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1. Introduction

In this paper, westudy connectiondbetween twdinds of modellings ofbelief states and
belief revision, one probabilistic and theher non-probabilistié. In the non-probabilistic
modelling, a belief state of an ideafigtional agent isepresented by ‘delief set” — a
set of propositions that is consistent and closed uond&al consequenceCorrespond-
ingly, belief revision is interpreted as aperation that maps beliséts intobelief sets. In
the probabilisticcase belief statesare modelledy probability functions andbelief revi-
sion bymappings fronprobability functions toprobability functions. Inthe following,
we shall reserve the terfhelief revision” forthe na-probabilisticmodelling. Revision
of probability functions will be referred to as “probability revision”.

It might seem that a natural way of connectimgtwo approaches te think of proba-
bility revision as the more fundamental notion arav belief revision aseing somehow

derived from probabilityevision. Inparticular, it istempting to identifythe beliefset of



an agentvith the “top” of his probability function, i.e., with the set ofall propositions
which are assigned the probability one by that function.

It is nat equdly clear, howeverhow to definein a uniqueway abelief revision opera-
tion from a probability revisionoperation. Affirst sight, thereseems to be no problem
here: in order to define the revision[Ax of a belief set Awith a proposition xtake the
probability function associated with revise itwith x andlet A J x be the top of the re-
sult. However, which probability function should we choose? In general, fagiaty A
there are many different probakyjlfunctions that haa/A as theitop andwhich therefore
may beassociatedvith A. If P and Q are twauch probability functions, there is no
guarantee that their revisions with x will determine the same belief set.

In the following we aregoing to discussfive different waysto dealwith this Non-
Unigueness Problem, each of whiclfeiading to problemsf its own? In order toreach
unigueness, we can do one of thiéowing: (i) impose a suitable condition on probability
revision, (ii) let therevised belieket be the common part of the differpassiblecandi-
dates to thiditle, (iii) introduce anexplicit mapping tlat associates apecific probability
function with each belief set, (iv) let belief revisiba a relation rather thaa function, or,
finally, we can (v) introduce the notion of a belief state asva primitiveand define both

belief revision and probability revision in terms of a revision operation on belief states.

2. Logical Preliminaries

In bothkinds of modellings of klief and bekf revision, weassume a se& of proposi-
tions asgiven. Inaddition to S, wesonsider aroperation Cn that takesets of proposi-
tions to sets of propositions. Cn is assumed to dmgequence operation, i.e., it satis-

fies the following conditions for any sets A and B of propositions:

(1) AOCNn(A) (Inclusion)
(2) Cn(A) =Cn(Cn(A)) (Iteration)
(3) If AB, then Cn(A)J Cn(B) (Monotonicity).

In addition, we assume:



(4) Cn(A) :D{Cn(B): B O A and B is finite} (Finiteness)
(5) I Cn@) (Consistency)

(6) Cn({}) =S

(7) FCn(AO{x - [O}) =S, then xJ Cn(A)

(8) x - yCn(A) if and only if yOO Cn(A O {x}),

wherel] (absurdity) belongs to S, and: is a binary operation on $he classical condi-
tional). (7) is the classical rule &&ductio ad Absurdum and (8) combines thBeduction
Theorem with a form ofModus Ponens. The opeations—-, [J[], are defined in terms of
Oand - in the usual manner. In particulanx =df (x - 0).

It follows from the conditions above that:

(9) AOCn(B) iff Cn(A) O Cn(B)

(10) Cn(AD B) = Cn(AD Cn(B)) = Cn(Cn(A)J Cn(B))
(11) IfxOCn(A) and x— y O Cn(A), then yiI Cn(A)
(12) If x is a classical tautology, theri XCn(A).

A set A of propositions isiconsistent if Cn(A) = S; and it isconsistent otherwise. A
proposition x is said to beonsistent (inconsistent) iff {x} is consistent(inconsistent).
We denote the set of all consistent propositions by Con. tBgoay we understand a set
of propositions which is closed under Cn, i.e., A is a theory if Cn(A) = A or equivalently if
there exists a B such that Cn(B) = A.bdlief set is a consistent theoryi,e., A is a belief
setif AZ Sand A = Cn(A). Wdet T andK be thesets ofall theoriesand belief sets,
respectively. Thatis] =K O {S}.

It is easily seen thahe sel of all belief sets satisfies the following conditions:

(i) K=z0O;
(i) If FOKandF#0O, thenNFOK;
(i) if FO K andF is directed, thebJFOK. A family [F of subsets of S idirected if
F#0 and if:
A BOFO (ICORA OC&BOC);
(iv) foreach AOK, OOA,;



(v) foreach AOK andeachx, 1S, x— yOAiffforall B 0K, if A 0B and x B,
then y[ B.
(vi) for each AL K, if there is no B K such that A1 B and x— 00 B, then x(O A.
The conditions (i) - (vi) give aimtrinsic characterization of the set<.® That is,there is a
natural 1-1 correspondenbetweenconsequence relatiol@n satisfyingconditions(1) -
(8) and sets of propositions satisfying ((vp. Starting out fronthe assumption thak
is afamily of subsets of5 satisfying(i) - (vi), we can define theotions of consistency
andlogical consequence as follows: A sef of propositions is condisnt iff for some B

O K, AOB. The operation Cn: Pow(S) Pow(S), is defined in terms &fby letting
Cn(A) =N{B: B OK and A B},

for each ALJ S. It can thebe verified thatCn satisfies condition$l) - (8) and that Al
K iff A #S and Cn(A) = A.

3. Belief Revision and Probability Revision

The simplest way of adding a ng@noposition x taa beliefset A isexpansion, whereby x
is added set-theoretically to@nd theresult is closedinder Cn. Clearly, this way of re-
vising beliefs is possible only if Al {x} is consistent, sincetherwise theesult is not a
belief set. Therefore we define A + x, ta@ansion of A with x, to be Cn(AO {x}), if A

O {x} is consistent; and undefined otherwis&hat is,we let expansion be gartial
function fromK x Con toK.

Belief revision, [] is an operatiorwhich to every belief set A andevery consistent
propostionx assigns delief set ALl X, where the latteset may be interpreted as A re-
vised by (the addition of) (as a solgiece of newinformation)? If A O {x} is consis-
tent, then A x is just the expansion of A with xdowever, A x differs from A + X in
being defined also for consistent propositions x #natincosistentwith A. In the latter
case, wanay think of A [0 x asthe result offirst modifying A to obtain abelief set B
which is consistent with and then expanding ®ith x. We havehe following formal

definition?



Definition. A belief revision operation is afunctionl K x Con - K satisfying the

following axioms for all belief sets A and all consistent propositions X, y:

(01) xOAOX.
(Od2) If A O {x}is consistent, then Al x = A + x°
(d3) IfCn({x}) =Cn({y}),then A x=A0Yy.
(O4) If (A O x) O {y} is consistent, then

Al (xOy)=(AOX) +y.

For future reference, we shall speak of axiam)(asRevision by Conjunction.
Let P be the set of all possible (monadicpbability functionsonS. Eachsuch func-
tion P inP assigns real numbers between 0 and 1 to the propositions in S and satisfies the

standard probability axioms, i.e.,

(P1) PT) =1, wherel =g -[1.

(P2) P(x)= 0.

(P3) If Cn({x,y}) =S, then P(XJy) = P(x) + P(y).
(P4) If Cn({x}) = Cn({y}), then P(x) = P(y).

It can be easilyshown thathe set ofall propositions thaare assignedhe value 1 by a
probability function P is a belief set. We shall refer to this sétPFgs— the top of P, or
as the belief setssociated with P.

