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Grounding Ground

Jon Erling Litland

1. INTRODUCTION

If Γ’s being the case grounds ϕ’s being the case, what grounds that Γ’s being
the case grounds ϕ’s being the case?1 This is the Problem of Iterated Ground.
Dasgupta (2014b), Bennett (2011), and deRosset (2013) have grappled
with this problem from the point of view of metaphysics. But iterated
ground is a problem not just for metaphysicians: the existing logics of
ground2 have had nothing to say about such iterated grounding claims. In
this paper I propose a novel account of iterated ground and develop a logic
of iterated ground. The account—what I will call the Zero-Grounding
Account (ZGA for short)—is based on three mutually supporting ideas: (i)
taking non-factive ground as a primitive notion of ground; (ii) tying non-
factive ground to explanatory arguments; and (iii) holding that true non-factive
grounding claims are zero-grounded (in Fine’s sense).
A notion of ground is factive if the truth of “Γ grounds ϕ” entails that each

γ∈ Γ as well as ϕ is true; the notion is non-factive otherwise. Most authors
take a factive notion of ground as their primitive; I adopt a non-factive
notion as primitive. Taking a non-factive notion of ground as basic allows
one to solve the Problem of Iterated Ground for factive ground: if Δ factively
grounds ϕ then this is grounded in Δ’s non-factively grounding ϕ together
with Δ’s being the case.3 This, of course, just shifts the bump under the rug:
what grounds that Δ non-factively grounds ϕ?

1 Here Γ are some (true) propositions and ϕ is a (true) proposition. For the official
formulation of claims of ground, see }2 below. In the interest of readability I will not
distinguish carefully between use and mention throughout.

2 Fine 2012b; Correia 2010, 2014; Schnieder 2011; Poggiolesi 2015.
3 It is not strictly speaking necessary to hold that true factive grounding claims are

partially grounded in non-factive grounding claims (}10). However, assuming this allows
for a smoother presentation; and, as we will see, it does no harm.
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Fine (2012a, pp. 47–8) distinguished between a truth’s being
ungrounded, on the one hand, and having the empty ground or being zero-
grounded on the other. Crucially, being zero-grounded is a way of being
grounded. I show that if Δ’s non-factively grounding ϕ is zero-grounded we
have a formally satisfactory solution to the Problem of Iterated Ground. To
go beyond a merely formal solution we must answer two questions: (i) What
does it mean to say that a truth is zero-grounded? (ii) Why should we believe
that (true) non-factive grounding claims are zero-grounded?

We answer these questions by tying non-factive ground to explanation.
The basic idea is that for Δ to non-factively ground ϕ just is for there to be a
special type of argument from premisses (exactly) Δ to conclusion ϕ—what
we can call a metaphysically explanatory argument. If one accepts this con-
nection between ground and metaphysically explanatory arguments, the
notion of zero-grounding is unproblematic: a truth is zero-grounded if it
is the conclusion of an explanatory argument from the empty collection of
premisses. The seemingly mysterious distinction between being ungrounded
and being zero-grounded is a special case of the familiar distinction between
not being derivable and being derivable from the empty collection of
premisses.

In response to the second question, I do not simply postulate that non-
factive grounding claims are zero-grounded. If the claim that Δ non-factively
grounds ϕ just is the claim that there exists an explanatory argument from Δ
to ϕ there are compelling reasons for holding that the claim that Δ non-
factively grounds ϕ—if true—is zero-grounded. To substantiate this I show
how to develop a logic of iterated ground—the Pure Logic of Iterated Strict
Full Ground (PLISFG). A novel feature of PLISFG is that its deductive system
distinguishes between explanatory arguments and what we may call “plain”
arguments. This allows us to equip factive and non-factive grounding
operators with natural introduction and elimination rules. (In fact, the
rules are proof-theoretically harmonious.) Together these rules entail that
true non-factive grounding claims are zero-grounded.

1.1 Overview of the paper

}2 explains how the various notions of ground are to be understood. }3
rehearses a serious problem posed by claims of iterated ground. }4 formally
states the ZGA. }5 sketches a graph-theoretic account of ground, discusses
how the graphs are to be understood, and shows how the zero-grounding of
non-factive grounding claims is a natural consequence. }6 show how we can
understand ground in terms of explanatory arguments and develops a
deductive system distinguishing between explanatory and merely plain
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arguments. }7 shows how to find introduction rules for the grounding
operators. }8 uses an inversion principle to find matching elimination
rules; these rules have the consequence that non-factive grounding claims,
if true, are zero-grounded. }9 defends the ZGA against the objection that
every true non-factive grounding claim has the same (empty) ground. }10
compares the ZGA with the “Straightforward Account” (SFA) offered by
Bennett (2011) and deRosset (2013) and argues that even the SFA needs
zero-grounding. The paper concludes with some issues for further work in
}11. There are two technical appendices. Appendix A states introduction
and elimination rules for the Pure Logic of Iterated Strict Full Ground
(PLISFG) in an “amalgamation-friendly” form to facilitate comparison with
Fine’s Pure Logic of Ground (PLG). Appendix B develops a graph-theoretic
semantics and uses it to show that PLISFG is a conservative extension of a
subsystem of PLG.4

2. GROUND AND EXPLANATION

I take ground to be an explanatory notion. As I will understand ground, to
say that ϕ0;ϕ1;::: ground ϕ just is to say that ϕ0;ϕ1;::: explain ϕ in a
distinctively metaphysical way.5 The explanatory connection between the
grounds and what they ground is very intimate; following Fine, I take the
grounds to explain the grounded in the sense “that there is no stricter or
fuller account of that in virtue of which the explanandum holds. If there is a
gap between the grounds and what is grounded, then it is not an explanatory
gap.” (Fine 2012a, p. 39)6 Here are some plausible cases of ground:

4 The graph-theoretic semantics can be extended to a semantics for all the grounding
operators of Fine’s Pure Logic of Ground—and more besides. It is also possible to find
introduction and elimination rules for these operators—and more besides. This is a task
for another occasion.

5 I should flag a controversy here. That grounding is intimately connected with
explanation is widely accepted; that Γ’s non-factively grounding ϕ just consists in Γ’s
explaining ϕ in a distinctive way is not uncontroversial, though it is accepted by Fine
(2001, 2012a), and Dasgupta (2014a, 2016). An alternative view would take grounding
to be a (the?) distinctive relation of determination that “underwrites” such metaphysical
explanations. On this view grounding stands to metaphysical explanation as causation
stands to causal explanation. (Such a view is held by Audi (2012b, p. 688), Audi (2012a)
and Schaffer (2012, 2016).) I will not attempt to refute this position here. Many of the
claims made in this paper can, in any case, be appropriated by the defenders of this other
view.

6 Fine (2012a, pp. 38–40) distinguishes between metaphysical, normative, and natural
ground. Here we will only discuss metaphysical ground: it is only with metaphysical
ground that the connection between the grounds and that which they ground is this
intimate.
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(1) A conjunction is grounded in its conjuncts.
(2) A disjunction is grounded in its true disjuncts.7

(3) a’s being G is grounded in a’s being F , where F is a determinate of
the determinable G.

Several notions of ground have been distinguished in the literature. The one
that has been the focus of the debate over iterated ground is factive, full,
mediate, strict ground. Adopting the notation of (Fine 2012a, 2012b) we
express claims of ground using a sentential operator “<”.8

“<” has variable arity on the left: if Δ is any set9 of sentences and ϕ is a
sentence then the result of concatenating the sentences in Δ (in any order)
with < and ϕ is a sentence.10 Since nobody thinks that the order of the
sentences in Δ matters to whether Δ grounds ϕ, we disregard order and
(ambiguously) write Δ < ϕ for the resulting sentence. Δ are here the grounds
while ϕ is the grounded. We can pronounce a grounding claim Δ < ϕ as “ϕ
because Δ”. Note that we allow both infinite and empty Δ; the latter means
that < ϕ is well-formed. Since the sentential operator locution can be
cumbersome we often nominalize and, unofficially, speak of grounding as
a relation between truths.

7 Though this is problematic because of the paradoxes of ground discussed by Fine
(2010a). We set the paradoxes of ground aside for the purposes of this paper.

8 I here follow Fine (2001, 2012a, 2012b), Schnieder (2011), Dasgupta (2014b), and
Correia (2010) in expressing ground by means of sentential operators. The alternatives
discussed in the literature are (i) to treat grounding as a relation between facts (Rosen
2010; Audi 2012a, 2012b; deRosset 2013; Bennett 2011; and Trogdon 2013a; and (ii) to
treat grounding as a relation that can hold between objects in arbitrary ontological
categories (Schaffer 2009). The reasons for expressing ground by means of a sentential
operator are frankly pragmatic. First, by expressing ground using sentential operators one
can remain neutral on some vexed issues concerning the existence and nature of facts (cf.
Fine 2001, 2012a, 2012b; and Correia 2010). Secondly, it is easier to formulate a logic of
ground if one expresses ground using sentential operators. Thirdly, the crucial notion of
zero-grounding is also easier to make sense of if we express claims of ground using
sentential operators. That being said, it would be possible to reformulate much of what
follows if one favored treating grounding as a relation between facts.

9 It might be better to let Δ be a multiset (see footnote 54). In the main text I have
opted for simplicity.

10 This is a many-one notion of ground. One might want to allow < to have variable
arity on the right as well: when Γ and Δ are any two sets the result of concatenating the
sentences in Γ with< and Δ is a grounding claim. Dasgupta (2014a) argues that there is a
non-distributive notion of many-many ground. Γ < Δ can be the case without there being
an I such that Γ ¼ [i∈ IΓi , Δ ¼ [i∈ I δi and Γi < δi for each i∈ I . Litland (2016b)
extends Fine’s truthmaker semantics to develop a logic of many-many ground. While
such a notion of ground is of considerable interest we will not discuss it further in this
paper—though see footnote 35.
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The following logical features are commonly taken to hold of <. We will
take them as adequacy constraints on any logic of the operator <: if a
proposed logic of ground fails to validate these features we will not accept it.
< is factive in the sense that if Δ < ϕ, then ϕ and each δ∈Δ is true. It is

full in the sense that if Δ < ϕ is the case then nothing need be added to Δ in
order to explain why it is the case that ϕ: its being the case that Δ fully
accounts for its being the case that ϕ. It is mediate in the sense that we allow
Δ to ground ϕ by way of grounding some ψ that also grounds ϕ.11 It is strict
in the sense that if Δ < ϕ then it is impossible for each δ∈Δ to be the case
while ϕ helps explain a δ

0
∈Δ. In the special case of one-one grounding

claims—i.e. claims of the form ϕ < ψ—this has the consequence that
grounding is irreflexive, transitive, and asymmetric.12

The claims of ground in (1), (2), and (3) above are all plausible cases of
factive, strict, full, mediate ground.
Central to the ZGA is a notion of non-factive (full, mediate, strict) ground.

