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Abstract

The mental rotation ability is an essential spatial reasoning skill in human cog-

nition and has proven to be an essential predictor of mathematical and STEM

skills, critical and computational thinking. Despite its importance, little is

known about when and how mental rotation processes are activated in games ex-

plicitly targeting spatial reasoning tasks. In particular, the relationship between

spatial abilities and TetrisTM has been analysed several times in the literature.

However, these analyses have shown contrasting results between the effective-

ness of Tetris-based training activities to improve mental rotation skills. In

this work, we studied whether, and under what conditions, such ability is used

in the TetrisTM game by explicitly modelling mental rotation via an ACT-R

based cognitive model controlling a virtual agent. The obtained results show

meaningful insights into the activation of mental rotation during game dynam-

ics. The study suggests the necessity to adapt game dynamics in order to force

the activation of this process and, therefore, can be of inspiration to design

learning activities based on TetrisTM or re-design the game itself to improve its

educational effectiveness.
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games design

1. Introduction

In the introduction to the topic “Game XP: Action Games as Experimen-

tal Paradigms for Cognitive Science”, Gray (2017) lays the foundations for a

research program to exploit the possibilities offered by games in the field of

cognitive science. Games represent an opportunity for computational cognitive5

science as they can provide an environment equipped with the necessary level

of control to carry out cognitive experiments. Furthermore, they can simulta-

neously mimic reality, thus mitigating all the limitations of “transferability” of

the results typical of controlled environments.

Among the various approaches with which cognitive sciences can exploit10

the field offered by games, the realization of computational cognitive models

designed to explain the mental processes employed by the player during game

activities deserves special attention (on this aspect see Lieto (2021)).

The use of games for a better understanding of cognitive phenomena is widely

present in the literature. Among others, the classic game of TetrisTM has re-15

peatedly attracted the interest of researchers from various research fields.

TetrisTM is a puzzle game in which the primary game mechanics is the

positioning of figures called zoids in a rectangular space. The user must position

these figures by moving and rotating them in a rectangular board divided into

blocks (Figure 1).20

The game objective is to get the blocks to fill all the empty boxes in a line

at the bottom of the screen; once a row is complete, the blocks vanish, freeing

up space for positioning other zoids, and the player gets awarded some points.

The zoids appear in the game scene one at a time, descending at a specific

rate. The descending rate increases progressively as the game progresses. The25

original TetrisTM has seven different types of zoids (Figure 2) and takes place

on a board of 20x10 blocks. Each zoid consists of 4-connected blocks, that is,

each block of the zoid is connected to at least one other block in one of the four
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Figure 1: A configuration of the TetrisTM game and of its board

main directions.
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Figure 2: Type of zoids

TetrisTM has been used for several objectives, like training of spatial skills30

(Milani et al., 2019), analysis of cognitive abilities like cognitive workload (Trithart,
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2000), as an investigation tool to investigate mental processes linked to prag-

matic actions and epistemic action (Kirsh & Maglio, 1994), or as a work-space

in which to train and test neural models or other AI algorithms able to compete

or reproduce human performance (Schrum, 2018; Lora Ariza et al., 2017).35

It is now common knowledge that spatial abilities, such as mental rotation,

spatial visualization, perceptual speed, useful field of view, and visuospatial

working memory, play a role during the TetrisTM game activity (Pilegard &

Mayer, 2018). In particular, the mental rotation ability appears to be the pri-

mary cognitive process involved, and, in addition, it is an essential cognitive40

ability possessed and used by humans for spatial reasoning tasks. Such an abil-

ity has been studied extensively in humans since the original experiment of

Shepard & Metzler (1971). However, despite this widespread interest, “no for-

mal cognitive task analysis of TetrisTM playing has been completed” (Pilegard

& Mayer, 2018).45

In particular, despite the relationship between mental rotation skill and

TetrisTM — either as a proxy for players’ efficacy in the game or on the contrary

as a skill to be trained — has been investigated several times, to the best of our

knowledge, there is no computation model able to explain the role of mental

rotation in TetrisTM gameplay.50

In this paper, we present an agent explicitly embedding such ability to verify

whether, and under what conditions, mental rotation ability is used in TetrisTM

gaming activities.

We modelled the mental rotation ability of the agent by using the ACT-R1.

The underlying hypothesis is that a cognitively constrained ACT-R agent55

embedding such an ability could provide insights into the strategy used by hu-

man players and the activation of mental rotation abilities in particular game

configurations.

1ACT-R has been already tested in a variety of games, from backgammon to social ones

(Lebiere & West, 2020; Lebiere et al., 2000; Kim & Taber, 2004; Moon & Anderson, 2012;

Spiliopoulos, 2013; Augello et al., 2022)
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According to the approach proposed by Gentile et al. (2019), a better under-

standing of the phenomenon could provide an interpretation of the conflicting60

results concerning the effectiveness of TetrisTM as a spatial skills training tool

(Pilegard & Mayer, 2018) and give insights on how to re-design the gameplay

to improve the educational effectiveness.

The paper is organized as follows: the section 2 gives an overview of the

research conducted concerning mental rotation ability. In section 3, after in-65

troducing ACT-R and the principal modules used in this work, we provide a

high-level description of the cognitive model proposed in this paper and the

theoretical references at the basis of its definition. Section 4 shows the research

design, the instruments used for the collection of experimental data and the

statistical analysis conducted to verify the validity of the model. In section 570

we present the results of the conducted analyses, while in section 6 we report

a critical comment of the results. Finally, section 7 concludes the paper and

provides a prospect for future works.

