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1. Background

Frank Plumpton Ramsey (1903 - 1930) — the brilliant Cambridge philosopher whose short
but very intensive career started when he was still a teenager only to be interrupted by his un-
timely death about a decade later — made important contributions to logic and even more
fundamental contributions to decision theory. As is well known, he and de Finetti — inde-
pendently of each other — were the founders of the so-called subjectivist (or "personalist")
approach to probability. It should be mentioned here that the first comprehensive monograph
on the different aspects of Ramsey's work has only recently been published (Nils-Eric Sahlin,
1990).

The Ramsey corpus is extremely limited — only a few hundred gadis. this only
makes his achievement even more astonishing. On the other hand, it should make it less as-
tonishing that the acceptability test for conditionals, which bears Ramsey's name, derives
from a short footnote in one of his posthumously published papers:

If two people are arguing 'If p will gand are both in doubt as to fhey are adding p hypothetically to

their stock of knowledge and arguing on that basis about q ... If either party believes non-p for certain, the
question ceases to mean anything for him except as a question about what follows from certain laws or
hypotheses.

His formulation of the test restricts its applicability to cases in which one is in doubt as to
whether the antecedent of a conditional is true or false. The generalization of the test to all
cases, independently of whether the antecedent is held in doubt, accepted, or rejected, was
proposed by Stalnaker in an influential article in the late 1968&lnaker's formulation of

the test is as follows:

This is how to evaluate a conditional: First, add the antecedent (hypothetically) to your stock of beliefs;
second, make whatever adjustments are required to maintain consistency (without modifying the hypo-
thetical belief in the antecedent); finally, consider whether or not the consequent is then true.

Prior to Stalnaker's article, the test seems to have been mostly ignored, although Chisholm
(1946) is one exception. The official name of the test ("the Ramsey test") appears to have
been coined by Harper (1976a), (1976b).



2. The Ramsey test and epistemic conditionals

The Ramsey test, in its standard modern formulation, gives the following intuitive criterion
for the rational acceptance of conditionals:

A conditional proposition "If A, then B" is (rationally) accepted in a given state
of belief G just in case B should be accepted if G were revised with A as a new
piece of information.

In other words, in order to evaluate a conditional statement, | ask myself what would be the
case if | learned that its antecedent is true. If and only if | wilhéldhave reasons to accept
its consequent,now have reasons to accept the conditional in question.

To give a classical example, suppose that | accept the conditional

(1) If Oswald did not kill Kennedy, then someone else did.

If I now were to learn that Oswald as a matter of fact did not kill Kennedy, then | would come
to believe that Kennedy was killed by someone else. That is, if | were to learn that the an-
tecedent is true, | would accept the consequent.

It is clear, however, that the Ramsey test does not apply to all conditionals. While it might
seem plausible for indicative conditionals, it does not work so well for some subjunctive ones.
A person who believes, like the members of the Warren Commission, that

(2) If Oswald hadn not killed Kennedy, then no one else would have,

would most likely reject the consequent of this conditional upon learning that Oswald was in-
nocent. Hence, the left-to-right direction of the Ramsey test does not seem to work for condi-
tionals of type (2).

For the same reason, the Warrenite would not accept the statement

(3) If Oswald had not killed Kennedy, then someone else would have.

Hence, the right-to-left direction of the Ramsey test seems to fail for (3). For, as we noted, if
he received the information that Oswald did not kill Kennedy, it would be reasonable for him,
given his present beliefs, to conclude that someone else did. However, this does not give him
any reason to accept the subjunctive conditional (3). The latter statement makes a counterfac-
tual claim about the world that he does not accept. Therefore it seems that both directions of
the Ramsey test fail for at least some subjunctive conditionals.

The apparent difference in the acceptance conditions between indicative conditionals like
(1) and subjunctive ones like (2) and (3) suggests that there might be a semantic and not just a
grammatical distinction involved here. The grammatical difference between moods
(indicative versus subjunctive) seems here to be a symptom of a semantic distinction — a
distinction in meaning. On the one hand, we haveethistemidor doxastic) conditionals
that express our dispositions to change our beliefs in the light of new information. These are
the ones for which the Ramsey test appears plausible. On the other hand, thererdre the



conditionals that we use to make factual claims about the world. The epistemic conditionals
have to do with hypothetical modifications of dueliefsabout the world, while the ontic
conditionals represent the hypotheses concerning what would be the caseoaflthéself

were different — they have to do with the hypothetical modifications ofaittsrather than

with the modifications of oubeliefsabout the facts. This distinction between two kinds of
conditionals parallels the well-known distinction between two kinds of probabilities: the
epistemic probabilities ("credences") and the ontic or objective probabilities ("chances").

It should be added, of course, that the semantic distinction between two kinds of condi-
tionals does not exclude the possibility that one and the same conditional sentence, in a par-
ticular context, may be used both to make a factual caidto express the speaker's dispo-
sition to change his beliefs. Neither do we want to exclude the possibility that a seemingly
indicative construction may be used to make an ontic claim (see conditional (4) below).

With regard to grammar, the claim that English, like Latin, contains a distinction between
the subjunctive and the indicative mood is quite controversial. Dudman has vigorously
argued against it in a series of influential papessccording to him, the right grammatical
distinction between conditionals in English should be drawn in another way, so that some
"indicative” conditionals will fall into the same group as the so-called "subjunctive" ones.
For example, he argues that the seemingly "indicative" sentence:

(4) If Oswald does not kill Kennedy, then no one else will,

is grammatically very different from (1). Conditional (4) belongs to the same grammatical
category as the seemingly "subjunctive" sentence (2). Here, we will not try to present
Dudman's way of drawing his grammatical distinction. Rather, what is relevant is his attempt
to support this distinction in grammar by semantic considerations. He points out that (4),
when uttered "before the event", would make the same claim as (2) makes when uttered now.

According to Dudman, conditionals like (2), (3), and (4) — he refers to them simply as
"conditionals" — are arrived at "... by envisaging a developing sequence of events", "by
imaginatively projecting steadilfuturewardfrom [the time referred to in the utterance] in a
fantasyin whichthe 'if-condition is satisfied®.

Conditional statements like (1), which Dudmaalls "hypotheticals”, are instead "arrived
at by arguing from proposition to proposition ...". "Someone shot Kennedy, Oswald did not,
therefore someone else did."

It seems clear that Dudman's semantic interpretation of his grammatical distinction be-
tween "hypotheticals" and "conditionals” has some affinity with our semantic distinction be-
tween epistemic and ontic condition&ls.



3. Belief revision

As we have seen, the Ramsey test is inappropriate for ontic conditionals. But even if we re-
strict our attention to epistemic conditionals, as we shall do in this paper, the test turns out to
be problematic. Gardenfors has shown that the Ramsey test — or at least a formal version of
it — is incompatible with certain plausible conditionsbmtief revision Gardenfors presents

this paradoxical result in (1988). His axioms for belief revision that underlie the argument are
also presented in an already classical paper which he wrote with Alchourrén, and Makinson
(Alchourrén, Gardenfors, Makinson, 1985). Alchourrén and Makinson originally studied
changes of norm systems (such as changes in law when a new rule is being introduced), but
they soon discovered that norm revision and belief revision are processes that exhibit striking
formal similarities.

Alchourrén, Gardenfors and Makinson (AGM) identify a state of belief witlsétef all
beliefs accepted in that state, and they represent beliefs linguisticaigntgncesOn their
approach, therefore, a state of belief G is nothing but a belief set, which in turn is nothing but
a certain set of sentences.

In addition, they make strong idealizing assumptions about the agents whose beliefs are
being considered. In particular, they assume that the belief sets are closed under logical con-
sequenceé.

It is also assumed that belief revision iiactionthat transforms states of belief into new
states of belief, given new information. If G is the original state and the sentence A repre-
sents the new information, then the new state of belief can be denotétas\@ refer to
this new state as €vised byA. Note that A — the new information — may or may not be
logically compatible with G. In the former casé&Smay be seen as an expansion of G with
A, while in the latter case [ must involve a genuine revision of G. Some of the old beliefs
must be given up in order to make room for the new information.

It should be mentioned that some of the strong idealization assumptions that characterize
the AGM approach may well be questioned. In particular, in other papers we have suggested
that belief revision should be seen as a relation rather than as a function (Lindstrém and
Rabinowicz 1989, 1992, 1990). At least when A is logically incompatible with G, the new
state of belief might not be uniquely determined by the old state and the new information;
there might be several reasonable ways of revising G with A. In order to incorporate A, the
agent has to give up some of his original beliefs. But he can solve this problem in different
ways.

We show in (1992) that the extra resources available in the relational approach can be uti-
lized to avoid Gardenfors' paradox. However, we shall not pursue this line of reasoning here.
Instead, we shall consider the paradox in its original functional setting only.

Let us introduce the symbol > for the epistemic if-then connective. "A > B" should be read
as "If A, then B". Within the AGM approach, the Ramsey test takes the following form:



(RT) For every belief set G,
A>B 0 Gif, and only if, BO GCA.*

Gardenfors puts forward a number of postulates that belief revision should satisfy.
(Success) A O G[A.
(Consistency) If both G and A, when considered separately, are logically consistent,
then GA is logically consistent.
(Preservation) If A is logically consistent with G, then G G[A.

According to Preservation, you keep your original beliefs after the revision, unlebay®u
to give up some of them in order to avoid inconsistency with the new information.

There are further, more or less reasonable, postulates that one might impose on belief revi-
sion, but these three suffice to show that the Ramsey test cannot be upheld.

4. Gardenfors' paradox

The Ramsey test implies that belief revision has to be a "monotonously increasing” (or at least
non-decreasing) function:

(Monotonicity) If a belief set G is included in another belief set K, thei\ &
included in KA.

Proof: Suppose that
(i) G OK.

In order to prove that the same relation of inclusion obtains betwegra KCA, we have
to show that every belief B that belongs toAGmust also belong to KA. Suppose, there-
fore, that

(ii) B O G[A.
Applying (RT) to (ii), we obtain:

(ii) A>B 0OG.
Therefore, given (i),

(iv) A>BOK.

But then, applying (RT) once again, this time to (iv), we obtain the conclusion that we have
been after:

(v) B O KA.

Let us now move to the second part of the argument. We have seen that the Ramsey test
implies Monotonicity. Now we have to show that Monotonicity is incompatible with the as-
sumed postulates on belief revision.



The argument assumes that there could exist two sentences B and C and three consistent
belief sets G, H and K such that:
(1) B [0 G and GLI {=C} is consistent;
(2) C U H and HO {-B} is consistent;
(3) GOKand HOK.

