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Abstract

This paper develops a novel theory of abstraction—what we call collective abstraction.

The theory solves a notorious problem for non-eliminative structuralism. The non-eliminative

structuralist holds that in addition to various isomorphic systems there is a pure structure that

can be abstracted from each of these systems; but existing accounts of abstraction fail for non-

rigid systems like the complex numbers. The problem with the existing accounts is that they

attempt to define a unique abstraction operation. The theory of collective abstraction instead

simultaneously defines a collection of distinct abstraction operations, each of which maps a

system to its corresponding pure structure. The theory is precisely formulated in an essentialist

language. This allows us to throw new light on the question to what extent structuralists are

committed to symmetric dependence. Finally, we apply the theory of collective abstraction to

solve a problem about converse relations.
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1 Introduction

Abstract objects pose a metaphysical problem: what are they? They also pose a (meta)semantic

problem: how can we refer to them? Generativism provides an answer to both questions. Abstract

objects are, by their nature, values of certain generative operations, different types of abstract

objects being the values of different operations: sets being the values of the set-formation operation,

sequences being the values of the sequence-formation operation, and so on.1 We can refer to abstract

objects generated by an operation Σ by coming to understand an operator “Σ” standing for that

operation.2 Expressions of the form “Σ(b)” (where “b” is a name for an object to which Σ is applied)

then serve as “canonical” names for objects that are values of the operation Σ.3 Unfortunately,

existing generativist accounts have a serious limitation: they are unable to generate indiscernible

objects like the square roots i and −i of −1. To explain the problem let us introduce the main theme

of this paper: structural abstraction.

There are many systems of objects that are structured like the natural numbers, but which

of them are the natural numbers? This is the Identification Problem of Benacerraf 1965. The

generativist offers an answer: there is a generative operation of (structural) abstraction—call it A.

This operation takes a system S and an object a in S and generates an object A(S ,a). The operation

1For an early statement of generativism, see Fine 1991. For an application to composition in
particular, see Fine 2010b. As a way of characterizing abstract objects, generativism is an instance
of what Lewis (1986, 84-86) calls the “Way of Abstraction”; for more on the Way of Abstraction
and generativism, see Rosen 2020.

2We will use “operator” to mean a part of language and “operation” to mean a worldly item for
which an operator stands.

3Prominent defenders of this view include Dummett (1973, 1991), Wright (1983), and Hale and
Wright (2001).
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is defined by an abstraction principle of the following form:

(SA) A generates the same object from (S ,a) and (T,b) iff a plays the same role in system S as

b plays in system T .

If we take the third element of one system with the natural number structure and the third element

of another, A will generate the same object from both—we may call it the (ordinal) number 2. More

generally, what the natural numbers are—so the generativist says—are the objects generated by this

operation A from any system that has the natural number structure.

As shown by Linnebo (2008) and Linnebo and Pettigrew (2014) this works well for rigid systems

(that is, systems without non-trivial symmetries); but, as is well known, it fails catastrophically for

non-rigid systems (that is, systems with non-trivial symmetries)—a canonical example being the

complex numbers. The generativist would want to say that the square roots of −1—that is, i and

−i—are what can be abstracted from any objects i,−i that play the roles of roots of −1 (in some

system D). But it turns out that any role played by i is also played by −i (and vice versa).4 The

structural abstraction operation A therefore has to generate the same object both from i and from −i;

absurdly, we cannot generate two roots of −1.

This problem of how to account for indiscernible objects like i and −i has bedeviled non-

eliminative structuralists for decades.5 The main contribution of this paper is the development of a

novel account of structural abstraction—what we call collective abstraction. Briefly, we give up

the idea that there is a unique abstraction operation A; rather, there are several distinct operations

4For details and other examples see § 2.2 and § 4.
5See, e.g., Brandom 1996, Burgess 1999, Keränen 2001, Linnebo 2008, Linnebo and Pettigrew

2014, Normand 2018, Wigglesworth 2021, Button 2006, Parsons 2004, Ladyman 2005; Leitgeb
and Ladyman 2008.
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that give rise to the same abstracts. These operations are not individually defined by abstraction

principles like (SA); rather, there is a single principle that defines these operations collectively (or

simultaneously). We rigorously develop this theory of collective abstraction using a higher-order

theory of essence. While this involves some heavy-duty metaphysics, the pay-offs are worth it. For

the reader’s benefit here is an overview of the main results.

In § 2 we develop a generativist account of abstraction on rigid systems. We begin in § 2.1 by

giving a generativist account of the familiar Fregean case of abstracting directions from lines; in

§§ 2.2 to 2.4 we then generalize these ideas to structural abstraction on rigid systems. The core

mathematical results are not novel (see e.g., Linnebo and Pettigrew 2014); what is novel is the use

of a higher-order logic of essence (§§ 2.2 to 2.3). This allow us to state the generativist’s view with

unprecedented precision.

In § 3, we show that invoking a higher-order logic of essence affords a precise development of

generativist non-eliminative structuralism. Non-eliminative structuralists hold that in addition to

various systems of objects there are pure structures containing pure positions canonically represent-

ing those systems. The generativist solves two problems for the non-eliminative structuralist. First,

while non-eliminative structuralists have made many suggestive remarks about the nature of pure

structures and pure positions we still lack a systematic metaphysics for pure structures. We develop

such a metaphysics in § 3.1. In § 3.2 we then use the essentialist framework to investigate on what

the pure structures and positions depend. One consequence is worth highlighting. It has often been

claimed that a pure position cannot be made sense of on its own but only together with its fellow

pure positions. This is false: each pure position has an individual essence that distinguishes it from

all other pure positions. The non-eliminative structuralist’s second problem is that, even equipped

with a metaphysics of pure structures, she still faces the Identification Problem: amongst all the
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systems that are structured like the natural numbers there is a unique “pure” structure, but what

makes this the natural number structure? The essentialist framework provides the solution here too:

the pure structures are the unique systems whose natures are exhausted by representing the systems

isomorphic to them (§ 3.3).

The above generativist account only works for rigid systems; the heart and most significant

contribution of the paper is in § 4 where we develop the account of collective abstraction. In §§ 4.1

to 4.2 we generalize the idea of a Fregean abstraction principle by laying down a principle that

simultaneously defines a collection of abstraction operations. In § 4.3 we then examine the nature

of the pure structures and positions generated by collective abstraction. Strikingly, we can no longer

make sense of pure positions individually: they no longer have individual essences that distinguish

them from each other. (We might say that they are “entangled”.) In § 4.4 we discuss the relationship

between individual essences and haecceitistic properties like being identical to p: while the pure

positions do not have individual essences there is, for every pure position p, the property of being

identical to p. In § 4.5 we return to the Identification Problem.

In § 5 we turn to the metasemantic problem: how can we refer to pure positions? In particular,

how can we refer to indiscernible pure positions like i and −i? We answer this question by developing

an account of reference relative to an abstraction operation, absolute reference being reference with

respect to all abstraction operations. It then turns out that we can (absolutely) refer to the roots of

−1—that is, to i,−i—though not to any one of them. In this way we partially vindicate a Fregean

conception of objects as the possible referents of terms.

The techniques of collective abstraction are applicable elsewhere in metaphysics. In § 6 we

illustrate this by developing a novel version of positionalism about relations, solving a notorious

problem about converse relations. In § 7 we conclude. A technical appendix that establishes the
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consistency of the theory of collective abstraction by modifying the model theory for higher-order

contingentism is available at <INSERT LINK TO APPENDIX HERE>.

2 Generativism: the Rigid Case

There is an intuitive distinction between generative and non-generative operations.6 The operation

set of, e.g., is generative in the sense that we can explain what the set {a,b} is by noting that it

is what is formed by applying the set of operation to the plurality a,b. In contrast, the tallest of

operation is non-generative. If Bob is the tallest of the xx, his being the tallest of the xx is not part

of his identity—it is not part of what he is.

To explain this distinction between generative and non-generative operations we use the notion

of essence. An operation G is generative iff for all x, if x = Ga, then it is essential to x that there

is some y such that x = Gy. A possibly different explanation uses the notion of real definition.7

An operation G is generative if for any x such that x = G(y), for some y, there is some z such that

x can be defined—in the sense of real definition—as the value of G on input z. For this latter

approach to work it is important that an object can have several distinct definitions. Suppose, to take

a familiar example, we think that the operation taking a line to its direction is generative. We might

then hold that a given direction d can be defined as the direction of line l1; but we could equally

well have defined d as the direction of any line l2 parallel to l1. The direction d has a manifold of

possible definitions—what Fine (1994b, 66–69) calls an essential manifold. Since we do not yet

posses a satisfactory logic of real definition, we will talk in terms of essence when we give precise

6The terminology goes back to N. Goodman 1958. (He uses “relations that generate ”.)
7Some authors have tried to use essence (and ground) to (really!) define real definition—see

e.g., Correia 2017, Rosen 2015. If their approaches work the two approaches come to the same.
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formulations of the generativist’s theses; however, we will often use the idiom of real definition for

illustrative purposes.

To define a generative operation we have to specify three conditions:8

(i) application-conditions—telling us when the generative operation can be applied;

(ii) identity-conditions—telling us under what conditions the values of the operation are

identical; and

(iii) existence-conditions—telling us under what conditions the values of the operation exist.

Rather than explain how these conditions are to be understood in the abstract we informally elucidate

them using the familiar example of direction abstraction.9

2.1 The case of directions

The Fregean wishes to define an operation d that, given a line l, generates its direction d(l). The

application condition for d states that for any line l its direction d(l) is defined. Many lines have

the same direction, so if x = d(l) it is not essential to x that it be the direction of l; however, the

application condition should ensure that if x = d(l) then it is essential to x that it can be abstracted

from some line. Finally, while it is not essential to x that it be the direction of l it is no accident that

x can be generated from l so the application condition should ensure that it is essential to x together

with l that d(l) = x.

In general, the identity conditions for a generative operation G are given by specifying an

equivalence relation ≈G on its inputs; the outputs G(a) and G(b) are to be identical if and only if
8These are some of the principles discussed in Fine 2010b, 570.
9The next section is inspired Yablo and Rosen 2020, though they focus mainly on the case of

Fregean abstraction of numbers. See also Fine 2002, 29-31.
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a ≈G b. The identity-condition for directions, famously, is parallelism. We thus have the following

identity criterion (using l1 ‖ l2 to mean that the lines l1 and l2 are parallel):

(DI) d(l1) = d(l2)↔ l1 ‖ l2

The existence condition states that a direction x exists if and only if a line l such that d(l) = x

exists; in fact, it is natural to take the existence condition to say that the existence of x is grounded

in the existence of any l such that x = d(l).10

The generativist now holds that the direction-of operation d is implicitly defined by its satisfying

the above application, identity, and existence conditions. For this to work we have to take the nature

of the operation d to be exhausted by its satisfying these conditions. To see this, let us focus on the

identity condition (DI). An operation e’s satisfying (DI) requires only that e is an operation mapping

lines to objects such that parallel lines are mapped to the same object and non-parallel lines are

mapped to distinct objects. But if there is one such operation there are many—for instance, there

is the operation that is exactly like the genuine direction-of operation except that it maps the lines

parallel to some particular line l to the emperor Diocletian. How, then, could (DI) define a unique

operation? Is not the best we can hope for that (DI) defines the property of being a direction-of

operation, that is, the property λO.∀l1∀l2(O(l1) = O(l2)↔ l1 ‖ l2)?11 Requiring that d also satisfies

the application and existence conditions further constrains matters, but it seems unlikely that there

is a unique operation satisfying all of these conditions.