2. Mental Rotation

Metzler and Shepard have coined the expression “mental rotation” in 197175

Shepard & Metzler (1971) by referring to a process based on a particular visu-

ospatial ability through which a cognizer can represent how 2D or 3D objects

look like when they are rotated (Shepard & Metzler, 1971; Metzler & Shepard,

1974). The visuospatial ability working in mental rotation processes has been

described as the capacity to conceive a rotation of objects in a 2D/3D space80

(Burnett & Lane, 1980) through a mental manipulation of these objects. The

mental manipulation could be performed piece-by-piece (as regards the differ-

ent elements composing a certain object) or in a holistic fashion (Battista et al.,

1989; Clements & Battista, 1992; Olkun, 2003).

The mental rotation process is usually described as shape-matching activities85

where an agent has to decide whether two elements (e.g. two objects, two

pictures), simultaneously or consecutively exhibited and from various angular
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orientations, are equivalent or different (Shepard & Metzler, 1971).

In the original Shepard & Metzler (1971) experiment, participants were pre-

sented with pairs of 3D objects; the first one is the target, while the second one90

is a similar version of the target object. Usually, this second object is rotated

around its centre (Figure 2 provide an example task from the original experi-

ment on mental rotation for human subjects by Shepard & Metzler (1971)). In

the adapted version for children (Vandenberg & Kuse, 1978), two flat images

of animals are compared by the participants. In addition to being rotated in95

two-dimensional space, the control version can be presented in standard or mir-

rored form. Finally, in both the 2D/3D versions, the control object/image is

presented from time to time through different disparities in orientation, varying

the degree of rotation.

Cooper & Shepard (1973) describe this complexity utilizing four sub-processes100

composing mental rotation:

• realizing a visual encoding of the stimuli;

• rotating an object (referring to another);

• comparing two objects (similar or different);

• responding [Wright et al. (2008)]105

Figure 3: An example of the stimuli used by Shepard & Metzler (1971)

Several investigations have demonstrated that the mental rotation skill is a

good predictor of mathematical skills and achievements in mathematics (Kozhevnikov

et al., 2005; Holmes et al., 2008; Cheng & Mix, 2013; Verdine et al., 2013). Men-

tal rotation is also considered a proxy of spatial reasoning ability (Carpenter
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et al., 1999) that is considered necessary in STEM disciplines and critical think-110

ing tasks. Città et al. (2019) have also described a relationship between men-

tal rotation ability and high-order cognitive processes related to computational

thinking.

The mental rotation process has also been the subject of study in compu-

tational cognitive science. Peebles (2019) recently compared the piece-by-piece115

and holistic strategies by realising two computational models using the ACT-

R cognitive architecture Peebles (2019). The results show the consistency of

the models concerning the rotation times collected through an experiment con-

ducted on human participants2.

Despite the importance of this phenomenon, little is known about when120

and how mental rotation processes are activated in the context of an explic-

itly targeting spatial reasoning tasks game like TetrisTM. The only relevant

insight coming from the literature analysing the distinction between epistemic

and pragmatic actions shows that players do not always use mental processes

but often use pragmatic actions as a shortcut to simplify the decision-making125

process (the distinction between these different types of actions is outlined in

the next section).

3. An ACT-R based mental-rotation model of Tetris gameplay

This paper aims to assess whether and under what conditions mental rotation

ability is employed in TetrisTM gaming activities. For this purpose, we have130

defined an ACT-R computational model of a Tetris player that exploits mental

rotation as a fundamental step in positioning a Zoid according to the classical

information-processing approach. In this section, after introducing ACT-R, we

present the theoretical basis that guided the definition of the computational

2In a nutshell, the holistic strategy suggests that mental images are rotated as whereas the

piece-by-piece strategy assumes the decomposition of the mental image into pieces and their

individual rotation. See Peebles (2019) for details.
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model, and provide a high-level description of its ACT-R implementation for135

the sake of completeness.

3.1. ACT-R: Adaptive Control of Thought—Rational

ACT-R is a general cognitive architecture explicitly inspired by theories and

experimental results coming from human cognition (Anderson et al., 1997). The

ACT-R architecture consists of a set of modules (i.e., goal, imaginal, perceptual140

and motor modules), each devoted to processing a different kind of information.

In the ACT-R architecture, the intelligent behaviour of computational agents

emerges from the interaction of two types of knowledge: declarative and proce-

dural knowledge (see Lieto et al. (2018) for a knowledge level analysis of these

components). The former encodes explicit facts that the system knows in terms145

of schema-like structures called chunks, whit an isa slot specifying their category

and some number of additional slots encoding their contents. A specific module

named “declarative module” is in charge of storing and managing declarative

knowledge. Procedural knowledge encodes rules for retrieving and processing

declarative knowledge and is managed by a production system, which is also150

responsible for coordinating the behaviour of all the different modules. The

production system interacts with the different modules through specific buffers

associated with each module. The current task state of a model and relevant

information for the current task are typically managed by the goal module.

The perceptual and motor modules (i.e., audio, visual, motor and speech)155

provide the primary interfaces between the ACT-R architecture and the exter-

nal world. The interaction with perceptual and motor modules prescribe the

possible action requests and information chunks each module can manage. For

an updated and complete overview of ACT-R, we remind at Ritter et al. (2019).

In the context of this work, it is helpful to deepen how the ACT-R higher-160

level processes interact with a visual interface. Since version 5.0, ACT-R inte-

grates the visual module to model how visual attention and perception concur

in defining high-level representations that can be managed according to the

ACT-R theory of cognition. Firstly, the ACT-R visual module provides an
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iconic memory that maintains a feature-based representation of the environ-165

ment3. According to a theory of visual attention4 implemented in ACT-R, the

visual model allow to move the attention to a specific region of the screen and se-

quentially create a representation of the focused object in term of a chunk. The

ACT-R vision module system has been successfully applied in the literature to

model several classic perceptual phenomena, like the Sperling and visual-search170

tasks.

