
Analyzing the Explanatory Power of
Bionic Systems With the Minimal
Cognitive Grid
Antonio Lieto1,2*

1Dipartimento di Informatica, Università di Torino, Torino, Italy, 2Istituto di Calcolo e Reti ad Alte Prestazioni del Consiglio Nazionale
delle Ricerche, ICAR-CNR, Palermo, Italy

In this article, I argue that the artificial components of hybrid bionic systems do not play a
direct explanatory role, i.e., in simulative terms, in the overall context of the systems in which
they are embedded in. More precisely, I claim that the internal procedures determining the
output of such artificial devices, replacing biological tissues and connected to other
biological tissues, cannot be used to directly explain the corresponding mechanisms of
the biological component(s) they substitute (and therefore cannot be used to explain the
local mechanisms determining an overall biological or cognitive function replicated by such
bionic models). I ground this analysis on the use of the Minimal Cognitive Grid (MCG), a
novel framework proposed in Lieto (Cognitive design for artificial minds, 2021) to rank the
epistemological and explanatory status of biologically and cognitively inspred artificial
systems. Despite the lack of such a direct mechanistic explanation from the artificial
component, however, I also argue that the hybrid bionic systems can have an indirect
explanatory role similar to the one played by some AI systems built by using an overall
structural design approach (but including the partial adoption of functional components). In
particular, the artificial replacement of part(s) of a biological system can provide i) a local
functional account of that part(s) in the context of the overall functioning of the hybrid
biological–artificial system and ii) global insights about the structural mechanisms of the
biological elements connected to such artificial devices.

Keywords: minimal cognitive grid, computational models of mind, computational models of cognition,
computational explanation, simulative method, synthetic method

1 INTRODUCTION

Building artificial systems that can exhibit human-like and human-level behavioral capabilities represents
one of the main goals of the two Sciences of the Artificial, namely, artificial intelligence (AI) and
computational cognitive science (CCS) (see Simon, 1980, 2019). While the first discipline, however, is
nowadays (in partial contrast with its early scientific ambitions) mainly concerned with only the
functional replication of such behavioral capabilities, computational cognitive science (including, the field
of computational neuroscience) additionally aims at using such models for explanatory purposes, i.e., to
better understand the unknown biological and/or cognitive mechanisms underneath a certain behavior.

From a historical perspective, the latter approach borrows its original inspiration from the
methodological apparatus developed by the scholars in cybernetics (Rosenblueth and Wiener, 1945;
Wiener, 1961; Cordeschi, 1991). One of underlying ideas of cybernetics was, indeed, one of building
mechanical models to simulate the adaptive behavior of natural systems. As indicated in Cordeschi (2002),
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“the fundamental insight of cybernetics was in the proposal of a
unified study of organisms and machines.” In this perspective, the
computational simulation of biological processes was assumed to play
a central epistemological role in the development and refinement of
theories about the elements characterizing the nature of intelligent
behavior in natural and artificial systems. The simulative approach
was originally inherited by early AI research that used computer
programs to reproduce performances which, if observed in human
beings, would have been regarded as “intelligent” (see Newell and
Simon, 1972), and is also currently used in contemporary bio-robotics
(Webb, 2001;Floreano et al., 2014). In a nutshell, the simulative
methodology, also known as the synthetic method Cordeschi
(2002), proceeds as follows: given a model M of the (cognitive or
neural) mechanism hypothesized to produce a certain behavior B by a
natural system S, in particular experimental conditions C, the test of
the hypothesis assumed in M is obtained by building an artificial
system A implementing M and comparing A and S’s behaviors in
conditions C. Behavioral similarities between A and S can eventually
induce one to conclude that M can produce B in C and that, as a
matter of fact, M has an explanatory role with respect to the
hypothesized mechanisms used to design A. Otherwise, one may
be induced to reject the conjecture. In this article, I argue that within
this simulative framework (a typical one in the context of
computational cognitive science), hybrid bionic systems enjoy a
special status. In particular, the artificial components of such
systems (used to replace biological ones) do not offer a direct
explanatory role, in simulative terms, about how their internal
mechanisms determine a given biological or cognitive function that
is assumed to be replaced. I ground this analysis on the use of the
Minimal Cognitive Grid (MCG). Despite the lack of such a direct
mechanistic explanation, however, I also argue that such systems can
have an indirect explanatory role similar to the one played by some
structural AI systems partly composed by functional elements. In
particular, the artificial replacement of a part of a biological system can
provide i) a local functional account of that part in the context of the
overall functioning of the hybrid biological–artificial system and ii)
global insights about the structural mechanisms of the biological
elements connected to such artificial devices. The rest of the article
is structured as follows: Section 2 briefly introduces the main design
paradigms in the context of computational cognitive science, i.e., the
functional and structural ones. Section 3 introduces the Minimal
Cognitive Grid (MCG). Section 4 shows, by using two different types
of examples borrowed from the literature in hybrid bionic systems,
how the use of the MCG outlines the lack of a direct explanatory role,
in simulative terms, of the artificial device used in such systems. In
addition, I argue that despite the lack of such a direct mechanistic
account, the artificial components of the hybrid bionic systems can still
play an indirect explanatory role concerning the overall functional and
structural elements characterizing the biological system in which they
are used. The Conclusions section ends the article.

2 FUNCTIONAL VS. STRUCTURAL DESIGN
OF ARTIFICIAL SYSTEMS

To better frame the context of simulative methodology in the debate
about the explanatory role played by artificial models (and systems)

with respect to their analogous in nature, I briefly recall the distinction
between functionalist and structuralist design approaches in the
context of artificial systems (a distinction partially influenced and
borrowed from some theoretical considerations originally started in
the philosophy of mind literature).