If P(xX) > 0, then we can define thenditionalization of Pby x, P+ x. The probability
function P + x assigns to each proposition y the ratio:

P(xO
P+ 00) =2 -

Probability revision is an operatiorilwhich to every(monadic) probability function P

and every consistent proposition x assigns the “revised” probability funcfibn Bntu-

itively, if P specifies the “unconditional” subjective probabilities of an agent, then for all x

and y, (POXx)(y) is the correspondingorobability of y onthe condition that »olds.

Thus, what we have here iam of conditionalization, but anon-standard” one. Un-



like P + x, POx is thoughof asbeingnon-trivially definedfor consistent propositions x

even when P(x) = 0. The formal definition is as folldws:

Definition. A probability revision operation is a function @ P x Con - P satisfying

the following axioms for all probability functions P and all consistent propositions x, y:

(1) (POx)(x) = 1.

() If P(x) >0, then PIx =P + x.

(0B) If Cn({x}) = Cn({y}), then POx = POy.

(&) If (POx)(y) >0, then RI(x Oy) = (POXx) +.

In addition to monadic probability functions, we aiso going to considedyadic
ones. One type adyadic probabilityfunctionsare thestandard conditional probability
functions obtained from monadiones byconditionalizationj.e., for each monadiprob-

ability function P, there is a unique dyadic function P(—/...) defined by:

P +y)(x) in case P(y) >0
P(X/y) =Hundefined otherwise.

Note thatfor each P(—£..), the corresponding monadjgrobability function can be re-

covered by: P(x) = P(X), for all x in S. Anothekind of dyadic probability functions are
the non-standard conditional probability functions or Popper functions. Formally, we

define®

Definition. A Popper function is a mappingl from S x Con into [0,1] such that the
following conditions hold whenever the equations are defined:

(M1) Mex/x) = 1.

(M2) For constant y1(x/y) is a probability function.

(M3) If Cn({x}) = Cn({y}), then M(z/x) =M(zly).

(M4) N(x Oy/z) =N(x/z)MM(y/x Oz).

A Popper functior1 differs from a standardonditional probabilityfunction in being
defined also for thosey Con for whichll(y/T) =0. Givenany Popperfunction 1 and

any xJ Con, we can define a monadic probability functigrby the condition:



Pu(y) =T(y/x).
Let P be the monadic probability functiofn I1(—/T). We then have:

(1) Py(x)=1.

(2) IfP(x)>0,then =P +x.

(3) IfCn({x}) = Cn({y}), then Py = R,.
(4) IfPx(y) >0, then Roy =R +y.

Converselylet P be dixed (monadic) probability function angssume thathere is an

operationwhich assigns grobability function R to every consistenproposition x in

such a way that conditions (1) - (4) aegisfied. Then, we catefine a dyadic probability

functionl by the condition:

N(y/x) = B(y).
It is easily seen thdl is a Popper function and tHa{—/T) = P.

Thus there is a close relationship betwBepper functions angrobability revision on
monadc functions. However, asingle Popperfunction T only gives us anethod of re-
vising one particular monadigorobability function, namelyl1(—/T), with different con-
sistentpropositions x. It does najive usany possibilityof making repeatedjterated
probability revisions. This limitation can beovercome, however, if wassume thatach
monadic probabilityfunction P is correlatedwith a Popper function s(P) suchthat
s(P)(/T) = P. In view of conditions(1) - (4) above, wecan then define a probability

revision operatioii! P x Con - P as follows:

(P Ox)(y) = s(P)(Y/x).
Conversely, given arobability revision operation] we can ofcoursecorrelate @opper

function s(P)with each monadic probability function via the definition:
s(P)(y/x)) = (POX)(y).*

Hence,there is a naturaine-to-one correspondenbetweenprobability revision ogra-
tions and assignments of Popper functionfiédomonadigrobability functions. In other

words, aprobability revision operation is essentially an agsient to each monadic



probability function P o& Popper functios(P) representing @ossiblemethod ofrevis-
ing P in the light of new information.

One might object to our discussion so far that it is not reasonable to idenéifyeatis
set of beliefswith the top of his probability function. It is more plausible — onmight
say — toidentify theagent’s beliefsvith the propositions towhich heassigns asuffi-
ciently high probability, say, higher than E for some suitably smadl

However, if P is grobability function, then thes-top of P, i.e., the set ofall proposi-
tions x such that P(x) > 1&; may not be closed under Cn ahdrefore may rnobe a be-
lief set. As is well-known, theonjunction of two sufficiently probableropositions may
be insufficiently probable.

On the otherhand,some philosophermay welcomethis lack of logical closure be-
cause theyavealwaysthought hat belief sets, partlglue to theagent'slack of logical
omniscience, should be seassomething‘partial” or “gappy”. However, itseems to
us that, for afriend of gaps,e-topsare notgappy enough. Whilaot being “dobally”
closed under logical consequence, they exhibit at least a “local” closure. Cleaglyclior
x and vy, if x is sufficiently probable and y idagical consequence of x, thenmyust also
be sufficiently probable. On the other hand, as is well-knowg;tiye of a perfectly con-
sistentprobability functionmay turn out to be inconsistent-or example,the following

propositions may all be sufficiently probable:
-Ga, ~Ga, ... ,mGy, Ga UGy L, ... ,L0Ga,.

This isthe well-knownlottery paradox. Hence, of thdollowing conditions, that jointly

characterize our notion of a belief setpps satisfy the first, while the other two may fail:

(1) if xOA and yO Cn({x}), then yO A;
(2) ifx,yOA, thenxOy OA;
(3) Alis consistent.
For these reasons, it seems tohat afriend of partial beliefsets should insad con-

sider another approach to the problem of probé#bilispresentationHe can continue to

look upon beliefsets as tops girobability functions. But, atthe sametime, heshould



allow partial probability functions.(p is a partial probability functioiff, for some(total)
probability function P, p is included id.) Then,partial beliefsetsmay be seen as the
tops of partial probability functions. He, inaddition, is willingto allow for inconsistent
as well as partial belief sets, he should inclaih®ng the (totalprobability functions also
theabsurd probability function which assigns 1 &veryproposition. Clearly, one might
look upon beliefrevision as aroperation onpartial (and/orinconsistent)belief sets'*
Then it becomes possible to imguhow such delief revisionoperation relates tproba-
bility revision seen as apperation orpartial probability functions. However, inthe pre-

sent paper we shall not pursue this line of inquiry.

4. The Principle of Top Equivalence

Peter Gardenfors has suggedtaat we might interprdbelief revision interms ofproba-
bility revision: if A is the belief setssociated with a probability functiéh thenwe might
define A x asthe beli¢ set associatedith P [x. Given this interpretation, hé¢hen
proves that the axiomdor belief revision followfrom the axions for probability re-
vision!?

However,Gardenfors does nahention thathis probabiktic representation dbelief
revision confronts the following difficulty (thBlon-Uniquenes®roblem): as easilgeen,
each belieket A is associatedith many different probability functions: P, Q, Rfc.;
therefore, it does not seem to be possibietermine blief revisionuniquely in terms of
probability revision — wénave nomeans of determiningghether A0 x is the belief set
associated with PIx, or with QUx, or with ....

Let us say that two (monadic) prolidy functions P andQ aretop-equivalent, if they
havethe same top, thag, if their associatedbelief sets coincide. The Non-Uniqueness
Problem arises because different top-equivalent probdiifitions, P, Qetc., eachwith
the same A as its top, may give rise to different x-revisidng,R [1x, etc. However, the
problem would besolved if suchx-revisions oftop-equivalenprobability functionswere

themselvesequired to baop-equivalent. In thatase,the identification of Al x with



their common top would be unproblatit. Hence, we aréed to considerthe following

Principle of Top Equivalence as a possible additional axiom on probability revision:

(TE) Forall P, Q] P, and x[1 Con,
if t(P) = t(Q), then t(FIx) = t(QUx).

The relation oftop equivalence (writters) is of course arquivalenceelation in the
setP. The principle of Top Equivalencesays that= also is acongruence relation in P
with respect to the operatiani.e., that for all P, @1 P, and xI Con, if P= Q, then Flx
= Q Ux.

