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Judgment Aggregation by Quota Rules:
Majority Voting Generalized

Abstract: The widely discussed �discursive dilemma�shows that majority voting in a group of

individuals on logically connected propositions may produce irrational collective judgments.

We generalize majority voting by considering quota rules, which accept each proposition if

and only if the number of individuals accepting it exceeds a given threshold, where di¤erent

thresholds may be used for di¤erent propositions. After characterizing quota rules, we prove

necessary and su¢ cient conditions on the required thresholds for various collective rationality

requirements. We also consider sequential quota rules, which ensure collective rationality

by adjudicating propositions sequentially and letting earlier judgments constrain later ones.

Sequential rules may be path-dependent and strategically manipulable. We characterize path-

independence and prove its essential equivalence to strategy-proofness. Our results shed light

on the rationality of simple-, super-, and sub-majoritarian decision-making.

Keywords: Judgment aggregation, quota rules, simple-, super- and sub-majority voting, col-

lective rationality, path-dependence, strategy-proofness

1 Introduction

How can a group of individuals make collective judgments on some logically con-

nected propositions based on the individuals�judgments on these propositions? This

problem arises in many di¤erent collective decision-making bodies, such as legislative

committees, multi-member courts, expert panels and monetary policy committees. A

natural way to make collective judgments on a given set of propositions is to take

a majority vote on each proposition. But a simple example illustrates that proposi-

tionwise majority voting does not guarantee �rational�collective judgments. Suppose

a three-member government has to make judgments on the following propositions:

a : Country X has weapons of mass destruction (hereafter WMD).

b : Action Y should be taken against country X.

b$ a : Action Y should be taken against country X if and only if country X has

WMD.

Readers can make their preferred substitutions for X and Y. Suppose further

that the judgments of the three government members are as shown in table 1, each

individually consistent.
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a b$ a b

Individual 1 True True True

Individual 2 False False True

Individual 3 False True False

Majority False True True
Table 1

Then a majority rejects a (i.e. holds that country X does not have WMD); a

majority accepts b $ a (i.e. holds that action Y should be taken if and only if

country X has WMD); and yet a majority accepts b (i.e. holds that action Y should

be taken), an inconsistent set of collective judgments. Problems of this kind are

sometimes called �discursive dilemmas�(Pettit 2001). Can we modify propositionwise

majority voting so as to avoid such problems?

In this paper, we discuss a general class of judgment aggregation rules: quota rules.

Here a proposition is collectively accepted if and only if the number of individuals

accepting it is greater than or equal to some threshold, which may depend on the

proposition in question. Propositionwise majority voting is a special quota rule with a

simple majority threshold for every proposition. Generally, as propositions may di¤er

in status and importance, the threshold may vary from proposition to proposition.

In many real-world decision-making bodies, a higher acceptance threshold is required

for more important propositions (e.g. constitutional amendments or taking action Y

against country X) than for less important ones (e.g. ordinary legislation).

After characterizing the class of quota rules, we prove necessary and su¢ cient

conditions under which a quota rule meets various requirements of �collective ration-

ality�. We discuss each of the following rationality conditions, de�ned formally below:

weak and strong consistency, which require the collective judgments to be free from

certain logical contradictions; deductive closure, which requires the group to accept

the logical implications of its collective judgments; and completeness, which requires

the group to form a determinate judgment on every proposition under consideration.

We show that the agenda of propositions under consideration determines whether

each of these conditions can be met. If the interconnections between the propositions

are above a certain complexity, no quota rule guarantees full �collective rationality�.

So how can rational collective judgments be achieved? In the real world, groups of-

ten consider di¤erent propositions not simultaneously, but sequentially, letting earlier

judgments constrain later ones. Under a sequential quota rule, a group considers

di¤erent propositions in a sequence and takes a vote (applying the relevant accept-
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ance threshold) only on those propositions on which the judgments are not yet con-

strained by earlier judgments. Sequential quota rules guarantee collective consist-

ency by design (and sometimes completeness and deductive closure), but may be

path-dependent : the order in which the propositions are considered may a¤ect the

outcome. We show that a sequential quota rule is path-independent if and only if its

corresponding ordinary quota rule is collectively rational in a relevant sense, which

illustrates that path-independence is a demanding condition.

Path-dependence matters for two reasons. First, path-dependent sequential rules

are obviously vulnerable to manipulation by changes of the decision-path. Second,

and less obviously, path-dependent sequential rules are vulnerable to strategic voting.

We show that strategy-proofness of a sequential quota rule is essentially equivalent to

its path-independence. Our �ndings show that groups forming collective judgments

on multiple propositions may face a trade-o¤ between democratic responsiveness,

collective rationality and strategy-proofness. At the end of the paper, we extend our

main characterization result to a larger class of aggregation rules beyond quota rules.

The problem of judgment aggregation was formalized by List and Pettit (2002,

2004), who also proved a �rst impossibility theorem. Further impossibility results

were proved by Pauly and van Hees (2006), van Hees (2007), Dietrich (2006, 2007),

Gärdenfors (2006), Nehring and Puppe (2005) and Dietrich and List (2005). List

(2003), Dietrich (2006) and Pigozzi (2006) proved possibility results. Nehring and

Puppe (2002, 2005) investigated the related framework of �property spaces�and proved

a characterization of collective consistency similar to the one given here. We advance

beyond their contribution by considering several other rationality conditions discussed

in the literature over and above consistency �most importantly deductive closure

� and by considering sequential aggregation rules. Path-dependence and strategy-

proofness in judgment aggregation were discussed in List (2004) and Dietrich and

List (2004), but not with respect to quota rules. We advance beyond the latter

contributions by fully characterizing path-(in)dependence and strategy-proofness of

sequential quota rules.1

Within political science, there has recently been a renewed interest in both super-

majority voting (e.g. Goodin and List 2006) and submajority voting (e.g. Vermeule

2005). Earlier related contributions were papers by Craven (1971) and Ferejohn and

Grether (1974) on conditions under which supermajority rules for preference aggreg-

1Other contributions related to judgment aggregation include Wilson�s (1975) and Rubinstein and

Fishburn�s (1986) works on abstract aggregation theory and Konieczny and Pino-Perez�s (2002) work

on belief merging in computer science.
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ation satisfy minimal requirements of collective rationality (speci�cally, acyclicity).

Our results not only provide a broader theoretical background to the recent debates on

super- and submajority voting, but they also generalize the earlier results by Craven

as well as Ferejohn and Grether. All proofs are given in an appendix.

2 The model of judgment aggregation

We begin by introducing the key de�nitions of the judgment aggregation model. Let

N = f1; 2; : : : ; ng be a group of two or more individuals that seeks to make collective
judgments on some logically connected propositions.

2.1 The propositions

Propositions are represented in formal logic.2 Our examples use standard proposi-

tional logic, where the propositional language L contains

� a given set of atomic propositions a, b, c, ... without logical connectives, such
as the proposition that country X has WMD and the proposition that action Y

should be taken against country X, and

� compound propositions with the logical connectives : (not), ^ (and), _ (or), !
(if-then), $ (if and only if), such as the proposition that action Y should be

taken against country X if and only if country X has WMD.3

The logical framework gives us the notions of consistency and entailment. In

standard propositional logic, these are de�ned as follows. Let S � L be a set of

propositions and let p 2 L be a proposition.

� S is consistent if there exists a truth-value assignment for which all the propos-
itions in S are true, and inconsistent otherwise;4

2We can use any logic L satisfying conditions L1-L4 in Dietrich (2007). Apart from propositional

logic, this permits more expressive logics, including predicate, modal, conditional and deontic logics.

Real-life judgment aggregation problems and disagreements in groups often involve propositions that

contain not only classical logical connectives (not, and, or ...), but also non-classical ones such as

subjunctive implications (if it were the case that p, it would be the case that q) or modal operators

(it is necessary/possible that p), where the modality could be of a logical, physical, ethical or other

kind. Our results apply to the logics of most realistic propositions.
3Formally, L is the smallest set such that a; b; c; ::: 2 L and if p; q 2 L then :p, (p ^ q), (p _ q),

(p! q), (p$ q) 2 L. For notational simplicity, we drop external brackets around propositions.
4Formally, a truth-value assignment is a function assigning the value �true� or �false� to each
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� S entails p if, for all truth-value assignments for which all the propositions in
S are true, p is also true.

Examples of consistent sets are fb $ a;:ag and f:(a ^ b);:a; bg, examples of
inconsistent ones fb $ a;:a; bg and fa ^ b;:a;:bg. Also, fb $ a;:ag entails :b,
whereas fa;:bg does not entail a ^ b.

Further, we say that S is minimal inconsistent if S is inconsistent, but every

proper subset of S is consistent; we discuss the signi�cance of this notion below. To

illustrate, fb$ a;:a; bg is minimal inconsistent (it becomes consistent as soon as one
of the propositions is removed), whereas fa^ b;:a;:bg is not (it remains inconsistent
even if :a or :b are removed).

The agenda is the set of propositions on which judgments are to be made; it

is a �nite non-empty subset X � L consisting of proposition-negation pairs p;:p
(with p not a negated proposition) and containing no tautologies (propositions whose

negations are inconsistent) or contradictions (propositions that are inconsistent by

themselves).5 We assume that double-negations cancel each other out, i.e. ::p stands
for p.6 In the example above, the agenda is X := fa; b; b$ a;:a;:b;:(b$ a)g.7

2.2 Individual and collective judgment sets

Each individual i�s judgment set is a subset Ai � X, where p 2 Ai means �indi-

vidual i accepts proposition p�. A pro�le (of individual judgment sets) is an n-tuple

(A1; : : : ; An) of judgment sets across individuals.

A (judgment) aggregation rule is a function F that assigns to each pro�le

(A1; : : : ; An) in a given domain a collective judgment set F (A1; : : : ; An) = A � X,

where p 2 A means �the group accepts proposition p�.

proposition in L such that, for any p,q 2 L, :p is true if and only if p is false; p ^ q is true if and
only if both p and q are true; p_ q is true if and only if at least one of p or q is true; p! q is true if

and only if p is false or q is true; p$ q is true if and only if p and q are both true or both false.
5Most of our results, including parts (c) and (d) of theorems 2 and 5, do not require the latter

restrictions, i.e. they also hold for agendas containing tautologies and contradictions.
6Hereafter we use : to represent a modi�ed negation symbol �, where � p := :p if p is not a

negated proposition and � p := q if p = :q for some proposition q.
7Although for simplicity we use standard propositional logic for representing this agenda in this

paper, one could argue that the biimplication b$ a should be modelled as a subjunctive biimplication,

not as a material one as done here. Then the negation :(b $ a) becomes consistent with any

judgments on a and b, also with fa; bg and with f:a;:bg. This has consequences; for instance, the
agenda then escapes the impossibility of corollary 3 below.
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We introduce several rationality conditions on a judgment set A (individual or

collective):

� A is complete if it contains at least one member of each pair p;:p 2 X;

� A is weakly consistent if it contains at most one member of each pair p;:p 2 X;

� A is consistent if it is a consistent set of propositions, as de�ned in the logic;

� A is deductively closed if any proposition p 2 X entailed by a consistent subset

B � A is also contained in A.