Functionalism is a concept originally introduced by Hillary
Putnam in his seminal article entitled Minds and Machines
(Putnam, 1960) as a position on the type identity of “mental
states.” In this context, mental states are assumed to be
understood and characterized on the basis of their functional
role. In particular, two tokens are considered to belong to the
same mental state if they are in the same functional relation with
the other mental states and with the input/output of the system1.
This approach had a direct influence in AI since, here, it led to the
definition of a design approach based on the notion “functional
equivalence” between some cognitive faculties and the
corresponding mechanisms implemented in the AI programs.
Indeed, in such a context, its more radical formulation postulated
the sufficiency, from an epistemological perspective, of a weak
equivalence (i.e., the equivalence in terms of a functional
organization) between the biological/cognitive components and
the processes to be modeled, and the corresponding implemented
AI components and procedures. In other words, it posited that an
explanatory-wise comparison between the behavior of a natural
system and an artificial one could have been based purely on the
macroscopic equivalence of the functional organization of the
constituent elements of the two systems and on their common
input–output specifications. This position—at least in its more
radical formulation—has been widely criticized in the literature in
the last few decades. In particular, models and systems merely
designed according to the “functionalist” perspective have been
considered not good candidates for providing advances in the
science of cognitive AI and cognitive modeling since the mere
“functional resemblance” of the components and the mechanisms
assembled in the overall design choices adopted in this
perspective prevent them from having any kind of direct
mechanistic explanatory role with respect to their analogous
models available in nature that they aim to model2. This is the

1Within the philosophical tradition, functionalism has been proposed in many
different forms (for example, Jerry Fodor posed more strict requirements with
respect to the functionalist analysis of the mind proposed by Putnam). We will not
dwell here on these different proposals widely discussed in the literature on the
philosophy of the mind (a complete overview is provided in https://plato.stanford.
edu/entries/functionalism/). The main point here is to recognize the influence that
this position has had in the context of AI where it has been somehow translated,
with different nuances and implications, in the context of practical design issues for
building artificial systems.
2It is worth noticing, however, that such systems still preserve the possibility of
types of explanations other than the mechanistic one. For example, their behavior
could be explained with functional or teleological explanations. However, in the
first case, as indicated by Piccinini (2007) (p. 125) “Computational models that
embody functional explanations explain the capacities of a system in terms of its
sub-capacities. But this explanation is given by the assumptions embodied in the
model, not by the computations performed by the model on the grounds of the
assumption”. On the other hand, teleological explanations, despite being important
in the context are not exactly what one would expect from a computational model.
See Lieto (2021) (chapter 3) on these issues.
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case, for example, of recent AI technologies, such as some self-
proclaimed “cognitive computing” systems like IBM Watson or
Alpha Go that despite being the state-of-art systems in their
respective fields (and despite showing superhuman performances
in the areas on questioning–answering and in the game of Go),
qua purely functionally designed artificial systems, do not have
any explanatory role with respect to how humans solve the same
class of problems.

Differently from functionalism, an alternative design
approach for building artificial systems whose output can have
an explanatory power with respect to the mechanisms used by a
natural system to deal with the same problems is the structural
approach. Such an approach claims for the need of a stronger
constrained connection between the designed artificial systems
(and their internal architecture and implemented procedures)
and the corresponding ones available in natural biological
systems. According to such an approach, structurally
constrained artificial models and systems can be useful both to
advance the science of AI in terms of technological achievements
(e.g., in tasks that are easily solvable for humans but very hard to
solve for machines using non-cognitive inspired approaches) and
to play the role of “computational experiments,” which could
provide insights and results useful to refining or rethinking
theoretical aspects concerning the target natural system used
as a source of inspiration (Cordeschi, 2002; Milkowski, 2013).
Structural systems (often summarized by the expression
“function + constraints”) are exactly the class of systems
aiming at playing a direct explanatory role in the context of
cognitive modeling and computational neuroscience.

Based on this high-level distinction, in the next sections, I
present the framework of the Minimal Cognitive Grid, a
pragmatic methodological tool proposed in Lieto (2021) to
rank the different degrees of structural accuracy of artificial
systems in order to project and predict their explanatory
power (along the functional–structural continuum) and show
how its applications to two different typologies of bionic systems
(borrowed from Datteri, 2017) outlines the absence of a direct
mechanistic role of these artificial devices substituting biological
components in this class of hybrid systems.

3 STRUCTURAL ACCURACY OF
ARTIFICIAL SYSTEMS: THE MINIMAL
COGNITIVE GRID
The notions of both cognitive and biological plausibility, in the
context of computational cognitive science and computational
modeling, refer to the level of accuracy obtained by the realization
of an artificial system, with respect to the corresponding natural
mechanisms (and their interactions) that they are assumed to
model. In particular, the cognitive and biological plausibility of an
artificial system asks for the development of artificial models that
are i) consistent (from a cognitive or biological point of view) with
the current state-of-the-art knowledge about the modeled
phenomenon, and that ii) adequately represent (at different
levels of abstraction) the actual mechanisms operating in the
target natural system and determining a certain behavior. Some of

the key questions to answer in this regard are which are the
elements (e.g., the processes, mechanisms, structures, etc.) in the
inspiring natural system those enabling the rise of the desired
behavior? To what extent does the obtained behavior depend on
such elements? In the context of biologically inspired artificial
systems, different general criteria have been proposed to
characterize the design of biologically plausible models. In this
regard, the roboticist Webb (2001) identified the following list of
seven dimensions for the characterization of different design
aspects of bio-inspired models.

1. “Biological relevance”: this dimension shows if and, eventually
to what extent, a computational model can be used to generate
and test hypotheses about a given biological system taken as a
source of inspiration.

2. “Level”: this dimension aims at individuating “what are the
basic elements of the model that have no internal structure or
their internal structures are ignored.” In other words, it
identifies the modeling focus. For example, an atomic
model could be focused on the internal structures of the
atoms or could ignore such an issue by focusing on the
interactions between atoms (of course, usually the choice of
the “level” also determines what class of formalisms can be
adopted).

3. “Generality”: this feature aims at individuating how many
different biological systems can be represented by a model.

4. “Abstraction”: this dimension considers the amount of details
included in the artificial model with respect to the natural
system taken as the source of inspiration. According toWebb’s
terminology, “abstraction” should not be confused with the
“level” dimension. A more abstract model of a cognitive
process could indeed contain more details and be more
complex than the corresponding lower level brain model of
the same mechanism.

5. “Structural accuracy”: this dimension intends to measure the
similarity of the mechanisms behind the behavior of an
artificial model with respect to those of the target biological
system. This aspect is directly affected by the state-of-the-art
knowledge of the actual mechanisms in biological systems and
is not necessarily proportional to the amount of details
included in the model.