Nevertheless, as reported by Peebles (2019) neither the ACT-R visual mod-

ule nor the proposed extensions available in the literature (e.g., the ACTR/E

project (Trafton et al., 2013)) provide mechanisms to cope with spatial-imaginary

problems. Thereby, for the aim of this work, we employ the ACT-R extensions175

provided by Peebles (2019) both in terms of chunk-types for the representation

of visual objects and in terms of imagery operations available on those chunks

(e.g., translation, scanning, scaling, zooming, reflection, rotation and composi-

tion functions such as intersection, union and subtraction).

In addition to the visual module, another key module in the context of this180

work is the imaginal module, whose main buffer correspond to the dorsolateral

prefrontal cortex (DLPFC) area of the brain (Oh et al., 2021). In particu-

lar: while the visual module allows ACT-R to perceive the Zoid and to store

its representation in an appropriate chunk, the imaginal module functions as

a working memory in which information related to the mentally transformed185

object is represented and manipulated during the task (Borst et al., 2010).

The involvement of these two modules is consistent with recent discoveries in

neuroscience related to the study of mental rotation processes. Recent studies

(Albers et al., 2013; Christophel et al., 2015) have shown that the processes of

3In the ACT-R context, the term environment usually refers to a 2D system cause the

primary goal of the ACT-R models is to interact with the computer screen where the cognitive

tasks under examination are performed.
4As reported in (Anderson et al., 1997), the visual attention theory used in ACT-R is a

synthesis of Posner’s (1980) spotlight metaphor, Treisman & Gelade’s (1980) feature-synthesis

model, and the Wolfe’s (1994) attentional model.
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perception of external input and internal generation of the transformed repre-190

sentation, processes included in mental rotation, are simultaneously mediated

by the primary visual cortex. Furthermore, in a recent study, Iamshchinina

et al. (2021) demonstrated that cortical depth separation allows for concurrent

representation of both perceived and mentally rotated content. This distinction

of neural representations explains why the two representations are not confused195

and suggest the view of primary visual cortex as a dynamic blackboard.

3.2. Model assumptions

The developed ACT-R computational model is based on a number of as-

sumptions. The first one concerns the attention process. We hypothesize that

the player focuses on a portion of the board while searching for the position to200

place the zoid. The board portion focused by the player during the first part of

the task will be referenced as attention area in the rest of this paper.

The second one is that the player generates, via an internal simulation mech-

anism, one or more imaginary zoids in the empty squares of the attention area

according to the shape of descending zoid, also known as target zoid.205

Finally, in our model, these imaginary zoids, which we will call solutions, are

generated by the user according to the main features of the target zoid through

a sort of subitizing process (third hypothesis); that is, the ability of humans to

fast and accurately enumerate small groups of four or fewer objects (Mandler

& Shebo, 1982).210

In line with this hypothesis, all zoids are composed of four cells arranged

according to the following configurations:

• I: 4 linear blocks;

• O: a 2x2 blocks square;

• T: 3 consecutive positions and one at the middle of the configuration;215

• S or Z: 2 offset lines made by two consecutive blocks;
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• J or L: 3 consecutive blocks with one at the beginning or the end of the

configuration.

The characteristic element of the latter hypothesis is that generating solu-

tions is not without an error process. In other words, we hypothesise that for220

some zoid types, the generated solutions may not coincide with the target zoid.

From the entire list of the zoids available in TetrisTM (shown in Figure 4),

suppose an attempt to position one of the following 4 zoids (L, J, S, Z). In that

case, the solutions generated may lead to a zoid that is compatible with the

features but not identical to the starting zoid.225

I T L J

O S Z

Figure 4: List of zoids in TetrisTM. Highlighted in red and green the couples of zoid that

require the activation of mental rotation process.

To better illustrate the situation, let us assume the appearance of a J zoid

in a 4x4 area that presents the following configuration (Figure 5). The red zoid

represents the zoid (J) to be placed, while the 4x4 square is the portion of the

board where to place it. Not all positions are accessible in this board portion,

because some are occupied by previously positioned zoids (the part in blue).230

According to this configuration, we report some of the possible solutions

generated according to the features of the zoid J in Figure 6. As we can see, not

all the solutions coincide with the original J zoid. In b,c, and d configurations,

the algorithm generates a zoid L that is exactly the reflection of the zoid J.

Once a possible solution has been selected, it is necessary to verify through the235

mental rotation process whether or not it coincides with the starting zoid unless

it is rotated or represents the reflection. This verification represents exactly the
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J

Figure 5: An example task

mental rotation process identified by Shepard & Metzler (1971) in 1971.

a) b) c)

d) e) f)

Figure 6: A sample of solutions generated according the zoid features

3.3. The computational model

According to the assumptions reported above, the cognitive model described240

in Figure 7 was formalised.

The model is composed of a first phase in which the zoid target is identified,

leading to the creation of a relative imaginal chunk. For this purpose, according

to the visual attention and perception models of ACT-R, after adding a set of

perceived visicon features representing the zoid to the iconic memory, the model245
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Init

create_zoid

detect_attentions_areas

get_area

find_solutions

analize_next_area

mental_imagery_solutions

query visual-location-buffer for zoid

stop

encode zoid

process_zoid_pattern

query visual-location-buffer for zoid

encode solution

attend_solution_pattern

process_pattern

other_solution_or_change_area

evaluate_solution

Figure 7: The TetrisTM cognitive model
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starts the search process in the visual location buffer. Then, once identified, we

search in the visual buffer the zoid that is then copied in the imaginal buffer.

Subsequently, the model passes to the board’s analysis, to extract the pos-

sible attention areas. The areas are identified by dividing the upper part of the

chessboard into blocks of dimension n x m where n and m represent the number250

of rows and columns of the attention area, respectively. These dimensions are

parametric and allow the exploration of different configurations.

By moving the upper left corner of the area from the first column to the

cols−m column — cols represents the number of columns of which the board is

composed —, the algorithm searches the n x m blocks that touch the boundary255

represented either by the last row of the board or by a complete row. Then, the

identified areas are sorted according to a specific heuristic. The implemented

heuristic sorts the areas according to the percentage of free squares in the at-

tention area, preferring the attentions areas with the freest blocks.

