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ABSTRACT. The paper surveys the currently available axiomatizations of common 
belief (CB) and common knowledge (CK) by means of modal propositional logics. 
(Throughout, knowledge-  whether individual or commo n -  is defined as true belief.) 
Section 1 introduces the formal method of axiomatization followed by epistemic 
logicians, especially the syntax-semantics distinction, and the notion of a soundness and 
completeness theorem. Section 2 explains the syntactical concepts, while briefly discus- 
sing their motivations. Two standard semantic constructions, Kripke structures and 
neighbourhood structures, are introduced in Sections 3 and 4, respectively. It is recalled 
that Aumann's  partitional model of CK is a particular case of a definition in terms of 
Kripke structures. The paper also restates the well-known fact that Kripke structures can 
be regarded as particular cases of neighbourhood structures. Section 3 reviews the 
soundness and completeness theorems proved w.r.t, the former structures by Fagin, 
Halpern, Moses and Vardi, as well as related results by Lismont. Section 4 reviews the 
corresponding theorems derived w.r.t, the latter structures by Lismont and Mongin. A 
general conclusion of the paper is that the axiomatization of CB does not require as 
strong systems of individual belief as was originally though t -  only monotonicity has 
thusfar proved indispensable. Section 5 explains another consequence of general 
relevance: despite the "infinitary" nature of CB, the axiom systems of this paper admit 
of effective decision procedures, i.e., they are decidable in the logician's sense. 
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1. I N T R O D U C T I O N .  W H Y  A F O R M A L  L A N G U A G E ?  

An event is said to be common belief (CB) if every individual in the 
group believes it, believes that every individual in the group believes 
it, and so on ad infinitum. Following an equally well-received (albeit 
questionable) view, a known event must be true. Hence the standard 
definition of common knowledge (CK), as perhaps first introduced by 
Lewis (1969) and as formalized in Aumann's  (1976) classic paper: an 
event is said to be CK if it is true, every individual in the group knows 
it, etc. 

The notions of CK and CB are pervasive in today's game theory. 
There is an ongoing discussion on what it means (and whether it is at 
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all necessary) to assume that players have CK of the rules of the game; 
see Binmore and Brandenburger (1990) for a survey and references. 
An especially important application of this problem relates to the 
notion of a type in games of incomplete information. The standard 
answer here is suggested by the very construction of types from infinite 
sequences of mutual beliefs as in Mertens and Zamir (1985): some 
subset of the type set (a "belief space") must be CB among the 
players. Game theorists have also long tried to understand the 
meaning and role of the assumption that players have CB or CK of 
rationality. Efforts have been made to analyze equilibrium concepts in 
terms of such assumptions: a whole range of solutions should be 
expected to result from varying the meaning of "rationality" and of 
either "belief" or "knowledge". Here as elsewhere, Aumann's (1987) 
work has proved influential. Stalnaker's (1994) recent results clarify 
and further extend this continuing line of research. 1 

To mention but an economic example, CK assumptions underlie the 
no trade theorems that are derived in Milgrom and Stokey (1982) as 
well as numerous papers in the same vein. These negative results 
appear to relate to Aumann's demonstration in 1976 that if the prior 
probabilities of two agents are the same, and they have CK of their 
posterior probabilities, these probabilities must also be the same-  
however different the conditioning information. Aumann's finding 
uncovered a curious and important problem for the theory of markets 
under asymmetric information. 

The pervasiveness of CB and CK concepts in the current research 
led some game theorists and economists to analyze the abstract or 
"logical" properties of these concepts in much detail. As is well- 
known, Aumann (1976, p. 1237) gave two equivalent definitions of 
common knowledge: an event E is CK at a state oJ if 

(1) E contains all o9' "reachable" from ~o, given the individuals' 
information partitions, or 

(2) E includes that member of the meet of the individuals' partitions 
that contains a~. 
Definition (1) prompted Geanakoplos and Polemarchakis's (1982) 
dynamic version of Aumann's impossibility-of-probabilistic-disagree- 
ment theorem. Parikh and Krasucki (1990) follow up this line of 
research in a framework adapted from distributed computing analysis. 
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Definition (2) is static in character, which makes it perhaps less 
intuitive than the former. It has suggested an equivalent, "axiomatic" 
restatement of CK by Milgrom (1981), which illuminates the con- 
nection between "public" knowledge and common knowledge. Bach- 
arach (1985) provided a further (again static) restatement using the 
notion of an "epistemic model". 

The papers by Milgrom and Bacharach introduced economists and 
game theorists to the use of belief operators, defined as functions from 
the algebra of events to itself. The problem of "axiomatizing" CK then 
became the technical problem of defining suitable constraints on the 
CK as well as the individual belief operators. This method of analysis 
has been taken up in a number of later papers. For instance, Monderer 
and Samet (1989) offer another restatement of Aumann's definition in 
terms of "evident knowledge". A further variant, which does not quite 
lead to an equivalence, is Brandenburger and Dekel's (1987): they 
express CK in the language of measurable sets having conditional 
probability 1. 

Aumann as well as several of his followers had taken for granted 
that individual belief is partitionaI. This assumption is of course part 
and parcel of the theoretical economist's modelling of information. 
Upon reflection, it proved disputable. Hence there arose a research 
programme of criticizing it and reformulating Aumann's concept of 
CK, as well as (if possible at all) his impossibility-of-disagreement 
theorem. A good example is Samet's (1990) demonstration that the 
theorem does not require the strong negative introspection assumption 
which underlies the partitional model. Geanakoplos (1992) surveys 
further results in this vein. In economics and game theory, Bacharach 
(1985, p. 189) was among the first to emphasize that the information 
partition assumption was both disputable and perhaps dispensable; see 
also his (forthcoming) discussion. 

For all its merits, the foundational literature on CK and CB which 
has just been discussed has a technical shortcoming. It claims to clarify 
the "logical" or "axiomatic" basis of these concepts but bears little 
relation to the logician's method of axiomatization. Logicians dis- 
tinguish between a syntax and a semantics. A syntax consists of an 
artificial, highly constrained, not very expressive but well-understood 
language; of sentences in that artificial language (axioms); and of rules 
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of inference which generate theorems from axioms and previously 
generated theorems. A semantics is made out of structures, which are 
descriptions of the objects of interest. In the context of an epistemic 
logic structures could involve individual partitions as in Aumann, 
operators in the Milgrom-Bacharach sense, as well as lesser-known 
constructions. Structures are defined using the resources of ordinary 
mathematics, in effect set theory. Hence, the semantic language, as 
opposed to the syntactical one, is natural, powerfully expressive, 
but-unsurpris ingly-nei ther  well-regimented nor well-understood. 
The logician's task is to relate the syntax and semantics to each other. 
The obvious requirements are (i) that the axioms (along with the 
inference rules) do refer to the given class of structures, and (ii) that 
they provide an exhaustive account of the properties of that class. 
These twin requirements correspond to a soundness and completeness 
theorems, respectively. Only with the proof of the two theorems does 
the axiomatization process, in the logician's sense, come to an end. 
Plainly, what has been labelled "axiomatization of CK" by economists 
and game-theorists is a more modest undertaking. The above literature 
uses ordinary mathematics exclusively; it has no syntax. From the 
logical point of view, the characterization results derived in this 
literature (such as the equivalences between variously stated definitions 
of CK) count only as semantic clarifications. The characterization 
results should by no means be underrated, as one must understand 
epistemic structures before embarking on the more formalistic steps of 
axiomatization. However, they are heuristic and preliminary in charac- 
ter. 