6. “Performance match”: this dimension is intended to account
for the similarity of the performances of the model with
respect to the performances obtained by the target
biological system.

7. “Medium”: this dimension refers to the physical medium that
has been used to implement the model.

Despite the huge influence of Webb’s characterization for
what concerns the dimensions to take into account when
designing and evaluating bio-inspired systems, this proposal is,
however, limited in a number of ways. First, it explicitly targets
only biologically plausible constraints (since, as mentioned,
Webb is a roboticist and her interests explicitly target issues
dealing with control and physical constraints). It does not
consider, for example, different types of higher level cognitive
constraints that one could indeed consider in a “plausible”model
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of human (or animal) cognition3. For the same reason, it does not
consider non-embodied agents/simulations, thus leaving aside a
huge class of models developed within the cognitive modeling
and AI communities4. Furthermore, some of the dimensions
appear to be not self-explanatory. For example, the concept of
“biological relevance” or “structural accuracy” are highly
overlapping, and there is not a clearly defined method that
one could use in order to determine how such elements are/
can be operationally characterized. Similarly, the concept of
“medium” is assumed to consider the physical instantiation
carrying out the computations of the computational model
and is evidently related to the physical level in the Marr’s
hierarchy (Marr, 1982). However, Webb’s proposal explicitly
limits the considerations on this aspect to the presence (or
not) of an embodied agent. The “medium,” in her view, is the
physical body of the agent (a robot). This view is, however, quite
restrictive since it does not consider, for example, alternative
physical models of computations based on, for example, hybrid
biological/artificial systems realized in the field of bionics and
neuromorphic computing (and these are the focus of the current
work). Finally, Webb’s proposal provides a powerful, but only
intuitive account of the dimensions proposed in order to design
and classify different bioinspired models. While this effort is very
useful for outlining a sort of Design Atlas, it does not fully serve
the engineering purpose of providing an operational
characterization that can outline and classify, in more precise
terms, the differences and similarities of the diverse possible
instantiations of biologically or cognitively inspired artificial
systems.

In Lieto (2021), by building onWebb’s insights, I proposed amuch
more synthetic list of elements that subsumes and abstracts some of

Webb’s dimensions and that, additionally, can not only be applied to
hybrid bionic systems but also to classical biologically inspired and
cognitively inspired ones. This latter aspect is important since
“artificial plausibility” can be obtained at different levels of
abstractions (not only at the neurophysiological or biological level)
and using different formalisms andmodeling approaches. In addition,
the proposed characterization has the merit of providing a set of
characteristics that can be directly used to compare different
biologically or cognitively inspired systems and can be used as a
tool to project their explanatory power. The proposed minimal set of
analytic dimensions to consider, that I called the “Minimal Cognitive
Grid” (MCG), is composed by the following aspects:

“Functional/Structural Ratio”: this dimension concerns the
individuation of the elements upon which the artificial model/
system is built. For example, in a complex artificial system
(embodied or not), it is possible to model in a “functional” way
some elements of the system whose internal structures and
mechanisms are not considered important with respect to ones’
explanatory goals, and on the other hand, it is possible to build
structural models of other components of the same system. In
other words, this dimension considers the ratio between functional
and structural components (and heuristics) considered in the
design and implementation of an artificial system. This ratio
depends on the actual focus and goal of the model and can be
used for both integrated systems performing different types of tasks
and for narrow and task-specific systems. This dimension
synthesizes and subsumes the “Biological relevance” and
“Structural accuracy” individuated by Webb by enabling, in
principle, the possibility of performing both a quantitative and
qualitative comparison between different cognitively inspired
artificial systems. Of course, in this case, the lower the ratio, the
better. The “system dissection” required by this dimension of
analysis is also useful to individuate the kind of explanations
that can be ascribed to the different components of the systems
(e.g., a direct mechanistic explanation would typically make sense
only for the “structurally modeled” components).

“Generality”: as for Webb’s proposal, this feature aims at
evaluating to what extent a given system/architecture can be
used in different tasks, i.e., how general is the model and how
much of it can be used to simulate a set of biological or cognitive
functions and not just a narrow one. Also, this element can be
considered both from a quantitative (e.g., by counting how many
cognitive faculties can be modeled within a single model/system)
and qualitative point of view.

“Performance Match”: as for Webb’s proposal, this dimension
involves a direct comparison between natural and artificial

TABLE 1 | The three dimensions of the Minimal Cognitive Grid individually analyzed with respect to their epistemic goal and the types of allowed evaluations.

Epistemic goal Quantitative
evaluation

Qualitative
evaluation

Graded
evaluation

Subjective
evaluation

Functional/structural
ratio

Evaluating the biological/cognitive adequacy of the artificial system via system
dissection of its components/mechanisms

Yes Yes Yes No

Generality Evaluating the transferability of a given system/model to different tasks and
biological/cognitive functions

Yes Yes Yes No

Performance match Comparing the output of the artificial system with the natural one(s) in terms of i)
results, ii) errors, and iii) response times

