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1.  Introduction

Stig Kanger — born of Swedish parents in China in 1924 — was professor of Theoretical

Philosophy at Uppsala University from 1968 until his death in 1988.  He received his Ph. D.

from Stockholm University in 1957 under the supervision of Anders Wedberg.  Kanger’s dis-

sertation, Provability in Logic, was remarkably short, only 47 pages, but also very rich in new

ideas and results.  By combining Gentzen-style techniques with a model theory à la Tarski,

Kanger obtained new and simplified proofs of central metalogical results of classical predi-

cate logic: Gödel’s completeness theorem, Löwenheim-Skolem’s theorem and Gentzen’s

Hauptsatz.  The part that had the greatest impact, however, was the 15 pages devoted to

modal logic.  There Kanger developed a new semantic interpretation for quantified modal

logic which had a close family resemblance to semantic theories that were developed around

the same time by Jaakko Hintikka, Richard Montague and Saul Kripke (independently of each

other and independently of Kanger).

Although his work did not receive much attention at the time, it is generally accepted

nowadays that Kanger played a crucial role in the development of model-theoretic semantics

for modal logic.  The precise nature of his contribution is, however, not so widely appreci-

ated.  It is sometimes said that Kanger was the true originator of the so-called possible worlds

or Kripke semantics for modal logic.  Thus, Dagfinn Føllesdal, in his address to the Stig
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Kanger Memorial Symposium in Uppsala August 1991, proposed the label “Kanger-Kripke-

semantics” for the possible worlds approach.1

Such an assimilation of Kanger-type semantics to standard possible worlds semantics

could, however, be misleading.  Kanger’s formal semantics for modal logic does not, at least

explicitly, utilize the notion of a possible world.  Nor is there in his early works from 1957

any mention or discussion of possibilia (possible worlds, counterfactual states of affairs, pos-

sible individuals).  I do not think this is an accident.  Kanger’s goal was to generalize and

extend the standard Tarski-style definition of truth in a model for first-order predicate lan-

guages to languages of quantified modal logic.  He wanted to do so without introducing any

new primitives in the metalanguage.  In (1957b), he explicitly mentions it as an advantage of

his approach that it does not presuppose any “intensional” entities like Fregean senses,

meanings or intensions.  Although he does not discuss the matter, one gets the decided

impression that Kanger’s ontology is no more hospitable toward possibilia than it is toward

intensional entities.

There are, I shall argue, important differences, both of a conceptual and a technical nature,

between Kanger’s approach to modal semantics and the possible worlds approach.  In this

connection, one should distinguish between: (i) possible worlds semantics proper: a particular

type of model-theoretic semantics for modal logic; and (ii) the possible worlds interpretation

of modal concepts.  Accordingly, we may pose the two questions: “Is Kanger’s semantics a

kind of possible worlds semantics?” and “Is Kanger’s interpretation of modal notions a

‘possible worlds interpretation’?”.  In this paper I shall argue that both questions should be

answered in the negative.  Kanger semantics differs from standard possible worlds semantics

in many ways.  As we shall see, the notions of logical truth and logical consequence are

defined differently for the two kinds of semantics.  Moreover, the underlying intuitions about

modality are different.

2.  Semantics for quantified modal logic: from Carnap to Kripke

The proof theoretic study of quantified modal logic was pioneered by Ruth Barcan Marcus

(1946a, 1946b, 1947) and Rudolf Carnap (1946, 1947) who were the first to formulate

axiomatic systems that combined quantification theory with (S5- and S4-type) modal logic.

The attempts to interpret quantified modal logic by means of formal semantic methods also

began with Carnap (1946, 1947), where he presented a semantics for logical necessity based

on Leibniz’s old idea that a proposition is necessarily true if and only if it is true in all possi-

ble worlds.  In his formal semantics, Carnap used syntactic entities — state-descriptions — as

representatives of possible worlds.  Suppose that we are considering a first-order predicate
                                                
1 At the 9th International Congress of Logic, Methodology and Philosophy of Science.  See
Føllesdal (1994).
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language L with a countably infinite set of individual constants, an infinite sequence of n-ary

predicate letters for each n ≥ 1, but without function symbols or the identity symbol.  In addi-

tion to Boolean connectives and quantifiers, the language L contains the modal operator M for

logical necessity.  A state-description for L is simply a set of (closed) atomic sentences of L.2

Carnap (1947), p. 9, writes “...the state-descriptions represent Leibniz’s possible worlds or

Wittgenstein’s possible states of affairs”. Relative to a state-description S, the notion of truth

for sentences ϕ of L is defined as follows (we write S ‚ ϕ for ϕ being true in S):

(1) S ‚ P(a1,..., an) iff P(a1,..., an) ∈  S.

(2) S ‚ ¬ϕ  iff S ‚ /   ϕ.

(3) S ‚ (ϕ → ψ) iff S ‚ /   ϕ or S ‚ ψ.

(4) S ‚ ∀ xϕ iff, for every individual constant c, S ‚ ϕ(c/x).

Here, ϕ(c/x) is the result of substituting c for every free occurrence of x in ϕ.

Finally, Carnap gives the following truth clause for the operator M:

(5) S ‚ Mϕ iff, for every state-description S′, S′ ‚ ϕ.

That is, the modal formula “it is (logically) necessary that ϕ” is true in a state-description S if

and only if ϕ is true in every state-description S′.
Carnap defines logical truth as truth in all state-descriptions (we write ‚ ϕ  for ϕ  being

logically true). Hence,

(6) S ‚ Mϕ iff ‚ ϕ.

(7) S ‚ ¬Mϕ iff ‚ /   ϕ.

(8) ‚ Mϕ, if ‚ ϕ; and ‚ ¬Mϕ, otherwise.

It is easy to verify that M satisfies the usual laws of the system S5, together with the so-called

Barcan formula and its converse, and the rule of necessitation,

(K) ‚ M(ϕ → ψ) → M(ϕ → ψ).

(T) ‚ Mϕ → ϕ.

(S5) ‚ ¬Mϕ → M¬Mϕ.

(Ba) ‚ ∀ xMϕ(x) → M∀ xϕ(x).

(CBa) ‚ M∀ xϕ(x) → ∀ xMϕ(x).

(Nec) If ‚ ϕ, then ‚ Mϕ.

Let QC(L) be the set of all logically true sentences, according to the above semantics, in

the language L.

                                                
2 Actually Carnap’s state descriptions are sets of literals (i.e., either atomic sentences or ne-
gated atomic sentences) that contain for each atomic sentence either it or its negation.  How-
ever, for our purposes we may identify a state description with the set of atomic sentences
that it contains.  Also, in order to make things simple, I am not discussing here Carnap’s
treatment of identity statements.
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Theorem.  The set QC(L) is not recursively enumerable, so there is no formal system with

this set as its theorems.

Proof:  Suppose the set QC(L) is recursively enumerable.  Let ϕ  be any sentence of the

non-modal fragment L0 of L.  Then, we have:

(i) Either ‚ Mϕ or ‚ ¬Mϕ.
(ii) If ‚ Mϕ, then ‚ ϕ.

(iii) If ‚ ¬Mϕ, then ‚ /   ϕ.

Since, by assumption, there is an effective enumeration of the logically true sentences of L,

we can effectively decide which of ‚  Mϕ  or ‚ ¬Mϕ holds.  But, this means in virtue of (ii)

and (iii) that we can effectively decide which of ‚ ϕ  or ‚ /   ϕ that holds.  By Gödel’s com-

pleteness theorem for the predicate calculus, for any sentence ϕ of L0, ‚ ϕ holds if and only if

ϕ is a theorem of the first-order predicate calculus.  But this is contrary to Church’s theorem

according to which the pure predicate calculus is undecidable (cf. Kleene 1967, § 45).

Q. E. D.

The next step in the development of a viable semantics for quantified modal logic was

taken by Stig Kanger in his dissertation Provability in Logic (1957a).  Kanger’s ambition was

to provide a language of quantified modal logic with a model-theoretic semantics à la Tarski.

For that purpose Kanger introduced the notions of a primary valuation and a system.  A pri-

mary valuation for a language L of quantified modal logic is a function v which for every

non-empty domain D assigns an appropriate extension in D to every individual constant,

individual variable, and predicate constant in L.  A system is an ordered pair S = <D, v>,

where D is a (non-empty) domain and v is a primary valuation.  Notice that v does not only

assign extensions to symbols relative to the designated domain D, but relative to all domains

simultaneously.

In Kanger’s dissertation there is to be found, for the first time in print, a semantics for

modal operators in terms of so-called accessibility relations: each modal operator M is asso-

ciated with an accessibility relation RM between systems in terms of which the semantic eval-

uation clause for M is spelled out:

S ‚ Mϕ iff for every system S′ such that SRMS′, S′ ‚ ϕ.

That is, Mϕ is true in the system S if and only if ϕ is true in every system S′ that is RM-acces-

sible from S.  One particular modal operator that Kanger introduces is one he calls logical

necessity and which he provides with the following semantic clause:

S ‚ L  ϕ iff for every system S′, S′ ‚ ϕ.

Thus, RL   is the universal relation between systems.
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Kanger points out that by imposing certain formal requirements on the accessibility rela-

tion, like reflexivity, symmetry, transitivity, etc., one can make the operator satisfy corre-

sponding well-known axioms of modal logic.  In this way, the introduction of accessibility

relations made it possible to apply semantic and model-theoretic methods to the study of a

variety of modal notions other than logical necessity.  Although Kanger was the first to pub-

lish, other researchers, among them Hintikka and Montague, also came up with the idea of

utilizing accessibility relations in the semantics of modal notions.