10Let us understand ground as constitutive explanation: for any proposition φ, if it is the case
that φ, we can ask in what its being the case that φ consists and the answer to that question will be
the grounds for φ. For more on ground and constitutive explanation, see Fine 2012a and Dasgupta
2017.

11The view that this is all that abstraction principles can do is defended in Antonelli 2010 and is
further developed in Boccuni and Woods 2020.
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While there are many operations that satisfy the above application, identity, and existence

conditions, the generativist contends that there is a unique operation d the essence of which is

exhausted by satisfying them. It is this that allows the generativist to solve the Caesar Problem.

This, recall, is the problem of explaining why a given direction—d(l) say—is not identical to a

Roman emperor. The key is that—according to the Generativist—the values of d are themselves

fully defined by being the values of d. So if x = d(l) happened to be Diocletian, this would have to

be a consequence of the nature d together with the nature of l. But this is impossible: the nature of

d is exhausted by the application, identity, and existence conditions, and these conditions make no

mention of Diocletian—or any other Roman emperor.12

We now turn to making these ideas more precise and generalizing them to structural abstraction

operations.

2.2 Type-theoretic background

The generativist’s view turns on the relationship between systems of objects, certain operations, and

the objects that are the values of those operations. This is perspicuously expressed in the language of

higher-order logic.13 Specifically, we will work in a relational type theory. We have the basic type e

12 The generativist’s solution to the Caesar problem is inspired by Yablo and Rosen 2020. But
one important difference from their view is that the generativist takes it as part of the definition of
the generative operations that their values are essentially values of them. This allows the generativist
to get around some objections that Wright (2020, 319-320) raised against Rosen and Yablo’s view.

13Throughout the paper we take for granted that higher-order logic is an appropriate framework
for doing metaphysics, though for the applications in the present paper we do not have to take a stand
on whether higher-order logic is irreducible to first-order logic. The reader who prefers to think
in first-order terms can take quantification into predicate position to be first-order quantification
over properties; quantification over operations to be quantification over certain relations between
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of objects. We have two ways of forming complex types. If τ0, . . . , τn−1 are types, then 〈τ0, . . . , τn−1〉

is a type. If τ is a type, then [τ] is a type. Intuitively, 〈τ0, . . . , τn−1〉 is the type of relations between

items of types τ0, . . . , τn−1 and [τ] is the type of pluralities of items of type τ. Note that 〈〉 is a

type—the type of 0-ary relations, or as we will call it here: the type of propositions.

We assume that our typed language contains, for each type τ, infinitely many variables xτ0, x
τ
1, . . .

of that type (the superscripts indicating the type of the variable). We introduce constants of various

types as we need them. We assume that we have the usual logical operations and that the quantifiers

can bind variables of any type. We will understand the quantifiers possibilistically as ranging over

all items that are possible (relative) to a world; to express that an item of type τ (actually) exists we

use an existence predicate for items of type τ.14

Whenever t is an expression of type 〈τ0, . . . , τn−1〉 and s0, . . . , sn−1 are expressions of types

τ0, . . . , τn−1 respectively, t(s0 . . . sn−1) is an expression of type 〈〉. When t is an expression of type [τ]

and s is an expression of type τ, t(s) is an expression of type 〈〉. Expressions of type 〈〉 are referred

to as sentences. In addition, we allow non-vacuous λ-abstraction with respect to any variables.

Thus, when φ is a sentence containing the variable xτ, λxτ.φ is a monadic predicate (“being such

that φ(itτ)”); and when φ is a sentence containing the variables xτ0
0 , . . . , x

τn−1
n−1 then λxτ0

0 . . .λxτn−1
n−1 .φ is

an n-ary predicate.

To help readability we adopt a range of conventions. We normally use uppercase letters

R,S ,T, . . . as variables of relational type, leaving their exact type to be determined by context.

pluralities and relations, and so on. For defenses of the intelligibility and irreducibility of higher-
order logic see e.g., Williamson 2003, 2013, Dorr 2016, J. Goodman 2017, and Prior 1971.

14We opt for a possibilistic understanding of the quantifiers for two reasons. First, this is in
keeping with how the quantifiers are understood in the logic of essence (Fine 1995b, 2000b). Second,
while we could understand the quantifiers actualistically this would complicate the statement of the
generativist’s principles.
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While we officially have a distinct existence predicate Eτ for each type τ, we use E with typical

ambiguity for any of these predicates. For instance, we write E(x)∧E(R) instead of E〈e〉x∧E〈〈e,e〉〉(R).

Since we work in a relational type theory we officially think of functions as functional relations15—

though if F is a functional relation, we typically write Fx = y instead of Fxy. Moreover, to stay close

to mathematical practice we often use f ,g, . . . as variables for functions. Finally, when a,b,c, . . . are

all expressions of a given type τ we write [a,b,c, . . . ] to mean the plurality of type [τ] that contains

exactly (the denotations of) a,b,c, . . . . If I is a plurality and there is a function that associates with

each i in I an item ai we write [ai : i ∈ I] to mean the plurality of all such ai. (We here assume

that all the ai are of the same type.) If t[τ], and s[τ] are two pluralities we write t ⊆ s to mean that

∀xτ(t(x)→ s(x)).16

We will think of a system17 in higher order terms as consisting of a set-sized18 plurality of

objects D[e], and a binary relation R〈e,e〉 defined just on D. Formally, a system is a relation S 〈[e],〈e,e〉〉

such that S (D,R) for exactly one set-sized plurality D and exactly one relation R; moreover, R only

holds between objects in D and if Rab, then it is necessary that Rab.19 If S is a system we often

15A relation F is functional iff for all x,y,z if Fxy and Fxz, then y = z.
16We will occasionally also use ⊆ to mean the subset relation, but context will disambiguate.
17This adapts the terminology of Shapiro 1997; see also Linnebo and Pettigrew 2014.
18We—following Linnebo 2008, 75—restrict our attention to set-sized pluralities to avoid running

into the Burali-Forti paradox. Merely imposing the restriction that systems be set-sized is, of course,
not ultimately satisfactory. However, the problems raised by non-rigid systems arise already for
set-sized systems, so it is reasonable to restrict our attention to that easier case. Though we cannot
go into this here, the theory of collective abstraction can be generalized to various ways of dealing
with non-set-sized systems. For instance, it generalizes to the “dynamic” approach to abstraction
defended by Linnebo (2009, 2018, 51-76). Alternatively, we could adopt a theory of classes like the
one in Fine 2005 or Linnebo 2006 and let a system consist of a class together with a relation on that
class.

19The restriction to a single binary relation is just for convenience. We can allow arbitrarily many
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write S = 〈DS ,RS 〉 to indicate that DS ,RS are the unique D,R such that S (D,R). We call DS the

domain of S ; and we call the objects that are amongst the DS the elements of S . We sometimes

abuse notation and write S a to mean that DS a. (Recall that Da means that a is one of the objects in

D.)

Let S 0 = 〈D0,R0〉 and S 1 = 〈D1,R1〉 be two systems. We say that f is an isomorphism between

S 0 and S 1 iff f : D0→ D1 is a bijection such that for all a,b in D0 we have

R0(a,b)⇔ R1( f (a), f (b))

If f is an isomorphism between S 0 and S 1 we write f : S 0 � S 1; we write S 0 � S 1 to mean that

there is some f such that f : S 0 � S 1. As usual, if f : S � S —that is, if f is an isomorphism from S

to S itself—we say that f is an automorphism. For each S = 〈D,R〉 the identity function idS defined

by idS (a) = a for all a ∈ D is an automorphism on S . We say that S is rigid if for all automorphisms

g : S � S , g = idS ; S is non-rigid otherwise.20

Let S = [S i : i ∈ I] be a plurality of systems. A candidate abstraction operation (or simply

candidate) on S is a ternary relation A such that

(i) whenever A(S ,a, p) then S = 〈DS ,RS 〉 is in S and a is in DS ;

(ii) whenever S = 〈DS ,RS 〉 is in S and a is in DS , there is a unique p such that A(S ,a, p);

relations of arbitrary (even infinite) arity; and we can also allow functions and designated objects.
This will not affect the points made.

20 A slight complication: officially, functions are relations, and since we work in a fine-grained
setting we cannot assume that a relation that is (necessarily) coextensive with idS is identical to idS .
Strictly speaking, what we should require for rigidity is just that if g is any automorphism on S ,
then g(a) = a, for all a. We will suppress this subtlety in what follows.
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(iii) for all S i,S j in S, if S i � S j there is a unique isomorphism fi j : S i � S j such that for all

a in DS i we have A(S i,a, p) iff A(S j, fi j(a), p).

For readability we will use functional notation and write A(S ,a) = p instead of A(S ,a, p).

Given any plurality S of (small) systems there are several distinct candidate abstraction opera-

tions on S: for each isomorphism class C of systems simply pick a system |S | of that class, and for

each system S in C pick an isomorphism f : S � |S |. Then let A(S ,a) = fS (a). Distinct choices of

|S | and fS yield distinct operations. It is this fact that lies at the core of Benacerraf’s Identification

Problem. If S is a plurality of systems having the natural number structure, a candidate abstraction

operation for S offers a candidate answer to the question: which are the natural numbers? A crucial

first step in solving the Identification Problem is to determine which candidate is the abstraction

operation.

2.3 Essentialist background

We now turn to developing a precise way of expressing the generativist’s essentialist claims; but

before we dive into the details, a methodological remark. A lot of effort has been spent on developing

the formal foundations for essentialist metaphysics;21 but nobody has developed an essentialist

metaphysics of a particular type of object in formal detail. Below we will do exactly that. This

serves two purposes. First, it shows how the generativist’s metaphysics can be precisely expressed.

Second, it illuminates the essentialist framework itself: the generativist’s metaphysics provide

natural and well motivated illustrations of many delicate essentialist distinctions.