Once an area has been selected, the model moves to the next step for search-260

ing all possible solutions in the attention area. As described before, by solution,

we mean a possible placement of a mentally generated zoid in the empty spaces

of the attention area.

The solution generation process is carried out through a subitization process,

which involves firing 4-connected blocks. The generation algorithm generates265

all possible 4-connected configurations, which are then filtered in such a way

that the configuration is compatible with the salient features of the target zoid.

Once generated, the solutions are ordered according to a second heuristic. This

heuristic analyzes the empty connected components in the attention area and

the percentage of occupation of the rows, starting from the lower rows of the270

attention area.

Once the solution has been identified, the model generates the visual chunk

that represents this solution according to the steps already described above for

the generation of the chunk of the target zoid. Once the two chunks have been

identified, we move on to the mental rotation process that evaluates the disparity275

angle between the target zoid and the imaginary solution under analysis. If the
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angle of disparity is greater than a certain threshold, the rotation is carried out.

In particular, the holistic computational model realised by Peebles (2019)

was used as a reference for the definition of the mental rotation phase in our

model5.280

The rotation process ends if an angular configuration is found for which

the two images coincide or if all possible rotations have been tested. In the

case of non-coincident figures, if the number of solutions tested in the area is

less than the MAX solutions parameter, the algorithm proceeds to evaluate

the next solution identified in the area of attention. Otherwise, in the case in285

which the algorithm has already tested the maximum number of solutions in

the area, the algorithm proceeds to analyse the next area of attention. The

process is iterated until the maximum number of explorable areas, identified by

the parameter MAX areas, has been reached.

On the other hand, if the algorithm identifies a rotation for which the two290

figures coincide, the algorithm terminates after evaluating the identified solu-

tion. Precisely, the distance of the current solution from the solution identified

in the same task by the human user is calculated.

It should be noted that the model allows for the exploration of various exper-

imental hypotheses. In particular, the model is characterised by two heuristics,295

the first for ordering the areas of attention and the second for ordering the imag-

ined solutions. Furthermore, the model is characterised by different parameters.

5Despite the original inspiration, there are some essential differences between our model and

the Peebles’s ones. Whereas Peebles’ models analyse the mental rotation process, our model

models the entire Tetris game process. Furthermore, even concerning the implementation of

the mental rotation process, our model highlights some differences in respect to the model

presented by Peebles (2019). In particular, our model implements the recognition processes of

the two figures to be compared in two different phases. In fact, the target zoid recognition is

done just once outside the cycles at the beginning of the process. In contrast, the recognition

of the second object is made for each tested solution since the model explores different areas

of attention and solutions in each area. Moreover, another difference is the adoption of a 90°

degree rotation step, according to the particular case represented by TetrisTM.
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Two parameters are used to identify the dimensions of the area of attention. The

maximum number of testable solutions in the single area of attention and the

maximum number of analysable areas represent two other essential parameters300

of the model.

4. Material and methods

4.1. Research design

In order to evaluate the computational model, we compare the behaviour

of human agents engaged in gaming activities with the behaviour of a virtual305

ACT-R agent that exploits the model presented in section 3.3.

To collect data about the players’ behaviours, we implemented a specific

application, described in detail in section 4.2.

The unit of analysis (referenced as “task” in the rest of this paper) is the

positioning process of the single zoid. The process begins when the zoid appear310

on the screen and ends with its positioning on the board. Within this time, the

player typically performs all the visual, decisional and motor processes related

to recognising the zoid, choosing the position, and doing all actions that allow

moving the zoid to the chosen position.

For each task, different temporal information was collected, such as the time315

of the first action (tfirstAction), the time of the last action (tlastAction) and the

time of task completion (ttotal). In addition, data about the number of rotation

and translation actions and the drop action have been collected.

A pivotal element in our comparison process is time analysis. In particular,

isolating the mental rotation process within the task performed by the human320

user is not a trivial task. To overcome this problem, we explored whether and

to what extent the time used by the model to complete the task (tmodel) could

partially explain the time taken by the human agent in performing the same

task.

In particular, the tmodel covers the time interval between the start of the325

task and the completion of the first three phases of the classic information
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processing model (Atkinson & Shiffrin, 1968), namely the creation of a bitmap

representation of the current task, its conversion into a symbolic representation,

and the search for the best point where to place the Zoid. The current version

of the model does not consider the final motor-control phase of defining the330

trajectory of moves that allows the final positioning of the Zoid.

For this reason, we hypothesise that the tmodel could help explain the time

before the execution of the first action. Moreover, according to Kirsh & Maglio

(1994) according to which users often perform the first action almost immedi-

ately, we also hypothesise that model time may help explain both the time of335

the last action and the total time of the task.

Generally, the times related to the focused task performed by the human

agent suffer from a high variability due to different factors. For this reason, we

have used regression analysis as a technique that allows us to verify the correla-

tion between the (tmodel) and the human task times net of a set of explanatory340

variables that allow us to reduce (or explain) the variance of the variables under

investigation.

In particular, the timing of the tasks performed by the players was explained

from three sets of information:

• the characteristics of the task, like: the level of the game, the progressive345

number of the task within the game, and the shape of the zoid to be

placed;

• the player’s characteristics, such as: gender, age and skill level in the

mental rotation ability;

• the actions performed by the human user during the task and, in particu-350

lar: the number of rotations and translations and whether or not the fall

of the zoid was forced.

In addition to these three sets of variables, we consider two other central

explanatory variables in the analysis. The first is the time taken by the virtual

agent to perform the same task following the computational model described in355
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section 3.3.