Whereas only truths can factively ground, even falsehoods can non-factively
ground. We use “)” as a sentential operator for this notion; it has the same
grammar as <. Much more will be said about) later; for now it suffices to
know that if (each γ in) Γ is the case and Γ ) ϕ is the case then Γ < ϕ.13

The claims (1), (2), and (3) are also true non-factive grounding claims.

3 . A STATUS PROBLEM

While claims of iterated ground are interesting in their own right they also
give rise to serious problems. Since problems of this sort are now well-
known, we consider only a simple case.14 (For ease of expression we talk as if

11 More generally: we allow that Δ grounds ϕ by way of there being a decomposition
Δ0;Δ1;:::;Δω of Δ and some ψ0;ψ1;::: such that Δi grounds ψi for each i and ψ0;ψ1;:::;Δω
taken together ground ϕ.

12 I should note that these principles have been contested. Jenkins (2011), Wilson
(2014), Correia (2014, }7.3), and Krämer (2013) doubt that grounding is irreflexive;
Dasgupta (2014b) doubts that grounding is asymmetric; and Schaffer (2012), contra
Schaffer (2009, pp. 375–6), argues that grounding is not transitive. For a defense of the
principles, see Raven (2013) and Litland (2013).

13 For more on the distinction between factive and non-factive ground, see Fine
(2012a, pp. 48–50).

14 Essentially this problem is discussed by Bennett (2011), deRosset (2013), and
Dasgupta (2014b). The problem does not essentially turn on every truth being grounded
in some ungrounded truths. Problems like this arise even if one allows infinitely descend-
ing chains of ground. Sider (2012, pp. 143–5), for example, formulates a Status Problem
turning on Fine’s notions of a fact’s being constitutive of reality and its being factual that p
(for which notions, see Fine 2001, 2010b).
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grounding was a relation between truths. Note that the official formulation
would require quantification into “sequence-of-sentences” position.)

Consider first the following principle:

(Foundation) There are some truths Δ such that each δ∈Δ is
ungrounded and such that each truth ϕ is either in Δ or else is grounded
in some Δ0 � Δ. Let us call such a collection of truths a foundation.

Many philosophical disputes can be construed as disputes about whether
there could be foundations consisting only of certain types of truths. For
instance, a physicalist might think that there is a foundation consisting only
of physical truths: no mental truth need be entered into the foundation.
A metaethical naturalist might think that there is a foundation consisting
only of non-normative truths: no normative truth need be entered into the
foundation.

A physicalist might want to go further. Not only is there no need for
mental truths in the foundation; distinctively mental objects and properties
are not required either:15 there is a foundation F such that no mental
objects and properties are constituents of the truths of F .

What a physicalist might want to say is that no mental object is
O-fundamental in the following sense:

(Object-Fundamentality) An object a is O-fundamental iff the object a
figures in an ungrounded truth.

If that is right, the physicalist is committed to:

(Derivative Objects) There is an object a that is not O-fundamental.

The problem is that if truths about ground are themselves ungrounded then
every object is O-fundamental. For consider some object a: either there is
nothing that grounds the truth that a exists or there is something that
grounds this truth. If the former, then a is O-fundamental since the truth
that a exists is fundamental. If the latter, suppose that the truth that a exists
is grounded in the truths Γ. Then this truth, namely the truth that a’s
existence is grounded in Γ, is a further truth. If this truth is ungrounded then
we again get that a is O-fundamental since the truth that the existence of a is
grounded in Γ will be in every foundation.

We will take it as a constraint on an account of iterated ground that it not
commit us to every object’s being O-fundamental. There are two reasons
for imposing the constraint. First, the question whether every object is
O-fundamental seems like a substantive one: it should not be settled in

15 See deRosset (2013, pp. 3–6) for some reasons for thinking this.
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the above trivial manner (cf. Dasgupta 2014b). Second, whether or not it is
a substantive matter whether every object is O-fundamental the other views
on iterated ground do avoid the conclusion that all objects are O-
fundamental. For dialectical purposes the ZGA, too, had better not have
this consequence.

4 . THE ZERO-GROUNDING ACCOUNT

Recall that when Δ is any number of sentences and ϕ is a sentence, then Δ < ϕ
and Δ ) ϕ are sentences; in particular, if Δ is ;, the empty collection of
sentences, then < ϕ and ) ϕ are sentences. If < ϕ, then ϕ is grounded:
there is a collection Δ, namely the empty collection, of sentences such that
Δ < ϕ is true. Let us, for now, take the notion of zero-grounding for granted
and see how it allows us formally to solve the problem of Iterated Ground.
The ZGA holds that Δ < ϕ is grounded in Δ together with Δ ) ϕ and

that Δ ) ϕ is strictly fully zero-grounded. That is, it is the case that
; < ðΔ ) ϕÞ. We avoid the conclusion that every object is fundamental.
If Δ < ϕ is the case then this is grounded in Δ together with Δ ) ϕ. The
latter is zero-grounded and hence grounded. If the claim ϕ concerns the object
a, a will not be O-fundamental just on account of occurring in Δ ) ϕ.
What about the claim that Δ ) ϕ is zero-grounded? If this claim is

ungrounded, the problem is only pushed back. The solution is obvious: if
a truth ψ is zero-grounded then the truth that ψ is zero-grounded is itself
zero-grounded.
We then get the following sequence of grounding claims:

Δ < ϕ ðΔ;Δ ) ϕÞ < ðΔ < ϕÞ
½ðΔ;Δ ) ϕÞ; ððΔ;Δ ) ϕÞ ) ðΔ < ϕÞÞ� < ððΔ;Δ ) ϕÞ < ðΔ < ϕÞÞ:::

Since ; < ðΔ ) ϕÞ we simplify and get:16

Δ < ϕ Δ < ðΔ < ϕÞ Δ < ðΔ < ðΔ < ϕÞÞ :::

The ZGA gives rise to infinitely many grounding claims involving ϕ. We do
not, however, have an infinitely descending chain of ground with ϕ on top:
ϕ is grounded in Δ, but since ϕ is not grounded in Δ < ϕ there is no
regress.17

16 I assume the Cut principle: if Γ < ϕ and Δ;ϕ < ψ, then Γ;Δ < ϕ. (The relevant case
is Γ ¼ ;.)

17 For more discussion of why there is no problem, see Bennett (2011, pp. 33–5),
deRosset (2013, pp. 19–20), and Rabin and Rabern (2015). In any case, if there were a
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There is a superficial similarity with the accounts of deRosset (2013) and
Bennett (2011). Their view is that if Δ < ϕ then what grounds this is just Δ
itself.18 Let us call this the Straightforward Account (SFA). We will discuss
the SFA in greater detail in }10; here just note that the ZGA and the SFA differ
even though they agree that Δ < ϕ only if Δ < ðΔ < ϕÞ. The ZGA holds that
Δ < ϕ is partially grounded in Δ ) ϕ; the SFA denies this.19

To move beyond the merely formal we must answer the following two
questions.

(4) What exactly does it mean to say that something is zero-grounded?
(5) How can we make it intelligible that truths of the form Δ ) ϕ are

zero-grounded?

The question in (5) is not a request for the grounds for something’s being
zero-grounded: it is part of the view that if ϕ is zero-grounded, then the
truth that ϕ is zero-grounded is itself zero-grounded (and so on). Rather, one
is asking for a story making it comprehensible that something is zero-
grounded. It is true that by taking non-factive grounding claims to be
zero-grounded (if true) we solve the Status Problem. While this provides
some reason to postulate that they are zero-grounded (if true), it does not
help us understand why they should be zero-grounded. The key to answer-
ing these questions lies in answering the following one:

(6) How should the notion of non-factive ground be understood?

We want to end up in the following situation. Consider conjunction: there
is no mystery about why a true conjunction ϕ∧ψ is fully grounded in its
conjuncts ϕ;ψ taken together. Once one understands what conjunction is
one understands that a (true) conjunction is grounded in its conjuncts.
Similarly, once we get clear on what non-factive grounding is there will be
no mystery why a true claim of non-factive ground is zero-grounded.

problematic regress here a similarly problematic regress would arise for the other accounts
of Iterated Ground: the ZGA is no worse off.

18 A similar view is tentatively suggested by Raven (2009).
19 If we avail ourselves of the notion of immediate strict full ground we can state the

difference perspicuously. (For the distinction between mediate and immediate ground, see
Fine (2012a, pp. 50–1).) According to the ZGA, Δ < ϕ is not immediately strictly fully
grounded in Δ—the immediate grounds for Δ < ϕ are Δ; ðΔ ) ϕÞ taken together; Δ < ϕ
is only mediatedly strictly fully grounded in Δ. According to the SFA, on the other hand,
Δ < ϕ would be immediately strictly fully grounded in Δ. Bennett and deRosset admittedly
do not discuss the problem in terms of immediate strict full ground, but it seems clear that
the natural way of developing their view is by insisting that Δ is the immediate full ground
for Δ < ϕ.
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5. GROUND, MACHINES, AND GRAPHS

To see both what zero-grounding is and why non-factive grounding claims
would be zero-grounded (if true) it is useful to beginwith a picture of grounding.
Think of a machine generating truths from other truths.20 The machine

is fed truths, churning out truths grounded in the truths it is fed. A truth is
ungrounded if the machine never churns it out; a truth is zero-grounded if the
machine churns it out when it is fed no input. In terms of this picture, why
would the machine give the verdict that Δ ) ϕ is zero-grounded if true?
Think of it like this. When the machine is fed no input the machine, instead
of remaining idle, “simulates” the results of being fed various input. In
simulating what happens when it is fed the propositions Δ the machine
proceeds just as it would have if it in fact had been fed Δ as input. If, when
running the simulation, the machine churns out ϕ, the machine ends the
simulation and churns out Δ ) ϕ. Since the machine was fed no input this
means that Δ ) ϕ is zero-grounded if true.
The machine picture is closely related to a graph-theoretical picture often

employed in discussions of ground. Let us develop this picture both for non-
factive and factive ground.21 A directed hypergraph is a tuple G ¼ hV;A;t;hi.
Here V is a collection of vertices—think of these as propositions. A is a
collection of hyperarcs. t;h are functions t;h : A ! PðV Þ. If A∈A, tðAÞ is
the tail of A and hðAÞ is the head of A. We demand that hðAÞ is a singleton.22
Assume that the vertices are propositions; we can then speak of an arcA as being
from the propositions ϕ0;ϕ1;::: to the proposition ϕ. In terms of the machine
picture, an arc A∈A corresponds to the application of a mechanism inside the
machine. tðAÞ are the propositions the mechanism operates on; hðAÞ is the
result of the mechanism’s operating on tðAÞ.23 For simplicity, we assume that
A is chained: if A0;A1;:::;B are arcs such that tðBÞ ¼ vfv0;v1;:::;w0;w1;:::g
and hðA0Þ ¼ v0;hðA1Þ ¼ v1;:::, then there is an arc C such that
tðCÞ ¼ tðA0Þ [ tðA1Þ [⋯ [ fw0;w1;:::g and hðCÞ ¼ hðBÞ.24
The following two graphical representation of a hyperarc with tail

ϕ0;ϕ1;::: and head ϕ are usefully kept in mind.