We adopt a Finean framework for expressing essence. When P is a predicate �P is the sentential

21An inexhaustive list: Correia 2000, 2006, 2012; Correia and Skiles 2019; Ditter 2020, n.d.;
Fine 1994a,b, 1995b, 2015; Teitel 2019.
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operator: “it is true in virtue of the items that are P that . . .”. Since we are working in a type-theoretic

framework we also allow higher-order predicates.22 For instance, if R is a binary relation between

objects, then λx〈e,e〉.x = R is a predicate and so �λx〈e,e〉.x=R is the sentential operator: “true in virtue

of R”. Since we officially treat functions as functional relations a candidate abstraction operation A

is simply a certain higher-order relation, and so we can ask what is essential to A. We also allow �

to be indexed by a finite list of predicates; �P0,P1,...,Pn is the operator, “true in virtue of the items

that are P0 together with the items that are P1, . . . , together with the items that are Pn”. As usual, if

P is a predicate of the form λu.(u = x∨ u = y∨ . . . ) we write �x,y,... instead of �λu.(u=x∨u=y∨... ). We

extend this to the case where the subscript is a list, writing �a,P,R for �λxe.x=a,λx〈e〉x=P,λx〈e,e〉.x=R.

So much for notation: what notion of essence do we have in mind? Throughout, we will

work with a generalization to type-theory of Fine’s consequential logic of essence (Fine 1995b,

2000b). Assume that for each type τ we have divided the expressions of that type into logical and

non-logical expressions. Essence is closed under logical consequence in the sense that if �Pφ and

ψ is a consequence of φ and any non-logical expressions in ψ occur also in φ or P then �Pψ. Call

this F-consequence. To see how this works, consider that Socrates is essentially a man (formally:

�sMs). He is thus also essentially a man or such that something is self-identical—�s(Ms∨∃xx = x).

But even though his being a man or a city-dweller is a logical consequence of his being a man,

he is not essentially a man or a city-dweller. (Formally: ¬�s(Ms∨Cs).) The reason is that the

non-logical predicate “being a city-dweller” does not occur in Ms.23

22The importance of asking about the nature of higher-order entities is stressed in Correia 2006;
Correia and Skiles 2019. The formalization we adopt here follows the pioneering Ditter n.d.

23It is also possible to formulate the generativist’s theory using a notion of constitutive essence—
for instance, by using the framework of Ditter n.d. However, working with constitutive essence is
notationally cumbersome, and the important metaphysical committments of generativism can be
adequately formulated using just consequential essence.
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Let
∧

be the predicate λp〈〉.p , p. Then �∧ is the operator, “true regardless of the nature of any

propositions” or “true in virtue of just logic” (cf. Fine 1995b, 246). If φ is a logical truth formulated

in purely logical vocabulary, then �∧φ; but if φ is a logical truth containing non-logical vocabulary

this is not so. What we, however, should expect is this: if φ is a logical truth, then �φφ. Each logical

truth φ is true in virtue of the nature of the proposition φ. More generally, for each type τ let Log〈τ〉

be the predicate λxτ.�∧Ex. Log holds of an item of type τ if it is true in virtue of just logic that the

item exists. Intuitively, Log holds of exactly the purely logical items of type τ.

2.4 Defining the abstraction operation

What do the application, identity, and existence conditions for the structural abstraction operation

look like?

The application condition for the abstraction operation A tells us, first, that whenever S =

〈DS ,RS 〉 is a system and an object a is in DS then A(S ,a) is defined. Secondly, the application

condition tells us that it is essential to the values of A that they are values of A. That is, if

p = A(S ,a) then it is essential to p that it can be abstracted from some object in some system—that

is, �p∃T∃bA(T,b) = p. Thirdly, if p = A(S ,a) this is no accident; it rather lies in the nature of p

together with S ,a that p can be abstracted from S ,a—that is, �p,S ,aA(S ,a) = p. (Note, however,

that it is not essential to p that it can be abstracted from S and a in particular.) Putting all this

together—using ∀S as a quantifier restricted to (rigid, small) systems—the application condition is:

(AC) a. ∀S∀a(S a→∃pA(S ,a) = p)

b. ∀S∀a∀p(A(S ,a) = p→ �p∃T∃bA(T,b) = p)

c. ∀S∀a∀p(A(S ,a) = p→ �p,a,S A(S ,a) = p)
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The equivalence relation associated with the structural abstraction operation is the relation ≈A

that holds between (S ,a) and (T,b) iff there is an isomorphism f : S � T such that f a = b.24 The

identity-condition is then:25

(IC) ∀S∀a∀T∀b(A(S ,a) = A(T,b)↔ (S ,a) ≈A (T,b))

The existence condition states that a pure position p exists if and only if there is some system S

and an element a of S such that A(S ,a) = p and each of S ,a and A exists.

(EC) ∀S∀a∀p(p = A(S ,a)→ �p(Ep↔∃T∃b(Tb∧ A(T,b) = p∧ E(T )∧ E(b)∧ E(A))))

We will understand this as making the grounding claim that the existence of p is grounded in the

existence of S ,a, and the existence of A itself. Since the points we make in this paper do not turn on

the precise formulation of the ground-theoretic existence condition we relegate a precise statement

to this footnote.26

The generativist now holds that the abstraction operation A is implicitly defined by its satisfying

24In higher-order terms: ≈A= λSλaλTλb.∃ f ( f : S � T ∧ f a = b) .
25(IC) is the precise version of the informal principle (SA) above. Apart from inessential

notational differences this is the principle that Linnebo and Pettigrew (2014, 274–278) call “Frege
Abstraction”; see also Linnebo 2008, 76.

26 Use < as a sentential operator for strict full ground, and ≤ as a sentential operator for distributive
weak full ground. (For explanation of these notions see, e.g., Fine 2012a,b.) We take < to have type
〈[〈〉], 〈〉〉—that is, it is a relation between pluralities of propositions and propositions; and we take ≤
to have type 〈[〈〉], [〈〉]〉—a relation between pluralities of propositions. The existence condition is
then:

(GEC) ∀S∀a∀p(p = A(S ,a)→∀Γ(Γ< Ep↔∃T∃b(Tb∧ A(T,b) = p∧Γ≤ [E(T ),E(b),E(A)])))

What (GEC) ensures is that any grounds for the existence of a pure position p has to ground the
existence of an object and a system from which p can be abstracted.
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the above application, identity, and existence conditions. That is, the abstraction operation A is

defined by:

(EA) (AC)∧ (IC)∧ (EC)

Within the essentialist framework we can express this precisely as follows. First, we need so

say that it is essential to A that (EA) holds: that is, we have �A(EA). By itself this is not enough:

this leaves it open that there is more to the essence of A than just satisfying (EA). But just like in

the case of the direction-of operation (§ 2.1 above) we want the nature of A to be exhausted by its

satisfying (EA). To ensure this we require an “elimination” principle, saying that if φ is also true

in virtue of the nature of A, then φ is a logical consequence of (AC), (IC), and (EC). We express

this schematically as follows. If φ is a sentence, let ((EA)→ φ)A be the result of replacing each

non-logical expression in (EA)→ φ with a distinct variable and taking its universal closure. The

claim that the nature of A is exhausted by its satisfying (EA) is then expressed by the following

schema:

�Aφ→ �∧((EA) → φ)A

3 Generativist Structuralism

Non-eliminative structuralists hold that given any isomorphism class of (small) systems S there is a

canonical representative |S | of that isomorphism class—what we programmatically call the pure

structure corresponding to S. But non-eliminative structuralists have not developed a systematic

metaphysics of such pure structures. The generativist offers an account of pure structures that—we

will argue—gives non-eliminative structuralists what they want.
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3.1 Pure structures generativist style

We begin by defining the pure positions. For any system S = 〈DS ,RS 〉, let |D|S be the plurality such

that |D|S y iff y = A(S ,b), for some b in DS . It is easy to show that if S 0 � S 1 then |D0|S 0 = |D1|S 1 .27

|D|S is the plurality of pure positions generated by A from the system S . We next have to define a

“pure” relation |R|S on |D|S such that the system 〈|D|S , |R|S 〉 is isomorphic to S . But—as stressed

by Hellman (2007, 546)—there is an embarrassing multitude of relations between which to choose.

For let |D|S be the pure positions abstracted from DS for some system S = 〈Ds,RS 〉. Suppose

|S | = 〈|D|S , |R|〉 is a candidate for being the pure structure and let π be a permutation of the pure

positions |D|S . Let |R|π be the relation that holds between the pure positions p,q iff |R| holds between

π(p),π(q) and let |S |π = 〈|D| , |R|π〉. It is routine to see that |S | is isomorphic to |S |π. Moreover, |S |

and |S |π have the same pure positions: why should we choose |R| over |R|π as our pure relation?

A natural first response is that not all R are such that |S | = 〈|D|S ,R〉 satisfy28

27This will follow from the more general Theorem 4.2 or see Linnebo and Pettigrew 2014.
28The apt term “Auto-Abstraction” is taken from Zanetti 2020 where it is credited to Linnebo.

(Auto-Abstraction) is the generativist’s way of expressing the idea that in the pure structure the
positions occupy the roles they represent; in the terminology of Linnebo and Pettigrew 2014, 282
“places-as-offices” coincide with “places-as objects”.

The perceptive reader will have noted that (Auto-Abstraction) together with (GEC) yields coun-
terexamples to the orthodox view that partial ground is irreflexive. In fact, the problem does not
just arise for structural abstraction: Donaldson (2017) noted that the same phenomenon arises for
Hume’s Principle understood as a grounding claim. However, these counterexamples to irreflexivity
are of a comparatively benign kind. Since the existence of a pure position is also grounded in the
existence of objects that are not pure positions, the self-grounding is not of that most problematic
kind where a fact is its own sole ground. The literature on the “puzzles of ground” following
Fine 2010a contains numerous proposals that can be extended to deal with the problems caused
by (Auto-Abstraction). (See e.g., Woods 2018, Krämer 2013, Correia 2014, Litland 2015, 2020,
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(Auto-Abstraction) For every p in |D|S , we have A(|S | , p) = p.

However, while we want the pure relation to satisfy (Auto-Abstraction) it is not uniquely

characterized by satisfying it. Natural essentialist assumptions—to which the generativist is

committed—ensure that there are many distinct relations Q such that 〈|D|S ,Q〉 is isomorphic to S

and satisfies (Auto-Abstraction). For let Q be one relation such that 〈|D|S ,Q〉 is isomorphic to S .

Let Qd be the relation that holds between the pure positions p0, p1 iff Q holds between them and

the emperor Diocletian is self-identical. Since different propositions are true in virtue of the nature

of Q than in virtue of the nature of Qd, Q and Qd are distinct relations.