These rationality conditions are interrelated as follows.

Lemma 1 For any judgment set A,

(a) consistency implies weak consistency;

(b) given deductive closure, consistency is equivalent to weak consistency;

(c) given completeness, consistency is equivalent to the conjunction of weak con-

sistency and deductive closure.

A judgment set is fully rational if it is complete and consistent (hence also weakly

consistent and deductively closed, by lemma 1). We call the set of all possible pro�les

of fully rational judgment sets the universal domain. Finally, we call an aggregation

rule fully rational (or complete, weakly consistent, consistent, deductively closed) if

it generates, for every pro�le in its domain, a fully rational (or complete, weakly

consistent, consistent, deductively closed) collective judgment set.

2.3 Preference aggregation as a special case

To illustrate the generality of the judgment aggregation model, let us brie�y explain

how preference aggregation problems in the tradition of Condorcet, Arrow and Sen

can be represented in it. Readers who wish to move on to our main results may skip

this subsection.

To represent preference aggregation problems within the judgment aggregation

model, take a simple predicate logic L with a set of two or more constants K =

fx; y; :::g representing options and a two-place predicate P representing (strict) pref-
erence, where, for any x; y 2 K, xPy is interpreted as �x is preferable to y�. To

capture the structure of preference, de�ne a set S � L to be consistent if S [ Z is
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consistent in the standard sense of predicate logic, where Z is the set of rational-

ity conditions on preferences, i.e. asymmetry, transitivity and connectedness.8 Now

de�ne the agenda to be X = fxPy;:xPy 2 L : x; y 2 K with x 6= yg. (For technical
details, see Dietrich and List 2005; also List and Pettit 2004.)

Under this construction, each fully rational judgment set Ai � X uniquely repres-

ents a fully rational (i.e. asymmetrical, transitive and connected) preference ordering

�i on the set of options K, where, for any x; y 2 K, xPy 2 Ai if and only if x �i y.
For example, if there are three options x, y and z, the preference ordering x �i y �i z
is represented by the judgment set Ai = fxPy; yPz; xPz; :yPx; :zPy; :zPxg. Now
a judgment aggregation rule uniquely represents an Arrowian preference aggregation

rule. In particular, a fully rational judgment aggregation rule represents a social

welfare function as de�ned by Arrow.

Below we note that, by representing preference aggregation problems in the judg-

ment aggregation model, we obtain some classic results by Craven (1971) and Ferejohn

and Grether (1974) on supermajority rules for preference aggregation as corollaries

of our results on quota rules for judgment aggregation.

3 Quota rules and collective rationality

We �rst de�ne and characterize the class of quota rules for judgment aggregation.

Then we prove necessary and su¢ cient conditions under which a quota rule satis-

�es various collective rationality conditions. Our results generalize the �discursive

dilemma�.

3.1 Quota rules

For each proposition p 2 X, let an acceptance threshold mp 2 f1; 2; :::; ng be given.
Given a family (mp)p2X of such thresholds for the propositions in the agenda, the cor-

responding quota rule is the aggregation rule F(mp)p2X with universal domain de�ned

as follows. For each pro�le (A1; : : : ; An),

F(mp)p2X (A1; :::; An) := fp 2 X : jfi 2 N : p 2 Aigj � mpg.

Informally, each proposition p 2 X is collectively accepted if and only if it is accepted

by at least mp individuals. Since the total number of individuals n is �xed for our

8Formally, Z := f(8v1)(8v2)(v1Pv2 ! :v2Pv1), (8v1)(8v2)(8v3)((v1Pv2 ^ v2Pv3) ! v1Pv3),

(8v1)(8v2)(v1 6= v2 ! (v1Pv2 _ v2Pv1))g.
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analysis, this is equivalent to saying that p is collectively accepted if and only if it is

accepted by a proportion of at least mp

n of the individuals.

We call a quota rule F(mp)p2X (= Fm) uniform if the acceptance threshold is the

same for all propositions, i.e. mp = m for all p 2 X. Examples of uniform quota

rules are

� propositionwise majority rule, where m = d(n+ 1)=2e, with dxe de�ned as the
smallest integer greater than or equal to x,

� propositionwise special majority rule, where d(n+ 1)=2e < m < n, and

� propositionwise unanimity rule, where m = n.

To characterize the class of quota rules, let us introduce the following conditions.

Universal domain. The domain of F is the universal domain, i.e. the set of all

possible pro�les of fully rational individual judgment sets.

Anonymity. For every two pro�les (A1; :::; An), (A�(1); :::; A�(n)) in the domain

of F , where � : N 7! N is any permutation of the individuals, F (A1; :::; An) =

F (A�(1); :::; A�(n)).

Responsiveness. For every proposition p 2 X, there exist at least two pro�les

(A1; :::; An), (A�1; :::; A
�
n) in the domain of F such that p 2 F (A1; :::; An) and p =2

F (A�1; :::; A
�
n).

Independence. For every proposition p 2 X and pro�les (A1; :::; An); (A�1; :::; A
�
n)

in the domain of F , if [for all individuals i, p 2 Ai if and only if p 2 A�i ], then

[p 2 F (A1; :::; An) if and only if p 2 F (A�1; :::; A�n)].

Monotonicity. For every proposition p 2 X, individual i, and pair of i-variant

pro�les (A1; :::; An); (A1; :::; A�i ; :::; An) in the domain of F with p =2 Ai and p 2 A�i , if
p 2 F (A1; :::; An) then p 2 F (A1; :::; A�i ; :::; An). (Two pro�les are i-variants of each
other if they coincide for all individuals except possibly i.)

Universal domain states that every possible pro�le of fully rational individual

judgment sets is admissible. Anonymity requires giving equal consideration to all

individuals� judgment sets. Responsiveness rules out that some proposition in the

agenda is never accepted or never rejected. Independence requires propositionwise
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aggregation, i.e. the collective judgment on a proposition depends only on the indi-

viduals�judgments on that proposition and not on their judgments on other propos-

itions. Monotonicity requires that an additional individual�s support for an accepted

proposition does not lead to the rejection of that proposition. Our �rst theorem shows

that these �ve conditions uniquely characterize the class of quota rules.

Theorem 1 An aggregation rule has universal domain, is anonymous, responsive,

independent and monotonic if and only if it is a quota rule F(mp)p2X for some family

of thresholds (mp)p2X .9

3.2 Necessary and su¢ cient conditions for collective rationality

We began with the observation that propositionwise majority voting does not guar-

antee rational collective judgments: the �discursive dilemma�. Quota rules generalize

propositionwise majority voting by allowing any family of thresholds (mp)p2X instead

of the same simple-majority threshold m = d(n+ 1)=2e for all propositions. Can we
specify the thresholds such that the corresponding quota rule guarantees collective

rationality?

Theorem 2 A quota rule F(mp)p2X is

(a) complete if and only if

mp +m:p � n+ 1 for every pair p;:p 2 X; (1)

(b) weakly consistent if and only if

mp +m:p > n for every pair p;:p 2 X; (2)

(c) consistent if and only ifX
p2Z

mp > n(jZj � 1) for every minimal inconsistent set Z � X; (3)

(d) deductively closed if and only if

X
p2Znfqg

mp �m:q � n(jZj � 2)
for every minimal inconsistent set Z � X
and every q 2 Z.

(4)

9The result remains true if responsiveness is dropped and each mp is a member of f0; :::; n + 1g
(rather than f1; :::; ng), which permits degenerate quota rules.
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Nehring and Puppe (2002, 2005) have proved a result similar to part (c) of theorem

2 using an �intersection property�, which, in turn, generalizes an earlier �intersection

property� identi�ed by Barberà et al. (1997). We discuss Nehring and Puppe�s

�intersection property� for consistency in the penultimate section of this paper and

identify a new �intersection property�for deductive closure.

Theorem 2 shows that each of the four rationality conditions is guaranteed by a

particular system of inequalities on the acceptance thresholds. The intuition behind

parts (a) and (b) is obvious: here the inequalities guarantee that at least one propos-

ition (in part (a)), or at most one proposition (in part (b)), from each proposition-

negation pair is collectively accepted.

To illustrate part (c), notice that each minimal inconsistent subset of X rep-

resents one particular way in which a set of propositions from the agenda can be

inconsistent. For instance, if the agenda includes only logically independent propos-

itions and their negations, then the only inconsistencies that can ever arise are ones

between a proposition and its negation; here the only minimal inconsistent subsets

are proposition-negation pairs. By contrast, if there are richer logical connections

between the propositions in the agenda, more subtle inconsistencies can arise, such as

an inconsistency between b$ a; :a and b in our initial example; here the agenda has
larger minimal inconsistent subsets such as fb$ a;:a; bg. In light of this, the system
of inequalities in part (c) can be interpreted as follows. For each minimal inconsist-

ent subset of the agenda (i.e. for each particular way in which an inconsistency can

arise), the system of inequalities contains a corresponding inequality that rules out

that particular inconsistency. Moreover, this inequality states that the sum of the

acceptance thresholds across the propositions in the given minimal inconsistent set

must be su¢ ciently large. Obviously, the larger the required sum of the thresholds,

the harder it is for these propositions to be simultaneously accepted; and if a su¢ -

ciently large sum is required, they can never be simultaneously accepted, which means

that the inconsistency in question cannot arise. Part (d), �nally, can be interpreted

analogously.

How di¢ cult is it to satisfy the systems of inequalities? For example, to see how

strongly the condition of consistency restricts the thresholds (mp)p2X , note that the

inequality in (3) is equivalent to 1
jZj
P
p2Z mp > n(1�1=jZj). So the average threshold

mp for the acceptance of p (averaging over p 2 Z) must exceed n(1�1=jZj). This value
approaches n as the size of a minimal inconsistent set Z increases, which illustrates

that, for non-trivial agendas, supermajoritarian decision-making is usually needed to
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guarantee collective consistency.

By combining the inequalities in theorem 2, we obtain conditions under which a

quota rule satis�es two or more of the rationality conditions simultaneously.

Corollary 1 A quota rule F(mp)p2X is

(a) complete and weakly consistent if and only if

mp +m:p = n+ 1 for every pair p;:p 2 X;

(b) consistent and deductively closed if and only if

X
p2Znfqg

mp+minfmq; n+1�m:qg > n(jZj�1)
for every minimal inconsistent set Z � X
and every q 2 Z;

(5)

(c) fully rational if and only if

mp +m:p = n+ 1 for every pair p;:p 2 X, andP
p2Z mp > n(jZj � 1) for every minimal inconsistent set Z � X.