One source of inspiration for Kanger’s use of accessibility relations in modal logic was no

doubt the work of Jónsson and Tarski (1951) on representation theorems for Boolean algebras

with operators.3  Jónsson and Tarski define operators N on arbitrary subsets X of a set U in

terms of binary relations R ⊆  U × U in the following way:

NX = {x ∈  U: ∃ y ∈ X(yRx)},

that is NX is the image of X under R.  They also point to correspondences between properties

of N and properties of R.  Among other things, they prove a representation theorem for so-

called closure algebras that, via the Tarski-Lindenbaum construction, yields the completeness

theorem for propositional S4 with respect to Kripke models with a reflexive and transitive

accessibility relation.  However, Jónsson and Tarski do not say anything about the relevance

of their work to modal logic.  Perhaps they considered the connection too obvious or of too

little importance to mention it.

A semantic approach to first order modal predicate logic that has a close resemblance to

Kanger’s was developed by Montague (1960).4  Like Kanger, Montague starts out from the

standard model-theoretic semantics for non-modal first-order languages and extends it to lan-

guages with modal operators.  He defines an interpretation for an ordinary first-order predi-

cate language L to be a triple S = <D, I, g>, where (i) D is a non-empty set (the domain); (ii) I

is a function that assigns appropriate denotations in D to the non-logical constants (predicate

symbols and individual constants) of L;5 and (iii) a function g that assigns values in D to the

individual variables of L.  For each non-logical constant or variable X, let S(X) be the seman-

tic value (i.e., denotation for non-logical constants and value for variables) of X in the inter-

pretation S.  Then the notion of truth relative S is defined as follows:

                                                
3 On p. 39 in (1957a) Kanger makes an explicit reference to Jónsson and Tarski (1951).

4 Montague (1960) writes: “The present paper was delivered before the Annual Spring Con-
ference in Philosophy at the University of California, Los Angeles, in May, 1955.  It contains
no results of any great technical interest; I therefore did not initially plan to publish it.  But
some closely analogous, though not identical, ideas have recently been announced by Kanger
[(1957b)], [(1957c)] and by Kripke in [(1959)].  In view of this fact, together with the possi-
bility of stimulating further research, it now seems not wholly inappropriate to publish my
early contribution.”

5 We are not going to consider languages that contain function symbols.
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(1) S ‚ P(t1,..., tn) iff <S(t1),..., S(tn)> ∈  S(P).

(2) S ‚ (t1 = t2) iff S(t1) = S(t2).

(3) S ‚ ¬ϕ  iff S ‚ /   ϕ.

(4) S ‚ (ϕ → ψ) iff S ‚ /   ϕ or S ‚ ψ.

(5) S ‚ ∀ xϕ iff for every object a ∈  D, S(a/x) ‚ ϕ.

Here, S(a/x) is the interpretation which is exactly like S, except for assigning the object a to

the variable x as its value.

Montague now asks the same question as Kanger:  How can this definition of the truth-

relation ‚ be generalized to first-order languages with modal operators?  As we recall,

Kanger solved the problem by modifying the notion of an interpretation: a Kanger-type inter-

pretation (what he called ‘a system’) assigns denotations to the non-logical constants and val-

ues to the variables not only for one single domain (the ‘actual’ one) but for all domains.

Montague’s approach is simpler than Kanger’s: he keeps the notion of an interpretation S of

first-order logic intact, and just adds semantic evaluation clauses for the modal operators.  As

in the Kanger semantics, each modal operator M is associated with an accessibility relation

RM.  Now, however accessibility relations are relations between interpretations S = <D, I, g>

of the underlying non-modal first-order language.  The semantic clause corresponding to the

operator M, with associated accessibility relation RM, is:

(6) S ‚ Mϕ iff for every interpretation S′ such that SRMS′, S′ ‚ ϕ.

Montague observes that for each variable x the universal quantifier ∀ x, that binds the variable

x, can be viewed as a modal operator with the accessibility relation R∀ x defined by the condi-

tion:

<D, I, g>R∀ x<D′, I′, g′> iff D = D′, I = I′ and g(y) = g′(y) for every variable y

different from x.

Given this definition, (5) becomes a special case of (6).

Montague associates with the operator L   of logical necessity the accessibility relation RL   

defined by:

<D, I, g>RL  <D′, I′, g′> iff D = D′ and g = g′.

Thus, his semantic clause for L   becomes:

(1) <D, I, g> ‚ L  ϕ iff for every I′ defined over D, <D, I′, g> ‚ ϕ.

This semantic clause should be compared with Kanger’s stricter condition:

(2) S ‚ L  ϕ iff for every system S′, S′ ‚ ϕ.

The difference between (1) and (2) corresponds to a difference between two different concep-

tions of logical truth: Tarski’s (1936) conception and the modern model-theoretic one.

According to Tarski (1936), truth and logical truth are properties that primarily apply to inter-
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preted formal languages.  An interpreted first-order language L comes with a domain of dis-

course D and an interpretation function I that gives the denotations in D of the non-logical

constants of L.  Hence, the (absolute) notion of truth is well-defined for such a language.  A

formula ϕ of L is true relative to an assignment g of values in L to the variables of L if <D, I,

g> ‚  ϕ .  ϕ  is true, simpliciter, if it is true relative to every assignment, that is if it is true in

the intended model <D, I>.6  Now, according to Tarski (1936), a sentence (closed formula) ϕ
of L is logically true if it is true and its truth is invariant with respect to all reinterpretations of

its non-logical constants relative to the given domain of discourse D.  That is, ϕ is logically

true if and only if, for every interpretation <D, I′, g′> with the given domain D, <D, I′, g′> ‚

ϕ.  If ϕ is a sentence (closed formula), then its truth-value is independent of the assignment of

values to the variables.  Hence, Tarski’s (1936) definition yields for sentences ϕ  of L:

ϕ is logically true iff for every I′ defined over D, <D, I′, g> ‚ ϕ,

where D is the domain of discourse of L and g is any assignment of values in D to the vari-

ables.  Hence, for closed formulas of the underlying first-order language, Montague’s truth-

clause (1) above coincides with Tarski’s (1936) definition of logical truth.  It also accords

well with Carnap’s definition of logical truth as truth in all state descriptions, provided that

the language contains names for all the objects in a fixed domain of discourse.

Tarski’s (1936) definition yields the result that all true sentences of an interpreted language

that do not contain any non-logical symbols are logically true.  So, if the domain of discourse

is infinite (and provided that = is taken as a logical constant), then all the sentences of the

form:

(n) ∃ x1...∃ xn(x1 ≠ x2 ∧ ...∧ x1 ≠ xn ∧  x2 ≠ x3 ∧ ...∧ x2 ≠ xn ∧ ...∧ xn-1 ≠ xn)

n ≥ 2, are logically true.  So according to Montague (1960), the sentences:

( L  n) L  ∃ x1...∃ xn(x1 ≠ x2 ∧ ...∧ x1 ≠ xn ∧  x2 ≠ x3 ∧ ...∧ x2 ≠ xn ∧ ...∧ xn-1 ≠ xn)

                                                
6 Here we ignore the possibility of D not being a set but a proper class and I not assigning
sets but proper classes as extensions to the predicate symbols of L.  If this were the case, then
the intended interpretation of L would not be a model in the formal sense of  model theory.
Of course, there are interpreted first-order languages whose intended interpretations are not
models in the formal sense, e. g., the first-order language of set theory, with the proper class
V of all sets as its domain and the proper class {<x, y>: x is a member of y} as the interpreta-
tion of ‘ ∈ ’. This opens up the possibility for a sentence ϕ of an interpreted formal language
of being true although it may be false in all models in the sense of model theory.  This possi-
bility is precluded for first-order languages, by the Löwenheim-Skolem theorem: the truth of
ϕ implies its consistency (by the intuitive soundness of first-order logic), which in turn, by
the Löwenheim-Skolem theorem, implies ϕ having a (countable) model.  But for formal lan-
guages that are able to express such notions as ‘ there is a proper class of x’s such that ϕ’ the
implication:

(1) if ϕ is true, then ϕ is true in some  model (which is built up from sets).
fails. Let, for example, ϕ be the sentence ‘‘there is a proper class of x’s such that x = x’.
This example is due to McGee (1992).
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are true for an interpreted language with an infinite domain.  Notice, however, that according

to Montague (1960), it is not the case that:

 ‚ L ∃ x1...∃ xn(x1 ≠ x2 ∧ ...∧ x1 ≠ xn ∧  x2 ≠ x3 ∧ ...∧ x2 ≠ xn ∧ ...∧ xn-1 ≠ xn)

that is the sentences (L  n) are not logically true.  This is so, since the definition of logical

truth that Montague adopts in the metalanguage is the standard model-theoretic one of truth in

all interpretations, not just truth in all interpretations with a given domain.  In conclusion,

Montague’s and Kanger’s respective truth clauses for L   yield, for modality-free sentences

ϕ,

L  ϕ is true iff ϕ is logically true in the sense of Tarski (1936).(Montague)

L  ϕ is true iff ϕ is logically true in the model-theoretic sense.(Kanger)

There are other possibilities for interpreting logical necessity within Montague’s frame-

work, one interesting alternative being:

 (3) <D, I, g> ‚ L  ϕ iff for every model <D′, I′> such that D ⊆  D′,
<D′, I′, g> ‚ ϕ.