There is, however, a natural candidate for the relation |R|S . To define this relation we need the

assumption that for every (small) system S there is purely logical property LS (in the sense of § 2.3

above) such that LS applies to all and only the systems isomorphic to S .29 We define the pure

relation |R|S as follows

(Pure Relation)

|R|S = λxy.∃T∃u∃v(LS (T ) ∧ x = A(T,u) ∧ y = A(T,v) ∧ RT uv)

In words, for the relation |R|S to hold between two pure positions p0, p1 is for there to be a system

T = 〈DT ,RT 〉 such that T is of the isomorphism type of S and such that p0 = A(T,a) and p1 = A(T,b)

and RT holds between a and b.

For each system S = 〈D,R〉 the system |S | = 〈|D|S , |R|S 〉 is isomorphic to S (see Theorem 4.2).

deRosset 2021, Lovett 2020. This is not the place to adjudicate between these competing views.
29The assumption that LS is logical is justified by the Tarski-Sher account of the logical operations,

see e.g., McGee 1996. The property LS is definable in L∞,∞—for details see Button and Walsh
2018, 399-408.
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We claim that |S | is an excellent candidate for being the privileged representative—the pure

structure—of the isomorphism class of S . Before we can make that case we need to get clearer on

the nature of |S | and how |S | differs from other proposed candidates for being the pure structure.

We begin with three preliminary points.

First, for the generativist pure positions are objects in just the same way as mere elements are;

moreover, the pure positions have their properties in exactly the same way as mere elements have

theirs. This sets the generativist apart from the view of Nodelman and Zalta (2014) who hold that

pure positions do not instantiate the structural properties had by the elements—they merely encode

them.

Second, the generativist has an advantage in that she does not just offer a theory of sui generis

objects made for non-eliminative structuralism; for the generativist, pure positions are just one type

of generated object amongst many. This sets the view apart from the theory of ante rem structures

in Shapiro 1997 and the theory of pure graphs in Leitgeb 2020, 2021.

Third, and relatedly, like any other generated objects, the existence of the pure positions is

grounded in the existence of the systems from which they can be abstracted. This, too, sets

generativism apart from Shapiro’s ante rem structuralism: for the ante rem structuralist the pure

positions exist independently of the systems from which they can be abstracted.

However, the most striking differences between generativism and other accounts of the pure

structures have to do with ontological dependence and purity.

3.2 Ontological dependence and purity in the rigid setting

Many structuralists have promulgated striking dependence claims, claiming that the pure positions

depend on each other or that they depend on the pure structures. Here is Shapiro seeming to endorse
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both claims.

The number 2 is no more and no less than the second position in the natural number structure; and 6 is

the sixth position. Neither of them has any independence from the structure in which they are positions,

and as positions in this structure, neither number is independent of the other. (Shapiro 2000, 258)

We use the essentialist framework of § 2.3 to evaluate these claims.30

Say that x rigidly depends on y if y , x and y is a non-logical constituent of a proposition true in

virtue of the nature of x; formally: x , y∧¬Log(y)∧∃P�xPy.31 Say that x generically depends

on the Fs if F is non-logical and it is true in virtue of the nature of x that there is an F; formally,

¬Log(F)∧�x∃yFy.32

What, in these senses, do the pure positions depend on? Let p be a pure position and let S be the

property of being a system from which p can be abstracted. (That is, S = λT.∃bA(T,b) = p.) Since

�p∃TS(T ) it follows that p generically depends on the systems from which p can be abstracted.

Consider now the property λz.∃S∃x(A(S , x) = p∧ p , z∧∃yA(S ,y) = z) of being a pure position

distinct from p that can be abstracted from any system from which p can be abstracted; call this

property P.33 We then have that �p∃xPx, and so p depends generically on the pure positions that

30For some other discussions of these claims see Linnebo 2008; Thompson 2016; Wigglesworth
2018.

31This follows Fine’s suggestion that x depends on y if “y is a constituent of a proposition that is
true in virtue of the identity of x or, alternatively, if y is a constituent of an essential property of x”
(Fine 1995a, 275).

32For more on definitions along these lines see Fine 1994b, 1995a,b and Correia 2005. The
attempt at defining dependence in terms of essence is not without its critics (see e.g., Wilson 2020;
Koslicki 2012) but even if one thinks that what is defined by the above does not deserve the honorific
“dependence” or if one thinks that other notions also deserve that honorific, the above two definitions
clearly pick out metaphysically interesting notions.

33We are setting aside the case of the pure structures whose domain consist of a single pure
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can be abstracted from the same systems as p. This also shows that the pure positions weakly

depend on each other in the sense of Linnebo 2008, 78. According to Linnebo two entities x,y

are said to weakly depend on each other if any way of generating x must make use of entities that

suffice to generate y. In this sense, two pure positions p0 and p1 in |D|S do depend on each other: if

A(S ,a) = p0, there is bound to be some object b in S such that A(S ,b) = p1.

It should also be clear that a pure position p rigidly depends on no objects: while it is essential to

a pure position p that it be the result of abstracting from some system and some object in that system,

there is no system and no object in that system such that it is essential to p that it be abstracted from

that system and that object. The pure structure, on the other hand, depends on the pure positions.

For if p is in |D|S , then it is essential |D|S that p is in it, and it is essential to |S | that its domain is

|D|S .

This does not mean that there is nothing on which the pure positions rigidly depend: they

all depend on the abstraction operation itself.34 In contrast, the abstraction operation A does not

rigidly depend on the pure positions. The essence of A is exhausted by satisfying (EA) and since

no non-logical constants (of any type) except A occur in (EA), no proposition containing a pure

position will be true in virtue of the nature of A. The abstraction operation, as the saying goes,

“knows nothing” about particular pure positions. Note, in particular, that the equivalence relation

≈A does not rigidly depend on any pure positions35 Observe also that while it is essential to A,S ,a

taken together that there is a unique x such that x = A(S ,a)—formally, �A,S ,a∃!xA(S ,a) = x—this is

a quantificational claim, and is not about the particular object which is that unique x.

position.
34Though see footnote 51 below for some worries about this.
35To foreshadow: the situation will be more complicated in the non-rigid setting—see § 4.3

below.
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Under what condition does the abstraction operation itself exist? The following view is natural.

Abstraction operations are the kinds of items the nature of which it is to exist. By successfully

laying down the application, identity, and existence conditions for the abstraction operation we

have thereby ensured that �AE(A). The “successfully” does work here: as the literature on the “bad

company” objection shows, what it takes for a putative definition of an abstraction operation to

be successful is not at all a trivial matter.36 The generativist only claims that if the definition is

succesful, then it is essential to the defined operation that it exists.37

Let us now consider the extent to which distinct pure positions have distinct essences. Let

p0, p1 be two distinct pure positions in |S |. It is essential to p0, p1 that they are distinct.38 This is a

collective essence: it is essential to them that they be distinct. An interesting question is whether

this collective essence of p0, p1 can be “factorized” into a logical consequence of the essence of p0

together with the essence of p1. Let us remove any suspense: factorization holds in the rigid but

fails in the non-rigid setting.

For any rigid system S = 〈D,R〉 and any object a in D, there is a logical predicate La
S such

that La
S holds between an object b and a system T = 〈DT ,RT 〉 iff DT b and there is an isomorphism

36For a survey of various proposed constraints on abstraction principles, see Linnebo 2011 and
Cook and Linnebo 2018. (Note, though, that their concern is with abstraction principles in the form
of Hume’s Principle.)

37This formulation just tells us that it lies in the nature of A to exist. That does not yet tell us
what grounds the existence of A. Here there are several natural views. We could take inspiration
from Dasgupta 2014 and hold that the existence of A is grounded in �AE(A), and hold that �AE(A)
itself is an “autonomous” fact, a fact not apt for being grounded. Or we could hold that E(A)
is zero-grounded in the sense of Fine 2012a, 47-48. Or maybe we should just say that E(A) is
ungrounded. Which way to go here is obviously important, but since the problem of what grounds
facts that are essentially true arises for everyone the generativist has no special problem here.

38∀x∀y(x , y→ �x,yx , y) is a theorem of the logic of essence (Fine 1995b, 255-256).
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f : S � T with f (a) = b. Let p0, p1 be two distinct pure positions in |D|S and consider the logical

predicates Lp0
|S | and Lp1

|S |. It is essential to p0 that it is the result of abstracting from any object

and system that has Lp0
|S |. Formally: �p0∀S∀x((Lp0

|S |(S , x)→ A(S , x) = p0)∧ ∃S∃xLp0
|S |(S , x)). It is

essential to p1 that it is the result of abstracting from any object and system that has Lp1
|S |. Formally:

�p1∀S∀x((Lp1
|S |(S , x)→ A(S , x) = p1)∧∃S∃xLp1

|S |(S , x)). It is also a logical truth39 that there is no S

and no b such that Lp0
|S |(S ,b) and Lp1

|S |(S ,b). Thus, �∧∀S∀x∀y(Lp0
|S |(S , x)∧ Lp1

|S |(S ,y)→ x , y). Thus

p0 , p1 is a logical consequence of what is essential to p0 together with what is essential to p1.

Summing up, the generativist’s view about dependence is that the pure positions depend on

each other weakly but not rigidly. The pure positions depend weakly on the pure structure (and

it on them); however, the pure positions do not depend rigidly on the structure, rather it depends

rigidly on them. Moreover, distinct pure positions have distinct essences. As for the claim that the

pure positions have “no independence from the structure”, the generativist emphatically rejects this.

Once the pure positions have been generated they take on a life of their own and are free to enter

into other systems, alone or together. This is an advantage for the generativist: it allows her to take

at face value constructions that embed pure structures in larger systems.

In addition to the dependence claims mentioned above, many structuralists have been tempted

by a Principle of Purity stating that the pure positions have only structural properties.40 Such a

principle of Purity is related to the position that the pure positions are “incomplete” in not having

an internal composition or nature.41 It is well-known that naïvely stated Purity is false—a given

39In an appropriate infinitary logic.
40By “property” we here mean a relation between a system and the elements of its domain. A

property is structural iff for all systems S = 〈DS ,RS 〉 and T = 〈DT ,RT 〉, all isomorphisms f : S � T ,
and all a in DS we have P(S ,a) iff P(T, f (b)).

41For a good discussion of the problems with such an incompleteness claim see Linnebo 2008,
62-66.
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pure position might be the Pope’s favorite abstract but this is not a structural property—or even

contradictory—the property of having only structural properties is not a structural property.

An initial fallback position for the structuralist is to hold that the only essential properties of the

pure positions are structural.42 Indeed, Linnebo and Pettigrew (2014, 276-278) have shown how

to develop this view rigorously. (They use “fundamental” instead of “essential”, but this makes

no difference for current purposes.) But this is too restrictive: the pure positions are essentially

abstract, but being abstract is not a structural property.