(6)

3.3 The special case of uniform quota rules

As noted above, an important special class of quota rules are the uniform ones, where

the acceptance threshold is the same for all propositions. Propositionwise majority

rule is the most prominent example. Here the inequalities characterizing consistency

and deductive closure reduce to some simple conditions.

Corollary 2 Let z be the size of the largest minimal inconsistent set Z � X.
(a) A uniform quota rule Fm is consistent if and only if m > n � n=z.10 In

particular, for n 6= 2; 4, propositionwise majority rule (where m = d(n+ 1)=2e) is
consistent if and only if z � 2; if n = 2, it is always consistent; if n = 4, it is

consistent if and only if z � 3.
(b) A uniform quota rule Fm is deductively closed if and only if m = n (i.e. Fm

is propositionwise unanimity rule) or z � 2. In particular, if n � 3; propositionwise
majority rule is deductively closed if and only if z � 2; if n = 2, it is always deductively
closed.

(c) A uniform quota rule Fm is consistent and deductively closed if and only if

m = n (i.e. it is propositionwise unanimity rule) or [z � 2 and m > n=2]. In

10This generalizes a result on the consistency of supermajority rules in List (2001, ch. 9); see also

List and Pettit (2002).
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particular, if n � 3, propositionwise majority rule is consistent and deductively closed
if and only if z � 2; if n = 2, it is always consistent and deductively closed.

We have already explained why we must consider minimal inconsistent subsets of

the agenda to obtain necessary and su¢ cient conditions for the rationality of a quota

rule. Further, we can interpret the size of the largest minimal inconsistent subset of

the agenda as a simple indicator of how complex the logical interconnections between

the propositions in the agenda are. For example, z � 2 corresponds to an agenda

without any non-trivial interconnections, i.e. without any minimal inconsistent sets

of more than two propositions, whereas z > 2 corresponds to an agenda with richer

interconnections.

Propositionwise unanimity rule is always consistent and deductively closed, at the

expense of signi�cant incompleteness. By contrast, propositionwise special majority

rule is consistent if and only if the acceptance threshold for every proposition exceeds

n(1 � 1=z), which approaches 1 as z increases, and it is deductively closed only in
the special case z � 2. Propositionwise majority rule (when n � 3) is consistent

and deductively closed only in the special case z � 2. These results generalize the

�discursive dilemma�with which we began.

As announced above, we can obtain a classic result on preference aggregation as a

corollary of our present results. Craven (1971) and Ferejohn and Grether (1974) have

shown that pairwise supermajority rules for preference aggregation guarantee acyclic

collective preferences if the supermajority threshold is greater than n�n=k, where k is
the number of options. Under the representation of preference aggregation problems

in the judgment aggregation model, this result follows from part (a) of corollary 2. To

see this, notice that if the agenda is X = fxPy;:xPy 2 L : x; y 2 K with x 6= yg as
de�ned above, then the largest minimal inconsistent subset of X is a set of k binary

preference propositions representing a preference cycle of length k, where k is the

number of options in K.11 Thus the size of the largest minimal inconsistent subset

Z � X is simply z = k. Also, notice that, for the given agenda, a consistent judgment

set A � X precisely represents an acyclic preference ordering � on the set of options
K. So Craven�s and Ferejohn and Grether�s result follows immediately.

11For k > 2, this largest minimal inconsistent subset of X is not unique, as there can be di¤erent

cycles of length k.
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3.4 A general (im)possibility result

By combining theorems 1 and 2, we can characterize the types of agendas X for which

there exist fully rational aggregation rules that satisfy the conditions introduced in

the previous section.

Corollary 3 An aggregation rule with universal domain is anonymous, responsive,

independent, monotonic and fully rational if and only if it is a quota rule F(mp)p2X

satisfying (6) above. In particular, there exists an aggregation rule with these proper-

ties if and only if the system (6) admits a solution (mp)p2X in f1; :::; ngX .

This corollary can be seen as an impossibility result: the (in)equalities in (6) have

solutions only for special agendas with few logical connections between propositions.12

3.5 An example

For the agenda X := fa; b; b $ a;:a;:b;:(b $ a)g from our initial example, the

minimal inconsistent subsets Z � X are fa;:ag, fb;:bg, fb $ a;:(b $ a)g,
fa;:b; b$ ag, f:a; b; b$ ag, fa; b;:(b$ a)g and f:a;:b;:(b$ a)g. We show that
there exists no fully rational quota rule for this agenda. Assume, for a contradiction,

that F(mp)p2X is fully rational. Then, by part (c) of corollary 1,

ma +m:a = mb +m:b = mb$a +m:(b$a) = n+ 1, (7)

ma +m:b +mb$a > 2n and m:a +mb +mb$a > 2n, (8)

ma +mb +m:(b$a) > 2n and m:a +m:b +m:(b$a) > 2n. (9)

By adding the two inequalities in (8), we obtain ma+m:a+mb+m:b+2mb$a > 4n.

By (7), n+1+n+1+2mb$a > 4n; hence 2mb$a > 2n�2, i.e. mb$a = n. An analogous

argument for the two inequalities in (9) yields m:(b$a) = n. So mb$a +m:(b$a) =

2n > n+ 1, which violates (7).

But, for a slightly modi�ed agenda, there is a fully rational quota rule. Replace

the biconditional b$ a (action should be taken if and only if country X has WMD)

by the simple conditional a ! b (if country X has WMD, then action Y should be

taken). The new agenda is thus X := fa; b; a ! b;:a;:b;:(a ! b)g. The minimal
inconsistent sets Z � X are now fa;:ag, fb;:bg, fa! b;:(a! b)g, f:a;:(a! b)g,
12As shown by Nehring and Puppe (2002) in the framework of �property spaces�, the existence of

fully rational quota rules can also be elegantly characterized in terms of certain conditional entailment

relations within the agenda.
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fb;:(a! b)g and fa;:b; a! bg. By part (c) of corollary 1, a quota rule F(mp)p2X is

fully rational if and only if

ma +m:a = mb +m:b = ma!b +m:(a!b) = n+ 1,

m:a +m:(a!b) > n and mb +m:(a!b) > n and ma +m:b +ma!b > 2n.

By expressing each m:p as n+ 1�mp, the three inequalities become

�ma+m:(a!b) > �1 and �m:b+m:(a!b) > �1 and ma+m:b�m:(a!b) > n� 1;

equivalently,

m:(a!b) � ma and m:(a!b) � m:b and m:(a!b) � ma +m:b + 1.

The only solution to these inequalities in f1; :::; ngX is ma = m:b = m:(a!b) = n, i.e.

a unanimity threshold for each of a, :b and :(a ! b) and a threshold of 1 for each

of :a, b and a ! b. So, in our example, the proposition that country X has WMD

is accepted only if all individuals accept that proposition, whereas the proposition

that action Y should be taken and the proposition that WMD require action are

each accepted as soon as they are accepted by just one individual, a questionable

aggregation rule.

Further, for the original agenda and also the modi�ed one, the size of the largest

minimal inconsistent set is z = 3, so by corollary 2 a uniform quota rule Fm is

consistent if and only if m > 2
3n and deductively closed if and only if m = n. By

implication, for both agendas, there exists no fully rational uniform quota rule.

3.6 The computational usefulness of the inequalities

Apart from giving us theoretical insights into when quota rules satisfy various ra-

tionality conditions, the inequalities in theorem 2 and its corollaries are also com-

putationally useful. First, suppose we wish to verify whether a given quota rule

F(mp)p2X satis�es some rationality condition. Without theoretical results, we would

have to consider every pro�le in the universal domain and determine whether the

collective judgment set for that pro�le satis�es the required condition. The number

of such pro�les grows exponentially in the group size n (of course, it also depends on

the structure of the agenda). By contrast, the number of inequalities in each part

of theorem 2 does not depend on n; it is determined only by the structure of the

agenda. So, by using our inequalities, verifying the rationality of a given quota rule

is computationally feasible even for large group sizes.
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Second, suppose we wish to verify, for a given agenda and a given number of

individuals, whether there exists a fully rational quota rule. Even for a small n, this

task is computationally hard. There are nk possible quota rules for n individuals and k

propositions, and, for each of these nk rules, we would have to consider every possible

pro�le and check the rationality of the outcome under that pro�le, where the number

of such pro�les grows exponentially in n. But, if we use corollary 3, the problem

reduces to verifying whether the system of linear (in)equalities (6) admits a solution

(mp)p2X in f1; :::; ngX . This is a computationally feasible task; it is a problem of

linear programming and can be solved using the well-known simplex algorithm (for

an overview, see Dantzig 2002).

4 Sequential quota rules and path-dependence

We have seen that, for agendas above a certain complexity, there exists no fully

rational quota rule. A group can solve this problem by making judgments on multiple

propositions sequentially, letting earlier judgments constrain later ones. We now

consider the class of sequential quota rules, which are always consistent, but may be

path-dependent. After formally de�ning sequential quota rules and giving an example

of path-dependence, we prove necessary and su¢ cient conditions for the avoidance of

path-dependence. In the subsequent section, we address the relation between path-

dependence of a sequential quota rule and its manipulability by strategic voting.

4.1 Sequential quota rules

Let us begin by introducing the concept of a sequential quota rule informally, gen-

eralizing the approach in List (2004). Under such a rule, the group considers the

propositions in the agenda not simultaneously, but one by one in a given sequence.

This sequence may re�ect either the temporal order in which the propositions come

up for consideration or some order of priority among the propositions. For each new

proposition considered in the sequence, if the proposition is logically unconstrained

by propositions accepted earlier, then the group takes a vote on the new proposition,

applying the appropriate acceptance threshold. But if the new proposition is logically

constrained by propositions accepted earlier, then the group derives its judgment on

it from its earlier judgments.

On a temporal interpretation, a sequential quota rule captures two important

characteristics of many real-world decision processes. The �rst characteristic is that
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real-world collective decision-making bodies often consider di¤erent propositions at

di¤erent points in the time. The second one is that, in such decision processes, earlier

decisions often constrain later ones: for example, earlier decisions may create legal or

other commitments that cannot subsequently be overruled, for instance when earlier

decisions are legally binding, serve as precedents, or are simply too costly to reverse.

On a priority interpretation, a sequential quota rule captures the fact that collect-

ive decision processes are often highly structured and implement a collective reasoning

process. Some propositions may serve as premises for others such that judgments on

premises are made before judgments on conclusions are derived.