Yes Yes Yes No

3Examples of such constraints for human cognition can be borrowed from the
literature from cognitive, developmental, and experimental psychology. They can
concern, for example, very specific aspects like the resource-bound typicality-based
strategies used for categorization (Lieto et al., 2017) or more general aspects like the
reasoning heuristics for decision making under uncertainty (Gigerenzer and Todd,
1999; Lebiere and Anderson, 2011).
4This does not mean that many of the Webb’s criteria cannot be equally applied to
non-embodied simulations. It means, however, that non-embodied agents/
simulations are not explicitly considered in the Webb’s account since her focus
has been on bio-robotic models, and she wants “to rule out purely computer-based
models (i.e., where the environment as well as the animal is represented in the
computer), and also computer sensing systems that terminate in descriptions
rather than actions” (Webb, 2001, p. 1037). As mentioned, however, this restriction
leaves out from her analysis many biologically plausible simulative models used, for
example, in computational neuroscience and computational cognitive science.
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systems in terms of the obtained results for specific or general
tasks. With respect toWebb’s account, however, I propose a more
precise characterization of this dimension. In particular, I suggest
taking into account some of the main hints of the psychometric
AI movement (Bringsjord, 2011) asking for the use of a battery of
validated tests to assess the effective “match” between artificial
and biological systems. In this line, thus, I also propose to
consider two additional specific requirements that refers to
such an aspect: 1) the analysis of the system errors (that
should result to be similar to those committed by the
biological system considered as the source of inspiration) and
2) the execution time of the tasks (that again should converge
toward the performances of the biological system in focus)5.
Therefore, in this configuration, the degree of accuracy obtained
by artificial systems in modeling certain performances is not
sufficient to claim any kind of biological or cognitive plausibility.
Of course, the inclusion of the two additional requirements also
similarly does not guarantee any plausibility claim (since a system
could match these additional psychometric measures without
being a “structural model”). However, it is worth noticing that all
three dimensions conceived for the MCG, considered together,
can provide a nonsubjective evaluation of the structural accuracy
of a model. As for the first two dimensions, indeed, the rating
assumed on this dimension can also be, in principle, determined
by both quantitative (e.g., by considering the differences in terms
of the results, errors, and execution times between the natural and
artificial systems) and qualitative means. In addition, all the three
dimensions allow a graded evaluation (i.e., they allow nonbinary
yes/no answers but a graded ranking). Finally, the nature of such
dimensions allow for a nonsubjective evaluation [differently from
other classical tests proposed in AI and cognitive science such as
the Turing Test (Machinery, 1950), and its variations, or the
Newell test for cognition (Anderson and Lebiere, 2003)6]. Table 1
synthesizes the main features characterizing the Minimal
Cognitive Grid.

Summing up, by starting from the original proposal by
Barbara Webb, I individuated a minimal set of dimensions
(the “Minimal Cognitive Grid”) that can be used as an
analytical tool to compare different kinds of cognitive artificial
systems and their degree of structural accuracy with respect to
human performances and abilities. This tool is general enough to
include both biologically and cognitively inspired modeling
approaches and allows comparing them in terms of their
explanatory capacity with respect to a natural system taken as
the source of inspiration. In addition, it is applicable also to the
class of hybrid bionic systems.

4 TWOTYPESOFSIMULATIONS INHYBRID
BIONIC SYSTEMS AND MINIMAL
COGNITIVE GRID
Bionic systems are a well-known class of hybrid artificial
systems connecting biological tissues with computers or
robotic devices through brain–machine interfaces. These
technologies may enable the restoration of communication,
sensory and motor abilities lost due to accidents, stroke, or
other causes of severe injury (for example, see Hochberg et al.,
2006). In addition, leading researchers have claimed that bionics
technologies can provide unique and new experimental tools to
discover brain mechanisms (e.g., see Chirimuuta, 2013) and that
from an epistemological point of view, such systems are
assumed to be useful in various ways to discover hidden or
unknown aspects of biological mechanisms (see Datteri, 2009;
Datteri and Tamburrini, 2007). Based on the distinction
proposed in Datteri (2017) between “stimulation–connection”
and “simulation–replacement methodology” for the study of the
brain I will show in the following how the use of the MCG
supports the argument attributing the lack of a direct
explanatory account of the artificial components used in such
systems.

4.1 Stimulation–Connections vs.
Simulation–Replacement Systems
Datteri (2017) analyzes two different case studies to introduce
the distinction the simulation–replacement methodology (also
called ArB “Artificial replacement of Biological components”)
from the so-called “stimulation–connection”methodology. The
main difference is that the stimulation–connection
methodology may assist in the theorization over the
biological components connected to the prosthesis (hence the
“connection” label), while the simulation–replacement
methodology may enable one to model the behavior of the
biological component replaced by the prosthesis (hence the
“replacement” label). In addition, the simulation–replacement
methodology is akin to the “synthetic method” since theoretical
results can be drawn from comparisons between the behavior of
the target biological system and the behavior of the hybrid
system, which can be regarded, in its entirely, as a hybrid
simulation of the target hypothesis. Stimulation–connection
studies, on the other hand, make a non-simulative use of

5In principle, the convergence in execution times toward the performances of the
natural system should be empirically considered ceteris paribus with respect to the
hardware used (since the same procedure running on different hardware may lead
to different execution times). This measure, however, should not be confused with
algorithmic complexity times since, for example, two different exponential
solutions, despite being equivalent from a computational complexity
perspective, in practical applications, would still have a different execution time
depending on the hardware on which they run. From an experimental perspective,
this means that if the use of a more powerful hardware (leading to a consequent
execution time closer to human performances) is driven by an intrinsic
computational versatility of a particular modelling solution [e.g., we know that
neural computation on Graphical Processing Units (GPUs) is a crucial feature of
current large-scale connectionist model, while on the other hand, it is not similarly
easily exploitable for symbolic AI computation], then such a solution would be
preferable on the MCG scale with respect to an equivalent one that, however, is
unable to exploit at its best the state-of-the-art hardware capabilities. As a
consequence, the execution time requirement for the “performance match”
criterion is a stronger constraint than the algorithmic equivalence based on
time complexity.
6For a complete comparison with such tests, and others, I refer to Lieto (2021),
chapter 5.
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machine models of biological systems since they apply relatively
traditional electrophysiological analysis techniques to neural
tissues which are peculiarly stimulated by a connection with an
artificial device.

These different classes of bionic models are instantiated in
two types of bionic systems used in diverse experiments
(borrowed from Datteri, 2017) that we will call the “lamprey
experiment” and the “monkey experiment.” The lamprey
experiment is an example of the simulation–replacement
methodology and consists of the development of a
mechanistic model of the lamprey sensory–motor system,
obtained by Zelenin et al. (2000) via the replacement of the
reticulospinal pathway of the lampreys (a portion of the lamprey
nervous systems thought to play a crucial role in the lamprey
capability of maintaining a stable roll position by moving its tail
and other body parts in response to external disturbances) with
an electromechanical device. The input–output behavior of such
a device corresponds to the hypothesis assumed by all the
research performed on the relationship between the “input”
neurons of the reticular neurons (RS) and the roll angles of the
animal, which vary as a function of the activity of the “output”
spinal neurons. The artificial component picked up the activity
of the reticular neurons and produced stabilization movements
in line with the hypothesized regularity. Zelenin et al., in this
way, have experimentally tested whether the hybrid system
exhibited stabilization abilities comparable to those of the
intact system. As this happens to be the case, the authors
have therefore concluded that the electromechanical device
was a good substitute for the RS component, and as a
consequence, the RS component actually exhibited the
hypothesized input–output regularity r (rs). In other words,
the comparison in this case has been made purely at the
functional level of the input–output behavior of the replaced
component with respect to the original replaced biological
component.