We call this assumptioNon-Triviality.

To illustrate the situation, let B be the sentence "It is raining in Uppsala" and C the sen-
tence "It is snowing in Lund". Suppose that our agent starts from a belief state in which he
has no opinion about the weather in either Uppsala or Lund. Let G, H and K be the states of
belief that he would reach upon learning B, C and B, respectively. It is reasonable to as-
sume that such G, H and K are going to satisfy conditions (1), (2, (3).

Let A be the sentence

-B[0-C.

That is, A amounts to the claim that it does not rain in Uppsala or it does not snow in Lund.
It follows from (1) and (2) that each of G and H is logically compatible with A. Since B
and C belong to G and H respectively, Preservation implies that

(i) B [ GIA,
(ii) C O HLA.
By Success, we also know that
(iii) A 0O KA.
Since A is incompatible with B and C taken together, (iii) by Consistency implies that
(v) B OKOAorCOKILA.

As we remember, Consistency ensures that the revision of a consistent state of belief, such as
K, with an independently consistent piece of information must itself be consistent.

However, since G, HJ] K (condition 3), Monotonicity implies that(®, HCA [0 K[A.
Hence, by (i) and (ii), we are led to the denial of (iv):

(v) B 0 K[A and CO KA.

We have thus reached a contradiction. The postulates of Success, Consistency and Preserva-
tion, taken together, conflict with Monotonicity, and thereby with the Ramsey test.

5. In search of a solution

What should we do about this impossibility result? Something has to give. It seems that
there are only two alternatives: either to reject the Ramsey test or to give up some of the



postulates on belief revision. (Later on we shall also consider the possibility that the dilemma
might be misleading — that it might be due to hidden assumptions in the AGM framework.)

5.1 Questioning preservation

Let us first consider the second alternative. Which postulates on belief revision could be
given up? Success and Consistency seem to be relatively noncontroversial conditions.
Therefore, the natural choice would be to question Preservation. Is it so obvious that a
rational belief revision has to be preservative? Well, the answer partly depends on what one
means bybeliefs According to one common view, B is one of my beliefs if | assign to B a
sufficiently high probability Given this interpretation, there is no reason to assume that belief
revision will always be preservative. Suppose that my probability for B is initially very high,
and that | subsequently receive new information that is logically consistent with B and the rest
of my original beliefs (where "belief" is taken as now understood). This information,
however, may well make B less probable, so that my new probability for B will no longer be
"sufficiently high". In consequence, B will not belong to my new beliefs and Preservation
will be violated. To illustrate, think of a district attorney who believes that the suspect is
guilty, but then stumbles upon unexpected new evidence which, while insufficient to prove
the suspect's innocence, still makes his guilt less probable. The new evidence is logically
consistent with the district attorney's original beliefs but it still makes him give up his belief
in the suspect's guilt.

Interpreting belief as sufficiently high probability is, however, inconsistent with
Géardenfors' assumption of logical closure for belief sets. The conjunction of two sufficiently
probable beliefs may not itself be sufficiently probable. We need an interpretation of belief
that makes belief sets closed under conjunction.

There is another interpretation of belief that may accomplish the same goal. A person's
beliefs may be identified with those propositions thatvee-establishedor that person, in
terms of his available evidence. It may well be claimed that if A is well-established and B is
well-established, then the same applies to their conjunction. However, this interpretation —
just as the "sufficiently high probability"-approach — would make Preservation unreasonable.
Just think of our district attorney for whom, on the evidence that he has gathered, the suspect
S's guilt is well-established, but who subsequently receives new evidence which points in an-
other direction. The new evidence may well be logically compatible with the things that the
district attorney has originally considered to be well-established, including the hypothesis that
S is the guilty person. However, given this new evidence, the hypothesis may cease to be
well-established.

The same argument applies to what might be called a pragmatic interpretation of belief ac-
cording to which the agent's beliefs in a situation are the propositions that in that situation he
takes for granted and is prepared to act on (where 'acting’ may also involve such epistemic ac-



tivities as reasoning or planning). Let us refer to such opinioassasnption®r presupposi-

tions Under ideal circumstances, it may be claimed that the set of such assumptions is logi-
cally closed. In particular, for a reasonable agent, if he is prepared to act on A and on B, sep-
arately, then he is also prepared to act diB\ Again, however, Preservation is violated by

this interpretation of belief. Our attorney is originally prepared to act (go to court, for exam-
ple) on the hypothesis that S is guilty. But he would no longer be prepared to act on this hy-
pothesis if he received an additional piece of evidence E that would point in another direction.
However, he is not originally prepared to act on the hypothesis -E. That is, the assumption
that S is guilty would be given up if the agent learned E, even though E is consistent with his
original assumptions (cf. Rabinowicz (in press) for further discussion of thigonslaip
between Preservation and the pragmatic interpretation of belief).

In their discussion of non-monotonic logic, Gardenfors and Makinson (1994) introduce a
notion ofexpectatiorthat seems closely related to our concept of assumption. They start out
with the notion that one proposition more expectedto be true) than another. An
expectation is defined as a proposition that is more expected than its negation. Gardenfors
and Makinson think that non-monotonic inference can be understood in terms of a
hypothetical revision of expectations: A non-monotonically implies B if we would expect B if
we came to expect A. However, they assume that revision of expectations does satisfy
Preservation. This suggests that their notion of expectation is different from our assumptions.
Probably, when confronted with our example of the district attorney, Gardenfors and
Makinson would say that the new information E received by the attorney is incompatible with
his original expectations. Thus he originally expects -E although he is not prepared to act on
this supposition. Possibly, then, the relationship between assumptions and expectations can
be described as follows: assumptions are those among our expectations that in a given context
are sufficiently well-expected in order to be taken for granted for purposes of reasoning and
action.

In his (1988), Gardenfors tends to interpret beliefs in still another way. To believe that B
is to becertainthat B is the case. It is to assign to B the highest possible degree of probabil-
ity: probability 1 Gardenfors may now defend Preservation by deriving it from the so-called
conditionalization model for probability revision. The model in question establishes the fol-
lowing connection between the prior probabilities and the probabilities based on new infor-
mation:

The probability A (B) to be assigned to B upon learning A (as the sole piece of new in-
formation) equals the original conditional probability for B given A, P(B/A). That is,
by the definition of conditional probability, it equals P{AB)/P(A). Provided, of
course, that the prior probability P(A) > 0. (Otherwise, the ratio would not be well-de-
fined.)



Now, the conditionalization model implies the following thesis for the special case in which
B's prior probability is equal to 1:
If the prior probability for B equals 1 (and the prior probability for A is positive), the
probability to be assigned to B upon learning A still equals 1.

In other words, our certainties should be kept intact when we receive new information that is
consistent with the propositions that we have been certain of. Revision of certainties satisfies
Preservation.

A very influential argument for the conditionalization model due to David Lewis (cf.
Teller 1973) consists in a proof that an agent who tends to violate the model is vulnerable to a
diachronic Dutch boakhis probability assignments make him accept certain bets, over a
period of time, which are so constructed that, if he takes them all, he is bound to lose
whatever the outcome! (Some of the bets would be offered to him by a clever bookmaker
before the arrival of the new information, while others would be kept in abeyance to be
offered if and when the new information is due to arrive, if it is going to arrive at all.)

Diachronic Dutch books are natural extensions of the concepyofcironic Dutch book
a system of bets simultaneously offered to an agent such that, if he takes them all, he is bound
to lose whatever happens.

As an aside, it might be mentioned that the following result is due to Ramsey: at a given
occasion, an agent is vulnerable to a synchronic Dutch book just in case his probability
assignments on that occasion violate the axioms of the probability calculus. David Lewis has
extended Ramsey's result to the diachronic case, thereby making it possible to argue that the
conditionalization model has a comparable status to the standard axioms of probability.

We are not sure whether this argument for Preservation is convincing. At least prima facie
it might seem that in some situations new evidence may well undermine one's original cer-
tainties without being logically inconsistent with them. Thus, for example, if one is initially
certain that

Most F's are G's

(say, that most swans are white), while lacking a definite opinion about the size of the F-
population (how many swans are there, actually?), one's certainty may well be undermined by
repeated observations of F's that are not G's. (Here is a black swan, and here is another one,
...) Note that such repeated observations are logically consistent with one's initial certainties,
but they still may make one wonder. Clearly, starting to wonder violates the conditional-
ization model. Agents of this type are vulnerable to diachronic Dutch books, but it may be
qguesioned whether such a diachronic vulnerability is a sure sign of irrationality. Is it so
unreasonable to be influenced by new information in such a way that one is led to respond to
it in a way that violates the conditionalization model? If one expects oneself to respond to
new information in this way, then one had better avoid clever bookmakers, but there may be
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few clever bookmakers around anyway! (For a sustained criticism of diachronic Dutch book
arguments, see Christensen, 1991.)

If these objections are well taken, Preservation would have to be rejected as a general ra-
tionality requirement on belief revision — even if we interpret belief as certainty.

On the other hand, the conditionalization model is an extremely elegant and powerful tool
for describing belief dynamics. It constitutes a central component of the very lively Bayesian
tradition in decision theory. It might therefore be of interest to suppose, at least for the argu-
ments sake, that Preservation (Conditionalization) is defensible and consider the other horn of
the dilemma: giving up the Ramsey test. How much of the idea behind the test can we then
preserve?

5.2. Weakening the Ramsey test
There are many ways in which the Ramsey test could be modified so as to avoid Gardenfors'
paradox. It is ironical that Ramsey himself only proposed a weak form of the Ramsey test,
restricted to the conditionals whose antecedents are epistemically open. That version is cer-
tainly compatible with Preservation. But it does not give us an acceptability condition for the
interesting case when the antecedent of the conditional is incompatible with the agent's be-
liefs.

Here, we shall sketch a solution that we have proposed in Lindstrom and Rabinowicz
(1992). There we suggest that the Ramsey test should be replaced by what westradt the
Ramsey test:

(Strict RT) For every belief set G,
A > B [0 G if and only if for every extension H of G,[BH[CA.

Here, by an extension of G, we mean any possible belief set H that includes G.

According to Strict RT, in order for an epistemic conditional to be accepted with respect to
a given belief set G, it is not enough that the conditional's consequent should be accepted if G
were revised with the antecedent. It is also important to consider what would happen if G
were first expanded in different ways. Should the consequent still be accepted if such an ex-
tension were revised with the antecedent? Thus Strict RT replaces the condition

(1) B O G[A
by the logically stronger condition
(2) for every extension H of G, B G[A.

At the same time, it preserves Ramsey's principal idea: the acceptance criterion for
(epistemic) conditionals is still formulated in terms of hypothetical changes of belief.