Formally, a decision-path is a one-to-one function 
 : f1; 2; :::; kg ! X, with

k = jXj, where p1 := 
(1), p2 := 
(2), ..., pk := 
(k) are the propositions considered
�rst, second, ..., last in the sequence. Given a decision-path 
 and a family of

thresholds (mp)p2X , a sequential quota rule F
;(mp)p2X is the aggregation rule with

universal domain de�ned as follows. For each pro�le (A1; : : : ; An),

F
;(mp)p2X (A1; :::; An) := �k,

where the set �k is obtained recursively in k steps: for t = 1; :::; k,

�t :=

8>><>>:
�t�1 [ fptg if

"
�t�1 [ fptg is consistent and
jfi 2 N : pt 2 Aigj � mpt

#
or �t�1 entails pt,

�t�1 otherwise,

with �0 := ?.
Here, for each t, �t is the set of propositions accepted up to step t in the group�s

sequential decision process. Moreover, proposition pt is accepted at step t if either

[past judgments are consistent with pt and the group votes the accept pt] or past

judgments require the acceptance of pt. Our de�nition generalizes the one in List

(2004) by allowing di¤erent acceptance thresholds for di¤erent propositions.13

In analogy to our earlier de�nition, a sequential quota rule F
;(mp)p2X (= F
;m)

is uniform if the acceptance threshold takes the same value mp = m for all p 2 X.
13The acceptance threshold mp for each proposition p 2 X does not depend on the decision-path


 or the collective judgments made prior to the occurrence of p along that path. However, as

pointed out by a referee, there may be scenarios in which one may plausibly wish to introduce such

dependencies. For example, if military interventions are costly and several interventions have already

been approved, then one may require a higher acceptance threshold for a new intervention than if

this were the �rst one under consideration. We acknowledge this point and leave its treatment as a

challenge for future research.
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A sequential quota rule is always consistent by design (hence also weakly consistent).

Whether it is also complete and deductively closed depends on the decision-path 


and the family of thresholds (mp)p2X .14

4.2 An example

To illustrate that the outcome of a sequential quota rule may depend on the decision-

path, consider our �rst example, where the agenda is X := fa; b; b $ a; :a; :b;
:(b $ a)g and there are three individuals with judgment sets A1 = fa; b $ a; bg,
A2 = f:a; :(b $ a); bg and A3 = f:a; b $ a; :bg, as shown in table 1. Suppose
the group uses a sequential quota rule F
;m, with a simple majority threshold m = 2

for every proposition p 2 X. Consider two di¤erent decision-paths, 
1 and 
2, as
shown in table 2.

t 1 2 3 4 5 6


1(t) a :a b$ a :(b$ a) b :b

2(t) b :b b$ a :(b$ a) a :a

Table 2

It is easy to see that the decision-paths 
1 and 
2 lead to di¤erent outcomes.

Under 
1, :a and b$ a are each accepted by a vote and :b is accepted by inference,
resulting in the judgment set f:a; b $ a;:bg. In the example, the government �rst
makes the judgment that country X has no WMD and that WMD are the required

justi�cation for action before deriving the judgment that no action should be taken.

So the government�s relevant judgment of fact and its judgment on the appropriate

normative principle determine its judgment on how to act. Under 
2, b and b $ a

are each accepted by a vote and a is accepted by inference, resulting in the judgment

set fa; b $ a; bg. Here the government �rst makes the judgment that action should
be taken and that WMD are the required justi�cation for action before deriving

the judgment that country X has WMD. This means, more disturbingly, that the

14Consider a (natural) decision-path in which each proposition p 2 X and its negation :p are
adjacent, i.e. :p comes immediately before or after p, and suppose that the thresholds mp and

m:p satisfy mp +m:p � n + 1, meaning that the corresponding quota rule F(mp)p2X is complete.

Then the sequential quota rule F
;(mp)p2X is complete (and hence deductively closed by consist-

ency). Informally, the reason is that, when the sequential decision process reaches a pair of adjacent

propositions p;:p; either the past judgments entail p or :p; in which case p or :p is accepted, or the
past judgments entail neither p nor :p; in which case again p or :p is accepted since the relation
mp +m:p � n+ 1 ensures that the support for p or :p exceeds the appropriate threshold.
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government�s judgment on how to act and its judgment on the appropriate normative

principle determine its judgment of fact.

4.3 Necessary and su¢ cient conditions for path-independence

A sequential quota rule is path-dependent if the order in which the propositions are

considered can a¤ect its outcome. Formally, a sequential quota rule F
;(mp)p2X is

path-dependent if there exist two decision-paths 
1 and 
2, a pro�le (A1; : : : ; An)

and a proposition p 2 X such that

p 2 F
1;(mp)p2X (A1; : : : ; An) and p =2 F
2;(mp)p2X (A1; : : : ; An),

and path-independent otherwise; F
;(mp)p2X is strongly path-dependent if there exist

two decision-paths 
1 and 
2, a pro�le (A1; : : : ; An) and a proposition p 2 X such

that

p 2 F
1;(mp)p2X (A1; : : : ; An) and :p 2 F
2;(mp)p2X (A1; : : : ; An),

and weakly path-independent otherwise. Strong path-dependence implies

path-dependence; path-independence implies weak path-independence.

When is a sequential quota rule path-dependent, when not? By combining a result

in List (2004) with theorem 2 above, we can answer this question.

Theorem 3 A sequential quota rule F
;(mp)p2X is

(a) weakly path-independent if and only if the corresponding ordinary quota rule

F(mp)p2X is consistent, i.e. if and only if (3) above holds;

(b) path-independent if and only if the corresponding ordinary quota rule F(mp)p2X

is consistent and deductively closed, i.e. if and only if (5) above holds.

We can also address the special case of a uniform sequential quota rule, combining

theorem 3 and corollary 2.

Corollary 4 Let z be the size of the largest minimal inconsistent set Z � X.
(a) A uniform sequential quota rule F
;m is weakly path-independent if and only

if m > n � n=z. In particular, for n 6= 2; 4, a sequential majority rule (where m =

d(n+ 1)=2e) is weakly path-independent if and only if z � 2; if n = 2, it is always

weakly path-independent; if n = 4, it is weakly path-independent if and only if z � 3.
(b) A uniform sequential quota rule F
;m is path-independent if and only if m = n

(i.e. it is a sequential unanimity rule) or [z � 2 and m > n=2].

Our example above illustrates this result: sequential majority voting is path-

dependent because we have z = 3 (with n = 3), which violates z � 2.
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5 Path-independence and strategy-proofness

Path-dependent sequential quota rules are obviously vulnerable to manipulation by

agenda setters who can in�uence the order in which the propositions are considered.

In our example, an agenda setter who cares about taking action Y will set the decision-

path 
2, whereas one who cares about avoiding action Y will set the decision-path


1. But path-dependent rules are also vulnerable to strategic voting, i.e. to the

misrepresentation of judgments by the individuals. We show that, under mild con-

ditions, strategy-proofness is equivalent to path-independence. We also note that

ordinary quota rules are always strategy-proof, although their use is limited given

their rationality violations.

5.1 Strategy-proofness15

We now assume that each individual has not only a judgment set, but also an un-

derlying preference relation �possibly only partial �over all possible judgment sets.

This assumption captures the idea that, in comparing di¤erent collective judgment

sets as potential outcomes, individuals will prefer some judgment sets to others.

Formally, each individual i has a preference relation %i over all possible judgment
sets of the form A � X. We assume that preference relations are re�exive and

transitive.16 We also require that %i is compatible with individual i�s judgment set
Ai as follows. We say that one judgment set, A, agrees with another, A�, on a

proposition p 2 X if either both or neither of A and A� contains p. Now %i is
compatible with Ai if the following holds: whenever two judgment sets A and A� are

such that [for all propositions p 2 X, if A� agrees with Ai on p, then so does A], then
A %i A�. Informally, compatibility of %i with Ai requires that, if one judgment set
is at least as close as another to an individual�s own judgments on the propositions,

then the individual weakly prefers the �rst judgment set to the second. In particular,

an individual most prefers his or her own judgment set.

Now we can de�ne strategy-proofness of an aggregation rule F .

Strategy-proofness. For every pro�le (A1; :::; An) in the domain of F , every

individual i and any preference relation %i compatible with Ai, F (A1; :::; An) %i
F (A1; :::; A

�
i ; :::; An) for every i-variant (A1; :::; A

�
i ; :::; An) in the domain of F .

15The present approach to strategy-proofness is based on List (2004) and Dietrich and List (2004).

For related analyses of strategy-proofness, see Barberà et al. (1997) and Nehring and Puppe (2002).
16The assumption of completeness is not required.
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Informally, strategy-proofness requires that, for every pro�le, each individual

weakly prefers the collective judgment set that is obtained from expressing his or

her own judgment set truthfully to any collective judgment set that would be ob-

tained from misrepresenting his or her judgment set (where other individuals� ex-

pressed judgment sets are held �xed). Game-theoretically, this requires that, for

each individual, the expression of his or her true judgment set is a weakly dominant

strategy. Strategy-proofness is also equivalent to the simpler (and preference-free)

condition that F is non-manipulable (Dietrich and List 2004): For every individual i,

proposition p in X, and pro�le (A1; : : : ; An) in the domain, if Ai does not agree with

F (A1; : : : ; An) on p, then Ai still does not agree with F (A1; : : : ; A�i ; : : : ; An) on p for

every i-variant (A1; : : : ; A�i ; : : : ; An) in the domain. This means that no individual i

can make it the case, by expressing an untruthful judgment set A�i , that the collective

judgment on some proposition p switches to his or her true judgment on p.

Proposition 1 (Dietrich and List 2004) An aggregation rule with universal domain

is strategy-proof if and only if it is independent and monotonic.

This proposition, a judgment-aggregation version of a classic result by Barberà et

al. (1997), immediately implies that ordinary quota rules are strategy-proof, as they

are independent and monotonic by theorem 1. But, as we have seen, such rules often

generate rationality violations. Are sequential quota rules ever strategy-proof?

5.2 An example

Consider again our example of the three-member government with judgments as

shown in table 1. Suppose the government uses a sequential majority rule with

decision-path 
1 as shown in table 2. Assuming that all three government mem-

bers express their judgments truthfully, the decision-path 
1 leads to the collective

judgment set f:a; b $ a;:bg, i.e. a decision not to take action Y against country

X, as shown above. But suppose individual 2 cares strongly about taking action Y,

i.e. the acceptance of proposition b. Speci�cally, the following preference relation is

compatible with individual 2�s judgment set A2:

f:a;:(b$ a); bg �2 fa; (b$ a); bg �2 fa;:(b$ a);:bg �2 f:a; b$ a;:bg,

where �2 is the strong component of %2.
If individual 2 strategically expresses the judgment set A�2 = fa; b$ a; bg instead

of his or her truthful judgment set A2 = f:a; :(b$ a); bg, then sequential majority
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voting leads to the collective judgment set fa; b $ a; bg instead of f:a; b $ a;:bg,
where fa; b $ a; bg �2 f:a; b $ a;:bg. So, by pretending to believe that country X
has WMD and that WMD justify action, individual 2 can bring about the preferred

decision to take action against the country. Hence sequential majority rule on the

given agenda with decision-path 
1 is not strategy-proof.