20 The analogy is from Fine (2012a, pp. 47–8). The extension to non-factive ground
as well as the idea of “simulation” is new here.

21 Schaffer (2009) and deRosset (2015) have also used graph-theoretic ideas in
connection with grounding. (See also Schaffer (2016) for a related approach.)

22 To capture a many-many notion of ground we would lift this restriction.
23 Note that A represents not the mechanism itself but rather an application of the

mechanism. We will see why this might matter in }9.
24 Without this assumption the graphs would capture immediate and not mediate

ground. In many ways it would be better not to assume that A is chained; but this raises
technical problems that are best set aside here.
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ϕ0 ϕ1 . . .
ϕ

ϕ0

ϕ1
...

ϕ

We can now say that some propositions ϕ0;ϕ1;::: non-factively ground a
proposition ϕ iff there is an arc A such that hðAÞ is fϕg and tðAÞ is
fϕ0;ϕ1;:::g. A proposition ϕ is (non-factively) zero-grounded if there is an
arc A with the empty tail the head of which contains the proposition ϕ.
A proposition ϕ is ungrounded if there is no arc A with hðAÞ ¼ fϕg.

To deal with factive ground we need the notion of a pointed directed
hypergraph. This is a tuple hV;F;A;h;ti. Here hV;A;h;ti is a directed
hypergraph and F � V is a set of vertices closed under taking heads; that
is, if F0 � F and A∈A is such that tðAÞ ¼ F0 then hðAÞ � F .25 Think of
F as the actually obtaining propositions—the facts. We now say that
ϕ0;ϕ1;::: factively ground ϕ if ϕ0;ϕ1;::: � F and ϕ0;ϕ1;::: non-factively
ground ϕ. Since F is closed under taking heads every truth that is non-
factively zero-grounded is in F .

Graph theory gives us nice formal models of ground, but how does it help
explain why truths of the form Δ ) ϕ are zero-grounded?

Consider an arc A from some propositions ϕ0;ϕ1;::: to a proposition ϕ.
What does this arc represent? One possibility is to take A to represent the
truth that ϕ0;ϕ1;::: non-factively ground ϕ. I would like to defend a different
view. What represents that ϕ0;ϕ1;::: ground ϕ is not an arc with tail
fϕ0;ϕ1;:::g and head ϕ, but rather the proposition that there is such an
arc. What, then, do the arcs represent?

If we adopt the machine picture we can say that an arc from ϕ0;ϕ1;::: to ϕ
represents an application of a mechanism to the propositions ϕ0;ϕ1;:::, an
application that yields the proposition ϕ. (And so: what represents that
ϕ0;ϕ1;::: ground ϕ is not the application of a mechanism taking us from
ϕ0;ϕ1;::: to ϕ but rather the fact that there is an application of a mechanism
taking us from input ϕ0;ϕ1;::: to output ϕ.)

If one thinks of the arcs as applications of mechanisms the arcs are not
propositional; and it does not make sense to ask what grounds them. However,
even if the application of a mechanism taking us from input ϕ0;ϕ1;::: to output
ϕ is not propositional—and so not apt to be grounded—there is still the
proposition that there is such an application of a mechanism. The question
what grounds this proposition is legitimate. If we think of the proposition

25 Some further conditions need to be imposed, but we do not have to go into this
now. See Appendix B.
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ϕ0;ϕ1;::: ) ϕ as the proposition that there is an application of a mechanism
with input ϕ0;ϕ1;::: and output ϕ the above story about simulation suggests
why (true) propositions of the form ϕ0;ϕ1;::: ) ϕ should be zero-grounded.
Suggestive though the machine picture is, it is not to be taken literally.

We should provide a less pictorial account of what the arcs represent and
what claim is being made by a non-factive grounding claim ϕ0;ϕ1;::: ) ϕ.

6 . GROUND AND EXPLANATORY ARGUMENTS

Above I wrote that we may think of an arc between some propositions
ϕ0;ϕ1;::: and a proposition ϕ as the application of a mechanism to the
propositions ϕ0;ϕ1;:::; in the introduction I wrote that I would tie ground
closely to explanatory arguments. These pictures are related. Think of an arc
between ϕ0;ϕ1;::: and ϕ as an explanatory inference from ϕ0;ϕ1;::: to ϕ. We

may represent this graphically as follows:
ϕ0 ϕ1:::

ϕ
. More generally, think

of a hyperarc A as an explanatory argument from the propositions in the tail of
A to the proposition in the head of A.26 One can now think of the machine
as encoding the explanatory arguments, with different explanatory argu-
ments corresponding to different mechanisms.
We can now say that ϕ0;ϕ1;::: non-factively ground ϕ if there is an

explanatory argument from ϕ0;ϕ1;::: to ϕ. And we can say that ϕ0;ϕ1;:::
factively ground ϕ if there is an explanatory argument from ϕ0;ϕ1;::: to ϕ
and ϕ0;ϕ1;::: are the case.

27

A main contribution of this paper is showing how we can develop a
mathematically rigorous theory of metaphysically explanatory arguments;
having done this a satisfactory logic of iterated ground drops out naturally.
I will not attempt to give a non-circular account of what makes some-

thing an explanatory argument: the notion is taken as a primitive. That is
not to say that the notion cannot be elucidated. The intuitive idea is that the
explanatory arguments are composed from basic explanatory inferences.
Plausible cases of explanatory inference are conjunction-introduction,
disjunction-introduction and the inferenze from a is F to a is G—where
F is a determinate of the determinable G. (These correspond to the
uncontroversial cases of ground mentioned in }2 above.) More generally,
whenever one thinks that Γ immediately grounds ϕ, the ZGA holds that the
inference from Γ to ϕ is explanatory. Flippantly put, one obtains basic

26 It is in order to sustain this interpretation that we require that the hyperarcs be
closed under Cut.

27 deRosset (2013, pp. 12–13) comes quite close to this idea, but he focuses on factive
grounding and is not (there) trying to develop a logic of ground.
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explanatory inferences as follows. Take a claim of strict full immediate
ground—Γ < ϕ for instance—rotate it 90� clockwise and replace < with
a horizontal line: the result is an explanatory inference Γ

ϕ.
It is appropriate for a logic of iterated ground to remain silent on which

are the basic explanatory inferences: which particular inferences are explana-
tory is (by and large) a material and not a formal matter and so one on which
logic remains silent. That being said, for the purpose of illustration, let us
assume that conjunction and disjunction introduction are explanatory
inferences in this sense. If one thinks that a conjunction is not grounded
in the conjuncts and a disjunction is not always grounded in the true
disjuncts one should substitute some inferences that are obtained from
one’s favorite claims of (immediate) ground in the way indicated above.

What logic can do is tell us how explanatory inferences interact and how
they are chained together to form explanatory arguments. To do this we need a
deductive system that distinguishes between two types of argument. (This is
the first technical innovation of this paper.) Let us use uppercase calligraphic
letters E;D;F ;::: (possibly with subscripts) as variables over arguments. One
type of argument is the explanatory argument: if there is an explanatory
argument E from premisses Δ to conclusion ϕ, then if Δ is the case its being
the case that Δ fully explains its being the case that ϕ. We also have the plain
arguments: if there is a plain argument E fromΔ toϕ, then ifΔ is true,ϕ, too, is
true. With a plain argument, however, there is no guarantee that Δ, if true,
explains ϕ.28 To indicate that an argument E is explanatory wemay write EðeÞ;
similarly, we may write EðpÞ to indicate that the argument E is merely plain.

Let us be more rigorous about what exactly arguments are. An argument is
a quadruple T ¼ hT; �; L;Di where hT; �; Li is a labeled rooted tree. (T is
the set of nodes, � is the tree-order and L : T ! P is a function assigning
labels to the nodes of T . We may think of P as the class of propositions.) We
demand that there is T0 � T such that each t ∈T0 is a top node and such that
for each s∈T there is t ∈T0 such that s � t .29 D is a function T ! PðT Þ.
For each s∈T, D assigns a set DðsÞ � ft � sjt is a top nodeg. This
“discharge function” allows us to keep track of which assumptions a line
in the argument depends on. (This is required since we will consider argu-
ments that discharge assumptions.) The root of the (sub)tree is the conclusion
of the (sub)argument.30 If s is the root of a (sub)tree T , then the propositions

28 I should note that there is nothing in the formalism forcing plain (or even strict)
arguments to be, say, classically valid arguments. This is important: one should not rule
out that Δ grounds ϕ, even though Δ does not logically entail ϕ.

29 Because of examples of the sort given in Dixon (2016), Rabin and Rabern (2015),
and Litland (2016a) we cannot require that there are no infinite branches in T .

30 Rather: the proposition labeling the root of the tree is the conclusion of the
argument. We will be sloppy about this since there should be no cause for confusion.
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labeling the nodes in DðsÞ is the set of (undischarged) premisses of T .
If ϕ labels node s we often abuse notation and write DðϕÞ for DðsÞ.
When we write

E
ϕ

we mean that E is an argument with conclusion ϕ. It is often important to
note what the premisses of an argument E are. The notation

Γ
E
ϕ

is to mean that E is an argument with conclusion ϕ where each occurrence
of a proposition γ∈ Γ labels some node in DðϕÞ. (We do not demand that
each node in DðϕÞ is labeled with a proposition in Γ.)
Rules of inference that involve discharge will be written.