On the contrary, the “monkey experiment” (and in
particular, one of the trials of this study concerning a brain
control study done with monkeys) has a different status. I will
briefly recall here the whole experiment and then the “brain

control” portion that is of interest in this article. Carmena et al.
(2003) describe a study where two monkeys chronically
implanted with microelectrode arrays in various frontal and
parietal brain areas had been trained to perform three kinds of
tasks. In the first one, they had to move a cursor displayed on a
screen and reach a target by using a handheld pole. In the second
one, they had to change the size of the cursor by applying a
gripping force to the pole. The third task was a combination of
the first two. Neural activity was acquired, filtered, and recorded
during the execution of these tasks. Two different uses have been
made of these neural recordings in two distinct phases of the
study. In the first phase, the monkeys had to move and control
the cursor by using a pole. In the second one, the control was
demanded to an external device decoding the signals of the
implanted brain machine interface. During the first “pole
control” phase, a reliable correlation was identified between
the neural activity and motor behavior of the monkeys. More
precisely, a linear model had been trained to predict various
motor parameters—hand position, hand velocity, and gripping
force—from brain activity.

After obtaining a predictively adequate model, the authors
proceeded with a so-called “brain control” phase. During this
phase, the cursor positions were controlled not by the pole but
by the output of the linear model receiving brain activity as the
input (see Figure 1). The monkeys had to carry out the same
three tasks, obtaining rewards on successful trials. I will not
dwell here on the “pole control” part of the experiment since it
represents a classical example of the application of a functional
resemblance similar to the one on the lamprey. The brain
control experiment, on the other hand, belongs to the class
of a “stimulation, non-simulative bionics-supported
methodology for the discovery of brain mechanisms”
(Datteri, 2017). In this case, in fact, even though an artificial
model of the replaced biological component is used, these
results are obtained by applying relatively traditional
electrophysiological analysis techniques aimed at analyzing
the responses of the biological tissues connected to the
artificial device and, as a consequence, at understanding or
hypothesizing some of their unknown mechanisms.

TABLE 2 | Synthetic table concerning the analysis with the MCG of the local explanatory power of the different bionic systems adopted in the simulation vs. stimulation
methodologies.

Functional/structural ratio Generality Performance-match

Lamprey study Not applicable (functional design) No Functional replication
Monkey study (brain control) Not applicable (functional design) No No match

TABLE 3 | Synthetic table concerning the analysis with theMCG of the two global explanatory powers of the different bionic systems adopted in the simulation vs. stimulation
methodologies.

Functional/structural ratio Generality Performance-match

Simulative methodology lamprey study Applicable No Accuracy performance
Simulative methodology brain control monkey study Applicable No No match

Frontiers in Robotics and AI | www.frontiersin.org May 2022 | Volume 9 | Article 8881996

Lieto Analyzing the Explanatory Power of Bionic Systems With MCG

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


The main outcome of this experiment is that brain control
of the cursor (and, in another trial of the study, of a robotic
prosthesis controlling the cursor) is possible. In addition, the
authors describe the following outcomes: i) since control
performance suddenly declined in the switch between pole
and brain control modes, and then progressively improved7

even if not reaching the original outcome, they assumed that
this result could be explained by assuming that an efficient
motor control requires a neural representation of the dynamics
of the controlled object (a representation that is absent in the
first trial). This hypothesis is supported by other results
coming from the analysis of directional tuning (DT) profiles
of individual neurons and ensembles in the “brain control”
phase. DT profiles model the relationship between neural
activity and direction of movement (e.g., by outlining that a
particular neuron fires maximally whenever the monkey moves
its arm leftward). Such profiles have been recorded during the
“pole control” and the “brain control” phases, by modeling the
relationship between neural firing and cursor movements and
gradual changes in DT profiles have been found after switching
from pole to brain control. In particular, at the very beginning
of the “brain control” phase, a general decline of DT strength
(i.e., of the strength of the correlation between firing activity
and movement direction) had been detected. A further decline
had been observed when the monkeys ceased to move their
limbs. Later on, gradual increases in DT strength have been
detected while the monkeys progressively improved their
brain-control proficiency, but the levels measured during
pole control have never been reached again. According to
the authors, these results shed some light on the
mechanisms of sensory–motor control in the intact
biological system. In particular, they claim that the sudden
decrease in DT strength after switching from pole to brain
control, and especially the fact that DT strength was low even
at the very beginning of the second phase when the monkeys
were still moving the pole, suggests that DT profiles do not
reflect only movement direction as signaled by proprioception

(this kind of feedback was available at the beginning of the
“brain control” phase). The successive increases in DT
strength, when proprioceptive feedback was totally
uninformative of cursor direction, further support the thesis
that monkeys’ brains can progressively acquire a neural
representation of the movements of the new actuator based
on visual feedback only. Thus, they hypothesized that as
monkeys learn to formulate a much more abstract strategy
to achieve the goal of moving the cursor to a target, without
moving their own arms, the dynamics of the robot arm
(reflected by the cursor movements) become incorporated
into multiple cortical representations. In other words, the
authors propose that “the gradual increase in the behavioral
performance during brain control of the BMI emerged as a
consequence of a plastic reorganization whose main outcome
was the assimilation of the dynamics of an artificial actuator
into the physiological properties of frontoparietal neurons”
(Carmena et al. (2003); p. 205).

4.2 Minimal Cognitive Grid Analysis and the
Indirect Explanatory Role of Bionic Systems
In the following, I analyze the two abovementioned case studies
concerning different types of bionic systems through the lenses of
the Minimal Cognitive Grid in order to assess the direct
explanatory power of the artificial components used in such
systems.