5.3 Necessary and su¢ cient conditions for strategy-proofness

To state necessary and su¢ cient conditions for strategy-proofness of a sequential

quota rule, we �rst introduce a simple condition on the representation of such a rule.

Note that, for a �xed decision-path 
, two di¤erent families of thresholds (mp)p2X

and (m�
p)p2X may yield the same aggregation rule, i.e. the same mapping from

pro�les to collective judgments. For example, let X = fa;:ag, 
(1) = a, 
(2) = :a,
ma = m:a = m�

a = (n + 1)=2 (with n odd) and m�
:a = 1. The rules F
;(mp)p2X

and F
;(m�
p)p2X both accept a whenever a majority supports a, and :a whenever

a majority supports :a. This is obvious for F
;(mp)p2X and holds for F
;(m�
p)p2X

because any submajority acceptance of :a at step 2 in the recursive decision process
is overruled by the majority acceptance of a at step 1. So F
;(mp)p2X and F
;(m�

p)p2X

represent the same aggregation rule, though F
;(mp)p2X does so more transparently.

We say that mp is the e¤ective threshold for proposition p 2 X under the aggreg-

ation rule F if, for all pro�les (A1; :::; An) in the domain of F , p 2 F (A1; :::; An) if
and only if jfi 2 N : p 2 Aigj � mp. A sequential quota rule F
;(mp)p2X is trans-

parent if, for any proposition p 2 X for which there exists an e¤ective threshold, mp

is this threshold. Transparency is a weak requirement: every sequential quota rule

F
;(mp)p2X can �if not yet transparent �be made transparent by adjusting some of

the thresholds, as shown by the next proposition.

Proposition 2 For every sequential quota rule F
;(mp)p2X , there exists a transparent

sequential quota rule F
;(m�
p)p2X with the same decision-path 
 such that, for every

pro�le (A1; :::; An) in the universal domain, F
;(mp)p2X (A1; :::; An) = F
;(m�
p)p2X (A1;

:::; An).

To obtain (m�
p)p2X , simply de�ne, for each p 2 X, m�

p to be the e¤ective threshold

for p if there exists such an e¤ective threshold and m�
p = mp otherwise.

Now we can state the logical relation between strategy-proofness and

path-independence.
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Theorem 4 A complete or deductively closed transparent sequential quota rule

F
;(mp)p2X is strategy-proof if and only if it is path-independent.
17

By combining theorem 4 with theorem 3 above, we can characterize strategy-

proofness in terms of our inequalities on the family of thresholds.

Corollary 5 A complete or deductively closed transparent sequential quota rule

F
;(mp)p2X is strategy-proof if and only if the corresponding ordinary quota rule is

consistent, i.e. (3) above holds.

Together with corollary 4 above, theorem 4 �nally implies a result on sequential

majority and unanimity rules.

Corollary 6 Let z be the size of the largest minimal inconsistent set Z � X.
(a) If n is odd, a sequential majority rule F
;m (where m = d(n+ 1)=2e) is

strategy-proof if and only if z � 2.
(b) A sequential unanimity rule F
;m (where m = n) is always strategy-proof.

Our results show that strategy-proofness of a sequential quota rule is a demanding

condition. Moreover, among the class of uniform sequential quota rules, a sequential

majority rule is strategy-proof only in the special case z � 2; a sequential unanimity
rule is always strategy-proof, but again only at the expense of signi�cant incomplete-

ness.

6 Beyond quota rules: generalizing the necessary and

su¢ cient conditions for collective rationality

Before concluding, let us explain an avenue for generalizing our results. Quota rules

are by de�nition anonymous. The non-anonymous generalization of a quota rule is

a committee rule. Here each proposition p 2 X is endowed not with a threshold mp

but with a set Cp of winning coalitions C � N satisfying the following conditions:

(i) N 2 Cp, (ii) ; =2 Cp, and (iii) if C 2 Cp and C � C� � N , then C� 2 Cp. For
each family (Cp)p2X of sets of winning coalitions, a committee rule F(Cp)p2X is the

aggregation rule with universal domain given by

F(Cp)p2X (A1; :::; An) = fp 2 X : fi 2 N : p 2 Aig 2 Cpg for each pro�le (A1; :::; An).
17This result and corollary 5 also holds if, instead of requiring the sequential quota rule F
;(mp)p2X

to be complete or deductively closed, we require the corresponding ordinary quota rule F(mp)p2X to

be complete or deductively closed.
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Nehring and Puppe�s �voting by committees�(2002, 2005) is a committee rule with

the additional property that F(Cp)p2X is complete and weakly consistent.
18

Can our results on collective rationality under quota rules be generalized to com-

mittee rules? Nehring and Puppe (2002, 2005) have proved that �voting by commit-

tees�is consistent if and only if the family (Cp)p2X satis�es the �intersection property�.
Generally, the following theorem can be shown in analogy to theorem 2 above, where

part (c) corresponds to Nehring and Puppe�s result (without assuming completeness

and weak consistency). Part (d) is the �rst �intersection property� for deductive

closure rather than consistency.

Theorem 5 A committee rule F(Cp)p2X is

(a) complete if and only if

C 2 Cp or NnC 2 C:p for every pair p;:p 2 X and every coalition C;

(b) weakly consistent if and only if

C =2 Cp or NnC =2 C:p for every pair p;:p 2 X and every coalition C;

(c) consistent if and only if

\
p2Z

Cp 6= ;
for every minimal inconsistent set Z � X
and all coalitions Cp 2 Cp with p 2 Z;

(d) deductively closed if and only if

\
p2Znfqg

Cp 2 C:q
for every minimal inconsistent set Z � X,
every proposition q 2 Z and all coalitions Cp 2 Cp with p 2 Znfqg.

Using this generalization of theorem 2, it is clear that the other results of this

paper can be generalized to the non-anonymous case too.

7 Concluding remarks

Our �ndings have clari�ed the scope for rational judgment aggregation under ordinary

and sequential quota rules, which generalize propositionwise majority voting. For

each of the four rationality conditions of completeness, weak and full consistency and

deductive closure, we have shown that a quota rule satis�es the given rationality

18Formally, [C 2 Cp if and only if NnC =2 C:p] for each p 2 X and each C � N .
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condition if and only if its family of acceptance thresholds satis�es an appropriate

system of inequalities. Furthermore, that system of inequalities depends crucially

on the structure of the agenda of propositions under consideration. The richer the

logical connections between these propositions, the more demanding the inequalities.

As a corollary of our results, we can derive a classic result by Craven (1971) and

Ferejohn and Grether (1974) on conditions for the acyclicity of supermajority voting

for preference aggregation.

As full rationality is often impossible to achieve under an ordinary quota rule,

we have also considered sequential quota rules, which adjudicate propositions in a

sequence, letting earlier judgments constrain later ones. Such rules capture a large

class of real-world decision processes. Sequential quota rules guarantee consistency �

and sometimes also completeness and deductive closure �but they are path-dependent

whenever the corresponding ordinary quota rule exhibits certain rationality violations.

Path-dependence, in turn, matters because path-dependent rules are vulnerable to

various forms of strategic manipulation. In particular, we have shown that strategy-

proofness of a sequential quota rule is essentially equivalent to its path-independence.

So we can conclude that a group making judgments on interconnected proposi-

tions, such as whether to take a certain action, what counts as a justi�cation for that

action and whether the justi�cation holds, may have a hard time doing so in a way

that is simultaneously democratic, rational and strategy-proof.

8 References

Barberà, S., J. Massó and A. Neme (1997) �Voting under Constraints�, Journal

of Economic Theory 76(2): 298-321.

Craven, J. (1971) �Majority Voting and Social Choice�, Review of Economic Stud-

ies 38(2): 265-267.

Dantzig, G. B. (2002) �Linear Programming�, Operations Research 50(1): 42-47.

Dietrich, F. (2006) �Judgment aggregation: (Im)possibility theorems�, Journal of

Economic Theory 126(1): 286-298.

Dietrich, F. (2007) �A generalised model of judgment aggregation�, Social Choice

and Welfare 28(4): 529-565.

Dietrich, F. and C. List (2004) �Strategy-proof judgment aggregation�, Economics

and Philosophy, forthcoming.

Dietrich, F. and C. List (2005) �Arrow�s theorem in judgment aggregation�, Social

25



Choice and Welfare, forthcoming.

Ferejohn, J. and D. Grether (1974) �On a Class of Rational Social Decision Pro-

cedures�, Journal of Economic Theory 8(4): 471-482.

Gärdenfors, P. (2006) �An Arrow-like theorem for voting with logical consequences�,

Economics and Philosophy 22(2): 181-190.

Goodin, R. E. and C. List (2006) �Special Majorities Rationalized�, British Journal

of Political Science 36(2): 213-241.

van Hees, M. (2007) �The limits of epistemic democracy�, Social Choice and Wel-

fare 28(4): 649-666.

Konieczny, S. and R. Pino-Perez (2002) �Merging information under constraints:

a logical framework�, Journal of Logic and Computation 12: 773-808.

List, C. (2001) Mission Impossible? The Problem of Democratic Aggregation in

the Face of Arrow�s Theorem, DPhil-thesis, University of Oxford.

List, C. (2003) �A Possibility Theorem on Aggregation over Multiple Intercon-

nected Propositions�, Mathematical Social Sciences 45(1): 1-13 (with corrigendum in

Mathematical Social Sciences 52: 109-110).

List, C. (2004) �A Model of Path Dependence in Decisions over Multiple Propos-

itions�, American Political Science Review 98(3): 495-513.

List, C. and P. Pettit (2002) �Aggregating Sets of Judgments: An Impossibility

Result�, Economics and Philosophy 18: 89-110.

List, C. and P. Pettit (2004) �Aggregating Sets of Judgments: Two Impossibility

Results Compared�, Synthese 140(1-2): 207-235.

Nehring, K. and C. Puppe (2002) �Strategyproof Social Choice on Single-Peaked

Domains: Possibility, Impossibility and the Space Between�, Working paper, Univer-

sity of California at Davies.

Nehring, K. and C. Puppe (2005) �Consistent judgement aggregation: A charac-

terization�, Working paper, University of Karlsruhe.

Pauly, M. and M. van Hees (2006) �Logical Constraints on Judgment Aggregation�,

Journal of Philosophical Logic 35: 569-585.

Pettit, P. (2001) �Deliberative Democracy and the Discursive Dilemma�, Philo-

sophical Issues 11: 268-299.

