
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the values invoked in free-text prospective obituaries (either about self or a close

other) written by living participants with their responses to the Schwartz Values

Survey (SVS).

As measured by word-by-hop, Hedonism was highly correlated with

Conformity, its opposite in the Schwartz circumplex model, in the obituaries

corpus. The reasons for this are unclear. However, they do suggest that the

correlation matrix presented in Figure 27 may not reproduce the structure of

Schwartz values that is expected based on previous analyses of individual-level

responses to measures such as the SVS (Schwartz, 2012). This may be the result

of obituary texts being able to express values that are “opposed” to one another

more consistently in aggregate than value rankings made by living people (e.g., in

response to the SVS). The structure of the correlation matrix from the obituaries

corpus could, therefore, usefully be explored (e.g., through factor analysis) in future

work in order to examine whether obituaries not only show differences in values

but also reproduce the expected mappings of those values in relation to each other.

Similarly, using the word-by-hop approach, all Schwartz-value-relevant words could

be removed from the corpus (by removing all words that have a word-by-hop value

above a given threshold for a Schwartz value). The occurrence of the remaining

words in the corpus could then be factor-analyzed to look for clusters of words

that fit Schwartz’ (1992, p. 4) general definition of values, but do not fit any of

the Schwartz values themselves.

This dissertation project had two goals at its outset: first, to describe which

Schwartz values are discussed most across newspaper-communities in the USA, and

second, to provide the initial development of new tools for future obituary-based

“morality mining” work (Christen et al., 2013). Addressing the first goal, results
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revealed that Power was the most-indicated value across the corpus, followed by

Conformity, Security, Self-direction, and Benevolence. Stimulation and Hedonism

were least-indicated, followed by Universalism, Tradition, and Achievement.

Addressing the second goal, this dissertation is supplemented with algorithm

definitions and code as well as datasets that I hope will facilitate responsible future

research of this type. Results of this project indicated that the answer to Research

Question 1, which asked whether the Schwartz values can be detected in obituaries,

is “Yes,” with the qualification that part of the “signal” being detected may be

an artifact of authors following explicit or implicit templates (although template-

following itself can indicate an adherence to community norms). In response to

Research Question 2, whether Schwartz value expression is related to characteristics

of obituaries at the individual and community levels, the answer is a more qualified

“Yes.” Results indicated that obituaries certainly vary by community in their

distance from the Schwartz values; however, the effect sizes for individual and

community-level covariates were small.

Obituaries are written in response to individual events, but can be

viewed in aggregate as the output of a shared cultural ritual of externalizing

grief and presenting it to one’s wider community. This project explored an

expanded methodology for traversing the constellation of obituaries’ words’

meanings, indicating that obituaries, whether read singly or together, can inform

understanding of community value priorities.
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APPENDIX

R BASE AND LIBRARY VERSION NUMBERS

Version numbers of R base and R packages used in this project. This table was

generated automatically from package documentation within R; author names are

therefore as the authors wished them to be printed.

Package

Name

Version Number (NA if not installed

through CRAN) Package Citation

base 3.3.1 R Core Team (2016)

bbmle 1.0.18 Bolker and Team (2016)

betareg 3.1.0 Zeileis, Cribari-Neto,

Gruen, and Kosmidis

(2016)

boot 1.3.18 Canty and Ripley (2016)

choroplethr 3.5.2 Lamstein and Johnson

(2016)

choroplethrMaps 1.0 Lamstein (2014)

choroplethrZip (NA)

coda 0.18.1 Plummer et al. (2015)

coefplot 1.2.4 Lander (2016)

coefplot2 (NA)

corrplot 0.77 Wei and Simko (2016)

cowplot 0.6.3 Wilke (2016)

doParallel 1.0.10 Analytics and Weston

(2015)
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Package

Name

Version Number (NA if not installed

through CRAN) Package Citation

dplyr 0.5.0 Wickham and Francois

(2016)

fmsb (NA)

foreach 1.4.3 Revolution Analytics

and Weston (n.d.)

foreign 0.8.66 R Core Team (2015)

gender 0.5.1 Mullen (2015)

ggmaps (NA)

ggmcmc 1.1 i Marn (2016)

ggplot2 2.1.0 Wickham and Chang

(2016)

glmmadmb (NA)

glmmADMB 0.8.3.3 Skaug, Fournier, Nielsen,

Magnusson, and Bolker

(2016)

grid 3.3.1 ?

gridExtra 2.2.1 Auguie (2016)

gtable 0.2.0 Wickham (2016a)

Hmisc 3.17.4 Harrell (2016)

irr 0.84 Gamer, Lemon, and

¡puspendra.pusp22@gmail.com¿

(2012)
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Package

Name

Version Number (NA if not installed

through CRAN) Package Citation

jsonlite 1.0 Ooms, Temple Lang, and

Hilaiel (2016)

knitr 1.13 Xie (2016)

koRpus 0.6.5 m.eik michalke (2016)

lme4 1.1.12 Bates, Maechler, Bolker,

and Walker (2016)

lme4a (NA)

magrittr 1.5 Bache and Wickham

(2014)

methods 3.3.1 (Not provided by

package author)

optparse 1.3.2 documentation et al.

(2015)

parallel 3.3.1 (Not provided by

package author)

plotrix 3.6.3 Lemon et al. (2016)

plyr 1.8.4 Wickham (2016b)

RColorBrewer 1.1.2 Neuwirth (2014)

readODS 1.6.2 Schutten and hong Chan

(2016)

reshape 0.8.5 Wickham (2014b)

reshape2 1.4.1 Wickham (2014a)
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Package

Name

Version Number (NA if not installed

through CRAN) Package Citation

rjags 4.6 Plummer (2016)

rJava 0.9.8 Urbanek (2016)

RNeo4j 1.6.4 White (2016)

rstan 2.12.1 Guo, Gabry, and

Goodrich (2016)

rvest 0.3.2 Wickham (2016c)

shiny 0.13.2 Chang, Cheng, Allaire,

Xie, and McPherson

(2016)

shinystan 2.2.1 Gabry (2016)

sqldf 0.4.10 Grothendieck (2014)

stringdist 0.9.4.1 van der Loo (2016)

stringr 1.0.0 Wickham (2015)

stringr (NA)

testthat (NA)

visNetwork 1.0.1 Almende B.V. and

Thieurmel (2016)

wordnet 0.1.11 Feinerer and Hornik

(2016)

zoib 1.4.1 with contributions from

Yunchuan Kong (2016)
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