The axiomatization of belief and knowledge in the sense just 
sketched is the subject matter of a recently developed subbranch of 
logic - epistemic logic - as well as a lively area of research in artificial 
intelligence and parts of computer science. From the syntactical point 
of view, it has become standard since Hintikka (1962) to use proposi- 
tional languages enriched with unary operators acting on sentences. 
These modal operators are designed to capture various epistemic 
qualities; note carefully that they differ from the Milgrom-Bacharach 
operators since they are syntactical, therefore subjected to more 
stringent constraints. Various axiom systems have been investigated; 
many of them were suggested by earlier research on modal operators 
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with non-epistenaic interpretations, such as "it is necessary that", "it is 
possible that", ,etc. Moving now to semantics, the standard concept of 
a structure involves a basic set of states (called possible worlds, p.w.), 
an assignment of truth values to elementary sentences, and additional 
mathematical entities defined on the set of p.w. The most popular 
among those entities are Kripke binary relations. They serve as set- 
theoretic counterparts to the syntactical belief operators. Properties of 
Kripke relations- reflexivity, transitivity, symmetry, as well as lesser- 
known properties- can be shown to correspond exactly to axioms, a 
feature which probably accounts for the widespread use of this 
semantics. Economists and game theorists should find it congenial: the 
partitional model of individual knowledge turns out to be that 
particular case of Kripke structures in which the individuals' binary 
relations are equivalence relations. There are, however, alternative 
semantics to Kripke's that are more expressive and no less elegant, as 
will be explained at some length in this paper. 

Initially, epistemic modal logic was concerned with a single in- 
dividual's beliefs and knowledge. The move to the multi-agent setting 
is largely the contribution of Fagin, Halpern, Moses and Vardi 
(FHMV) in a number of papers, starting with Halpern and Moses 
(1984, 1985), Fagin, Halpern and Vardi (1984), and Fagin and Vardi 
(1985). For an updated survey of their work, see Halpern and Moses 
(1992). The introduction of n belief operators B~, a E A (where A is 
the finite set of agents) into the syntax, along with that of n Kripke 
relations into the semantics, proved to make little difference to already 
known completeness and soundness theorems. (It does make a 
difference, however, to the complexity properties of the logics.) Much 
more delicate was the axiomatization of CB or CK by means of a 
suitable syntactical operator C. The technical and conceptual problem 
was the finiteness constraint that standard logic imposes on both the 
length of permissible sentences and the number of axiom schemata. 
Hence the commonsense definition of C through an infinite conjunc- 
tion of higher-order belief sentences could not be expressed directly in 
the formal language. This problem was eventually circumvented by the 
introduction of a fixed-point axiom and an induction rule. FHMV have 
managed to prove soundness and completeness vis-d-vis Kripke 
structures of an axiom system that includes these two components. The 
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remaining problem of how to axiomatize CB and CK in a more general 
semantics was then tackled by Lismont (1993a) and Lismont and 
Mongin (1993). The present paper is largely concerned with this issue. 

It may be asked, why should economists and game-theorists become 
interested in the logician's demanding concept of axiomatization 
instead of pursuing their intuitive methods? There are two prima facie 
answers to this question, having to do with explicitness and effectivity. 
A discussion of axioms and inference rules currently used in epistemic 
modal logic would illustrate the former point. Axioms and rules are a 
very precise tool to spot hidden assumptions behind ordinary economic 
or game-theoretic reasoning and to analyze them. In particular, the 
programme initiated in the 80's of weakening the partitional model of 
information could be rejuvenated by the injection of a formal language 
and the accompanying search for sound and complete axiomatizations. 
In connection with the latter point, recall the logician's usual concern 
with finiteness. Sentences in the formal language are finite and proofs 
are defined as finite sequences of some sort. Depending on the system 
at hand, these constraints might or might not be reflected in the 
availability of an effective decision procedure; that is, a procedure to 
decide in a finite number of steps whether or not a sentence is a 
theorem of the system. The search for effective decision procedures 
connects epistemic model logic with computability theory, a subbranch 
of logic that has recently attracted attention from game theorists and 
mathematical economists. 2 FHMV and the present writers indepen- 
dently showed that effective decision procedures exist in the case of 
CB and CK systems. Thus, the infinitary nature of these concepts, as 
suggested by their commonsense interpretation, does not prevent them 
from being effective in some well-defined sense. 

Rather than pursuing a methodological discussion in the abstract, 
the present paper aims at presenting a sample of the epistemic 
logician's method of analysis. Hopefully, some of its technical and 
conceptual advantages will transpire. The strategy of this paper is as 
follows. Section 2 deals with the syntactical concepts. It briefly reviews 
standard axioms of individual belief and knowledge as well as axioms 
for CB and CK. Economists and game theorists will notice both the 
analogies and disanalogies between our syntactically-based presenta- 
tion and the current epistemic discussions in their fields. Section 3 
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reviews the axiomatization of CB and CK in the Kripke semantics, in 
particular the above-mentioned work by FHMV. It will be seen that 
sound and complete axiomatizations ~i la Kripke require no more on 
the semantic side than the intuitive definition of CB in terms of a 
countable sequence of higher-order shared beliefs. Section 4 intro- 
duces neighbourhood structures as a more powerful alternative to 
Kripke's and reviews some of the authors' work in this framework. 
Sound and complete axiomatizations of CB exist, using a weak 
(though not quite minimal) system of individual belief. Importantly, 
the naive semantic definition of CB would fail to deliver soundness. To 
circumvent the problem one has either to extend sequences of higher- 
order shared beliefs beyond denumerable infinity or to translate the 
fixed-point property of the syntax directly into the semantics. Section 5 
states the result on effective decision procedures and adds a few 
conceptual comments. 

2. SYNTACTICAL CONCEPTS 

The systems of epistemic logic covered in this paper are specially 
devised variants of well-known systems of propositional modal logic 
[see the textbooks by Chellas (1980) or Hughes and Cresswell (1984); 
Stigum (1990) includes an overview]. Their specific features stem from 
the fact that there is one belief operator B a for each "agent" a, and 
more importantly, there is a C operator, to be interpreted as "it is 
common belief that". There will be no separate knowledge operator. 
Throughout this paper, as in most of the work of epistemic modal 
logicians, the difference between belief and knowledge will hinge on 
whether or not; the given operator satisfies the truth axiom ("what is 
believed is true"). This (philosophically objectionable 3) simplification 
also applies to CB versus CK. For convenience, we shall also introduce 
the shared belief operator E, to be understood as "everybody believes 
that". FHMV have a richer set of syntactical operators than ours. They 
introduce E c and C c operators to capture shared and common belief 
among a subgroup G, as well as a distributed belief operator D, to be 
thought of as a dual to C. 4 

The set q~ of sentences or well-formed formulae (w.f.f.) of our 
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systems is standardly obtained from the following building blocks: a set 
PV of propositional variables (of any cardinality); the logical connec- 
tives -'7, A, V, -% ~ ("not",  "and",  "or",  "implies", "is equivalent 
to"); the above-discussed operators (Ba)~ A , C and E. 5 Recall that 
w.f.f, are finite sequences of symbols. There is no comparable 
restriction in the work by Aumann and his followers (who are free to 
use infinite intersections and unions). On the other hand, both their 
work and the logical one crucially assume that the set A of agents is 
finite. 