Pigozzi, G. (2006) �Belief merging and the discursive dilemma: an argument-based

account to paradoxes of judgment aggregation�, Synthese 152(2): 285-298

Rubinstein, A. and P. Fishburn (1986) �Algebraic Aggregation Theory�, Journal

of Economic Theory 38: 63-77.

26



Vermeule, A. (2005) �Submajority Rules: Forcing Accountability upon Majorities�,

Journal of Political Philosophy 13: 74-98.

Wilson, R. (1975) �On the Theory of Aggregation�, Journal of Economic Theory

10: 89-99.

A Appendix

In the following we write S � p as an abbreviation for �S entails p�. For each S � L,
we de�ne S := fp 2 L : S � pg. For each judgment set A and each proposition p 2 X,

we de�ne A(p) :=

(
1 if p 2 A;
0 if p =2 A.

The proof of lemma 1 uses the following result.

Lemma 2 (List 2004) A set S � X is inconsistent if and only if there exist two

consistent subsets S1; S2 � S and a proposition p 2 X such that S1 entails p and S2

entails :p.

Proof of lemma 1 . Part (a) is trivial.

(b) Assume A � X is deductively closed. By part (a), consistency implies weak

consistency. Now assume A is not consistent. By lemma 2, there exist consistent sets

S1; S2 � A and a proposition p 2 X such that S1 � p and S2 � :p. By deductive
closure, p;:p 2 A: Hence A is not weakly consistent.

(c) Assume A � X is complete. First, let A be consistent. By (a), A is weakly

consistent. To prove deductive closure, consider any p 2 X such that A � p. Then
A [ f:pg is inconsistent. So, since A is consistent, A 6= A [ f:pg. Hence :p =2 A.
By completeness, p 2 A. Conversely, suppose A is not consistent. We must show

that A is not weakly consistent or not deductively closed. By lemma 2; there exist

consistent sets S1; S2 � A and a proposition p 2 X such that S1 � p and S2 � :p. If
A is deductively closed, then p;:p 2 X; hence X violates deductive closure. �

Proof of theorem 1 . It is easy to see that a quota rule F(mp)p2X satis�es the

speci�ed conditions. Conversely, assume that F satis�es the conditions. We show

that, for any p 2 X; there exists a threshold mp 2 f1; :::; ng such that p is accepted if
and only if at least mp individuals accept p. Consider any p 2 X. By responsiveness,
there exists at least one pro�le (A1; :::; An) such that p is accepted; among all such

pro�les, choose one for which the number of individuals accepting p is minimal, and

call this number mp: By independence and anonymity, p is accepted for every pro�le
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with exactly mp individuals accepting p: Using monotonicity, it follows that p is

accepted in every pro�le with at least mp individuals accepting p: On the other hand,

p is rejected in every pro�le with less than mp individuals accepting p, by de�nition of

mp: Since by responsiveness p is not always accepted, mp 6= 0. Hence mp 2 f1; :::; ng.
�

Proof of theorem 2 . We denote F(mp)p2X simply by F . Also, for each p 2 X, let
np be the number of individuals i such that p 2 Ai for a given pro�le (A1; :::; An).
Note that, as the pro�le ranges over the universal domain, for each pair p;:p 2 X,
the pair of numbers (np; n:p) ranges over the set f(k; n� k) : k = 0; 1; :::; ng.

(a) F is complete if and only if, for each pair p;:p 2 X; we have

for each pro�le, if p is rejected then :p is accepted,
equivalently, for each pro�le, if np < mp then n:p � m:p;

equivalently, for each 0 � k � n; if k < mp then n� k � m:p;

equivalently, if k = mp � 1 then n� k � m:p,

equivalently, mp +m:p � n+ 1:

(b) F is weakly consistent if and only if, for each pair p;:p 2 X; we have

for each pro�le, if p is accepted then :p is rejected;
equivalently, for each pro�le, if np � mp then n:p < m:p;

equivalently, for each 0 � k � n, if k � mp then n� k < m:p;

equivalently, if k = mp then n� k < m:p,

equivalently, mp +m:p > n:

(c) First, assume that F is not consistent. We show that at least one of the

inequalities is violated. By assumption, there exists a pro�le (A1; :::; An) for which

F (A1; :::; An) is inconsistent. Let Z � F (A1; :::; An) be a minimal inconsistent set.

Since in the pro�le (A1; :::; An) exactly n � np individuals reject each given p 2 Z,
a rejection of some proposition in Z by some individual i occurs exactly

P
p2Z(n �

np) times in (A1; :::; An): On the other hand, since Z is inconsistent, each of the n

individuals rejects at least one proposition in Z. So, a rejection of some proposition in

Z by some individual i occurs at least n times in (A1; :::; An). Hence
P
p2Z(n�np) �

n: So, since for all p 2 Z we have np � mp (by p 2 F (A1; :::; An)), it follows thatP
p2Z(n�mp) � n;

equivalently, njZj �
P
p2Z mp � n

equivalently,
P
p2Z mp � n(jZj � 1):

(10)
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This violates the inequality for Z:

Conversely, assume that there is some minimal inconsistent set Z � X withP
p2Z mp � n(jZj � 1); hence by (10)

P
p2Z(n � mp) � n: We construct a pro�le

(A1; :::; An) for which the group accepts each p 2 Z; and hence generates an incon-
sistent judgment set. Since Z is minimal inconsistent, for each p 2 Z the set Znfpg is
consistent, and so Znfpg may be extended to a (complete and consistent) judgment
set, denoted A:p: By

P
p2Z(n�mp) � n, it is possible to assign to every individual i

exactly one proposition pi 2 Z in such a way that each p 2 Z is assigned to at most
n �mp individuals. De�ne Ai as A:pi : For each p 2 Z; at most n �mp individuals

do not accept p; hence at least mp individuals accept p: So p 2 F (A1; :::; An) for each
p 2 Z:

(d) First, assume that F is not deductively closed. We show that at least one of the

inequalities is violated. By assumption, there exists a pro�le (A1; :::; An), a consistent

subset R � F (A1; :::; An) and a p� 2 X such that R � p� but p� =2 F (A1; :::; An).
Let S � R be minimal such that S � p�. Writing q for :p�, the set Z := S [ fqg
is minimal inconsistent. Since in the pro�le (A1; :::; An) exactly n � np individuals
reject each given p 2 Z, a rejection of some proposition in Z by some individual i

occurs exactly
P
p2Z(n � np) times in (A1; :::; An): On the other hand, since Z is

inconsistent, each of the n individuals rejects at least one proposition in Z, so that

a rejection of some proposition in Z by some individual i occurs at least n times

in (A1; :::; An). Hence
P
p2Z(n � np) � n; or

P
p2Znfqg(n � np) + (n � nq) � n, orP

p2Znfqg(n � np) + n:q � n. Using that n:q < m:q (by :q = p� =2 F (A1; :::; An))
and that, for all p 2 Znfqg, np � mp (by p 2 F (A1; :::; An)), it follows thatP

p2Znfqg(n�mp) +m:q > n;

equivalently, njZnfqgj �
P
p2Znfqgmp +m:q > n;

equivalently, n(jZj � 1)�
P
p2Znfqgmp +m:q > n

equivalently,
P
p2Znfqgmp �m:q < n(jZj � 2).

(11)

This violates the inequality for Z.

Conversely, assume there is a minimal inconsistent set Z � X and an element q 2
Z such that

P
p2Znfqgmp�m:q < n(jZj�2); i.e. by (11)

P
p2Znfqg(n�mp)+m:q > n:

We construct a pro�le (A1; :::; An) for which each p 2 Znfqg but not :q is accepted.
This is a violation of deductive closure because Znfqg is consistent and entails :q.
For each p 2 Z; let A:p be some extension of Znfpg to a (complete and consistent)
judgment set. By

P
p2Znfqg(n�mp)+m:q > n we have

P
p2Znfqg(n�mp)+(m:q�

1) � n. So it is possible to assign to every individual i exactly one proposition pi 2 Z
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in such a way that each p 2 Znfqg is assigned to at most n�mp individuals and q is

assigned to at most m:q � 1 individuals. Let Ai be A:pi : Then, for each p 2 Znfqg;
at most n �mp individuals do not accept p; hence at least mp individuals accept p:

So p 2 F (A1; :::; An) for each p 2 Znfpg: Moreover, at most m:q � 1 individuals do
not accept q; i.e. accept :q. So :q =2 F (A1; :::; An). �

Proof of corollary 1 . Part (a) is trivial.

(b) Let Z be the set of minimal inconsistent sets Z � X. F(mp)p2X is consistent

if and only if
P
p2Z mp > n(jZj � 1) for every Z 2 Z, or equivalently

X
p2Znfqg

mp +mq > n(jZj � 1)
for every member

q of every Z 2 Z.
(12)

Further, F(mp)p2X is deductively closed if and only if
P
p2Znfqgmp�m:q � n(jZj�2)

for every member q of every Z 2 Z, or equivalently

X
p2Znfqg

mp + n+ 1�m:q > n(jZj � 1)
for every member

q of every Z 2 Z.
(13)

The claim follows from the fact that the conjunction of (12) and (13) is equivalent to

(5).

(c) F(mp)p2X is fully rational if and only if it is (i) complete and weakly consistent,

and (ii) consistent; by part (a), (i) is equivalent to the equations in (6), and (ii) is

equivalent to the inequalities in (6). �

Proof of corollary 2 . (a) By theorem 4, Fm is consistent if and only if, for all

minimal inconsistent Z � X; n(jZj � 1) <
P
p2Z m; i.e. njZj � n < jZjm; i.e.

m > n�n=jZj. The latter inequality holds for all minimal inconsistent Z � X just in

case m > n�n=z. Let m = d(n+ 1)=2e. First, assume n is odd, hence m = (n+1)=2.

Then Fm is consistent if and only if (n + 1)=2 > n � n=z, which is easily seen to be
equivalent to z � 2. Now let n be even, hence m = n=2 + 1. Then Fm is consistent

if and only if n=2 + 1 > n� n=z, i.e. n=z > n=2� 1. This inequality always holds if
n = 2; if n = 4; it holds just in case z � 3; if n � 6, it holds just in case z � 2.

(b) By theorem 4; Fm is deductively closed if and only if, for all minimal inconsist-

ent Z � X and any q 2 Z;
P
p2Znfqgm�m � n(jZj�2), i.e. m(jZj�2) � n(jZj�2);

i.e. m = n or jZj � 2. The latter inequality holds for all minimal inconsistent Z � X
just in case z � 2: Now let m = d(n+ 1)=2e. First, let n � 3: Hence m 6= n. So Fm
is deductively closed if and only if z � 3. Second, let n = 2. Then m = n. So Fm is

deductively closed.
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(c) By parts (a) and (b), Fm is consistent and deductively closed if and only if

m > n � n=z and [z � 2 or m = n], i.e. (i) [m > n � n=z and m = n] or (ii)

[m > n � n=z and z � 2]. Note that (i) is equivalent to m = n. Further, (ii) is

equivalent to [m > n=2 and z � 2]: if z � 2, then we have z = 2 (because z 6= 1; as
X contains no contradictions), and hence n� n=z = n=2. �

Proof of corollary 3 . The result follows immediately from theorems 1 and 2. �

Given theorem 2 and corollary 2, only the following equivalence remains to be

shown in order to prove theorem 3.