An advantage of generativist structuralism is that we do not have to rely on intuitions to

determine which properties the pure positions have essentially: an account of their essential

properties falls directly out of general generativist principles. For according to the generativist

the essential properties of a generated object will be determined by the application, identity, and

existence conditions for the generative operation the value of which it is. So if p = A(S ,a) the

essence of p is exhausted by p’s being what can be abstracted from any (T,b) having the property

Lp
S . The generativist thus defends:

(PurityG) The only properties a pure position has essentially are properties definable (using the

vocabulary of the logic of essence) from the abstraction operation A.

(PurityG) comes as close as possible to capturing the idea that the only properties the pure

positions have essentially are the structural properties.

42For a critical assessment of other approaches see Linnebo and Pettigrew 2014, 270–272.
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3.3 The Identification Problem

|S | has many of the features non-eliminative structuralists have typically taken the pure structures to

have; indeed, since (PurityG) comes as close as possible to the idea that the only essential properties

of the pure positions are structural properties, the generativist arguably gives the non-eliminative

structuralists as much they could hope for. However, someone who presses the Identification

Problem may well respond by saying that all we have done is describe a new type of platonic object,

and that merely doing this does nothing to solve the Identification Problem. Take, e.g., the class of

ω-sequences. We have shown how this class contains a certain system |N| = 〈|D|N , |R|N〉—the pure

ω-structure—that arises by abstraction from all the other systems in the class. But what privileges

this structure over all other ω-sequences, what makes it the natural number structure? Solving

the Caesar Problem—showing that this pure structure is distinct from the mere systems—does

not, by itself, help. After all, we know why the von Neumann ordinals are distinct from any other

ω-sequence: this hardly makes the von Neumann ordinals the privileged ω-sequence. And observing

that the pure structures are, well, pure does not help either; this is just to restate that they are special

platonic objects.

Qua generativist one could concede. The generativist’s main contention is that abstract objects

are the values of generative operations; if the pure ω-sequence |N| is not singled out as the natural

numbers, this does not refute generativism as such. And generativism has much to recommend it

even if it does not solve the Identification Problem: it is a principled and general view of the nature

of abstract objects; it (once collective abstraction has been developed) allows for the generation

of indiscernibilia; it provides a solution to the problem of converse relations; and so on. However,

the generativist should not concede. The feature that privileges the pure structures is that they
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essentially represent the systems isomorphic to them.

This representational claim has to be understood in the right way. By making an arbitrary

choice of a candidate operation B, any system S = 〈DS ,RS 〉 can be made to represent the systems

isomorphic to it. For let B be a candidate abstraction operation such that for all T � S we have

DS = {p : ∃a(a ∈ DT ∧ B(T,a) = p}. Relative to B, S represents the systems isomorphic to it in the

following sense. An element p ∈ DS represents—relative to B—those (T,a) such that B(T,a) = p;

and the holding of the relation RS between the elements p0, p1 of S represents—relative to B—the

holding of RT beween those a0,a1 such that B(T,a0) = p0 and B(T,a1) = p1.

But such representation is relative to an arbitrary choice of an operation B. What would it take

for a system to non-arbitrarily represent? The natural thought is that a system S non-arbitrarily

represents the systems isomorphic to it when its nature is that it so represents. For a system S to

represent non-arbitrarily we thus require the following:

(i) there is an operation B such that S essentially represents, relative to B, the systems

isomorphic to it;

(ii) the essence of S is exhausted by its so representing relative to B.

A pure structure |S | is determined by its pure positions together with its pure relation; to establish

that |S | meets conditions (i) and (ii) we need to investigate the natures of the pure positions |D|S and

the pure relation |R|S .

Starting with the pure positions, suppose p = A(S ,a). We have seen (§ 3.2) that there is a logical

property Lp
|S | such it is essential to p that for any (T,b) such that Lp

|S |(T,b) we have p = A(T,b).

Thus it is essential to p that it represents, relative to A, the systems from which it can be abstracted.

But the essence of p is also exhausted by this: there is nothing more to the essence of p than what

follows from its being what can be abstracted from any (T,b) such that Lp
|S |(T,b).
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As for the pure relations, the nature of |R|S is exhausted by the fact that its holding between two

pure positions p,q just is for p,q to represent some (T,a), (T,b) such that RT (a,b). (In fact, given

standard assumptions in the logic of ground, |R|S ’s holding between p,q is grounded in RT ’s holding

between a,b.) In a slogan: the holding of the representative relation between the representatives

represents the holding of the represented relations between the represented.

This shows that the essence of the pure structure |S | is exhausted by its representing, relative

to A, the systems isomorphic to it. But why think that |S | is the only system that, with respect to

some operation B, has these features? It is true that once one looks at alternative representative

systems one finds that they have richer natures. The von Neumann ordinals, for instance, are more

than mere representatives of the entries of ω-sequences—the ordinals are sets, have members, and

so on; moreover, for the membership relation ∈ to hold between two ordinals is not just for those

two ordinals to represent prior and posterior elements in ω-sequences. One would, however, like to

have a general argument that |S | is the only system with features (i) and (ii). Unfortunately, it is not

clear how to develop such an argument; fortunately, there are further conditions on non-arbitrary

representation that only the pure structures meet.

Recall that the generativist’s general view is that abstract objects are the values of generative

operations, and that generated objects exist because something from which they can be generated

exists. In particular, the pure structure |S | exists because some mere system from which it can be

abstracted exists. We thus have the following condition on non-arbitrary representation:43

(iii) It is essential to the system S that it exists because some system that it represents relative

43For the generativist this is strictly speaking not a further condition. Since A is defined by its
satisfying (EA) it is essential to A that any p which is a value of A exists iff (and because) some
(S ,a) such that A(S ,a) = p exists. It then follows—by a “Chaining” principle (see e.g., Fine 1995b,
247–249)—that a pure position exists because something from which it can be abstracted exists.
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to B exists.

The final condition on non-arbitrary representation concerns the operation B itself.

(iv) There is no more to the nature of the operation B than is required for conditions (i), (ii),

and (iii) to hold.

We can now show that the pure structure is the unique system that non-arbitrarily represents

the systems isomorphic to it. According to the generativist the operation A is uniquely defined by

(EA); and by inspection of (EA) one sees that what (EA) requires of the abstraction operation A is

exactly what is needed for the abstraction operation and the pure structures defined from it to meet

conditions (i), (ii), and (iii). Meeting condition (iv) thus amounts to be defined by (EA). It then

follows from the generativist’s general metaphysics that |S | is the unique system that non-arbitrarily

represents the systems isomorphic to it. This, then, is the generativist’s solution to the Identification

Problem: the pure structure is privileged by being the unique system the essence of which is

exhausted by its representing the systems isomorphic to it.

Finally, we should point out that the essentialist framework is—no pun intended—essential

for this solution to the Identification Problem. If we could only draw modal distinctions there

would be no way of distinguishing between those systems that merely necessarily can be taken to

represent the systems isomorphic to them, and those the essence of which is exhausted by their so

representing.44

44It should be stressed that this is not the first attempt at using the representational role of the
pure structures to solve the Identification Problem. Fine (1998, 629-931) suggests that we may use
the theory of variable (or arbitrary) objects to give an account of pure structures. Since variable
objects may reasonably be taken essentially to represent their values this also yields an account
where the pure positions essentially represent their values. While a full comparison between Fine’s
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4 Collective Abstraction

However nice the generativist’s account is in the rigid case, it cannot work in the non-rigid case.

Consider the complex numbers C. Since there are automorphisms f : C � C with f (i) = −i, (IC)

yields the absurd result that A(C, i) = A(C,−i): we cannot generate two roots for −1.

4.1 Collections of abstraction operations

The problem with the generativist’s account of the abstraction operation in the non-rigid case is

the “the”: with non-rigid systems there are many distinct abstraction operations that take us from

systems to their pure structures. To see this it is useful to work through a simple case: the graph

with two vertices and no edges. In addition to the various “mere” graphs with exactly two vertices

and no edges the generativist wants there to be a pure graph |G| = 〈|V | , |R|〉 with two pure vertices

p,q and no edges.

Let us consider how the pure graph |G| may arise by abstraction from two distinct mere graphs

G0 and G1. G0 has vertices a0,b0 and G1 has vertices a1,b1. p,q can be abstracted from G0 and G1

in four ways.45 There is the way A0 that generates p from both (G0,a0) and (G1,a1);46 there is the

theory of variable objects and the theory of abstraction is beyond the scope of this paper, let us just
note that a Finean account of pure structures will—as Fine (1998, 631) is fully aware—result in
fairly rich natures for the pure positions: for instance, a Finean pure position will essentially have
the non-structural property of being a dependent variable object.

45We are for now ignoring the fact that the pure positions also can be generated from themselves;
taking that into account gives us 8 ways of abstracting the pure positions; we return to the problem
this poses in § 4.3.

46It follows from this that G0 has to generate q from (G0,b0) and (G1,b1). These details will be
suppressed in what follows.
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way A1 that generates q from (G0,a0) and (G1,a1); there is the way A2 that generates p from (G0,a0)

and (G1,b1); finally, there is the way A3 that generates q from (G0,a0) and (G1,b1). These ways of

generating p,q from G0,G1 are depicted graphically in figure 1. The (dotted) double lines indicate

which elements are to be mapped to the same pure position; the (dotted) single lines indicate which

pure position they are to be mapped to.

<Figure 1 here>

What the generativist must do is give up the idea that for p to be a pure position is for p to be

a value of the abstraction operation A. Indeed, given that the pure positions p,q are indiscernible,

there cannot be a unique abstraction operation A: if there were, p and q would be discernible since

one (but not the other) would be identical to A(G0,a0). Rather, the generativist should hold that for

p to be a pure position is for there to be some abstraction operation B such that p is a value of B.

The generativist’s task is thus to define what it is to be an abstraction operation. As we will put it,

the task is to define the propertyA of being an abstraction operation.

In definingA the generativist faces a challenge other platonist positions do not face. Suppose,

e.g., we were ante rem structuralists in the mould of Shapiro 1997. Then there would just exist

a pure graph |G| with pure positions p,q.47 We could define A by first defining the abstraction

operations in the obvious way: A0 is the abstraction operation that maps G0,a0 and G1,a1 to p, A1

is the abstraction operation that maps G0,a0 and G1,a1 to q; and so on. The propertyA of being an

abstraction operation would then just be the property that applies to each operation so defined. But

47Recently, Leitgeb (2020, 2021) has shown how to develop a theory of pure graphs that allows
indiscernible vertices and edges.
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the generativist cannot say this. For the generativist the pure positions are (really) defined by being

values of some abstraction operation. But if we defineA in terms of the abstraction operations, and

the abstraction operations in terms of the pure positions, we have a definitional circle.