It is easy to show that the original Ramsey test implies the strict version. We assume RT
and try to prove Strict RTThe right-to-left direction of the latter condition immediately fol-
lows from the former in view of the fact that G is one of its own extensions. To prove the
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left-to-right direction, note that if A > B] G, then for any extension H of G, A >[BH. But
then, applying RT from left to right, it follows thatB H[CA.
Strict RT in turn implies the following condition:

(Normality) For everyopinionatedbelief set G,
A >B G if, and only if, BO G[A.

An opinionated belief set is a belief set which is complete, or maximally consistent, in the
sense of containing for every sentence A, exactly one of the sentences-A.amtbrmality
follows from Strict RT in view of the fact that an opinionated belief set has no proper consis-
tent extensions.

Normality is just the original Ramsey test restricted to opinionated belief sets. This condi-
tion is equivalent to what we call tieak Ramsey te&t:

(Weak RT) For every belief set G,
A >B 0 G if, and only if, for every opinionated extension H of G,1B
HLA.

Thus we have: RTI Strict RT 0 Weak RT. In fact, Strict RT is equivalent to Weak RT (or
Normality) together with the following condition on the revision operation:

(Connection Downwards)
For every consistent belief set G and every A,
N{H CA: H is an opinionated extension of G}G[A.

This condition implies that the right-hand sides of Strict RT and Weak RT are equivalent.
It is natural to divide the Ramsey test into its ‘only if' part

(RTO) A>BUOG,onlyif BOGLA
and its 'if' part
(RTD) A>BUOG,if BOGLA.

As we can easily prove, the strict Ramsey test is equivalent to the weak Ramsey test (or Nor-
mality) together wit{RTL ). In the presence of NormalitfRT ) is equivalent to Connec-

tion Downwards. We can also prove that the Ramsey test is equivalent to the strict Ramsey
test together witlfRT ). Furthermore, in the presence of Strict RRT ) is equivalent to
Monotonicity.

Strict RT and Monotonicity are two logically independent conditions, of which only the
latter is involved in the derivation of Gardenfors' paradox. One way of avoiding the paradox
is to replace the Ramsey test by the strict Ramsey test. That is, the suggestion is to keep the
Ramsey test for opinionated belief sets (Normality) together with the 'only if' part of the full
Ramsey test, while giving up the 'if' part of the test.

It is compatible with this proposal to think of epistemic conditionals as having not only ac-
ceptance conditions but also truth conditions: they may be thought of as bearers of truth val-
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ues. Actually, the truth condition of a conditional may be seen as its acceptance condition
with respect to an appropriate set of beliefs. Using the language of possible worlds, we may
say that to each possible world w corresponds the set of all beliefs that would be true at w.
Let us refer to that set as,G Note that G is a logically consistent set of beliefs (otherwise

w would not be a possible world) and that, for each potential belief A, either A or its negation
belongs to @. Thus G is an opinionated belief set; it cannot be consistently expanded.
Obviously, a conditional A > B is true at a possible world w if and only if it belongsyto G

By Normality, A > B belongs to ¢ if, and only if, B belongs to (g /A. (Recall that Strict

RT implies Normality.) Thus we reach the followitrgth condition for epistemic condition-

als:

A > B is true at a possible world w if, and only if, B belongs to the revision of the asso-
ciated belief set ¢z with A.

Using the idea, going back to Carnap, of identifying the proposition expressed by a sentence
with the set of possible worlds in which the sentence is true, we can now associate with each
conditional sentence A > B the proposition that this sentence expresses: the set of worlds w
such that B1 G,[A.

Why does the strict version of the Ramsey test allow us to avoid Gardenfors' paradox?
Well, the answer is simple. It is no longer possible to derive Monotonicity. Suppose we as-
sume (i) that GJ K and (ii) that BO GCA. As we remember, to prove Monotonicity, we
need, as a first step, to derive from (ii) the intermediate conclusion (iii) that Al:&B Then
we will be able, using Strict RT, to derive from (i) and (iii) the final conclusion (iv) that B
KOA. However, given Strict RT, (iii) no longer follows from (ii). In order to derive (iii), we
need a stronger assumption. It is not enough that B belongsAo B must also belong to
HCA, for every extension H of G. But K itself is one of the extensions of G (according to the
assumption (i)). Therefore we would have to assume (iv) — the final conclusion that we are
after — in order to derive the intermediate conclusion (iii). Clearly, then, the proof does not
go through.

Thus the paradox is avoided. But is Strict RT a reasonable replacement for RT? One
might object against Strict RT and say that this principteagiemanding. If our acceptance
of a conditional in a belief state would be dependerdlbthe extensions of that state, then
perhaps we would very seldom be in a position to accept a conditional sentence. One could
also point out that, in order to determine whether a conditional should be accepted, there is no
reason to consider extensions that are too outlandish to be taken seriously.

However, this criticism is not really well taken, at least from the point of view of someone
who accepts the 'only if'-part of the Ramsey test[{RT (Remember that this condition is
accepted both by the adherents of RT and by those who want to replace it by Strict RT.) For
consider what it would involve to construct a counterexample to Strict RT. We would need a
belief set G such that A > B is accepted in G, together with an extension K of G suclilthat B
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KOA. But a moment's reflection suffices to realize that this is impossible. By [RE [
KTA entails that A > B K. But then K cannot be an extension of G, since by hypothesis
A> BOG.

There is an air of paradox in this defence of Strict RT. One has the feeling that counterex-
amples might still be produced. Think of someone who is confronted with a match that to all
appearances is perfectly normal. Given his present belief state G, he would believe that the
match would light upon learning that it is going to be struck. Suppose, however, that instead
he learns a new fact: there is a man hidden in the vicinity with a fire-extinguisher trying to
prevent the match from catching fire. The addition of such an "outlandish defeater" moves
him to a new belief state K in which he would no longer expect the match to lighthahe
learned that it is going to be struck. It seems that the defeater is consistent with G, because of
its outlandi® character — the agent has never considered such a possibility, and so he has
never had a need to exclude it. Hence, it seems that K is an extension of G. At the same
time it seems reasonable to claim that in G the agent accepted the conditional: "If the match is
going to be struck, then it will light". So we do seem to have a counterexample to Strict RT.

However, if the conditional in question was accepted in G, then K cannot be an extension
of G because this conditional is no longer accepted in K (in virtue of )RTNote that our
notion of an extension is very strong: in order for K to be an extension of G, K must contain
all the sentences that occur in G, including the conditional ones. We could, of course, also
consider a weaker notion of extension. Say thas the set of all "factual” sentences of the
object language, that is, the sentences that do not contain any occurrence of the conditional
connective > or any other modal constructions (to be more pregisensists of all the sen-
tences that can be constructed from the atomic sentences of our object language by means of
the standard logical operations). Then

H may be said to befactual extensionof G (in symbols, G= H) if every Lo-
sentence A in G is also a member of H.

Clearly, all extensions of G are also factual extensions, but not vice versa. In particular, the
belief state K in our fire-extinguisher example, while not an extension of G, is presumably
one of its factual extensions.

Now, perhaps those who think Strict RT is unacceptably demanding confuse it with a
parallel test formulated in terms of factual extensions:

(Super-Strict RT) For every belief set G,
A > B 0O G if, and only if, for everyfactual extension H of G,
B O HLA.

Clearly, Super-Strict RT, which is much more demanding than Strict RT, is vulnerable to the
kind of counterexamples described above. But Strict RT still seems to be a plausible
Ramsey-type test.
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5.3. The non-propositional interpretation of conditionals

Up to now, we have been considering "conservative" solutions of Gardenfors' paradox — so-
lutions that do not question its underlying conceptual framework. But surely this framework
could be criticized. Thus, in Levi's view (Levi, 1988), the paradox crucially depends on
Gardenfors' assumption that conditional sentences are members of belief sets. In other words,
the assumption is that conditionals express truth-value bearing propositions and may therefore
be statements of belief. Instead, Levi claims that conditionals, rather than stating beliefs, are
appraisals of beliefs with respect to their epistemic possibility. Rather than being true or false
claims about reality, they aepistemic evaluationsAccording to Levi,

a corpus of knowledge [a belief set] is a resource for deliberation and is to be analyzed in terms of its
function as such a resource ... And the chief function [of] a corpus of knowledge is to serve as a standard
of epistemic possibility. If [B] is in the corpus, its negation is not a serious possibility. If [B] is not in the
corpus, its negation is a serious possibility. (ibid., p. 55)
Now, expressions such as "It may well be that ..." are used to express our evaluations of seri-
ous possibility, based on our current belief set. The role of conditionals is different but re-
lated:

The key idea [...] is this: a conditional of the (regimented) type [A > B] is a judgement concerning the se-
rious possibility of [B] relative to &#ansformationof the current corpus or belief set [...] and not relative
to the current corpus itself. (ibid., p. 61)

To be more precise, we evaluate the consequent of a conditional basing ourselves not on our
current belief set but on the potentralisionof it with the antecedent. To accept a condi-
tional A > B is to appraise B as not seriously possible if judged on the basis of the revision

of the current belief set with A.

Clearly, such an interpretation of conditionals immediately leads to something like the
Ramsey test. But Gardenfors' formulation of this test — as a principle specifying the condi-
tion under which a conditional ismemberof a belief set — is no longer viable.

On Levi's view, if G is my current belief set, then the conditionals that are accepted with
respect to G do not themselves belong to G but rather to the associated corpus RL(G) of epis-
temic appraisals. Belief sets are sets of sentences of the 'factual’ langudjg(G) may be
defined as the smallest set of sentences of the object-langubgesatisfies the conditions:

(i) G O RL(G)

(i) if B 00 G[A, then A > B[O RL(G)

(iii) if B 00 G[A, then-(A > B) 00 RL(G)

(iv) RL(G) is closed under truth-functional consequence.
(As a matter of fact, Levi assumes that RL(G) also contains ‘'unconditional’ epistemic ap-
praisals such as "It may be the case that B". Also, Levi allows that RL(G) may be closed un-
der first-order logical consequence and not just under truth-functional entailment. But let us
ignore these complications here.)
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Thus, RL(G) contains all the beliefs of the agent together with the sentences that express
the agent's conditional epistemic evaluations of his beliefs. Among the sentences of RL(G),
only the sentences belonging to G, the belief set proper, are true or false.

Define language 1 as the smallest set of sentences that is closed under standard truth-
functional operations and that contains all the sentences of the factual lamguagether
with all the conditional sentences of the form A > B, where A, B are sentencgs dfote
that the sentences in RL(G) all belongto

A sentence A ofz1 is said to beacceptedn G if and only if A belongs to RL(G). For a
logically consistent G, the definition of RL(G) now implies the following version of the
Ramsey test:

(Levi's RT) For any sentences A, B of and for any belief set G Lo, A >
B is accepted in G if and only if B GLA.