ϕ0; ϕ1; ϕ2; :::
0; 1; 2;:::

E
ϕ

ψ
0; 1; 2;:::

This is to be understood as follows. E is an argument with conclusion ϕ where
DðϕÞ are labeled with (amongst others) the propositions ϕ0;ϕ1;:::. In passing to
the conclusion ψ we can discharge any node labeled with one of the ϕi. More
precisely, if S � DðϕÞ is any set of nodes with labels only from ϕ0;ϕ1;:::, any
argument of the above formwhereDðψÞ ¼ DðϕÞnS is an application of the rule.
(This means that unless otherwise specified we allow both vacuous and

multiple discharge: if a rule allows the discharge of premisses of a certain
form we can discharge any number of premisses of that form.)
When Γ ¼ γ0;γ1;::: we often use the following more compact notation

Γ
1

E
ϕ

ψ
1

to indicate that we can discharge any of the γ∈ Γ.
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The principles governing how explanatory and plain arguments interact
are depicted in Figure 12.1. Officially, Figure 12.1 is understood as follows.
Assume given a collection of basic explanatory and plain arguments hEe ;Epi.
(One may think of these as collections of explanatory and plain inferences.)
The explanatory and plain arguments over hEe;Epi is the least hEe

0;Ep
0i such

Inclusion Any explanatory argument is a plain argument.

Assumption For any ϕ,   ϕ  is a plain argument from ϕ to ϕ

Γ ... Δi ...
... Di ...
... δi ...

D
ϕ

Ɛ
ϕ
ψ

Δ0 Δ1

ϕ0

Ɛ0 Ɛ1
ϕ1

D
ϕ

...    Γ

Δ0 Δ1

ϕ0

Ɛ0 Ɛ1

ϕ1

D
ϕ

...    Γ

Non-circularity If Ɛ is an explanatory argument from premisses ϕ, δ0, δ1,…
to ϕ, and D is a plain argument from Γ to ϕ and Di is a plain argument
to δi for each i, then for any ψ the following is a plain argument from
Γ, Δ0, Δ1,… to ψ:

plain argument to ϕ from ϕ0, ϕ1,…, Γ then
Plain Chaining If Ɛi is a plain argument from Δi to ϕi for each i, and D is a

is a plain argument from Δ0, Δ1,…, Γ to ϕ.

Chaining If Ɛi is an explanatory argument from Δi to ϕi for each i, and D is an
explanatory argument to ϕ from ϕ0, ϕ1,…, Γ then

is an explanatory argument from Δ0, Δ1,…, Γ to ϕ.

Figure 12.1 Arguments explanatory and plain
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that Ee � Ee
0, Ep � Ep

0 where hEe
0;Ep

0i is closed under the constraints in
Figure 12.1. Some explanation of these principles are in order.
(INCLUSION) is straightforward. If its being the case that Γ would explain

why ϕ is the case, then it is certainly true that if Γ is the case then ϕ is the
case. (ASSUMPTION) is standard natural deduction: we can write down any
assumption we like, with the result being a plain argument. (PLAIN CHAINING)
is also unproblematic: it simply tells us that we can chain together plain
arguments to get plain arguments.
(CHAINING) tells us that the result of chaining together explanations is

itself an explanation. One might be concerned about this if one thought that
explanation is not transitive. Whatever one thinks about that in general
there should be no problem here: explanatory arguments correspond to full
ground. If Γ grounds ϕ then Γ provides a full account of why it is the case
that ϕ. It is hard to see how there could be counterexamples to transitivity
for this notion of ground.31 In any case, since we want to capture mediate
ground we can always insist on closure under (CHAINING).
(NON-CIRCULARITY) requires further explanation. (We take take up some

more philosophical issues in }}6.1 and 6.2.) The goal is to have explanatory
arguments correspond to strict ground in the sense that ϕ0;ϕ1;::: < ϕ iff
each of the ϕi is the case and there is an explanatory argument from ϕ0;ϕ1;:::
to ϕ. Since (partial strict) ground is irreflexive it cannot be possible for some
ϕ;ψ0;ψ1;::: to be the case and for there to be an explanatory argument from
ϕ;ψ0;ψ1;::: to ϕ.

It will not do simply to say that there are no explanatory arguments from
ϕ;Γ to ϕ, for any Γ. The problem is that this tells us nothing about what
happens under the supposition that ϕ (partly) strictly grounds itself. And we
need to use the assumption that ϕ contributes to grounding itself in
subordinate arguments. (NON-CIRCULARITY) gets around this problem by
expressing the irreflexivity of ground as a closure-condition on the class of
strict and plain arguments. If, per impossibile, ϕ did contribute to explaining
ϕ, then we can conclude anything—albeit only plainly.32

31 In view of this, it is significant that the putative counterexamples to transitivity in
Schaffer (2012) are all couched in terms of partial ground. For responses to the counter-
examples see Raven (2013) and Litland (2013).

32 Note that (NON-CIRCULARITY) does not simply take the form:

Γ;ϕ
EðeÞ
ϕ

ψ
Non�circularity*

For suppose that there is an explanatory argument from ϕ (and some further premisses to
ϕ itself). Suppose further that ϕ follows plainly from Δ. We should be able to conclude

OUP CORRECTED PROOF – FINAL, 30/12/2016, SPi

Grounding Ground 293



Finally, the discharge function D behaves as one would expect.33

Three observations about these rules. First, none of these principles
ensure that there are any explanatory arguments: they only tell us how
explanatory arguments combine to form further explanatory arguments.
This is as it should be: it is not part of the job of a pure logic of ground to
ensure that there are cases of strict ground.

Second, note that the principles in Figure 12.1 respect the non-monotonicity
of ground: if there is an explanatory argument fromΔ to ϕ there need not be an
explanatory argument from Δ;ψ to ϕ.

Third, the principles deal exclusively with explanatory arguments; no
mention is made of explanatory inference. By developing a theory of
explanatory inference we would be able to develop a logic of immediate
ground. We refrain from doing so for two reasons. First, the previous
discussions of iterated ground have focused on mediate ground; it is con-
venient to follow suit. Second, there are some technical problems in express-
ing that mediate ground is the closure of immediate ground under Cut.
These problems can be solved, but the most convenient way of solving them
involve both weak34 and many-many ground.35 Developing this machinery
would be a distraction.

6.1 Is non-factive ground non-circular?

Explanatory arguments correspond to non-factive full ground in the sense
that ϕ0;ϕ1;::: non-factively ground ϕ iff there is an explanatory argument

anything from Δ;Γ. But since the argument from Δ to ϕ is merely plain if we use (PLAIN
CHAINING) we get the argument

Δ

ϕ Γ
EðpÞ
ϕ

This argument is only plain, which means we cannot apply Non-circularity*. (NON-
CIRCULARITY) gets around this by building some chaining into the rule.

33 To be pedantic. If ϕ is an instance of (ASSUMPTION) DðϕÞ ¼ ϕ. In an instance of
(CHAINING) DðϕÞ ¼ [iDðϕiÞ [ DðΓÞ, where DðΓÞ is the set of nodes decorated by the
propositions in Γ. In an instance of (NON-CIRCULARITY) DðψÞ ¼ [iDðδiÞ [ DðϕÞ.

34 For the notion of weak ground, see Fine (2012a, pp. 51–3; 2012b, pp. 3–4).
35 Since the notion of many-many ground is of considerable interest it is of some

importance that the ZGA can be extended to accomodate it. This can be done by treating
arguments as certain directed, acyclic hypergraphs, where we now allow the head of an arc
to be of any cardinality. This allows us to model inferences with several simultaneous
conclusions—where the conclusions are read conjunctively. This differs from standard
multiple-conclusion natural deduction—see e.g. Read (2000)—where one reads the
multiple conclusions disjunctively (as in multiple conclusion sequent calculus). I hope
to return to these matters elsewhere.
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from ϕ0;ϕ1;::: to ϕ. While (NON-CIRCULARITY) ensures that factive ground is
asymmetric, (NON-CIRCULARITY) does not ensure that non-factive full
ground is asymmetric. The reason is that the (NON-CIRCULARITY) does not
discharge the premisses on which ϕ depends.36

This is not an oversight: there is, arguably, nothing wrong with explana-
tory arguments from ϕ (and some further) premisses to ϕ itself. To see this
consider the following situation. Suppose that a is part of b but it is possible
that b instead is part of a. (a might be an organism that has entered into the
body of organism b where a is now fulfilling some function inside b’s body;
but it might equally well have been b that had entered into the body of a.)
Then, while the existence of a (partly) strictly grounds the existence of b, it is
possible that the existence of b (partly) strictly grounds the existence of a.
There would then be an explanatory argument from the claim that a exists
(and some further premisses Γa) to the claim that b exists. But there is also an
explanatory argument from the claim that b exists (and some further
premisses Γb) to the claim that a exists. But then, by (CHAINING), there is
also an explanatory argument from the claim that a exists (and the premisses
Γa;Γb) to the claim that a exists.
While (NON-CIRCULARITY) does not rule out arguments from ϕ (and some

Γ) to ϕ itself, (NON-CIRCULARITY) ensures that ϕ and Γ cannot jointly be the
case. In particular, (NON-CIRCULARITY) ensures that if there is an explanatory
argument from just ϕ to ϕ itself then ϕ is not the case.

6.2 Impossible explanations

We have taken the line that in cases like the above we have a genuinely
explanatory argument; it is just that it is impossible for its premisses to be
jointly true. One might balk at this, insisting that for Γ to ground ϕ (even
non-factively) it has to be possible for the propositions in Γ to be jointly
true. If one does so insist, the above case shows that one has to reject
(CHAINING) for explanatory arguments. Should we so insist?
I think this would be a mistake. In fact, not only do I think that there are

explanatory arguments with impossible premisses; I also think there are
explanatory inferences with impossible premisses. Above I mentioned that
I take conjunction introduction to result in explanatory inferences: this is so

even in a case like
ϕ ¬ϕ
ϕ∧¬ϕ

where both the premisses and the conclusion

of the inference are impossible. The reason is that I take the explanatoriness
of an inference to be a matter of the form of the inference; all inferences of

36 I am grateful to two anonymous reviewers for making me realize that I had to
address the issues discussed in this and the next subsection.
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that form are explanatory. It would take us too far afield fully to defend this
view here, so let me offer a more concessive response.37

We could agree to reserve the words “explanatory argument” (“infer-
ence”) for an argument (inference) where the premisses can be jointly true.
(Arbitrarily chaining together explanatory inferences gives us the shmexpla-
natory arguments.) While there cannot be an explanatory argument from ϕ
(and some premisses Γ) to ϕ itself there might be a shmexplanatory argu-
ment. What matters for my purposes is that if there is a shmexplanatory
argument from ϕ (and Γ) to ϕ something has gone wrong and we can
conclude that not all the propositions in Γ [ fϕg are true. Non-factive
ground in the present sense will then be correlated not with explanatory
arguments but with shmexplanatory arguments. Whenever a shmexplana-
tory argument has true premisses, however, it will be explanatory and so
the relationship between factive ground and explanatory arguments
is preserved.