Notice that on Montague’s interpretation (1) of L  , both the Barcan formula:

(Ba) ∀ x L  ϕ(x) → L  ∀ xϕ(x)

and its converse:

(CBa) L  ∀ xϕ(x) → ∀ x L  ϕ(x)

are logically true.  However, on the interpretation (3), (CBa) still holds, but the Barcan for-

mula fails.  Kanger’s interpretation (2), finally, makes both (Ba) and (CBa) fail.  As a matter

of fact, on the interpretation (2) the following is a logical truth:

L  ϕ(x1,..., xn) ↔ L  ∀ x1...∀ xnϕ(x1,..., xn).

Hence, if we write, for example,

∃ x1 L  ϕ(x1,..., xn),

the initial quantifier does not really “bind” the free occurrences of the variable x1 in the for-

mula ϕ.
In other words, Kanger’s interpretation does not allow us to “quantify in” past the modal

operator L  .  The interpretations (1) and (3), on the other hand, give coherent sense to

“quantifying in”.  For example, given interpretation (3), the following sentence is clearly

meaningful.  As a matter of fact, it is easily seen to be false in any domain with two elements:

∃ x∃ y(x ≠ y ∧∀ z L (z = x ∨  z = y) ) → ∃ x∃ y(x ≠ y ∧ L  ∀ z(z = x ∨  z = y)).

The semantical frameworks of Carnap (1947), Kanger (1957a, (1957b) and Montague

(1960) — although important developments in themselves, were still not what we nowadays
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call possible worlds semantics.  Something was still missing: an ingredient that was provided

by Jaakko Hintikka and Saul Kripke.7

In order to see what was missing, let us just make a seemingly small change in Carnap’s

semantics.  Instead of considering the set of all state-descriptions, we shall only consider

those state-descriptions that belong to some arbitrary non-empty set C.  Let us call such a set

C of state-descriptions a Carnap frame.  The notion of truth in a state-description now

becomes relativized to a Carnap frame.  Thus for any S ∈ C,

(1) S ‚C P(a1,..., an) iff P(a1,..., an) ∈  S.

(2) S ‚C ¬ϕ  iff S ‚ /  C ϕ.

(3) S ‚C (ϕ → ψ) iff S ‚ /  C ϕ or S ‚C ψ.

(4) S ‚C ∀ xϕ iff, for every individual constant c, S ‚C ϕ(c/x).

(5) S ‚C Mϕ iff, for every state-description S′ in C, S′ ‚C ϕ.

Observe how the relativization of the definition to C changes the meaning of M.  Instead of

Mϕ meaning that ϕ is logically true, it now means that ϕ  is universally true relative to the

given set of state descriptions.  The metatheoretic definition of logical truth must be changed

accordingly: ϕ is logically true (‚ ϕ) if and only if, for every C and every S ∈  C, S ‚C ϕ.  It

is not difficult to axiomatize the quantified modal logic that corresponds to this semantics.  As

a matter of fact, Hintikka’s and Kripke’s innovation is essential for proving completeness

results.

The set C represents the space of possible worlds: not every state-description may corre-

spond to a genuine possibility.  The last step to possible worlds semantics, taken by Kripke, is

to let the possible worlds be explicitly represented in the semantics by an index set W.

Hence, by replacing the non-empty set of state-descriptions by an indexed family C =

{Sw}w∈ W of state-descriptions and utilizing accessibility relations between indices (possible

worlds), we get something rather similar to possible worlds semantics.  Sentences are now

evaluated at indices rather than at state-descriptions:

(1) w ‚C P(a1,..., an) iff P(a1,..., an) ∈  Sw.

(2) w ‚C ¬ϕ  iff w ‚ /  C ϕ.

(3) w ‚C (ϕ → ψ) iff w ‚ /  C ϕ or w ‚C ψ.

(4) w ‚C ∀ xϕ iff, for every individual constant c, w ‚C ϕ(c/x).

(5) w ‚C Mϕ iff, for every u ∈ W such that wRu, u ‚C ϕ.

Finally, we get a full-fledged possible worlds semantics if we replace the use of state-

descriptions by an indexed family of domains {Dw} w∈ W together with an interpretation func-

tion I that assigns, for each possible world w ∈ W, an appropriate semantic value to the non-

logical symbols of L.

                                                
7  Cf. Kripke (1959, 1963) and Hintikka (1957a, 1957b, 1961).
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In Carnap’s, Kanger’s and Montague’s early theories, the space of possibilities is repre-

sented by one comprehensive collection containing all state descriptions, systems or models,

respectively.  Hence, every state description, system, or model is thought of as representing a

genuine possibility.  Hintikka, Kripke and modern possible worlds semantics are instead

working with semantic interpretations in which the space of possibilities is represented by an

arbitrary non-empty set K of model sets (in the case of Hintikka) or possible worlds (Kripke).

Following Hintikka’s (1980, 1989) terminology, one may say that the early theories of

Carnap, Kanger, and Montague were considering standard interpretations only, where one

quantifies over what is, in some formal sense, all the possibilities.  In the possible worlds

approach, one also considers non-standard interpretations, where arbitrary non-empty sets of

possibilities are considered.8  The consideration of interpretations (model structures) that are

non-standard in this sense — in combination with the use of accessibility relations between

worlds in each interpretation — made it possible for Kripke (1959, 1963b and 1965) to prove

completeness theorems for various systems of propositional and quantified modal logic (T, B,

S4, etc.).

Kripke’s major innovation was perhaps his use — within each model structure — of a set

of abstract points (indices, “possible worlds”) to represent the space of possibilities.  This

innovation made it possible for Montague — building on ideas from Carnap — to represent

intensional entities (senses, intensions) by set-theoretic functions from points (representing

possible worlds) to extensions.9  These Carnap-Montague intensions could then be used to

give model-theoretic interpretations of comprehensive fragments of natural language.

Montague grammar combined categorial grammar with the idea of representing meanings of

lexical items with functions from points (indices, “possible worlds”) to extensions.

We end this section by presenting a version of Kripke’s (1963a) semantics for modal pred-

icate logic with identity, where the notion of a possible world is an explicit ingredient of the

semantic theory.

A (Kripke) model structure for a language L of first-order modal predicate logic is a quin-

tuple S = <W, D, R, E, w0> where, (i) W is a non-empty set (of possible worlds); (ii) D is a

non-empty set (of possible objects); (iii) R ⊆  W × W is the accessibility relation of the struc-

ture; (iv) E is a function which assigns to each w ∈  W a subset Ew of D (intuitively Ew is the

set of objects that exist in w); and (v) w0 is a designated element of W (the actual world).  It

is required that D = ∪ w∈ WEw, i. e., that every possible object exists in at least one world.

A Kripke model is an ordered pair M = <S, I>, where S = <W, D, R, E, w0> is a model

structure and I is a function satisfying: (vi) for each w ∈  W, I assigns to each n-ary predicate

constant P of L a subset I(w, P) of Dn; and (vii) I assigns to each individual constant c of L an

                                                
8 For the standard-non-standard distinction, see also Cocchiarella (1975).

9 Cf. Montague (1974) and the papers reprinted therein.
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element I(c) ∈ D.  A model M of the form <S, I> is said to be based on the model structure

S.

Observe that I(w, P) is not necessarily a subset of (Ew)n, i. e., the extension of P in w may

involve objects that do not exist in w.  Moreover, individual constants are treated as rigid

designators, i. e., they are assigned denotations in a world-independent way.  An assignment

in M is a function g which assigns to each variable x an element g(x) in D.  For any term t in

L, we define M(t, g) to be g(t) if t is a variable; and I(t) if t is an individual constant.

With these notions in place, we can define what it means for a formula ϕ  to be true in a

world w with respect to the model M and the assignment g (in M) (in symbols, w ‚M ϕ[g]):

(1) w ‚M P(t1,..., tn)[g] iff <M(t1, g),..., M(tn, g)> ∈  I(w, P).

(2) w ‚M (t1 = tn)[g] iff M(t1, g) = M(t2, g).

(3) w ‚M ¬ϕ [g] iff w ‚ /  M ϕ[g].

(4) w ‚M (ϕ → ψ)[g] iff w ‚ /  M ϕ[g] or w ‚M ψ[g].

(5) w ‚M∀ xϕ[g] iff, for every a ∈  Ew, w ‚M ϕ[g(a/x)].

(6) w ‚MMϕ[g] iff, for every u ∈ W such that wRu, u ‚M ϕ[g].

We say that ϕ is true with respect to the model M  and the assignment g (in symbols ‚M
ϕ[g]), iff ϕ is true at the actual world w0 with respect to M and g.  ϕ is true in the model M

(in symbols, ‚M ϕ), if for every assignment g, ‚M ϕ[g].  ϕ is true in a model structure S

(‚S ϕ)if it is true in every model based on S.  Let K be a class of model structures.  We say

that ϕ is K-valid if ϕ is true in every S ∈  K.

We are especially interested in model structures where R is the universal relation in W, i.

e., in which:

(6) w ‚MMϕ iff, for every u ∈ W, u ‚M ϕ.

