


Topics in Philosophical Logic

a dissertation presented

by

Jon Erling Litland

to

The Department of Philosophy

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

in the subject of

Philosophy

Harvard University

Cambridge, Massachusetts

May 



© Jon Erling Litland

All rights reserved.



Warren Goldfarb Jon Erling Litland

Topics in Philosophical Logic

Abstract

In “Proof-Theoretic Justification of Logic”, building on work by Dummett

and Prawitz, I show how to construct use-based meaning-theories for the

logical constants. The assertability-conditional meaning-theory takes the

meaning of the logical constants to be given by their introduction rules;

the consequence-conditional meaning-theory takes the meaning of the log-

ical constants to be given by their elimination rules. I then consider the

question: given a set of introduction (elimination) rules R, what are the

strongest elimination (introduction) rules that are validated by an assertabil-

ity (consequence) conditional meaning-theory based on R? I prove that the

intuitionistic introduction (elimination) rules are the strongest rules that

are validated by the intuitionistic elimination (introduction) rules. I then

prove that intuitionistic logic is the strongest logic that can be given either

an assertability-conditional or consequence-conditional meaning-theory.

In “Grounding Grounding” I discuss the notion of grounding. My discus-

sion revolves around the problem of iterated grounding-claims. Suppose that

∆ grounds φ; what grounds that ∆ grounds that φ? I argue that unless we

can get a satisfactory answer to this question the notion of grounding will be

useless. I discuss and reject some proposed accounts of iterated grounding

claims. I then develop a new way of expressing grounding, propose an

account of iterated grounding-claims and show how we can develop logics

for grounding.

In “Is the Vagueness Argument Valid?” I argue that the Vagueness Ar-
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gument in favor of unrestricted composition isn’t valid. However, if the

premisses of the argument are true and the conclusion false, mereological

facts fail to supervene on non-mereological facts. I argue that this failure

of supervenience is an artifact of the interplay between the necessity and

determinacy operators and that it does not mean that mereological facts

fail to depend on non-mereological facts. I sketch a deflationary view of

ontology to establish this.
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Part I

Proof-theoretic Justification of

Logic





1
Intuitionistic Rules

. Introduction

According to Dummett (see e.g., his , , , ), there are two

points where our linguistic practice makes contact with the extralinguistic

world. First, we verify statements on the basis of observation; second, we

draw ultimate conclusions from our statements—conclusions which have

consequences for action. For Dummett our practice of verifying statements

and our practice of drawing ultimate conclusions from statements are fea-





tures which are manifest in our use of language. Dummett suggests that

each of these aspects of use can be the central notion of a meaning-theory;

the former leading to ‘verificationist’ meaning-theory, the latter to a ‘prag-

matist’ meaning theory. Such meaning-theories would not be subject to the

manifestation argument.

In a verificationist meaning theory the meaning of a statement φ is spec-

ified by laying down what counts as a canonical verification of φ. In a

pragmatist meaning theory the meaning of a statement φ is specified by

specifying which ultimate consequences can be canonically derived from

φ.

Central to Dummett’s philosophy is the concern that these two aspects

of use have to be in harmony. Our actual usage can be criticized if they’re

not. For instance, our actual usage can be criticized if we draw conclusions

from our statements which aren’t licensed by the meaning conferred on the

statements by their verification conditions. Depending on whether we adopt

a verificationist or a pragmatist meaning theory we can give the following

definitions of harmony:

Verificationist-Harmony Our usage is harmonious in the verificationist sense

iff whenever we take ourselves in a position to conclude φ from Γ ,

any class C of canonical verifications of Γ can be transformed into a

canonical verification f (C) of φ;

What are these ultimate consequences? Formally, we’ll model them as atomic sentences,
but how are they supposed to be interpreted? One way of interpreting such an atomic
sentence is by specifying which actions it justifies us in performing. Prawitz () suggests
that we rather treat the meaning of an atomic sentence p as being given by the class C of
observations such that if one accepts p one would not be surprised to make any observation
in C. As far as which logic turns out to be validated this difference doesn’t make a difference.





Pragmatist-Harmony Our usage is harmonious in the pragmatist sense iff

whenever we take Γ to verify φ, then any ultimate conclusions which

can be canonically derived from φ already can be canonically derived

from Γ .

It is an enormous task to construct verificationist (pragmatist) meaning-

theories for a sizable fragment of natural language; it is an even larger task to

verify whether the two aspects of our language are in harmony. Discussions

of harmony have therefore often focused on the simple case of logic. A main

reason for this is that if we formulate logic in natural deduction style we may

take the introduction rules for the connectives to determine what counts

as canonical verifications; similarly we may take what counts as canonical

consequences of a formula φ to be determined by the elimination rules for

the connectives in question. The apparatus of (structural) proof-theory can

then be used to give precise accounts of harmony.

For verificationist meaning-theory the leading idea goes back to Gentzen:

the introductions represent, as it were, the “definitions” of the symbols con-

cerned, and the eliminations are no more, in the final analysis, than the conse-

quences of these definitions. (Gentzen, , p. )

Since the meaning of a logical constant is taken to be conferred by the

introduction rules for that constant, we’ll dub the account of harmony which

results from this introduction (i)-harmony.

What does it mean to say that the introduction represent the “definitions”

of the connectives? On the verificationist approach the meaning of a sentence

is given by specifying the class of canonical proofs of that sentence; the basic

Dummett calls introduction-harmony the ‘upwards justification procedure’.





idea—refined and made rigorous in § .—is that a canonical proof of a

sentence with a logical connective λ as the dominant operator ends with an

application of an introduction rule for λ.

A pragmatist meaning theory, on the other hand, would take the meaning

of the logical constants to be given by their elimination rules, with the

introduction rules as “consequences”. Since we now take the elimination

rules for granted we’ll dub this approach elimination (e) harmony. Dummett

puts the guiding idea as follows:

The underlying principle of the inverse procedure will be that an argument

is valid if any ultimate consequence that can be drawn in a canonical manner

from the conclusion can already be drawn in a canonical manner from the

premisses. (Dummett, , p. )

The bulk of this paper consists in the rigorous development of both verifi-

cationist and pragmatist meaning-theories. Whereas broadly verificationist

meaning theories have been studied a fair bit, the present approach is more

general and we obtain various completeness results for intuitionistic logic.

Pragmatist meaning-theories have not been rigorously developed before

(though see Queiroz, ); Dummett’s sketch (ch.  Dummett, ) does

not work (see § ..). The investigation culminates in the result that, in a

precise sense, intuitionistic logic is the strongest logic that can be validated

by either a verificationist or a pragmatist meaning-theory. In particular,

classical logic isn’t harmonious. This goes significantly beyond previous

work where one, by and large, have been content to note that this or that

formulation of classical logic is inharmonious.

For a lengthy discussion of the philosophical underpinnings of this, the discussion of
the “fundamental assumption” in (Dummett, , ch. ) is invaluable.





Before I embark on the technical details, some discussion of the philo-

sophical importance of the technical results are in order.

. Philosophical Remarks

What’s the philosophical importance of the technical results to come?

First, we can construct pragmatist meaning-theories, that is, meaning-

theories based on elimination rules! This is of some importance for the

project of developing “anti-realist” semantics. Verificationist meaning-

theories run into a lot of trouble with empirical discourse where such

verification as there is always is defeasible. Maybe pragmatist meaning-

theories can be made to work better. The technical results here at least show

that there is no problem in developing pragmatist meaning-theories for

logic.

Secondly, for some connectives it’s quite plausible that their introduction

rules are meaning-constitutive; this is quite plausible for conjunction and

disjunction. This is not very plausible for the conditional and negation. The

introduction-rule for the conditional is conditional proof. If we can derive

ψ from φ, then we can, discharging the assumption φ, conclude that if φ

then ψ. Certainly, we are often willing to assert sentences of the form “if

φ then ψ” when we’re not in position of a proof of ψ conditional on φ. A

verificationist meaning-theory has to show that we can account for this use

in terms of the meaning-constitutive rule of conditional proof. This is not

straightforward.

I will limit myself to some brief remarks. I plan to deal with some of these points at
greater length elsewhere.
See also (Prawitz, ).
For a thorough discussion of these problems see the discussion of the “fundamental





Thirdly, if one thought that any connective which did deserve the honorific

“logical” had to be governed by what I call general introduction rule or

elimination rules. then the results of part  show that intuitionistic logic is

the strongest possible logic.

Fourthly, even if one doesn’t think that a logical connective has to be gov-

erned by general introduction rules, the proof-theoretic meaning-theories

can play an important indirect role. A point Dummett returns to often (see

e.g., Dummett, , ) is that which logic is validated by a meaning-

theory can be very sensitive to the logic taken to govern the meta-language.

What you put in, is what you get out. The proof-theoretic meaning-theories

sketched here do not have this feature: even if we take the meta-language to

be governed by classical logic we cannot use the proof-theoretic meaning-

theories to validate anything stronger than intuitionistic logic.

Fifthly, this allows the proof-theoretic meaning theories to play a particu-

lar rôle in settling the dispute between and adherent of classical logic and

the and one of his opponents . Since we can agree about the logic induced

by a proof-theoretic meaning-theory while disagreeing about which logic

is correct tout court, we can agree to rely only on the logic induced by a

proof-theoretic meaning-theory when trying to settle the dispute between

an adherent of classical logic and one of his opponents.

assumption” in (Dummett, , ch. ).
(Tennant, , ) holds a position quite close to this.
This is obvious is if the meaning-theory is a Davidsonian truth-theory; it’s also the case

if we give a meaning-theory for propositional logic in terms of truth-tables.
As Dummett puts it “We took notice of the problem what meta-language is to be used in

giving a semantic explanation of a logic to one whose logic is different. A meta-language
whose underlying logic is intuitionistic now appears a good candidate for the rôle, since its
logical constants can be understood and its logical laws acknowledged, without appeal to
any semantic theory and with only a very general meaning-theoretical background. If that is
not the right logic, at least it may serve as a medium by means which to discuss other logics





Sixthly, the project gives yet another perspective on what the intuitionistic

connectives are. What is intutionistic logic the logic of? A good formulation

C of classical (propositional) logic is complete in the sense that any truth-

function can be expressed by means of the connectives used in C; we can

say that classical logic is the logic of truth-functions. Is there a similar

sense in which intuitionistic logic is complete? Well, one idea would be

that intuitionistic logic is complete in the sense that any connective which

can be given a proof-theoretic meaning-theory is definable in terms of the

intuitionistic connectives. In part  I make this precise and show that this is,

indeed, the case.

Let me end with a caveat. The entire investigation takes place in single-

conclusion, unilateral natural deduction. I have made no attempt to extend

the framework to “multiple conclusion” natural deduction (as in Read,

). Nor have I made an attempt at extending the framework to a

bilateralist framework (as in Rumfitt, ). It is well known that these

frameworks are more friendly to classical logic than the one used here; one

might worry that by working in the present framework I’ve stacked the deck

against classical logic. If so, one can take the results of this paper to be proof

that one has to consider bilateral or multiple conclusion logics if one wants

to account for classical logic.

.” (Dummett, , p. )
For the record, I’m very skeptical that our regular assertoric practice contains anything

analogous to multiple conclusions (see e.g., Steinberger, ).
For the record, I’m somewhat skeptical of bilateralism for the reasons given in (Humber-

stone, ).
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. Verificationist Meaning-Theory

The task for a verificationist meaning-theory is to define canonical proofs

of complex sentences in terms of canonical proofs of simpler sentences.

(Cf. The task for a truth-conditional theory of meaning is to define the

truth-conditions of complex sentences in terms of the truth-conditions for

simples sentences). In order to get the account going we have to take as

given the canonical proofs of atomic sentences. Philosophically, a lot turns

on what counts as a canonical argument for an atomic conclusion. The

verificationist picture—certainly Dummett’s own use of it—suggests that

the meaning of an atomic sentence be given by specifying which observations

would conclusively verify the sentence. A lot is going to turn on how those

observations can be specified, but we need not be concerned with this here.

For our purposes we only need the following formal features:

. atomic sentences have canonical proofs;

. any given atomic sentence can have several distinct canonical proofs

. if one is in possession of a canonical proof π of an atomic sentence p,

one might thereby be in possession of a canonical proof π′ of another

atomic sentence q.

Conditions  and  are there to model the following feature. Consider a

transparent goblet and consider the claim that it is transparent. Observing

the goblet from angle a (in good viewing conditions, while sober, etc.)

is, let’s assume, a canonical verification of the claim; observing the goblet

from angle a is a different canonical verification of the claim; and so on.
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Furthermore, by making any of these observations I could also be making an

observation verifying that the goblet is wider at the top than the bottom.

In order to model these features we’ll need the notions of a verifier and a

boundary rule.

Definition ... Let p be an atomic sentence. Let Vp be a countably infinite

set {pi |i ∈N}. Such a pi is a verifier of p; the set Vp is the set of verifiers of p.

The collection {Vp|p is an atomic sentence} satisfies the following condition:

if p , q, we have Vp ∩Vq = ∅.

For now we’ll develop the theory without boundary rules; their need will

become apparent later.

Definition ... . If v is verifier, then v is a formula.

. p is a formula for each atomic sentence letter p.

. ⊥ is a formula.

. If φ and ψ are formulæ, and neither is a verifier, then φ∧ψ,φ∨ψ and

φ→ ψ are formulæ.

In what follows v,v, . . . will be variables for verifiers; p,q, r, . . . , will

be variables for atomic sentences; φ,ψ,σ , . . . will be variables for formulæ;

Γ ,∆,Σ, . . . will be variables for sets of formulæ.

Definition ... A sequent is an expression of the form Γ : φ where Γ is a

finite multiset of formulæ, and φ is a formula which is not a verifier.

Could an observation (canonically) verifying that the goblet is transparent also be an
observation canonically verifying that the goblet is wider at the top than the bottom? It is
formally more convenient to assume that this never happens; rather what happens is that
making the first type of observation is correlated with making an observation of the second
type. Nothing substantial hinges on this.
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Definition ... . An argument is a tree Π of finite height where the

nodes are labeled with sequents, each node being assigned a sequent

Γ : φ. Intuitively, Γ are the formulæ upon which φ depends.

. LetΠ be an argument; let Γ : φ be the sequent labelling the root of the

tree. Then Γ : φ is the conclusion of the argumentΠ.

. IfΠ is an argument andΠ′ ⊆Π is a tree, we callΠ′ a subargument of

Π.

. LetΠ be an argument. Let Γ : φ be the conclusion ofΠ. Let u,u, . . . ,un

be the top nodes of Π; let Γ : φ,Γ : φ, . . . ,Γn : φn label these nodes.

We say that

(a) {ψ|ψ ∈ Γi , for some i ≤ n}∪Γ is the set of premisses of the argument

Π;

(b) Γ : φ is the conclusion of the argumentΠ

(c) {ψ|ψ ∈ Γi , for some i ≤ n} \ Γ is the set of discharged premisses of

Π. Γ is the set of undischarged premisses of the argumentΠ.

Definition ... The degree of a formula deg(φ) is defined inductively.

. deg(v) is  for all verifiers v.

. deg(p) is  for all atomic sentences p;

. deg(⊥) is .

. deg(φ ◦ψ) = max{deg(φ),deg(ψ)}+ , for ◦ ∈ {∧,∨,→}
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∧-introduction Γ : φ Γ ′ : ψ
Γ ,Γ ′ : φ∧ψ

∨-introduction Γ : φ
Γ : φ∨ψ

Γ : ψ
Γ : φ∨ψ

→-introduction
Γ ,φ : ψ
Γ : φ→ ψ

⊥-introduction Γ : p Γ : p . . .Γi : pi . . .⋃
Γi : ⊥

, where p,p, . . . enumerate all

the atomic formulæ.

Figure ..: Intuitionistic Introduction Rules

The degree of a sequent Γ : φ, (deg(Γ : φ)), is the highest degree of a formula

occurring in the sequent. The degree of the argument Π is the maximum

degree of sequents occurring inΠ.

Definition ... LetΠ be an argument; let u be a node inΠ and u,u, . . . ,un

be the nodes immediately above u; let Γ : φ and Γ : φ,Γ : φ, . . . ,Γn : φn

label these nodes. Let R be a rule of inference. If Γ : φ follows from

Γ : φ,Γ : φ, . . . ,Γn : φn by the rule R, then we say that the subargument

from u,u, . . . ,un to u is an instance of rule R.

We’ll be working with the intuitionistic introduction rules shown in figure

... In the→-introduction rules we allow vacuous and multiple discharge.
φ : φ
φ : ψ→ φ

and
φ,φ : φ
φ : φ→ φ

are thus instances of→-introduction.

We can now define valid canonical argument and valid sequent simultane-

ously by recursion.