It is easily seerthat the Princifpe of Top Equivalence is noa logicalconsequence of
the axioms((1L) - ((#) for probability revision. To provethis, associatevith eachproba-
bility function P a well-orderin®p of all probability functions, withP as itdirst member.
(Here we use the Axiom of Choiceite: first to prove theexistence of theelevantwell-
orderings and theto associate garticular well-orderingvith eachP.) Foreach P and
each consisterproposition x,let P< be thefirst probability function inOp that gives
positive probability to x. We then define’ X by letting PLIx = P+ x. It is thenpossi-
ble to prove tht the operatiori]so definedsatisfies (1) - (). The only troublesome
axiom is:

(4) If (POx)(y) >0, then RI(x Oy) = (POXx) +.
To prove this, weassume that (PIx)(y) > 0. Weobserve that théllowing condtions
then obtain:

() If PX(x Oy) >0, then P+ (xOy) = (P*+ X) +;

(i) PX(xOy) = P(x) x P(y/x) = P(x) x (P Ux)(y) > 0;

@iy Px=px0y),
Hence,

(POX)+y=(P+x)+y=P+((xOy)=PxIY) + (xOy) = POXx Oy).

Assumenow thatP and Q aretop-equivalentprobability functions andet x and y be

propositions such that P(x) = Q(x) = 0 and neither ynpobelongs to Cn({x}). We can

10



always choose the orderin@p andOq in such a way that the first probability function in
Op that assignspositive probability to x, assignsprobability 1 to y,while the corre-
sponding first function iDq assigns to y a probability <1. Then[(R)(y) = 1, while (Q
0x)(y) < 1. In this way we can make sure that the Top Equivalence principle fails.

It should benoted that TopEquivalence is amssentially differenkind of condition
from the standard axiomsn probability revision. The latterprinciplesare “local” —
they consider revisions of one probability function at a tilbech of them iof the form:

“For any probability function P, ... Top Equivalence, onthe otherhand, is a
“global” condition on probability revision. As is clear from its form, “Fdirprobability
functions P and Q, ... 7, it is@ndition on the raktionship beteen revisions oflifferent
probability functions.

Now we mightask whether there arany good reasons taccept the Rmciple of Top
Equivalence. And what aboutreasons agast it? Notice that TopEquivalencefollows

from the followingPrinciple of Monotonicity:
(M) Forall P, QI P, and x Con, if t(P) t(Q), then t(FJx) O t(Q Ux).

However, asGardenfors haproved,this principlecannot,“on pain of triviality”, be
added to[(lL) - ((4) asa newaxiom!® More preciselythe principle(M) is inconsistent

with (CL) and the following consequence BR):
(P) If P(x) > 0, then t(P)! t(P Cx) (Preservation),

togethe with the assumption ohon-triviality, namely thatCon contains atleast three
pairwise incompatible propositions.

One mightsuspecthat the Principle offop Equivalence Wi give rise to asimilar re-
sult. In fact, however, no sutiiviality result is forthcoming.In personacommunication,
Gardenfors has suggestdédw to provethis claim. The following argument is a
modification ofhis proposal. Consider anywell-orderingO of the probabilityfunctions
in ”. Now, define a probability revision operatidias follows: for any P andX Con,

_gP+xincaseP(x) >0
PUX=Cox + xif P(x) = 0.

11



whereOX is the first probabilitfunction Q inthe well-orderingO such that Q(x) > 0. It
is then straightforward to verify thatsatisfiesthe axions (1) - ((4). (For (&), see the
corresponding proof in the construction abow&lgo notethat thisdefinition immediately
implies thatsatisfies Top Equivalence: i and Q ardop-equivalenandP(x) > 0,then
the top-equivalence of Px and QIx follows from the properties ofconditionalization.
And if P(x) = 0, then PIx simply coincides with Q1x giventhe presentefinition of (1
Since the definitiordoes t dependn anyspecialassumptionsoncerningthe conse-
guence operation Cn or the cardinality o&&ding Top Equivalence adurther axiom on
probability revision does not lead to any triviality result.

Consider now the following principle &&stricted Monotonicity:

t(P) O t(Q) and either P(x) = 0 or Q(x) >0
(RM) t(P Ox) 0 ((Q LX) '

That is, if the top of P is included in the top ofa€d it is nat the case thaboth P(x) > 0
and Q(x) = 0, thetthe top of POx is included in the top of @QIx.** The analogue for

belief revision of this principle would be:

A 0B and eitherx DA or-x 0B
(RMB) AOXxOBOX ’

i.e., if Ais included in Band it is not the case that x is consistenth A and inconsistent
with B, then ATl x is included in B x.*

RestrictedMonotonicity, although weaker thalWonotonicity, still entails TopEquiva-
lence. Furthermore, Gardenfors’ proof that the addition of Monotonicity leadsiatity
does not extend to Restricted Monotonicity. fdat, it is easy tg@rove that the construc-
tion of [Jdescribedabove validates nainly Top Equivalencebut also Restrictedlono-
tonicity: Namely, assume that t(B)t(Q) and that either P(x) & or Q(x) >0. Thenthere
are two possibilities: (iP(x) = 0andQ(x) = 0;and (i) P(x) > 0andQ(x) > 0. Incase
(i), the definition ofClyields: POx = QOX. In case(i), t(P Ox) O t(Q Ox) follows by
the properties of conditionalization.

Although the Principle of Restricteddviotonicity— unlike theunrestrictedprinciple

(M) — does not lead to triviality, it seems unacceptable on intuitive grounds. Tigis to

12



13
an example, let x, y, and z be the propositidngeety is a penguin Tweety can fly, and
Penguins cannot fly respectively. Suppose thaP describesthe probabilities of
someone who is certain ek and of y, butvho lacksany opinion about z.e., P(x) = 0,
P(y) =1 and P(z) = 0.5. It seems that if such a person were to learwauldestill keep
y among thepropositions he isertain of, i.e., (PUOX)(y) = 1. By the axions of
probability revision, F1z=P + z. Hence, byhe definitionof conditionalizationt(P) [
t(POz). It follows that (FJz)(x) = 0. From P(x) = (P1z)(x) =0 andt(P) O t(P Oz), it
follows by Restricted Monotonicity thatP [1x) O t((P Oz) Ox). Hence, if Resicted
Monotonicity were a valid principle, throposition y, being member oft(P [1x), would
also belong to t((P1z) 0x). Butin fact, the opposite seems tothe casesomeone who
originally believes that Tweety is not @enguin tx), that Tweety canfly (y), and that
penguins cannot fly (z), might very wejive uphis kelief in Tweety’sabiity to fly upon
learning that Tweety in facs a penguin.

Now, one might ask: Is itpossible toconstruct acomparablentuitive counterexample
to the principle of Top Equivalence? David Makinson (personal communichsngug-
gested the following example:

“Consider two detectives, both very clever and eminently rational of whorrhas apenchant for
the heuristic‘cherchez la femme”, andthe other forthe heuristic “lookfor the one whomade a
profit”. Suppose that in a particular case, at tiptbere is not mch thateither iscertainof, and
on that little the two detectives entirely agree. But suppose that at time t’, one ot¢ntagaties
is overthrown. Who knowsvhetherour two detectiveswill be certain about exactly thesame
things now?”
The ideaseems to be th&wo personswvho are certain oéxactly the saméhings (and,
what is important, whpresumably haa'the same principleésr probability revision) may
sill differ very dramatically intheir non-extreme probabilitgssignments: ones nearly
certain that'there is awomanbehindit”, while the other is nearlysure that it is instead
the profit motive that is the explanation. dach asituation, itseemspossible,Makinson

argues, that they might reach different certainties after being confrontedemiihforma-

tion that contradicts what they have previously been certain of.