Let QS5= be the class of such structures.  As Kripke (1963a) showed, neither the Barcan for-

mula nor its converse is (QS5=)-valid.  It should also be pointed out that Kripke's semantics

validates the Law of Identity,

(L=) ∀ x(x = x),

as well as the principle of Indiscernibility of Identicals,

(I=) ∀ x∀ y[x = y → (ϕ(x/z) → ϕ(y/z))],

applicable without restrictions also to modal contexts ϕ(z).

From these principles, together with the rule of Necessitation it is easy to infer:

(M=) ∀ x∀ y(x = y → M(x = y)) (Necessity of Identity)

(M≠) ∀ x∀ y(x ≠ y → M(x ≠ y)). (Necessity of Distinctness)

The latter principles are controversial.  Hintikka has repeatedly stressed that they are unac-

ceptable for propositional attitude constructions like “John knows that ...”, “George the IV
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believes that...”, etc.10  On the other hand, Kripke’s formal semantics fits well with his con-

ception of metaphysical necessity — as it is expounded in Kripke (1980) — and the possible

worlds metaphysics that goes with it.  In section 6.1, I shall argue for the thesis that (QS5=) is

the (first-order) quantified modal logic corresponding to Kripke’s conception of metaphysical

necessity.  And I shall write M   rather than M when the necessity operator is interpreted as

metaphysical necessity.  The dual operator, metaphysical possibility, is written as „M  , that

is, „M  ϕ =df. ¬ M  ¬ϕ .

3.  Metalinguistic versus object-level interpretation of modalities

According to the dominant intuition underlying Kanger’s work, modal operators of the object

language, “It is logically necessary that”, “It is set-theoretically necessary that”, etc., are

obtained “from above” as it were, by “reflecting” corresponding predicates of the metalan-

guage: “truth in all interpretations”, “truth in every interpretation that is normal with respect

to the set-theoretic vocabulary”, etc.  According to this intuition, it is (analytically) necessary

that all bachelors are unmarried, just because the sentence “All bachelors are unmarried” is an

analytic truth.  Writing N  ϕ for “it is analytically necessary that ϕ”, where ϕ is a sentence of

the object language, we have:

(1) N  ϕ is true iff ϕ is an analytic truth.

By relativizing this schema to a semantic interpretation S, we get:

(2) N  ϕ is true w. r. t. S iff ϕ is an analytic truth w. r. t. S.

The basic idea can be expressed in the form of a reflection principle:

(R) S ‚ Oϕ iff P(ϕ, S),

where O is an operator of the object language and P is a metalinguistic predicate that may be

satisfied by a formula ϕ  and an interpretation S.11  By itself, the schema (R) only gives

“truth-conditions” for formulas containing O .  But if we think of (R) as explaining the

meaning of the operator O in terms of the metalinguistic predicate P, we have what may be

called a metalinguistic interpretation of O.

Kanger’s interpretation of modal operators is usually metalinguistic in this sense.  Con-

sider, for example, his introduction of the operator L   of logical necessity.  The underlying

intuition is expressed by the schema:

(3) L  ϕ is true iff the sentence ϕ is logically true.

                                                
10 See, for example,  Hintikka (1969).

11 We leave it open, for the time being, exactly what is meant by a (semantic) interpretation.
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In virtue of the standard model-theoretic definition of “logical truth” as “truth in every inter-

pretation of the object language”, we get:

(4) L  ϕ is true iff ϕ is true in every interpretation.

(4) corresponds to the following clause of Kanger semantics:

L  ϕ is true in the domain D relative to the (primary) valuation v of the object

language L iff ϕ is true in every domain D′ relative to every valuation of L.

Analytic truth is explicated by Kanger in the following way:

(5) ϕ is an analytic truth in the domain D relative to the (primary) valuation v iff ϕ
is true in any domain D′ relative v.

This corresponds to the following semantic clause for the operator N  :

(6) N  ϕ is true in D relative v iff for every D′, ϕ is true in D′ relative v.

The possible worlds approach, by contrast, is based on the intuition that there is a multi-

tude of ways in which the world could have been different.  On this conception, necessity is

not primarily a metalinguistic notion: the necessary truths are rather the truths that would

have remained true had any of these possibilities been realized.  It is necessarily true that 2 +

2 = 4 just because, for any of the ways (“possible worlds”) in which the world could have

been different, had the world been different in that way, the proposition that 2 + 2 = 4 would

still have been true.  These two intuitions about the source of necessity are clearly distinct and

indeed, as we shall see, give rise to very different formal semantic theories.

To further clarify the relationship between Kanger’s semantics for modal logic and possi-

ble worlds semantics, we may make use of a terminology due to Etchemendy (1990) and dis-

tinguish between interpretational and representational semantics.  Intuitively, the truth-value

of a sentence is determined by two factors: (i) the interpretation of the symbols in L; and (ii)

the facts (the way the world is).  We may keep the world fixed but let the interpretation of the

symbols vary.  This is the basic idea behind the standard definitions of logical truth and logi-

cal consequence in the model-theoretic tradition after Tarski (1936).  Etchemendy calls it

interpretational semantics.  On this approach, set-theoretic models represent ways of reinter-

preting the language.  Or, we may keep the interpretation of the linguistic units fixed, but

consider what would have happened to the truth-value of the sentence had the facts been dif-

ferent.  A semantics based on the latter idea Etchemendy calls representational.  On this

approach set-theoretic models represent ways in which the world could have been different

(possible worlds).  The classical example of representational semantics is, of course, Carnap’s

semantics in terms of state descriptions.

We can use either of the two ideas, the representational or the interpretational, to interpret

modal operators.  For example, (i) and (ii) below are alternative ways of interpreting a

necessity operator:
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(i) L  ϕ is true (in the actual domain relative to the intended interpretation) iff ϕ is true

in every domain relative to every interpretation of the (non-logical) symbols of

ϕ.

(ii) M  ϕ is true (in the actual world relative to the intended interpretation) iff ϕ is

true and would have remained true (relative to the intended interpretation of

the language) even if the world had been different in any of the ways in which

it (metaphysically) could have been different.

The definition of L   is an example of the interpretational approach: it corresponds to

Kanger’s explication of logical necessity.  The definition of M  , corresponding to Kripke’s

notion of metaphysical necessity, is an example of the representational approach.

Both ideas play a role in Kanger’s semantics, but the first one is clearly the one that domi-

nates his thinking.  The second idea turns up, in a relatively mild form, in his semantics for

analytic necessity: it is analytically true that ϕ (in the actual domain and on the intended

interpretation of object language) iff ϕ is true in every domain.  In order for this definition to

make intuitive sense, we must allow domains that contain not only actually existing objects

but also merely possible objects, i.e., objects that do not exist but might have existed — or at

least representatives of such objects.  Otherwise, all true universal generalizations of the form

∀ x(Fx → Gx) would on the proposed definition be analytically true.  We could not distin-

guish between the analytically true sentence “All bachelors are unmarried” and the presum-

ably synthetic truth “All bachelors are less than 150 years old”.  Kanger expresses the idea

behind his definition of analyticity:  “Our definition of analyticity may be regarded as an

explication ... of the idea that an analytic proposition is a proposition that is true in every pos-

sible universe.”12  Actual truth is defined with respect to the domain that Kanger describes as

“the class of all ‘real’ individuals”.13  We see that alternative domains of individuals play

somewhat the same role in Kanger semantics as possible worlds in standard possible worlds

semantics. Kripke’s notion of metaphysical necessity — truth in every metaphysically possi-

ble world — is , however, foreign to Kanger’s way of thinking.  Modal operators are viewed

as projections of metalinguistic concepts rather than as expressing genuine properties of

propositions.

                                                
12 Kanger (1970), p. 49.

13 Kanger (1957b), p. 4.  Cf. also Kanger (1970), p. 50.



KANGER’S EARLY SEMANTICS FOR MODAL LOGIC 15

4.  Kanger’s semantics for first-order quantified modal logic

We shall now take a closer look at Kanger’s semantics for quantified modal logic.  We con-

sider a first-order predicate language L with identity and a family of unary modal operators

{Mi: i ∈ Ι}.
A domain is a non-empty set D.  A (primary)valuation (for L) is a function v, which, given

any domain D, assigns: (i) an element of D to each term t of L; (ii) a set of ordered n-tuples of

elements in D to each n-place predicate constant P in L.

We may, whenever convenient, think of a valuation as consisting of two components: (i)

an interpretation I that assigns denotations I(D, σ) to the non-logical constants of L relative to

domains D; and (ii) an assignment g that assigns, for each domain D and each variable x, a

value g(D, x) to x in D.  Of course, v = I ∪  g.  For any I and D, we define ID to be the unary

function defined by letting ID(σ) = I(D, σ).  vD and gD are defined analogously.

A system is an ordered pair S = <D, v>, where D is a domain and v is a valuation.  When

we want to emphasize the distinction between the interpretation I and assignment g, we also

write a system as: S = <D, I, g>.  Kanger defines the notion of a formula ϕ being true in a

system S = <D, v> (in symbols, S ‚ ϕ) in the following way:14

(1) S ‚ (t1 = t2) iff v(D, t1) = v(D, t2).

(2) S ‚ P(t1,..., tn) iff <v(D, t1),...,v(D, tn)> ∈  v(D, P).

(3) S ‚ /  ⊥ .

(4) S ‚ (ϕ → ψ) iff S ‚ /  ϕ  or S ‚ ψ.

(5) <D, I, g> ‚ ∀ xϕ iff <D, I, g′> ‚ ϕ, for each g′ such that g′ =x g.