Definition ... Let α be a set of verifiers; let Π be an argument with
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conclusion α : φ. Π is a valid canonical argument iff either

. Π is the one-place argument α−,pi : p for p atomic and pi ∈ Vp.

. φ is ⊥; the nodes immediately above α are α : p,α : p, . . . where the

pi enumerate all the atomic formulæ and the subargumentsΠi to each

ai : pi is canonical.

. φ is ψ∧ψ; the nodes immediately above α : φ are α : ψ and α : ψ

(α = α ∪α) and the subargumentsΠi to αi : ψi are canonical

. φ is ψ ∨ψ; the node immediately above α : φ is α : ψi , for i =  or

i =  and the argumentΠi to α : ψi is canonical. Or:

. φ is ψ → ψ. In this case the sequent immediately above α : φ is

α,ψ : ψ and this sequent is valid.

Definition ... A sequent Γ : φ is valid iff either

. it is Γ −,pi : p for p atomic and pi ∈ Vp; or

. for all α, if for all ψi ∈ Γ there is a valid canonical argument Πi with

conclusion α : ψi , then there is a valid canonical argument Π with

conclusion α : φ.

Remark ... In Dummett’s own definition of valid sequent (he calls it “valid

argument”) there is always the demand that we can “effetely transform”

canonical proofs of the premisses into canonical proofs of the conclusion.

Prawitz makes the same demand. In the above definitions no such demand

is made; I only demand that for all canonical proofs of the premisses there

is a canonical proof of the conclusion. Does this mean that I don’t engage
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with Dummett and Prawitz at all? Not so. Since we’re working only with

propositional logic it’s always decidable whether there is a canonical proof

of φ from verifiers α. There is no need to specify that the transformation

has to be effective.

Observation ... Let Π be a canonical argument; let Γ : φ be a sequent

occurring inΠ. Then φ is not a verifier.

In order to make this more legible, I’m adopting an observation of (Gold-

farb, ) and will introduce a notion of a set of verifiers α ‘forcing a

conclusion’ φ. We’ll write 
 for this relation.

Definition ... Let α be a finite set of verifiers; let φ be a sentence. α

forces φ (‘α 
 φ’) iff there is a canonical argument,Π with conclusion α : φ.

Remark ... We can now express the definition of valid sequent more

compactly as follows.

. Let φ and ψ be formulæ. φ 
 ψ iff for all sets of verifiers α, if α 
 φ

then α 
 ψ.

. Let Γ be a set of formulæ and ψ be a formula. Γ 
 ψ iff, for all sets of

verifiers α, if α 
 φ for all φ ∈ Γ then, α 
 ψ.

Theorem ... Let α be a finite set of verifiers. The following holds.

. α 
 p iff pi ∈ α, for some pi ∈ Vp.

. α 
⊥ for no α.

. α 
 φ∧ψ iff α 
 φ and α 
 ψ

Thanks to Dag Prawitz for forcing me to get clear on this.
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. α 
 φ∨ψ iff α 
 φ or α 
 ψ

. α 
 φ→ ψ iff for all β ⊇ α, if β 
 φ then β 
 ψ

Proof. By inspection of the definitions. I’ll prove the clauses for ⊥ and→ as

an illustration.

⊥: Let α be a finite set of verifiers. Since α is finite, there is an atomic

sentence q such that α 1 q. (We here use that if p , q then Vp ∩Vq = ∅). But

then there can be no canonical proof of ⊥ from α, for if there was we would

have α 
 p for all atomic p.

→: Suppose that α 
 φ→ ψ. Let β ⊇ α be given and suppose that β 
 φ.

LetΠ be a canonical argument witnessing α 
 φ→ ψ, thenΠ is of the form:

α,φ : ψ
α : φ→ ψ

Here α,φ : ψ is a valid sequent. By the definition of valid sequent that

means that if β ⊇ α is such that β 
 φ then β 
 ψ; which was to be shown.

Conversely, if for all β ⊇ α, such that β 
 φ we have β 
 ψ this means that

the sequent α,φ : ψ is valid, and hence that we have a canonical argument

from α to φ→ ψ. �

As the perceptive reader no doubt has noticed, the conditions on α 
 φ in

theorem .. are exactly parallel to the conditions for a node w to force a

sentence φ in a Kripke model for intuitionistic logic.

Corollary ... Every instance of an intuitionistic elimination rule is forced;

hence, the intuitionistic elimination rules are justified.

Proof. Immediate from theorem .. above. �
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Unfortunately, as shown by Goldfarb (), the procedure has unaccept-

able results.

Observation ... . If p,q are atomic and p is not ⊥ then the sequent

p→ q : q is valid.

. Let p be atomic. Then the argument

: (p→⊥)→⊥ is valid

Proof. We prove . Suppose α 
 p→ q. Then for every β ⊇ α, if β 
 p then

β 
 q. Suppose that α 1 q. Then by theorem .. above, qi < α for all i. Put

β := α ∪ {p}; then β ⊇ α with β 
 p and β 1 q, contradicting α 
 p→ q.

The proof of  is left to the reader. �

.. Boundary Rules

The problem in these counterexamples is that atomic sentences are logically

independent; if pi < α for all i then α 1 p and so the only way for α to force

p→ q is for α to include some verifier of q. As noted in remark . above,


mirrors forcing in Kripke models. The problem is that 
 corresponds to

truth in the particular Kripke model K where for all atomic sentences p,

∀w ∈ K,∃w′ ∈ K,w′ |= p; validity in Kripke semantics corresponds to truth in

all models. Following Goldfarb, we obtain the effect of quantification over

all Kripke models by utilising Dummett’s notion of a boundary rule. The

notion of a “production rule” plays a similar role in (Prawitz, ) and he

considers similar counterexamples at (Prawitz, , pp. –,). (See

also Schroeder-Heister, , p. ).

Definition ... Let v,v, . . . , vn,v be verifiers. A boundary rule takes the
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form v, . . . , vn⇒ v. Let S be a collection of boundary rules and let α be a

collection of verifiers. The closure of α under S , clS (α) is the smallest set of

verifiers β such that α ⊆ β and if {v,v, . . . , vn} ⊆ β and v,v, . . .vn⇒ v is a

boundary rule in S then v ∈ β.

We now emend the definition of canonical argument and valid sequent to

take boundary rules into account. This is most easily expressed using the

relation 
.

Definition ... Let S be a set of boundary rules and let α be a set of

verifiers; let αS be the closure of α under S .

. α 
S φ iff αS 
 φ

. Γ 
S φ iff for all S ⊇ S and α: if α 
S′ Γ then α 
S′ φ.

Let S be a set of boundary rules. Let VS be the collection of sets of

verifiers closed under S . Take VS to be partially ordered under inclusion in

the obvious way. (VS ,⊆) gives rise to a Kripke-model K in a natural way: let

the nodes of K be {V |V ∈ VS such that there is p such that pi < V , for all i};

let the ordering ≺ of K be given by ⊆. We define forcing for atomic sentences

by V |= p iff pi ∈ V , for some i. The idea behind the soundness-proof for 


below is to do the converse, i.e., for each Kripke-model K to construct a set

of boundary rules S such that (VS ,⊆) is isomorphic to K.

To prove soundness for 
, we prove that if Γ : φ has a countermodel then

Γ 1 φ.

Definition ... Call a Kripke model pruned iff there are no superfluous

nodes in it, i.e., if a node w verifies all and only the atomic sentences in a
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set X, then there is no node w′ < w such that w′ also verifies all and only the

atomic sentences in X.

Lemma ... Let K be a countable (finite) Kripke-model: there is a countable

(finite) pruned Kripke-model K′ and a map f : K 7→ K′ which is onto and order

preserving, such that for all w ∈ K, w |= p iff f (w) |= p.

Proof. Left to the reader. �

Lemma ... Let K be a countable (finite) Kripke-model; and let w be a node

in K. Let K � w be the restriction of K to the nodes above w. Then there is a

tree-like Kripke model K′ and an order-preserving map f : K � w 7→ K′, such

that w |= φ iff f (w) |= φ.

Proof. Standard. (By unraveling the model K � w.) �

Lemma ... For all pruned, tree-like Kripke-models K there is a set of bound-

ary rules S such that

. there is a one-to-one map f : K 7→ VS such that w � w iff f (w) ⊆ f (w);

and

. w |= p iff f (w) 
 p, for all atomic sentences p.

. if V ∈ VS , f (w) for all w then V 
 p, for all atomic p.

From the lemma we easily prove:

Theorem .. (Intuitionistic soundness of 
). If Γ 
 φ, then Γ |= φ.

Proof. Let K be such that K |= Γ , but K 6|= φ. We can assume that K is pruned

and tree-like with root w. We find a set of boundary rules S and a map f
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satisfying the conditions of lemma ... The proof is by induction. The

only problematic clause is that for→. We will show that w |= ψ→ ψ iff

f (w) 
 ψ→ ψ.

Right-to-left: suppose that w |= ψ→ ψ. Then for all w � w such that

w |= ψ, w |= ψ. Now, let β ⊇ f (w) be such that β 
 ψ. By choice of S and f

we know that either β 
 p for all p, in which case β 
 ψ or else β is f (w) for

some w � w and thus it follows by the induction hypothesis that w |= ψ.

But then w |= ψ and, again by the induction hypothesis, f (w) 
 ψ, i.e.,

β 
 ψ.

Left-to-right: Suppose that w 6|= ψ→ ψ; then there is w ≥ w such that

w |= ψ but w 6|= ψ. But then by the induction hypothesis f (w) 
 ψ but

f (w) 1 ψ. This shows that f (w) 1 ψ→ ψ. �

Proof of lemma ... Let K be a pruned tree-like Kripke-model; let � be

the partial ordering of the nodes of K. We are going to pick verifiers and

boundary rules so as to mimic K. Let w,w, . . . be an enumeration of the

nodes ofK such that if wi ≺ wj then i < j. For each node wi ∈ Kwe define the

set Vi = {pk |(k = i ∧wi |= p∧¬∃w ≺ wi ,w |= p)∨ (wi |= p∧wk ≺ wi ∧ pk ∈ Vk)}.

We construct the set S of boundary rules in the following steps:

. For each node wi and each pk ∈ Vi such that wi |= p and for no w ≺ wi

do we have w |= p: for each v ∈ Vi add the boundary rule pk⇒ v.

. For each node wi and each p, if for no w � wi do we have w |= p: add

the boundary rules v,v, . . . , vn,pj ⇒ q, for each j and for each atomic

sentence q (where v,v, . . . , vn is a list of the verifiers in Vi). This

ensures that Vi 
 p→⊥.
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. For all wi ,wj if neither wi � wj nor wj � wi then for all verifiers v

and v′, such that v ∈ Vi \Vj and v′ ∈ Vi \Vj : add the boundary rules

v,v′⇒ q for each atomic sentence q.

. Once we have selected boundary rules in this way for each wi add the

following boundary rules. If v is a verifier which is not in any Vi : add

the boundary rules v⇒ q, for all q. (This ensures that we do not have

to consider verifiers which are in no Vi .)

. Suppose that V ⊂ V ⊂ . . . is a chain such that
⋃
i<ωVi is not a Vk , then

add the boundary rules
⋃
i<ωVi ⇒ q for each atomic q.

Let S be the collection of all boundary rules so chosen. Let V−S be that subset

of VS such that V ∈ V−S such that there is p such that pi < V , for all i};

Claim: V−S = {Vi |i ∈N}. Proof of Claim. {Vi |i ∈N} ⊆ V−S : pick a Vi , it suffices

to show that clS (Vi) = Vi . We consider each type of boundary rule in turn. If

the boundary rule is of the first type, it will allow us to infer qk ∈ Vi from

pi ∈ Vi . That does not take us out of Vi . If the rule is of the second type, it

allows us to infer any v from p, if p is in no Vj ⊇ Vi , but that is not going to

take us out of Vi . If the rule is of the fourth form, it will allow us to infer any

v from a w which is not in any Vj , but that is not going to take us out of Vi .

{Vi |i ∈ N} ⊇ V−S : let W = {w,w, . . . } be a set of verifiers. We will show

that if clS (W ) ∈ V−S then clS (W ) = Vi for some i. Suppose that w does not

occur in any Vi . Then the penultimate type of boundary rule applies and

we’ll have q ∈ clS (W ), for all q; thus clS (W ) < V−S . Similarly for each vi , i ≥ .

For each vi let Vi be the first Vj in which the verifier vi occurs. We show

that the Vi are pairwise comparable. Suppose otherwise and let Vi and Vj
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be such that neither Vi ⊆ Vj nor Vj ⊆ Vi . This can only happen if Vi ,Vj are

associated with two nodes wi ,wj which are incomparable. But then by the

boundary rules of type  there is v′i ∈ Vi and v′j ∈ Vj such that v′i ,v
′
j ⇒ q for

all atomic q. Since Vi is the first collection of verifiers in which vi occurs,

the boundary rules vi ⇒ v′i is in S ; similarly vj ⇒ v′j is in S . It then follows

that q ∈ clS (vi ,vj ) for each atomic q. This shows that W < V−S .

It then follows that the closure of W must be a Vk . For if the closure of the

union is not identical to the union of the closure this can only be because

the last type of boundary rule applies, but then clS (W ) is not in V−S .

We now define f : K 7→ VS by f (wi) = Vi ; by the claim this operation is

well-defined and onto. It is one-to-one since K is pruned, and we have

wi � wj iff f (wi) � f (wj) by construction. Clearly, w |= p iff f (w) 
 p. And

we have shown that if clS (W ) ∈ VS is not equal to a Vi then clS (W ) 
 p, for

every atomic p. �

We have now shown that the only elimination rules which can be justified

on the basis of the intuitionistic introduction rules are the intuitionistic

elimination rules; more exactly, any elimination rule which can be validated

by a verificationist meaning theory based on the intuitionistic introduction

rules can be derived from the standard intuitionistic introduction and elimi-

nation rules. This was conjectured in (Prawitz, , p. ) and reiterated

in (Prawitz, , p. ).

This shows that the so-called “inversion principle” (see e.g., Read, , ), when
applied to the intuitionistic introduction rules, gives the strongest elimination rules which
can be justified by a verificationist meaning theory based on the intuitionistic introduction
rules.
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.. Another Approach

What happens if we instead of using verifiers let an atomic sentence be a

canonical proof of itself and we let boundary rules govern atomic sentences

and not verifiers of atomic sentences? In this case sequents like p → q ∨

r : (p → q) ∨ (p → r) become valid, as can easily be checked. There is no

problem, as such, in getting a different (and stronger) logic than intuitionistic

logic being i-harmonious. The more serious problem is that the relation 


now is not closed under substitution. In order to fix this one could simply

demand that the relation 
 be closed under substitution.

Definition ... Let p,p, . . . ,pn be all the atomic sentences which occur

in Γ ,φ. Then we say that Γ 
′S φ iff for all sentences σ,σ, . . . ,σn, Γ [σ̄ /p̄] 
S

φ[σ̄ /p̄].

Theorem ... If Γ 
′′ φ, then Γ |= φ.

Proof. Essentially the same proof as the proof of ... Consider a coun-

termodel to Γ : φ. For each atomic sentence p which occurs in Γ ,φ we do as

follows. Let v, . . . , vn be all the nodes where the atomic sentence p is forced

such that for all i there is no node u � vi which also forces p. Add r, . . . , rn

fresh atomic formulæ and substitute
∨
ri for p in Γ and φ. Do the same for

each atomic sentence. The boundary rules now connect the atomic sentences

r, r, . . . rather than verifiers. �

If the only thing we wanted was to obtain a definition of logical conse-

quence this would be unproblematic; formally, of course, the two approaches

are essentially identical. However, this approach is no good if we want to

This is the approach of (Goldfarb, ).





produce a verificationist meaning-theory for the logical constants. Since

we now have to consider arbitrary substitutions, what counts as a canoni-

cal verification of a sentence φ now depends on what counts as canonical

verifications of sentences of arbitrarily high complexity. Furthermore, we

get the awkward result that even though p→ q∨ r : (p→ q)∨ (p→ r) isn’t

logically valid, by knowing just that p,q, r are atomic we’re entitled to make

the inference from p→ (q∨ r) to (p→ q)∨ (p→ r).

. Pragmatist Meaning-Theories

Just as with verificationist meaning-theories, the key is to define the notion of

a valid canonical argument. Since the idea behind the pragmatist meaning-

theories is that the elimination rules are “self-justifying”, an argument

which uses only elimination rules will be canonical. But we cannot live by

elimination rules alone. Consider an argument like:

Γ : (φ→ φ)→ ψ : φ→ φ
Γ : ψ

There is no argument to the minor premiss φ→ φ which uses only elim-

ination rules. Just as in the case of verificationist meaning-theories, our

definition of ‘canonical argument’ has to allow for valid sequents to occur in

them. That being so, we have to define the notions of canonical argument

and valid sequent simultaneously by recursion.