Consider ssomewhatifferent example. Suppose thahere are twgersons, Castor
and Pollux, with the same policiésr belief revision. Asume thatheir beliefsetscoin-
cide and contain, in particulartwo logically independenpropositions xand y. Assume
also that there are propositions r artiat stronglysupport xand y,respectively. Castor
assignshigh probability to r and low to syhile Pollux doesthe opposite. Thus, while
they havethe same set afertainties, ey drasticallydiffer with respect to some dheir
non-extreme probabilitpssignments.Supposenow that each of #m receiveshe same

proposition,~ (x [Jy), as the solpiece of newinformation. Each ofthem,therefore, has

to remove x or y, or both of these propositions, from the original belief set. Asstinaing

they want to keep as much pgssible oftheir initial beliefs, itseemsquite possiblethat

Castor, whose initial probability for the x-supportprgposition rwas high, will continue
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to believe x, while Pollux, for the analogous reasons, will keep to y. If this is possible, and

it seems to be, theme have acounterexample tdop Equivalence. Hencéhis appealing

and elegant principle must probably be abandoned.

5. The Common Part Approach

If we do not want toassume TogEquivalence, wamight try to explore anotheway of
dealing with the Non-Uniqueness Problem: at Ipaista facie, it seems possible tater-
pret the revised belief set as tiwenmon top part of the differentrevisedprobability func-

tions. To put it more precisely, we might define, for all X and x[J Con,
AOx=N{B OK: ((POP)(A =t(P) and B = t(FJx))}.

That is, welet A [1 x be the intersection — the common part —athfthe belief sets B
such thatfor someprobability function P, A ighe top of Pand B is thetop of P Ox.
Thus, instead dfying to chooséetweendifferent probabilityfunctionswith which A is
associated, we just take what is common to all of them.

Why the intersection and not thmion? There areobvious intuitivereasons forthis
manoeuvre — beliefevision by intersections much morecautious tharrevision by

unions. But the formakasons are even strongerhe intersectiorof a set ofbelief sets
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is consistert andlogically closed and therefore itself a beliefset. The union, on the
other hand, may be neither consistent nor logically closed.

However, this definition of belief revision, while inmany respectsttractive, is not
quite satisfactory. Totake theintuitive criticism first, the “commonpart’-definition
breaksthe basic connectiobetween thdelief setsandthe probabilies which isfunda-
mental to thevhole prdabilistic interpretation of the beliskt model. Intuitively speak-
ing, according to thisBayesian” interpretation, a personkelief set is theset of all
propositions to which he assigns probability 1. Now, let us consa&leralpersons who
havethe same belfeset A andthe sameprinciplesfor probability revision, but whose
probability assignments otherwise may differ. Suppose now that each ofetteives an
information x and reviseBis prdabilities accordingly. Then, insofar as we accept the
“‘common part’-definition of AJ x, it may well happen thaeach ofthesepersonswill
have some beliefs that do not belong té] A. Thus,while A constituteghe prior belief
set for each of these persong,JA might not be the totgbosteriorbelief setfor anyone
of them.

In fact, giventhe “commonpart’-definition, there might not exisany probability
function P with A as its todpr which A x = t(Px). Tobelieve thasuch afunction

will always exist is to accept the followirgtersection principle:*°

(IP) DA 0K, Ox O Con,[Q 0P,
Q) = A & t(Q Ox) = N {t(P 0x)): t(P) = A}

To put it somewhat differently, for every consisterthere exists a probability function Q
such that t(Q) = A and, for every P, if t(P) = A, then (&) is included in t(Fx). (IP)
does noftollow from the standard axioms fgorobability revision. (Note that (IP), just
like Top Equivalence , is a “global” cdition, while all thestandard aems are*local”.)
On the other hand, (IP) would follow from Top Equivalence but not vice versa.
Moving now to a formactriticism, it is easy t@ee that the “commopart’-definition
validates all of the&sardenfors awms onbelief revisionwith one exception: Revision by
Conjunction, the princip according tavhich the consistergxpansion of A x with y

equals AT (x Oy), fails to be valid. Here follows a very rough explanation of this failure.
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Suppose that propositiogsand zare mutually consiste but thateach of them is in-
consistent with a belief set A. Now, assume that, for all P which have A as theiftgp, P
[J z) assigns 1 to and that some of these (y z)-revisedfunctions assign psitive
probability to y. Finally, assumehat there aréunctions Pwith A astheir topsuchthat
their revisions by y do not assign 1 to z.

Given these assumptions and present “commorpart’-definition of belief revision,
it immediately follows that y is consistent withlA(y [Jz) and that y1z belongs to (AJ
(yOz)) +y but not to AJ ((y Oz) Oy), (note that thdatter set equals Al y). Thus,
letting x bethe disjunction y{1z, we get here a counterexample to Revisiondmpnjunc-
tion.

Note thatthis axiom for belief revisionfails to be valideventhough itsanalogue for

probability revision,
() 1f (POx)(y) >0, then FI(x Oy) = (PUXx) +,

has been assumed to hold. Thus, the “commonpart’-definition introduces an
unattractive dissimilarity between the two kinds of revision.
If we would like to validate Revision by Conjunctiave could do thidy adding to the

standard axioms on probability revision the follow#igpng Intersection Principle:

(SIP) DA 0K, QO P, Ox O Con,
(Q) = A & t(QIx) = N {t(P UX)): t(P) = A}.

Note that this principleliffers from (IP) only with respect to therder ofthe quantifiers
[Q andlIx. According to (SIP), therexists a probabilitfunction Q suchthat, for every
consistent x, t(Q) = A and, for every P, if t(P) = A, then[{X) is included in t(P1x).

To prove Revision byConjunction, notdirst that (SIP) togethemwith the “common
part’- definition of(] imply the following: forevery A,there issome Qsuch tlat, for all

x andy,
(2) AOx=t(Q0x) and AL (xOy) =t(QU(x Oy)).

From (4), andassuming that (Al x) O {y} is consistentj.e., that (QUIx)(y) > 0, we

have
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(2) (QUx) +y =QU(x Oy).
Hence,
3) t((QOx) +y) =t(QU(x Oy)).
From ordinary probability theory, we get:
(4) t((QUx) +y) =t(QUXx) +y.
From (1), (3) and (4) we finally obtain,
(5) (AOX) +y=AD (xOy),

provided that (AT x) O {y} is consistent. Q. E. D.

It is easy to see that (SIRYst like (IP), follows from TopEquivalence butot vice
versa. The intuitive idea behitklis prirciple seems tdoe as followsThe probability re-
vision operatiorilis such that, for every belisét, there is probability functionwith this
belief set as its top which is, so to say, maximally “cautious” insofar as its behavior under
revisions is concernedwhateverproposition werevise itwith, the resulting probability
function gives rise to a minimal belief s@thus, (SIP) is &ind of cautiousnessondition
on(

An even more cautious revision operation would alvedigsv genuing/ minimal belief
sets after revision, i.e., belief sets that include nothing butetvenformation. We could

express this idea as the followiRgnciple of Caution:

(PC) DA O K, Q O Psuch that t(Q) = A andix I Con,

if x is inconsistent with A, then t(@x) = Cn({x})."’

Clearly, (PC) is strongerhan (SIP) and it neither dails nor is entailed byTop Equiva-
lence.

If weadd (PC) or (SIP) tothe standard axiomsn probability revision, the‘common
part’-definition of O will solve theNon-Uniquenes$roblem. However, the intuitive
criticism of this definition still renains unanswerednd, in addition, neither (PC) nor

(SIP) seems to be especially plausible.
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6. Base Functions

When confrontedwith the Non-Uniquenes#roblem, we mighsimply bitethe bullet
and admit that the probabilistic interpretation of belief revigimsupposes ehoice: we
have to choose a particular mapping b from the set of belief gettheset of probability
functionsP, and then define belief revisionterms of theprobability revision operation
together with the function b. Thus, by abase function, we shall understand &unction b
from K into P such bhatfor every A inlK, b(A) is oneof the probabilityfunctions that
have A as their top. The existence of base functions is ensured by the Axiom of Choice.