Throughout this paper, we shall take for granted the logician's 
distinction between axioms and rules. Any logical system below is 
understood to include an axiomatization of propositional calculus by 
means of the modus ponens rule and suitable tautologies. We leave this 
part of the systems implicit and just explain the modal part of them. 
As usual, both rules and axioms are to be understood as schemata in 
which ~ and X stand for any w.f.f. The logician's requirement of finite 
axiomatization has of course to do with the number of schemata. 

2.1. Axioms and Rules of  Individual Belief 

For any a E A and any q~, X ~ ~: 

(RMa) ~--~X ("from ~-'-~X, infer Ba~-'--~BaX" ) 
Ba~ ~ BaX 

q~ 
(RNa) Ba~ p 

(Ca) A BoX-  Ba(¢ A X) 

In words, the monotonicity rule (RMa) says that if it is a theorem of 
the system that ¢ implies X, it follows as another theorem that belief in 
q~ implies belief in X. This is tantamount to saying that the agent can 
reproduce all and every inference in the system. (RM~) is compatible 
with the limiting case in which a does not believe anything. The 
so-called necessitation rule (RNa) stipulates that the agent believes any 
theorem in the system and thus takes care of this limiting case. The 
conjunctiveness axiom (Ca) requires that if a believes q~ and believes X, 
he believes their conjunction. Note that the converse implication, 
Ba(~p A X)----~ Ba~ A B,X, is implied by (RMa). 
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These three components together define the K-system f o r  agent a, to 
be denoted by K a . This system is the minimal one among those 
warranting a Kripke semantics. Hence, it has to be included in any 
axiomatization of CB of the FHMV type. The epistemic objections 
against using K a (and a f o r t i o r i  any stronger system) have recently 
been discussed in a number of papers under the heading of logical 

omniscience [e.g. Stalnaker (1991), Dubucs (1992), and Gillet and 
Gochet (1993): see also Bacharach (1994), for an application of this 
problem to game theory]. It would seem desirable to endow agents 
with a much less powerful logic than K~. An attractive proposal is to 
replace (RM,) with the weaker equivalence rule: 

(REa) B~q~ ~'~ B~x  " 

This says that a must reproduce a strict subset of the system's 
inferences (those involving equivalences). One also looses the unpleas- 
ant consequence of (RM~) that a believes all of the system's theorems 
as soon as he believes anything at all. Instead, he should believe all 
theorems whenever he believes one of t h e m -  a still unpleasant, but 
weaker consequence. Unfortunately, there are a number of technical 
problems with the axiomatization of CB under (REa). We shall argue 
below for a weak axiomatization of CB which dispenses with (RNo) 
and (Ca) but retains (RM~). 

The careful reader might have noticed that Ka is compatible with a's 
believing a logical contradiction. This limiting case can be excluded by 
adding: 

(D~) B~p --~ 7 B a 7 ~p . 

KaD,-systems have been widely used as definitions of belief stricto 

sensu,  i.e., belief considered irrespective of its truth or falsity content. 
To move from belief stricto sensu to knowledge, one would have to 
replace (Da) with the much stronger truth axiom: 

(Ta) B a~ --~ qo . 

This axiom schema simply says that a cannot believe falsehoods (in 
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particular: logical contradictions), (RN,)  is a limited converse to (T,);  
for it says that all logical truths are known. (Of course it is pointless to 
insist on a full converse to (T~); for it would make the B a operator 
altogether superfluous.) K~Ta-systems are probably the most common 
definitions of knowledge in epistemic logic. The following axiom 
schemata have been included in a number of applications: 

(4~) B~q~--~ B.B~q~ 

(T'~) B~B,/9 --> G 9  

(4a) and (5a) are the well-known positive and negative introspection 
axioms. (4~) says in effect that a knows what he believes. A weakening 
of (T~) which may be suited for K,  Dcsystems,  (T'a) expresses the 
converse principle: a's believing that he believes something implies a's 
actually believing it. (On this principle, higher-order belief should 
count as a special kind of knowledge.) The intuitive content of both 
(4a) and (T' , )  seems to be taken for granted in the game-theoretic 
analysis of infinite hierarchies of mutual beliefs. 6 Axiom schema (5a) 
has a notorious history of criticism in epistemic logic and A.I.  It says 
that if a does not believe something, at least a believes the very fact of 
not believing it. There no doubt are cases in which the antecedent and 
consequent clauses of this implication are simultaneously satisfied; but 
one feels reluctant to elevate it to a universal principle. (5~) carries 
with it the unpleasant suggestion that a might be aware of things or 
propositions towards which he has no epistemic attitudes whatsoever, 
such as the capital of Vanuatu or arithmetic geometry conjectures. The 
root of the problem here seems to lie with the dual informal interpreta- 
t'ion of 7 B , ~  as "a disbelieves 9" and "a does not believe ~0 while not 
disbelieving it either". 7 There is, however, a positive argument for (5a) 
which will be mentioned below. 

Systems of modal propositional logic that are (weakly) stronger than 
K are called normal. Prominent among the normal systems for agent a 
are K,Da4 . , KaTe4 a (to be denoted by $4,), and (for all their 
demerits) K,  Da4a5 a as well as K~T,4~5~ (equivalently KaT,5~ ; to be 
denoted by S5a). In the sequel any axiom or rule of individual belief 
will be assumed to hold for either every a E A or for none. Hence the 
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following notations for the multi-agent setting: RMA, KA, KADA4A, 
etc. 

2.2. Axioms and Rules of Common Belief 

For every ~0, X @ qb: 

(Def.E) Eq~ ~ A B ~  
a E A  

(FP) C~--, E(~, ^ C~) 

~o--~ Eq~ 
(RID Eq~ ~ Cq~ 

(RMc) ~--~ X 
C~ ~ Cx 

(RYc) q~ C~p 

(Cc) c~ A C X ~  C(~ A X)" 

We shall also use: 

(IN) C(q~ --~ Eq 0--~ (E~ --~ Cq~) (RI2) 
q~ ~ E(~ A X) 

~ C x  

as alternatives to (RI D . 
(Def.E) defines shared belief by the obvious conjunction and is just 

introduced into the formal language for convenience reasons. (FP) 
means that common belief implies shared belief of the statement of 
interest as well as shared belief of the statement that there is common 
belief; this is wl~y the axiom is usually referred to as a fixed-point one. 
Note carefully that the informal explanation just given assumes that 
the shared belief operator distributes over conjunctions in the relevant 
way, i.e., that (RMA) holds. The fixed-point part of the implication 
in (FP) can be viewed in two ways. On the one hand, it indir- 
ectly captures the basic, iterative intuition of CB within the axioms. 
For (FP) in conjunction with suitable monotonicity requirements 
on E and C will deliver the desired sequence of inferences: 

k 

Cq~---~Ek~, V k >  1, where E k is E . . . E .  On the other hand, (FP) 
directly captures the conceptually important feature that CB involves 
well-behaved circularities. One might expect CB to imply (and perhaps 
to be equivalent to) everybody's belief of CB, CB of everybody's 
belief, as well as higher-order properties where C and E are mixed. 
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There is indeed a sense in which CB completes the infinite regress of 
belief (i.e., there is no further infinite regress to be feared on the part 
of CB itself). This side of the picture has been usefully emphasized by 
Barwise (1989, ch. 9) in his comparison of the "iterate" and "fixed- 
point" (or "circular") views of CK. 