We’ll be working in a natural deduction setting, but since we’ll need

to keep track of where premisses are discharged it’ll be convenient to do

natural deduction in sequent style. In particular, it will be important to

keep in mind that our sequents have multisets on the left. We use the
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same definitions of formula, sequent, argument and degree as in section ..

However, we also need a notion of the order of a sequent.

Definition ... Let Γ : φ be a sequent. The order of Γ : φ, o(Γ : φ) is the

Hessenberg (commutative) sum of the multiset
{
ωdeg(ψ)|ψ ∈ Γ or ψ = φ

}
.

Obviously the order of a sequent is bounded below ωω.

Definition ... Let Π be an argument with final conclusion Γ : φ. The

order ofΠ, o(Π), is the order of Γ : φ.

.. Examples

p∧ p : p
p : p

has degree  and order .

The argument

p∧ p : p∨ q p : r q : r
p∧ p : r

has degree  and order ω + . Obviously the order of any argument is

bounded below ωω.

Remark ... The definitions of order and degree for arguments only con-

sider the final sequent. Is this the right definition? For ‘degree’ one might

worry that in the course of a proofΠ a sequent will occur which has higher

degree than the final sequent (as happens in the first example) or as higher

order than the final sequent (as happens in the second example); if so, if

taking the degree of Π to be the degree of its final sequent seems to leave

out some information about the complexity of Π. However, given the form

of the elimination rules we will consider and the definition of canonical
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argument to be given below, it is clear that this never can happen: canonical

proofs have the sub-formula property.

As far as order is concerned one might worry that some premisses in an

argument have as high an order as the conclusion of the argument. Consider,

e.g., this sequent proof:

(p→ q)→ p,p→ q : p q : q
(p→ q)→ p,p→ q : q

Here the subsequent (p→ q)→ p,p→ q : p has the same order as the final

sequent. In order to deal with this problem, the elimination rules will be

written “multiplicatively”, that is, without tacit contraction. If we write the

rules additively we’ll have to complicate the definition of the order of an

argument.

.. Rules of inference

We will work with the elimination rules given in figure ... These elimina-

tion rules for intuitionistic propositional logic are in a somewhat unfamiliar

form; the benefit is that it makes the theory run smoothly. Note that all

rules have atomic conclusions.

Remark ... We will again allow both vacuous and multiple discharge. Thus

the following are instances of ∧-elimination:
p∧ q : p∧ q r : r

p∧ q,r : r
p∧ q : p∧ q p,p,p→ (p→ r) : r

p∧ q,p→ (p→ r) : r

For this type of elimination rule see, e.g., (von Plato, , p. ).
Dummett’s approach is different. He distinguishes between validity in the “narrow” and

the “wide” sense. (Dummett, , p. ) An argument is valid in the broad sense if it can
be transformed into an argument (with the same premisses and conclusion) which is valid in
the narrow sense.
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⊥-elimination Γ : ⊥ Γ ′ ,q : p
for all p and q

Γ ,Γ ′ : p

∧-elimination Γ : φ∧ψ ∆,φ,ψ : p
Γ ,∆ : p

∨-elimination Γ : φ ∨φ ∆,φ, : p ∆,φ : p
Γ ,∆,∆ : p

→-elimination
Γ : φ→ ψ ∆ : φ Γ ′ ,ψ : p

Γ ,∆,Γ ′ : p

Figure ..: Intuitionistic Elimination Rules

Definition ... In an elimination rule the left-most sequent is called the

major premiss. The other premisses are the minor premisses.

Definition ... Let
Γ : φ→ ψ ∆ : φ ∆′ ,ψ : p

Γ ,∆,∆′ : p
be an instance of

→ elimination; the occurrence of the sequent ∆ : φ is called a critical minor

premiss. (We’ll abuse notation and speak of a critical sequent instead of

a critical occurrence of a sequent.) All other minor premisses are called

non-critical minor premisses.

Definition ... Let Π be an argument. Let Γ : φ ◦ψ, ◦ ∈ {∧,∨,→,⊥} be

a sequent occurring in Π. Γ : φ ◦ ψ is the principal major premiss iff the

conclusion ofΠ follows by ◦-elimination from Γ : φ ◦ψ.

.. Canonical Proofs

The definition of e-canonical arguments is somewhat more delicate than the

definition of an i-canonical argument. Let ∆ be a multiset. Then ∆m is the
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multiset

m times︷     ︸︸     ︷
∆,∆, . . . ,∆.

Definition ... Base-clause: . The one-step argument Γ : p, where

p ∈ Γ , is a valid canonical argument for all p and Γ .

. The sequent Γ : p is valid for all Γ and p such that p ∈ Γ .

Recursion-clause The argumentΠ is valid canonical if

Π has a principal premiss Γ : φ, such that φ ∈ Γ . Furthermore,

⊥-condition: if Γ : ⊥ is the principal major premiss ofΠ, and Γ ′ ,q : p is the

minor premiss to the application of ⊥-elimination, the argument to the

conclusion Γ ,Γ ′ : p is also valid canonical.

∧-condition: For all ∆,φ,ψ,p, if Γ : φ∧ψ is the principal premiss and the

minor premiss to the application of ∧-elimination is ∆,φ,ψ : p, then the

subargument to conclusion ∆,φ,ψ : p is also valid canonical.

∨-condition: For all ∆,φ,ψ,p, if Γ : φ∨ψ is the principal major premiss and

the minor premisses of this application of ∨-elimination are ∆,φ : p and

∆,ψ : p then the subargumentsΠφ,Πψ with conclusions ∆,φ : p and ∆,ψ : p

respectively are also valid canonical.

→-condition: Suppose that Γ : φ→ ψ is the principal major premiss. Sup-

pose further that ∆ : φ is the critical minor premiss and ∆,ψ : p is the

non-critical minor premiss. Then we demand that o(∆ : φ) < o(Π) and

∆ : φ is a valid sequent. Moreover, we demand that the subargument to

∆,ψ : p be canonical.

Valid Sequent A sequent Γ : φ is valid iff, for every ∆ and p and every

valid canonical argumentΠ (of degree at most deg(φ)) such that

. the conclusion ofΠ is ∆,φ : p;
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. the principal major premiss ofΠ is ∆′ ,φ : φ, for some ∆′ ⊆ ∆.

then there is a valid canonical argumentΠ′ such that:

() the conclusion ofΠ′ is Γ ,∆∗ : p, where ∆∗ is a subset of ∆m for some m.

Remark ... To see that this definition makes sense observe the following.

Suppose thatΠ is an argument ending with an application of→-elimination.

ThenΠ has the following form:

Γ ,φ→ ψ : φ→ ψ ∆ : φ ∆,ψ : p
φ→ ψ,Γ ,∆,∆, : p

Let ∆ be such that deg(∆) ≤ deg(φ), then it’s clear that o(∆,∆m ) <

o(∆)#ωdeg(φ)+ ≤ o(∆,φ→ ψ), for allm. But then in order to check whether

∆ : φ is valid we only have to consider canonical proofs of order less than

o(∆,φ→ ψ) ≤ o(Π). It is here critical that we are not allowed to consider

copies of ∆ itself.

Examples of canonical arguments.

p∧ q : p∧ q
p→ r : p→ r p : p r : r

p→ r,p : r
p∧ q,p→ r : r

This argument shows that r is canonically provable from p∧ q and p→ r.

p→ q : p→ q p : p
q→ r : q→ r q : q r : r

q→ r,q : r
p→ q,q→ r,p : r

This argument shows that r is canonically provable from p→ q,q→ r and p.

Dummett (, pp. –), in effect, defines a sequent ∆ : φ to be valid iff for every ∆′

of degree at most deg(∆,φ) and p such that there is a canonical argument with conclusion
∆,φ : p and principal major premiss φ there is a canonical argument with conclusion ∆,∆′ : p.
If we used this definition of valid sequent the recursion would not work. For supposeΠ is an
argument. Since it’s possible that deg(∆) = deg(T ) in order to check whether ∆ : φ we might
have to check canonical arguments of order higher thatΠ.
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.. Typographical conventions

Canonical proofs get very wide very fast. It will occasionally be convenient

to adopt a more compact formulation. Instead of writing down

φ→ ψ : φ→ ψ ∆ : φ
Π

Γ ,ψ : p
φ→ φ,∆,Γ : p

we may write

φ→ ψ ∆ : φ

Γ , [ψ]x

Π
p

xp

The notation Γ , [ψ]x is to indicate that there are some occurrences of ψ which

are discharged by the application of→-elimination.

.. Basic facts about canonical arguments

In what follows I’ll abuse notation and say that p is principal in a canonical

argumentΠ ifΠ is the one-step argument Γ ,p : p.

Definition ... We write Π(Γ `φ p) to mean that Π is a canonical ar-

gument with principal major premiss φ and conclusion Γ ,φ : p. We write

Γ `φ p for the claim that there is someΠ such thatΠ(Γ `φ p). We write Γ ` p

for the claim that there is a φ ∈ Γ such that Γ \ {φ} `φ p.

Definition ... The relation ‘φ is a subformula of ψ’ is defined as the

transitive closure of the immediate subformula relation, which is defined as

follows.

. p is an immediate subformula of ⊥, for all p.
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. φ,ψ are immediate subformulæ of φ∧ψ,φ∨ψ and φ→ ψ.

Observation ... LetΠ be a canonical argument. Let Γ : φ be the principal

major premiss ofΠ and let Γ ′ : p be the conclusion ofΠ. Then Γ ′ ⊇ Γ and φ ∈ Γ .

Proof. By inspection of the elimination rules. �

Definition ... An argument Π has the subformula property iff for all

sequents Γ : φ occurring inΠ, each formulæ ψ ∈ Γ ,φ is a subformula of some

formula occurring in a sequent higher up in the proof.

Proposition ... LetΠ be a canonical argument; thenΠ has the subformula

property.

Proof. Obvious. (By induction on the order of the canonical argument.) �

In fact, the subformula property holds in the stronger form.

Definition ... Let Π be a canonical proof. A track in Π is a maximal

sequence of sequents Γ : φ, . . . ,Γn : φn such that Γn : φn is the final sequent

ofΠ and such that each Γi : φi is a non-critical minor premiss to an argument

with conclusion Γi+ : φi+.

Observation ... Let Γ : φ, . . . ,Γn : φn be a track, then there is an atomic q

such that all φi are identical to q.

Observation ... Let Γ : φ, . . . ,Γn : φn be a track. Let φ ∈ Γi . Then φ is a

subformula of some formula ψ ∈ Γi+.
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.. Justifying introduction rules

Dummett assumes that if we start with the intuitionistic elimination rules

we’ll be able to justify (at least) the intuitionistic introduction rules. The

way I have set this up, this is not obvious.

Let’s consider the case of →-introduction. Suppose we know that the

sequent Γ ,φ : ψ is valid. Then we need to be able to conclude that the sequent

Γ : φ→ ψ is valid. So letΠ be a canonical argument such thatΠ(∆ `φ→ψ p)

(with deg(Π) ≤ deg(φ→ ψ). We may assume that the argument looks like

this:

φ→ ψ : φ→ ψ ∆ : φ ∆,ψ : p
φ→ ψ,∆,∆ : p

And now we want to say that since Γ ,φ : ψ is valid there must be a canon-

ical argument from Γ ,∆,φ to p. But we’re not entitled to assume that:

the validity of Γ ,φ : ψ means that for all canonical argumentsΠ′ such that

Π′(∆ `ψ p) where deg(Π′) ≤ deg(ψ), there’s a corresponding canonical argu-

mentΠ′′(∆,Γ ,φ 
 p). And, first, we can’t assume that ψ occurs as a principal

major premiss in the canonical argument witnessing ∆,ψ : p. Second, even

if ψ so occurs, since φ→ ψ is of higher degree than ψ, it’s possible that a

proof witnessing ∆,ψ : p is of higher degree than ψ. If that’s the case, the

assumption that Γ ,φ : ψ is valid doesn’t help.

Furthermore, even if there is a canonical argument witnessing Γ ,∆,φ : p,

we would need to get rid of φ to get that Γ ,Γ ,∆,∆, : p is valid. This should

be true—after all ∆ : φ is valid; but we run into the same problems. It turns

out that there is no problem here, but this is surprisingly complicated to

prove. We have to prove a “cut-elimination” theorem.
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Danger lurks very close by: Dummett’s own account of pragmatist meaning-

theories breaks down at this point.

Dummett’s original definition is, apart from being a recursion on degree,

the same as my definition. For Dummett, that is, a critical sequent is re-

quired to be of lower degree than the argument as a whole. That difference,

however, makes all the difference: cut-elimination fails. For consider that

(in Dummett’s sense of ‘canonical argument’)

. there is no canonical argument witnessing the validity of p→ (p→

q), (p→ q)→ r : r;

. there is no canonical argument witnessing the validity of p → q ∧

q, (p→ q)→ r : r;

. there is no canonical argument witnessing the validity of p → q ∨

q, (p→ q)→ r : r.

Consider now, e.g., that the sequent p→ (p→ q) : p→ q is valid and there is

trivially a canonical argument witnessing that p→ q, (p→ q)→ r : r is valid.

This means that the consequence relation isn’t transitive!

It is worth pointing out that there is no analogue of this problem when

we instead start with introduction rules. When we try to justify elimination

rules on the basis of introduction rules we assume that we have canonical

proofs of the premisses and show that we can construct canonical proofs

of the conclusions. In that case the complexity drops in the passage from

premiss(es) to conclusion; when we try to justify introduction rules on

the basis of elimination rules the complexity goes up in the passage from

premisses to conclusion. Our trouble flows from that.

Prawitz (, p. n) also notices this problem.
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. Properties of Valid Sequents

We’ll now establish that the valid sequents behave just like a sequent calculus

for intuitionistic logic.

.. Structural properties

Proposition ... Reflexivity φ : φ is valid for all φ.

Weakening If Γ : θ is valid then Γ ,φ : θ is valid.

Cut If Γ ,φ : ψ is valid and ∆ : φ is valid, then Γ ,∆ : ψ is valid.

Proof. Reflexivity is obvious. In order to prove that weakening holds, sup-

pose that Γ : θ is valid. . Suppose now that ∆ is such that deg(∆) ≤ θ and let

Π be such thatΠ(∆ `θ p. Then findΠ′ such thatΠ′ witnesses that Γ ,∆ 
 p.

Now, just add φ to the left-hand-side of the critical major premiss ofΠ; this

preserves canonicity. �

On the other hand, contraction is not admissible. While there is a canon-

ical proof witnessing that p→ (p→ q),p,p : q, there is no canonical proof

witnessing that p→ (p→ q),p : q).

The proof of cut is rather involved; surprisingly, the difficult case turns

out to be disjunction.

.. Cut-elimination

Theorem ... Suppose Γ ,φ : ψ is valid and ∆ : φ is valid, then Γ ,∆ : ψ is valid.

Theorem ... Suppose Γ ,φ : p is valid and ∆ : φ is valid then Γ ,φ : p is valid.

This is not to say that the sequent p→ (p→ q) : p→ q isn’t valid.
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Theorem .. follows from theorem ... Suppose that Γ ,φ : ψ and ∆ : φ

are both valid. Now suppose that ∆′ and p are such there is a canonical

argumentΠ such thatΠ(∆′ `ψ p), and deg(∆′) ≤ deg(ψ). Then we have that

Γ ,φ : p is valid. It then follows from theorem .. that Γ ,∆,∆′ : p is valid.

So it suffices to prove ... (Note, however, that in the proof of .. we’ll

in effect use instances of .. which are of sufficiently low order.)

In order to establish the result we’ll need the following two lemmas. In

order to state the results, we’ll adopt the following conventions. φ[q̄p̄] is to

mean the result of uniformly substituting the q̄ for the p̄ in φ. If we have to

consider several substitutions we substitute from right to left; thus when we

write φ[r̄s̄][
q̄
p̄] we mean the result of first substituting the q̄ for the p̄ and then

substituting the r̄ for the s̄.

Lemma ... Let Π be a canonical argument with principal premiss φ. Let

p,p, . . . ,pn be n+  distinct atomic formulæ that occur in Π. Let q, . . . , qn be

n+  distinct atomic formulæ such that no qj occurs in Π. Let Π′ be obtained

fromΠ by uniformly substituting the atomic formulæ q̄ for the atomic formulæ

p̄. ThenΠ′ is a canonical argument with principal premiss φ[q̄p̄].

Lemma ... Suppose Γ , [φi → qi]i∈I , [qi]i∈I 
 ψ, where each qi is not ⊥ and

does not occur in either φ,ψ or Γ . Then Γ 
 ψ.