Now, in terms of a base function b, it becongasy to define lelief revision from
probability revision: torevise A by a consistemqiroposition x, go first tdhe probability
function b(A), revise this function by x, and then, finally, go to the toghisfrevision. In
other words, given a base function b, we deffin® be the unique function frol x Con

to K satisfying for every A ifik and x in Con the condition:
(DEF) (A O x) =t(b(A) Ox).

It is easy to check that, whatever base function b has been chosen, the so defined operation
[ satisfies the Gardenfors axioms$l() - (J4) for belief revision.

Note thata similar approach may beused fordefining aparticularprobability revision
operation on monadic probabilifynctions, starting at from the setof (dyadic) Popper
functions instead. As we have done in secti@b@e, wemay choose ararbitrary map-
ping, s,from monalic probability functions tothe dyadicones. As weknow, a base
function assigns to each belief sgbrobability function thahas thisbelief set as its top.
Analogously, we demand frosithat it should assign teach monadi® a dyadicl1 that

has P as its monadic part:
for all x, M(X/T) = P(x).

Now it becomes easy to defirseprobability revision operation on monadic probability

functions:

for all P and x, and for every y,

(P OxX)(y) = s(P)(y/x).
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Then, byusing two arbitrary embeddings, s and b, we dast move from the set of
dyadic Popper functions to a specific revision operatiothe set ofmonadic probability
functions and then, from that revision operation, to a revision operation on belief sets.

Eventhoughdefining [0 in terms oflJand aparticular bae function validates all the
standard axioms dn, certain base functions still seem toibappropriate as belief revi-
sion generators. They are just t@obitrary” in their assignments anthis arbitrariness
shows up unddterated revisions. Thus,considerwhat happens if b i®ur chosen base
function and we apply (DEF) in order tevise a given A by aequence ..., X, of con-
sistent propositions, ortgy one. Onevould wantthe result of thisprocess tocoincide
with the top of theprobability function obtainetdy stepwise revisions of the probability

function b(A) with the same sequenqe X, Xx:
(M (-..((b(A) Ox1) Ox2)...) Oxn=b((...((AC x1) O x2)...) O Xp),

forall ADK and x,..., X, J Con. € is the relation of top equivalence.)
Metaphorically, one mighexpresshis adequacy condition on basenctions adollows:
iterated belief revision should keep track of iterated probability revision. If a base function
b satisfies thigracking Condition, then we shalsay that b isppropriate. It is easy to
check that, in the absence of TBguivalencesome base functionsmay not beappro-
priate:®

As a matter offact, there isalso astronger it simpleradequacy condition that we
might want to imposen eligible base functions: wmight want touse a baséunction
thatcommutes with revision. Thatis, wemight want it tobe the case tht, for all A [0 K

and xOJ Con,
© b(A O x) = b(A) Ox.

If b satisfies thisCommutativity Condition, then we shalkay that b igerfectly appropri-
ate.
We have the followindormal definitions,wherel is a belief revisionoperation and]

a probability revision operation.
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Definition.
(@) Abasefunctionis a function bKK — P such that, for every Al K, t(b(A)) = A.
(b) A base function b is said to be a base fundton! relative to [] iff for all A 0 K
and xOJ Con,
(DEF) A x = t(b(A) Ox).
That is, iff
b(A) Ox = b(A O x).
(c) A base function b is said to bppropriate for [ relative to[] iff for all A O K
and x,..., X, Con,
(M (...((b(A) Ox1) Ox2)...) Oxpn = b((...((A T x1) O x2)...) O Xp).
(d) A base function b is said to perfectly appropriate for [I relative tol] iff for all
A OK, x Con,
©) b(A O x) = b(A) Ox.

(e) bis arappropriate (perfectly appropriate) base function relative taiff, relative to
(] b is appropriate (perfectly appropriate) for the operafiovhich is definedrom b and
Ovia (DEF).

Of course, every appropriate base functoth respect’] andlis a base function for

O relative tol] We also have the following:

Lemma 1
(a) If Osatisfies Top Equivalence, then every base function is appropriate reléiive to
(b) If b is perfectly appropriate far relative tol] then b is appropriater O relative

tod Moreover, for all A K and x,..., X, 0 Con,
(---((b(A) Oxq) Ox2)...) Oxp) = b(...((AD x1) O x2)...) O Xp).

There areseveralquestionsconcerning appropriate angkerfectly appropriatebase
functions that we have not been able to answer:

(i) Let Ube any probabilityevisionoperation. Does itfollow that thereexists a base
function b such that, relative idb is appropriate (perfectly appropriat®y the belief re-

vision operatiort] definedvia (DEF) interms ofJand b? In othewords, canve con-
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struct bédief revision from probability revision in anappropriate (perfectly appropriate)
way starting from any//lwhatsoever?

The claim:

There exists an appropriate (perfectly appropriate) base function reldijve to

is essentially a claim about theobability revision operatioonly. It can be reformulated
in such a way that does noevenimplicitly involve the concept of belief revision. Thus,
consider the following definitions:

A setF of probability functions is areppropriate family of suchfunctions (with re-
spect to a given) iff

(a) every belief set is the top of some membé, of

(b) Fis closed undelr] i.e., for every P i and for every x, PIx 0 5, and

(c) F satisfies Top Equivalerce,i.e, for every Pand Q inF and forevery X, if P= Q,

then POx = Q Ox.

An appropriate family= shall be said to bperfectly appropriate iff everybelief set is
the top ofexactly one member df. (Note that, given this strengthening(aj, clause (c)
becomes trivially true and therefore redundant.)

Now it can be shown that the following equivalences obtain:

Lemma 2 There existan appropriate (perfectly appropriategse functiorrelative tol]
iff P includes an appropria{@erfectly appropriatefamily relative to (This family is

simply the range of the base function in question closed utjder

Thus, when discussing the existen€appropriate (perfectly appropriategsefunctions,
one may exclusively concentrate on the probability revision operation.

(i) If question(i) is answered irthe ngative,one carstill askwhether there are any
simple and naturatonditions thatl] should satisfy ifthe existence of appropriate
(perfectly appropriate) base functions is to be guaranteed.

(iii) If with respect to a given] there exist (perfectly) appropriate base functidiogs
it follow that there also exists such a function for every P?inThat is, does it follovthat,

for every P, there exists an approprigierfectly appropriate) base functiorsbich that b
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assigns P to the belief set associated with P? And ifvhet, futher conditions orilare
needed to guarantee this result?

All of these questions have probability revisioriresr starting point. There is another
series of questionstarting frombelief revision insead andconcerningthe possibility of
its probabilistic representation:

(0) Let be anybelief revisionoperation. Doesthere alwaysxist someprobability
revision operatiofiland a function b — P such that b i base functiorfor [ relative
to [? It should be notetthat if this questiorhas araffirmative answer, then eveopndi-
tion on belief revisior] that is a consequence of the axiomg ingeher with (DEF) al-
ready follows from the belief revision axioms) - (J4). This would mean then that the
latter axiom set isomplete with respect to the probabilistic interpretation.

(1) Consider any such that, for some b anglb is a base functiorfor [J relative to
[1 Does there exist some probability revision operdii@amd a base function suchthat
b is appropriate (perfectly appropriatey [1 relative to[? In other words, is[] repre-
sentable by a probability revision operation in a (perfectly) appropriate way?