Note also that we obtain an analogous test for the negated conditionals:

(Levi's negative RT) For any sentences A, B o and for any belief set G Lo,
- (A > B) is accepted in G if and only if B G[A.

The difference between RT and Levi's RT may seem negligible but it has far-reaching con-
sequences. From Levi's RT it is impossible to deemotonicity It is impossible to prove
that

for all consistent belief sets G,[K g and all A inzg, if G O K, then GA O KA.

Thus, Gardenfors' paradox is dissolved.
Monotonicity can no longer be derived because, given Levi's RT, the assumptions from
which the standard derivation starts,

(i) GUOK
and
(ii) B U G[A,
only imply that
(ii) A >B 0RL(G).
To prove Monotonicity, we would now have to derive
(iv) A>B 0ORL(K)

from (i) and (iii). Then another application of Levi's RT would give us the desired conclu-
sion: BO KA. But (iv) does not follow. To derive (iv) from (iii) we would need to replace
(i) by a considerably stronger assumption:

()  RL(G) O RL(K).

In other words, we avoid Géardenfors' paradox, because Levi's RT only allows us to prove a
weakversion of Monotonicity:
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(Levi's Monotonicity) For all consistent belief sets G,[Kzp and all A inzg,
if RL(G) O RL(K), then GA O K[A.

At this point someone might object and point out that such a weak form of monotonicity
may be sufficient to generate paradoxical consequences. For Levi is preparedpb ac
Gardenfors' postulates on revision of belief sets (interpreted by Levi as setsasftences),
provided that we restrict the postulates to revision wigtsentences. Thus, he is prepared to
accept that the revision of any belief set G withzgrsentence A is successful, that it is
consistent if G and A are separately consistent,thatdit is preservative iA is consistent
with G. But then, why can we not use these postulates together with Levi's Monotonicity to
construct a new version of the paradox? The only thing that we have to do is to strengthen the
initial assumption of the argument. As we remember, the derivation of the original paradox
started from the assumption that there could exist sentences B and C and consistent belief sets
G, H, and K such that (1) G contains B but A@, (2) H contains C but netB, and(3) G, H
[0 K. To derive the paradox, we considered the revisions of the three belief sets in question
with A =-(B OC). Since B and C were 'factuaf-sentences (B = it is raining in Uppsala, C
=it is snowing in Lund), the same must apply to A. Therefore, the revision with A must obey
the Lg-versions of Gardenfors' revision postulates. Thus, in order to reintroduce the paradox
within Levi's framework, we only need to replace (3) with a stronger assumption:

(39 RL(G), RL(H)O RL(K).
Then Levi's Monotonicity can be put to use in the derivation of the paradox.

However, Levi would have an easy answer to this objection. One person's modus ponens
is another person's modus tollens. The situation envisaged is impossible! By Preservation,
(1) and (2) imply that B is still in GA while C is in HA. Therefore, by Levi's RT, A>B
must be in RL(G), while A > C must be in RL(H). On the other hand, by Success and Consis-
tency, A is in KZA and KA is consistent. Therefore, one of the sentences B and C is not in
K[A, so that — by Levi's RT — one of the conditionals A > B and A > C is not in RL(K).
Consequently, RL(K) cannot include both RL(G) and RL(H). Assumption (3'), unlike (3),
cannot obtain. Even though G and H may both be included in K, some of the conditionals
accepted in G or H will have to disappear as we move to K. The impression that (3') could
obtain arises only because we do not clearly distinguish between a belief set and the set of
sentences that are accepted in this belief set.

Actually, given Levi'snegativeRT (which follows from his definition of RL), an ex-
tremely weak postulate on belief revision is sufficient to prove an even stronger result. The
situation envisaged is impossible, because there cannot exist consistent belief sets G and K
such that K is proper extension of G but RL(G) is included in RL(K).

(Collapse) For all consistent belief sets G and K, if RL{GRL(K), then G = K.
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To prove Collapse we only need to postulate that revising by a tautology does not change our
beliefs. That is, letting stand for any tautology ing, we only need to assume the following
condition:

(T For all consistent belief sets G[IG= G.

We can now prove Collapse using Levi's negative RT. First, we notice that RLRG]K),
immediately yields GO K. Suppose, foreductiq that the converse inclusion does not hold.
Then, forsome B1K, B O G. By T, BOGO . Therefore, by Levi's negative R¥(T > B)

[0 RL(G), so that this negated conditional must also belong to RL(K). Applying Levi's nega-
tive RT once again, we obtain: B K, which conflicts with theeductiohypothesis. Q.E.D.
(That the negative RT together withlead to a collapse was originally proved by Gardenfors
et al, 1990.)

To conclude, then, Levi's diagnosis is clear. The apparent paradox rests on a confusion
between beliefs and epistemic evaluations. It dissolves when we interpret conditionals in a
non-propositional way and thereby remove them from belief sets.

As it stands, this solution does not give all the answers we need. In particular, Levi's RT
does not determine acceptance conditionsé&stedconditionals, in which some occurrences
of the conditional connective appear within the scope of its other occurrences. (Note that
nested conditionals are not among the sentences. oT hus, they never appear in the RL-set
associated with a given belief set.) Among the nested conditionaléethtedones are of
special interest. Here, it is enough to consider the simplest cases of iteration:

(i) A>(B>C) and (i) (A>B)>C.
We take A, B, and C to be sentenceg@f The following conditionals seem to instantiate (i)
and (ii), respectively: "If the train leaves on time, then | will miss it if | don't rush"; "If the
watch will be damaged if | use it when diving, then | have been cheated".

If conditionals are interpreted as conditional appraisals of beliefs, as Levi does, then it
might seem that expressions instantiating (i), and perhaps even (ii), must be judged to be
meaningless. For example, in (i), what seems to be conditionally appraised is not a possible
belief but an appraisal of belief — another conditional! The trouble is, however, that iterated
conditional constructions do seem to be used by us, so that — as Levi admits — they cannot
be totally devoid of meaning. At least, we must be able to determine their acceptance condi-
tions.

It is easy to do it, as far as conditionals of type (i) are concerned. A > (B > C) should be
accepted in a belief set G if and only iffC(GCA)[B. The acceptance condition for such an
iterated conditional is framed in terms of iterated revision.

Conditionals of type (ii) cannot be dealt with in this manner. Nor can we say that (A > B)
> C is to be accepted in G iff @ GI{A > B). According to Levi, belief sets can only be re-
vised with "factual" sentences — memberscgf He suggests, therefore, another solution
(ibid., p. 76f). Generally speaking, (A > B) > C should be accepted in GLifHCwhere the
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belief set H is an appropriate transformation of G — a transformation in which the antecedent
of the iterated conditional would be accepted. Intuitively, H is a belief set that satisfies the
following condition: A > B is accepted in H (i.e., by Levi's RT[BA) and H otherwise
differs from G as little as possible.

What sort of transformation are we here talking about? Levi is not sure whether there is a
unique answer to this question. In some cases, however, but perhaps not always, the trans-
formation in question will consist in revision: H will be the result of revising G with some ap-
propriate "factual” sentence D, i.e., H £I& Intuitively, D constitutes what might be called
the (potential) groundfor A > B relative to G. If you want to identify D, you should ask
yourself what "factual” belief would be necessary and sufficient for the acceptance of A > B.
Levi suggests that the belief in question, in some cases at least, might consist in an ascription
of a dispositional property to an object or a system of objects. Thus, in the "watch"-example
above, D might be the sentence "The watch is disposed to be damaged on being used when
diving". Provided, at least, that such dispositional sentences are "factual® — as Levi takes
them to be. It won't do if they themselves are to be analyzed in terms of conditionals.

Is it always possible to find a dispositional sentence that constitutes the ground for a given
conditional? Levi is unclear on this point. However, it seems that finding such "disposi-
tional" grounds for some conditionals might not be easy, to say the least. Thus, for example,
what dispositional sentence could ground the Oswald-Kennedy conditional "If Oswald did not
kill Kennedy, then someone else did"? Surely, sentences such as "Kennedy was disposed to
be killed by someone else than Oswald on not being killed by Oswald", or "Someone else
than Oswald was disposed to kill Kennedy on Kennedy not being killed by Oswald" are too
grotesque to be even considered as possible candidates.

It seems, therefore, that Levi's approach to iterated conditionals leaves us with many unan-
swered questions. What other sentences are there, besides the dispositional ones, that could
constitute grounds for conditionals? And what are we to do if a given conditional lacks a
grounding sentence at all? How are we to find the appropriate transformation H of G in
which the antecedent conditional is accepted, if we cannot assume that H must always be a
revision of G with some factual senten@e®/e are being left in the dark.

5.4. The indexical interpretation of conditionals

Isaac Levi pointed out a tacit assumption behind Gardenfors' approach to the Ramsey test,
namely that conditional sentences express truth-value bearing propositions. Here, we shall
point to another assumption that is implicit in Gardenfors' treatment of conditionals:

The Non-Indexicality AssumptiorA conditional sentence A > B expresseg and the
sameproposition relative to every belief state.
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We shall argue that — once this assumption is given up — there is no genuine conflict be-
tween the Ramsey test and the Preservation condition. That is, it is possible without threat of
paradox to keep both the origirRhmsey test

(Ramsey) A > B is accepted in a belief state X iff B is accepted iA X
and thePreservationcondition in the form:
(P) If A is consistent with X, then X is included in’X,

without giving up the assumption that conditionals express truth-value bearing propositions.
The approach that is outlined here is developed in further detail in Lindstrém (to appear).
When in (P) we say that one belief state Xhiduded inanother state Y, we mean that all
the propositionsthat are accepted in X are also accepted in Y. This does not necessarily
mean, however, that all tleentenceshat are accepted in X are accepted in Y. In the pres-
ence of context-dependent sentences, that may express different propositions relative to dif-
ferent belief states, inclusion between the propositions accepted does not imply the corre-
sponding inclusion between sentences. Hence, the above form of Preservation does not im-
ply:
If A is consistent with X, then every sentence that is accepted in X is also ac-
cepted in XA.

The latter condition is plausible only if all the sentences of the object language are context in-
dependent.

5.4.1. The context-sensitive nature of epistemic conditionals

The assumption that the sentences of the object language express determinate propositions in
a context independentay is implicit in the AGM approach. If one and the same sentence
could express different propositions relative to different belief states, then set-theoretic state-
ments concerning belief sets, for instancel@ or (A 0 G & A [H) , could not have their
intended interpretation. Suppose namely that G and H are belief sets representing the belief
states X and Y, respectively. Then, the following condition should hold:

(m] Gisincluded in H if, and only if, X is included in Y.