Proof of lemma ... By induction on the order of the canonical argumentΠ.

Let p̄ and q̄ be given. The base case is straightforward. The only problematic

case is when the principal major premiss in Π is φ → φ. Suppose that

the non-critical minor premiss is Γ ,φ : p and the critical minor premiss

is ∆ : φ. The canonical argument Π witnessing that Γ ,φ 
 p is of lower
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order thanΠ. The induction hypothesis thus applies and Γ [q̄p̄],ψ[q̄p̄] 
 p[q̄p̄]. It

thus suffices to show that ∆[q̄p̄] : φ[
q̄
p̄] also is a valid sequent.

So suppose that ∆,q are such that ∆ 
φ[q̄p̄] s. Now let r̄ be the atomic

formulæ occurring in ∆, s which are not in q̄ or not in φ[
q̄
p̄]. Let r̄ ′ be

some fresh atomic constants; in particular no formulæ in r̄ ′ occurs in ∆.

Since the canonical argument Π witnessing that ∆ 
φ[q̄p̄] s has lower order

than the canonical argument Π, the induction applies and we get that

∆[
p̄
q̄][r̄

′

r̄ ] 
φ[p̄q̄ ][q̄p̄] s[
p̄
q̄][r̄

′

r̄ ]. That is we get that

∆[
p̄
q̄][r̄

′

r̄ ] 
φ s[
p̄
q̄][r̄

′

r̄ ]

Then since ∆ 
 φ we get that ∆,∆[
p̄
q̄][r̄

′

r̄ ] 
 s[p̄q̄][r̄
′

r̄ ].

The canonical argument witnessing this has lower order thanΠ. Moreover,

no formula in q̄ occurs in ∆,∆[
p̄
q̄][r̄

′

r̄ ] or s[p̄q̄][r̄
′

r̄ ]. The induction hypothesis

applies and we can substitute q̄ for p̄ to get ∆[q̄p̄],∆[
r̄ ′
r̄ ] 
 s[r̄

′

r̄ ]. The proof

witnessing this also has lower order than Π and no formula in r̄ occurs in

either ∆[q̄p̄],∆[
r̄ ′
r̄ ] or s[r̄

′

r̄ ]. The induction hypothesis thus applies and we can

substitute r̄ for r̄ ′, to obtain ∆[q̄p̄],∆ 
 s.

�

Proof of lemma ... The result follows from the special case where ψ is

atomic. For suppose that Γ , [φi → qi]i∈I , [qi]i∈I 
 ψ, where qi is not ⊥ and

does not occur in either φ,ψ or Γ . Let ∆ be such that deg(∆) ≤ deg(ψ). And

suppose that ∆ `ψ p for some p.

Pick some r̄ which occur neither in ∆,Γ ,ψ,φi ,qi nor p. By lemma ..

and the fact that no qi occurs in ψ, we get that ∆[r̄q̄i ] `ψ p[r̄q̄i ]. We then get
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that Γ ,∆[r̄q̄i ], [φi → q]i∈I , [qi]i∈I 
 p[r̄q̄]. The special case now applies, and we

get a proof witnessing that Γ ,∆[r̄q̄i ] : p[r̄q̄i ] is valid. By lemma .. and the

fact that q̄i does not occur in Γ ,∆[r̄q̄i ],p[r̄q̄i ], we get that Γ [q̄ir̄ ],∆[q̄ir̄ ][r̄q̄i ] 
 p[q̄ir̄ ][r̄q̄i ],

i.e., we get that Γ ,∆ 
 p.

So let’s prove the special case. Let Π be a canonical proof witnessing that

Γ , [φi → qi]i∈I , [qi]i∈I : p, where qi is not ⊥ and does not occur in either φi or

Γ or p. We prove the result by induction on the order ofΠ.

If the principal major premiss is an axiom or is by ⊥-elimination the

result follows immediately. If the principal premiss is a disjunction or a

conjunction the result follows immediately from the induction hypothesis.

So suppose that the principal premiss is a conditional. There are two cases.

The conditional in question is φi → qi , for some i. We may assume that

the argument looks like this:

φi → qi : φi → qi Γ, [φj → qj ]j∈I\{i}, [qj ]j∈I\{i} : φ Γ, [φj → qj ]j∈I ′\{i}, [qj ]j∈J ′ ,qi : p

Γ,Γ,φ→ q : p

By the induction hypothesis it follows that Γ : p is valid. The result follows

by weakening.

Suppose, then, that the conditional is ψ→ ψ. Then we may assume that

the canonical argumentΠ looks like this.

ψ→ ψ : ψ→ ψ Γ, [φi → qi]i∈I , [qi]i∈I : ψ Γ,ψ : p
Γ,Γ,ψ→ ψ,φ→ q : p

(For if φi → qi ,qi occurs in the noncritical minor premiss, the induction hy-

pothesis immediately applies.) But it also follows from the induction hypoth-

esis that Γ : ψ is valid. For suppose that ∆ `ψ p where deg(∆) ≤ deg(ψ).

We now repeat the reasoning proving the general case from the special case,
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paying special attention to the order of the arguments in question. We again

pick some distinct r̄ which are not in Γ,∆,φi ,qi or ψ. We then have a canon-

ical proof witnessing ∆[r̄q̄i ] `ψ p[r̄q̄i ]. Since ∆[r̄q̄i ] is of the same degree as ∆

there is a canonical proofΠ′ witnessing that Γ,∆[r̄q̄i ], [φi → q]i∈I , [qi]i∈I : p[r̄q̄i ]

is valid. This canonical proof is of order less thanΠ. The induction hypoth-

esis therefore applies and Γ,∆[r̄q̄i ] : p[r̄q̄i ] is valid. Since qi does not occur in

Γ we can substitute q̄i for r̄ again we get that Γ,∆ 
 p. �

Proof of theorem ... We prove this by induction on the degree of the cut-

formulaφ and a subsidiary induction on the order of the canonical argument

Π witnessing that Γ ,φ : p.

Let Π be a canonical argument witnessing that Γ ,φ : p. There are two

cases to consider, each with five subcases.

. φ is principal inΠ. There are five sub-cases.

(a) φ is p. In this case we have a canonical argument Π′ witnessing that

∆ : p is valid; the result follows by weakening.

(b) φ is ⊥. Since ∆ : ⊥ is valid, ∆ : q is valid for all q; in particular we

have a canonical argumentΠ′ witnessing that ∆ 
 q. The result follows by

weakening.

(c) φ is φ ∧φ. We may assume thatΠ looks like this:

φ ∧φ : φ ∧φ Γ ,φ,φ : p
Γ ,φ ∧φ : p

It is easily seen that if ∆ : φ∧φ is valid then ∆ : φ and ∆ : φ are both valid.

(It is essential here that ∧-elimination allows (partially) vacuous discharge.)

Γ ,∆ : p now follows by cutting on φ and φ.

(d) φ is φ→ φ. We may assume that the argumentΠ looks like this.
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φ→ φ : φ→ φ Γ : φ Γ,φ : p
Γ,Γ,φ→ φ : p

Since ∆ : φ→ φ is valid, ∆,φ : φ is also valid. But it then follows from

the induction hypothesis that Γ,∆,φ : p is valid. But then by the validity

of Γ : φ it again follows by the induction hypothesis that Γ,∆,Γ : p is valid.

Graphically this is what we are doing:

Γ : φ

Γ,φ : p ∆,φ : φ
Cut

Γ,∆ : p
Cut

Γ,Γ,∆ : p
(e) φ is φ ∨φ. We may then assume that the argument has the following

form.

φ ∨φ : φ ∨φ Γ,φ : p Γ,φ : p
φ ∨φ,Γ,Γ : p

If either ∆ : φ, ∆ : φ or ∆ : ⊥ is valid, the result follows easily. If, e.g., ∆ : φ

is valid the result follows by a cut on φ.

If deg(Π) ≤ deg(φ ∨φ) the result follows immediately from ∆ 
 φ ∨φ.

So suppose that deg(Π) > deg(φ ∨φ). Now let q be atomic and such that q

does not occur in any formula which occurs in ∆ or φ∨ψ. Since ∆ : φ∨φ

there is a valid canonical argumentΠ witnessing that ∆,φ→ q,φ→ q 
 q.

Let σ be the principal premiss in this argument. Since q does not occur in

∆ the principal major premiss cannot be an axiom. Since ∆ : ⊥ is not valid,

σ is either a conjunction, disjunction or a conditional. We’ll construct a

canonical argumentΠ witnessing Γ ,∆ 
 p by modifying the proofΠ′.

We first transform the proof Π into the proof Π as follows. Suppose

Γ , (φ→ q)m, (φ→ q)n,ψ : ψ is a principal major premiss in a sub-proof of

Π′. We replace this premiss with Γ ,ψ : ψ. Suppose that ∆′ , (φ→ q)m, (φ→

q)n,ql : ψ is a critical minor premiss occurring in a subproof ofΠ. ψ does

not contain q. For if ψ did contain q, q would occur in the antecedent of
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a conditional θ → θ ∈ ∆. But q does not occur in ∆. The conditions of

lemma .. thus obtain and we can replace this sequent with ∆′ : ψ.

Making these replacements we obtain the proof Π. Π has the following

feature. Every instance of φi → q occurs first as a principal major premiss to

an application of→-elimination.

We now consider each track in Π such that q occurs on the right-hand-side

of the sequents in the track. Let T be a track ΣT : q, . . . ,ΣTnT , : q; here ΣnT : q

is the conclusion—∆, (φ → q)m , (φ → q)n : q—of Π. Since q does not

occur in ∆, (φ → q)m , (φ → q)n : q except in φi → q, any occurrence of

q on the left side of a sequent in T has to have been discharged by either

⊥-elimination or→-elimination. (If q had been discharged by either ∧ or

∨ elimination q would occur in a formula in ∆.) Now Let ΣTj : q be the

greatest j such that in passing to Σj+ : q an occurrence of q is discharged by

⊥ or→ elimination.

If the occurrence of q is discharged by ⊥-elimination the proof looks like

this.

Σ′j ,⊥ : ⊥ Σ′′j ,q : q

Σj+,⊥ : q

Replace this proof with

Σ′j ,⊥ : ⊥ Σ′′j \ {φi → q}i=, ,p : p

Σj+ \ {φi → q}i=, ,⊥ : p

If the occurrence of q is discharged by an application of→ elimination the

proof looks like this.

φi → q : φi → q Σ′j : φi Σ′′j ,q : q

φi → q,Σj+ : q
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But we have that Γi ,φi : p is valid and is witnessed to be valid by a canonical

argument of order less than Π. The induction hypothesis applies and by

cut we get that Γ ,Σ′j : p is valid. By weakening we then get that Γ ,Σj+ \

{φi → q}i=, : p is valid. Let ΠTj be a canonical argument witnessing this.

Note that since j was the greatest j such that an instance of q is discharged

in passing to j +, any formulæ which are discharged along the track T after

j +  are in Σi+ \ {φi → q}i=,. For each track T in Π we make the same

transformations and obtain a proofΠT . Now letΠ′′ be the result of making

the following replacements inΠ.

For each track T = ΣT : q, . . . ,ΣTn : q in Π find the largest j such that in

passing from ΣTj : q to Γ Tj+ : q an occurrence of q on the left in ΣTj is dis-

charged. Replace the sequent ΣTj+ : q with the conclusion of ΠT ; replace all

occurrences of q on the right below ΣTj+ : q with p. In this way we obtain a

canonical argument witnessing that Γ ,∆ 
 p.

. The cut-formula φ is not principal inΠ. There are again five subcases

depending on the principal premiss inΠ.

(a) Π is an axiom, Γ ′ ,φ,p : p, say. Γ ,p : p is likewise an axiom and the result

follows by weakening.

(b) The principal premiss inΠ is ⊥. In that case the argument has the form.
⊥ : ⊥ Γ ,p,φ : q

Γ ,φ,⊥ : q
. By the induction hypothesis we get that Γ ,∆,p : q.

And hence that Γ ,∆,⊥ : q.

(c) The principal premiss is a conjunction ψ ∧ψ. Then we may assume

thatΠ looks like this:

ψ ∧ψ : ψ ∧ψ Γ ,φ,ψ,ψ : p
Γ ,φ,ψ ∧ψ : p

Since the canonical argument to the minor premiss has lower order thanΠ





we can apply the induction hypothesis to that argument to get.

ψ ∧ψ : ψ ∧ψ
Γ ,φ,ψ,ψ : p ∆ : φ

Cut
Γ ,∆,ψ,ψ : p

Γ ,φ,ψ ∧ψ : p

(d) The case where the principal major premiss ofΠ is a disjunction ψ∨ψ

is proved similarly.

(e) The major premiss of Π is a conditional ψ→ ψ. In this case we may

assume that the proof looks like this.

ψ→ ψ : ψ→ ψ Γ,φ : ψ Γ,ψ : p
Γ,Γ,φ,ψ→ ψ : p

(If we have Γ,φ,ψ : p, we can use the induction hypothesis in the same

way as we do for disjunction and conjunction.) It suffices to show that

Γ,∆ : ψ is valid. So suppose that ∆′ is such that ∆′ 
ψ q for some q with

deg(∆′) ≤ deg(ψ). Since Γ,φ : ψ is valid it follows that Γ,∆′ ,φ : q is valid.

But since deg(∆′) ≤ deg(ψ) we must have o(∆′ ,Γ,φ : q) < o(Π). Any proof

witnessing that ∆′ ,Γ,φ 
 q thus has lower order than Π. The induction

hypothesis applies and we get that Γ,∆′ ,∆ : q is valid. Since q and ∆′ were

arbitrary this shows that Γ,∆ : ψ is valid which was to be shown.

This concludes the proof. �

Having proved cut, we can now prove that the class of canonical argu-

ments is closed under arbitrary substitutions.

Theorem .. (Substitution). LetΠ be a canonical argument with principal

premiss φ. Let Π′ be obtained from Π by uniformly substituting the atomic

formulæ q̄ for the atomic formulæ p̄. Then Π′ is a canonical argument with

principal premiss φ[q̄p̄].
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Proof of theorem ... The proof is by induction on the order of canonical

arguments. The case of→-elimination is the only difficulty.

LetΠ be a canonical argument and suppose that φ→ ψ is the principal

major premiss, and suppose that ∆ : φ is the critical sequent, while Γ ,ψ : p is

the non-critical sequent. The canonical argumentΠ witnessing that Γ ,ψ : p

is valid is of lower order than Π. The induction hypothesis thus applies and

Γ [q̄p̄],ψ[q̄p̄] : p[q̄p̄] is valid. It thus suffices to show that ∆[q̄p̄] : φ[q̄p̄] also is a valid

sequent.

This is by induction on φ. If φ is atomic there is a canonical argument

Π witnessing that ∆ : φ is valid. Π is of lower order Π so the induction

hypothesis applies and we get that ∆[q̄p̄] : φ[q̄p̄] is valid.

Suppose then that φ is either ⊥,φ ∧φ,φ ∨φ or φ→ φ. I leave the

cases of ⊥ and ∧ to the reader. Suppose first that φ is φ ∨φ. Let ∆ be

such that ∆ `(φ∨φ)[q̄p̄] r; let Π be a canonical argument witnessing this.

We have to show that ∆[q̄p̄],∆ 
 r. Since (φ ∨φ)[
q̄
p̄] is principal in Π, Π

looks like this.

(φ ∨φ)[
q̄
p̄] : (φ ∨φ)[

q̄
p̄] ∆′,φ[

q̄
p̄] : r ∆′′ ,φ[

q̄
p̄] : r

(φ ∨φ)[
q̄
p̄],∆′,∆

′′
 : r

There are here canonical arguments Π′ and Π′′ witnessing the validity of

the respective minor premisses. Now let r, . . . , rm be all the atomic formula

which occur in ∆, (φ ∨φ)[
q̄
p̄], r. Let r ′, . . . , r

′
m be distinct atomic constants

which are disjoint from all of the constants which occur in ∆ and (φ∨φ)[
q̄
p̄].