I will continue to refer to explanatory arguments; if one has scruples one
should mentally substitute “shmexplanatory argument” for “explanatory
argument”.

7 . GROUNDING OPERATORS:
INTRODUCTION RULES

We can now give introduction rules for the non-factive grounding operator
). Since ϕ0;ϕ1;::: ) ϕ is meant to report that there is an explanatory
argument to ϕ from ϕ0;ϕ1;::: its introduction-rule looks like this:

37 Let me briefly mention some connections and issues. First, the notion of form is
much broader than logical form narrowly construed. For instance, I hold that the

inference
c is burgundy

c is red
(where c is a particular name) is explanatory in virtue of its

form. Secondly, there are important connections between the view that explanatoriness
is a matter of form and the principle of Formality (Rosen 2010, pp. 131–2; see also Audi
2012b, pp. 697–8) and Fine’s idea of “generic ground” (Fine 2016). Thirdly, for a
particular inference, we obtain its forms (plural) by replacing particular constituents in
the inference with schematic letters. The above burgundy–red inference has a form
x is burgundy

x is red
. Fourthly, a familiar point: an inference has many forms, and it need

not be explanatory under all its forms. (For instance, the burgundy–red inference is not

explanatory under the form:
ΞðxÞ
ζðxÞ .) Can we make sense of a notion of a “canonical” form

of an inference? And can the explanatoriness of a particular inference always be explained
by reference to the explanatoriness of its canonical form? I hope to discuss these issues at
greater length elsewhere. Thanks to Ralf Bader for discussion of these issues.
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ϕ0; ϕ1;:::
0; 1; 2; :::

E
ϕ

ϕ0; ϕ;::: ) ϕ
0; 1; 2;:::; )�Introduction

Here E is an explanatory argument and DðϕÞ is labeled by all and only the
propositions ϕ0;ϕ1;:::. In this case, we demand that we discharge all
the propositions on which ϕ depends; that is, Dðϕ0;ϕ1;::: ) ϕÞ ¼ ;.
(Note the similarity to the introduction rule for a strict conditional: )
stands to the explanatory arguments as the strict conditional stands to
deductively valid arguments (Scott 1971).)
We have to discharge all and only the premisses on which ϕ depends

because) is to capture non-factive full ground. If Δ ) ϕ is the case then Δ
(if true) provides a full explanation for why ϕ is the case; moreover, every
δ ∈ Δ is relevant to explaining why ϕ is the case. This is captured by
discharging all the δ ∈ Δ.
Since we are working with a deductive system with two types of argument

it does not suffice to specify that arguments of a certain form are to be valid;
we also have to specify whether arguments of the relevant form are to be
explanatory or merely plain. We will treat arguments of the form depicted in
the )-I rule as explanatory. What justifies us in so treating them?
The only reasonable alternative view would require more than an

explanatory argument E from Δ to ϕ in order to allow us to conclude
Δ ) ϕ; in addition, one would require the premiss that E is explanatory.
(If one adopted such a view the question would naturally arise what grounds
the truth that E is explanatory.)
We should resist this view. What is needed to conclude Δ ) ϕ is just an

explanatory argument E from Δ to ϕ; there is no need for the further truth
that E is explanatory. The requirement that we need this further truth is as
inappropriate as the demand that in order to apply conditional proof we
need not just a valid argument D from ϕ (and some further premisses) to ψ,
we need, in addition, the premiss that D is valid.
It might be helpful to think about this in terms of the machine picture.

To determine whether Δ ) ϕ we go to a machine that encodes every
explanatory inference. We then ask the machine to simulate the result of
being fed input Δ. The machine then procedes to run the simulation. If the
machine churns out ϕ it also churns out Δ ) ϕ and ends the simulation. At
no step in this process is it necessary for the machine to check whether the
inferences it carried out were explanatory.
Similarly, in order to check whether we can conclude the conditional

ϕ ! ψ we might go to a machine that encodes all the logically valid
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inferences and ask it to simulate the result of being fed the proposition ϕ. If
the machine churns out ψ, the machine stops its simulation and also churns
out ϕ ! ψ. At no point is it necessary for the machine to check whether the
inferences it carried out are logically valid.

Having ) in place we can state introduction rules for the factive
grounding operator <:

Δ Δ ) ϕ

Δ < ϕ
<�Introduction

Arguments of this form, too, will be explanatory. Note the similarity to
conjunction-introduction; note also that the following is an instance of <-
introduction: )ϕ

<ϕ
<�I

In this setting there is nothing mysterious about the notion of zero-
grounding. A truth ϕ is zero-grounded if there is an explanatory argument
from the empty collection of premisses to the conclusion ϕ. If there is an
explanatory argument E from Γ to ϕ, we can now show that the non-factive
grounding claim Γ ) ϕ is (factively and non-factively) zero-grounded.

Γ
1

E
ϕ

Γ ) ϕ
1;

) ðΓ ) ϕÞ
<ðΓ ) ϕÞ

)�I
)�I
<�I

We cannot yet show, however, that if Γ ) ϕ is true, then Γ ) ϕ is zero-
grounded. To do this we need elimination rules for ).

8 . GROUNDING OPERATORS:
ELIMINATION RULES

We use a proof-theoretic inversion principle (see e.g. Read 2010) to find
elimination rules. This principle says that the elimination rule(s) for an
operator λ should be such that if ϕ follows from each of the conditions
(given by the introduction rules) allowing us to assert λðψ0;:::;ψnÞ, then ϕ
should follow from λðψ0;:::;ψnÞ by an elimination rule. And conversely: if ϕ
follows from λðψ0;:::;ψnÞ by an elimination rule, then ϕ has to follow from
any of the conditions allowing us to assert λðψ0;:::;ψnÞ. (Where these latter
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conditions are given by the introduction rules.) Let us apply the principle to
the easy case of <.
According to the <-introduction rule, we are entitled to conclude Δ < ϕ

from premisses Δ and Δ ) ϕ. Anything that follows from those premisses
must therefore follow from Δ < ϕ. The elimination rule for< takes the form:

Δ
1

Δ ) ϕ
2

E
Δ < ϕ ψ

ψ
1; 2 : <�Elimination

This is to be read as follows. If E is an argument (explanatory or plain) to
conclusion ψ and we, in the course of E, have used the assumptions Δ and
Δ ) ϕ some number of times, we can conclude ψ from Δ < ϕ, discharging
any number of the assumptions Δ and Δ ) ϕ.
Arguments of this form are plain. The premisses of an application of<-E

do not explain its conclusion (or if they do this is not by dint of their being
the premisses of an application of <-E). In general, the premisses of an
application of an elimination rule do not explain its conclusion. We will
therefore treat all elimination rules as giving rise to plain arguments.
The elimination rule for ) is more interesting; a second technical

innovation is required to find elimination rules here. The introduction
rule for ) tells us that we are entitled to assert Δ ) ϕ if there is an
explanatory argument with premisses (all and only) Δ and conclusion ϕ.
Anything that follows from the existence of such an argument should follow
from Δ ) ϕ. How can we express the assumption that there exists an
explanatory argument from premisses Δ to conclusion ϕ?
We cannot—not without extending our conception of natural deduction:

we have to be able to assume and discharge arguments as well as propositions.
To do this we introduce the notion of a hypothetical argument.
An expression of the form Δ ⊩e ϕ is to stand for a hypothetical explana-

tory argument with conclusion ϕ and premisses (exactly) Δ.38 Such hypo-
thetical arguments Δ ⊩e ϕ only occur in contexts of the form:

Δ

ϕ
½Δ ⊩e ϕ�

38 For an application of, in effect, hypothetical arguments in a different context see
Schroeder-Heister (1984).
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Arguments of this form are explanatory. What this says is that by using a
hypothetical explanatory argument from Δ to ϕ one explanatorily infers ϕ
from Δ.

Even though hypothetical arguments can be assumed and discharged in
the course of an argument, they are not premisses on which the (sub)-
conclusions depend. (We assume an argument, not the existence of an
argument.) One may think of the hypothetical arguments as assumed rules
of inference. If ϕ follows from ψ by a rule of inference R, then if R were not
valid, ϕ would not have followed from ψ, but that does not mean that the
validity of the rule R is a premiss which has to be added to ψ in order to
derive ϕ. (We assume the rule, not the validity of the rule.)39

We can now write down the elimination rule for ):

Δ ⊩e ϕ
1

E
Δ ) ϕ ψ

ψ
1;)�Elimination

This is read as follows. Suppose we have an argument E with conclusion ψ in
the course of which we have relied on some instances of the hypothetical
argument Δ ⊩e ϕ. )-E allows us to conclude ψ from Δ ) ϕ discharging
any number of occurrences of the hypothetical argument Δ ⊩e ϕ.

For any given collection of explanatory and plain arguments hEe;Epi we
define the explanatory and plain arguments over hEe;Epi as the least class of
arguments hE0

e ;E
0
pi such that Ee � Ee

0
and Ep � E0

p and such that
hE 0

e;E
0
pi is closed under the rules in Figure 12.1 and the introduction and

elimination rules given above. The arguments of the Pure Logic of Iterated
Strict Full Ground (PLISFG) are the explanatory and plain arguments over
h;;;i.