If, however, the object language contains context-sensitive sentences, this connection might
fail. To see that the right-to-left direction might fail, suppose that every proposition that is
accepted in X is also accepted in Y. Let A be a sentence in G ah@ &t be the proposi-
tion that A expresses relative to X. Since G represents the stfitd ¥ is accepted in X.
Then, by the suppositiof,A ]X is also accepted in Y. But, from this we cannot infer that A
[H . For that we would neefIATY to be accepted in Y which may not be the case, since
[ATX and[ATY may be different propositions. Hence, we cannot conclude thatG

To see that also the left-to-right direction @f (night fail, suppose that G H and that the
proposition P is accepted in X. G represents X, so there must be a sentér@eséch that
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[ATX =P. Since GI1H, A[H . It follows that[A]Y is accepted in Y. We cannot, how-
ever, conclude that P is accepted in Y, sibadY may be different from P. Once we allow
sentences that may express different propositions with respect to different belief states, then
both directions of[() fail. For context-dependent sentences A, eésaoces$ails: A may not

be a member of GA.

The approach described here differs from AGM and that of Levi (1988) in making a sharp
distinction between the semantic level involving propositions and belief states and the linguis-
tic level involving sentences and sets of sentences. Belief revision is seen as an operation on
belief states; and it is primarily propositions rather than sentences that are accepted relative to
belief states. We may think of a persdeédief stateas the set of all propositions that he ac-
cepts. We do not suppose in general that belief states are logically closed.

It is convenient for our purposes to identify propositions with certain sets of possible
worlds. If W is the set of possible worlds, then theRseft all the propositions that the agent
might entertain is a family of subsets of W. A propositidn P is true ata possible world w
if, and only if, wO P. We suppose th&is a Boolean set algebra, i.e., it contains W and is
closed under the Boolean set-operation$] and -. Belief statesare certain sets of proposi-
tions, i.e., we have a familX 0 OJ (P) of all possible belief states. A proposition Rt
ceptedin a belief state X if, and only if, B X. A belief state Xentailsa proposition P iff
nX O P. P iscompatiblewith X iff nX n P# [ The agent'sheoryT(X) is the set of all
propositions that are entailed by his belief state X.

What reasons could we possibly have for saying that conditionals are context-sensitive:
that they express different propositions with respect to different belief states? In order to an-
swering this question, let us introduce the notion failback theoryof X. Intuitively, such a
theory is one that may be reached by the agent from his current theory T(X) by deleting
propositions that are not "sufficiently” entrenched according to some standard of epistemic
entrenchment. To put it differently, a fallback theory of X is a subtheory T of T(X) that is
closed upwards under epistemic entrenchmentlif Pand Q is at least as entrenched as P,
then QT . In terms of fallback theories, we may give the following interpretation of an
epistemic conditional "If A, then B":

A together with some true fallback theory T that is compatible with A entdfls B.

But what is meant by a fallback theory is dependent on the belief state of the speaker. Given
that epistemic conditionals express truth-value bearing propositions, the natural conclusion is
that they express different propositions with respect to different belief states: the truth or fal-
sity of an epistemic conditional "If A, then B" is then dependent not only on the world with
respect to which the conditional is being evaluated but also on the belief state X of the
speaker?

The idea that conditional sentences express different propositions relative to different be-
lief states is quite a natural one. Consider the following two senténces:
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(1) If Bizet and Verdi were compatriots, Verdi was French.
(2) If Bizet and Verdi were compatriots, Bizet was Italian.

(1) could be used to make a true statement by a contemporary speaker who knows that Bizet
was French, but does not know the nationality of Verdi. For such a speaker, the claim made
by (2) would be false. The situation is the opposite for the speaker who knows that Verdi was
Italian but does not know the nationality of Bizet.

Instead of assigning propositions to conditional sentences in a context-independent way,
we need toelativizethe assignment of propositions to belief states. Only relative to a belief
state does an epistemic conditional A > B express a determinate proposition. We should
speak of the propositiofA > B]X expressed by the conditional A >rBlative tothe belief
state X. Itis then natural to say that the conditional A >&eeptedn the belief state X if,
and only if, the propositiofi A > B]X expressed by A > B relative to X is a member of X.

In other words,

A > B isacceptedn X iff [A > B]X O X.

The analysis of conditionals given here is close to those of Stalnaker (1968) and Lewis
(1973), except for containing additional parametera belief state. The intuitive idea is ex-
pressed by Stalnaker (1975) as folloWs:

A conditional statemenif A, then B,is an assertion thahe consequent is true, not necessarily in the
world as it is, but in the world as it would be if the antecedent were true.

In possible worlds terms we can express this idea roughly as follows:

A conditional sentence A > B is true at a world w just in case B is true at all the
A-worlds that are most similar to w.

However, here we shall think of the notion of similarity involved in the truth condition for
conditionals as aepistemic notiorwhich is determined by the agent's belief state. Making
this dependence on a belief state explicit, we get:

A conditional sentence A > B tsue at a worldw relative to a belief statX
just in case B is true at all the A-worlds that are most X-similar to w,

where X-similarity is a concept of similarity between possible worlds that is determined by
the belief state X. According to this type of semantics, the truth-value of a conditional A > B
is dependent both on the state w of the world and the belief state X. Relative to a belief state
X, A > B can be said to express the proposition:

[A>BJX ={w: A > B is true at w relative to X}.

5.4.2. A solution to the paradox

Once we are reminded of the context dependent nature of conditionals and other epistemic
constructions, the representation of belief states by sets of sentences and acceptance by set-
theoretic membership in such sets becomes less appealing. If we distinguish between propo-
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sitions, belief states, acceptance, on the one hand, and sentences, belief sets and membership,
on the other, we see that the most perspicuous way of formulating the conditions of Success,
Consistency and Preservation is in terms of the former notions:

(P-Success) The proposition P is accepted X

(P-Consistency) If P and X are consistent, when considered separately, thien X
is also consistent.

(P-Preservation) If Q is accepted in a given belief state X and P is consistent with

X, then Q is still accepted inCR.
Now, if we formulated the Ramsey test in an analogous fashion as:
(P-R) PO Qis accepted in X iff Q is accepted ik
wherel] is a binary operation on propositions corresponding to the conditional connective >,

we would indeed be confronted with Gardenfors' theorem. We could then derive the follow-
ing monotonicity condition:

(P-Monotonicity) If XOY, then X?P O Y[P.

And P-Monotonicity is easily seen to be incompatible with the above conditions on belief re-
vision, given the additional requirement:

(Non-Triviality) There exist two propositions P, Q and three consistent belief states X,
Y and Z such that:
(1) PO X and X[ {-Q} is consistent;
(2) QU Y and YO {-P} is consistent;
3) X0OZandYOZ.

The proof of this result is a straightforward adaptation of our proof of Gardenfors' theorem in
section 4.

However, thinking of the conditional connective > as corresponding to a binary operation
[0 on propositions is tantamount to assuming that conditional sentences are context-indepen-
dent. Given such an operatidh, we could formulate the following semantic clause for
conditionals:

(i) [A>BI=TAID [BI,
where[[A > B] is the proposition expressed by A > B. But if we instead think of condition-

als A > B as expressing propositions only relative to belief states, we would rather like to
have something like the following semantic clause:

(ii) [A>BIX=[AT O x [BI,
where[[A > B]X is the proposition expressed by A > B relative to the belief state XIand
is a ternary operation taking two propositions and a belief state as arguments and yielding a
proposition as value. Here we assume that the sentences A and B themselves are not context-
sensitive, so that the propositions that they express are not dependent on the belief state. For
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a semantic clause without this restriction, see condition (e) below. We may think a$ a
context-dependent operation on propositior such an operation, the Ramsey test takes
the form:

(P-Ramsey) (PO x Q) Xiff Q O X[P.

With P-Ramsey our proof of Gardenfors' theorem does not go through, since Monotonicity
is no longer derivable. To see this suppose that X and Q OO X[P. Then, by P-Ramsey,
(PO x Q) O X, from which we conclude (P! x Q) O Y. However, from this we cannot
reach the desired conclusionfQY[P. To get there we would need[{Rr Q) I Y, instead.

As a matter of fact, we can prove that there are non-trivial belief revision systems of the
type <W, P, K, [ 00 x> that satisfy the propositional versions of the Gardenfors axioms for
belief revision together with the condition P-Ramsey. That is, we have:

THEOREM. There are systergs= <W, P, K, [J [0 x> satisfying Success, Consistency,
Preservation, Non-Triviality, P-Ramsey together with the conditions:

(Closure) If X entails P, then I X;
(W) XOW = X;
(Revision by Conjunctiondf X [P O {Q} is consistent, then X[P n Q) = (X[P)+Q,
where for any X and P, X+P is te&pansiorof X with P, i.e., the set:
{QUP.nXn PO Q}.

Proof: Let W andP be given and leK be all subsets d? that are closed under entailment.
We associate with every consistenttXK a system § of spheres in the sense of Grove
(1988) arounch X. That is, & is a family of subsets of W satisfying the conditions:

(i) nX and W belong to $;

(ii) forall SO $x, nX O S;

(iii) forall S, S'0$x, SO S'or SO S;

(iv) for every PO P and every S1 $x, if Sn P# [, then there exists an S' ix $
such that Sh P# [0 and for every S" iny§ if S"n P# [, then ST S".

If X and P are consistent, taken separately, then we defifet&Xbe {QU P: Sn PO Q},
where S is the smallest sphere jstich that Sy P# 0. Otherwise, we let XP beP. Itis
easily verified that the conditions Success, Consistency, Clq8Mjeand Revision by Con-
junction are satisfied. Preservation follows fr@i) together with Revision by Conjunction.
We can easily see to it thRtcontains two propositions P and Q such that® 1, Pn -Q

[ -PnQ#0 and -Pn -Q # 0. Two such propositions are said to be completely inde-
pendent. Letthen X={R: PR}, Y ={R: QUR}and Z={R: Pn QUOR}. Then, X, Y, Z

are consistent belief states such that:

(1) PO X and X[ {-Q} is consistent;
(2) QO Y and YO {-P} is consistent;
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3) XOZandYOZ

Thus, Non-Triviality is satisfied.
We are next going to define the operatidrg. For this purpose, we associate with each
world w and each belief state X a system of sphexgs that satisfies the conditions:
(1) W belongs to & w;
(i) forall SO $xw, wO S, (Weak Centering)
together with the analogues of (iii) and (iv) fox . We then impose the following con-
straint:
ifw O nX, then & w = $x. (Compatibility)
That is, if w is a world that is compatible with all the beliefs in state X, then the sphere system
around w coincides with that around X.
We defineld x by letting:
POxQ={w:(SO%w)(O2Sn PO Q)
It remains to show that P-Ramsey holds, i.e.,
POx QO Xiff Q@ O X[P.