The induction hypothesis applies so we get that ∆[
r̄ ′
r̄ ] `(φ∨φ)[r̄′r̄ ][q̄p̄] r[

r̄ ′
r̄ ]

Consider now the premisses φ→ φ[
r̄ ′
r̄ ][q̄p̄],φ→ φ[

r̄ ′
r̄ ][q̄p̄]. The following

argument
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φ ∨φ

φ→ φ[
r̄ ′
r̄ ][q̄p̄] φ : φ

∆′[
r̄ ′
r̄ ],φ[

r̄ ′
r̄ ][q̄p̄]

r[r̄
′

r̄ ]

r[r̄
′

r̄ ]

φ→ φ[
r̄ ′
r̄ ][q̄p̄] φ : φ

∆′′ [r̄
′

r̄ ],φ[
r̄ ′
r̄ ][q̄p̄]

r[r̄
′

r̄ ]

r[r̄
′

r̄ ]

r[r̄
′

r̄ ]

witnesses that

∆[
r̄ ′
r̄ ],φ→ φ[

r̄ ′
r̄ ][q̄p̄],φ→ φ[

r̄ ′
r̄ ][q̄p̄] `(φ∨φ) r[

r̄ ′
r̄ ]

It follows from the validity of ∆ : φ ∨φ that

∆,∆[
r̄ ′
r̄ ],φi → φi[

r̄ ′
r̄ ][q̄p̄] 
 r[r̄

′

r̄ ]

Since a canonical argument witnessing this has lower order than the canoni-

cal argument Π the induction hypothesis applies and we can substitute q̄

for p̄ and r̄ ′ for r̄ to get.

∆[r̄
′

r̄ ][q̄p̄],∆[
r̄ ′
r̄ ],φi[

r̄ ′
r̄ ][q̄p̄]→ φi[

r̄ ′
r̄ ][q̄p̄] 
 r[r̄

′

r̄ ]

Since : φi[
r̄ ′
r̄ ][q̄p̄]→ φi[

r̄ ′
r̄ ][q̄p̄] is valid we can use cut (theorem ..) to get

that ∆[r̄
′

r̄ ][q̄p̄],∆[
r̄ ′
r̄ ] 
 r[r̄

′

r̄ ]. We then substitute r̄ for r̄ ′ to get that ∆[q̄p̄],∆ 
 r.

We reason similarly if φ is φ→ φ. The proof then looks like this.

(φ→ φ)[
q̄
p̄] : (φ→ φ)[

q̄
p̄] ∆′ : φ[

q̄
p̄] ∆′,φ[

q̄
p̄] : r

(φ→ φ)[
q̄
p̄],∆′,∆

′
 : r

Again let r, . . . , rm be all the atomic formula which occur in ∆, (φ →

φ)[
q̄
p̄], r. Let r ′, . . . , r

′
m be distinct atomic constants which are disjoint from
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all of the constants which occur in ∆,φi[
q̄
p̄]. The induction hypothesis applies

so we get that ∆[
r̄ ′
r̄ ] `(φ→φ)[r̄′r̄ ][q̄p̄] r[

r̄ ′
r̄ ]

Consider now the premisses φ[
q̄
p̄]→ φ and φ→ φ[

q̄
p̄]. We then get that

∆[
r̄ ′
r̄ ],φ[

q̄
p̄]→ φ,φ→ φ[

q̄
p̄] `φ→φ r. This is witnessed by the following

proof.

φ→ φ ∆[
r̄ ′
r̄ ]′ ,φ[

q̄
p̄]→ φ : φ

φ→ φ[
q̄
p̄] φ : φ

φ[
q̄
p̄],∆′′ [r̄

′

r̄ ]

r[r̄
′

r̄ ]

r[r̄
′

r̄ ]

r[r̄
′

r̄ ]

Since ∆ 
 φ→ φ it then follows that

∆,∆[
r̄ ′
r̄ ],φ[

q̄
p̄]→ φ,φ→ φ[

q̄
p̄] 
 r[r̄

′

r̄ ]

A canonical proof witnessing this is of lower order than Π so the induction

hypothesis applies and we can conclude that

∆[q̄p̄],∆[
r̄ ′
r̄ ],φ[

q̄
p̄]→ φ[

q̄
p̄],φ[

q̄
p̄]→ φ[

q̄
p̄] 
 r[r̄

′

r̄ ]

Since the r̄ ′ are disjoint from any constants in ∆[q̄p̄],∆, we can again substitute

r̄ for r̄ ′ to get that

∆[q̄p̄],∆,φ[
q̄
p̄]→ φ[

q̄
p̄],φ[

q̄
p̄]→ φ[

q̄
p̄] 
 r

We use theorem .. twice to get that

∆[q̄p̄],∆,
 r
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.. Introduction rules

Having proved cut, it’s now straightforward to prove that the introduction

rules for intuitionistic logic are valid.

Theorem .. (Intuitionistic introduction rules). . If Γ 
 φ and ∆ 
 ψ,

then Γ ,∆ 
 φ∧ψ

. If Γ 
 φ, then Γ 
 φ∨ψ ; if Γ 
 ψ, then Γ 
 φ∨ψ.

. If Γ ,φ 
 ψ, then Γ 
 φ→ ψ.

Proof. : Suppose Γ 
 φ and ∆ 
 ψ. Let ∆′ and p be such that there is

a canonical argument Π from premisses ∆′ ,φ ∧ψ with conclusion p and

principal major premiss φ∧ψ. Then we must have that ∆′ ,φ,ψ 
 p. Now

apply cut twice to conclude that Γ ,∆,∆′ 
 p.  Assume that Γ 
 φ; let ∆′ and

p be such that there is a valid canonical argument from premisses ∆′ ,φ∨ψ

to conclusion p with principal major premiss φ∨ψ. Then there is a canonical

argument witnessing that ∆′ ,φ 
 p. Apply cut to conclude that Γ ,∆′ 
 p.

: Suppose that Γ ,φ 
 ψ. Let ∆ and p be such that there is valid canonical

argument Π with premisses ∆,φ → ψ, conclusion p and major principal

premiss φ→ ψ. Then this argument looks like this:

φ→ ψ : φ→ ψ ∆ : φ ∆,ψ : p
φ→ ψ,∆,∆ : p

We first cut on ψ to get that Γ ,φ,∆ 
 p and we then cut on φ to get that

Γ ,∆,∆ 
 p.

�
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.. Completeness

We now know that the introduction rules for intuitionistic logic can be

justified; but maybe more can be justified? It is easy to see that we cannot

justify classical logic—p∨ (p→⊥), e.g., is clearly not valid; that, however,

leaves it open that some intermediate logic is downwards justified. This is

not the case.

In order to prove this we’ll make use of the following characterization

of the valid sequents, which, since it coincides with a standard sequent

calculus for intuitionistic logic is of some independent interest.

Remark ... Sequents have multisets on the left and we have seen that

contraction does not hold. In what follows we’ll disregard this and treat the

left-hand side of a sequent as being a set. When we say that a sequent Γ : φ is

valid, we’ll mean that there is some m such that the sequent Γm : φ is valid.

Theorem .. (Left-conditions). . Γ ,φ∧ψ 
 θ iff Γ ,φ,ψ 
 θ;

. Γ ,φ∨ψ 
 θ iff both Γ ,φ 
 θ and Γ ,ψ 
 θ;

. if Γ ,φ→ ψ 
 θ, then Γ ,ψ 
 θ; if both ∆ 
 φ and Γ ,ψ 
 θ, then Γ ,∆,φ→

ψ 
 θ;

. Γ ,⊥ 
 θ for all θ.

Theorem .. (Right-conditions). . Γ 
 φ∧ψ iff for all Γ ′ ⊇ Γ and all

p, (if Γ ′ ,φ 
 p, then Γ ′ 
 p and if Γ ′ ,ψ 
 p then Γ ′ 
 p)

. Γ 
 φ∨ψ iff for all Γ ′ ⊇ Γ , if Γ ′ ,φ 
 p and Γ ′ ,ψ 
 p then Γ ′ 
 p;

. Γ 
 φ→ ψ iff for all Γ ′ ⊇ Γ , if ∆ 
 φ, then if Γ ′ ,ψ 
 p, then Γ ′ ,∆ 
 p.
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. Γ 
⊥ iff Γ 
 p for all p.

Proof of theorem ... We’ll prove the left-to-right direction first. Consider

the case of conjunction. Notice that it suffices to show that we can transform

any canonical argument Π with conclusion Γ ,φ ∧ ψ : p into a canonical

argument with conclusion Γ ,φ,ψ : p. (For if we can do this for any canonical

argument, we can certainly do it for canonical argument ending in Γ ,∆,φ∧

ψ : p, where ∆ is bounded by deg(θ).)

We do this by induction on the order of the canonical argumentΠ such

that Π(Γ ,φ∧ψ) ` p. So let Π be such an argument and suppose the result

holds for allΠ′ of lower order. The base case is that p ∈ Γ in which case the

result obviously holds. (Use weakening.) If the principal premiss is ⊥ the

result is likewise immediate.

For the induction step there are two cases.

Case I φ ∧ψ is the principal major premiss of Π. In this case there is

a canonical subargument with conclusion Γ ′ , [φ,ψ] : p. The result follows

(using weakening if necessary.)

Case II Suppose that φ∧ψ is not the principal major premiss; without

loss of generality we may assume that φ∧ψ does not occur on the left in

the principal major premiss. If the principal major premiss is a disjunction,

θ∨θ, φ∧ψ is introduced in one of the minor premisses; the proof, e.g., is:

Γ,θ ∨θ : θ ∨θ Γ,θ, : p Γ,θ,φ∧ψ : p
Γ,Γ,Γ,φ∧ψ : p

In this case we apply the induction hypothesis to the canonical argument

for the minor premiss. We then obtain a canonical argument:

Γ,θ ∨θ : θ ∨θ Γ,θ : p Γ,θ,φ,ψ : p
Γ,Γ,Γ,φ,ψ : p
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The case where the principal major premiss inΠ is a conjunction is treated in

the same way. Suppose that the principal major premiss inΠ is a conditional

θ→ θ. So we might assume that the proof looks like this:

Γ ,θ→ θ : θ→ θ ∆,φ∧ψ : θ Γ ′ ,θ : p
Γ ,∆,Γ ′ ,θ→ θ,φ∧ψ : p

In this case, we can use the induction hypothesis to conclude that ∆,φ,ψ : θ

and that Γ ′ ,∆,φ,ψ,θ : p. This application of the induction hypothesis is

acceptable since the order of ∆,φ∧ψ : θ is strictly less than the order of

Γ ,∆,Γ ′ ,φ∧ψ,θ→ θ. Thus in order to check whether ∆,φ,ψ : θ is valid we

only have to inspect arguments of order less thanΠ.

We thus obtain a canonical proof:

Γ ,θ→ θ : θ→ θ ∆,φ,ψ : θ Γ ′ ,θ : p
Γ ,∆,Γ ′ ,θ→ θ,φ,ψ : p

The right-to-left direction is easier. Suppose that Γ ,φ,ψ : θ is valid. Let

∆ be such that deg(∆) ≤ deg(θ) and such that ∆ 
θ p. Since, ex hypothesi,

Γ ,∆,φ,ψ : p is valid, let Π′ be a canonical argument witnessing that. The

following is a canonical argument:

φ∧ψ : φ∧ψ
Π

Γ ,∆,φ,ψ : p
Γ ,∆,φ∧ψ : p

This shows that Γ ,∆,φ∧ψ 
 p; since p was arbitrary, Γ ,φ∧ψ 
 θ follows.

Disjunction we first consider the left-to-right direction. So suppose that

Γ ,φ∨ψ : p is valid. LetΠ be a canonical argument witnessing this fact.

Case I φ∨ψ is the principal major premiss inΠ. In this case the argument

looks like this:

Γ ′ ,φ∨ψ : φ∨ψ Γ ′′ ,φ : p Γ ′′′ ,ψ : p
Γ ′ ,Γ ′′ ,Γ ′′′ ,φ∨ψ : p
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This means that we have that Γ ′′ ,φ : p and Γ ′′′ ,ψ : p are valid; using weaken-

ing (if necessary) we get that Γ ,φ : p and Γ ,ψ : p are valid.

Case II φ∨ψ is not principal inΠ. This case is treated in the same way

as Case II for conjunction.

Right-to-left. Suppose that Γ ,φ : p and Γ ,ψ : p are valid. The following

canonical argument then shows that Γ ,φ∨ψ : p is valid.

φ∨ψ : φ∨ψ Γ ,φ : p Γ ,ψ : p
Γ ,φ∨ψ : p

The conditional. Suppose, first, that Γ ,φ→ ψ : p is valid. LetΠ witness

this. Again there are two cases.

Case I Suppose that φ→ ψ is principal inΠ. Then the proof looks like

this:

Γ ′ ,φ→ ψ : φ→ ψ ∆, : φ Γ ′′ ,ψ : p
Γ ′ ,∆,Γ ′′ ,φ→ ψ : p

The result now follows by weakening from Γ ′′ ,ψ : p.

Case II This case is parallel to the second case for conjunction and dis-

junction and does not raise further problems.

Right-to-left. Suppose then that ∆ : φ is valid. It suffices to show that if

Γ ,ψ : p is valid then Γ ,∆,φ→ ψ : p is valid. But this is straightforward.

φ→ ψ : φ→ ψ ∆ : φ Γ ,ψ : p
Γ ,∆,φ→ ψ : p

�

Proof of theorem ... Conjunction. Left-to-right: Suppose that Γ : φ∧

ψ is valid; we will show that if Γ ′ ⊇ Γ is such that Γ ′ ,φ : p is valid then Γ ′ : p

is valid. So let Π be such that Π(Γ ′ ,φ) ` p. The following witnesses that

Γ 
φ∧ψ p:
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φ∧ψ : φ∧ψ
Π

Γ ′ ,φ : p
Γ ′ ,φ∧ψ : p

The problem here is that Γ ′ ,φ : p might be of higher degree than φ∧ψ in

which case we cannot use the validity of Γ : φ∧ψ to conclude that Γ ′ : p is

valid. However, the result follows by cut.

Right-to-left: assume that for all Γ ′ ⊇ Γ , if Γ ′ ,φ : p is valid then Γ : p is valid

(and similarly for ψ). Suppose now that ∆ 
φ∧ψ p; let Π witness this. We

have to show that Γ ,∆ : p is valid. Since φ∧ψ occurs principally in Π, we

have to have used ∧-elimination; thus we can conclude that ∆,φ,ψ : p is

valid (here we might need weakening) and in particular Γ ,∆,φ,ψ : p is valid.

By (two applications of) our assumption it follows that Γ ,∆ : p is valid.

Disjunction. Left-to-Right: Suppose that Γ : φ∨ψ is valid; let Γ ′ ⊇ Γ be

given such that both Γ ′ ,φ 
 p and Γ ′ ,ψ 
 p. We must show that Γ ′ 
 p. We

have that Γ ′ 
 φ∨ψ. So letΠ andΠ′ witness that that Γ ,φ 
 p and Γ ′ ,ψ 
 p.

The following witnesses that Γ ′ 
φ∨ψ p.

φ∨ψ : φ∨ψ
Πφ

Γ ′ ,φ : p

Πψ

Γ ′ ,ψ : p
Γ ′ ,φ∨ψ : p

Since Γ : φ∨ψ is valid the result follows by cut.

Right-to-Left: assume that for all Γ ′ ⊇ Γ , if Γ ′ ,φ : p and Γ ′ ,ψ : p are both

valid, then Γ ′ : p is valid. We must show that for all ∆ and p with deg(∆) ≤

φ ∨ ψ if ∆ 
φ∨ψ p, then Γ ,∆ 
 p. Suppose then that ∆ 
φ∨ψ p. Then an

argument witnessing this has the following form:

∆,φ∨ψ : φ∨ψ ∆,φ : p ∆,ψ : p
∆,∆,∆,φ∨ψ : p

It now follows, by weakening, that Γ ,∆,∆,∆,φ 
 p and Γ ,∆,∆,∆,ψ 
 p;

by our assumption it then follows that Γ ,∆,∆,∆ 
 p, which is what was
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to be shown.

Conditional. Left-to-Right: Suppose that Γ : φ→ ψ is valid. Let ∆ be

such that ∆ : φ is valid. Let Γ ′ ⊇ Γ . We need to show that if Γ ′ ,ψ : p is valid,

then Γ ′ ,∆ : p is likewise valid. Suppose then thatΠ witnesses that Γ ′ ,ψ 
 p.

Then the following argumentΠ′ is also canonical:

φ→ ψ : φ→ ψ ∆ : φ
Π

Γ ′ ,ψ : p
Γ ′ ,∆,φ→ ψ : p

Since Γ 
 φ→ ψ, the result now follows by cut.

Right-to-Left: Suppose that for all∆ such that if∆ : φ is valid then if Γ ′ ,ψ : p

is valid, for Γ ⊇ Γ then Γ ′ ,∆ : p is valid. We have to show that if ∆′ and p are

such that ∆′ 
φ→ψ p, (deg(∆) ≤ deg(φ→ ψ)) then Γ ,∆′ 
 p. So suppose that

∆′ 
φ→ψ p and let Π be a valid canonical argument witnessing this. Then

we may assume thatΠ has the form.

φ→ ψ : φ→ ψ ∆, : φ ∆,ψ : p
∆,∆,φ→ ψ : p

But then we have that ∆ 
 φ and ∆,Γ ,ψ 
 p. By the assumption we then

get that ∆,∆,Γ 
 p.