39 Two reasons for insisting that we assume the argument and not its validity: first, if
we had to assume the validity of the argument Δ ⊩e ϕ in addition to the argument
Δ ⊩e ϕ we would be off on a regress à la Carroll (1895). (In fact this regress was noted
already in 1837! (Bolzano 1972, vol. 2, }199).) Second, the idea behind the hypothetical
arguments is that to assume Δ ⊩e ϕ is to assume that we can explain ϕ from Δ; if we had
to assume the validity of the argument Δ ⊩e ϕ and not just the argument Δ ⊩e ϕ this
would not work. For suppose we derive ϕ from Δ using the hypothetical argument
Δ ⊩e ϕ, and that ϕ now depends not just on Δ but also on the validity of Δ ⊩e ϕ. We
would now not have an explanation of ϕ from Δ; we would rather have an explanation of
ϕ from Δ together with the validity of Δ ⊩e ϕ.
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We say that ϕ follows from Γ in the PLISFG if there is Γ0 � Γ such that
there is an argument in PLISFG with premisses Γ0 and conclusion ϕ. We write
Γ ‘ ϕ if this is the case. PLISFG suffices to prove (almost) all the basic facts
about non-iterated factive ground.40

Proposition 8.1.

(i) Left factivity: Δ < ϕ ‘ δ, for all δ ∈ Δ.
(ii) Right factivity: Δ < ϕ ‘ ϕ.
(iii) Non-circularity: ðΔ;ϕÞ < ϕ ‘ ψ for all ψ.
(iv) Cut: Δ0 < ϕ0; Δ1 < ϕ1;:::; ðϕ0;ϕ1;:::;Γ < ϕÞ ‘ Δ0;Δ1;:::;Γ < ϕ.

Proof: Given the unfamiliarity of the system let us prove Proposition 8.1 (ii)
and Proposition 8.1 (iii), leaving the rest as an exercise for the reader. (To
prove Proposition 8.1 (i) and Proposition 8.1 (iv) we require vacuous
discharge.)

∆< ϕ

1
∆ ⇒ ϕ

2

3 , ⇒ -E
ϕ

ϕ

∆,ϕ< ϕ

1
∆ ,ϕ ⇒ ϕ

2
∆ ,ϕ

ϕ
Non-circularity

ψ
3

1, 2 <-E

, ⇒ -E
ψ

ψ

∆ [∆ ⊩e ϕ]3

ϕ

[∆, ⊩e  ϕ]3

1, 2 < -E

We can, moreover, prove the following two crucial principles about iterated
ground. (For readability, we write ; ) ϕ instead of ) ϕ; and similarly
for <.)

Proposition 8.2.

(i) 7 Δ ) ϕ ‘ ; < ðΔ ) ϕÞ
(ii) Δ < ϕ ‘ Δ < ðΔ < ϕÞ

40 It does not prove the principle of Amalgamation. See Appendix A for a way of fixing
this.
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Proof: The following derivation establishes Proposition 8.2 (i):

∆ ⇒ ϕ

1
∆ [∆ ⊩e ϕ]2

ϕ
1 , ⇒ -I

∆ ⇒ ϕ
⇒ -I

⇒ (∆ ⇒ ϕ )
< -I

< (∆ ⇒ ϕ )
2 , ⇒ -E

< (∆ ⇒ ϕ )

Note here how the hypothetical argument Δ ⊩e ϕ (labeled “2”) is not
counted as a premiss on which the sub-conclusion ϕ depends. This is
required in order for the applications of )-I to be justified: we have to
discharge all assumptions on which ϕ depends. Note also how we use<-I in
the case where Δ is empty.

The following establishes Proposition 8.2 (ii):

∆ < ϕ

2
∆ ⇒ ϕ

1
∆

5
∆

3
∆
ϕ

3 , ⇒ -I
∆ ⇒ ϕ

< -I∆ < ϕ
5 , ⇒ -I

Δ ⇒ (∆ < ϕ )
< -I

Δ < (Δ < ϕ )

∆ < (∆ < ϕ )

∆ < (∆ < ϕ )

4,⇒ -E
1,2 < -E

[∆ ⊩e ϕ]4

These results show that factive ground (<) behaves as it should; in particu-
lar, all the constraints on factive ground laid down in }2 above are satisfied
by <.41

For more technical detail about PLISFG, see Appendices A and B.

9. EVERY (TRUE) NON-FACTIVE GROUNDING
CLAIM HAS THE SAME GROUND

The following objection comes naturally to mind. “According to the ZGA

every (true) non-factive grounding claim has the same ground—indeed, the
same immediate ground—namely the empty one. How could this be?

41 Note that we do not have ðΓ;ϕ ) ϕÞ ‘ ψ, for each ψ. This, as we argued in }6.1
above, is as it should be.
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Clearly, the explanation for why p ) p∧ p is the case differs from the
explanation for why p ) p ∨ p is the case?”42

This criticism is misguided: while every true non-factive grounding claim
Δ ) ϕ has the same (immediate) strict full ground—the empty ground—
different true non-factive grounding claims are (immediately) zero-
grounded in different ways. This is easiest to see by looking at the machine
picture. When the machine is asked to simulate being fed p it will churn out
both p ) p ∧ p and p ) p ∨ p. But there is no reason to think that the
simulations the machine runs in order to reach these outputs are the same;
in particular, the two simulations might comprise the application of differ-
ent mechanisms.
In the framework of the explanatory arguments we can see that the

objection trades on an ambiguity in what is meant by “explanation.” In
this framework there are two things one can mean by an explanation of ϕ:
one can mean a collection of propositions ϕ0;ϕ1;::: from which ϕ can be
derived in an explanatory way; alternatively, one can mean an argument
witnessing that ϕ can be derived in an explanatory way. In the former sense
p ) p ∧ p and p ) p ∨ p have the same explanation; in the latter sense
they have different explanations.
To see this consider Figure 12.2. This depicts the arguments establishing

that ) ðp ) p∧ pÞ and ) ðp ) p∨pÞ. These arguments differ, amongst
other things, in that the first contains an application of ∧ -introduction
while the second contains instead an application of ∨-introduction. (We
assume that ∨-introduction and ∧ -introduction are rules of explanatory
inference.)
What is depicted in Figure 12.2 is a situation where two distinct proposi-

tions have exactly the same grounds but are grounded in different ways. But
there are also situations where distinct propositions have the same grounds
and are grounded in the same way. Figure 12.3 depicts such a situation. In
this case not only do ) ðp;q ) p∧ qÞ and ) ðr;s ) r ∧ sÞ have the same

1 1 1

1, ⇒-I 1, ⇒-I

p p p
p ∨ p p ∧ p

p ⇒ p ∧ p p ⇒ p ∨ p

 ∧-I

⇒-I

∨-I

⇒ (p ⇒ p ∧ p) ⇒ (p ⇒ p ∨ p)
⇒-I

Figure 12.2 Different ways

42 Dasgupta (2014b, p.573) criticizes the views of deRosset (2013) and Bennett
(2011) along these lines.
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ground—the empty one—but they also seem to be grounded in the empty
ground in the same way. We can make sense of this in terms of the machine
picture. In the two cases depicted in Figure 12.3 the same mechanisms are
applied (and they are applied in the same order) but the applications of the
mechanisms differ since p;q are different propositions from r;s. (It is for this
reason that we have taken an arc A to represent the application of a
mechanism not the mechanism itself.)

An advantage of the framework of explanatory arguments is that it
promises us the means for defining the notion of a way of grounding. For
consider a particular explanatory argument. Uniformly replace items in that
argument with schematic letters. This gives us an argument form. If every
argument of that form is explanatory the argument form is an explanatory
argument form. We may identify the ways of grounding with the explana-
tory argument forms. As is easily seen, the two arguments in Figure 12.3
have the same explanatory form.

We can now deal with a further objection to the ZGA. Dasgupta (2014b,
pp. 531–2) observes that there are patterns in grounding. (For instance,
all conjunctions are alike in terms of how they are grounded.) An account
of ground should provide us with an account of these patterns. Armed with
the notion of a way of grounding we have a very simple explanation: the
patterns in grounding are the result of different propositions being grounded
in the same way.43

10. COMPARISON WITH THE
STRAIGHTFORWARD ACCOUNT

The SFA, recall, holds that when Γ < ϕ, then Γ < ðΓ < ϕÞ; unlike the ZGA,
however, the SFA does not hold that Γ < ϕ is partly grounded in Γ ) ϕ.
Why should we prefer the ZGA to the SFA? The question has a false

p ∧ q
p 1 q 2

∧-I

p, q ⇒ p ∧ q
⇒(p, q ⇒ p ∧ q)

1,2, ⇒-I
⇒-I

r 1 s 2

r ∧ s ∧-I

r, s ⇒ r ∧ s 1,2, ⇒-I

⇒ (r, s ⇒ r ∧ s)
⇒-I

Figure 12.3 Same way

43 I believe the notion of a way of ground is of great importance both for the theory of
ground and for the applications of ground. More has to be done to put the talk of ways of
grounding on a rigorous footing, but this is not the place to do this. The issues that arise
are very closely related to the issues of form mentioned in footnote 37.
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presupposition: on my favored way of conceiving of the relationship
between the SFA and the ZGA they are not in competition.
Let us first observe that the logical techniques developed for the ZGA can

equally well be employed in developing a logic of iterated ground that is in
accord with the SFA. A defender of the SFA could, for example, give an
introduction rule for an operator <þ as follows:

Δ

E

1

Δ ϕ

Δ <þ ϕ
1; <þ�I

Here E is an explanatory argument and Δ are all and only the premisses on
which ϕ depends. This rule in effect compresses the)�I and<-I rules into
one rule.44 Is there something wrong such an introduction rule for <þ?
In my view there is nothing wrong with an operator governed by such an

introduction rule. We should just insist that the operators <þ and <
capture different notions of factive ground. The propositions Δ < ϕ and
Δ <þ ϕ are, after all, readily distinguished in terms of their grounds: Δ < ϕ,
but not Δ <þ ϕ, is partially grounded in Δ ) ϕ. We may also describe the
difference in terms of explanatory arguments: while one gives an explanatory
argument from Δ to ϕ as part of explanatorily inferring Δ <þ ϕ, the claim
that there is such an explanatory argument (that is: Δ ) ϕ) is not part of the
grounds for Δ <þ ϕ.
One might, however, worry that the possibility of introduction rules like

the ones for <þ above present a problem for the ZGA: could one, by holding
that <þ was the “real” notion of factive ground, give a satisfactory solution
to the Status Problem without invoking either non-factive ground or zero-
grounding?
This would be the wrong conclusion to draw—for two reasons. First, if

one accepts the framework of explanatory arguments it is hard to reject the
notion of non-factive ground. And if one accepts the notion of non-factive

44 One might wonder why the rule should not be given as follows instead:

Δ

E
ϕ

Δ <þ ϕ
1; <þ�I

(Here Δ are all and only the premisses on which ϕ depends and E is explanatory.) The
difference between the two rules is that in the latter one, Δ is not discharged. The reasons
for this are purely technical: it makes finding elimination rules easier and it avoids certain
complications in the statement of (CHAINING).
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ground, a Status Problem like the one in }3 arises for non-factive ground.
This presents the defender of the SFA with a challenge: if true non-factive
grounding claims are not zero-grounded, in what are they grounded?