Formally, (RI1) says that if ~0 ~ Eq~ is a theorem of the system, then 
Eq~ ~ Cq~ also is. In words, if a statement is inherently shared belief, 
then it is inherently common be l i e f - a  by no means implausible view 
of the way in which CB proceeds from natural evidence. Milgrom 
(1981, p. 221) was among the first to argue for this view, using the 
example of the Walrasian auctioneer. Our rule (RI1) inherits its label 
rule of  induction from the related rule (RI2) in the current FHMV 
system [earlier axiomatizations by Halpern and Moses (1984, 1985) 
had "induction axioms" such as (IN); see also Lehmann (1984)]. To 
see why the label is justified in the case of (RI1) assume that (RMa) 
holds for any a E A. Then, applying (Def.E) one checks that E is 
monotonic: 

q~"~ X 
(RME) E~....> Ex 

A simple inductive argument leads to: 

q~ ---~ E~0 
Eq~_.~ Ek o , k > l .  

Comparison with (RI1) suggest that the latter is tantamount to 
carrying the inference process to the limit. 

K c [= (RMc) + (RNc) + (Cc) ] is a K-system for the C operator. It 
is an interesting conceptual issue whether or not common and in- 
dividual belief operators should be subjected to parallel constraints. In 
Section 3 we shall assume both K A and K c . As the further results of 
Section 4 show, the crucial epistemic assumptions are in fact (RMA) 
and (RMc). The latter rule plays a special role in the derivation of the 
desirable implications Cq~ ~ Eke. 

Axiom schema (IN) can be defended on similar intuitions as (RIt) 
or (RI~). The FHMV rule (RI2) is dearly more powerful than our rule 
(RII). It can be seen that (RI2) implies the whole of K c in the 
presence of K A and (FP). 8 
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2.3. Formal Inference 

Given an axiom system the formal inference relation ~- is defined in 
the following, usual way. If ~o E ~ ,  then ~- ~p holds if there is a finite 
sequence of w.f.f, that terminates at ~o and is such that every element 
in it is either the instantiation of an axiom schema or the result of 
applying a rule to an earlier element. The formula q~ is then said to be 
a theorem of the system. 9 

The systems of individual and common belief to be analyzed in 
Section 3 are: 

KAC I = K A + (Def .E)  + (FP) + (RI1) + (RMc)  

KAC 2 = K A + (Def .E)  + (FP) + (IN) + (RMc)  + (RNc)  

KAC 3 = K A + (Def .E)  + (FP) + (RI2) 

as well as occasional strengthenings of these. In Section 4 we shall 
explore weak variants in which (RMA) is substituted for K a . To each 
system is attached an inference relation ~-; subscripts will be used 
when necessary. 

3. COMMON BELIEF IN THE KRIPKE SEMANTICS 

In a multi-agent framework a Kripke structure is any (IA I + 2)-tuple: 

m = (W, (Ra)aEA, U) ,  

where W is a nonempty set (the members of which are referred to as 
possible worlds, p.w.); for any a @ A,  R a is a binary relation on W 
(agent a's Kripke or accessibility relation); and v is a mapping W x 
PV---~ {0, 1} (the valuation function). For convenience we introduce 

the following derived entities: 

RE = L_J Ra and R c = the transitive closure of RE) ° 
a E A  

The  class of all Kripke structures will be denoted by M K. 
Given a system of individual and common belief and its associated 

set q~ of w.f.f, we define the relation of  semantic validation (m, w) 
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~0, for any m ~J/t  K, any w in the p.w. set W o f m ,  and any ~p E@. This 
is achieved by means of the following clauses: 

- i f  q~ ~PV, (re, w) ~ ~0¢:>v(w, q) = 1; 
- i f  q~ =-qX, (m,w) ~ q~C:>not (re, w) ~X; 
- i f  q~=X^~0[Xv~] ,  (m,w)~q~c:>(m,w)~x and [resp. or] 

(m, w) ~ ~; 
- i f  q~ =X--* qf[X o~0], (m, w) ~ q~¢:> (m, w) ~ q, whenever [resp. 

iff] (m, w) ~ X; 
- i f  q~=Bax , ( m , w ) ~ ¢ ~ V w ' E W ,  wR, w ' ~ ( m , w ' ) ~ ) ;  
- i f  ~ =Ex, (m, w) ~q~C:>Vw'~W, wREw'~(m,w' ) ~X; 
- i f  q~ =Cx, (m, w) ~ q~C:>Vw' EW, wRcw' ~ (m, w' ) ~ X. 
This list should be seen as a condensed inductive definition, where 

the induction variable is the syntactical complexity of w.f.f.'s, as 
defined in the obvious way. The first clause settles the case of 0- 
complexity sentences while the remaining ones enter the inductive 
step. The clause relative to B,X is usually commented upon as follows: 
a (semantically) believes X at a world w iff X holds true of all those  
worlds w' which a regards as possible when the actual world is w. 
Thus, the standard construal is that R,  describes subjective possibility, 
i.e., possibility viewed by a. The present writers think that this 
informal  explication of Kripke relations is obscure and that the 
neighbourhood semantics, to be introduced in Section 4, is in general 
better suited than the Kripke semantics when it comes to specifically 
epistemic applications of modal logic. However, an advantage of the 
present approach is that it delivers simple and elegant results, some of 
which happen to connect with Aumann's and his followers' analyses of 
CB and CK. 

The clause relative to EX reflects the intended meaning of E as 
everybody's belief. More technically, it validates the (Def.E) schema: 

<m,w)~ExC:><m,w>~ A Bax" 
a E A  

The CX clause can usefully be reformulated in two equivalent ways. 
For any w, w' ~ W define w' to be reachable from w if there is a finite 
sequence of p.w. in W starting with w and ending with w' such that, for 
every two consecutive w i , wi+ I in the sequence, w~R,,w~+~ holds for 
some a E A. Using this definition the following observation is easily 
made: 
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OBSERVATION 1. For any m E ~ K  and any w ~ W, (m, w) ~ C X iff 
(m ,w ' }  ~ X for all w' reachable from w iff (m,w}  ~ E~x for all 
k>~l. 

Interestingly, the above definition of reachability is very nearly 
Aumann's (1976, p. 1237), assuming the special case in which there are 
two agents and the R a are equivalence relations. The minute difference 
is that Aumann only considers sequences of alternating relations, as in 

WlRlW2R2w3Rlw4. 
As usual, m ? p denotes (m, w) ~ q~ for all w C W, and ~ q~ denotes 

m ~ q~ for all m in the relevant class of structures. In the latter case, q~ 
is called to be valid. To avoid referential ambiguities we might have to 
state the class of structures explicitly and write for instance ~ K~ q~. 
The logician's task of axiomatization was informally explained in 
Section 1. It can now be made precise. One aim is to prove that the 
axiom system is sound relative to the given class of structures: 

~- q~ ~ ~ q~ ("every theorem is valid".) 