Absurdity: Obvious.

�

It’s now rather straightforward to show completeness with respect to

Kripke-semantics for intuitionistic logic. The idea behind the proof is to

show that there is no least counterexample to the claim that 
 is sound

with respect to validity in Kripke-models; we show this by showing how to

reduce the degree of any counterexample. First we need a lemma.
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Lemma ... If Γ 6|= φ∨ψ then there is a Γ ′ ⊇ Γ and a p such that Γ ′ ,φ |= p

and Γ ′ ,ψ |= p but Γ ′ 6|= p Furthermore, we can make sure that this Γ ′ has degree

max{deg(Γ ),deg(φ∨ψ)}.

Proof. Assume that Γ 6|= φ and Γ 6|= ψ. Pick p not occurring in Γ or in φ or ψ.

Let Γ ′ be Γ ∪ {φ→ p} ∪ {ψ→ p}. Clearly, Γ ′ ,φ |= p (similarly for ψ), but we

can construct a Kripke model K with K |= Γ ′ and K 6|= p. �

Theorem .. (Reduction of counterexamples). If Γ 6|= φ but Γ : φ is valid,

then there is a Γ ′ ⊇ Γ and a ψ such that Γ ′ 6|= ψ and Γ ′ |= ψ is valid. Further-

more, we can pick ψ to be of lower degree than φ and Γ ′ such that o(Γ ′ : ψ) <

o(Γ : φ)#wdeg(φ)+.

Proof. We call [Γ ,φ] a counterexample if Γ : φ is valid but Γ 6|= φ. Let [Γ ,φ] be

a counterexample; we show how to produce φ with minimal degree.

. If φ is p (atomic) there is nothing to reduce.

. Suppose [Γ ,φ∧ψ] is a counterexample. We know that Γ : φ∧ψ is valid

iff Γ : φ and Γ : ψ are both valid. Since Γ 6|= φ∧ψ we must have Γ 6|= φ or

Γ 6|= ψ (by the definition of validity in Kripke semantics). This shows

that either [Γ ,φ] or [Γ ,ψ] is a counterexample.

. Suppose [Γ ,φ∨ψ] is a counterexample. By lemma .. above we

can then find a Γ ′ ⊇ Γ with deg(Γ ′) ≤max{deg(Γ ),deg(φ∨ψ)} such that

Γ ′ ∪ {φ} |= p, Γ ′ ∪ {ψ} |= p but Γ ′ 6|= p. Since Γ 
 φ∨ψ, it follows from

theorem .. above that Γ ′ : p is valid. Note that the order of Γ ′ is

below ωdegφ+.
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. Suppose [Γ ,φ→ ψ] is a counterexample. We then have that Γ 6|= φ→ ψ

and that Γ : φ→ ψ is valid. By our theorem .. above we then have

that for all ∆ if ∆ : φ is valid, then Γ ′ ,∆ : ψ is valid. Put ∆ := φ. Then

Γ ′ ,φ : ψ is valid. . It is clear that Γ ,φ 6|= ψ. For take a countermodel

K to the claim that Γ |= φ → ψ. Then in K there is a node w such

that w |= φ but w 6|= ψ (by definition of ‘|=’ for Kripke-models). Then

the model K′ = 〈{w|w ≥ w} ,≥′〉, where ≥′ is the restriction of ≥ to

{w|w ≥ w}, witnesses that [Γ ′ ∪ {φ},ψ] is a counterexample

. Suppose [Γ ,⊥] is a counterexample. Let K be a Kripke-model witness-

ing this. Find a node w ∈ K such that w |= Γ . (There is such a node, or

otherwise no node in K forces all of Γ contradicting that K witnesses

Γ 6|=⊥.) It follows that there is a p such that w 6|= p. Then [Γ ,p] is our

required counterexample.

�

Theorem .. (Soundness of canonical arguments). If Γ : p is valid, then

Γ |= p.

Proof. We prove this by proving the soundness of canonical arguments by

induction on their order. Let Π be a canonical argument. If Π has finite

order, thenΠ is obviously valid: Π has the form Γ : p where, Γ is all atomic

sentences and p ∈ Γ .

So supposeΠ is a canonical argument of degree α and that for all canon-

ical arguments Π′ of degree β < α that Π′ is sound. First consider the

principal premiss of Π. This has the form: Γ,φ : φ for some φ. This is

clearly sound. The conclusion of a canonical argument follows from its
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premisses by a clearly valid rules, so it remains to check whether the minor

premisses are sound. Let Γ : p be a non-critical minor premiss, and letΠ′

be the canonical argument leading to Γ : p. NowΠ′ is of lower order than

Π, so by the induction hypothesisΠ′ is sound so Γ : p is sound.

Consider now a critical minor premiss ∆ : ψ. Suppose that ∆ : ψ is not

sound. We now use .. to get ∆′ ⊇ ∆ and p such that [∆′ ,p] is a counterex-

ample of lower order than (o(∆ : ψ)#ωdeg(φ)+). But then [∆′ ,p] has lower

order thanΠ. This contradicts the induction hypothesis.

�

Theorem ... If Γ : φ is valid then Γ |= φ.

Proof. A straightforward induction on the complexity of φ. If φ is atomic, it

follows directly from theorem ... If φ is ψ ∧ψ, ψ ∨ψ or ψ→ ψ;

suppose that [Γ ,φ] is a counterexample. Use .. to get a counterexample

[Γ ′ ,p] , and then apply theorem .. to get a contradiction. �

.. Doing without the conditional

For the verificationist meaning-theory in § .) we had to use boundary

rules; for the pragmatist meaning-theory developed here this has not been

necessary. Clearly, the availability of the conditional and modus ponens is

the reason for this. For consider the language of ∨. In this language the

sequent : p∨q is valid! For in the absence of the conditional, nothing except

p follows (canonically) from p and nothing except q follows (canonically)

from q.

If we extend our definition of a canonical argument to encompass bound-

ary rules between atomic formulæ this example is easy to deal with: by
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adding boundary rules of the form p : r, q : r we witness the invalidity of

: p∨ q. This example is interesting for another reason as well. In the proof

of theorem .. (that canonical arguments are closed under uniform sub-

stitution) we relied on the presence of conditionals in the language. This

example shows that in the absence of conditionals we may have failure of

substitution. It is natural to conjecture that as long as we have boundary

rules the class of valid sequents will be closed under substitution. I will

prove this in part  (theorem ..).

This is an interesting example for a third reason: it shows that when we

add new connectives to a language L, sequents from L which were valid

prior to the extension may become invalid after the extension. From the

perspective of an adherent of molecularity like Dummett this would be

deeply problematic. Whether a sequent Γ : φ is valid should turn only on

the meanings of the terms which figure in Γ ,φ and not on the meaning of

connectives which are not in Γ ,φ. It turns out that once we have bound-

ary rules we can never make a sequent invalid by adding new vocabulary

(propositions .. and ...)
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2
General Rules

In the previous chapter I’ve established that intuitionistic logic is complete

with respect to both the intuitionistic introduction and elimination rules.

This amounts to a justification of the inversion principle in terms of the

theory of canonical arguments. In this chapter I will consider arbitrary

introduction and elimination rules.

In order to set the stage for what follows, it will be useful to consider two

alternative accounts of harmony.
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Dummett (, p. ) considers what he calls “total harmony”. This

notion is defined as follows. Let L be a language and λ a connective not in

L. Let L be the logic associated with L and L’ be the logic associated with

the language L∪ {λ}. The rules for the connective λ are totally harmonious

relative to L iff whenever φ ∈ L and φ is provable in L′ then φ is provable in

L.

There are two problems with this account of harmony. First, the relativity

to background language. A connective λ can be harmonious relative to a

language L but be inharmonious with respect to the language L′. Ideally,

we would like an absolute account of harmony. Second, and more seriously,

the connectives λ and λ′ may be individually harmonious with respect to L,

while being jointly inharmonious.

Another account of harmony takes a language L (generated by the con-

nectives λ,λ, . . . ,λn) to be harmonious when every proof in L can be nor-

malized. But the normalizability of a language L is a global feature of

the language. Normalizability need not be preserved when we add new

vocabulary to the language.

Is the account of harmony in terms of verificationist and pragmatist

meaning-theories free of these defects?

In this part I will define the class of general introduction and elimination

rules; I will extend the notion of canonical argument to take into account

general introduction and elimination rules and I will show that the result of

adding a general introduction (elimination) rule to language always results

in a conservative extension of that language.

For a more sustained discussion of problems like these see (Steinberger, forthcoming)
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The second question concerns what we may call the “maximality of intu-

itionistic logic”. It has been intimated that intuitionistic logic is the strongest

logic which can be given a proof-theoretic meaning theory. I will here show

that any connective which can be given a proof-theoretic meaning theory

can be defined in terms of the intuitionistic connectives ∧,∨,→,⊥.

If one thinks that the proof-theoretic account of the meanings of the

logical constants itself is part of an argument against classical logic, this

result is of particular importance. It’s all well and good to note that classical

logic is not in harmony with the intuitionistic introduction (elimination)

rules, but this does not rule out that classical logic is in harmony with some

other introduction (elimination) rules.

. General Introduction Rules

What is an introduction rule? In general, an introduction rule for a con-

nective λ is an argument-schema such that the conclusion of the argument-

schema has λ as its dominant operator. Here, I will only consider introduc-

tion rules which are pure, simple and single-ended (Dummett, , pp. –

). That is,

. an introduction rule for the connective λ is not simultaneously an

elimination rule for a (different) connective λ′ (single-endedness);

. only λ figures in an introduction rule for the connective λ;

(Peregrin, ; Zucker and Tragesser, ; and Schroeder-Heister, , ) develop
this idea in different ways. Due to considerations of space I will not compare the present
approach to theirs.
As noted above this is not my view. The proof-theoretic account of the meanings of

the logical connectives has a more modest goal. In any case, the results are of significant
technical interest.
This demand is perhaps excessive; we should be able to allow that the introduction rules
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i
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ni ∆ij+,Σ

i
j+ : φi, . . . ,φ

i
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∆, . . . ,∆
k
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: λ(Σ,Σ

, . . . ,Σ


m ,Σ
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mk−

,Σkmk
,φ,φ


, . . . ,φ

k
nk−,φ

k
nk )

Figure ..: A general introduction rule

. any connective figuring in an introduction rule figures as the dominant

operator in the conclusion of that rule.

In order to improve readability I’ll introduce the following notation.

We say that a sequent Σ : φ,φ, . . . ,φn is valid iff each of the sequents

Σ : φ, . . . ,Σ : σn is valid. A general introduction rule then has the form

depicted in figure ...

Note that a general introduction rule is wholly schematic: no logical connec-

tives can make an essential appearance in the premisses of the introduction

rule.

It will be convenient for typographical reasons to write general introduc-

tion rules as Prawitz-style natural deduction rules. For those purposes, I’ll

use

Σ

...
φ,φ, . . . ,φn

to be short for

Σ

...
φ

Σ . . .
...

φ . . .

Σ

...
φn

are partially ordered, so that rules higher in the order have premisses which essentially
involve a connective which is governed by a rule occurring earlier in the ordering. It would
be of interest to extend the framework to deal with ordered sets of connectives.
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Some examples may help. Note first that the introduction rules for ∧,∨

and→ are all general introduction rules according to the above definition.

The following is an introduction rule for the bi-conditional.


φ

...
ψ


ψ

...
φ
,

φ↔ ψ

The following is a general introduction rule for a what looks like the

compound connective:

(φ ∨φ→ ψ)∧ (φ ∧φ→ θ ∧ σ )


φ
...
ψ


φ
...
ψ


φ,φ
...
θ


φ,φ
...
σ

,,,
λ(φ,φ,φ,φ,ψ,θ,σ )

Definition ... A connective λ is associated with l-many introduction

rules of the form depicted in figure .. subject to the condition that any

immediate subformula φ of λ(φ̄) occurs in at least one introduction rule for

λ.

If the connective λ is associated with l introduction rules, we’ll write the

l’th introduction rule in the following way:

The rule for ⊥, on the other hand, is not wholly schematic. We, in effect, treat ⊥ as the
conjunction of all atomic sentences. Being an atomic sentence is not a schematic condition.
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. . .Σl,ij
...

. . .φl,i ,φ
l,i
 , . . . ,φ

l,i
ni

Σ
l,i
j+ . . .

...

φl,i , . . . ,φ
l,i
ni . . .

Σ
l,i+
 . . .
...

φl,i+ , . . . ,φl,i+ni+ . . .

λ(Σl, ,Σ
l,
 , . . . ,Σ

l,
m ,Σ

l,k
mk− ,Σ

l,k
mk
,φl, ,φ

l,
 , . . . ,φ

l,k
nk−,φ

l,k
nk )

To improve legibility we’ll often write λ(Σ̄, φ̄) for λ(Σ, . . . ,Σ
k
k ,φ, . . . ,φl).

.. Canonical Arguments

We again have to give a definition of canonical arguments relative to bound-

ary rules. We define the notions “Π is an S-canonical argument” and “Γ : φ

is an α,S-valid sequent” simultaneously by recursion. As before αS is the

closure of the set of verifiers α under the boundary rules in S.

Definition ... Let α be a set of verifiers; and let S be a collection of

boundary rules. LetΠ be an argument with conclusion α : φ. Π is an S-valid

canonical argument iff either

. Π is the one-place argument α−,pi : p for p atomic and pi ∈ Vp.

. pi ∈ αS , for some pi ∈ Vp.

. φ is λ(Σ,Σ

, . . . ,Σ


m ,Σ

k
mk−

,Σkmk
,φ,φ


, . . . ,φ

k
nk−,φ

k
nk ) and

(a) the last rule applied inΠ is λ-introduction; and

(b) for all i ≤ k, j ≤mk , the sequent ∆ij ,Σ
i
j : φi, . . . ,φ

i
ni is α,S-valid.

Definition ... A sequent Γ : φ is α,S-valid iff either

. it is Γ −,pi : p for p atomic and pi ∈ Vp; or

. pi ∈ αS for some pi ∈ Vp; or
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. for all β ⊃ α, and all S ′ ⊃ S: if for all ψ ∈ Γ there is a β,S ′-valid

canonical argument Πψ with conclusion β : ψ, then there is a β,S ′-

valid canonical argumentΠ with conclusion β : φ.

We now go on to give a general characterization of the connectives given

by general introduction rules.

.. Characterization of the general introduction rules

Theorem ... Let λ be a connective associated with l introduction rules. We

then have α 
S λ(Σ, . . . ,Σ
k
mk
,φ, . . . ,φ

k
nk ) iff for some l ≤ l and for all β ⊇ α

and for all i, j and all S ′ ⊃ S if β 
S ′ Σ
l,i
j , then β 
S ′ φ

l,i
 ,φ

l,i
 , . . . ,φ

l,i
 where

Σij = Σl,ij and φij = φl,ij for all i, j.

Proof. Suppose first that α 
s λ(Σ,Σ

,Σ

n
n . . . ,φ


, . . .φ

n
kn

). Pick a canonical

proof Π witnessing this. Π ends with an application of λ-introduction.

Suppose that the introduction rule applied was

. . .Σ
l,i
j

...

φ
l,i
 ,φ

l,i
 , . . . ,φ

l,i
nl ,i

. . .Σ
l,i
j+

...

φ
l,i
 , . . .φ

l,i
ni ,i

Σ
l,i+

...

φ
l,i+
 , . . . ,φ

l,i+
nl ,i+

λ(Σl, , . . . ,Σ
l,k
ml ,k

,φ
l,
 ,φ

l,
 , . . . ,φ

l,k
nl ,k

)

That means that for each β ⊇ α, and S ′ ⊃ S if β 
S ′ Σ
l,i
j then β 
S ′

φ
l,i
 , . . .φ

l,i
nl ,i

. This is what we require to show.

For the other direction, suppose that for all β ⊇ α, S ′ ⊃ S and for all

i, j, if β 
S ′ Σ
l,i
j , then β 
S ′ φ

l,i
 ,φ

l,i
 , . . . ,φ

l,i
nl ,i

for some l. Then by the

induction hypothesis we have that the sequents α,Σl,ij : φl,i ,φ
l,i
 , . . . ,φ

l,i
nl ,i

are α,S valid. This shows that the premisses of the l’th introduction rule





for λ are α,S-valid, and λ(Σl, , . . . ,Σ
l,k
ml ,k

,φ
l,
 , . . . ,φ

l,k
nl,k

) now follows by λ-

introduction. �

.. Maximality of intuitionistic logic

Definition ... Let L be a language containing the intuitionistic connec-

tives ∧,∨,→,⊥ as well as some general connectives λ,λ, . . . ,λn. We define

the translation ∗ as follows. Let λ(Σ,Σ

, . . . ,Σ


m ,Σ

k
mk−

,Σkmk
,φ,φ


, . . . ,φ

k
nk−,φ

k
nk )*

be ∨
l≤l

(
∧
i

(
∨
j

∧
Σ
l,i
l ∗ →

∧
r≤ni

φ
l,i
r ∗))

(Here we assume that this is written out using binary conjunctions and

disjunctions.)