The second one is the game mode. In fact, within this study, two dif-

ferent game modes have been designed. The first mode is the classical one

(gameModeClassical) in which the descent speed of the zoids and the progres-

sion system between levels follow the original version of Tetris TM. The second360

mode (gameModeForced) has been designed to force the user to activate the

mental rotation process by preventing the player from performing a rotation in

the first part of task execution. Rotation actions become possible once the zoid

approaches the boundary identified by the zoids already placed on the board.

This distinction relies on the distinction pointed out by the study of Kirsh &365

Maglio (1994), according to which, in TetrisTM, it is possible to have two types

of actions performed by the players: pragmatic actions, aimed at achieving a

step towards the goal, and epistemic actions, whose goal is to provide the player

with additional information to simplify the cognitive task. Since, in our setting,

it is conceivable that epistemic actions — in particular the rotation actions370

executed on a keyboard — may simplify the mental rotation process (or even

inhibit its activation) we introduced the modes mentioned above.

4.2. Mental Jigsaw

Mental Jigsaw is an adapted version of of the classic TetrisTM game, cus-

tomized according to our research needs, that has been developed as a mobile375

app and has been distributed through the main official stores (Figure 8 shows

a screenshot of the released app).

We implemented the application using the Unity3D game engine. Since

it was designed for use on a smartphone, the translation, rotation and drop

game mechanics were realised using touch interaction. Dragging the Zoid allows380

translation, while a tap on the screen to the right or left of the Zoid corresponds

to a clockwise or anticlockwise rotation, respectively. Finally, the drop has been

realised intercepting a tap at the bottom of the screen.

The application has been designed according to the recommendations indi-

cated by Gray (2017). In particular, the system includes a server-side backend385
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Figure 8: The MentalJigsaw web page on play store (https://play.google.com/store/

apps/details?id=it.cnr.itd.pa.MentalJigsaw&hl=it&gl=US) MentalJigsaw is also avail-

able for iOS device at the following url https://apps.apple.com/us/app/mental-jigsaw/

id1524501681

that allows the control of the main game parameters (e.g., drop speed, progres-

sion rules between levels). In addition, the system collects all the data needed

for analysis. All the actions performed by the user during gameplay are stored

with the relative timestamp and with an anonymous identifier which allows

linking the data relating to the same player.390

Another distinguishing aspect of the application is the possibility of dynam-

ically modifying the game dynamics to constrain human behaviour.

In fact, as described in section 4.1, Mental Jigsaw provides two different

game modalities: the classical TetrisTM and an ad-hoc modality, called forced

designed to avoid epistemic actions and force users to activate the mental rota-395

tion cognitive process (see Figure 9).

Finally, Mental Jigsaw allows us to assess players’ mental rotation ability

through the administration of mental rotation test in the classic version defined

19
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(a) Classic (b) Forced

Figure 9: A screenshot of the two Mental Jigsaw game modes

by Shepard & Metzler (1971). After completing a couple of matches, the appli-

cation asks the players if they are willing to complete the mental rotation test400

and contribute to the research.

For the implementation of the test in Mental Jigsaw, we used the mental

rotation stimuli proposed by Ganis & Kievit (2015). Starting from a set of

48 three-dimensional objects, Ganis & Kievit (2015) generated 384 stimuli with

different angular disparities minimizing the self-occlusion at all views used. Fig-405

ure 10 shows a screenshot of a stimulus presented to the user. As in Shepard

& Metzler (1971), stimuli are typically composed of a pair of three-dimensional

objects: the baseline object on the left, and a target object on the right.

In this way, we were able to record and cross-compare the data coming from

the classical mental rotation test with the ones coming from the TetrisTM game.410
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Figure 10: The mental rotation test in Mental Jigsaw

4.3. Participants

We recruited the participants through the snowball sampling method. The

recruitment process started by publishing the invitation to participate on the

main social networks and sending the same message on different mailing lists.

4.4. Statistical Analysis415

In order to evaluate the computational model, we compare the behaviour

of human agents engaged in gaming activities with the behaviour of a virtual

ACT-R agent that exploits the model presented in section 3.3.

To collect data about the players’ behaviours, we implemented a specific

application, described in detail in section 4.2.420

The first step of the investigation was to explore the tasks performed by

human users in terms of times and actions performed (Table 1). Within the

analysis, all the analyzed times are reported in milliseconds. Moreover, we

performed a descriptive evaluation to investigate if and how the different zoids

shapes impacted those data (see Table 2).425

The validation of the cognitive model presented in section 3.3 was carried

out through the comparison of our model with the human data collected via

Mental Jigsaw. In particular, it was obtained through the fitting of five linear
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models constructed to explain the execution times recorded during human tasks.

We used as predictors the following sets of parameters:430

• The characteristic of the task: type of zoid (zoid), the level of the game

(level) and progressive number of the task in the game (taskindex));

• users’ variables like age (age), gender (gender) and mental rotation skill

level (mr);

• Variables describing users’ actions like the number of rotation and trans-435

lation actions (rotationsActs and translationActs) and the drop action

(dropAct);

• the game modality (gameMode).

We considered the variables of the third group as predictors just in the case of

the time of the last action (tlastAction) and the total time of the task (ttotal).440

In the first three models, we analyzed the time of the tlastAction. Model

1 (Equation 1) includes all the variables reported before as predictors of the

tlastAction. Model 2 (Equation 2) introduces the time spent by proposed cogni-

tive model on the same task performed by the user (tmodel) as an explanatory

variable of tlastAction. Finally, model 3 (Equation 3) adds the effect of the in-445

teraction between tmodel and the game mode variable. The goal of model 3 is

to test whether or not the forced game mode (gameModeF ) forces the player

to activate a mental rotation process following the design hypothesis.

The research hypothesis is to test under what conditions model time suc-

ceeds in contributing to the variance explained. We also performed an ANOVA450

between models to test which of the three models could explain a significantly

more significant percentage of the variance.