Second, it turns out that even if we reject the notion of non-factive
ground and treat factive ground as <þ we still need zero-grounding. To
see this, consider negated grounding claims.45

Suppose that the object a occurs in the truth ϕ and that while each
δ ∈ Δ is the case, ¬ðΔ < ϕÞ is also the case. (For a concrete example: let a
be Socrates, ϕ the truth that Socrates was Greek, and Δ the truth that the
Holy Roman Empire was dissolved in 1806.) If ¬ðΔ < ϕÞ is true and
ungrounded then the object a would be O-fundamental. If the Status
Problem is to be satisfactorily solved, true negated grounding claims, too,
have to be grounded.

The defenders of SFA have had nothing to say about such negated
grounding claims.46 Let us first consider what a defender of the ZGA could
say. For a defender of the ZGA the immediate full grounds of Δ < ϕ are Δ
and Δ ) ϕ taken together. It is plausible to hold that to ground ¬ðΔ < ϕÞ is
either to ground ¬δ for a δ ∈ Δ or to ground ¬ðΔ ) ϕÞ.47 In the envisaged
scenario, each δ∈Δ is true; what has to be grounded, then, is ¬ðΔ ) ϕÞ.

The natural move is to say that such true negated non-factive grounding
claims are zero-grounded. One is, to be sure, owed a justification for treating
such negated non-factive grounding claims as zero-grounded; but the
machine and graph-theoretical pictures of }5 provide a natural justification.

In terms of the machine picture: when the machine is fed no input, it
simulates being given the propositions Δ as input. The machine then tries to
find an arc from Δ to ϕ. When it has tested all the arcs A with tðAÞ ¼ Δ and
has noted that none of them have hðAÞ ¼ ϕ, the machine reports back that
¬ðΔ ) ϕÞ. Since the machine was fed no input ¬ðΔ ) ϕÞ will be zero-
grounded.48

45 I should stress that negated—more generally, embedded—grounding claims cause
problems even if one does not accept the present framework of explanatory arguments.

46 As admitted by deRosset (2013, p. 16).
47 The simplest way of dealing with negation in the logic of ground is to follow a

broadly “bilateralist” strategy and give separate introduction and elimination rules for
negated and unnegated propositions; for this strategy, see, e.g. Fine (2012a, p. 63)
A different, perhaps preferable, treatment of negation is pursued in Fine (2016).

48 How does the machine know that it has inspected all the arcs? We might imagine
that in running the simulation the arcs are ordered in such a way that each arc occurs
infinitely often but such that if an arc A with tail Δ occurs both at position t and at a later
position t

0
, then all arcs with tail Δ have occurred at least once before t

0
. If, having found

no arc B with tail Δ and head ϕ, the machine inspects an arc it has previously inspected, it
aborts the simulation and outputs ¬ðΔ ) ϕÞ.
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If one accepts the connection between grounding and explanatory argu-
ments developed in this paper one would have to exhibit natural introduc-
tion and elimination rules for negated non-factive grounding claims ensuring
that true non-factive grounding claims are zero-grounded. This can in fact
be done but we cannot go into the details here.49

One can say something similar about <þ: if Δ is true and ¬ðΔ <þ ϕÞ is
also the case, then ¬ðΔ <þ ϕÞ is (immediately) zero-grounded. In terms of
the machine picture the account is much the same. The machine is fed no
input and simulates the result of being fed Δ as input. It runs through all
arcs with tail Δ. After observing that there is no arc with tail Δ and head ϕ,
the machine churns out the truth ¬ðΔ <þ ϕÞ.
Holding that factive ground behaves like <þ does not obviate the need

for zero-grounding.50

11. CONCLUDING REMARKS

In this paper I have developed a novel account of iterated grounding—the
ZGA—and I have showed how—by taking a notion of explanatory argument
as basic—one can develop a logic of iterated ground. No matter what one
thinks of the metaphysics of the ZGA, the logical techniques developed here
should prove useful for others interested in the logic of ground. In closing let
me mention some areas where more work needs to be done.
First, more needs to be said about explanatory inference (as opposed to

argument). Explanatory inference is of interest because of its connection to
immediate ground and having a logic of immediate ground would be of
considerable interest.
Second, more needs to be said about the notions of a way of grounding

and the form of an explanatory argument. I believe that it is only by geting
clearer on these notions that we, in a principled manner, can develop fine-

49 In this paper we have limited ourselves to simple hypothetical arguments from some
propositions to a proposition. To give a rule for negated grounding claims we would have
to be able to assume rules. In particular, if we know that ¬ðΔ ) ϕÞ we should be entitled
to assume a rule that lets us conclude the absurd from any explanatory argument from Δ
to ϕ. That is, we have to assume not just arguments that allow us to pass from (sets of)
propositions to propositions, but also rules that allow us to pass from arguments (or more
generally: rules) to propositions. By extending the machinery of higher-order rules in
Schroeder-Heister (1984) to a setting where we have both explanatory and plain argu-
ments this can be done.

50 Thanks to an anonymous reviewer for pressing me to get clearer on the relationship
between the ZGA and the SFA.
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grained conceptions of ground—ones, for example, where a proposition p
strictly grounds the conjunction p∧ p.

Third, we have restricted our attention to the pure logic of ground. To fully
vindicate the framework we have to be able to extend the framework of explana-
tory arguments to deal with the impure logic of ground. Of particular philosoph-
ical interest is extensions dealing with negation and the conditional. The case for
the ZGA would be greatly strengthened if this could be done in a natural way.

Fourth, more must be said about the relationship between essence and
ground. Many philosophers have held that there is a deep connection
between essence and ground.51 I believe that the ZGA allows us to adopt a
distinctive view on this relationship; I end by baldly stating that view.

Those who accept that there is a connection between essence and ground
have held that it is certain truths about grounding that are essentially true.
For instance, Rosen (2010, p. 130) holds that it is essential to disjunction
that for all propositions p, if p is true then p grounds p ∨ q. In my view this
is a mistake: what is essential to disjunction is not a truth, but rather an
explanatory inference. (In this case, the explanatory inferences from p to
p ∨ q and from p to q ∨ p.)52

Jon Erling Litland
University of Texas, Austin
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(2010) and Dasgupta (2014b) have even held that truths about ground are always partly
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52 The idea that what is essential might be an inference is not unprecedented: Fine
suggested that we should think of “the nature of the logical concepts as being given, not
by certain logical truths, but by certain inferences” (Fine 1994, pp. 57–8). The idea is
developed in greater detail in Correia (2012). What is new in the present setting is the
distinction between explanatory and merely plain inference and the claim that what is
essential are certain explanatory inferences.

OUP CORRECTED PROOF – FINAL, 30/12/2016, SPi

308 Jon Erling Litland



APPENDIX A PL ISFG AND PLSFG

The Pure Logic of Strict Full Ground—PLSFG—is the subsystem of Fine’s Pure Logic
of Ground—PLG—that concerns only strict full ground. Its rules are depicted in
Figure 12.4.

PLSFG is a sequent system: in PLSFG an expression of the form Γ < ϕ is a sequent not
a sentence and so a claim of iterated ground would be ill-formed.

There is an obvious translation of PLSFG into the language of PLISFG: we translate
the sequent Δ < ϕ by the formula Δ < ϕ. Proposition 8.1 ensures that PLISFG proves
the translations of Non-circularity and Cut. It turns out that we cannot derive the
translation of the Amalgamation principle. In fact, Amalgamation is arguably not
correct. To see this, consider the following situation. Suppose the inferences from ψ
(and θ) to ψ ∨ θ are explanatory; and suppose that these are the only explanatory
inferences with conclusion ψ ∨ θ. Suppose further that there is an explanatory
inference from ϕ to ψ but no explanatory inference from ϕ to θ. Then there is an
explanatory argument from ϕ to ψ∨θ and an explanatory argument from ψ to ψ∨θ,
but there is no explanatory argument from ϕ;ψ to ψ∨θ. So while ϕ ) ψ∨θ and ψ )
ψ∨θ we do not have ϕ;ψ ) ψ ∨ θ.53,54

To facilitate comparison with Fine’s system we will, however, insist on Amal-
gamation. We validate Amalgamation by using “amalgamation-friendly” ) rules—
see Figure 12.5. Say that Δ0;Δ1;:::;i ∈ I is a covering of Δ if [i∈ IΔi ¼ Δ. In the
amalgamation-friendly )-E rule the i0;i1;:::;j0;j1;::: enumerate the coverings of Δ.

We now (re)define PLISFG as follows. The arguments of PLISFG are the least classes of
explanatory and plain arguments closed under the constraints in Figure 12.1, the
amalgamation-friendly) rules and the previous rules for<. Let ‘ be the provability
relation in PLISFG and let ‘PLSFG be the provability relation in PLSFG.

Amalgamation

Cut

Non-circularity
∆, ϕ < ϕ 

⊥

∆0 < ϕ0 ∆1 < ϕ1 . . . ϕ0, ϕ1, . . . , Г < ϕ
∆0, ∆1, . . . , Г < ϕ

∆0 < ϕ ∆1 < ϕ ...
∆0, ∆1, . . .  < ϕ

Figure 12.4 Pure Logic of Strict Full Ground

53 Correia (2014, n. 17) makes the same observation, using a different example.
54 Not all applications of Amalgamation are problematic. If ϕ;ψ are as above, we

should have ϕ;ψ ) ψ∧ ψ. The simplest way of getting a satisfactory treatment is by
having the grounding operators take multisets on the left. Then since ψ;ψ ) ψ∧ ψ we
can derive ϕ;ψ ) ψ∧ ψ using Cut; in contrast, since we do not have ψ;ψ ) ψ∨θ we
cannot derive ϕ;ψ ) ψ∨θ using Cut.
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It is easy to show that the translation of the rules of PLSFG are derivable in PLISFG:
PLISFG is an extension of PLSFG. We can show that PLISFG is a conservative extension of
the (relevant subsystem of ) Fine’s Pure Logic of Ground. This provides some
support for the ZGA. Since it is plausible that PLSFG is the correct logic of strict full
ground, this conservativeness result shows that by accepting the ZGA one is not
thereby forced to accept any claims of non-iterated ground that one was not
independently committed to accepting.