Suppose that Bx QI X. Then,nX O PO x Q. Thatis, (i) for all win X, w [ PO x
Q). If nX =10, then X_P =P. Hence, the desired conclusion holds in this case. Suppose
that (ii) nX # . By the constraint: for all Wl n X,

wO((POx Q) iff (SO $x)(D #Sn POQ).

But (i) and (ii) yields that for some ian X, w [0 (PO x Q). Hence,[(5 0 $x)(0 #S n PO
Q). But this means that Q X[P.
For the other direction, suppose thaflX[P. Let wCh X. By the constraint,

wO(POxQ)iff (SO $x)(D #Sn POQ).
That is,
w O (POx Q)iff QO X[P.

It follows that wO (P O x Q). We have shown that,X O (P x Q), which means that
(PO x Q)O X. O

In the above proof, we outlined a semantics for belief revision and conditionals based on
systems of spheres. First, every belief state X was associated with a system of spireres $
terms of which the belief revision operationlX was defined. Secondly, each world w was
associated with a system of sphergsy$relative to X. In terms of the latter system of
spheres, we could define the propositional operationl(x.....). A condition was imposed
connecting the two kinds of sphere systés:

if w is compatible with all the beliefs in X, the § = $x.
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From this condition, we proved:
(P-Ramsey) POx QU Xiff Q O X[P.

This modelling showed (P-Ramsey) to be compatible with propositional versions of
Gardenfors' axioms for belief revision.

Suppose now that we have a formal languagéth sentences built up from atomic ones
using Boolean connectivésand — and the conditional connective %g is the fragment of
L without >. We lets = <W, P, K, [JO x> be a belief revision system satisfying Success,
Consistency, Preservation, Non-Triviality, Closure and P-Ramsey. \We..[kbe an inter-
pretation function that assigns propositidis JX to sentences A in relative to belief states
X. This function is assumed to satisfy the requirements:

(@) If A is a sentence afg, then for all X, YO K, [A]X =[ATY. Hence, for
sentences ofg we may write[ A] instead of[ A JX.
(b) For every P P, there exists a sentence Amfsuch that P fATX.
(The expressibility assumption)
(c) [OTX =0.
(d) [A - BI*=W-[A]X)O [BIX.
e  [A>BIX=[AT]X0Ox [BIXOIATX)
Writing XA for XC[ATX, we can simplify (e) to:
[A>BIX=[A]X Ox [B]XtA),

Assumption (a) says that the sentences of the basic langgiage context-independent. The
expressibility assumption is the requirement that the basic language has sufficient expressive
power to express all the propositions that the agent might accept. Together these two condi-
tions makes it possible to represent belief states, in a context-independent way, by sets of
sentences of

We say that a sentence A asceptedin the belief state X just in case the proposition
[ATX that is expressed by A relative to X is accepted in X. That is:

Ais accepted in X iffATX O X.
Then, we get:

A > B is accepted in X iff
[A>B]X O Xiff

(LATX O x [BIXEA) O X iff

[BI(XIA) O XOLATX iff

[BI(XXDAN) O XA iff

B is accepted in XA.

That is, we get our original formulation of the Ramsey test:

(Ramsey) A > B is accepted in the belief state X iff B is acceptediAX
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5.4.3. Belief revision at the linguistic level

Our resolution of Gardenfors' paradox depended on viewing belief revision as primarily an
operation on belief states and interpreting Gardenfors' postulates on belief revision as apply-
ing to such an operation. We showed that such a propositional belief revision system could
be provided with a context-dependent operatibx on propositions satisfying (P-Ramsey).
Finally, we showed that the conditional connective > could be interpreted semantically in
terms ofl] x in such a way that the Ramsey test became valid.

Now, we want to see what happens when we view belief revision as an operation on belief
sets, i.e., sets of sentences, instead. Starting out from a belief revision systam, P, K,

[0 O x> and an interpretation functidh..] satisfying the conditions (a) - (e) abowvee de-

fine a corresponding logic L, a sefK) of belief sets corresponding to the Kebf all belief
states, and an operati@iof belief revision on belief sets. As a matter of fact, we define two
notions of belief set, one for the basic languagend one for the extended languagend
correspondingly two notions of belief revision. Within our framework, the two notions are
interdefinable and the Ramsey test can be formulated in terms of both.

First, we define théogic L determined by and[...]. We say that a sentence Adris an
L-consequencef a setl” of sentences ia (in symbols,I” - A) if for every belief state X
OK,n{[BIX:BOT}OLATX. Thatis,[ I A iff for every belief state X and every
possible world w, if all the sentenceslirare true at w relative to X, then A is also true at w
relative to X. For sentences.n the reference in this definition to the belief state X becomes
swerfluous. That is, if is a set of sentences iy and A belongs ta, then:l" k| A iff
n{[Bl:BOT} OLAT.

Next, we need to decide on what we shall understand by a belief set. Each belief state is
associated with two sets of sentences: First we have the set:

(A Ozog [A]IO X

of all non-indexicabr basic sentencetat correspond to propositions in X. Then there is the
set of all sentences of the extended languatjat are accepted in X, i.e., the set:

{A Oz: [ATX O X},
Let us speak of the first set as tiescriptive belief satorresponding to the belief state X,
and the second set as txeptance seatorresponding to X. In view of the expressibility as-
sumption, there is a one-to-one correspondence between belief states and descriptive belief
sets. We also have a one-to-one correspondence between descriptive belief sets and accep-
tance sets. For each acceptance set G, the corresponding descriptive belief set is the set G
Lo which we may refer to as thaescriptive coreof G, or core(G). Conversely, for each de-
scriptive belief set K, we can define the corresponding acceptance set as:

E(K) = {A Dz: [ATIKI O kD),
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where[[K] is the belief state that corresponds to K, i[&K,] = {[B]: B O K}. In other
words, E(K) is the set of all sentencescdhat are accepted in the belief state corresponding
to K. Of course, G = E(K) iff K = core(G).
For each belief state X, we lefX) be the acceptance set corresponding to X, i.e.,
1(X)={A Oz: [ATX O X}
and we lett (K) be the set of all acceptance sets, i.e.,
1 (K) = {1 (X): X OK}.
The sentences of core(G) are context-independent, so we can speak in a context-indepen-
dent way of the propositiohA] expressed by A, for each B core(G). Furthermore, we
have assumed that every propositiorKims expressed by some sentencédgr{The Express-
ibility Assumption). It follows that we can recover the belief state corresponding to a accep-
tance set G as the set of all propositions that are expressed by some member of core(G). That
is, the belief state corresponding to G is defined as:
[GIl={[ATI: ADcore(G)}=[core(G].
Notice that:
[+(X)] =X, and
t([GD) ={A Dz [AICIO[G}={A Oz:ADG}=G.
We also have:
if [G] =[HI, then G = H.

In order to prove this, IdiG] = [H]. Then, G=([G1) =+(IH]) = H.

We can now define two operations of belief revision, one operation descriptive belief
sets and the othéton acceptance sets. For any descriptive belief set K and anhy,Ave
let:

KOA={B Ozo: [BIO[KIA}={B Ozo: [BI O [KIOTATIK,

That is, if K is a descriptive belief set and A is a sentenag tfen we define KIA as fol-
lows: first, we go to the belief staflek ] corresponding to K. We then revise that state with
the propositionf A LK1 that A expresses relative to that state. Finally, we [@AkKe the
set of all sentences op that are accepted in the resulting belief state.

Similarly, we define for any acceptance set G:

G =1 ([G]MA) ={B O [B]'ICIN o [c]m}.
We have:

[KOA] =[KImA, and

[GOA] = [GICA.

The two operations are interdefinable as follows:
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G[A = E(core(G)JA)
KUOA = core(E(K)A).

For any pair of descriptive belief states K, K' we have:
KOK'iff [K] O [K'T.
However, for acceptance sets G, H, wendbhave:
GUOHIiff [G] O [HI.

For acceptance sets G and H, it is important not to conflate ordinary set inclusion (G
[H) with the relation (we write it, G H) that holds iff all thepropositionsthat are accepted

in the belief statf G] are also accepted [PH]. Due to the Expressibility Assumption, we

can define= as follows:

G c H iff core(G) I core (H).
We have, of course,
Gc HIiff [G] O[HI.

Let us now see how to formulate the Ramsey test and Preservation within the present
framework. First, we consider the Ramsey test:

(Ramsey) A > B is accepted in the belief state X iff B is accepted iAX
In terms of acceptance sets and revision of acceptance sets, this becomes:
A>BOG iff BO GLA.
The same condition formulated in terms of descriptive belief sets K and the operaion
A > B 0 E(K) iff B O E(KOA).
Consider next P-Preservation:
If Q is accepted in a given belief state X and P is consistent with X, then Q is still ac-
cepted in XP. (P-Preservation)
This corresponds to:
If A O Lo, Kis a descriptive belief set and (K{A} ¥ | [J, then KO KOA,
(£o-Preservation)
In other words,
If A O Lo, G is an acceptance set and (cord(dA}) ¥ | O, then Ge G[A.

Suppose next that= <W, P, K, [0 [0 x> satisfies P-Success, P-Consistency, P-Preserva-
tion, Closure, (W), Revision by Conjunction, Non-Triviality and P-Ramsey and[thdt
satisfies the conditions (a) - (e) above. Then, the following conditions are also satisfied:

(1) The logic L determined by and [...] contains all substitution instances of

truth-functional tautologies and is closed under modus ponens (i.ey, Af
andk_ A - B, thent B).
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3)

(4)
(5)
(6)
(7)
(8)

(9)
(10)

(11)
(12)
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IfFL A o Bandk. C o D, thent (A>C)~ (B>D).
Descriptive belief sets and acceptance sets @aded sets img andz, re-
spectively. (Closure)
E is a one-to-one mapping between descriptive belief sets and acceptance sets
such that for each descriptive belief set K, K = E(K)q.
If A O Lo, then AL KOA. (£o-Success)
IfA K Oand KK [ [0, then KOA 1 | [ (£o-Consistency)
If A O Lo, K is a descriptive belief set and [K{A} ¥ | [, then KO KOA,
(£o-Preservation)
If A OLgand KO {A} ¥ | O, then KOA = K+A,
where K+A ={B Lo: K O {A} F_ B}. (£o-Expansion)
If FL A o B, then KOA =K0OB. (Substitutivity of logical equivalents)
If A, BOLoand KOA O {B} ¥ | O, then KI(A OB) = (KOA)+B.
(£o-Revision by Conjunction)
A > B0 E(K) iff B O E(KOA). (RT)
There exist two sentences B and Cdrand three consistent descriptive belief
sets G, H and K such that: (i)B G and G {-~ C} is consistent; (ii)) CJ1 H
and HO {— B} is consistent; and (iii) GJ K and HO K. (£o-Non-Triviality)

In virtue of Theorem 2, there are belief revision systems satisfying the above conditions. Itis
also easy to see tht..] can be defined (recursively) in such a way that conditions (a) - (e)
are satisfied. It follows that conditions (1) - (12) are mutually consistent.