This often turns out to be a routine verification. The other aim is to 
show that the system is complete with respect to the class of structures: 

~ ~ ~- q~ ("every valid w.f.f, is a theorem".) 

Here lies the more technical part of axiomatization. No proof of 
soundness-and-completeness theorems (or determination theorems) 
will be provided in this paper. We invite the reader to check soundness 
by himself and refer to the original papers for the completeness part. 

We now proceed to determination results: 

THEOREM 1 (FHMV). The system KAC 3 is a sound and complete 
axiomatization of  ag 1~. 

Proof. See Halpern and Moses (1992, pp. 328-329 and 343-345). 11 
[]  

Lismont provided an independent proof of determination for KAC 1 
and (derivately) for KAC2: 
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THEOREM 2(Lismont). The systems KAC 1 and KAC 2 are sound and 
complete axiomatizations o f  JA K. 

Proof. See Lismont (1993a, pp. 120-123) for the completeness of 
KAC1.12 The completeness proof for KAC 2 results from adapting the 
previous one. • 

Combining Theorems 1 and 2 leads to a quick verification of the 
suspected syntactical equivalences: 

COROLLARY 1. ~--KaC~ q~ ¢¢' ~--KAC2 q~ ¢¢' ~-KAC3 q~" 

The determination results above extend unproblematically to a variety 
of normal systems for A. Exactly as in elementary (= one-operator) 
modal logic, axioms added on top of K a correspond - in the technical 
sense of determination theorems - to simple relational properties. For 
instance, Da, Ta, 4a, 50 correspond to R a being serial, reflexive, 
transitive and Euclidean) 3 The reader interested in these facts could 
pursue them in Chellas (1980, ch. 5) for the one-operator setting, and 
in Halpern and Moses (1992) for the relevant applications to CB and 
CK systems. Here we single out the partitional case in honour of 
Aumann. 

Define an Aumann  structure to be any member of A/K in which the 
R a are equivalence relations, for every a E A .  To take care of 
partitions in the usual sense we also define a strict Aumann  structure to 
be an Aumann structure in which each R, has a finite number of 
equivalence classes. Then: 

PROPOSITION 3. K A TA5 a = $5 a is a sound and complete axiomatiza- 
tion of the class o f  Aumann  structures. It is also a sound and complete 
axiomatization o f  the class o f  strict Aumann  structures. 

Proof. By suitably adapting one of the completeness proofs above 
and using the fact that the reflexive, transitive and Euclidean prop- 
erties together characterize equivalence relations. 14 • 

We may now follow Aumann and make the simplifying (but inessen- 
tial) assumption that there are two agents. Denote by R 1 , R z the 
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partitions canonically associated with their equivalence relations 
R1, R 2. Observation 1 can be refined as follows: 

OBSERVATION 2. I f  m = (W, R1, R 2 , v) is a strict Aumann struc- 
ture and w E W ,  ( m , w ) ~ C x  iff ( m , w ' ) ~ X  for all w' reachable 
from w (in either Aumann's sense or ours) iff (m, w ) ~  E~X, Vk >~ 1 
iff the set {w' ~. W I (m, w') ~ X} includes that member of  the meet of  
R 1 and R 2 which contains w. 

The fact that the two definitions of reachability have become in- 
distinguishable from each other results from the strong properties of 
equivalence relations (syntactically: S5A)) 5 

Proposition 3 delivers an axiomatization of the partitional model of 
individual belief. It therefore clarifies the role of the notorious 
principle of negative introspection in that model - a role that econom- 
ists and game theorists had come to realize by purely semantic means. 
In fairness, it should be mentioned that the relation between $5 a and 
the partitional model heuristically goes in two directions. On the one 
hand, uncovering the formidable (5 a) behind the seemingly innocuous 
assumption that "agents have partitions over the state set" is damaging 
for that assumption. But there are situations in which the partitional 
assumption is truly innocuous; this means that (5A) is not always as 
formidable as it looks. FHMV argue that equivalence classes occur 
most naturally in distributed computing [e.g., Halpern and Moses 
(1990, pp. 559-561)]. If a is a process in a system and w E W is a 
global state of the system, i.e.,  a vector of local states, one for each 
process, then w ' - a  w" means that a's local states are the same in w' 
and in w". FHMV add the point that the use of the -a  relation 
exemplifies an "external" view of knowledge, i.e., knowledg e as 
ascribed by the scientist rather than computed by the agent. The 
remaining conceptual issue is whether or not such a concept of 
knowledge is at all applicable to game-theoretic reasoning. 

We end up this section by listing properties of CB that can (or 
cannot) be proved in normal systems of the type discussed here. 

PROPOSITION 4. 

• ~-KACl Cq ~ E(~p A Cq0; • ~-KAC~ EC~p "~, CE~o ; 
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"?KAcIC '-'E  ^CE ; AE ); 
• ~KAclC~----~E ~, Vk~>l; • ~-KAClC~"'~ckq), Vk>~l; 
• ~'-KATAC1 C@ ~ q); • }'--KATACI C@ 4-'-> ck~l?, Vk >I 1; 
• VKASAC 1 -'7 Cq) ~ C -7 C~.  
Proof. Syntactical proofs of most of these results are available 

(Lismont and Mongin, 1993) but it is much easier to check them by 
semantic means, relying on the above determination theorem. 16 [] 

The above properties along with the axiom system itself (or any 
equivalent restatement such as KAC 2 and KAC3) appear to capture the 
essential features of CB in both the "iterative" and the "circular" 
interpretations of this concept (to repeat Barwise's useful distinction). 
This would suggest that except for arguments to the contrary (as in the 
case of distributed computing), one should select a KADAC 1 (perhaps 
KADA4AC1) axiomatization of individual and common belief, and a 
KATAC I (perhaps KATA4AC1) axiomatization of individual and com- 
mon knowledge. 

4. COMMON BELIEF IN THE NEIGHBOURHOOD SEMANTICS 

We start with introducing and discussing neighbourhood semantics in 
the case of a pure multi-agent logic, i.e., when the only modal 
operators are B~, a E A, and E. 

A neighbourhood structure is defined to be any ([At + 2)-tuple: 

m = (IV, (ga)aEA, U } ,  

where W and v are as in section 3 and for any a C A, N~ is a mapping 
W---> ~(~(W))  - where ~(-) denotes the power set. The class N,(w) of 
subsets of W is referred to as a neighbourhood system for a at w. For 
convenience, we introduce the mapping NE, as defined by: 

N E ( w )  = Na(W) , V w  W . 
aEA 

As in Section 3 the relation of semantic validation (m, w) ~ q will 
be defined inductively. The inductive definition includes the previously 
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stated clauses when q~ E PV, ~ = --1 X, and q~ = gl * X2, where * is any 
two-place connective. It has the followingdspecific clauses: 

m e I  

- i f  q~=B~x, ( m , w ) ~ q  iff [[X~ ={w'cWl(m,w')px}~ 
N~(w) ; 

- i f  q~ = EX, (m, w) ~ q~ iff ~X~ m EWE(w ). 
In words, ~XF is the set of all worlds at which X holds. It is usually 

called the truth set of X but one could as aptly refer to it as the 
proposition corresponding to X in m. Recall the philosopher's basic 
distinction between a sentence, viewed as a symbol or string of 
symbols in a more or less formal language, and the proposition 
corresponding to it. The latter is an extensional (set-theoretic) en t i t y -  
the possibly empty set of states of affairs at which the given sentence 
holds true. Using this terminology, the neighbourhood system Na(W ) 
may be seen as listing the propositions that a accepts at w. This system 
Na(w ) provides an informal description of beliefs, to be compared with 
the formal use of belief operators. The above clauses then just say that 
a (everybody) believes X iff a (resp. everybody) accepts the proposi- 
tion associated with X- On the face of it, this is a relatively non- 
committal semantics. The neighbourhood account of belief strikes one 
as less philosophically exacting than the Kripke one in terms of 
subjective possibility. 