In order to establish this conservativeness result we develop a graph-theoretic
semantics for PLSFG and show that any model for PLSFG not verifying a certain sequent
Δ < ϕ can be extended to a model for PLISFG not verifying the corresponding
statement Δ < ϕ.55

APPENDIX B GRAPHICAL SEMANTICS

The semantics will be based on the directed, pointed hypergraphs introduced in }5.
We impose the following demands on the hypergraphs.

A directed hypergraph G ¼ hV;A;t;hi is chained if for all arcs B;A0;A1;::: such
that tðBÞ ¼ fv0;v1;:::;w0;w1;:::g and hðAiÞ ¼ fvig, for each i, there is an arc C with
tðCÞ ¼ tðA0Þ [ tðA1Þ [⋯ [ fw0;w1;:::g and hðBÞ.56

A directed hypergraph G ¼ hV;A;t;hi is amalgamating if whenever fAigi∈ I⊂A
are such that hðAiÞ ¼ hðAjÞ, for all i;j ∈ I there is an A ∈ A such that
[i∈ I tðAiÞ ¼ tðAÞ and hðAiÞ ¼ hðAÞ, for each i. We say that a directed hypergraph
G ¼ hV;A; t; hi is cyclic if there are hyperarcs A0;A1;:::;An in A such that hðA0Þ �
tðA1Þ; :::;hðAn�1Þ � tðAnÞ and such that hðAnÞ∈ tðA0Þ. It is acyclic otherwise. Let a

∆0 ∆1 ...

ϕ ϕ ...
Ɛ0 Ɛ1 ...

∆0,∆1,...  ⇒ ϕ ⇒-I

∆ ⇒ ϕ ψ . . . ψ ...
ψ i0, i1,..., j0, j1,..., ⇒-E  

∆i0  ⊩e ϕ ∆i1  ⊩e ϕ    ... ∆j1  ⊩e ϕ . . .∆j0  ⊩e ϕ
i0 i1. . . j0 j1 ...

Figure 12.5 Amalgamation-Friendly Rules

55 I should stress that the graph-theoretic semantics has some artificial features—for
instance, the treatment of < and ) is “written in by hand.” I hope to provide a more
illuminating semantics elsewhere; for the purposes of establishing the conservativity
results these artificial features are, in any case, unproblematic.

56 This ensures that Cut and Chaining are taken care of in a simple way.
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graph G ¼ hV ;A; t ; hi be given and let V0⊂V be some vertices. The closure of V0

under A is the least W � V0 such that if V1 � W and tðAÞ ¼ V1 then hðAÞ � W .
A pointed directed hypergraph is a tuple G ¼ hV ; F;A; t; hi where hV ;A;t;hi is a

directed hypergraph and F⊂V is a set of designated vertices such that

(i) F is closed under taking heads, that is, if F0 � F and tðAÞ ¼ F0, then hðF0Þ∈ F .
(ii) G restricted to F is acyclic.57

We say that F is the actual world of G. Note that we do not require that G is
acyclic: we only require that G is acyclic on the actual world. From now onwards, we
refer to acyclic, amalgamating, chained, pointed, directed hypergraphs simply as
“hypergraphs.”

We will interpret PLSFG over hypergraphs. More precisely, let the sequents of PLSFG
be formed from the set of atomic letters ℙ ¼ fp0;p1;:::g. A model for PLSFG is a pair
hG;½½ ��i where G ¼ hVG;FG;AG;tG;hGi is a hypergraph and ½½ �� : ℙ ! FG is function
from the atomic letters into F . If Γ is a collection of atomic letters then ½½Γ�� is
[γ∈ Γγf½½γ��g. We call such a hG;½½ ��i a graph-model.

Truth and consequence are defined as follows:

• G ⊨ Γ < ϕ iff there is A∈A such that tðAÞ � ½½Γ��, and hðAÞ ¼ ½½ϕ��.
• Let S be a set of sequents and let α be a sequent. We say that α is a consequence of
S (S ⊨ α) if for all graph-models hG;½½ ��i if each β∈ S is true in hG;½½ ��i then α is true
in hG;½½ ��i.
It is straightforward to establish the following:

Proposition B.1. PLSFG is sound with respect to graph-models.

Proof: Obvious.

Proposition B.2. PLSFG is complete with respect to graph-models.

Proof: Let S be a collection of sequents and α a sequent such that S⊬α. We define a
model hG;½½ ��i as follows. We let V ¼ fp : p is an atomg. We put
A ¼ fΓ < ϕ : S ‘ Γ < ϕg. We put tðΓ < ϕÞ ¼ Γ and hðΓ < ϕÞ ¼ ϕ. We put
½ϕ� ¼ ϕ. Let G ¼ hV ;F;A;h;ti. It is straightforward to check that hG;½½ ��i is a model
of S in which α is not true.

When we deal with iterated ground cardinality problems arise. We will assume
that the set of ℙ of propositional atoms is strongly inaccessible. Say that ℙ has
cardinality κ. The sentences of PLISFG over ℙ are generated as follows. Whenever Γ is
a set of sentences of cardinality < κ and ϕ is a sentence, then Γ ) ϕ and Γ < ϕ are
sentences.

To give a semantics for iterated ground we introduce the following notion.
A graph with operators is a tuple G ¼ hV ;F;A;h;t;<; )i where hV ;F;A;h;ti is a
hypergraph satisfying the following constraints:

(i) V is a strongly inaccessible cardinal.

57 That is, the subgraph generated by A over F is acyclic.
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(ii) jtðAÞj < jV j for all A∈A.

< and ) are one-one functions V <jV j ! V such that

(iii) if A is an arc then there is B ∈A such that tðBÞ ¼ � and hðBÞ ¼ tðAÞ ) hðAÞ;
(iv) if X ) v ∈ F then there is A∈A such that tðAÞ ¼ X and hðAÞ ¼ v;
(v) if tðAÞ � F then tðAÞ<hðAÞ∈ F and there is B such that

tðBÞ ¼ tðAÞ [ tðAÞ ) hðAÞ with hðBÞ ¼ tðAÞ<hðAÞ;
(vi) if X<v∈ F then X � F and there is A such that tðAÞ ¼ X and hðAÞ ¼ v.

Remark B.3. The reason for requiring V to have strongly inaccessible cardinality is
that it is very natural to assume the (Distinctness Principle):

(Distinctness Principle) If V0 6¼ V1 or v0 6¼ v1 then ðV0)v0Þ6¼ðV1)v1Þ.
(The truth that V0 non-factively ground v0 and the truth that V1 non-factively
ground v1 seem distinct.)

If there are κ-many vertices a graph-model might have as many as 2κ-many arcs.
The (Distinctness Principle) would then ensure that there are 2κ many vertices after
all. We therefore impose some constraints on the graphs.

A model for PLISFG is a pair hG;½½ ��i such that G is a graph with operators and ½½ �� :
ℙ ! VG is a function from the propositional atoms into the vertices of G. We here
demand that V has greater cardinality than the set of sentence letters.

We extend the interpretation function from the atomic letters to arbitrary
formulae in the obvious way.

• ½½Γ ) ϕ�� ¼ ½½Γ�� ) ½½ϕ��
• ½½Γ < ϕ�� ¼ ½½Γ��<½½ϕ��

Hypothetical arguments are dealt with as follows: If Γ ⊩p ϕ is a plain hypothetical
argument we say that G validates Γ ⊩p ϕ if whenever ½½Γ�� � F , ½½ϕ�� � F . If Γ ⊩e ϕ is a
hypothetical explanatory argument we say that G validates Γ⊩eϕ if there is an arc
A∈AG with ½½Γ�� ¼ tðAÞ and ½½ϕ�� ¼ hðAÞ.

The following soundness theorem is easily established:

Proposition B.4. Let explanatory and plain arguments hEe;Epi be given.

(i) If there is a plain argument from Γ to ϕ in PLISFG over hEe ;Epi then for all models G
validating hEe ;Epi we have that if ½½Γ�� � F then ½½ϕ��∈ F .

(i) If there is an explanatory argument from Γ to ϕ in PLISFG over hEe ;Epi then for all
models G validating hEe ;Epi there is an arc A such that tðAÞ ¼ ½½Γ�� and hðAÞ ¼ ½½ϕ��.

Proof: We prove the claims simultaneously by induction on the complexity of the
arguments witnessing that there is a plain (explanatory) argument from Γ to ϕ.

One can also establish the following completeness theorem:

Theorem B.5. Let hEe;Epi be some explanatory and plain arguments. If α is
a statement that is not derivable from hEe;Epi then there is a graph with
operators G and an evaluation ½½ �� such that α is not true over hG;½½ ��i.
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Proof: By a straightforward extension of the proof of Proposition B.2.
To establish that PLISFG is a conservative extension of PLSFG we establish the

following proposition. (As stated we require a proper class of inaccessible cardinals.)

Propositon B.6. Let G ¼ hV;F;A;t;hi be a hypergraph. There is a graph with
operators Gþ ¼ hV þ; Fþ; Aþ; ) ;<;tþ; hþi such that

(i) V � V þ;A � Aþ;h � hþ;t � tþ

(ii) Aþ restricted to V is A;

(iii) hþ;tþ restricted to V is h;t .

Sketch: Let κ be the cardinality of V . Let λ be the least strongly inaccessible cardinal
> κ. We extend G to a graph with operators in λ-many stages G ¼ G0;G1;:::;Gγ;::: in
the obvious way.

Theorem B.7. Let S be a collection of sequents in the language of PLSFG and let
Γ < ϕ be a sequent in the language of PLSFG. If S⊬PLSFG Γ < ϕ then
S⊬PLISFG Γ < ϕ.

Proof: Let hG;½½ ��i be a model witnessing that S⊬ Γ < ϕ. Say that VG has cardinality κ.
We can extend G to a graph with operators Gþ ¼ hV þ; Fþ; Aþ; ); <; tþ; hþi
satisfying the conditions in Proposition B.6. The interpretation ½½ �� is extended to
an interpretation ½½ ��þ of the language of PLISFG in the obvious way. The restriction of
Aþ to V is A. It follows that Γ < ϕ is not true in hGþ;½½ ��þi.
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