(6) <D, I, g> ‚ ∃ xϕ iff <D, I, g′> ‚ ϕ for some g′ such that g′ =x g.

(7) for every operator M, S ‚ Mϕ iff ∀ S′, if SRMS′, then S′ ‚ ϕ.

Explanation: g′ is like g except possibly at x (also written, g′ =x g) if and only if, for each

domain D and each variable y other than x, g′(D, y) = g(D, y).  In the above definition, RM is

a binary relation between systems that is associated with the modal operator M .  RM is the

accessibility relation associated with the operator M.

Among the modal operators in L, there are two designated ones N  (“analytic necessity”)  

and L  (“logical necessity”)  with the semantic clauses:

<D, I, g> ‚ N  ϕ iff for every domain D′, <D′, I, g> ‚ ϕ.

<D, I, g> ‚ L  ϕ iff for every system S, S ‚ ϕ.

We define a Kanger model for L to be an ordered pair M = <D, I> of a domain and an

interpretation.  Notice that for any D and any I, the structure <D, ID> is a model for the non-

                                                
14 Kanger uses the notation T(D, v, ϕ) = 1 instead of our <D, I> ‚ ϕ[g] and he speaks of the
operation T which, for every domain D, every primary valuation v and every sentence ϕ, as-
signs one of the truth-values 0 or 1 to ϕ as the secondary valuation  for L.
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modal fragment L0 of L.  Hence, an interpretation I can also be represented as a family {<D,

ID>} D∈ D of first-order models indexed by the collection D of all domains.  Notice also that

this family contains exactly one model for each domain D.  A Kanger model can then be

written as an ordered pair of the form M = <D, {<D, ID>} D∈ D>.  A system, finally, can be

represented as an ordered pair <M, g> of a Kanger model M and an assignment g.

We say that formula ϕ  is true in a Kanger model M (in symbols, M ‚ ϕ), if it is true in

every system S of the form <M, g>.  If g and g′ are assignments that agree for each domain

on all the variables that occur free in ϕ, then <M, g> ‚ ϕ iff <M, g′> ‚ ϕ.  Hence, a sen-

tence (closed formula) is true in a Kanger model M = {<D, ID>} D∈ D iff it is true in some

system <M, g>.

A formula ϕ is said to be valid (logically true) if it is true in every system <D, v>.  A for-

mula ϕ  is a logical consequence of a set Γ  of formulas (in symbols, Γ  ‚ ϕ) if ϕ  is true in

every system in which all the formulas in Γ are true.

Kanger defines a proposition as an ordered pair <ϕ, I> of a sentence (closed formula) ϕ
and an interpretation I.15  An n-ary predicate is defined as an ordered pair <P, I>, where P is

an n-ary predicate constant and I is an interpretation.  A name is a pair <c, I>, of a constant c

and an interpretation I.  The proposition <ϕ, I> is said to be true in the domain D if <D, I> ‚

ϕ.  <ϕ, I> is called analytic if it is true in every domain D.  Notice that for any domain D,

(1) < N  ϕ, I> is true in D iff <ϕ, I> is analytic.

(2) < L  ϕ, I> is true in D iff ϕ is logically true.

The notion of (non-relativized) truth is explained as follows:16  Let D0 be the set of all “real”

individuals.  Let I0 be the interpretation which, for every domain D, assigns to the non-logical

symbols the denotations that they have according to the intended interpretation of L.17  A

proposition <ϕ, I> is true if it is true in the domain D0.  A sentence ϕ is true if the proposition

<ϕ, I0> is true.  ϕ is said to be analytic if <ϕ, I0> is analytic.  Notice that N  ϕ is true iff ϕ is

analytic.  Similarly, L  ϕ is true iff ϕ is logically true.

Let us say that a modal operator M is ontological if there exists a relation R such that for

every domain D, every valuation v and every formula ϕ:18

<D, v> ‚ Mϕ iff for every D′, if DRD′, then <D′, v> ‚ ϕ.

                                                
15 Actually he uses valuations here, but since the assignment of values to the variables is
immaterial in this context it is more natural to work with interpretations.

16 Cf. Kanger (1957b), p. 4.

17 Kanger (1957b) uses the terminology “standard usage of L” instead of “intended interpre-
tation of L”.

18 Here our terminology differs slightly from Kanger’s.  Our ontological operators
correspond to what Kanger calls purely ontological operators.  Cf. Kanger (1957a) p. 34.
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In (1970) Kanger presents a version of his semantics where he considers ontological operators

only.  That is, every operator M is associated with a relation RM between domains rather than

between systems.  In (1972) the ontological approach has become his official semantics for

modal logic.

An important difference between Kanger’s semantics for modal operators and that of

Kripke is that Kanger assigns to each modal operator a fixed accessibility relation, once and

for all, while Kripke (“standard possible worlds semantics”) lets the accessibility relations

vary from one model structure to another.  One could say that Kanger treats the modal opera-

tors as logical symbols – having fixed interpretations – while Kripke treats them as non-logi-

cal symbols – i.e., allowing their interpretations to vary.

5.  The treatment of “quantifying in” in Kanger semantics

In Provability in Logic (1957a) and in “The morning star paradox”(1957b) Kanger gives the

following evaluation clause for the universal quantifier:

(i) <D, I, g> ‚ ∀ xϕ iff <D, I, g′> ‚ ϕ for every assignment g′ such that g′ =x g.

According to this clause, the formula ∀ xϕ is true in the system <D, I, g> if and only if ϕ is

true in every system <D, I, g′> which is exactly like <D, I, g> except, possibly, for the values

it assigns to the variable x in the various domains.

In (1957c) and (1957d) he considers the following alternative clause:

(ii) <D, I, g> ‚ ∀ xϕ  iff <D, I, g ′> ‚  ϕ  for every g′ such that (i) g′ =x g; and

(ii) g′(D′, x) = g(D′, x) for all domains D′ that are distinct from D.

That is, the formula ∀ xϕ is true in the system <D, I, g> if and only if ϕ is true in every system

<D, I, g′> which is exactly like <D, I, g> except possibly, for the value it assigns to the vari-

able x in the domain D.

Kanger (1957c) suggests the following informal readings of these two alternatives:

(x)ϕ is true iff ϕ is true for every interpretation of x

(Ux)ϕ is true iff ϕ is true whatever x may denote,

writing (x) and (Ux) for the quantifiers with the first and the second evaluation clause, respec-

tively.  If ϕ is a non-modal formula, then, of course,

(x)ϕ ↔ (Ux)ϕ

is valid.  However, (Ux) is really an odd quantifier, which does not even validate:

(Ux)„N  Fx → (Uy)„N  Fy.

Consider, namely, a system S = <D, I, g> such that Fx is true in some domain D′ different

from D, and Fy is false in every domain.  Suppose also that the extension of F in D is the
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empty set.  Then, „N  Fx and ¬„N  Fy are both true in S.  By the semantic clause for (Ux),

(Ux)„N  Fx will also be true in S.  But, ¬„N  Fy is true for every assignment g′ satisfying the

conditions (i) g′ =y g; and (ii) for all domains D′ that are distinct from D, g′(D′, y) = g(D′, y) .

Hence, (Uy)„N  Fy is false in S.

That is, substitutivity of alphabetic variants fails for the operator (Ux).  For this reason, I

shall not consider it further.  So, when I speak of Kanger’s interpretation of the quantifiers, I

shall understand the treatment in (1957a) and (1957b), according to which the universal

quantifier ∀  has the semantic clause (i) and the existential quantifier has the dual clause:

(iii) <D, I, g> ‚ ∃ xϕ iff <D, I, g′> ‚ ϕ for some g′ such that g′ =x g.

In order to get a clearer understanding of Kanger’s treatment of quantification, I shall

speak of selection functions that pick out from each domain an element of that domain as

individual concepts.  To be more precise, an individual concept, in this sense, is a function f,

with the collection of all domains as its range, such that for every domain D, f(D) ∈  D.  We

can think of a system S = <D, I, g> as assigning to each individual constant c the individual

concept {<D, I(D, c)>: D is a domain} and to each variable x the individual concept {<D,

g(D, x)>: D is a domain}.  The formula P(t1,..., tn) is true in S = <D, I, g> if and only if the

individual concepts designated by t1,..., tn pick out objects in the domain D that stand in the

relation I(D, P) to each other. The identity symbol designates the relation of coincidence

between individual concepts (at the “actual” domain D).  That is. t1 = t2 is true in a system S

= <D, I, g> if and only if the individual concepts designated by t1 and t2, respectively, pick

out one and the same object in the domain D of S.

Kanger’s quantifier ∀ x, with the semantic clause (i), can now be thought of as an objectual

quantifier that ranges not over the “individuals” in the “actual” domain D, but over the

(constant) domain of all individual concepts.  That is, ∀ xϕ is true in a system <D, I, g> if and

only if ϕ  is true in every system which is exactly like <D, I, g> except, possibly, for the

individual concept that it assigns to the variable x.  Note, that interpreted in this way, the

range of the quantifiers ∀ x and ∃ x is independent not only of the domain D but also of the

system S: the range of the quantifiers ∀ x and ∃ x is fixed, once and for all, to be the collection

of absolutely all individual concepts.  While formulas of the form t1 = t2 express coincidence,

identity between individual concepts is expressed by formulas of the form N (t1 = t2) .