There is another reason for preferring the former to the latter in 
many applications. The neighbourhood semantics is well-known to be 
more general than the Kripke one. Technically, the class ~/~N Of all 
neighbourhood structures as above defined is axiomatized by the weak 
equivalence rules (REa), a E A, and the insubstantial (Def.E).  

PROPOSITION 5. READef.E is a sound and complete axiomatization 
o f ,/~ N. 

Proof. By minor adjustments in the ordinary proof of the one- 
operator case, for example in Chellas (1980, pp. 252-257). • 

Further determination theorems show how axioms and rules over and 
above (REA) are to be interpreted in terms of specific membership or 
closure conditions on classes of subsets. Importantly: 

PROPOSITION 6. KADef.E is a sound and complete axiomatization 
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of the subclass Jd NK of models m = (IV, (Na)aSA, U) in which, for any 
a E A  and any w ~ W :  

(i) Nu(w ) is closed under supersets [cf. RMA]; 
(ii) Nu(w ) includes W[cf. RNA]; 

(iii) Na(w ) is closed under any (finite or infinite) intersections [cf. 
CAl. 

Proof. By adapting Chellas (1980, p. 260). • 

Since KADef.E is also a sound and complete axiomatization of multi- 
agent Kripke structures, Proposition 6 suggests a close connection 
between ~ K and 3/(wK There is indeed a logical isomorphism between 
~ K  and ~wK, i.e., a one-to-one mapping ~ I ~ - - ~ n X : m =  
(IV, (Ra),CA , v) ~ m' = (W, (Nu)aEA , V) such that, for any w E W and 
any ¢ ~ :  (m, w) ~ ~ (in the Kripke sense) iff (m', w) ~ q~ (in the 
neighbourhood semantics sense). On this crucial result, see Chellas 
(1980, p. 222). It clarifies the sense in which Kripke structures should 
be regarded as particular cases of neighbourhood structures. 17 

We now return to the rich language of Section 2 and embark upon 
the task of providing ~ = CX with a neighbourhood semantics. This 
raised a number of problems that were solved only recently. The rest 
of this section is devoted to surveying solutions offered by Lismont 
(1993a) and Lismont and Mongin (1993). All of these solutions involve 
one's restricting attention to the subclass ~NM of monotonic neigh- 
bourhood structures, i.e., of those (W, (Na)aEA, V) in which for every 
a and w, Na(w ) is dosed under supersets. Accordingly, it will not be 
possible to use the full force of Proposition 5. (RMA) rather than 
(REA) should be taken as the minimal system of individual belief [see 
Proposition 6, (i)]. The corresponding minimal system is RMAC 1. 

We want our semantic construction to embody the commonsense 
notion of CB. Technically, the construction must satisfy the Minimum 
Semantic Requirement (MSR) that whenever (m, w) ~ CX, (m, w) 
Ekx, V k ~  > 1. It is tempting to try the MSR as a definition (i.e. 
necessary and sufficient condition) for CB: 

i f ~ P = C x ,  ( m , w ) ~ o  iff ( m , w ) ~ E k x ,  Vk>~l. 

Lismont (1983b) has shown that this intuitive approach fails to deliver 
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a soundness proof  for RMAC 1. Such a negative result makes a striking 
difference between the neighbourhood semantics approach to CB and 
the Kripkean one. For the Kripkean systems covered in this paper 
were complete systems, granting the * definition of common belief (see 
again Observation 1). When it comes to neighbourhood structures, 
even granting the monotonicity requirement,  the MSR can be met  only 
as a necessary condition. The basic reason for the failure of the 

intuitive approach can only be alluded here. It is because the infinite 
denumerable sequence of higher-order shared belief sentences 
(EkX)g>_I does not  have as much semantic force as does the fixed- 
point axiom (FP). Such a discrepancy did not occur in the Kripkean 
case. 

There  are two solutions to this problem. Solution 1 consists roughly 

speaking in constructing sequences of semantic analogues of relevant 
higher-order belief sentences that extend sufficiently far into the 

ordinals. In essence Lismont's (1993a) construction adopts solution 1. 
As a preliminary step, for any given m C A/NM, he defines a sequence 

of functions Nn inductively on ordinals as follows: N O = N E and Nn = 
Neo(fq~<~N~fq~ ) for any ~7>0, where ~ is the neutral neigh- 
bourhood,  and o is the composition operation o on the neighbourhood 
functions. They are defined by: P C ~ ( w ) < = > w E P  and P E  
NloNz(w)C:>{w'EWIPENz(w')}ENI(w ), for any P e w  and any 
w ~ W. 18 The epistemic undertone of the composition operation must 
be clear. Assume that N 1 and N 2 are the neighbourhoods associated 
with agents 1 and 2 respectively, and P = ~X] m for some X. Then,  
PENtoNz(w ) iff (m,w)~B1B2x.  This example shows that o is 
indeed introduced to analyze higher-order belief sentences) 9 

Given the monotonicity property of N E , the sequence N, is seen to 
be decreasing, i.e., for any ordinals ~/, ~', if ~7 < ~ then N; C_N,. 
Elementary  set-theoretic facts ensure that there is a smallest ordinal 
min such that N,(w)= Nmin(w) for every 7//> min and every w E W. 
The  neighbourhood N c for CB can now be defined to be N,,in. It is 
seen to satisfy the important  fixed-point property that: 

U c =N~o(N c f) V) ,  

a semantic an~ogue  of (FP).  We can now define the long-awaited 
validation clause of CX as: 
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** if ~ = C x ,  (m,w)~pC::~x~m~c(W) 

and state another determination theorem: 

T H E O R E M  7 (Lismont). RM A C~ is a sound and complete axiomatiza- 
tion of  dt NM, given the ** validation clause for CX. 

Proof. See Lismont (1993a, pp. 128-130). • 

As an alternative to the above construction, solution 2 attempts to 
mimic the properties of the syntax by a straightforward semantic 
clause. This is the method adopted in Lismont and Mongin (1993). 
The following concept has proved surprisingly powerful. Given m E 
d/nM define P C W to be belief closed (b.c.) if Vw E P, P E Ne(w ). 
Using the semantic clause for operator E, the following holds: 
whenever P =  [X] m for some X E qb, belief closure of P is equivalent to 
the property that m ~ X---~Ex. In words, a proposition is b.c. iff it is 
believed by everybody at every world where it is true. We proceed to 
define CB using the belief closure concept: 

if ~0 = CX , (m,  w ) p ~ ¢:> 3P E NE(w ) s.t. P C ~X] m and P 
is b.c. 

It is important to check that this definition agrees with intuitive 
modelling purposes. Because the N a are closed under supersets, NE 
also is, and the Minimum Semantic Requirement holds: 

OBSERVATION 3. In any m E dg NM clause *** implies the MSR. 