4.2 Profiles and bundles

The key to defining the property A is to lay down analogues of the principles (AC), (IC), and

(EC) discussed in § 2.4 above; that is, we must find collective application, identity, and existence

conditions. In the main text we state how this can be done, illustrating features of the account using

the above trivial two-element graph. A fully precise statement of the theory as well as proofs of

relevant results are relegated to the supplementary appendix. <INSERT LINK TO APPENDIX

HERE>

It turns out that the collective application condition—in particular finding an analogue of (ACa)—

poses the greatest challenge. We begin by observing that if A is an abstraction operation defined on

some systems48 [S i : i ∈ I] then A induces an equivalence relation ≈A on pairs (S i,ai) of systems

and elements of those systems as follows: (S i,ai) ≈A (S j,a j) iff A(S i,ai) = A(S j,a j). We call ≈A

the abstraction profile of A. To illustrate, consider the abstraction operations A0,A1,A2, and A3

introduced above. The operations A0,A1 have the same profile, depicted by the dashed double line

in figure 1; this profile differs from the profile of A2 and A3 which is depicted by the double line in

figure 1.

The application condition for A must ensure that for every abstraction profile there is an

abstraction operation that essentially has that profile; and that for every abstraction operation

48For reasons that will become clear in § 4.3 we allow abstraction operations that are defined on
some (but not all systems).
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there is a profile that the operation essentially has; and finally—since we allow operations that are

not defined on every system—that every abstraction operation can be extended to an abstraction

operation on any extension of its profile.

The first task is to define what it is to be an abstraction profile. In the rigid case the abstrac-

tion profile ≈A associated with an operation A has a purely logical definition: ≈A is the relation

λSλTλaλb.∃ f ( f : S � T ∧ f (a) = b). In the non-rigid case abstraction profiles do not (in general)

have pure definitions. Suppose, e.g., that in the graphs G0,G1 the vertices a0,b0 are two (qualita-

tively identical) socks and a1,b1 are two other (qualitatively identical) socks. Then there will no

purely logical definition of the various abstraction profiles between G0 and G1.

But we can give a purely logical definition of what it is to be an abstraction profile. An

isomorphism thread on a plurality of systems S = [S i : i ∈ I] is a plurality I = [ fi j : i, j ∈ I] such

that

(i) for all i, j ∈ I, if S i � S j there is exactly one fi j : S i � S j such that fi j is in I;

(ii) for all i, j ∈ J, if S i � S j we have f ji ◦ fi j = idi;

(iii) for all i, j,k ∈ J, fik = f jk ◦ fi j.

If I is an isomorphism thread we write I( f ) to mean that f is an isomorphism in I. If I is

an isomorphism thread on [S i : i ∈ I] define the relation ≈I by setting (S i,ai) ≈I (S j,a j) iff the

unique fi j : S i � S j in I has fi j(ai) = a j. An abstraction profile is then a relation ≈ such that ≈ is

coextensive with ≈I for some isomorphism thread I.

Let us write Profile(≈) for the claim that ≈ is an abstraction profile; and Prof(B,≈) for the claim

that the operation B has profile ≈. If B is an operation we write dom(B) for the plurality of systems

on which B is defined. If B,C are two operations we say that C extends B if for all S ,a such that
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B(S ,a) is defined C(S ,a) is also defined and B(S ,a) = C(S ,a); if C extends B we write B ⊆C. We

then require the following:

(Profile) a. ∀≈(Profile(≈)→∃B(A(B)∧�BProf(B,≈)))

b. ∀B(A(B)→∃≈(Profile(≈)∧�BProf(B,≈)))

c. ∀B∀≈∀≈′(A(B)∧Prof(B,≈)∧≈ ⊆ ≈′→

∃C(A(C)∧Prof(C,≈′)∧ B ⊆C))

As we already can see from the case of the graphs with two vertices, fixing an abstraction profile

does not determine a unique abstraction operation: while the abstraction operations A0,A1 agree

that a0,a1 should be mapped to the same pure position they disagree about which of p,q they should

be mapped to. The application condition has to describe all the abstraction operations with a given

profile. The key to this is observing that distinct abstraction operations can be naturally transformed

into each other; we illustrate the idea by showing how A0 can be transformed into A1.

There are two automorphisms on G0—the identity automorphism id0 and the automorphism

π0 that maps a0 to b0 (and vice versa); similarly, G1 has the identity automorphism id1 and the

automorphism π1 that maps a1 to b1 (and vice versa). If we define (π0,π1)A0 by (π0,π1)A0(Gi,c) =

A0(Gi,πi(c)) then the following simple calculations show that (π0,π1)A0 is A1.

(π0,π1)A0(G0,a0) = A0(G0,π0(a0)) = A0(G0,b0) = A1(G0,a0)

(π0,π1)A0(G0,b0) = A0(G0,π0(b0)) = A0(G0,a0) = A1(G0,b0)

Generalizing, we make the following definition.

Definition 4.1. Let S be a collection of systems.
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(i) An automorphism bundle on S is a plurality µ of automorphisms on systems in S such

that for each S in S there is a unique automorphism µS : S � S in µ.

(ii) If O is an operation defined on S and µ is an automorphism bundle on S, let µO be the

operation defined by µO(S ,a) = O(S ,µS (a)).

The application condition has to ensure that the abstraction operations are closed under the

application of automorphism bundles; and that for any two abstraction operations with the same

domain there is a bundle such that it is essential to the two operations that they can be transformed

into each other via the bundle. This gives us:

(Closure) a. ∀B∀µ(A(B)→∃C(A(C)∧�B,C,µC = µB))

b. ∀B∀C(A(B)∧A(C)∧ dom(B) = dom(C)→∃µ�C,BC = µ(B))

The conjunction of (Profile) and (Closure) is the collective analogue to (ACa). In the rigid case

(ACb) and (ACc) express that the application operation A is generative; in the collective case it is

the property of being an abstraction operation that is generative. It is essential to the values of any

abstraction operation that they are the values of some abstraction operation on some input; and if p

is the value of the abstraction operation B on input S ,a then it is essential to S ,a, p taken together

that for some abstraction operation C we have C(S ,a) = p.

We thus end up with the following Collective Application Principle:

(CAC) a. (Profile)∧ (Closure)

b. �A∀B∀S∀x∀y(A(B)∧ B(S , x) = y→ �y∃C∃T∃z(A(C)∧C(T,z) = y))

c. �A∀B∀S∀x∀y(A(B)∧ B(S , x) = y→ �S ,x,y∃C(A(C)∧C(S , x) = y))

In the rigid case there is a unique abstraction operation and its profile has a purely logical
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definition. Since neither condition is met in the non-rigid case the collective identity criterion is

more involved. Observe first that if B is an abstraction operation it has some profile ≈B. This gives us

an intraoperational identity criterion: B(S i,a) is identical to B(S j,b) iff S i � S j and (S i,a) ≈B (S j,b).

To obtain an interoperational identity criterion observe that if B,C are two abstraction operations it

follows by (Profilec) that we can take them to be defined on the same domain. By (Closureb) there

is an automorphism bundle µ such that C = µB. Thus B(S i,a) = C(S j,b) iff B(S i,a) = B(S j,µ j(b)),

where µ j : S j � S j is the unique automorphism on S j contained in µ. Putting all this together we

arrive at the Collective Identity Criterion—(CIC) for short:

(CIC) ∀B∀C∀S 0∀S 1∀a0∀a1(A(B)∧A(C)→

(B(S 0,a0) = C(S 1,a1)↔∃≈∃µ(Prof(B,≈)∧C = µB∧ (S 0,a0) ≈ (S 1,µS 1(a1)))))

The collective analogue of the existence condition (EC) is the following:

(CEC) ∀B∀S∀a∀p(A(B)∧ p = B(S ,a)→

�p(Ep↔∃T∃b∃C(A(C)∧C(T,b) = p∧ E(T )∧ E(b)∧ E(C))))

In words: a pure position p exists when a system T , an object b, and an abstraction operation C

such that C(T,b) = p all exist. As in the rigid case it is very natural to take this existence condition

to be a claim about the grounds for the existence of the pure positions.49

The generativist claims that the essence of the property of being an abstraction operation is

49With the same conventions as in footnote 26 here is the precise formulation:

(CECG) ∀B∀S∀a∀p(A(B)∧ p = B(S ,a)→ ∀Γ(Γ< Ep↔ ∃T∃b∃C(Tb∧A(C)∧C(T,b) = p∧

Γ≤ [E(T ),E(b),E(C)])))
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exhausted by (CIC), (CAC), and (CEC). We thus lay down both

�A((CAC)∧ (CEC)∧ (CIC))

and the scheme:

�Aφ→ �∧((CAC)∧ (CEC)∧ (CIC)→ φ)A

Just as in the rigid case, it is important that (CAC), (CIC), and (CEC) are taken to exhaust the

nature of A: while there may be many properties of operations that satisfy these principles, the

generativist’s claim is that there is but one the essence of which is exhausted by them.50

Having thus defined the property of being an abstraction operation the generativist is in a position

to define the pure positions and the pure structure. For any system S = 〈DS ,RS 〉 let the plurality of

pure positions |D|S be defined as follows. |D|S x iff ∃B∃T∃a(T � S ∧A(B)∧ B(S ,a) = x). Even in

the non-rigid setting there is still, for every system S , a logical predicate LS , such that LS applies to

all and only the systems isomorphic to S . We can thus define the pure relation |R|S in the same way

as in the rigid case:

(CPR) |R|S = λxy.∃B∃T∃u∃v(LS (T )∧A(B)∧ x = B(T,u)∧ y = B(T,v)∧RT uv)

We define the pure structure as |S | = 〈|D|S , |R|S 〉. Let B be an abstraction operation and S a

system on which B is defined. Define BS by setting BS (a) = B(S ,a), for each a ∈ DS . We can

establish the following.

Theorem 4.2. (i) If S � T then |D|S = |D|T .

50If one is doubtful about this one could adopt the analogue for the non-rigid case of the view
suggested in footnote 11.
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(ii) BS is one-to-one and onto.

(iii) For all abstraction operations B and all systems S on which B is defined BS : S � |S |.

Proof: The proof is relegated to the supplementary appendix. [INSERT LINK] �

4.3 Dependence in the non-rigid setting

In the rigid case we saw that each pure position can be made sense of individually. The situation is

more complicated in the non-rigid case. To begin, the facts about what the pure positions depend on

are almost as in the rigid case; the only difference is that the pure positions only generically depend

on the abstraction operations.51 The situation with the abstraction operations themselves is more

interesting.

It is natural to take the propertyA of being an abstraction operation to essentially exist; the more

challenging question is what to say about the existence of the abstraction operations themselves. It

follows from (Profile) that the abstraction operations rigidly depend on their abstraction profiles;

this suggests that we can take an abstraction operation to exist when and because its abstraction

profile exists. What, then, grounds the existence of an abstraction profile?