Theorem ... Let L be as in the definition above. And let ∧,∨,→,⊥ be

governed by the usual intuitionistic introduction rules. Then Γ 
S φ iff Γ ∗ 
S φ∗.

Proof. Note first that if suffices to show the result for the special case where

Γ is a collection of atomic formulæ α. For suppose that Γ 
S φ. Now let

β ⊃ α and S ′ ⊃ S be given such that β 
S ′ Γ ∗. Then β 
S ′ Γ by the special

case and hence β 
S ′ φ, since Γ 
S φ. But then β 
S ′ φ∗ by the special case

again, which is what we require to show. The converse direction is proved

similarly.

So suppose that φ is λ(Σ,Σ

, . . . ,Σ


m ,Σ

k
mk−

,Σkmk
,φ,φ


, . . . ,φ

k
nk−,φ

k
nk ) and

let α 
S λ(Σ,Σ

, . . . ,Σ


m ,Σ

k
mk−

,Σkmk
,φ,φ


, . . . ,φ

k
nk−,φ

k
nk ). Then we may as-

sume that the proof has the following form:
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. . .Σ
l,i
j

...

φ
l,i
 ,φ

l,i
 , . . . ,φ

l,i
nl ,i

. . .Σ
l,i
j+

...

φ
l,i
 , . . .φ

l,i
ni ,i

Σ
l,i+

...

φ
l,i+
 , . . . ,φ

l,i+
nl ,i+

λ(Σl, , . . . ,Σ
l,k
ml ,k

,φ
l,
 ,φ

l,
 , . . . ,φ

l,k
nl ,k

)

By the induction hypothesis we have that Σl,ij ∗ 
 φ
l,i
 ∗, . . . ,φ

l,i
ni ,i
∗ for all i, j.

It follows intuitionistically that
∧
Σ
l,i
j ∗ →

∧
φl,i∗ for each i, j. It then

follows intuitionistically that
∨
j
∧
Σ
l,i
j ∗ →

∧
φl,i∗. It then follows intuition-

istically that
∧
i(
∨
j
∧
Σ
l,i
j ∗ →

∧
φl,i)∗. Finally

∨
l≤l

(
∧
i

(
∨
j

∧
Σ
l,i
j ∗ →

∧
r≤ni

φ
l,i
r ∗))

follows by repeated application of ∨-introduction.

The other direction is dealt with as follows. Suppose β 
S
∨
l≤l(

∧
i(
∨
j
∧
Σ
l,i
j ∗ →∧

r≤ni φ
l,i
r ∗)). Find a canonical proof witnessing this. The canonical proof

ends with applications of ∨-introduction. So we can assume that we have a

canonical proof of, e.g., (
∧
i(
∨
j
∧
Σ
l,i
j ∗ →

∧
r≤ni φ

l,i
r ∗)). Since the last rule

applied here is ∧-introduction, for each i we have to have a canonical proof

of
∨
j
∧
Σ
l,i
j ∗ →

∧
r≤ni φ

l,i
r ∗. And that means that for each β ⊃ β and each

S ′ ⊃ S, if β 
S ′
∨
j
∧
Σ
l,i
j ∗, then β 
S ′

∧
r≤ni φ

l,i
r ∗. In other words, for each

j if β 
S ′ Σ
l,i
j ∗, then β 
S ′ φ

l,i
r ∗, for each r ≤ ni . But that means that the

argument

Σ
l,i
j ∗

φl,i∗, . . . ,φl,ini ∗
is β,S-valid for each i, j. It then follows by the induction hypothesis that
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Σ
l,i
j

φl,i , . . . ,φ
l,i
ni

is β,S-valid for each i, j. β 
s λ(Σl, , . . . ,Σ
l,k
ml ,k

,φ
l,
 ,φ

l,
 , . . . ,φ

l,k
nl ,k

) now fol-

lows by λ-introduction. �

This result just shows that any generalized connective λ in a language L

is definable in terms of connectives ∧,∨,→,⊥ governed by the intuitionistic

introduction rules in the language L. This result does not show any general-

ized connective is definable in terms of connectives obeying only the rules

of intuitionistic logic. For it could be that in the presence of the connective

λ the connectives ∧,∨,→,⊥ obey a different logic than intuitionistic logic.

This is not so, however, as is shown by the next two results.

Let L be a language generated by some connectives over the atomic sen-

tences p,p, . . . and let the logic of the language L be generated by the

introduction rules for the connectives of L in accordance with the proce-

dures above and let 
 be the forcing relation associated with this logic. Now

let L′ be a language extending L with some new connectives (but no new

atomic sentences), and let 
′ be the forcing relation associated with this

logic.

Proposition .. (Conservativity). If Γ ,φ are in the language L and Γ 
′S φ,

then Γ 
S φ.

Proposition .. (Monotonicity). Suppose that Γ ,φ are in the language L and

that Γ 
S φ. Then Γ 
′S φ.

These propositions are proved simultaneously by induction.
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Proof of proposition ... Note first that if suffices to prove that if α 
′S φ,

with φ ∈ L, then α 
S φ. For suppose that Γ 
′S φ with Γ ,φ ⊂ L. Now let α

and S ⊃ S be such that α 
S Γ . By monotonicity, we then have α 
′S Γ and

hence α 
′S φ. The special case then gives us that α 
S φ, which is what we

require to show.

So suppose that α 
′S φ. The proof is by induction on φ. If the canonical

argument witnessing this is an axiom or a boundary rule, it’s immediate

that α 
S φ. So suppose that φ is λ(Σ̄, ψ̄) and that the final rule applied is

λ-introduction. The proof then takes the form:

. . .Σil
...

φi,φ
i
, . . . ,φ

i
ni

Σil+
...

φi, . . . ,φ
i
ni

Σi+
...

φi+ , . . . ,φi+ni+
λ(Σ,Σ


, . . . ,Σ

k
mk
,φ,φ


, . . . ,φ

k
nk−,φ

k
nk )

It then suffices to show that α,Σij 
S φ
i
, . . . ,φ

i
ni for each i and j. So let β ⊃ α

and S ⊃ S be given and suppose that β 
S Σ
i
j . Then by monotonicity we

have β 
′S Σ
i
j . Hence β 
′S φ

i
, . . . ,φ

i
ni . The induction hypothesis now gives

us that β 
S φ
i
, . . . ,φ

i
ni .

�

Proof of proposition ... Again it suffices to show the result for the special

case α 
S φ. For suppose that Γ 
S φ. Now let β,S be such that β 
′S Γ . By

conservativity we have β 
S Γ and hence β 
S φ. β 
′S φ now follows by

the special case.

We show by induction on the order of the canonical argument witnessing

α 
S φ, that α 
′S φ.
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If the argument is an axiom or a boundary rule there is nothing to show.

Suppose then that the argument ends with an application of λ-introduction.

The argument then takes the form:

. . .Σil
...

φi,φ
i
, . . . ,φ

i
ni

Σil+
...

φi, . . . ,φ
i
ni

Σi+
...

φi+ , . . . ,φi+ni+
λ(Σ,Σ


, . . . ,Σ

k
mk
,φ,φ


, . . . ,φ

k
nk−,φ

k
nk )

Let β ⊃ α and S ⊃ S be given. It suffices to show that if β 
S Σ
i
j then

β 
S φ
i
, . . . ,φ

i
ni . For then α,Σij 


′
S φ

i
, . . . ,φ

i
ni , for each i, j.

α 
′S λ(Σ,Σ

, . . . ,Σ

k
mk
,φ,φ


, . . . ,φ

k
nk−,φ

k
nk )

follows by λ-introduction.

But this is straightforward. For suppose that β 
′S Σ
i
j . Then β 
S Σ

i
j

by conservativity. Hence β 
S φ
i
, . . . ,φ

i
ni . β 


′
S
φi, . . . ,φ

i
ni follows by the

induction hypothesis. �

Taken together these results show that intuitionistic logic is the strongest

logic which can be validated by a verificationist meaning theory based on

general introduction rules. I now turn towards establishing similar results

for pragmatist meaning theories.

. General Elimination Rules

A general elimination rule is depicted in figure ... The premisses∆ij ,Σ
i
j : ψi

are the critical minor premisses. The premisses Γi ,Θi : p are non-critical mi-
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Γ : λ(Σ, . . . ,Σ
k
mk
,ψ, . . . ,ψk ,Θ, . . . ,Θn) . . .∆ij ,Σ

i
j : ψij . . . Γ,Θ : p . . .Γn,Θn : p

λ(Σ, . . . ,Σ
k
mk
,ψ, . . . ,ψk ,Θ, . . . ,Θn),Γ ,∆, . . . ,∆m,Γ, . . . ,Γn : p

Figure ..: A General Elimination Rule

nor premisses. I’ll often write λ(Σ̄, φ̄,Θ̄) for λ(Σ, . . . ,Σ
k
mk
,φ, . . . ,φk ,Θ, . . . ,Θn).

A connective λ is associated with any finite number of elimination rules.

We demand that any formula which occurs immediately in λ(Σ̄, ψ̄,Θ̄) occurs

in at least one minor premiss in one of the elimination for λ.

Some examples of general elimination rules may help. Note that Σij can

be empty. This ensures that the standard elimination rules for ∧,∨,→,⊥

count as generalized elimination rules.

Here are the general elimination rules for the biconditional:

Γ : φ↔ ψ ∆ : φ Γ,ψ : p
Γ ,∆,Γ : p

and
Γ : φ↔ ψ ∆ : ψ Γ,φ : p

Γ ,∆,Γ : p

Here’s the general elimination rule for the compound connective ((φ∨

ψ)→ θ)→ σ ∨ σ.

Γ : λ(φ,ψ,θ,σ,σ) ∆,φ : θ ∆,ψ : θ Γ,σ : p Γ,σ : p
Γ ,∆,∆,Γ,Γ : p

.. Canonical Arguments

We extend the definition of canonical argument and valid sequent. The defi-

nitions are complicated somewhat by the need to accommodate boundary

rules.

Definition ... The degree of a formula λ(Σ, . . .Σm,ψ, . . .ψm,Θ, . . .Θn) is

max {deg(Σ), . . . ,deg(Σm),deg(ψ), . . . ,deg(ψm),deg(Θ), . . . ,deg(Θn)}+ .
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The degree of a sequent is the maximum of the degree of the formulæ

occurring in the sequent. The order of a formula φ is ωdegφ. The order of a

sequent is the Hessenberg sum of the orders of the formulæ occurring in the

sequent. The order of an argument is the order of the final sequent in the

argument.

We now extend the definition of canonical argument to encompass general

elimination rules and boundary rules. In this case we can treat boundary

rules as relating atomic sentences. It will in fact be easiest to treat the

boundary rules as sequents.

Definition ... A boundary sequent is a sequent Γ : p, where Γ is a (possibly

empty) multiset of atomic sentences.

Definition ... S is a collection of boundary rules iff S is a collection of

boundary sequents which are closed under cut: if p, . . .pi , . . . ,pn : p ∈ S and

q, . . . , qm : pi ∈ S then p, . . . , q, . . . , qm, . . . ,pn : p ∈ S. If S,S ′ be two collections

of boundary rules. We will write S,S ′ for the least collection of boundary

rules containing the both S and S ′.

Let L be a language and let RL be some general elimination rules for the

connectives in L; let S be a collection of boundary rules. We’ll define the

notions of S-canonical argument and S-valid sequent simultaneously by

recursion.

Definition .. (Definition of Valid Canonical Argument). An argument

Π is S-canonically valid if

. Π is the one-step argument Γ : p, where p ∈ Γ ; or
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. Π is the one-step argument Γ ,Γ : p where Γ : p is a boundary sequent

in S; or

. Π has a principal premiss Γ : φ, such that φ ∈ Γ and

(a) If φ is λ(Σ, . . . ,Σ
k
mk
,ψ, . . . ,ψk ,Θ, . . . ,Θn), each critical sequent

∆ij ,Σ
i
j : ψi is S-valid and for each non-critical sequent Γi ,Θi : p the

subargumentΠi to Γi ,Θi : p is S-canonical.

Definition .. (Definition of Valid Sequent). A sequent Γ : φ is S−valid iff

either

. The sequent is Γ ,p : p; or

. The sequent is Γ ′ ,Γ : p where Γ : p is a boundary sequent in S; or

. for every collection of boundary rules S and every ∆ and p and every

S-valid canonical argumentΠ (of degree at most deg(φ)) such that

(a) the conclusion ofΠ is ∆,φ : p; and

(b) the principal major premiss ofΠ is ∆′ ,φ : φ, for some ∆′ ⊆ ∆;

. there is a S,S-canonical argumentΠ′ such that the conclusion ofΠ′

is Γ ,∆∗ : p, where ∆∗ is a subset of ∆m for some m.

We’ll now write Π(Γ `Rφ,S p) for the claim that Π is an S-canonical argu-

ment with principal premiss φ and conclusion Γ ,φ : p. We’ll write Γ `Rφ,S p)

for the claim there is Π such that Π(Γ `Rφ,S p). We’ll write Γ 
RS p for the

claim that there is φ ∈ Γ such that Γ \ {φ} `Rφ,S p. Finally we’ll write Γ 
RS φ

for the claim that Γ : φ is S-valid. When the language and the set of rules is
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clear from context I’ll drop the superscripts and write simply Γ `φ,S p etc.

For typographical reason I will often write Γ 
Sφ for Γ 
φ,S .

Observation ... If Γ 
S φ and S ⊃ S, then Γ 
S φ.

Proof. Left to the reader. �

There are now two tasks ahead of us. The first is to show a cut-elimination

result analogous to theorem .. above. The second is to show that when

we augment a language L governed by the general elimination rules R with

a new connective λ governed by the general elimination rule R that 
R∪RS is

a conservative extension of 
RS for each S.

I have not been able to obtain these results in their full generality, but

I have been able to obtain these results when we restrict our attention to

elimination rules where the Σi in the critical minor premisses are empty.

Henceforth when I speak of a general elimination rule I mean rules of this

form. For definiteness, such rules take the following form:

Γ : λ(ψ, . . . ,ψk ,Θ, . . . ,Θn) . . .∆, : ψ . . .∆k : ψk Γ,Θ : p . . .Γn,Θn : p
Γ ,∆, . . . ,∆k ,Γ, . . . ,Γn : p

I conjecture that the results hold for the general case as well.

Connectives governed by rules which have critical minor premisses are

conditional-like or conditional. Such connectives will play a very important

rôle in what follows because they allow us to imitate the behavior of condi-

tionals. Let λ be a connective one introduction rule of which has m critical

minor premisses, and n non-critical minor premisses. λ can imitate the
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intuitionistic conditional as follows.

λ(

m︷  ︸︸  ︷
φ, . . . ,φ,

n︷                  ︸︸                  ︷︷  ︸︸  ︷
ψ, . . . ,ψ, . . . ,

︷  ︸︸  ︷
ψ, . . . ,ψ) (..)

serves to imitate a conditional φ→ ψ. Note that this formula has the same

degree as a regular conditional φ→ ψ. These “mock conditionals” will be

very important for establishing both cut-elimination and the conservativity

properties. To improve legibility I will write mock conditionals like (..)

above simply as φ −→ ψ.

.. Cut-elimination

The strategy for proving cut-elimination is essentially the same as above. As

before we have to establish some technical lemmas.

Lemma ... Let Π be a canonical argument with principal premiss φ. Let

p,p, . . . ,pn be n+  distinct atomic formulæ that occur in Π. Let q, . . . , qn be

n+  distinct atomic formulæ such that no qj occurs in Π. Let Π′ be obtained

fromΠ by uniformly substituting the atomic formulæ q̄ for the atomic formulæ

p̄. ThenΠ′ is a canonical argument with principal premiss φ[q̄p̄].

Proof. Analogous to the proof of lemma ... (Left to the reader.) �

Lemma ... Let S be a set of boundary rules and let S ⊃ S. Suppose

Γ , [φi −→ qi]i∈I , [qi]i∈I 
S ψ

where each qi is not ⊥ and does not occur in any of the φi , ψ or Γ . Suppose
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further that no sequent which is in S but not in S contains an atomic formula

which occurs in Γ ,φi or ψ. Then Γ 
S ψ.

Corollary ... Suppose Γ 
S φ where S ⊃ S is such that it only differs from

S over sequents which contain formulæ which are in neither Γ nor φ. Then

Γ 
S φ.