We canreport apartial answer to these quests. Let K be the set o#ll finitary
belief sets. (A iginitary iff, for some finite set X of propositions, A = Cn(X)let P be
the setof probability functions Pwith finitary tops. We say thdll is afinitary belief
revision operation, if 0 is a function fromK¢ x Coninto Ky that satisfies (J1) - (J4).
Similarly, we say thatlis afinitary probability revision operation iff [ P x Con - Ps
and Csatisfies (1) - ((4). Thefollowing notions: basdéunction, a basdunction being
(perfectly) appropriate, Topquivalence, etcare in an obviousvay appicable to finitary
belief revision and finitary probability revision. We therhave the following

representation theorem for finitary belief revision in terms of finitary probability revision.

Theorem. Let[] be any finitary belief revision operation. Then, there exists a funiction
Pf x Con - Pf and a function biKs — P such thatlis afinitary probability revision
operation and b is a perfectly appropriate base function fi@lative to[1 Moreover, the

Oin question satisfies the Principle of Top Equivalence.



Proof. Let[] be anybelief revisionoperation orthe set<s andlet Q beany “regular”

probability function. (Q isegular iff it assigns probability 1 only tégical truths.) For

any A Ky, let b(A) be Q +&A, where &A is theconjunction of somdinite axiom set
for A. (The choice othe axiomset isimmaterial, since any tw axiom sets for A are

logically equivalent and therefore interchangeable in probabilistic conteXksarly, since

Q isregular, t(b(A)) = A. Thus, b is a base function. Now, we first prove the following:

Claim: If x is consistent with A, then b(A + x) = b(A) + x.
Proof of the claim: As we know, QA) = Q + &A. We also have: A + x =

Cn({&A Ox}) and Q(&A [Ox) > 0. Thus:

&A 0%) O
b(A + X)(y) = Q(g(& - é)x) Y _

_ Q(&A T(x y)) Q&A)  Q(xUy/&A)
= Q(&A) X QA TX ~ Q&A) ~

b(A)(x U
- 2SS = b = 6@ + 90,

Next, we defindlas follows: For any P iR and any X1 Con, (i) if P(x) > 0, Plx =
P+ x; (i) if P(x) =0, then RIx = b(t(P) O x). We mustprove that[,] so defined,
satisfies the axioms${) - ((4). As usualthe only troublesomexiom is (#). Toprove
this we assume that (Px)(y) > 0. We consider two cases:

Case1: P(x)>0. Then,
P(xOy) = P(X)x P(y/x) = P(x)x (P Ox)(y) > O.
Hence,
PO(XOy) =P+ (xOy) = (P +x) +y = (FX) +V.

Case2: P(x) =0. Then, PI(x Oy) = b(t(P)T (x Oy)). But (POx)(y) > 0O, implies that

y is consistent with t(F) x. Hence,
t(P)O (xdy) = (t(P)d x) +y (axiom (d4)).
Hence,

POXOy) =b(t(P)O (x Oy)) = b(t(P) x) +y) = b(t(P)J x) +y = (POX) + .

23
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Next, we prove thatlsatisfies TopEquivalence. Assume thgP) = t(Q). Again, we
consider two cases:
Case 1. P(x) > 0. Fronthis, togetherwith t(P) =t(Q), it follows that also Q(x) > O.
Hence, wehaveboth POOx = P+ x and QUx = Q +x. However, (P +x)(y) = 1 iff
PxOy)Y PX)=1iff P(x- y) =1iff QX - y) = L iff Q(x T y)/Q(x) = 1 iff (Q + X)(y)
= 1. Thus, t(P) = t(Q) implies t(Bx) = t(QXx), in this case.
Case2: P(x) =0. Then, PIx = b(t(P)U x) = b(t(Q)U x) = QUx. In consequence, t(P
0x) = t(QUx).

Finally, we prove that b is perfectly appropriate, i.e., for dll & and x[J Con:
b(A) Ox = b(AO x).

For the case when b(A)(x) > his follows from the claim we proved above. Thus, let
b(A)(x) = 0. Then, by the definition af b(A) Ox = b(t(b(A)) O x) = b(A O x).
Q. E. D.

(2) If, this partial result notwithstanding, quest{@j is to be answered in tmegative,
what additional conditionsshould [ satisfy in order tohave a(perfectly) appropriate
probabilistic representation?

(3) If agivend has a(perfectly) appropriate probabilistic representatiordoes it
follow that there also exists such a representation for everi?P irhat is,does itfollow
that, for every P, there exists a probability revision operafiand a base function such
thatb is appropriate (perfectly appropriatiey [ relative tollandb(t(P)) = P? And, if
not, what further conditions dn are needed in order to guarantee this result?

Finally, there is ajuestion ofintuitive interpretation: Suppose wehoose garticular
base function b and then use (DEF) to deffiekef revision interms of b and probability
revision. What does this choice @base function amount to intuitive terms? Admit-

tedly, this is a rather vague question, but even a vague answer would be welcome.
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7. Belief Revision as a Relation

Belief revision, like allbinary operations, may ofourse beviewed as aernary relation.
This way of looking atbelief revision is natural wve think that theagent’spolicies for
belief change may not always yieldirsque belief setas theresult ofrevising agiven be-

lief set A with a proposition x. Hence, we define:

Definition.

(@) Abdief revision relation is aternaryrelationR [0 K x Conx K satisfying the
following axioms for all belief sets A, B, C and all consistent propositions X, y:

(RO) ((D O K)A Ry D. (Seriality)

(R1) If ARy B, then x{ B.

(R2) If A0 {x}is consistent and Ry B, then B = A + x.

(R3) If Cn({x}) = Cn({y}) and A Ry B, then ARy B.

(R4) If ARy B, BRy C and B {y} is consistent, then Rx oy) C.

(b) A beliefrevision relatiorR is said to befunctional if, in addition to RO) - (R4), it

satisfies:

(R5) If ARy B and ARy C, then B =C.

The intuitive reading of Ry B is: B is a (possible) result (for a given agent) of revising A
by (the additionof) x (asa sole piece of newinformation). The seriality axiom RO)
corresponds to the requiremenatthelief revisionshould bedefinedfor all belief sets A
and consistent propositions XAxioms (R1) - (R4) are the relationatounterparts to the
axioms (1) - (J4), respectively. Thens a naturalone-to-one correspondenbetween

belief revision operations and belief revision relatiort® that are functional:

Lemma. Every belief revision operatidd determines a functional belief revision opera-

tion R via the condition:

ARy Biff A 0x=B.



Conversely, given a furional belief revision relatiolR, the same condition determines a

unique belief revision operatidn.

Consider now whéatappens tahe Non-Uniquenes®roblemwhen weadopt therela-
tional approach to belief revision. There islooger any prol@m of defining belief revi-

sion from probability revision. The natural definition is:
(D) ARy B iff, for some P irP, A =t(P) and B = t(PIx).

The intuitive idea behind (D) could be expressed as folloBugppose that wknow only

the agent’s policylfor revising probabilities and his belisét A (butnot hisentire prob-

ability function P).Rx(A), i.e., {B: A Ry B}, is then theset ofall conceivablealternative
results ofthe revision of Awith x — conceivable, that is, given what Wweow about the
agent in question.

Given this definition, the relatiorR satisfiesthe axoms RO0) - (R4). The Non-
Uniqueness Problem disappears. What we have insteadply the failureof the so de-
fined belef revision relation to béunctional. Thefunctionality principle R5) will be
satisfied iff the probability revision operation satisfies Top Equival&nce.

On the otherhand, in theabsence of Tojquivalence, and;onsequently, in the ab-
sence of the functionalitgrinciple, the relationahpproach sketcheabove is pdraps too
weak in its expressive power. Let us explain.

Consider the relation aterated belief revision, which we define as follows: B is a re-
vision of A with xg,..., % (in that order) — in symbols, Ryj,...,x, B — iff B is the top
of someprobability function Psuch that, if you firstevise P with x, and thenrevise
P Ox1 with xp, and so on untiyou come to x, you will thereby reach a probability

function with B as its top. To put it more formally,

(Dit) A Rygyevor xy B iff ((P O P)(A = t(P) & B = t((...(POxq) [1..) Oxp).