Let us consider the lamprey case study first. In this case, the
functional/structural dimension of the MCG cannot be used
since the substituted controller is entirely functional in that it
simply processes the same input–output specifications of the
biological tissue. For what concerns the “generality” criterion,
the kind of extracted motor configuration parameters are
limited to the substituted part and, as a consequence, the
obtained results are not directly generalizable to other
components of the biological system. Finally, for what
concerns the performance-match, the authors have seen that
there is a good correspondence with the functional
performances of the biological system (i.e., the behavior is
functionally comparable). However, no results are reported
concerning the cases of failure. Overall, the MCG shows how
this artificial device does not have per se a direct mechanistic
explanatory power to play (and this, despite the overall
methodology used in this experiment still belongs to the class
of simulative method since it allows, as we have seen, other
kinds of explanatory practices).

Also, for what concerns the brain control experiment, the
MCG shows a lack of any direct explanatory power of the artificial
component implanted in the monkey’s brain. In particular, there
is no structural element used to build such a specific device (that
is only aimed at replicating the same behavior of the replaced
biological part), and therefore, no functional/structural ratio is
applicable. In addition, as in the previous case, it is not possible to
assume any level of generality in the control model learnt and
used by the artificial device with respect to other biological parts
and, finally, the performance-match of the hybrid system with
respect to a non-implanted monkey is not carried out since the

FIGURE 1 | Pictorial representation of one of the experiments described
in Carmena et al. (2003), where the cursor is “brain controlled” via the decoder.

7This trajectory happens also during an intermediate period in which the monkeys,
before learning to control remotely the cursor, continue to move their limbs.
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experiment pursues a different goal other than the performance
comparison with a corresponding intact natural system.

Despite the lack of such a direct mechanistic explanation of the
artificial component, however, these kinds of hybrid bionic
systems can have an indirect explanatory role similar to the
one played by some AI systems built by using a structural
design approach obtained with the help of some functional
components. In particular, the artificial replacement of a part
of a biological system can provide i) a local functional account of
that part in the context of the overall functioning of the hybrid
biological–artificial system, and ii) global insights about the
structural mechanisms of the biological elements connected to
such artificial devices.

For what concerns the first point, on one hand, the lamprey
experiment is paradigmatic for the class of hybrid bionic
systems using a functional approach: the functional
comparison of the input–output behavior of the replaced
component with respect to the original biological one does
not suggest any particular insights on the mechanisms (and
their eventual biological plausibility) regulating the behavior of
the artificial component. It is possible, however, to have a
functional account of the substituted part. For what concerns
the second point, on the other hand, the brain control
experiment on the monkeys is also enlightening. As indicated
above, indeed, even if no direct comparison is done with the
corresponding biological/intact system, there is a sort of
performance comparison done between the brain control and
the pole control conditions about the analysis of directional
tuning (DT) profiles. In particular, the difference of the two
profiles (that can be seen as a sort of error analysis) has led to the
development of some explanatory hypothesis about the overall
general mechanisms characterizing the organization of the
biological tissues connected to the artificial device. This
element represents one of the possible indirect explanatory
uses that such systems can perform. Despite, as reported in
Datteri (2017), the reported conjectures consist in a very large-
grained, tentative, and incomplete sketch of the mechanism
implemented in the biological system to which the prosthesis is
connected, the proposal of such mechanistic hypotheses would
have not be possible without the analyzed behavior of the bionic
system. From a historical perspective, the emergence of
mechanistic hypotheses coming from structural models
incorporating some relevant functional components is partly
related to some classical examples coming from the simulative
methodology in cognitive science. For example, the classical
context of well-known cryptarithmetic problems having the
form: DONALD + GERALD = ROBERT (Newell and Simon,
1972) and modeled by using symbolic approaches show how
such a class of models, which are even structurally inadequate
from a neuroscientific point of view, can be, nonethenless, a
useful mean to model a computational enquiry to discover a
structural hypothesis of our reasoning mechanisms. In this
specific case, ten distinct digits had been substituted for the
ten distinct letters in such a way that the resulting expression is a
correct arithmetic sum (526,485 + 197,485 = 723,970). As the
problem is usually posed, the hint is given that D = 5. The
symbolic program solving this problem solves the problem, as

the humans, by finding the values for the individual letters in a
particular sequence: T = 0, E = 9, R = 7, A = 4, and so on . . .The
reason is that only if this order is followed can each value be
found definitely without considering possible combinations
with the values of the other letters. With this order, in fact,
the solver does not have to remember what alternative values he
has assigned to other variables, or to back up if he finds that a
combination of assignments leads to a contradiction. In other
words, the search behavior of the information-processing
system derives directly from the system’s small short-term
memory capacity. In addition, the empirical fact that human
solvers do make the assignments in roughly the same order has
provided an important piece of evidence (others can be obtained
by analyzing, thinking-aloud protocols, and eye movements)
that the human information-processing system operates as a
serial system with limited short-term memory. In this case, in
fact, the performance of the information processing system
matches the verbal protocol. In other words, the symbolic
model usually adopted to model this problem does not
consider neurological constraints, and as such cannot be
considered a structural model of brain processing. The
system, in fact, is compared with human solvers in a
functional way. However, it makes explicit heuristic
assumptions about the algorithmic level of the problem from
an information processing perspective (e.g., the constraints
about the space and memory limits, the sequential
processing, and so on) and, as shown, can be useful to
provide structural information about the processing modes
and mechanisms of the overall modelled cognitive
phenomenon.

As mentioned above, the case of the brain control experiment
is partially similar to the classical Newell and Simon’s case of the
cryptharithmetic problem. Also in this case, a functional
component of the system can provide insights on the
structural mechanistic concerning the global behavior of the
hybrid system. Differently from that, however, the indirect
explanatory role played by the overall bionic system is in the
mechanistic hypotheses that can be drawn over the biological
components of the system (and not on the artificial one). In the
classical simulative methodology, this case is not contemplated
and represents, de facto, one of the main distinguishing elements
of the field of bionic simulation of biological and cognitive
faculties. Overall, this outcome confirms and strengthens by
using a novel methodological tool, the main insights in Datteri
(2017). As a consequence of this state of affairs, the hybrid bionic
models seem to have a full room in both biologically inspired AI
and biological and cognitive modeling research agendas. In
addition, however, if we move away from the analysis of local
explanations and look for global explanatory phenomena in this
kind of hybrid systems, the MCG additionally allows to project
them (and the potential explanatory role that the different
strategies they embed can, in principle, play in bionics) along
the functional–structural design continuum.