The answer is that there is no uniform account. Abstraction profiles are simply certain relations

between system-object pairs. Since there is no uniform account of the grounds for the existence of

51 For the sake of uniformity maybe we should say this in the rigid case as well? We might be
misled into thinking otherwise by the fact that in the rigid case there is a unique abstraction operaton.
But we cannot conclude from the fact that it is essential to p that there is a unique abstraction
operation that has p as its value that it is essential to p that it is the value of that operation. (Compare:
it is essential to {Socrates} that there is a unique set that has just {Socrates} as a member. (Why?
{Socrates} is essentially a set, and it is essential to set that everything has a unique singleton.) But it
does not follow from this that it is essential to {Socrates} that it is a member of {{Socrates}}.)
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relations we should not expect there to be a uniform account of the grounds for the existence of

abstraction profiles.

To drive this point home consider first the plurality of systems G where for each G = 〈D,R〉 in

G the domain D consists of two possible socks and R is the empty relation. In this case, we cannot

define the abstraction profiles without mentioning the possible socks and so the abstraction profiles

rigidly depend on the possible socks. It then seems natural to take the existence of the abstraction

profiles to be grounded in the (possible) existence of the possible socks. Contrast this with the

plurality of systems G′, where for each G′ = 〈D′,R′〉 in G′, the domain D consists of a pair of one

possible human and one possible rock and R is the empty relation. Consider the abstraction profile

≈ that matches up humans with humans (and rocks with rocks). This abstraction profile only rigidly

depends on the properties of being human and being a rock. It is natural to take the existence of this

abstraction profile to be grounded in the existence of the properties of being human and being a

rock.

There is a class of abstraction profiles that raise special problems. A full profile is a profile on

a collection of systems S that contains the pure structure of every system it contains. To see the

problem posed by these profiles consider the collection of systems G0,G1, |G| where G0,G1 are our

two element mere graphs and |G| is the pure two element graph |G| = 〈[p,q], |R|〉. The profile ≈F

determined by (G0,a0) ≈F (G1,a1) ≈F (|G| , p) is full. What grounds the existence of ≈F?52

Given that p and q are indiscernible it seems that the existence of the profile ≈F will have to be

(partially) grounded in the existence of |G|, and in particular, in the existence of p (and q). Let A be

an abstraction operation with profile ≈F . Since the existence of A is grounded in the existence of

52Similar problems arise for dependence but since the considerations are similar we refrain from
discussing this case.
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≈F it follows by the transitivity of ground that the existence of A is partly grounded in the existence

of p. On pain of contradicting the asymmetry of ground the existence of p cannot then be grounded

in the existence of A. Since ≈F was an arbitrary full profile and A was an arbitrary operation with

profile ≈F it follows that it is impossible for the existence of the pure positions to be grounded in

the existence of full abstraction operations.

It is for this reason that we allowed partial profiles and partial abstraction operations in (CAC).

The patterns of ground can become quite intricate. Recall that A0 is the abstraction operation defined

by A(G0,a0) = A0(G1,a1) = p; let ≈0 be its profile. Let ≈F be the full profile introduced above and

let AF be the abstraction operation extending A0 by AF(|G| , p) = p. Then we have the following

facts about (partial) ground and non-ground:

E(≈0)≺ E(A0)≺ Ep≺ E(≈F)≺ E(AF)⊀ E(p)

Turning finally to collective essences, we can use the pure graph |G| to show that some collective

essences are not factorizable. Let p,q be the pure positions of |G|. We then have �p,q p , q. This

collective essence cannot be factorized as a logical consequence of the essences of p,q respectively.

For the essence of p is exhausted by being the value of some abstraction operation applied to a

system that forms a trivial two element graph. But that is exactly the same as the essence of q. The

distinctness of p and q therefore cannot be a logical consequence of their respective essences: their

distinctness is “irreducibly collective”.

In the rigid case we could make sense of each pure position on its own—the pure position p is

the unique object that can be abstracted from any (T,b) such that Lp(T,b). We can no longer—in

general—make sense of the pure positions on their own. However, the pure positions need not be

so entangled that they can only be made sense of all together. For each pure position p there is a
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logical property Lp and a unique plurality of pure positions pp with exactly the same essence as p.

While we have to generate the positions pp simultaneously, the pp can be generated independently

of any disjoint plurality of pure positions.

4.4 Haecceities

The haecceity of an object a is the property of being that very object. Many structuralists have held

that indiscernible objects fail to have haecceities. An example:

because haecceities are intrinsic to each individual, the permutation [=automorphism] of individuals

always results in a new situation, whereas permuting exactly structurally similar individuals in a

mathematical structure results in exactly the same structure. (Leitgeb and Ladyman 2008, 394)

As we understand haecceities here, the existence of haecceities is compatible with what Ladyman

and Leitgeb say. In particular, we may accept that there is a generative operation H that takes

any object a and gives us a property Ha such that it is essential to Ha that a and only a has Ha.

Formally, �H∀x∃!P(H(x,P)∧�P∀y(Py↔ x = y)): haecceities in our sense are generated from the

objects whose haecceities they are, and so they depend on them. Thus any automorphism of two

indiscernible objects will induce an automorphism of their haecceities.

This is not just special pleading on behalf of haecceities: the phenomenon of indiscernible

generated and dependent objects is widespread. Set-formation, e.g., is a generative operation and

it can be applied to indiscernibles like i, and −i too. The unique member of {i} is i; and −i is the

unique member of {−i}. But this fact does not show that i and −i are, after all, discernible; rather,

since i and −i are indiscernible, this just shows that {i} and {−i} are themselves indiscernible.53

53 Wigglesworth (2021) has proposed that we can carry out abstraction on non-rigid systems by
first “rigidifying” them by adding, for each object a in the domain of the system, the property of
being that object. If the above comments are correct it is far from clear that this can be done in
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We thus see that allowing indiscernible objects to have haecceities does not restore factorizability.

What we have in the rigid case is that for every pure position p there is a property Ep such that (i)

Ep depends only on the abstraction operation A; (ii) it is essential to Ep that it applies to exactly one

object; and (iii) it is essential to p that Ep applies to it. The haecceity of i fails the first condition

since it depends on i.

4.5 The identification problem in the non-rigid setting

As in the rigid case (§ 3.3) the generativist’s proposed solution to the Identification Problem

turns on the representational role of the pure structures. Given that there is no longer a unique

abstraction operation the claims have to be reformulated as follows. Let S = 〈DS ,RS 〉 be a system

and let B be a property of operations such that for all T � S and all C such that B(C) we have

DS = {p : ∃a(a ∈ DT ∧C(T,a) = p)}. The system S represents, relative toB, the systems isomorphic

to it in the following sense. An element p ∈ DS represents—relative to each C such that B(C)—

those (T,a) such that C(T,a) = p. And the holding of the relation RS between the elements p0, p1

of S represents—relative to B—the holding of RT beween those a0,a1 such that C(T,a0) = p0 and

C(T,a1) = p1, for each C such that B(C).

The conditions (i)–(iv) on non-arbitrary representation are as before except that we now relativize

to a property of B of operations. It follows from the generativist’s general commitments that the

propertyA defined by (CIC), (CAC), and (CEC), and the pure structures defined fromA are the

only property of operations and the only systems meeting (the collective versions of) conditions

(i)–(iv). In the non-rigid case, too, the generativist solution to the Identification Problem is that what

a way that makes the objects discernible. Due to considerations of space, we cannot discuss his
proposal further here.
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privileges the pure structures is that they are the only systems the essences of which are exhausted

by their representing the systems isomorphic to them.

5 (Meta)Semantic Issues

While the generativist’s view is not a view about meaning, in the rigid case it is naturally paired with

one. We can introduce an operator “A”, where the meaning of “A” is implicitly defined by holding

that the sentence (EA) be true. The generativist then takes terms like “A(S ,a)” to be canonical

names54 of the objects they denote. The generativist holds that we can come to understand terms like

“A(S ,a)” and come to understand that they refer without having independent access to the referents

of these terms.55 Let us assume that such an account is defensible in the rigid case. (Arguing for it

will take us too far afield here.) Since there is no unique abstraction operation, this account cannot

work in the non-rigid case; however, an analogous view is available.

We illustrate it using the pure graph with two elements. For each mere graph G = 〈V,R〉 and each

object a in V , the generativist introduces a term |a|G that is meant to refer to a result of abstracting

on a (in G). Such terms refer relative to abstraction operations; the reference of |a|G relative to A is,

naturally, just A(G,a). A term has determinate reference if it has the same referent relative to every

abstraction operation.

54In this paper, expressions like “A” are officially relations. But we can amend the theory and let
expressions like “A” be functors.

55The semantic and metaphysical takes on the abstraction principle are orthogonal. One could
hold that the operations are really implicitly defined by the abstraction principle, while holding that
it is no part of the meaning of the operator that the principle holds for it. Conversely, one could hold
that it is analytic of the operator that the principle hold, but deny that this tells us anything about the
nature of the operation. (This position is laid out with care in Rosen 2003.)
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We may go on to define truth relative to an abstraction operation. The important case is that

an identity sentence t = s is true relative to A if the reference of s relative to A is the same as the

reference of t with respect to A. (We prescind from going into the rest of the theory; the details

are fairly obvious.) A sentence is determinately true (false) if it is true (false) relative to every

abstraction operation.

Consider the graph G0 with two vertices a0,b0 and no edges introduced above. Neither |a0|G0

nor |b0|G0 determinately refers. However, since any abstraction operation A will map a0 and b0

to distinct pure positions the terms |a0|G0 and |b0|G0 determinately have distinct referents. Thus

the sentence |a0|G0 , |b0|G0 is determinately true. If, on the other hand, we consider terms that

are drawn from different graphs the resulting identity statements are no longer guaranteed to be

either determinately true or determinately false. For instance, since there are abstraction operations

that map a0 (in G0) and a1 (in G1) to the same pure position and also operations that map them to

distinct objects, the identity-statement |a0|G0 = |a1|G1 is neither true nor false.

The account sketched here is, of course, formally a supervaluationist account. (Any admissible

assignment of referents to the terms |a0|G0 and |b0|G0 will have to assign them different referents, but

there are admissible assignments that assign |a0|G0 and |a1|G1 the same referent, and some that do

not.) But the generativist’s version of supervaluationism is distinctive in that she can explain where

the admissible assignments come from (she has a metasemantics for “admissible assignment”):

an assignment v of referents to the terms |a0|G0 and |b1|G1 is admissible iff there is an abstraction

operation such that v(|a0|G0) = A(G0,a0) and v(|b1|G1) = A(G1,b1).