Writing x ≡ y for N (x = y) , the following principles are valid:

(L≡) ∀ x(x ≡ x)

(I ≡) ∀ x∀ y(x ≡ y → (ϕ(x/z) → ϕ(y/z))),

that is, ≡ satisfies the formal laws of the identity relation.

None of the sentences:

(n) ∃ x1...∃ xn(x1 ≠ x2 ∧ ... ∧  x1 ≠ xn ∧  x2 ≠ x3 ∧ ...∧ x2 ≠ xn ∧ ...

∧ xn-1 ≠ xn),
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saying that the “actual” domain has at least n elements (for n ≥ 2), is logically true according

to Kanger’s semantics.  In contrast all sentences of the form:

∃ x1...∃ xn(¬ (x1 ≡ x2) ∧ ...∧  ¬ (x2 ≡ x3) ∧ ...∧  ¬ (x2 ≡ xn) ∧ ...∧ ¬ (xn-1 ≡ xn)),

are logically true.  Intuitively, these sentences say that there are, for each n, at least n individ-

ual concepts.

Consider now Kanger’s (1957b) discussion of the so-called Morning Star paradox.  The

paradox arises from the following premises:

(1) N (Hesperus = Hesperus) 

(2) Phosphorus = Hesperus

(3) ¬ N (Phosphorus = Hesperus) ,

where “Phosphorus” and “Hesperus” are two proper names (individual constants) and N   is

to be read “it is analytically necessary that”.  We assume that “Phosphorus” is used by the

language community as a name for a certain bright heavenly object visible in the morning and

that “Hesperus” is used for some bright heavenly object visible in the evening.  Unbeknown

to the community, however, these objects are one and the same, namely, the planet Venus.

“Hesperus = Hesperus” being an instance of the Law of Identity is clearly an analytic truth.

It follows that the premise (1) is true.  (2) is true, as a matter of fact.  “Phosphorus =

Hesperus” is obviously not an analytic truth, “Phosphorus” and “Hesperus” being two differ-

ent names with quite distinct uses.  So, (3) is true.  However, using sentential logic together

with the following laws of predicate logic:

(UI) ∀ xϕ → ϕ(t/x), (Universal Instantiation)

(I=) ∀ x∀ y(x = y → (ϕ(x/z) → ϕ(y/z))),

(Indiscernibilityof Identicals)

we can infer from (2) and (3):

(4) ¬ N (Hesperus = Hesperus) .

But (1) and (4) contradict each other, so something must have gone wrong in this argument.

According to Kanger’s diagnosis of the Morning Star paradox it is (I=) that is at fault.

Given Kanger’s semantic clause (i) for the universal quantifier and his semantic treatment of

individual terms, (UI) is valid but (I=) is not.  Only the following restricted version of (I=) is

valid:

(I=′) ∀ x∀ y(x = y → (ϕ(x/z) → ϕ(y/z))), provided that no free occurrence of z in ϕ is

within the scope of a modal operator.

With this change in the underlying logic, (4) can no longer be inferred from (2) and (3).

As Kanger himself points out, there are still some difficulties left.  From (UI) and the

equivalence  ∃ xϕ ↔ ¬∀ x¬ϕ , we get:
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(EG) ϕ(t/x) → ∃ xϕ. (Existential Generalization)

But, in view of (1) - (3) and the Law of Identity, the following sentences are true:

(5) Phosphorus = Hesperus ∧  ¬ N (Phosphorus = Hesperus) .
(6) Hesperus = Hesperus ∧  N (Hesperus = Hesperus) .

So, it follows that:

(7) ∃ x(x = Hesperus ∧  ¬ N (x = Hesperus) ).
(8) ∃ x(x = Hesperus ∧  N (x = Hesperus) ).

Although unintuitive, this result is perfectly compatible with the interpretation of the

quantifiers as ranging over individual concepts and of the identity symbol as designating

coincidence between individual concepts.  According to this interpretation, (7) and (8) mean:

(7′) There is an individual concept x which actually coincides with the individual

concept Hesperus but does not do so by analytical necessity.

(8′) There is an individual concept x which not only happens to coincide with the

individual concept Hesperus but does so by analytic necessity.

As Quine (1947) was the first to point out, however, (7) and (8) are incompatible with

interpreting ∀ x and ∃ x as objectual quantifiers meaning “for all objects x (in the domain D)”

and “for at least one object x (in D)” and letting the identity sign stand for genuine identity

between objects (in D).  Because, under this interpretation, (7) and (8) have the readings:

(7′′ ) There is an object x (in the actual domain D) which is identical with Hesperus

and which is not necessarily identical with Hesperus.

(8′′ ) There is an object x (in the actual domain D) which is identical with Hesperus

and which is necessarily identical with Hesperus.

meaning that one and the same object, Hesperus, both is and is not necessarily identical with

Hesperus, which is absurd.  So Kanger’s semantics for quantified modal logic is incompatible

with interpreting the quantifiers as ranging over actually existing individuals (as opposed to

individual concepts) and at the same time interpreting = as identity between individuals.

In Kanger’s semantics there are no means of identifying individuals from one domain to

another.  In particular, the truth-values of formulas will not be affected if we make all the

domains disjoint, by systematically replacing every domain D by the set:

{<D, a>: a ∈ D}.

In other words, set-theoretic relations between domains like inclusion, overlap and disjoint-

ness, have no semantic significance.

Suppose we make the claim:

(9) Something is such that it is the number of planets but might not have been so.
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It seems reasonable to formalize this claim in quantified modal logic as:

(10) ∃ x(Px ∧  ¬MPx).

We cannot use any of the Kanger’s quantifiers for this purpose, however.  Suppose, namely,

that:

g(D, x) ∈  I(D, P), DRMD′, D ≠ D′, g(D′, x) ∉  I(D′, P).

Intuitively this means that one thing is the number of planets in the domain D and one thing

or another is not the number of planets in the modal alternative D′ to D.  From this, we

should not be able to conclude (10).  But on any of Kanger’s interpretations of the universal

quantifier, (10) follows.  So his approach does not allow us to express the claim that one and

the same object has a given property in one domain and lacks that property in another domain.

Now, we might ask how we could repair Kanger’s semantics in order to allow for genuine

quantification over individuals.  There are many possibilities.  One that is particularly

straightforward technically is to adapt Kripke’s (1963a) treatment of quantification to

Kanger’s approach.  This means that we modify the notion of an assignment g in such a way

that an individual variable x is assigned an object g(x) in a domain-independent way.  That is,

we make two changes with respect to Kanger’s notion of an assignment: (i) the value g(D, x)

of an individual variable x in a domain D is no longer required to be a member of D; (ii) for

all domains D and D′, we require that g(D, x) = g(D′, x).  After these changes are made, an

assignment simply becomes a function g that assigns to each variable x an object g(x).  We

then adopt the following evaluation clauses for the universal and existential quantifiers:

<D, I, g> ‚ ∀ xϕ iff <D, I, g′> ‚ ϕ, for every g′ such that (i) g′ is like g except

possibly at x; and (ii) g′(x) ∈ D.

<D, I, g> ‚ ∃ xϕ iff <D, I, g′> ‚ ϕ, for some g′ such that (i) g′ is like g except

possibly at x; and (ii) g′(x) ∈ D.

With these clauses our previous objection to Kanger’s approach that it could not make correct

sense of sentences like

∃ x(Px ∧  ¬MPx),

seems to have been met.  For this sentence to be true at <D, I, g>, there needs to be an ele-

ment a ∈ D such that:

a ∈  I(D, P) and for some D′, DRMD′ and a ∉  I(D′, P).

We have been able to express the claim that one and the same individual has the property P in

domain D and lacks that property in some domain D′ that is possible relative to D.

Let us now see how the modified semantics might handle the Morning Star paradox.  In

this semantics, = is interpreted as genuine identity between objects.  Accordingly the logical

principles for = are the expected ones:
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(L=) ∀ x(x = x). (Law of Identity)

(I=) ∀ x∀ y(x = y → (ϕ(x/z) → ϕ(y/z))). (Indiscernibility of Identicals)

However, instead of (UI) we have:

(UI ′) ∀ xϕ ∧  ∃ x(x = y) → ϕ(y/x).

Now, how should we handle individual constants within the modified Kanger semantics?  An

intuitively appealing approach is to assign denotations to constants in a domain-dependent

way as before, but not require the denotation I(D, c) of a constant c relative to a domain D to

be a member of D.   With this treatment of individual constants, we cannot infer from (I=) to:

(11) Phosphorus = Hesperus →
( N (Phosphorus = Phosphorus)  → N (Phosphorus = Hesperus) ),

unless the following requirements are met:

∃ x N (x = Phosphorus) , ∃ x N (x = Hesperus) .

But these conditions hold, only if:

∃ x N (x = Phosphorus) , N (Phosphorus = Hesperus) .

The last of these conditions contradicts (3), so it cannot be assumed.  It would, presumably,

hold only if “Phosphorus” and “Hesperus” were synonymous.  Hence, we cannot infer (11)

from (I=).  We can also verify, directly, that the modified semantics does not allow the infer-

ence from (2) and (3) to (4).  So the Morning Star paradox, in the form that Kanger presented

it, is resolved.

Let us say that a modal operator M is a constant assignment operator, if there exists a

binary relation RM between Kanger models <D, I>, such that for every assignment g,

<D, I, g> ‚ Mϕ  if and only if for every Kanger model <D′, I′> such that

<D, I>RM<D′, I′>, <D′, I′, g> ‚ ϕ.