The following property further illuminates the reasonableness of 
defining CB in terms of belief closure: 

OBSERVATION 4. For any m E AI NM and X E dp, using the *** 
definition of  CX, if ~X] m is b.c. then ~Ex] m C_ ~Cx] m. 

This observation provides a semantic rendering of the syntactical rule 
(RI1). By and large it can be said that solution 1 involves translating 
the fixed-point axiom into the semantics, whereas solution 2 amounts 
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to mimicking the induction rule. Notice how simpler the *** stipulation 
looks compared with ** and its implied set-theoretic construction. 
There is an apparent disadvantage, however. Solution 1 had endowed 
the C operator with a semantics that exactly parallels that of the B a 

and E operators, i.e., a neighbourhood function had been defined for 
C. In its explicit wording at least, solution 2 sacrifices this elegant 
feature. 

The upshot of the present construction is 

T H E O R E M  8 (Lismont and Mongin). RMAC 1 is a sound and com- 
plete axiomatization of  ~/~ NM, given the *** clause for CX. 

Proof. See Lismont and Mongin (1993, Section 3). • 

Something can be learned from combining Theorem 7 with Theorem 8: 
the two semantics ** and *** define the same valid sentences exactly. 
More than that is true: 

PROPOSITION 9. For any m E ~NM and any w E W, (m, w)  ~ CX in 
the ** sense if]" (m, w) ~ CX in the *** sense. 

Proof. See Lismont and Mongin (1993, Section 5). • 

Hence, the difficulty raised at the end of the last paragraph reduces to 
a presentation problem. There is no loss of information after all when 
solution 2 is adhered to. It delivers a completely equivalent semantics 
to solution t (although this might not be apparent). 

Interestingly, belief closure and related notions have already been 
used in game-theoretic contexts. The first occurence is probably 
Mertens and Zamir (1985). In essence, they construct a set W of 
worlds endowed with much internal structure (any w E W is an infinite 
sequence stating a value for an objective parameter 0, a subjective 
probability on the space of parameters for each player, a subjective 
probability on the spaces of those subjective probabilities for each 
player, and so on). Mertens and Zamir's isomorphism theorem implies 
that each world w can be paired with a vector (0, (Oa(W))aE A), where 
Oa(w ) is a subjective probability on W for each a. They investigate 
subsets P of W - "belief subspaces" - that have the property that for 
any w E P and any a E A,  Oa(w)(P) = 1. In words: a belief subspace is 
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an event that is believed (in the sense of having probability 1) by 
everybody at every world at which it occurs. This notion is the authors' 
main tool to analyze CB and CK in their construction. There are 
visible analogies between their approach and the semantics of the 
present section. 

Closure properties have also been discussed in a more elementary 
context by Monderer and Samet (1989), and Binmore and Branden- 
burger (1990). These papers introduce the notions of "evident events" 
and "truisms", respectively, which are analogous to our belief closed 
propositions. The latter paper retains Aumann's partitional assump- 
tion, whereas the former modifies it just as is required to allow for 
probabilistic belief (instead of knowledge) and probabilistic CB (in- 
stead of CK). Both papers note that Aumann's definitions of CK admit 
of a further restatement in terms of "evident events" or "truisms", 
respectively. Shin (1993) elaborates on a related point. 

We end up this section by listing syntactical properties of CB. As the 
following proposition shows, the rather weak system RMAC 1 is enough 
to capture the intuitively desirable properties of the C operator. 
Perhaps surprisingly, most of Proposition 4 survives the weakening of 
KAC 1 imo RMAC 1. 

PROPOSITION 10. 

• ~-RMaC~ Cq~ ~E(q~ ^ CqO; 
• ~-RMAC ~ C~ --~ Eq~ ^ CE~ ; 
• ~-RMAC~ C~---~ Ekq~, Vk >>- 1; 
• ~--RMATAC 1 C~t)--'~O; 

• ~-RMAC~ EC~p ~ CE¢ ; 
• ~RMAC~ Cq "-~ EC~ ; 
• ~-RMAC~ C~P'~Ck~' Vk~>l; 
0 ~"-RMATAC 1C~o ~ ck~D, Vk >! 1. 

5. A D E C I D A B I L I T Y  T H E O R E M  A N D  F U R T H E R  C O M M E N T S  

An axiom system in a formal language is said to be decidable if it 
admits of an effective decision procedure, i.e., if there is a finitary 
procedure for deciding of any w.f.f, in the language whether or not it is 
a theorem of that system. It is well-known that the (nonmodal) 
propositional calculus is decidable, whereas the predicate calculus is 
not (e.g. Boolos and Jeffrey, 1974, ch. 10). What about systems of 
modal propositional logic such as those analyzed in this paper? They 
are typically decidable in spite of the complications created by modal 
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operators, especially C. Chellas (1980) states the classic decidability 
results relative to the one-agent case. These results readily extend to 
multi-agent systems such as RM A, Ka, KADA4 A, S4A, S5A. By contrast, 
the fact that the relevant systems of individual and common belief are 
decidable is a novel result that deserves emphasis. In the work of 
FHMV as well as in the present writers', the decidability conclusion is 
a by-product of the technique used to prove completeness. 

THEOREM 11. The systems KAC ~ = KAC2 = KAC3 and RMAC 1 are 
decidable. 

Proof. For the former see Halpern and Moses (1992, Section 3), 
and Lismont (1993a). For the latter see Lismont (1993a), and Lismont 
and Mongin (1993). [] 

As an illustration of the finitary procedure that Theorem 11 claims to 
exist, take for instance RMAC 1. The proof that it is complete with 
respect to the belief closure semantics consists in showing that for any 
w.f.f, q~ there exists a special ("canonical") model m~, such that 

m ~ P ~ R M A q  q ~" 

The proof even implies that there is an upper bound k, on the 
cardinality of W, i.e., the p.w. set of m,. Knowing k~ the following 
procedure is applied. Construct the class S of all neighbourhood 
structures having set of p.w. of cardinality at most k,. If q~ is a theorem 
of RMAC 1, the soundness theorem implies that q~ is true of all of these 
structures. If ~ is not a theorem, from the above implication q~ fails in 
some element of S (since m r E S). That is to say, q~ must be false of a 
p.w. in a structure in S. Whatever is the case, the procedure delivers a 
conclusion after a finite number of steps. 

The decidability theorem might be claimed to provide the notion of 
common belief, as properly axiomatized, with operational meaning. It 
contradicts the following prima facie intuition of the case: given the 
semantic force of the CB operator as at least equal to that of an infinite 
conjunction, one would have expected that properties of this operator 
could not be falsified by referring to finite models only. 