In addition, we also analyzed the impact of game mode and model time on

the first action time (tfirstAction) and total task time (ttotal) to check if the

game mode and tmodel have the same effect on all recorded times.455

The linear models were estimated using the Ordinary least squares (OLS)

method.

22



tlastAction = 1 + gender + age+mr + level + taskindex + zoid+

translationActs+ rotationsActs+ dropAct+ gameMode
(1)

tlastAction = 1 + gender + age+mr + level + taskindex + zoid+

translationActs+ rotationsActs+ dropAct+

gameMode+ tmodel

(2)

tlastAction = 1 + gender + age+mr + level + taskindextaskindex + zoid+

translationActs+ rotationsActs+ dropAct+

gameMode ∗ tmodel

(3)

tfirstAction = 1 + gender + age+mr + level + taskindextaskindex + zoid+

gameMode ∗ tmodel

(4)

ttotal = 1 + gender + age+mr + level + taskindextaskindex + zoid+

translationActs+ rotationsActs+ dropAct+

gameMode ∗ tmodel

(5)

All the analysis was performed using the open-source software R (R Core

Team, 2018).

5. Results460

Nineteen users (10 men, nine women) with an average age of 41.6 years (sd =

8.31) participated in the experiment. On average, each user played 5.84 games

(sd = 6.51), corresponding to an average task score of 405.47 (sd = 701.96). In

total, participants completed 7704 tasks. Thirteen users additionally completed

the mental rotation test through the Mental Jigsaw app. Those users achieved465

an average score of 0.85 (sd = 0.07), corresponding to the percentage of mental

rotation tasks for which the user provided a correct answer.
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The following two tables provide a descriptive aAnalysis of the timing of the

tasks conducted by human players collected through the Mental Jigsaw app.

Specifically, Table 1 shows the descriptive analysis of the times of the tasks470

performed by the players. Table 2 report the human tasks times by zoid type.

It shows a different distribution of times (tfirstAction, tlastAction, and ttotal) for

the different zoid types; in particular, for the zoid pairs S/Z and J/L the times

are on average longer than for the other zoids. This result is in line with the basic

assumptions of the proposed cognitive model that hypothesize the activation of475

the mental rotation process just for those zoids for which their reflected version

exist.

Table 1: Descriptive statistics of players’ tasks times

Variable Mean SD Skewness Kurtosis % Missing

tfirstAction 1594 1351 2.95 12.42 0.675

tlastAction 3788 2513 1.48 2.04 0.675

ttotal 5081 3166 1.89 11.43 0.000

Table 2: Means and sd of tasks’ times by zoid type

zoid n tfirstAction σ(tfirstAction) tlastAction σ(tlastAction) ttotal σ(ttotal)

O 1144 1505.03 1052.66 2782.07 1811.70 4071.40 2430.40

I 1123 1261.70 1227.47 3221.34 2367.63 4542.95 3111.66

T 1119 1659.05 1425.73 4154.55 2554.88 5432.29 3533.88

S 1110 1682.99 1395.60 3850.42 2556.27 5087.80 3198.52

Z 1085 1714.55 1433.59 4034.08 2685.35 5332.39 3250.04

J 1041 1714.45 1420.65 4423.36 2654.76 5793.15 3259.42

L 1082 1639.77 1411.86 4139.84 2472.54 5395.80 2961.09

The validation experiment was conducted by testing the cognitive model

(see section 3.3) on the same 7704 tasks completed by the users. The spe-

24



cific configuration of the board and the type of zoid to place define the task.480

The experiment was conducted considering an attention area of 4x4 blocks

(n = 4,m = 4), a maximum number of 2 attention areas to be explored

(MAX areas = 2) and a maximum number of 2 solutions for each area to

be verified (MAX solutions = 2). In 6473 out of 7704 tasks (i.e., 84.02% of the

cases), the cognitive model was able to find a solution within the constraints485

imposed by the model.

Linear models were estimated on 6949 tasks, corresponding to the tasks

completed by users who completed the mental rotation test for which the player

performed at least one action.

The model 1 (Eq. 1) explains a significant and substantial proportion of490

variance (R2 = 0.51, F (15, 6933) = 473.45,p < .001, adj.R2 = 0.50). The

model’s intercept, corresponding to gender = female, age = 0, mr = 0,

taskindex = 0, level = 0, zoid = O, translationActs = 0, rotationActs = 0,

dropAct = FALSE and gameMode = NORMAL, is at −1512.10 (t(6933) =

−4.76, p < .001).495

The model 2 (Eq. 2) explains a significant and substantial proportion of

variance (R2 = 0.51,F (16, 6932) = 444.74, p < .001, adj.R2 = 0.51). Within the

model 2, the effect of tmodel is significantly positive (β = 0.03, t(6932) = 2.74,

p < .01)

Also model 3 (Eq. 3) explains a significant and substantial proportion500

of variance (R2 = 0.51, F (17, 6931) = 420.42, p < .001, adj.R2 = 0.51).

Within the model 3, the effect of tmodel is no longer significantly (beta = 0.01,

t(6931) = 1.09, p = 0.275). On the contrary, the interaction effect of tmodel on

gameModeF is significantly positive (beta = 0.12, t(6931) = 3.99, p < .001).

The ANOVA between the models evidences a significant ∆R2 = 0.00053505

between model 1 and model 2 F (1, 6932) = 7.54, p < .01. Furthermore,

a significant ∆R2 = 0.00113 is also shown between model 2 and model 3

F (1, 6931) = 15.95, p < .001. Table 3 reports the values of the linear model

estimates.