Intuitively, constant assignment operators do not affect the values that are assigned to free

variables within their scopes.  In contrast, Kanger’s operator of logical necessity, which is not

a constant assignment operator, binds all free variables within its scope.  Hence, quantifying

in, past this quantifier, does not make sense.  As Kaplan (1986) has shown, however, we can

interpret logical necessity in a way that admits of quantifying in.  Within the present frame-

work, Kaplan’s treatment of logical necessity amounts to the following semantic clause:

<D, I, g> ‚ L  ϕ if and only if for every Kanger model <D′, I′>,

<D′, I′, g> ‚ ϕ.

Although, we do have for this operator, Barcan Marcus’s (1947) Necessity of Identity princi-

ple:

(M=) ∀ x∀ y(x = y → L (x = y) ),
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we, of course, do not have:

(12) Phosphorus = Hesperus → L (Phosphorus = Hesperus) ,

and this, we think, is as it should be.

It is, of course, very doubtful whether Kanger would have approved of these changes to his

semantics.

6.  The set-domain versus the class-domain semantics

Kanger presents his semantic theory within an informal set-theoretic framework, where all

sets are treated on a par, as genuine objects that can be members of other sets.19  This theory

— what we might call naive Kanger semantics — is, however, threatened by paradoxes:

given normal assumptions about sets the theory is inconsistent.  For example, primary valua-

tions are themselves non-empty sets, that is, domains.  It follows that for any valuation v, v

itself belongs to the first argument domain of v.  In consequence, for an individual constant c,

<<v, c>, v(v, c)> ∈ v.  This is contrary to the ordinary assumption of set theory that sets are

well-founded.  This consequence may not seem especially serious from Kanger’s point of

view, since in section 5.6 of (1957a) he briefly discusses the introduction of non-well-founded

sets in set theory.  (Cf. K. B. Hansen’s contribution to the present volume).

However, there are more serious problems.  Consider any valuation v.  Its first argument

domain is the collection U of all domains.  But in order for v to be a set, the collection U must

also be a set.  Let ℘ +(U) be the set of all non-empty subsets of U.  Then, by Cantor’s theo-

rem, card(℘ +(U)) > card(U).  But this contradicts the fact that ℘ +(U) ⊆  U.  Thus, given nor-

mal set-theoretic assumptions the collections U and v cannot be sets.  But this is in apparent

contradiction to Kanger’s free use of the valuations v in various set-theoretic constructions,

for instance, when he defines the notions of a system, a proposition, truth in a system, logical

truth, etc., or when he introduces accessibility relations between systems.

We are going to consider two alternative ways of modifying Kanger’s approach in such a

way that the threat of paradox is avoided: the set-domain approach and the class-domain

approach.

6.1. Kanger set-domain semantics

A natural way of modifying naive Kanger semantics is to assume, as before, that the domains

are arbitrary non-empty sets but that the valuation functions are proper classes.  The elements

of a domain are, of course, either individuals (urelements) or sets.  A (primary) valuation v is
                                                
19 In his definitions Kanger speaks of “classes” rather than “sets”, but this terminological dif-
ference is inessential, since he does not make any distinctions within the category of all clas-
ses but rather treats all classes that he speaks of as genuine objects that can be members of
other classes.
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now defined in the same way as before, except that it is taken to be a functional (proper) class

rather than a functional set.  The same holds for the notions of an interpretation I and an

assignment g.  The models <D, ID> for the non-modal base language L0 are sets.  An inter-

pretation is a proper class {<D, I D>}D∈ D of such models (relational structures) indexed by

the class D of all non-empty sets.

A Kanger (set-domain) model consists of a domain D and an interpretation I = {<D,

ID>} D∈ D.  Such a model (we use the notation (D, I) for it) cannot be a set nor, in fact, a class,

since it is intuitively an ordered pair, one of the components of which is a proper class.

Although, we cannot define it in the usual systems of set-theory (Zermelo-Fraenkel, Gödel-

Bernays-von Neumann, Kelley-Morse), it makes intuitive sense to speak of the ordered pair

(D, I).

An assignment g is now a functional class which for any domain D and any variable x

assigns a value g(D, x) in D to x.

A system is an ordered pair S = (M, g) consisting of a Kanger model M and an assign-

ment g.

The accessibility relation RM  that is associated with a modal operator M  of L  is a

collection of ordered pairs (S, S′) of systems.  Or, in the case of ontological operators: a

collection of ordered pairs of domains.

The following notions are defined exactly as before: (i) S ‚ ϕ and M ‚ ϕ; (ii) a formula ϕ
being valid or logically true (written as ‚  ϕ); (iii) logical consequence, Γ  ‚ ϕ, where Γ is a

set of formulas and ϕ a formula.

The Kanger set-domain semantics presupposes a strong metatheory in which one can speak

not only of the usual cumulative hierarchy of sets over a set of individuals, but also of classes

that may contain sets and individuals, collections that may contain such classes, collections

that may contain collections, and so on.  Only the individuals and sets are regarded as genuine

objects, while classes and collections are thought of as essentially predicative in nature.  As a

proper formal language for formalizing the metatheory, we think of a language of simple-type

theory, where the individual variables (i.e., variables of type ι ) range over the elements of the

cumulative hierarchy and the predicate variables of type (α1,..., αn) range over arbitrary n-ary

relations whose i’th domain for 1 ≤ i ≤ n consist of the class of all entities of type α i.  So for

instance, the variables of type (ι ) range over arbitrary classes of objects (urelements and sets).

Variables of type ((ι ), (ι )) range over arbitrary relations between classes of objects, etc.  A

metalanguage of this kind should be appropriate also to formalize the next version of Kanger

semantics.

6.2.  Kanger class-domain semantics

This semantics differs from the previous one in the following respects: A domain is now

defined to be a non-empty class of elements of the cumulative set hierarchy, i.e., we also
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allow domains to be proper classes.  A valuation is a function v, which given any domain D,

assigns appropriate denotations over D to the non-logical constants (propositional constants,

individual constants and predicate constants) and individual variables of L.  We now allow

the denotation of an n-place predicate constant P of L to be a class of n-tuples of elements in

D.  The notions of an interpretation and an assignment are adjusted accordingly.  Hence, we

allow models (D, ID) for the base language L0, where D is a class and ID assigns appropriate

classes to the non-logical predicate constants of L.  Thus, Kanger models now have the form

M = (D, {(D, ID)} D⊆ D).

6.3. Comparing the two approaches

We might now ask how validity with respect to the class-domain semantics is related to valid-

ity with respect to the set-domain semantics.  If the language L has sufficient expressive

capacity, neither implies the other.  Let, for example, L′ be the language which is obtained

from our language L by adding the generalized quantifier (∃ abs inf x) as a new logical con-

stant.20  The intuitive reading of (∃ abs inf x)ϕ is

for absolutely infinitely many x, ϕ(x),

which means that the class of all objects a that satisfy ϕ(x) is a proper class.  The conception

of the absolutely infinite is due to Cantor.  Intuitively, a class A is absolutely infinite if it does

not have exactly κ elements for any cardinal number κ (compare, A being infinite if it does

not have exactly n members for any natural number n).

Consider now the sentence (∃ abs inf x)(x = x).  This sentence is true in a domain D iff the

domain is a proper class.  According to the class-domain semantics, there are domains that are

proper classes.  So, according to this semantics the following sentence:

(1) „N (∃ abs inf x)(x = x) 

is true in every domain (and for every valuation v).  Hence, it is logically true according to

the Kanger class-domain semantics.

On the other hand, according to the Kanger set-domain semantics the sentence (∃ abs inf

x)(x = x) is false in every domain.  Hence, according to this semantics, it is instead

(2) ¬„N (∃ abs inf x)(x = x) 

                                                
20 I have taken the quantifier (∃ abs inf x) from McGee (1992), where he uses it to show that
there are interpreted formal languages for which the equivalence:

(M) ϕ is logically true iff ϕ is true in every model (in the standard model-theoretic sense of “model”
according to which models are sets).

fails.  He considers the language of set-theory with (∃ abs inf x) added to it.  The sentence (∃ abs

inf x)(x = x)  is then an example of a true sentence which is not true in any model (whose
domain is a set).  So if (M) were correct then ¬ (∃ abs inf x)(x = x) would be an example of a
false but logically true sentence.  But there are of course no such sentences, so the equiva-
lence (M) cannot hold in general.
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that is a logical truth.  Here we have a dramatic difference between the two semantic theories.

Clearly, it is the class-domain semantics that yields the intuitively correct result in this case.

Instead of adding the “artificial” quantifier (∃ abs inf x) to L, we could instead have assumed

that L contained a modal operator M with the semantic clause:

(D, v) ‚ Mϕ iff ∀  D′, if D′ is a proper class then (D′, v) ‚ ϕ.

Then, we would have for the dual operator N,

(D, v) ‚ Nϕ iff ∃ D′, D′ is a proper class and (D′, v) ‚ ϕ.

The class-domain semantics would then pronounce:

(3) N∀ x(x = x)

logically true, but according to the set-domain semantics it would instead be its negation:

(4) M∃ x(x ≠ x)

that is logically true.  Once again, the set-domain semantics gets the wrong result by arbitrar-

ily excluding interpretations that are intuitively legitimate.