If decidability means some kind of methodological warrant for the 
use of CB assumptions by social scientists, it does not say much on the 
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currently debated issue of whether or not CB assumptions are 
epistemically plausible. According to a standard argument in cognitive 
philosophy they are not. 2° For - it is alleged - the epistemic state of CB 
and CK can only be reached after the agents have performed an 
infinite number of steps, and this is impossible. The present paper is 
not concerned with clarifying the demerits of this v i ew-which  the 
authors regard as n a i v e -  but the logical results above might help to 
provide some perspective. Take for instance system KAC 1. The 
soundness of KAC l with respect to the iterative semantics informally 
means that this system does refer to the "natural" concept of CB, and 
its completeness that it is an exhaustive description of that "natural"  
concept. Thus, one is entitled to reason on CB from the axiom system 
as legitimately as from the "natural"  concept. The axiom system 
explicates CB as a potential rather than actual infinity of shared belief 
sentences. It is suggested that agents in a state of CB of ~0 may derive 
El°°°q~; it is not suggested that they must have derived El°°°q~ in order 
to qualify as common believers. Some of the writers attacking the use 
of CB assumptions in social sciences just overlook this very simple 
distinction. Others insist that any CB assumption involves the implaus- 
ible claim that agents be able to perform an actually infinite number of 
steps. Both groups of writers appear to ignore the logical elaboration 
of common belief by current epistemic logic. 

To conclude on a more positive note, the present writers feel that 
CB assumptions can be justified for two different modelling purposes. 
On the one hand, there are contexts in which the agent is required to 
perform actual inference steps as in the "muddy children puzzle" 
(Barwise, 1981) and various game-theoretic problems (typically those 
involving backward reasoning on decision trees). 21 In such cases a CB 
assumption can be defended as a convenient artefact. Any particular 
model should involve a finite sequence of shared belief operators, 
E l , . . .  ,E  k, but it is easier and more elegant to encompass all 
particular models at once by introducing C. The role of the infinitary 
operator here is to serve as an idealization and summary for finitely 
defined operators of any order. On the other hand, CB assumptions 
can be, and have been, claimed to have an application to public 
events - see Milgrom's (1981) auction example and Bacharach's (1992) 
analysis of how CK is acquired. The essential point here seems to be 
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that a proposition which is inherently shared belief (such as perhaps "an 
ambulance is roaring in the street") is ipso facto common belief. The 
induction rule and belief closure definition of CB faithfully capture this 
interpretation of the C operator at the syntactical and semantic levels, 
respectively. The use of C here is not intended as a modelling device; 
rather it should directly account for a phenomenon in social psy- 
chology. 
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N O T E S  

Earlier results in the same research programme are surveyed in Walliser (1991) or 
Brandenburger (1992). 
z See Anderlini (1990), Binmore and Shin (1992), Canning (1992), Shin and WiUiamson 
(1994). There is also a more remote (but by no means nonexistent) connection with 
complexity theory, a tool of analysis that has over the years become familiar to a number 
of game theorists. 

A common view among philosophers is that knowledge is justified true belief but some 
have objected that this is not yet the correct definition [see Gettier's (1963) classic paper 
and the recent survey by Usberti (1992)]. At least there is a consensus view that it is 
inadequate to define knowledge as true belief. Epistemic modal logicians are aware of 
this objection but find it difficult to take it into account within their formalism. 
4 See Halpern and Moses (1990, Section 6) for the E G and C c operators, and Halpern 
and Moses (1992, Section 5) for the D operator. Informally, distributed belief 
corresponds to what a fictitious individual would believe if he shared in every belief of 
every individual. 
5 The set d~ of w.f.f, is the smallest set that contains PV and is closed under the action of 
logical connectives and modal operators. 
6 The major paper in this field is Mertens and Zamir (1985); it was anticipated by Brge 
and Eisele (1979); published variants include Brandenburger and Dekel (1993), and 
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Heifetz (1993); Mongin (forthcoming) provides some comparison with logical hierar- 
chies. 
7 Modica and Rustichini (1994) make the related point that (5~) should be weakened 
into a "symmetry of awareness" axiom. 
s The two rules (RMc)  and (RNc)  follow from (RI2)  , (FP), (RMA), and (RI2), (REA), 
(RNA), respectively. Axiom schema (Cc) follows from (RI2), (REA), (CA). 
9 If E C alp, then ~ ~- ~ holds if there is a finite number of  w.f.f. % . . . . .  ~o n E E such that 
~p~ ̂  • • • ^ ~p~--~ ~p is a theorem of  the system. 
10 Formally, for any w, w'  E W, wRcw'  holds iff there is n > 1 and a sequence of  n p.w.,  
w 1 , . . . ,  w n , such that w I = w, w n = w' and wiRew~+ ~ , 1 <<. i <<- n - 1. 
11 The proof  of  the completeness part  relies on a selective filtration technique, i.e., the 
proof  is carried out for a given formula ~ at a time, using maximal consistent sets of  
w.f.f,  relative to a finite sublanguage ~ generated by ~. 
~2 The completeness proof is again by selective filtration through a finite sublanguage 
~ ' .  (Here ~ '  is taken to be the sublanguage of w.f.f, constructed from the propositional 
variables of ~ and having depth less than or equal to that of ~.) 
x3 A serial binary relation is one in which every element has a successor. A Euclidean 
relation is such that every two elements with a common predecessor are mutually 
related. Recall that w may happen to be its own predecessor or successor. 
14 The conclusion relative to strict Aumann structures is secured by the fact that the 
above completeness proofs use a filtration technique. See also Lismont and Mongin 
(1993, section 4). 
~5 Observation 2 can be extended to the case of Aumann structures in general, i.e., to 
the case in which the R~ have a possibly infinite number of  equivalence classes. This 
extension is easy enough but not quite trivial. By contrast, when the partitional model  is 
weakened,  some results reached in the finite case do not carry through to the infinite 
case; see Samet (1992), 
16 To prove the theorems, use completeness. To prove that the last formula is not a 
theorem use soundness, as in the following argument. Take a Kripke structure rn in 
which W =  {w~, w2, w3} and the two individuals' Kripke relations are defined by: 
w~R~w 2, w2R~w2, w~Rbw 3 and wsRbw 2. Take any propositional variable p and a 
valuation function v such that v(w 2 , p)  = 0. Individual relations are Euclidean. Hence,  
for any a E A,  (5,) is valid in this structure. If -7 C~ ~ C -~ C~p were a theorem of the 
system KA5~Ca, from the soundness theorem it would be valid in this structure. But this 
is not the case: (m,  w l )  ~ -1 Cp and (m,  Wl) ~ C'-] Cp. 
x7 More should be said on the properties of neighbourhood structures. The reader is 
again referred to Chellas (1980, ch. 7-9) .  As a simple example of their flexibility in 
epistemic applications, Mongin (1994) offers a neighbourhood semantics interpretation 
of  sets having probability 1 or  belief function (in Shafer's sense) 1. 
~s The composition operation on neighbourhood functions was first introduced by R. 
Lavendhomme and T. Lucas. 
~9 More generally, the following correspondence holds: given any modality /z = 
/x~. • •/zk, where t h e / ~  E {B~} ~eA tA {E}, and the sequence of  neighbourhood functions 
N ~ , . . . ,  N k that are pointwise associated with t h e / ~ ,  

(m, w) ~ / ~  ' " "~kX iff ~X] m ~ N  1 . . . . .  Nk(W). 

Accordingly, what the construction does is to reproduce, and extend into the transfinite, 
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sequences of sentences that are related to, but more "complicated" than, EgX, Vk > 1. 
The "complication" stems from the fact that we cannot rely on a semantic analogue of 
the conjunctiveness axiom (CA). 
20 An example is Sperber and Wilson (1986), echoed in Dupuy (1989). 
21 See Reny (1992) and Bacliarach (1994) for references to the work currently done on 
CB in extensive-foi-m games. 
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