In particular, if we analyze with the MCG, the global
explanatory possibilities offered by the two different
methodologies analyzed in the presented case studies, we can
observe that the functional/structural dimension is applicable to
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both types of systems. In particular, the structural components of
these bionic systems would be represented by the actual biological
parts of the overall systems (that do not represent a model of
themselves, but actually their very same replica) and the
functional components will be represented by the part(s) of
the functional artificial devices connected to such components.
The generality dimension still seems potentially valid to analyze
the explanatory role of both these diverse classes of systems, but
in the analyzed case studies, there is no evidence of having
discovered or unveiled biological mechanisms generalizable to
other biological or cognitive functions. Finally, the performance-
match dimension, even if in principle is analyzable for both the
systems, is only available for the system of the lamprey case study,
conforming to the classical simulative methodology. Overall, the
explanatory accounts that we can obtain from the systems
presented in this work indicate, in principle, a higher
explanatory potential for the lamprey systems than for the
brain-controlled one. Tables 2, 3 summarizes this state of
affairs. This difference confirms the diverse epistemological
status assigned by Datteri (2017) to the simulation vs.
stimulation-based methodologies.

5 CONCLUDING REMARKS

Summing up, in this article, I have analyzed two different types of
hybrid bionic systems that according to the distinction
introduced in Datteri (2017), allow to produce different kinds
of explanatory hypotheses about the biological mechanisms they
model (in a functional or structural fashion). This analysis has
been carried out with the help of a newmethodological tool called
the Minimal Cognitive Grid (MCG). This analysis suggests that
different from the classical account of artificial models of
cognition, the artificial component of the hybrid bionic system
does not play, alone, any direct mechanistic explanatory role
concerning its internal biological adequacy (compared to one of
the biological tissue replaced) within the overall functioning of
the entire system.

Overall, in the literature on the explanatory account of hybrid
systems, this conclusion is aligned with the one provided by Craver
(2010). This author distinguishes between affordance and validity
of a model (defined as “to the extent that the behavior of the
simulation could replace the target in the context of a higher-level
mechanism” (p. 842). For example, a robotic arm enabling one to
perform all the movements and actions that he/she could perform
with a biological arm, like grasping, lifting, or pushing objects, is
affordance valid); phenomenal validity (defined as “to the extent
the input–output function of a model is relevantly similar to the
input–output function of a target (natural) system”) (ibid.); and
mechanistic validity [defined as “to the extent that parts, activities,
and organizational features represented in the model are relevantly
similar to the parts, activities, and organizational features in the
target” (ibid.)]. Based on this distinction, Craver claims that hybrid
bionic models (which he calls prosthetic models) should be
affordance valid models. And this status does not imply any
phenomenal or mechanistic validity. From the analysis done via
the MCG, it similarly emerges that phenomenal validity and

mechanistic validity do not follow each other and that the
behavioral capability of a prosthesis to replace a given biological
component of a system (also called target in Craver’s terms) does
not imply that neither the fact that they share the same
input–output mapping, as assumed in the phenomenal validity
account8, nor any mechanistic validity (since the simulated higher-
level mechanisms could be just functionally replaced by the artificial
component). On the other hand, however, different from the analysis
by Craver, theMCG suggests that, as outlined in Datteri (2017), there
is an epistemic difference between the different types of hybrid bionic
systems available in the literature. In particular, being a tool designed
to detect the direct and explicit design assumptions used in an
artificial system, the MCD assigns a higher explanatory potential to
the simulative hybrid systems (paradigmatically represented by the
lamprey case study) than to the ones built by using a stimulation-
based methodology. However, the direct explanatory coverage of
MCG also suggests that there is the possibility of some indirect
mechanistic explanatory account that can be addressed with such
systems in the context of the stimulation-based systems. And that,
therefore, is not possible to completely exclude hybrid bionic systems
as tools to be used in discovering brainmechanisms. In particular, the
kind of functional replacement adopted in such systems can help, in
the different analyzed configurations, in providing a functional
explanatory account of the overall system behavior or (in the case
of stimulation-based methodology) can indirectly support the
processes of hypotheses formation, formulation, and testing
concerning the mechanisms of the biological elements connected
to the artificial component. Overall this outcome confirms and
strengthens, by using a novel methodological tool, the main
insights in Datteri (2017). As a consequence of this state of
affairs, this work suggests that hybrid bionic models can play a
crucial role in both biologically inspired AI (not aiming at playing
any explanatory role with respect to the corresponding biological
systems taken as a source of inspiration) as well as in explanatory-
seeking, biological, and cognitive modeling research agendas. While
there is a certain agreement on the role played in the first context
(Prinz, 2004; Craver, 2010), the insights coming out form this
analysis also support the use of such systems in these latter
scientific enterprises.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the
article. Further inquiries can be directed to the corresponding author.

AUTHOR CONTRIBUTIONS

AL conceived and reported the ideas presented in this article.

8In the case of brain controlled experiment by Carmena et al. (2003), the input
managed by the neurons whose activity controlled the prosthesis were not those
providing input to the animals’ biological arms, as the prosthesis was controlled by
the activity of various frontoparietal neural ensembles acquired through a
multielectrode brain–machine interface).

Frontiers in Robotics and AI | www.frontiersin.org May 2022 | Volume 9 | Article 8881999

Lieto Analyzing the Explanatory Power of Bionic Systems With MCG

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


REFERENCES

Anderson, J. R., and Lebiere, C. (2003). The newell Test for a Theory of Cognition.
Behav Brain Sci 26, 587–601. doi:10.1017/s0140525x0300013x

Bringsjord, S. (2011). Psychometric Artificial Intelligence. Journal of Experimental &
Theoretical Artificial Intelligence 23, 271–277. doi:10.1080/0952813x.2010.502314

Carmena, J. M., Lebedev, M. A., Crist, R. E., O’Doherty, J. E., Santucci, D. M., Dimitrov,
D. F., et al. (2003). Learning to Control a Brain-Machine Interface for Reaching and
Grasping by Primates. PLoS Biol 1, e42. doi:10.1371/journal.pbio.0000042

Chirimuuta, M. (2013). Extending, Changing, and Explaining the Brain. Biol Philos
28, 613–638. doi:10.1007/s10539-013-9366-2

Cordeschi, R. (2002). The Discovery of the Artificial: Behavior, Mind and Machines
before and beyond Cybernetics, Vol. 28. Berlin, Germany: Springer Science &
Business Media.