Proposition 3 A sequential quota rule F
;(mp)p2X is

(a) weakly path-independent if and only if the corresponding quota rule F(mp)p2X

is consistent;

(b) path-independent if and only if the corresponding quota rule F(mp)p2X is con-

sistent and deductively closed.

The proof of proposition 3 relies on two lemmas.

Lemma 3 For every sequential rule F
;(mp)p2X , pro�le (A1; :::; An), and step t 2
f0; :::; kg, we have �t � �t \ F(mp)p2X (A1; : : : ; An) (where �t is as in the de�nition

of F
;(mp)p2X (A1; :::; An)).

Proof of lemma 3 . Consider any family (mp)p2X and pro�le (A1; :::; An): We

prove �t � �t \ F(mp)p2X (A1; : : : ; An) by induction on t 2 f0; :::; kg.
If t = 0, the claim follows from �0 = ;.
Now let t > 0 and assume �t�1 � �t�1 \ F(mp)p2X (A1; : : : ; An). If pt =2 �t; then

�t = �t�1; hence the claim holds by induction hypothesis.

Now suppose pt 2 �t. Then �t = �t�1[fptg. So �t � �t�1 \ F(mp)p2X (A1; : : : ; An)

[ fptg by induction hypothesis. Hence it is su¢ cient to prove that

�t�1 \ F(mp)p2X (A1; : : : ; An) [ fptg � �t \ F(mp)p2X (A1; : : : ; An).

Since �t�1 \ F(mp)p2X (A1; : : : ; An) � �t \ F(mp)p2X (A1; : : : ; An) (by �t�1 � �t), it

is su¢ cient to show that pt 2 �t \ F(mp)p2X (A1; : : : ; An). By pt 2 �t; there are two
cases: (i) �t�1 � pt, or (ii) pt 2 F(mp)p2X (A1; : : : ; An): Under case (ii), the claim is

trivial. Under case (i), the induction hypothesis implies �t�1 \ F(mp)p2X (A1; : : : ; An) �
pt; hence pt 2 �t�1 \ F(mp)p2X (A1; : : : ; An); as required. �

31



Lemma 4 Let (mp)p2X be given. For any pro�le (A1; : : : ; An) and any proposition

p 2 X, [some consistent subset S � F(mp)p2X (A1; : : : ; An) entails p] if and only if

[p 2 F
;(mp)p2X (A1; : : : ; An) for some decision-path 
].

Proof of lemma 4 . Consider any pro�le (A1; : : : ; An) and proposition p 2 X.
First, let there exist a decision-path 
 with p 2 F
;(mp)p2X (A1; : : : ; An). Let

�0; :::;�k (k = jXj) be as in the de�nition of F
;(mp)p2X (A1; : : : ; An); and t 2
f1; 2; :::; kg be such that p = pt. By p 2 F
;(mp)p2X (A1; : : : ; An) we have p 2 �t. So

there are only two possible cases: (i) �t�1 � p or (ii)
"
�t�1 [ fpg is consistent and
jfi 2 1; 2; : : : ; n : p 2 Aigj � mp

#
.

In case (i), we put S := �t�1 \ F(mp)p2X (A1; : : : ; An); which is consistent; since

�t�1 � p and since �t�1 � S by lemma 3, we have S � p; hence S � p. In case (ii),
we put S := fpg, which is again consistent and entails p.

Conversely, assume that S � F(mp)p2X (A1; : : : ; An) is consistent and entails p. Let


 be a decision-path that begins with the propositions in S, followed by proposition p;

followed by all other propositions; speci�cally, 
(m) = pm 2 S for all m = 1; :::; s =

jSj, and 
(s + 1) = p. Let the sets �0; :::;�k (k = jXj) be as in the de�nition
of F
;(mp)p2X (A1; : : : ; An). We show by induction that �m = fp1; :::; pmg for each
m = 1; :::; s.

If m = 1; then �1 = fp1g since p1 2 F
;(mp)p2X (A1; :::; An).

Now let 1 < m � s and assume that �m�1 = fp1; :::; pm�1g: Since �m�1[fpmg =
fp1; :::; pmg � S, �m�1 [ fpmg is consistent. So, as pm 2 F
;(mp)p2X (A1; :::; An), we

have �m = �m�1 [ fpmg = fp1; :::; pmg; as desired.
In particular, �s = fp1; :::; psg = S: By S � p; we have p 2 �s+1, so p 2

F
;(mp)p2X (A1; : : : ; An). �

Proof of proposition 3 . (a) First, suppose F
;(mp)p2X is not weakly path-

independent, i.e. strongly path-dependent. Then there exist a pro�le (A1; : : : ; An), a

proposition p 2 X and two decision-paths 
1 and 
2 such that

p 2 F
1;(mp)p2X (A1; : : : ; An) and :p 2 F
2;(mp)p2X (A1; : : : ; An).

So, by lemma 4, there exists a consistent set S1 � F(mp)p2X (A1; : : : ; An) that entails

p, and a consistent set S2 � F(mp)p2X (A1; :::; An) that entails :p. Hence, by lemma
2, F(mp)p2X (A1; : : : ; An) is inconsistent, i.e. F(mp)p2X is not consistent.

Conversely, suppose F(mp)p2X is not consistent. Consider any pro�le (A1; : : : ; An)

for which F(mp)p2X (A1; : : : ; An) is inconsistent. By lemma 2, there exist two consistent
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subsets S1; S2 � F(mp)p2X (A1; : : : ; An) such that S1 � p and S2 � :p:Hence, by lemma
4, there exist decision-path 
1 and 
2 such that p 2 F
1;(mp)p2X (A1; : : : ; An) and

:p 2 F
1;(mp)p2X (A1; : : : ; An). So F
;(mp)p2X is not weakly path-independent.

(b) First, suppose F(mp)p2X is consistent and deductively closed. We show

that, for every decision-path 
1 and pro�le (A1; :::; An); F
1;(mp)p2X (A1; :::; An)

= F(mp)p2X (A1; :::; An); which implies path-independence. Consider any 
1 and

(A1; :::; An). Let the sets �0; :::; �k and propositions p1; :::; pk (k = jXj)
be as in the de�nition of F
1;(mp)p2X (A1; :::; An): We show by induction that

�t = F(mp)p2X (A1; :::; An)\ fp1; :::; ptg for all t 2 f0; :::; kg; the case t = k then yields
our claim.

For t = 0; the claim is trivial by �0 = ;.
Now let 0 < t � k and assume �t�1 = F(mp)p2X (A1; :::; An) \ fp1; :::; pt�1g. We

have to show that pt 2 �t is equivalent to pt 2 F(mp)p2X (A1; :::; An). First, as-

sume pt 2 �t. Then, by de�nition of �t, either (i) �t�1 � pt or (ii) [�t�1 [ fptg
is consistent and pt 2 F(mp)p2X (A1; :::; An)]. In case (ii), we obviously have pt 2
F(mp)p2X (A1; :::; An). In case (i), we have F(mp)p2X (A1; :::; An)\ fp1; :::; pt�1g � pt by
induction hypothesis; since F(mp)p2X (A1; :::; An) \ fp1; :::; pt�1g is consistent by the
consistency of F(mp)p2X , we have pt 2 F(mp)p2X (A1; :::; An) by the deductive closure

of F(mp)p2X . Now assume that pt 2 F(mp)p2X (A1; :::; An). By induction hypothesis,

�t�1 � F(mp)p2X (A1; :::; An). Hence, �t�1 [ fptg � F(mp)p2X (A1; :::; An). So, by the

consistency of F(mp)p2X , �t�1[fptg is consistent. Hence, as pt 2 F(mp)p2X (A1; :::; An),

we have pt 2 �t by de�nition of �t.
Conversely, suppose F(mp)p2X is not consistent or not deductively closed. If

F(mp)p2X is not consistent, then the result follows from part (a). Suppose now

F(mp)p2X is consistent, but not deductively closed. Then there is a pro�le (A1; : : : ;

An), a consistent set S � F(mp)p2X (A1; : : : ; An) and a proposition p 2 X such that

S � p and p =2 F(mp)p2X (A1; : : : ; An). So, on the one hand, by lemma 4, there exists

a decision-path 
1 such that p 2 F
1;(mp)p2X (A1; : : : ; An), and, on the other hand,

p =2 F
2;(mp)p2X (A1; : : : ; An) for any decision-path 
2 with 
2(1) = p. This implies

path-dependence. �

Proof of theorem 3 . Given theorem 2 and corollary 2, the result follows from

proposition 3. �

Proof of proposition 2 . Consider any sequential quota rule F
;(mp)p2X . For each

p 2 X; de�ne the new threshold m�
p as the e¤ective threshold for p if p has an e¤ective
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threshold, and as mp otherwise.

Claim 1 : F
;(mp)p2X and F
;(m�
p)p2X generate the same judgment sets. Consider

any pro�le (A1; :::; An) 2 An. Let the sets �t (t = 0; :::; k; k = jXj) be as given in
the de�nition of F
;(mp)p2X (A1; :::; An), and let �

�
t (t = 0; :::; k) be the corresponding

sets for F
;(m�
p)p2X (A1; :::; An). By a straightforward induction on t; we have �t = �

�
t

for all t: In particular, �k = ��k; i.e. F
;(mp)p2X (A1; :::; An) = F
;(m�
p)p2X (A1; :::; An).

Claim 2: F
;(m�
p)p2X is transparent. Consider any proposition p 2 X; and assume

p has an e¤ective threshold under F
;(m�
p)p2X . By claim 1, p has the same e¤ective

threshold under F
;(mp)p2X . So, by de�nition of m
�
p, p has e¤ective threshold m

�
p

under F
;(mp)p2X . So, by claim 1, p has e¤ective threshold m�
p under F
;(m�

p)p2X . �

The proof of theorem 4 relies on the following lemma.

Lemma 5 For every sequential quota rule F
;(mp)p2X ,

(a) path-independence implies F
;(mp)p2X = F(mp)p2X ;

(b) the converse also holds in case F
;(mp)p2X or F(mp)p2X is complete or deduct-

ively closed.

Proof of lemma 5 . (a) Let F
;(mp)p2X be path-independent. Consider any pro�le

(A1; :::; An) and proposition p 2 X. We have to show that F
;(mp)p2X (A1; :::; An)(p) =

F(mp)p2X (A1; :::; An)(p). Let 
1 be some decision-path with 
1(1) = p. Then,

by path-independence, F
;(mp)p2X (A1; :::; An)(p) = F
1;(mp)p2X (A1; :::; An)(p), which

equals F(mp)p2X (A1; :::; An)(p) by de�nition of 
1.