Clearly, therelation ofsimple beliefrevision,Ry, is just aspecial case othe iterated
belief revision relation. At the santiene, in the absencef Top Equivalencethe latter

relation is not definable in termstble former. Irparticular, appearancestwithstanding,

the relation ofiterated beliefevision,Ry;,..., x,, iS stronger thathe relative product of a
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series of simple belief revision transformatidRg,/... Ry, To illustrate,suppose that A
Rx;/Rx, B, i.e., thatfor someP andP’, A = t(P), t(P Ox1) = t(P’) and B =t(P’ 0 x2).
Then there is no guarantdet thereexists a singl P forwhich A =t(P) and B=t((P O
X1) Uxp). That is,there is no guarantee thatR,, x, B. In otherwords, it may be
impossiblefor an agent to reach Brom A by a two-steprevision of his probability
function.

This suggests that a relatiorgbproach tdelief revision mayurn out tobe morecom-
plex than one woulthaveexpected. If we do nowant tolose expressiv@ower,then,
instead of starting out frore relation ofsimple beliefrevision, we mayhave towork

with iterated belief revision as our fundamental relatfon.

8. Belief States as a New Primitive

Another approach to the Non-Uniqueness Problem et it as asymptom that some-
thing is wrongwith the very idea ofbelief revision as amperation orbelief sets. Intu-
itively, belief revision is an operation on belsthtes and perhaps theource ofthe prob-
lem lies in the identifidgon of kelief stateswith sets. Inparticular, if weadopt a proba-
bilistic view of belief, then it is quite cledinat a beliefstate cannot be identifiegith any
set of propositionsfor examplewith the set of thosepropositions thaare assigned the
probability 1. Should we then identify a belief state with a probability functio®? nec-
essarily. Perhaps a belief state is something that is even more finely structured.

To explore this idea, let us view belief states as “blamkes”. That is, let us take the
concept of a belief state as a primitive notion. Every belief state isafiseimmed to be as-
sociated with a belief set, the set of all propositions accepted (or believed) statihagnd
with a probability functionhaving thebelief set in question as its toBelief revision is
now an operationvhich, when applied to a belief stateaad a constent proposition X,
yields a new belief stateex. For each belief state s, we[lgtbe the associatdutlief set
and <s> the associated probability function. Weeth get the following postulates for

belief revision:
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(B1) xO[s* Xx].

(B2) If [s] O {x} is consistent, then [s x] = [s] + X.

(B3) If Cn({x}) = Cn({y}), then [s* X] = [S* Y]

(B4) If [se x] U {y} is consistent, then [s (xJy) ] =[s* X] +Vy
The corresponding axioms for probability revision are:

(P1) <s* x>(x) = 1.

(P2) If <s>(x) >0, then <sx> = <s> + X.

(P3) 1If Cn({x}) = Cn({y}), then <se x> = <s° y>.

(P4) If <s* x>(y) >0, then <8 (x Jy)> =<se x> +Y.

The postulates for belieévision camow bederivedfrom the posulatesfor probabil-

ity revision via the followind3dief-Probability Principle:
(BP)  [s]=t(<s>).

The Non-Uniqueness Problem does not arise on this approach.

Consider now the following principles:

(1) If[s1] =1so], then [« X] =[s2* X].
(2) If<s>=<9>,then<ges x> =<3+ x>.

3) Ift(<s>) = t(<g>), then t(<g* x>) = (< * x>).

According to(1), if two beliefstatesare characterized kiyre same beliefet, then the
same holds for their revisiomsth a givenproposition. Analogously,(2) says that if two
belief statesare characterized by ttsame probabilityfunction, then the samieolds for
their revisions. (3) expressedop Equivalence withinthe presenframework. Clearly,
given (BP), (1) and (3) are equivalent.

It is easy to see thé#the principle (1), ifvalid, would allow us todefine beliefrevision
as an operation on beligdts, just as in the original approach: for any belief set A, let s be

an arbitrary belief state such that A = [s] and defirié Aas [s* X].
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Analogously, if (2) were v, we would be abléo define gprobability revisionoper-
ationJin terms ofe : for any P,take anarbitrary ssuch that P =<s>andlet P [Ix be

equal to <3 x>.

9. Concluding Remarks

In this paper, wehave consideredseveralpossiblereactions tothe Non-Uniqueness
Problem. The most direct response — the assumptidopdEquivalence — is not espe-
cially plausible on intuitive grounds. Thkemmon part approach has beefmown to con-
front difficulties, both from a formal and from an intuitive pointvaw. In particularthis
approach does not work without the assumption of the Strong Intersection Principle. This
principle, although being weaker than Top Equivalence, is still unintuitive.

The third approach,n terms ofbase functions, replaces the original problem odfon-
Uniqueneswith a problem ofarbitrarinesswhy use thisparticular basdunction rather
than some other one? On the othand, the baskinction approaclyivesrise toseveral
interesting mathematical questions concerningepeesentability of élief revisionwithin
the probabilistic framework.Seen from this perspective, base functiansjust repre-
sentational mappings from one kind of a model to another.

Therelational approach andhe approach that takethe notion of abdief state as a
primitive haveboth the advantage ohiuitive plausibility. The former abandonghe idea
that belief revisiormust alwaysgive a unique resultwhile the latterrelinquishes the
thought that bleef revisionoperates orsets of beliefs. Orthe whole, one of these ap-

proaches, or their combination, seems to be the correct response to our original problem.

Notes

1 We wish to thank Peter Gardenfors, David Makinson, Howard SmioePaul Weirich for stimulating
suggestionsand criticisms of earlier drafts. Weare also grateful forthe veryhelpful comments we

received from the participants in an English-Swedish philosophy symposium in London (Fall 87).



2 The backgroundfor our discussion of théNon-UniquenessProblem is thework by Alchourrén,
Gardenfors, and Makinson on the logic of belief revision and theory change. Our main saeferrafe
is: Gardenfors (1988). The locus classicus on non-probabilistic belief revision is Alchdb@rdenfors,
Makinson (1985). See also thmeferencegherein, especially Alchourrénand Makinson (1982) and
Makinson (1985). Probability revision is discussed in Gardenfors (1988) and (1986b).

3 Of the above conditions, (vi) correspondingeductio ad absurdum seems les@ituitive than the others.
Dropping (vi) would amount to assuming that thelerlying logic is arextension ofintuitionistic logic
rather than of classical logic.

* There are problems with this interpretation havinddawith the facthat normally, when wéearnthat
X, we also learmhat we have learned that x. Thugry often, revising delief setby adding x as &ole
piece of new information may @mply impossible. To our knowledge,this difficulty was first noted
by Basvan Fraassen itis review (1980) of Brian Ellis’ Rational Belief Systems where he
illustrates it with anexampledue toRichmond Thorason. See also Paul éilich (1983), Stalnaker
(1984), chapter 6, and David Lewis (1986).

5 Our treatmentliffers from that of AlchourrénGardenfors,and Makinson in not letting A x be
definedfor the casewhen A or xis inconsistent. Inthis way, weget a morenatural correspondence
betweenbelief revision and probability revision. Anybelief revision operation in our sensean be
extended to a belief revision operation satisfying the Gardenfors postulates by leftiRg=-ACNn({x}), if
A or x is inconsistent.

%It should be noted that this axiom would be violated if x had not been thpisoéeofnew information

that A is revised with. Cf. note 4.

" The postulates for probability revision are due to Gardenfors (1986b). His treatment differs from ours in

letting probability revision be defined also for inconsistent propositions X, in veaiedh hdets (PO x)
be the absurd probability functiomBhat assigns the value 1 to every proposition.
8 This definition of a Popper function is essentiallye tovan Fraasse(1976). OurPopper functions

differ from his in being defined for propositions rather than events.