Cordeschi, R. (1991). The Discovery of the Artificial. Some Protocybernetic
Developments 1930-1940. AI & Soc 5, 218–238. doi:10.1007/bf01891917

Craver, C. F. (2010). Prosthetic Models. Philos. of Sci. 77, 840–851. doi:10.1086/
656822

Datteri, E. (2009). Simulation Experiments in Bionics: a Regulative Methodological
Perspective. Biol Philos 24, 301–324. doi:10.1007/s10539-008-9133-y

Datteri, E., and Tamburrini, G. (2007). Biorobotic Experiments for the Discovery of
Biological Mechanisms. Philos. of Sci. 74, 409–430. doi:10.1086/522095

Datteri, E. (2017). The Epistemic Value of Brain-Machine Systems for the Study of
the Brain. Minds & Machines 27, 287–313. doi:10.1007/s11023-016-9406-1

Floreano, D., Ijspeert, A. J., and Schaal, S. (2014). Robotics and Neuroscience.
Current Biology 24, R910–R920. doi:10.1016/j.cub.2014.07.058

Gigerenzer, G., and Todd, P. M. (1999). Simple Heuristics that Make Us Smart.
Oxford, USA: Oxford University Press.

Hochberg, L. R., Serruya, M. D., Friehs, G. M., Mukand, J. A., Saleh, M., Caplan, A.
H., et al. (2006). Neuronal Ensemble Control of Prosthetic Devices by a Human
with Tetraplegia. Nature 442, 164–171. doi:10.1038/nature04970

Lebiere, C., and Anderson, J. R. (2011). Cognitive Constraints on Decision Making
under Uncertainty. Front. Psychology 2, 305. doi:10.3389/fpsyg.2011.00305

Lieto, A. (2021). Cognitive Design for Artificial Minds. Oxfordshire, England, UK:
Routledge.

Lieto, A., Radicioni, D. P., and Rho, V. (2017). Dual Peccs: a Cognitive System for
Conceptual Representation and Categorization. Journal of Experimental &
Theoretical Artificial Intelligence 29, 433–452. doi:10.1080/0952813x.2016.1198934

Machinery, C. (1950). Computing Machinery and Intelligence-Am Turing. Mind
59, 433.

Marr, D. (1982). Vision. San Francisco: Vision, 41–98.

Milkowski, M. (2013). Explaining the Computational Mind. Cambridge, MA, USA:
MIT Press.

Newell, A., and Simon, H. A. (1972). Human Problem Solving, Vol. 104. Hoboken,
NJ, USA: Prentice-Hall.

Piccinini, G. (2007). Computational Modelling vs. Computational Explanation: Is
Everything a Turing Machine, and Does it Matter to the Philosophy of Mind?1.
Australasian Journal of Philosophy 85, 93–115. doi:10.1080/
00048400601176494

Prinz, A. A. (2004). Neural Networks: Models and Neurons Show Hybrid Vigor in
Real Time. Current Biology 14, R661–R662. doi:10.1016/j.cub.2004.08.012

Putnam, H. (1960). Minds and Machines. Santa Monica, CA: Minds and
Machines, LLC.

Rosenblueth, A., and Wiener, N. (1945). The Role of Models in Science. Philos. of
Sci. 12, 316–321. doi:10.1086/286874

Simon, H. A. (1980). Cognitive Science: The Newest Science of the Artificial*.
Cognitive science 4, 33–46. doi:10.1207/s15516709cog0401_2

Simon, H. A. (2019). The Sciences of the Artificial, Reissue of the Third Edition with
a New Introduction by John Laird. Cambridge, MA, USA: MIT press.

Webb, B. (2001). Can Robots Make Good Models of Biological Behaviour? Behav
Brain Sci 24, 1033–1050. doi:10.1017/s0140525x01000127

Wiener, N. (1961). Cybernetics: Control and Communication in the Animal and the
Machine–2nd.

Zelenin, P. V., Deliagina, T. G., Grillner, S., and Orlovsky, G. N. (2000). Postural
Control in the Lamprey: A Study with a Neuro-Mechanical Model. Journal of
Neurophysiology 84, 2880–2887. doi:10.1152/jn.2000.84.6.2880

Conflict of Interest: The author declares that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Lieto. This is an open-access article distributed under the terms of
the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and
the copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Robotics and AI | www.frontiersin.org May 2022 | Volume 9 | Article 88819910

Lieto Analyzing the Explanatory Power of Bionic Systems With MCG

https://doi.org/10.1017/s0140525x0300013x
https://doi.org/10.1080/0952813x.2010.502314
https://doi.org/10.1371/journal.pbio.0000042
https://doi.org/10.1007/s10539-013-9366-2
https://doi.org/10.1007/bf01891917
https://doi.org/10.1086/656822
https://doi.org/10.1086/656822
https://doi.org/10.1007/s10539-008-9133-y
https://doi.org/10.1086/522095
https://doi.org/10.1007/s11023-016-9406-1
https://doi.org/10.1016/j.cub.2014.07.058
https://doi.org/10.1038/nature04970
https://doi.org/10.3389/fpsyg.2011.00305
https://doi.org/10.1080/0952813x.2016.1198934
https://doi.org/10.1080/00048400601176494
https://doi.org/10.1080/00048400601176494
https://doi.org/10.1016/j.cub.2004.08.012
https://doi.org/10.1086/286874
https://doi.org/10.1207/s15516709cog0401_2
https://doi.org/10.1017/s0140525x01000127
https://doi.org/10.1152/jn.2000.84.6.2880
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles

	Analyzing the Explanatory Power of Bionic Systems With the Minimal Cognitive Grid
	1 Introduction
	2 Functional vs. Structural Design of Artificial Systems
	3 Structural Accuracy of Artificial Systems: The Minimal Cognitive Grid
	4 Two Types of Simulations in Hybrid Bionic Systems and Minimal Cognitive Grid
	4.1 Stimulation–Connections vs. Simulation–Replacement Systems
	4.2 Minimal Cognitive Grid Analysis and the Indirect Explanatory Role of Bionic Systems

	5 Concluding Remarks
	Data Availability Statement
	Author Contributions
	References