(b) Now let F
;(mp)p2X = F(mp)p2X , and assume this aggregation rule is complete

or deductively closed. If it is deductively closed, then, as it is also consistent (by

de�nition of sequential rules), it is path-independent by proposition 3 (b). If it is

complete, then, as it is also consistent, it is deductively closed by lemma 1; hence it

is again path-independent by proposition 3 (b). �

Proof of theorem 4 . Consider any complete or deductively closed transparent

sequential quota rule F
;(mp)p2X .

1. First, assume F
;(mp)p2X is path-independent. By lemma 5; F
;(mp)p2X =

F(mp)p2X . So F
;(mp)p2X is independent and monotonic, hence strategy-proof by pro-

position 1.

2. Now assume F
;(mp)p2X is strategy-proof. Then F
;(mp)p2X is independent and

monotonic by proposition 1. So, since F
;(mp)p2X is also anonymous, there exists a

family (m�
p)p2X 2 f0; :::; n + 1gX such that F
;(mp)p2X = F(m�

p)p2X , where F(m�
p)p2X
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denotes the obvious generalisation of our de�nition of quota rules to the case where

each m�
p can also be 0 or n+ 1 (in which case p is always or never accepted).

Claim 1: For each p 2 X, m�
p � n.

Consider any p 2 X. Let A be a (complete and consistent) judgment set such

that p 2 A. Let the propositions pt and the sets �t (t = 0; :::; k; k = jXj) be as
in the de�nition of F
;(mp)p2X (A; :::; A). Note that F(mp)p2X (A; :::; A) = A (since

1 � mp � n for all p 2 X). By a straightforward induction, it follows that �t =
A \ fp1; :::; ptg for all t 2 f0; :::; kg. In particular, �k = A \ fp1; :::; pkg = A; i.e.

F
;(mp)p2X (A; :::; A) = A. So, by F
;(mp)p2X = F(m�
p)p2X , F(m�

p)p2X (A; :::; A) = A. In

particular, p 2 F(m�
p)p2X (A; :::; A); hence m

�
p � n.

Claim 2: For each p 2 X, m�
p � 1.

Consider any p 2 X. Let A be a (complete and consistent) judgment set such that
p =2 A. By the argument used to prove claim 1, F(m�

p)p2X (A; :::; A) = A. In particular,

p =2 F(m�
p)p2X (A; :::; A); hence m

�
p � 1.

By the claims 1 and 2, each m�
p belongs to f1; :::; ng, i.e. is a threshold in our

standard sense, which will allow us to use a transparency argument. By F
;(mp)p2X =

F(m�
p)p2X , each p 2 X has e¤ective threshold m�

p. So, by transparency, mp = m�
p

for each p 2 X. Hence F
;(mp)p2X = F(mp)p2X . So, by lemma 5 (b), F
;(mp)p2X is

path-independent. �

Proof of corollary 6 . (a) Let n be odd and consider a sequential majority rule

F
;m (m = (n + 1)=2). To apply theorem 4 to F
;m, it is su¢ cient to show that

F
;m is transparent and that Fm is complete (see footnote 17). As n is odd, Fm is

complete. To prove that F
;m is transparent, consider any p 2 X and let there be

an e¤ective threshold mp for p. We show that mp = m by proving �rst that mp � m
and then that mp > m� 1. Let Ap and A:p be (complete and consistent) judgment
sets with p 2 Ap and p =2 A:p.

mp � m: Let (A1; :::; An) be a pro�le in which exactly m individuals i have

Ai = Ap and the other n � m = m � 1 individuals i have Ai = A:p. Let the

propositions p1; :::; pk and the sets �0; :::;�k (k = jXj) be as in the recursive de�nition
of F
;m(A1; :::; An). By a straightforward induction that uses the fact that a majority

submits the judgment set Ap, we have �t = Ap \ fp1; :::; ptg for all t 2 f0; :::; kg. In
particular, �k = Ap \ fp1; :::; pkg = Ap; i.e. F
;m(A1; :::; An) = Ap. Hence p 2
F
;m(A1; :::; An). This implies mp � m; as mp is the e¤ective threshold for p and m

individuals accept p in (A1; :::; An).

mp > m � 1: Now let (A1; :::; An) be a pro�le in which exactly m individuals
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i have Ai = A:p and the other n � m = m � 1 individuals i have Ai = Ap. By

an argument analogous to the above one, we have F
;m(A1; :::; An) = A:p. Hence

p =2 F
;m(A1; :::; An). This implies mp > m� 1; as mp is the e¤ective threshold for p

and m� 1 individuals accept p in (A1; :::; An).
Having shown transparency, by theorem 4 strategy-proofness is equivalent to path-

independence, which is equivalent to z � 2 by corollary 4.
(b) Now consider a sequential unanimity rule F
;m (m = n). By corollary 2, F
;m

is deductively closed. To apply theorem 4, we need to show that F
;m is transparent.

Consider any p 2 X and let there be an e¤ective threshold mp for p. We show

that mp = m; i.e. that mp = n. As in part (a), let Ap and A:p be (complete and

consistent) judgment sets with p 2 Ap and p =2 A:p. Let (A1; :::; An) be a pro�le
in which one individual i has Ai = A:p and n � 1 individuals i have Ai = Ap. Let

the propositions p1; :::; pk and the sets �0; :::;�k (k = jXj) be as in the de�nition of
F
;m(A1; :::; An). By a straightforward induction, we have �t = Ap\A:p\fp1; :::; ptg
for all t 2 f0; :::; kg. In particular, �k = Ap \ A:p \ fp1; :::; pkg = Ap \ A:p; i.e.
F
;m(A1; :::; An) = Ap \ A:p. Hence p =2 F
;m(A1; :::; An). This implies mp > n� 1;
as mp is the e¤ective threshold for p and n � 1 individuals accept p in (A1; :::; An).
So mp = n. This proves transparency.

Now by theorem 4 strategy-proofness is equivalent to path-independence, which

is satis�ed by corollary 4. �

Proof of theorem 5 . We denote F(Cp)p2X simply by F: Also, for each p 2 X we

denote byNp the set of persons i such that p 2 Ai (for the relevant pro�le (A1; :::; An)).
Note that, as the pro�le ranges over the universal domain, for each pair p 2 X the

pair coalitions (Np; N:p) ranges over the set of pairs f(C;NnC) : C � Ng:
(a) F is complete if and only if, for each p 2 X; we have

for each pro�le, p or:p is accepted,
equivalently, for each pro�le, Np 2 Cp or N:p 2 C:p;
equivalently, for each coalition C; C 2 Cp or NnC 2 C:p.

(b) F is weakly consistent if and only if, for each p 2 X; we have

for each pro�le, p or :p is rejected;
equivalently, for each pro�le, Np =2 Cp or N:p =2 C:p;
equivalently, for each coalition C; C =2 Cp or NnC =2 C:p.

(c) First, assume that F is not consistent, and let us show that at least one of the

intersections is empty. By assumption, there exists a pro�le (A1; :::; An) for which
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F (A1; :::; An) is inconsistent. Let Z � F (A1; :::; An) be a minimal inconsistent set.

Since no person accepts each p 2 Z (by the inconsistency of Z), we have
\

p2Z
Np = ;.

But, for all p 2 Z we have Np 2 Cp by p 2 F (A1; :::; An)
Conversely, assume now that there is some minimal inconsistent set Z � X and

coalitions Cp 2 Cp; p 2 Z; such that ; =
\

p2Z
Cp, and let us construct a pro�le

(A1; :::; An) with Z � F (A1; :::; An) (which implies that F is not consistent). We

have

N = Nn

24\
p2Z

Cp

35 = [
p2Z
(NnCp) =

[
p2Z

Gp; where Gp := NnCp.

As one can easily see, it is possible to choose subsets Hp � Gp such that we still have[
p2Z

Hp = N; but now the sets Hp; p 2 Z are pairwise disjoint, i.e. Hp \Hq = ; for
any distinct p; q 2 Z. In other words, the sets Hp;; p 2 Z; form a partition of N . Let

(A1; :::; An) be a pro�le such that, for each p 2 Z, each person inHp accepts :p and all
member of Znfpg. For each p 2 Z, we have fi : p 2 Aig = NnHp � NnGp = Cp 2 Cp,
hence fi : p 2 Aig 2 Cp; hence p 2 F (A1; :::; An): So Z � F (A1; :::; An).

(d) First, assume that
\

p2Znfqg
Cp 2 C:q holds for every minimal inconsistent

set Z � X, p 2 Z and Cp 2 Cp; p 2 Znfqg. Consider any pro�le (A1; :::; An);

consistent set R � F (A1; :::; An) and p 2 X such that R j= p, and let us show that
p 2 F (A1; :::; An). Let S � R be minimal such that S j= p. Then Z := S [ fqg
is minimal inconsistent, where q := :p. For each p� 2 Znfqg = S; we have Np� 2
Cp� by p� 2 F (A1; :::; An). So, by assumption,

\
p�2Znfqg

Np� 2 C:q = Cp. But\
p�2Znfqg

Np� � Np; since Znfqg = S j= p. So Np 2 Cp. Hence p 2 F (A1; :::; An).
Conversely, assume there is a minimal inconsistent set Z � X; a proposition q 2 Z

and coalitions Cp 2 Cp, p 2 Znfqg, such that C :=
\

p2Znfqg
Cp =2 C:q. We construct

a pro�le (A1; :::; An) for which each p 2 Znfqg but not :q is collectively accepted.
This is a violation of deductive closure because Znfqg is consistent and entails :q.
We have

NnC = Nn

24 \
p2Znfqg

Cp

35 = [
p2Znfqg

(NnCp) =
[

p2Znfqg
Gp; where Gp := NnCp.

As in the proof of part (c), we choose subsets Hp � Gp such that we still have[
p2Z

Hp = NnC; but now the sets Hp; p 2 Z are pairwise disjoint, i.e. Hp \Hp0 = ;
for any distinct p; p0 2 Znfqg. Note that fHp : p 2 Znfqgg [ fCg is a partition of N .
Let (A1; :::; An) be a pro�le such that, for each p 2 Znfqg, each person in Hp accepts
:p and all member of Znfpg, and each person in C accepts :q and all members of
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Znfqg. For each p 2 Znfqg, we have fi : p 2 Aig = NnHp � NnGp = Cp 2 Cp,
hence fi : p 2 Aig 2 Cp; hence p 2 F (A1; :::; An): Moreover, fi : :q 2 Aig = C =\

p2Znfqg
Cp =2 C:q; hence :q =2 F (A1; :::; An). �
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