This view about how terms like |a0|G0 function has similarities with the semantic relationalist

view of Fine 2007. In Fine’s framework one could think of the terms |a0|G and |b0|G1 as free variables

such that: (i) they can each take as their value either one of the pure positions p0, p1; (ii) they are
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anti-coordinated in that whatever value |a0|G takes, |b0|G has to take the other value. What the

generativist provides is an account—a metasemantics—of how the patterns of coordination come to

be: the patterns of coordination are exactly those that are induced by the abstraction operations.56

Unlike in the rigid case, the generativist does not give an account of how we refer to the

individual pure positions: there is nothing we can do to refer to one of i,−i as opposed to the

other. But there is still a sense in which we can refer to the pure positions. For suppose we have

a plural term forming operator “[ ]” that takes a list of terms t0, t1, . . . and gives us a plural term

[t0, t1, . . . ]. The reference of a plural term [t0, t1, . . . , ] relative to A is, naturally, the plurality of the

referents of t0, t1, . . . relative to A. This has an interesting consequence: while it is indeterminate

whether |a0|G0 = |a1|G1 and it is indeterminate whether |b0|G0 = |b1|G1 the plural identity statement

[|a0|G0 , |b0|G0] = [|a1|G1 , |b1|G1] is determinately true.

This may offer some solace to neo-Fregeans. They have often held that to be an object is to be

a possible referent of a singular term.57 Non-rigid structures seem to pose a fatal problem to this

view—as argued forcefully by Brandom (1996) (see also Shapiro 2008, 291). But the possibility of

determinate plural reference shows that this might be premature: while it is true that it is impossible

to fashion a term that determinately refers to one of the roots of −1, it is possible to fashion a plural

term that determinately refers to the roots of −1. One might perhaps say that while to be is not to be

a possible referent of a term, to be is to be some possible referents of some terms.

56The present account may also be of use for Horwich (2005). Terms like “i” and “−i” pose
problems for a use theory of meaning. For how could the (semantically relevant) use of “i”
be different from the use of “−i”? In response to this Horwich suggested that while “i”, “−i”
individually do not have a definite use, they collectively have a definite use. One may take the
present account to flesh out this idea.

57See amongst many others Dummett 1991; Wright 1983; Hale and Wright 2001.
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6 An Application: Positionalism

The techniques behind collective abstraction have applications elsewhere in metaphysics, especially

in cases where we need to account for the natures of indiscernible yet distinct objects. The techniques

are applicable to the problem of accounting for the nature of (indiscernible) possibilia, giving an

account of fictional objects, and giving an account of qualitativism. Because of its interest for the

generativist we will here consider an application to the problem of converse relations.58

58It must be stressed that the techniques of collective abstraction are not applicable to every case
involving indiscernible objects. A case in point might be structuralism about physics, in particular,
the family of views that goes under the name of Ontic Structural Realism or osr. While this is
not the place to go into the details of this vast literature, four comments are in order. First, let
us distinguish between moderate and radical osr. Radicals like French and Ladyman (2003) and
Ladyman (1998) hold that, fundamentally, there are only physical structures. Radicals either adopt
an eliminativist stance according to which there are (properly speaking) no physical particles or
else they adopt a reductionist stance according to which particles are logical constructions from
the structures. Moderates—like Esfeld (2004) and Esfeld and Lam (2008)—hold that while there
are fundamental physical particles they are mutually dependent on the physical structures of which
they are constituents. Second, the generativist agrees with McKenzie (2014) that the moderate’s
dependence claims are best understood as claims about essence; where the present paper contributes
something beyond McKenzie’s is in the use of higher-order resources. Third, whether generativism
gives a plausible account of osr depends on whether one is a moderate. The generativist’s is an
account of, well, generated objects—objects the existence of which is grounded in the existence
of that from which they are abstracted. But for the moderate: from what would the fundamental
particles be abstractions? Moderate ors is more akin to mathematical ante rem structuralism.
Fourth, while generativism looks more promising as an account of radical osr, the account of
collective abstraction developed here is not immediately applicable. That account shows how we
can generate pure positions from objects in systems. But presumably a defender of radical osr
would not want to take as basic such object-containing systems! So a generativism appropriate for
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According to the standard view of relations a relation—e.g., the shorter-than relation—applies

to its relata in an order. When shorter-than applies to Bob and Suzy in that order, we get the state

of affairs that Bob is shorter than Suzy. If shorter-than applies in the opposite order we get the

state of affairs that Suzy is shorter than Bob. On the standard view every non-symmetric relation

has a distinct converse. For instance, the shorter-than relation has the taller-than relation as its

converse.

The standard view—as pointed out by Fine (2000a)59—miscounts states of affairs. Intuitively,

the state of affairs that Bob is shorter than Suzy is the very same state of affairs as the state that Suzy

is taller than Bob. But how can this be if one state involves the relation shorter-than and the other

the relation taller-than?60

For present purposes what is particularly important is that converse relations give rise to an

Identification Problem. Is the pure structure of the natural numbers the one where the numbers

are ordered by the pure less-than relation or rather the one where they are ordered by the pure

greater-than relation? Related to this metaphysical worry there is—as Williamson (1985) pointed

out—a metasemantic worry: in virtue of what could our expression “less-than” pick out one of the

relations less-than and greater-than as opposed to the other?

osr would have to be more radical, allowing us to generate objects and structures from systems that
are not isomorphic to the resulting generated structures. Developing such an account of collective
abstraction is obviously of considerable interest.

59For different problems see Williamson 1985 and Dorr 2004.
60Here we are, of course, relying on the principle that the states of affairs that result from

completing distinct relations have to be distinct. Recently, many have taken the moral of the
so-called Russell-Myhill paradox to be that this is misguided (see e.g.. J. Goodman 2017; Fairchild
2017; Dorr 2016; Uzquiano 2015). This is not the place to discuss this paradox; we just note that the
problem of converse relations arises even once we have avoided the Russell-Myhill paradox—say
by adopting a ramified theory of states of affairs.
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The Positionalist proposes to get around these problems by changing our conception of how

relations apply to their relata. Each relation R is equipped with a number of positions (or argument-

places) and the relation applies to its relata relative to an assignment of the relata to those positions.

To illustrate, the shorter-than relation is equipped with two positions—short and tall. Upon

assignment of Bob to short and Suzy to tall we get the state-of-affairs that Bob is shorter than

Suzy. On the positionalist view relations do not have converses; we thus do not have to distinguish

the state of affairs that Bob is shorter than Suzy from the state of affairs that Suzy is taller than Bob.

Unfortunately, strictly symmetric relations present the positionalist with a seemingly fatal

problem. A strictly symmetric relation is a relation R such that the state Rab is identical to the state

Rba. Consider the state of Bob’s being next to Suzy. This is the same state as Suzy’s being next to

Bob. (The next-to relation is clearly strictly symmetrical.) But how can the positionalist account for

this? Since next-to is a binary relation, it has two positions—next and nixt. But there is a difference

between assigning Bob to next and Suzy to nixt and doing the reverse. This leads the positionalist

to hold that there are in fact two states corresponding to the sentence “Suzy is next to Bob”!

Initially, the positionalist can respond by holding that while the next-to relation has two positions,

the positions are indiscernible in the sense that the same state results if we assign a to nixt and b to

next as if we assign b to nixt and a to next (Leo 2008).61 This is correct as far as it goes, but what

explains that the same state results from assigning a to next and b to nixt as from assigning b to

next and a to nixt?
61Dixon (2018) provides a different solution to the problem presented by next-to, but his solution

does not deal with the problem posed by the relation R that holds between objects a,b,c,d if they
are arranged in a circle in that order (Fine 2000a, p. 17n10). A different—and very interesting—
suggestion is presented in Donnelly 2016. Due to considerations of space we cannot discuss it
further here.
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One view is that nothing explains this—it is simply a brute fact about the next-to relation. Leo

(2008, 351-352) suggests a different view: the positions next and nixt are abstractions from the

states involving the next-to relation. This view would have the advantages that we do not have to

posit positions as fundamental entities and that, rather than taking the identity and distinctness facts

involving positions to be brute, we could explain them in terms of how the positions are abstracted

(cf. Fine 2000a, 16).

Unfortunately, Leo does not offer an account of abstraction vindicating this view. The theory of

collective abstraction provides the vindication needed. Here is a sketch of the construction.

Let us take as given a collection of states. Each state S has a number of occurrences of objects,

OS , where we allow an object to have many occurrences in a state.62 We take for granted that it

makes sense to substitute objects for occurrences of objects in states. More precisely, a substitution

is a function σ from occurrences of objects to objects. We write σ(S ) for the state that results

from applying the substitution σ to S ; if S and T are such that T = σ(S ) we say that S ,T are

co-relational. We assume that there is a bijection f : OS → Oσ(S ) such for all a ∈ OS , f (a) is an

occurrence of σ(a). We call such an f an isomorphism between S and σ(S ). If σ(S ) = S we say

that f is an automorphism.63

We define the notion of a substitution profile exactly like the notion of an abstraction profile.

That is, a substitution profile is a relation ≈ between state-occurrence pairs satisfying the conditions

in Definition 4.1. An automorphism bundle is, as before, a collection of automorphisms with exactly

one for each state. To abstract the positions of a relation we need to lay down an abstraction principle

62Fundamentally, this is not a positionalist view. At the fundamental level we have a collection
of states with occurrences of objects. Positions are then generated by abstraction from these states.

63The assumption that there is a bijective f elides some complications involving coalescence of
occurrences; see Leo 2010, 147-148, 168.
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for the property A that applies to exactly the abstraction operations that takes the occurrences

of objects in a state S and gives us a position in the relation R of which S is a completion. The

principle will be exactly like it is for the case of abstraction operations.

So take the state of the Bob’s being next to Suzy. The present approach ensures that there are

two abstraction operations and two positions next and nixt in the next-to relation. One abstraction

operation maps Bob to next and Suzy to nixt; the other operation does the opposite. Structurally,

this is the same situation as with the trivial graph of two elements. We thus have an account of how

we can generate two distinct yet indiscernible positions in the next-to relation.

7 Closing

What we may call the generativist program holds that abstract objects are the values of generative

operations. In this paper we have furthered this program in several ways. We have made the

notion of a generative operation precise using a higher-order logic of essence; we have showed

how we can treat structural abstraction for rigid systems as a generative operation; we defined pure

structures and pure positions and developed a non-eliminative structuralist solution to Benacerraf’s

Identification Problem. The main contribution of the paper, however, lies in the development of

the method of collective abstraction. What distinguishes this method is that instead of defining a

single abstraction operation we simultaneously define a collection of operations. This allows us

to generate indiscernible objects by structural abstraction on non-rigid systems thereby solving

a long-standing problem for non-eliminative structuralists. By using the essentialist framework

we investigated what pure positions and structures depend on; strikingly, the dependence facts

differ between rigid and non-rigid structures, with non-rigid structures showing a higher degree of
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“entanglement”. We also showed how the account of collective abstraction allows us to develop an

account of reference to indiscernible pure positions. Finally, we applied the account of collective

abstraction to the metaphysics of relations, developing a novel version of positionalism.
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