Table 4 shows the comparison between the estimates of models 3, 4 (Eq.510
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Table 3: Fits of linear models

Dependent variable:

tlastAction

(1) (2) (3)

gendermale −1,123.40∗∗∗ (83.08) −1,124.98∗∗∗ (83.04) −1,127.61∗∗∗ (82.96)

age 17.78∗∗∗ (3.66) 17.63∗∗∗ (3.66) 17.62∗∗∗ (3.65)

mr 3,555.83∗∗∗ (450.58) 3,548.34∗∗∗ (450.37) 3,567.25∗∗∗ (449.91)

taskindex −1.72∗∗∗ (0.25) −1.73∗∗∗ (0.25) −1.72∗∗∗ (0.25)

level −87.79∗∗∗ (17.30) −86.76∗∗∗ (17.30) −87.95∗∗∗ (17.28)

zoidI −229.02∗∗∗ (78.12) −233.54∗∗∗ (78.10) −238.02∗∗∗ (78.02)

zoidT 46.73 (82.05) 25.37 (82.38) 15.72 (82.33)

zoidS 518.54∗∗∗ (78.53) 486.32∗∗∗ (79.37) 479.63∗∗∗ (79.30)

zoidZ 625.39∗∗∗ (79.27) 594.91∗∗∗ (80.01) 589.78∗∗∗ (79.93)

zoidJ 226.11∗∗∗ (84.27) 156.98∗ (87.92) 152.86∗ (87.83)

zoidL −29.70 (82.91) −106.63 (87.49) −107.00 (87.40)

translationActs 171.05∗∗∗ (7.35) 171.45∗∗∗ (7.34) 171.02∗∗∗ (7.34)

rotationActs 737.30∗∗∗ (14.82) 736.11∗∗∗ (14.82) 737.88∗∗∗ (14.81)

dropAct −565.88∗∗∗ (52.25) −565.30∗∗∗ (52.22) −561.44∗∗∗ (52.17)

gameModeF 2,751.28∗∗∗ (66.80) 2,754.27∗∗∗ (66.78) 2,513.46∗∗∗ (89.93)

tmodel 0.03∗∗∗ (0.01) 0.01 (0.01)

gameModeF : tmodel 0.12∗∗∗ (0.03)

Constant −1,512.10∗∗∗ (317.51) −1,539.08∗∗∗ (317.51) −1,512.16∗∗∗ (317.24)

Observations 6,949 6,949 6,949

R2 0.51 0.51 0.51

Adjusted R2 0.50 0.51 0.51

Residual Std. Error 1,745.65 (df = 6933) 1,744.83 (df = 6932) 1,742.95 (df = 6931)

F Statistic 473.45∗∗∗ (df = 15; 6933) 444.74∗∗∗ (df = 16; 6932) 420.42∗∗∗ (df = 17; 6931)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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4) and 5 (Eq. 5). The comparison allows us to verify the effect of tmodel on

all three recorded times. Specifically, the model 4 explains a significant and

moderate proportion of variance (R2 = 0.19, F (14, 6934) = 114.79, p < .001,

adj.R2 = 0.19). The model’s intercept, corresponding to gender = female,

age = 0, mr = 0, taskindex = 0, level = 0, zoid = O, gameMode = N and515

time = 0, is at −1540.81 (t(6934) = −7.09, p < .001). Whithin this model, the

effect of tmodel is significantly positive (β = 0.02, t() = 2.07, p < .05), while the

interaction effect of tmodel on gameModeF is significantly positive (β = 0.07,

t() = 3.36, p < .001).

Finally, model 5 explains a significant and substantial proportion of variance520

(R2 = 0.56, F (17, 6970) = 514.04, p < .001, adj.R2 = 0.56). The effect of tmodel

is non-significantly positive, while the interaction effect of tmodel on gameModeF

is significantly positive (β = 0.10, t() = 2.91, p < .01)

6. Discussion

Statistical analysis was conducted to verify to what extent the proposed525

cognitive model was able to help to explain the behaviours of human players

engaged in the same tasks.

The data show the model strength in finding an adequate solution (84.02%

of the cases).

For what concerns the role of mental rotation within the TetrisTM game, the530

correlation analysis of the times recorded on human tasks and times generated

by the cognitive model showed represented the central element of analysis of

the present work. For this reason, we tried to reduce as much as possible the

extreme heterogeneity of the data. This goal was accomplished using linear

models in which the times of tasks performed by human players were explained535

as a function of certain variables. This operation also has an explanatory value

of the process itself. These explanatory variables were used in all five linear

models, with consistent results across all models. To explain the role of each

explanatory variable, we refer to the results of the first model (Eq. 1).
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Table 4: Fits of linear models on first action and total times

Dependent variable:

timeFirstAction timeSpan

(4) (5)

gendermale −805.86∗∗∗ (56.86) −1,192.93∗∗∗ (93.86)

age 25.09∗∗∗ (2.51) 43.54∗∗∗ (4.14)

mr 2,186.01∗∗∗ (311.51) 173.09 (509.59)

taskindex −0.84∗∗∗ (0.18) −2.63∗∗∗ (0.29)

level −3.06 (11.89) −103.65∗∗∗ (19.63)

zoidI −182.83∗∗∗ (53.56) −134.33 (88.50)

zoidT 213.64∗∗∗ (53.94) 44.15 (93.39)

zoidS 217.77∗∗∗ (54.36) 403.65∗∗∗ (89.89)

zoidZ 237.05∗∗∗ (54.71) 516.42∗∗∗ (90.68)

zoidJ 219.95∗∗∗ (57.62) 194.46∗ (99.62)

zoidL 139.62∗∗ (57.87) −218.94∗∗ (98.98)

translationActs 135.85∗∗∗ (8.29)

rotationActs 621.37∗∗∗ (16.80)

dropAct −3,038.79∗∗∗ (58.85)

gameModeF 1,078.23∗∗∗ (61.73) 2,299.23∗∗∗ (101.82)

tmodel 0.02∗∗ (0.01) 0.02 (0.01)

gameModeF :tmodel 0.07∗∗∗ (0.02) 0.10∗∗∗ (0.03)

Constant −1,540.81∗∗∗ (217.25) 3,952.73∗∗∗ (358.56)

Observations 6,949 6,988

R2 0.19 0.56

Adjusted R2 0.19 0.56

Residual Std. Error 1,214.48 (df = 6934) 1,983.74 (df = 6970)

F Statistic 114.79∗∗∗ (df = 14; 6934) 514.04∗∗∗ (df = 17; 6970)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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It allows us to explain some general qualities of the process. In particular,540

concerning the player’s characteristics, in our group of participants, a significant

effect of gender is highlighted. Male players take, on average, less time to

complete the task (β = −1, 123.40, p < .001).