7.  Logical versus metaphysical necessity

7.1.  On the adequacy of Kripke’s logic (QS5=) as the logic of metaphysical necessity

According to the metaphysical picture of modal reality inspired by Kripke’s Naming and

Necessity (1980), there is a space W of possible worlds in which the actual world w0 is just

one of the worlds.  There is also a collection D of possible objects and there are properties

that the possible objects can have and relationships that they can have to each other (we call

these properties and relationships attributes).  For each possible world w, n-place attribute A,

and possible objects a1,..., an, it is determinately either true or false that A(a1,..., an) holds in

w.  For each world w there is also the collection Ew of all the objects that exist in that world.

Presumably, every possible object exists in at least one possible world.  Also, certain objects

like pure sets exist in all possible worlds.  A reasonable existence principle for sets is that a

set exists in a world w if and only if all its elements exist in that world.  Given that sets are

objects and that the pure sets exist in all possible worlds, it follows that the collection Ew of

all individuals that exist in a world w is always a proper class rather than a set.

Consider now the first-order modal language L, with identity, and with M   as its only

modal operator.  In terms of the metaphysical picture described above, we can describe the

intended interpretation of L and define the notion: “truth in a world w relative to an assign-

ment g”, for formulas of L.  The intended interpretation consists of the following ingredients:

(i) the class W of all metaphysically possible worlds; (ii) the class D of all possible objects;

(iii) for each w ∈  W, a class Ew ⊆  D of objects existing in the world w; (iv) the n-ary predi-

cate symbols of L designate n-ary attributes and the individual constants of L designate pos-
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sible objects; (v) the attributes have extensions relative to possible worlds (the extension of an

n-ary attribute relative to a world w is a (possibly proper) class of n-tuples of possible

objects).  A sentence ϕ of the interpreted language L is true if it is true at the actual world (w.

r. t. the intended interpretation) relative to every assignment.

Now, it may very well be that the collections of possible worlds, possible individuals, and

individuals existing in particular worlds do not form sets.  In that case, the intended interpre-

tation of L does not correspond to a Kripke model structure.  We cannot, then, directly con-

clude from a sentence ϕ being true to it being true in some model structure.  As long as we are

considering the language of first-order modal logic, however, we can still make this inference

in an indirect way.21  By the completeness theorem for Kripke’s system of quantified S5,

there exists a formal system QS5= which is (strongly) complete with respect to the set of all

(QS5=)-structures.22  Hence, for any sentence ϕ of L:

ϕ  is true ⇒ ϕ  is (QS5=)-consistent (by the intuitive soundness of QS5= with

respect to the intended interpretation) ⇒  ϕ is (QS5=)-satisfiable (by the com-

pleteness theorem for QS5=).

It follows that

ϕ is (QS5=)-valid ⇒ ¬ϕ  is not (QS5=)-satisfiable ⇒  ¬ϕ  is not true ⇒ ϕ  is

true.

Now, consider the language L with the intended interpretation given above.  We have a

notion of truth for L, but what could it mean for a sentence of L to be logically true?  The

notion of the intended interpretation for L suggests a notion of an interpretation for L.  An

interpretation for L is just like a Kripke model M = <S, I> based on a model structure S =

<W, D, R, E, w0> except that the collections W, D, R, Ew for w ∈  W, are not required to be

sets but are allowed to be proper classes.  (We are of course only considering interpretations

                                                
21 If we are considering languages that are sufficiently strong in expressive power, then
Kripke’s model-theoretic semantics is not sufficient to capture the notions of metaphysical
necessity and possibility.  Consider, for example, the sentence:

(∗ ) M (∃ abs inf x)(x = x) .

This sentence is presumably true in the intended interpretation.  However, there is no Kripke
model structure where it is true.

22  To be exact, we let QS5= be the system of free  (i.e., ‘free’ of existential assumptions)
modal predicate logic which is defined as follows.  Axioms: (1) Any substitution instance of
a theorem of propositional S5. (2) ∀ xϕ ∧  ∃ y(t = y) → ϕ(t/x), provided that t is an individual
constant or a variable that is free for x in ϕ. (3) ∀ x(ϕ → ψ) → (∀ xϕ → ∀ xψ).  (4) ∀ xϕ ↔
ϕ, provided x is not free in ϕ. (5) ∀ x∃ y(y = x).  (6) t = t.  (7) t = t´ → (ϕ(t/x) → ϕ(t´/x)), pro-
vided that t is an individual constant or a variable that is free for x in ϕ. Deduction rules:
(MP) If ª  ϕ  and ª ϕ  → ψ , then ª  ψ .  (Nec) If ª  ϕ , then ª  Mϕ . (UG) If ª  ϕ , then
ª ∀ xϕ.  Cf. Garson (1984) and Hughes and Cresswell (1996), chap. 16-17, where the this
and similar systems are formulated and proved to be complete with respect to Kripke’s
(1963a) semantics (these are the systems that  Garson  refer to as Q1R).
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where R = D × D.)  Hence, the intended interpretation becomes one of the interpretations.  Let

us call a sentence ϕ  of L supervalid if it is true in every interpretation of L and valid if it is

true in every (QS5=)-model (that is, if it is (QS5=)-valid).23

We now make the following conjecture:

The logical truths of the language L of metaphysical necessity are precisely

those sentences of L that are supervalid.

Adapting an argument due to Kreisel (1969), we can prove that supervalidity coincides with

validity for the language L.  The argument goes as follows:

Since Kripke (QS5=)-models are interpretations, we have:

(1) if ϕ is supervalid, then ϕ is valid.

The completeness theorem for the system (QS5=) yields:

(2) if ϕ is valid, then ϕ is (QS5=)-provable.

However, the system (QS5=) is intuitively sound with respect to supervalidity.  That is the

axioms are easily seen to be supervalid and the only rule of inference, modus ponens, pre-

serves supervalidity.  Hence:

(3) if ϕ is (QS5=)-provable, then ϕ is supervalid.

(2) together with (3) yield:

(4) if ϕ is valid, then ϕ is supervalid.

Hence, the notions of validity and supervalidity are coextensional for the language L.

From this together with the conjecture, we conclude that (QS5=) is the first-order logic of

metaphysical necessity.24

7.2.  Logical necessity

An (interpreted) sentence ϕ  is metaphysically necessary if it is true in every possible

world.  It is logically necessary if it is true for every domain and every interpretation of its

non-logical symbols.  Given a certain conception of modal reality, I have argued that Kripke’s

(1963a) semantics for quantified S5 adequately captures the logic of metaphysical necessity.

This means that the logic of metaphysical necessity is relatively meager.  Although there are,

on the Kripkean metaphysical picture, a wealth of metaphysically necessary truths, only a few

of them are also logically necessary.  For example, if the axioms of Zermelo-Fraenkel set

                                                
23 The term “supervalidity” is due to Boolos (1985).  The concept itself goes back to Kreisel
(1969).

24 Here, we have, of course, presupposed Kripke’s picture of metaphysical reality.  Given
another picture, for example that of Lewis (1985), we get a different  logic of metaphysical
necessity (but still a form of quantified S5).
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theory are true, they are presumably true in all possible worlds, and hence metaphysically

necessary.  But they are not truths of logic, not even of the logic of metaphysical necessity.

Consider now the sentences saying that there are at least n (n ≥ 1) individuals:

(n) ∃ x1...∃ xn(x1 ≠ x2 ∧ ...∧  x1 ≠ xn ∧  x2 ≠ x3 ∧ ...∧ x2 ≠ xn ∧ ...∧ xn-1 ≠ xn).

Each of these sentences is presumably metaphysically necessary.  So for each positive n, the

following is a truth of metaphysics:

( M  n) M  ∃ x1...∃ xn(x1 ≠ x2 ∧ ...∧  x1 ≠ xn ∧  x2 ≠ x3 ∧ ...∧ x2 ≠ xn ∧ ...∧ xn-1 ≠ xn).

It is, of course, not a logical truth.  We do not have for any n ≥ 1,25

‚(QS5=) M  ∃ x1...∃ xn(x1 ≠ x2 ∧ ... ∧  x1 ≠ xn ∧  x2 ≠ x3 ∧ ...∧ x2 ≠ xn ∧ ...∧ xn-1 ≠ xn).

Nor do we have for any n,

‚(QS5=) „M  ∃ x1...∃ xn(x1 ≠ x2 ∧ ...∧  x1 ≠ xn ∧  x2 ≠ x3 ∧ ...∧  x2 ≠ xn ∧ ...∧  xn-1 ≠ xn).

In sharp contrast to this, Kanger’s semantics for logical necessity validates every instance

of

‚ „L
 ∃ x1...∃ xn(x1 ≠ x2 ∧ ...∧  x1 ≠ xn ∧  x2 ≠ x3 ∧ ...∧  x2 ≠ xn ∧ ...∧ xn-1 ≠ xn).

This is as I think it should be.  It is a logical truth that it is logically possible that there are at

least n objects.

When comparing Kanger’s semantics for modal logic with Kripke’s we come to the con-

clusion that the former (at least in its class-domain version) is adequate for the notion of logi-

cal necessity, while the latter adequately captures a form of metaphysical necessity.  Neither

semantics can handle adequately the notion that is captured by the other.  To devise a seman-

tics that can treat both notions is a challenge that still remains to be met.

As we have seen, Kanger’s model-theoretic semantics for quantified modal logic differs in

many respects from modern possible worlds semantics.  However, it raises sufficiently many

questions both of a technical and of a philosophical kind to motivate an interest that is not

merely historical.
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