° While R has been defined &K-/x), the result of an iterated revision,Jf, cannot belefined in terms

of M. In particular, it is impossible to identify {Jy with M(-/x Oy). In order toseethis, note that the
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latter expression isindefinedwhen x and y areinconsistent witheachother. But theymay still be
consistent taken individually, in which casg)XpPshould be defined.
1 This method allows iterated revisionsmdnadic probability functions. But what if we want tevise
dyadic Popper functiongnd do itrepeatedly? Irorder to dothat we mayintroduce aspecial revision
operation on Popper functions that transforms every dyadito another dyadic Popper functibiy (for
any x). However, it would then be natural to modify the conceptladiaf setaccordingly. The “top”
of a dyadic probability function is not a set of beliefs but rather a senditional beliefs. Aconditional
belief x/y (x,on the condition that y) belongs to the top dfl iff M(x/y) = 1. (Notethat aconditional
belief is not the same as a belief ik@nditional. /is not aproposition-forming operation, buather a
relation between propositions. As a consequence, while conditzaralseiterated, forexample there is
a proposition such as x (y - z), there are no such things as (z/y)/x. Hence, there reasmn tofear
that, once weallow conditional beliefs inaddition tothe simple ones, we shalave to introduce
“conditionally conditional beliefs”, etc..)

What aioms should weimpose orthe revisionoperationfor Popper functions? As

far as we can see there are two axioms that immediately come to mind:
(MR1) if Cn({x}) = Cn({y}), then Ny =Ny,
(MR2) Myx(—/T) =N(—/x).
In the text above, we havehownhow to definellin terms ofPopperfunctions and a
mapping s as follows:
(1) POx = s(P)(—/x)
Given a revision operation on Popper functions, there is an alternative definition of
2) POx = s(Px(—/T).

(MR2) guarantees that the two definitiond adetermine the sameperation. Also, given
(2), one carderivethe &ioms (1) - ((4) from (MR1) and [1R2) togethemwith the ax-
ioms on Popper functiond;l{) - (M4).

Note that the axioms on conditional beliefs correspondingR1j and [1R2) are:
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(CBR1) If Cn({x}) = Cn({y}) and A and B are conditional belief sets,
then A= Ay.
(CBR2) If A is a conditional belief set, theTyiZl Ay iff y/x [ A.

It should benotedthat (CRR2) is a version of theo-calledRamsey principlesee Ramsey (1950),
Stalnaker(1970), Gardenfors(1986a), (1987)and Lewis (1976), (1986). Its well-known that the
Ramsey principldeads totriviality results if / isregarded as @ropositionaloperator rathethan as a
relation betweenpropositions. Further investigation ofonditional beliefsetsandtheir revisions is an
enterprise that must await another occasion.

1 Cf., for example Sven Ove Hansson (1987).

12 See his papers (1986a), esp. p. 88nH(1986b), esp. p. 33 f. See al€drdenforg1988), section
5.8.
13 See Gardenfors(1986a) where this triviality result is presentedfor the analogous principle of
monotonicity for belief revision: If A1 B, then A x O B 0 x. In this paperGardenforsdescribes how
his resultrelates toDavid Lewis’ well-known triviality theorem in“Probabilities of Conditionals and
Conditional Probabilities” (1976). See also Gardenfors’ (1987).

14 The standardaxiomsfor probability revision, inparticular (2), only imply aweakermonotonicity

principle:

t(P) 0 t(Q) and Q(x) >0
(WM) t(POXx) D (QUX)

Clearly, given (WM), (RM) is equivalent to the simpler principle:

t(P)Ot(Q) and P(x) =0
(RM") (POX) OWQOx)

15 By a reasoning analogous to that of the previmis, in the presence thfe standard axiosnfor belief

revision (in particular({2)), this principle is equivalent to the simpler:

1 AOBand-xOA
(RM'B) ATOXOBOX

8 This principle has been drawn to our attention by David Makinson.



Y There is, of course, an even stronger principle of caution, namely,

Principle of Maximal Caution
For every P and x, if P(x) = 0, then () = Cn({x}).

It is easy to check #tthis prnciple is fully compatiblevith the standard axioms ofl
Mutatis mutandis, the same applies to the corresponding principle for behagion: for
every A and x, if x is inconsistent with A, then /Ax = Cn({x}).

18 Note that thecorrespondingproblemof inappropriatenesdoesnot arise forthe embeddings s from
monadic probability functions to the dyadic ones.

19 Of course, it isalso possible to viewsrobability revision as aernaryrelation. Thatis, we may
introduce arelationS with the intuitive interpretation: PSy Q iff the probability function Q is a
(possible) resultfor a given agent)of revisingthe probability function P bx (as a solegiece of new
information). It is straightforward toformulate theappropriateaxioms §0) - (S4) for probability
revision relations. In terms of a given suc@ we could then define abelief revision relationR by the

condition: ARy B iff for some Pand Q,t(P) = A, t(Q) = Band P Sy Q. Given this change, the

functionality principle R5) will be satisfied iff the probability revision relati@ satisfies the following
generalization of Top Equivalence: For all P, P’, Q, Q’, if t(P) = t(P3x R and P’'Sx Q’, thent(Q)
=1(Q).

20 But then, ofcourse, wewould haveto determinethe appropriateset of axions for theiterated belief

revision relation.

33



34

References

Alchourrén, C.E., P. Gardenforsand D. Makinson (1985)On the Logicof Theory
Change: Pasdl MeetContraction andRevisionFunctions”, The Journal of Sym-
bolic Logic 50 510-530.

Alchourrén, C.E., D. Makinson (1982) “Onthe Logic of Theory Change: Contraction
Functions and Their Associated Revision Functioridigoria 48 14-37.

Gardenfors, P. (1986a)‘Belief Revisions andhe Ramsey Tesfor Conditionals”,
Philosophical Review 9581-93.

Gardenfors, P. (1986b) “THgynamics of Belief:Contractions andRevisions ofProba-
bility Functions”, Topoi 5: 29-37.

Gardenfors, P. (1987) “Variations time RamseyTest: More triviality results”, Studia
Logica XLVI , 321-327.

Gardenfors, P(1988) Knowledge in Flux: Modelling the Dynamics of Epistemic
States forthcoming in Bradford Books, MIT Press.

Hansson, S. O. (1987) “New operators for Theory Change”, circutadedscript, De-
partment of Philosophy, Uppsala University, Uppsala.

Lewis,D. (1976) “Probabilities of Condionalsand ConditionaProbabilities”, Philo-
sophical Review 85287-315. Reprinted in Lewis, [Philosophical Papersvd. 2,
Oxford University Press, Oxford 1986.

Lewis, D. (1986) “Postscripgb ‘Probabilities of Condibnals andConditionalProbabi-
lities™, Philosophical Papersvol. 2, Oxford University Press, Oxford.

Makinsan, D. (1985) “How to Give It Up: A Survey of Somd-ormal Aspects of the
Logic of Theory Change”Synthese 62347-363.

Ramsey, F. P(1950). “General Propositionsand Causality”, Foundations of
Mathematics and other Logical Essays ed. by R. B.Braithwaite, New York:
Routledge and Kegan Paul, pp. 237-257.

Stalnaker, R(1970) “Probability and Conditionals”, Philosophy of Science 37pp.
64-80.



Stalnaker, R. (1984)inquiry , the MIT Press, Cambridge, Mass.

Van FraassenB. (1976) “Representation ofConditional Probabilities”, Journal of
Philosophical Logic 5 417-430.

Van FraassenB. (1980) Review of Brian Ellis’ Rational Belief Systems in
Canadian Journal of Philosophy 10 pp. 487-511.

Weirich, P.(1983) “ConditionalProbabilities and Probabilitiegiven Krowledge of a
Condition”, Philosophy of Science 5Qop. 82-95.

35