The present approach has the formal advantage over Levi's (1988) of being able to account
for iterated conditionals in a natural way. Levi's version of the Ramsey test does not provide
a method for evaluating such conditionals. The present version of the test can, however, be
applied to iterated conditionals without difficulty. Consider, for example, (A > B) > (C > D).
According to (RT), we have:

(A > B) > (C > D)0 E(K) iff C > D 0 E(KO(A > B)) iff D 0 E((KO(A > B))TIC).

Or, in other words,
(A>B)>(C>D)JGiff C>D0OGHA>B)iff D O (GHA > B))C.

Semantically this means:

[(A>B)>(C>DJX0OXiff [C>D]XHJA>B)O XA > B) iff
[DIXA > B)T O (XA > B))CT,

where X is the belief stafeG].

5.4.4. Could the paradox be reinstated?
It should be pointed out that the following form of Monotonicity:

For any descriptive belief sets K, K', and any1X,
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if K O K', then KA O K'A. (£o-Monotonicity)

is sufficient in the presence ah-SuccessLo-ConsistencyLg-Preservation andg-Non-
Triviality for the derivation of an inconsistency. However, it is impossible to derive
Monotonicity from:

(RT)  For every descriptive belief set K and any AL &,
A > B 0 E(K) iff B CE( KOA).
Thus, Gardenfors' paradox is avoided.
At this point the reader might object and point out that there is another form of Mono-
tonicity that actually follows from (RT), namely:

For any descriptive belief sets K, K', and anylA,
if E(K) O E(K"), then E(KJA) [E( K'LJA). (£-Monotonicity)

Couldn't this condition be used to construct a version of Gardenfors' paradox? This is in fact
possible. The only thing we have to do is to replace the conditiog-Nbn-Triviality with
the stronger condition:

There exist two sentences B and G gand three consistent descriptive belief sets G,

H and K such that: (i) Bl G and GO {- C} is consistent; (i) CJ H and HO {-~B} is

consistent; and (iii") E(G) E(K) and E(H)CE( K). (£-Non-Triviality)
It is easy to see that this condition is sufficient to derive a contradiction. Let A be the sen-
tence-B [0-C. Since, B and C belong 19, the same holds for A. It follows from (i) and
(ii) that each of G and H are logically compatible with A. Since, B and C belong to G and H,
respectively Lo-Preservation implies that B GLA and C HOA. Hence, BO E(GOA)
and CO E(HOA) (since, for any descriptive belief sets G, E(GXo = G). However, since
E(G), E(H) O E(K) (condition (iii')), £L-Monotonicity implies that E(GA), E(HOA) O
E(KOA). It follows that B, CJ E(KA). By Lp-Success, we also get [A E(KOA). But
this implies that KIA is inconsistent. On the other hand,]K must be consistent, k-
Consistency.

It might seem as if we have indeed succeeded in reinstating the paradox. However, this is

not really so. The above proof is nothing but a reductio proof of the negatieNaf-Triv-
iality from the premisescg-SuccessLo-ConsistencyLo-Preservation and (RT). Given these
assumptions, the situation envisaged iNon-Triviality is impaossble. This is no paradox,
since we have no reasons to believdon-Triviality to be true. The situation here is com-
pletely analogous to the one we encountered before in connection with the attempt to prove
Gardenfors' theorem for Levi's version of the Ramsey tesion-Triviality might appear
reasonable if we do not distinguish clearly between descriptive belief sets and acceptance sets
or if we conflate inclusion between descriptive belief sets with the same relation among ac-
ceptance sets.
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6. Summing up

We have seen that Gardenfors' paradox is based on a number of questionable assumptions and
that it can be resolved in various ways. In particular, we have discussed three major ap-
proaches to the paradox. According to the first approach we divided the Ramsey test into two
logically independent conditions: Strict RT and Monotonicity. The proposal was to replace
the Ramsey test by Strict RT while abandoning Monotonicity. In the absence of Monotonic-
ity, it is possible to distinguish between the conditions:

(1) B 0 G[A; and
(2) for every extension H of G, B G[A,

while Monotonicity is just the assumption that they are equivalent. The idea behind Strict RT
is to demand the logically stronger of these conditions, namely (2), for the conditional A > B
to be a member of the belief set G. According to this analysis, the fault with the original
Ramsey test is that it leads to the collapse of the intuitively distinct conditions (1) and (2).
Gardenfors' paradox is avoided, since it essentially involves the assumption of monotonicity.

The second approach that we considered, Levi's non-propositional one, also involved mod-
ifying the Ramsey test. However, here the intuitive idea was different: rather than expressing
truth-value bearing propositions, epistemic conditionals express policies for the revision of
belief states. This leads to a modified Ramsey-test according to which an epistemic condi-
tional A > B, involving ordinary descriptive sentences A and B, is accepted in a belief state G
if and only if BO G[A. Since, conditionals cannot themselves be members of belief states
Monotonicity is not derivable so Gardenfors' paradox is avoided.

Finally, we considered an approach, the indexical one, according to which epistemic condi-
tionals were thought of as expressing genuine beliefs, but only in a context-sensitive manner,
relative to a belief state. A distinction was made between an acceptance set, the set of all
sentences including context-sensitive ones that are accepted in a belief state, and its descrip-
tive core (a descriptive belief set) consisting of all the non-indexical sentences that are ac-
cepted in a belief state. We presented a semantics that validates both the full Ramsey test at
the level of acceptance sets and Gardenfors' axioms for belief revision, provided that the latter
are applied to descriptive belief sets and not to acceptance sets. By not conflating the level of
descriptive belief sets with that of acceptance sets Géardenfors' paradox is avoided.

The three different ways of resolving the paradox need not be competitors to each other.
Instead they might be viewed as corresponding to different uses of conditional constructions
in epistemic contexts. However, one question still remains: Is the Ramsey test intuitively
plausible as a claim about our everyday use of conditionals? This is the question that we now
want to address.

But first we must say something about how we want to interpret the notion of belief. Here,
we prefer to follow the pragmatist tradition. In the words of Peitoeliéfconsists mainly in
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being deliberately prepared to adopt the formula believed in as a guide to &ctidnis,
beliefs are to be interpreted as what we have previously called "assumptions".

As we remember, revision of assumption sets violates Preservation. This is why we could
not take this interpretation of belief for granted while exploring different ways of dealing with
Gardenfors' paradox. Now, when the question concerns the intuitive plausibility of the
Ramsey test itself, we are free to opt for the interpretation of belief that we find most attrac-
tive.

Let us first consider the 'if'-part of the Ramsey {81 ) . That this part of the test is
quite counterintuitive has already been pointed out by Gardenfors in his book:

The most problematic implication of (RT) is the one saying that[if 80A, then A >BO G. Ina
sense, this implication requires that too many conditionals be elements of a belief set G because it
contains conditionals related to all possible revisions that G may undergo.

In fact, as argued by Nils-Eric SahlirRamsey himself would probably reject that part of the
test that bears his name.

We give an example to indicate tH&T ) generates "too many" conditiondisSuppose
that Oscar, in his present state of belief (represented by the set) G believes that Tweety is a
bird, that Tweety has been reported to fly by a normally reliable witness, that normally birds
can fly and that penguins are birds. However, he has no opinion concerning penguins ability
to fly. Let A be the proposition that Tweety is a penguin and B the proposition that Tweety
can fly. In view of his belief that it is normal for birds to fly and that Tweety actually has
been reported to fly, Oscar believes B. He is prepared to act on that assumption. On the other
hand, he does not know whether A is true or not.

Now, if Oscar were to learn (A) that Tweety is a penguin, he would still believe (B) that
Tweety can fly. That s,

(1) B O GLA.
Thus, if(RTQ ) were a valid principle, we would have:
(2) A>BOG,

that is, Oscar would already in his present state G believe A > B.
Consider now the proposition (C) that penguins cannot fly. As we have pointed out, C is

compatible with Oscar's beliefs in G. Hence, the conditionabB>which intuitively is en-
tailed by C in view of the law-like character of that proposition, must also be compatible with
Oscar's beliefs in G. But this contradicts (2). The argument, of course, depends on the fol-
lowing intuitive principle:

Conditionals with the same logically possible antecedent and with incompatible conse-

guents are mutually incompatible.

We conclude from this argument, t{&T] ) should be rejected. (At least for the assump-
tion-interpretation of beliefs. Were we to interpret beliefs as certainties, the example would
not work: given his original evidence, it would be unreasonable for Oscar to be certain of
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Tweety's ability to fly. Nor would the example work for the expectation-interpretation.
Oscar who originally believes that birds normally can fly, expects that the same applies to
penguins. Thus, C and the conditional that C entails,8>conflict with Oscar's original
expectations.)

What about the other direction of the test, its ‘only if'-part?

Gardenfors (1988, p 166) presents an example which is supposed to underniing (RT
This example, however, is easy to dismiss: the conditional which figures in it is not epistemic
butontic® And we already know that ontic conditionals fail to satisfy the 'only if-part of the
Ramsey test: | believe that no one would have killed Kennedy in Dallas if Oswald had not
done it, but | would, of course, come to accept the theory about another murderer, if | were to
learn that Oswald in fact was innocent.

However, in connection with this unhappy example, Gardenfors makes some general ob-
servations which are less easy to ignore. According to the Consistency Postulate, if G and the
new information A are internally consistent[J&is a consistent set of beliefs even when A
conflicts with the original belief set G. This means that revising G with A demands that we
give up some of our original beliefs in order to "make room" for A. We should try to keep as
many of our old beliefs as possible intact; otherwise we would be throwing away lots of ba-
bies with the bath water. But some of the original beliefs must be given up, if the new infor-
mation A is to be made consistent with the rest of our beliefs.