The player’s age seems to play also a significant role; in particular, the data

show a positive effect (β = 17.78, p < .001), i.e. as the age increases, the players545

seem to spend more time solving the task.

Of great interest is the result on mental rotation (β = 3, 555.83, p < .001)

that at a first interpretation could seem counterintuitive. Results show that

players with a higher mental rotation ability take longer to complete the task.

A possible interpretation could be given by what has already emerged in the550

literature concerning mental rotation ability to predict effectiveness in gaming

activity (Pilegard & Mayer, 2018). According to this interpretation, more skilled

players use all the time at their disposal to evaluate alternative solutions and,

therefore, complete the task in a significantly longer time.

Results confirm expectations regarding the task’s characteristic variables,555

i.e. the time of the last action decreases as the level advances (β = −87.79, p <

.001) and in general as the game progresses (taskindex) (β = −1.72, p < .001).

Moreover, as widely demonstrated in previous studies, the zoid type is essential

in explaining the task’s times. In detail, some shapes such as the zoid S, Z, and

J significantly increase task execution times.560

The group of explanatory variables related to the actions performed by the

user (number of rotations, number of translations and pressing the drop button)

were included to increase the variance explained by the model and to allow a

cleaner reading of the possible effect of the two main variables: the game mode

and the time taken by the model (tmodel).565

The results of model 1 show that the forced mode contributes significantly

to increasing the task resolution time (β = 2, 751.28, p < 0.001) as expected.

Models 2 and 3 highlight the contribution of model time in explaining human

user execution time. In particular, in model 2, the model time was included as

an additional explanatory variable highlighting a significant contribution to the570
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explanation of the time of the last action (β = 0.03,p < 0.001).

The inclusion of the interaction term in model 3 and its results highlight a

significant effect of the model within the forced mode (β = 0.12, p < 0.001) at

the expense of a global effect that is no longer significant. This result is coherent

with design expectations, as it confirms that the user is forced to activate the575

mental rotation process when engaged with the forced game mode. Therefore,

it seems confirmed that the mental rotation process is not always activated by

the human user, who often simplify the task and bypass the activation of the

mental rotation process by adopting epistemic rotational actions.

Finally, the results of models 4 and 5, conducted respectively on the time of580

the first action and on the total time, confirm the results obtained concerning

the time of the last action.

Even with respect to first action and total task times, model time contributes

to their explanation, especially in the forced game mode condition where β =

0.07 (p < 0.001) for model 4 and β = 0.10 (p < 0.001) for model 5. Of note,585

in the case of first action time (model 4), model time is significant regardless of

game mode (β = 0.02(p < 0.01)).

7. Conclusion

In this paper, we present the first version of a cognitive model that exploits

mental rotation as a fundamental process in the TetrisTM game.590

Although the experiment was carried out on a relevant number of tasks

(7704), it represents a preliminary step in the formal definition of an agent

model able to explain the cognitive processes underlying the game activity in

the TetrisTM.

Defining a cognitive model about the TetrisTM allows us to investigate595

whether and under what conditions mental rotation ability is employed in gam-

ing activities.

Moreover, a better understanding of the phenomenon allows us to interpret

the conflicting results in the literature concerning the effectiveness of TetrisTM
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as a spatial skills training tool (Pilegard & Mayer, 2018).600

Considerations that may be essential for the eventual re-design of play ac-

tivities to maximize the educational effectiveness of this tool.

To this end, the game data collected through a specific game app were com-

pared with the results obtained by the virtual agent engaged in the same game

tasks.605

As extensively described throughout this paper, a central aspect of the model

validation process is the analysis of game times.

Generally, the results seem to prove the cognitive model’s validity in explain-

ing the users’ activities and then confirming the main hypothesis underlying its

implementation.610

The main idea behind the model is that the mental rotation process is cog-

nitively activated only for those Zoids forms for which the game involves two

versions, one reflecting the other. Specifically, in our model, mental rotation

plays a role exclusively for the S/Z and J/L pairs, where mental rotation is

necessary to avoid errors.615

The results confirm what has already been observed by Kirsh & Maglio

(1994). Under specific conditions, human players tend to use rotation as an

epistemic action to reduce the cognitive load required to solve the task. In our

study, the significance of the model in the forced game condition confirms this

hypothesis.620

This finding opens exciting perspectives about the possibility of rethinking

game activities to improve the educational effectiveness of these tools.

In particular, the introduction of the forced rotation mode by preventing

the player from using rotations as epistemic actions would seem to succeed in

forcing the mental rotation process in the player. It appears urgent the need625

to verify if this game mode, or other modes designed with the same intent, can

improve the effectiveness of TetrisTM in the training of visuospatial skills.

Finally, the significance of the model’s time in explaining the timing of the

first action regardless of the mode of play suggests the need to analyse the stages

preceding the first action in greater detail. To this end, it seems clear that such630
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an analysis requires different observational techniques than the analysis of logs

recorded from the game. Mixed approaches based on the techniques of thinking

aloud and on the biophysical analysis of signals such as those coming from EEG

instruments or related to the eye-tracking of users could provide interesting

information to improve the validity of the proposed cognitive model.635

This work represents a first case study in which computational cognitive

models are applied to get hints on game design and to maximize their educa-

tional effectiveness as training tools.
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