To begin with, we have to give up our original belief in non-A. This is clear. But nor-
mally we have to make other adjustments as well. Thus, suppose that we originally accept
two propositions, C and C', which are such that A is compatible with each of them taken by it-
self but entails that at least one of them must be false. Thus, we have to remove at least one
of these propositions when we learn that A is true. If we do not want to remove both, which
one should we give up? Gardenfors suggests giving up the one thatastkesshedn our
original belief set — the one that is less useful to us "in inquiry and deliberation”.

The fundamental criterion for determining the epistemic entrenchment of a sentence is how useful it is in
inquiry and deliberation. Certain pieces of our knowledge and beliefs about the world are more important
than others when planning future actions, conducting scientific investigations, or reasoning in general.

To give an example of the scientific case, in modern chemical theory, knowledge about combining

weights is much more important for chemical experiments than knowledge about the color or taste of

some substances. This difference in entrenchment is reflected in that, if chemists for some reason
changed their opinion concerning the combining of weights of two substances, this would have much

more radical effects on chemical theory than if they changed their opinion concerning the tastes of the
two substanceslidid., p. 87)

For pragmatical reasons, beliefs that are more entrenched in this sense are more immune to

revision, less vulnerable to removal from the original set of beliefs. We keep them if we can.
Now, suppose that | originally believe that non-A and non-B, butft#gtthenB. That is,

| accept the conditional A > B. Suppose that | then learn that, contrary to what | have be-

lieved, A is true. To make room for this new information | must give up one of my old be-

liefs: either non-B or A > B. | cannot cling to both of them, since they are together inconsis-
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tent with the new information A. (Here, we assume that epistemic conditionals obey Modus
Ponens: From A > B and A, one can derive B.) | know that | should give up that belief which
is less entrenched. But according to the 'only if'-part of the Ramsey test, if A > B has be-
longed to the original belief set and | revise that set with A, then B should always belong to
the revised set. Thus, it is non-B that should always be given up: non-B is never more en-
trenched than A > B if (R ) is generally valid. Is it reasonable? Is it reasonable to assume
that epistemic conditionals are always so well entrenched in our beliefs (as compared to the
negations of their consequents)? Gardenfors doublBid.,[p. 166)

Once one starts to doubt, the examples of epistemic conditionals that seem to violate
(RTD) are easy to find. To take an extreme case, consider the following exchange:

Me: Oswald did it!

The devil's advocate: Are you sure?

Me: How can you doubt it given all the evidence? If Oswald didn't do it, then | am the em-
peror of China!

Lucifer: | hate to interrupt your interesting discussion, but, as a matter of fact, Oswald was
innocent.

Me: What? Oh, | see. Thank you for putting me straight.

The devil's advocate: Are you then the emperor of China?

Me: Save your jokes for another occasion, will you?

The conditional "If Oswald did not do it, then | am the emperor of China", which | apparently
accept before Lucifer's intervention, violates (R)f upon learning the antecedent of this
conditional, I am not at all prepared to accept its consequent. The negation of the consequent
is much too well entrenched in my original beliefs to be given up.

It is not quite clear to us how convincing such examples are. The defender of Ramsey
might say that his test is meant to apply only to rational persons and only to conditionals
which such persons "really” accept. Do | really accept that | must be the emperor of China if
I am wrong in my belief in Oswald's guilt? Or is it only a hyperbole, an exaggeration used by
me to make my point more strongly than | really am entitled to? In asserting the conditional,
| want to suggest that my belief in Oswald's guilt is extremely well entrenched — that its de-
gree of entrenchment is comparable to my conviction that | am not the emperor of China. Of
course, this is overstating things quite a bit. Being a reasonable person, | do not really accept
the conditional in question, as shown by my behavior after Lucifer has volunteered the new
information.

This is how the defender of Ramsey might respond. That epistemic conditionals, if sin-
cerely believed by rational people, are always more entrenched than the negations of their
antecedents is simply a reflection of the essential connection obtaining between such condi-
tionals and belief change: the connection that the Ramsey test tries to articulate.
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In fact, this response begs the question somewhat, as withessed by the last sentence in the
next-to-last paragraph. The claim made in this sentence will be convincing only to someone
who already accepts the 'only if'-part of the Ramsey test.

The authors of the present paper — do. That is, we are convinced. What about you, our
reader?

NOTES

" The present chapter (or rather, a close predecessor of it) has appéEnedria58 (1992). Parts of it have

grown out of Rabinowicz (1991), which is a non-technical discussion of the approach to the Ramsey test that we
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® The quotation comes from a paper entitled 'General propositions and causality', written in 1929 (see Ramsey
(1931) p.248) (our italics).

4 Stalnaker (1968). For Stalnaker, this test represents the acceptability condition ("belief condition") for
conditionals, which he distinguishes from thteirth condition In Lindstrdm and Rabinowicz (1992), we make

a similar distinction, even though we ultimately modify the Ramsey test for acceptability and propose a truth
condition that differs from Stalnaker's. See Section 5.2 below.

® Dudman (1984), (1988), (1991).
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& The resemblance should not be overstated. Unlike ourselves, Dudman emphatically claims that neither
conditionals nor hypotheticals express any propositions. The former express our attitudes towards our own
projective fantasies, while the latter may be seen as compressed arguments. Dudman also rejects the Ramsey
test, at least as this test is normally formulated, mainly because he takes the arguments expressed in
hypotheticals to be dependent on our particular commitments in a given context and not on the beliefs that we
happen to have (Cf. Dudman, 1991, 228-229).

® The underlying logic is assumed to satisfy the following requirements: (i) classicality (it extends classical

propositional logic); (ii) closure under modus ponens; (iii) the deduction theorem; (iv) compactness. As a
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consequence, it also satisfies Lindenbaum's Lemma which says that every consistent set of sentences is included
in a maximally consistent set.

1 Here we have chosen a formulation of the Ramsey test which implies@has @consistent whenever G is.

This consequence can be avoided by restricting the test to consistent belief sets G only. Our reasoning would
not be affected if we modified the Ramsey test in this way and made the corresponding changes in the other
conditions that we consider.

1 As we shall argue in section 5.4, condition (3) in the Non-Triviality condition, as it is stated here, is in fact too
strong in the presence of the Ramsey test. The present formulation of Non-Triviality corresponds to what we
refer to there as-Non-Triviality. We argue that this condition should be abandoned and replaced by the weaker
condition£g-Non-Triviality. With this change Gardenfors' proof does not go through.

2 Through all of Section 5.2 we assume that every logically closed set of formulas is a possible belief set. This
assumption is used in the proof of Weak RT from Normality. Suppose that Normality holds. The left-to-right
direction of Weak RT follows immediately. So we prove the direction from right to left. SupposelfhdtB

for every opinionated extension H of G. Normality then yields that AZ-HB for every opinionated extension

H of G. By the assumption that all logically closed sets of formulas are possible belief sets, we obtain that A >
B O H for all maximally consistent sets of sentences that extend G. By Lindenbaum's Lemma, this entails that A
> B is a logical consequence of G. But G is logically closed, so A>@3

13 To solve this problem Hansson (1992) introduces a primitive three-place relation S(X, Y, Z) between belief
states with the intuitive meaning: X is at least as similar to Y as is Z. Hansson then proposes the following
similarity-based Ramsey tegt:> B is accepted in X iff B is accepted in all the S-closest states to X in which A

is accepted. He proves that Levi's Ramsey test can be seen as a special case of the similarity-based test.
Hansson's condition, of course, allows for the iteration of conditionals. Another proposal for solving the
iteration problem has been outlined by Isaac Levi himself in private communication.

4 Here, we are assuming, for the sake of simplicity, that A and B do not themselves contain conditionals.

% In reality, the belief state against which an epistemic conditional is evaluated may not be the agent's actual
belief state but rather some hypothetical belief state that is provided by context. It may for example consist of
the shared beliefs among the participants in some discussion. This point was emphasised by Isaac Levi in
private communication.

16 Cf. Quine (1962), p. 15.

7 Stalnaker (1975). See Jackson (1991), p. 143.

'® Given $, we could, for each W W, define$x \ as the set of spheres(8$x such that wil S. It is easily

seen that § v, when defined in this way, satisfies the conditions that we formulated for a system of spheres
around a world w and that Compatibility is also satisfied. Hence, by means of this construction, we have shown
that it is possible to satisfy Compatibility and, consequently also P-Ramsey. In addition, we get the following

semantic clause for conditional propositions:
forallwOW,wOPOx Qiff (SO $x)(wO S, Sn Pz 0 and Sn PO Q).

That is, the proposition Bl x Q istrue atw iff there is a sphere S aroundX such that wl S, S is P-

permitting, and $h P entails Q. Intuitively, the spheres around represent the agent's fallback theories. So,
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in other words, 1 x Q is true at w iff there is a fallback theory S of X such that S is true at w, S is compatible
with P, and S together with P entails Q.

The above definition of § \y in terms of § is by no means the only one that makgs\$ a system of spheres
around w satisfying the compatibility condition (nor need it be the most intuitive one). Another such definition

would be:
$xw ={Y O W: for some S $x, Y = SO {w}}.

However, from this definition we could prove the rather unintuitive condition:
wOPOxQiff(()QUXOPandwd -PO Q;or (i)nX nP=0and wl Pn Q,

saying that the proposition[P x Q is true at w iff either (i) P materially implies Q at w and Q belongs to the
revision of X with P; or (ii) P and Q are both true at w and P is incompatible with the belief state X.

9 We found this quote in Sahlin (1990). The reference he gives@oltected Papers of Charles Sanders
Peirce ed. Charles Hartshorne and Paul Weiss, Cambridge, Mass. 1931-5, vol. 5, § 27.

2 Gardenfors (1988), p. 159f. We have slightly adjusted Gardenfors' notation in order to make it conform to
that in the present paper.

2 Sahlin (1990)Chap. 4, Section "Conditionals and the Ramsey Test".

2 Our example is inspired by Gardenfors' own counterexamglRTd ) on p. 159 oKnowledge in Fluxhis
Victoria-example).

% The conditional in question is "If Hitler had decided to invade England in 1940, Germany would have won the
war". Contrast it with the epistemic conditional which | also accept: "If Hitler did decide to invade England in
1940, then he either failed to implement his decision or the invasion somehow misfired".

2 Qur first approach — the one replacing (RT) by Strict (RT) — was constructed just with this idea in mind: to
keep(RTL7) while abandonindRT1 ). The indexical approach gave us both directions, but can be modified so

that it only yield§RT ). This is accomplished by replacing Compatibility by the following weaker constraint:

(Weak Compatibility)
For every non-empty belief state X, there is a worldwX such that & v = $x.
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