Proof of lemma ... As is the case with the analogous lemma .. it suf-

fices to prove the case where ψ is the atomic. The proof is by induction on

the order of the canonical argumentΠ witnessing that

Γ , [φi −→ qi]i∈I , . . . , [qi]i∈I 
S p

The base cases are straightforward. IfΠ takes the form Γ ′ ,p : p, then, by

assumption, p isn’t one of the qi . IfΠ takes the form Γ ′ ,Γ : p, where Γ : p is a

boundary rule in S then this boundary rule has to be in S, for the boundary

rules which are in S but not in S don’t contain p.

The case where the final rule applied inΠ is a non-conditional elimination

rule follows immediately by the induction hypothesis. In the case, where the

last rule applied is a conditional-like elimination rule there are two cases.

First, the principal major premiss is φi −→ qi , for some i. Without loss of

generality we may assume that the argument looks like this:

φi −→ qi : φi −→ qi ∆ : φi Γ, [φj −→ qj ]j∈I\{i}, [qj ]j∈I\{i} : p

φi −→ qi ,∆,Γ, [φj −→ qj ]j∈I\{i}, [qj ]j∈I\{i} : p

The induction hypothesis then gives us that Γ : p is S valid; the result follows

by weakening.

Suppose then that the principal premiss is some other conditional-like

statement. By familiar reasoning it suffices to check that the critical minor
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premisses are valid. Suppose that ∆, [φi −→ qi]i∈I , [qi]i∈I : ψ is a critical

minor premiss which is S-valid. We have to show that ∆ : ψ is S-valid. Now

let S, ∆,q be such that ∆ `
S
ψ q.

Let r̄ be the collection of atomic sentences such that if r ∈ r̄ then r oc-

curs in S but not in S. Consider now r̄ , q̄i . Let r̄ ′ be some distinct atomic

constants which occur in neither ∆,∆,φi ,ψ,q,S,S. By lemma .. we

then have that ∆[
r̄ ′
r̄ ,q̄i

] 

S[

r̄′
r̄ ,q̄i

]
ψ q[

r̄ ′
r̄ ,q̄i

]. Since ∆, [φi −→ qi]i∈I , [qi]i∈I 
S ψ

we get that ∆, [φi −→ qi]i∈I , [qi]i∈I ,∆[
r̄ ′
r̄ ,q̄i

] 
S,S[r̄
′
¯¯ ,qri

] q[
r̄ ′
r̄ ,q̄i

]. Since S,S[
r̄ ′
r̄ ,q̄i

]

only differs from S,S[
r̄ ′
r̄ ,q̄i

] over sequents which contain no formula occur-

ring in ∆,∆[
r̄ ′
r̄ ,q̄i

],q[
r̄ ′
r̄ ,q̄i

] the induction hypothesis applies and we get that

∆,∆[
r̄ ′
r̄ ,q̄i

] 
S,S[r̄
′
r̄ ,q̄i

] q[
r̄ ′
r̄ ,q̄i

]. Substituting r̄ , q̄i for r̄ ′ we then obtain ∆,∆ 
S,S q

which is what we’re required to show. �

Proposition ... Let L be the language generated by the connectives λ, . . . ,λn

where the rules R governing the λi are all non-conditional. Suppose that Γ 
S p.

Then there is a proofΠ(Γ 
S p) such that if φ,φ, . . . ,φn is a sequence of princi-

pal major premisses occurring inΠ such that φ is a top-most principal major

premiss and φn is the last principal major premiss inΠ and such that φi+ occurs

lower in the proof for each i < n, then deg(φi) ≤ deg(φi+), for all i < n.

Proof. It suffices to show how we can permute principal major premisses up-

wards. The following example shows how we can do that. (Here λ(Θ,Θ)

is, in effect
∧
Θ ∧

∧
Θ and λ(Σ,Σ) is, in effect,

∨
Σ ∨

∨
Σ.)

λ(Θ,Θ) : λ(Θ,Θ)
λ(Σ,Σ) : λ(Σ,Σ) Γ,Θ,Σ : p Γ,Σ : p

Γ,Γ,λ(Σ,Σ),Θ : p
Γ,Γ,λ(Σ,Σ),λ(Θ,Θ) : p

is transformed into
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λ(Σ,Σ)
λ(Θ,Θ) : λ(Θ,Θ) Γ,Θ,Σ : p

Γ,λ(Θ,Θ),Σ : p Γ,Σ : p
Γ,Γ,λ(Σ,Σ),λ(Θ,Θ) : p

�

Corollary ... Let L be a language without conditional connectives. Let

Π(Γ 
S p) be a canonical proof. Then there is a canonical proofΠ′(Γ ′ 
S p) with

Γ ′ ⊂ Γ such that every formula occurring in Π′ is a subformula of a principal

major premiss in Π′ or else is the conclusion of a boundary rule where the

antecedent only contains subformulæ of Γ ′.

Proof. Immediate from proposition .. �

Theorem ... Let L be the language generated by the connectives λ, . . . ,λn.

Let the connectives {λi}≤i≤n be associated with general elimination rules R. Let

LR be the logic generated by the rules R. Then LR has cut-elimination in the

following strong sense.

If Γ ,φ 
S ψ and ∆ 
S φ then Γ ,∆ 
S,S ψ.

Proof. We will again prove the result for the special case where ψ is an

atomic formula p. For suppose that the result holds for that special case.

Now suppose that Γ ,φ 
S ψ and∆ 
S φ Let∆ and S be such that∆ `ψ,S p

(with deg(∆) ≤ deg(ψ)). Then Γ ,∆,φ 
S,S p. By the special case of cut we

then get that Γ ,∆,∆ 
S,S,S p which is what we’re required to show.

So let’s prove the special case. The proof is by induction on the degree of

the cut formula φ with a subsidiary induction on the order of the canonical

argumentΠ witnessing that Γ ,φ 
 p.

Consider first the case where φ is not principal in Π. Without loss of

generality we may then assume thatΠ looks like this:





λ(ψ,Θ,Θ) : λ(ψ,Θ,Θ) ∆,φ : ψ Γ,Θ : p Γ,Θ : p
λ(ψ,Θ,Θ),∆,Γ,Γ,φ : p

For if the cut-formula φ occurs in either of the non-critical minor premisses

the induction hypothesis applies immediately. We then have to show that

∆,∆ 
S,S ψ. This is now routine. Suppose that S and Γ ,q are such that

deg(Γ ) ≤ deg(ψ) and Γ `ψ,S q. Then since ∆,φ 
S ψ, we get that Γ ,∆,φ 
S,S

q. A canonical argument witnessing this has lower order thanΠ; it follows

by the induction hypothesis that Γ ,∆,∆ 
S,S,S q which is what we have to

show.

Suppose then that φ is principal in Π. The case where the proof is

an axiom of the form Γ ,p : p is straightforward. Γ ,∆ 
S,S p follows by

weakening from ∆ 
S p.

Suppose next thatΠ is a one-step argument of the form Γ ,p, . . . ,pi , . . . ,pm : p

where p, . . . ,pi , . . . ,pm : p is a S-boundary rule and ∆ 
 pi .

We use induction on the argument Π witnessing that ∆ 
 pi . If Π is

an axiom ∆′ ,pi : pi the result is immediate. IfΠ is by a S boundary rules

q, . . . , qn : pi , the result follows from the fact that p, . . . ,pi−,q, . . . , qn,pi+, . . . ,pm : p

by definition is a S,S-boundary rule.

Otherwise, suppose that the principal major premiss inΠ has λ as the

dominant connective for some λ, and the final rule applied is λ-elimination.

Without loss of generality, we may assume thatΠ looks like this:

λ(θ,Θ) : λ(θ,Θ) ∆′ : θ Γ ′ ,Θ : pi
∆′ ,Γ ′ ,λ(θ,Θ) : pi

The canonical argument to Γ ′ ,Θ : pi is S-valid and of lower order than

the order of Π. The induction hypothesis thus applies and we get that
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Γ ′ ,Γ ′ ,Θ,p, . . . ,pi−,pi , . . . ,pm 
S,S p. Since ∆′S,Sθ The following proof then

witnesses that Γ ,∆ 
 p.

λ(θ,Θ) : λ(θ,Θ) ∆′ : θ Γ ′ ,Θ,Γ ,p, . . . ,pi−,pi+, . . .pm : p
Γ ,p, . . . ,pi−,pi+, . . .pm,∆ : p

(Recall that ∆ is Γ ′ ,∆′ ,λ(θ,Θ).)

Suppose then that φ is a complex formula and that φ is principal in the

proofΠ. The proof splits into two cases depending on whether the language

L has conditional connectives or not.

If L does not have conditional connectives we use proposition .. and

corollary .. to get a canonical argument Π witnessing Γ ,φ 
 p such

that, Π, the only occurrences of the cut-formula φ is as principal major

premiss in argumentsΠφ such thatΠφ has degree less than or equal to φ.

The conclusion of such an argumentΠφ will be of the form ΓΠφ ,φ : r. Since

∆ 
S φ it follows that ΓΠφ ,∆ 
S,S q. Let Π′φ witness this. Replace each

argument Πφ in Π with Π′φ; in this way we obtain a canonical argument

witnessing Γ ,∆ 
S,S p.

Suppose, then, that L has a conditional connective λ. We will need to

use mock-conditionals; as above we will write these φ −→ ψ.

Without loss of generality, we can assume that φ is λ(ψ,Θ,Θ). Sup-

pose thatΠ(Γ ,λ(ψ,Θ,Θ) 
S p) with λ(ψ,Θ,Θ) principal inΠ. Suppose

further that ∆ 
S λ(ψ,Θ,Θ).

Π takes the following form:

λ(ψ,Θ,Θ) : λ(ψ,Θ,Θ) ∆ : ψ Γ,Θ : p Γ,Θ, : p
λ(ψ,Θ,Θ),∆,Γ,Γ,Φ : p

If the degree ofΠ is less than or equal to λ(ψ,Θ,Θ), Γ ,∆ 
S,S p follows

immediately from ∆ 
S λ(ψ,Θ,Θ).
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So suppose that Π is of strictly greater degree than λ(ψ,Θ,Θ). We

will first construct a set ∆+ with deg(∆+) ≤ deg(λ(ψ,Θ,Θ)) and a set of

boundary rules S such that ∆+ `Sλ(ψ,Θ,Θ) q.

. Let PΘi = {pθ : θ ∈Θi} be a set of fresh atomic constants for i = ,.

. Let PΓi =
{
pγ : γ ∈ Γi

}
be another set of fresh constants for i = ,.

. Let Θi =⇒ PΘi = {θ −→ pθ : θ ∈Θi}.

Let ∆+ be ψ,Θi =⇒ PΘi ,i=,, PΓi ,i=,.

We let S be S and in addition the rules

. PΓ , PΘ : q and

. PΓ , PΘ : q where q is a fresh constant.

The following proof witnesses that ∆+ `Sλ(ψ,Θ,Θ)
q.

λ(ψ,Θ,Θ) ψ : ψ Θi =⇒ PΘi ,Θi , PΓi : q

λ(φ,Θ,Θ),∆+) : q

Since deg(∆+) ≤ deg(λ(ψ,Θ,Θ)) and ∆ 
S λ(φ,Θ,Θ) we get that

∆,∆+ 
S,S q.Let Π be a canonical proof witnessing that ∆,∆+ 
S,S q.

We will use this proof to construct a proof witnessing Γ ,∆ 
S,S p.

First, we transform the proof Π into the proof Π as follows. If θ −→

pθ ,σ : σ is a principal major premiss occurring in Π we replace this pre-

miss with σ : σ . Suppose that ∆′ , P ′
Θi
,Θi =⇒ PΘi , P

′
Γi

: σ is a critical minor

premiss inΠ. (Where P ′
Γi
⊂ PΓi and P ′

Θi
⊂ PΘi .) Then σ does not contain any

formula from PΘi or PΓi : if it did, there would be formulæ containing fresh

constants in the antecedent position of ∆, and that’s impossible. But then

the conditions of lemma .. are satisfied, and we get that ∆′ : σ is S valid.
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So we can replace any critical minor premiss ∆′ , PΦ ′ , P ′Θi ,Θi =⇒ PΘi , P
′
Γi

: σ in

Π with ∆′ : σ . LetΠ be the resulting proof.

InΠ all formulæ of the form θ −→ pθ, occur as principal major premisses.

Now let T = Γ T : q, . . . ,Γ Tn : q be a track inΠ. Since q does not occur on the

left of the conclusion ofΠ at all, the top node of the track T—that is, Γ T : q—

has to be a boundary axiom of the form Γ ′ , PΓi , PΘi , : q. Now since none of the

pθ occur in the conclusion ofΠ—that is, in Γ Tn : q—except in a formula of

the form θ −→ pθ we know that each occurrence of pθ is discharged by an

application of −→-elimination with major premiss θ −→ pθ. Let j be largest

such that Γ Tj is of the form Γ ′ , PΘi , PΓi : q. Then for all pθ in PΘi , there is a

critical minor premiss Σθ , [ψ] : θ below Γ Tj which discharges pθ. Moreover,

since Σθ and θ don’t contain any formulæ in PΘi and PΓi , we in fact have that

Σθ 
S θ

Let’s write Θi = θi, . . . ,θ
i
mi

. We have Σθj 
S,S θj for each j ≤ mi . We

have that Γi ,ΘiV dashSp. Since each formula in Θi is of lower degree than

λ(ψ,Θ,Θ) the induction hypothesis (applied |Θi |-many times) gives us that

Γi ,

|Θi |︷  ︸︸  ︷
ψ, . . . ,ψ,Σθ , . . . ,Σθmi 
S,S p

Since ∆ 
S ψ, and ψ is also of lower degree than λ(ψ,Θ,Θ) the induc-

tion hypothesis allows us to cut again to get

Γi ,

|Θi |︷     ︸︸     ︷
∆, . . . ,∆,Σθ , . . . ,Σθmi : q

Let ΠT be a canonical proof witnessing this. Replace the sequent Γ Tj : q
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with the concluding sequent of ΠT and replace the argument above this

sequent withΠT . Replace any occurrences of q on the right after Γj with p.

Now delete all applications of θ −→ pθ-elimination in Π below Γi : q but

keep all other elimination rules. LetΠ be the resulting proof. Π witnesses

that Γ ,∆, . . . ,∆n 
S,S p.

�

Armed with cut, we can establish that the class of canonical arguments is

closed under arbitrary substitution.

Theorem ... LetΠ be an S-canonical argument with principal premiss φ.

LetΠ′ be obtained fromΠ by uniformly substituting the atomic formulæ q̄ for the

atomic formulæ p̄. ThenΠ′ is an S ′ canonical argument with principal premiss

φ[q̄p̄]. (Where S ′ is the result of substituting q̄ for p̄ in S.)

Proof of theorem ... The proof is analogous to the proof of theorem ...

Suppose thatΠ is an S-canonical argument with principal premiss φ. We

prove the result by induction on the order ofΠ. The base cases are straight-

forward. The induction steps for non-conditional connectives follow imme-

diately by the induction hypothesis.

The problematic case is where the principal major premiss ofΠ is conditional-

like. Without loss of generality, we can assume that the proof looks like

this.

λ(φ,Θ) : λ(φ,Θ) ∆ : φ Γ ,Θ : p
λ(φ,Θ),∆,Γ : p

By the induction hypothesis, we get that there is a valid canonical argument

witnessing Γ [q̄p̄],Θ[q̄p̄] 
S p[q̄p̄]. (Here S is the result of substituting q̄ for p̄ in

S.) We therefore only have to show that ∆[q̄p̄] : φ[q̄p̄] is S-valid.
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The proof is by induction on φ. If φ is atomic there is a canonical argu-

mentΠ witnessing that ∆ 
S φ. This canonical argument has lower order

thanΠ. It follows by the induction hypothesis that the sequent ∆[q̄p̄] : φ[q̄p̄] is

S-valid.

Suppose, then, that φ is complex. We’ll use a variation of the technique

we used to prove substitution when dealing only with the language of

intuitionistic propositional logic. Without loss of generality we can assume

that φ has the form λ(φ,Θ,Θ).

Let ∆,q and S be such that ∆ `
S
λ(φ[

q̄
p̄],Θ[

q̄
p̄]Θ[

q̄
p̄])
q. Let Π be a S-

canonical argument witnessing this. We have to show that ∆[q̄p̄],∆ 
S,S q.

Since we are considering a critical minor premiss there has to be at least

one conditional like connective in the language.

Now let r, . . . , rm be all the atomic formulæ which occur in∆,λ(φ[
q̄
p̄],Θ[

q̄
p̄],Θ[

q̄
p̄])

and q. Let r ′, . . . , r
′
m be distinct atomic constants which are disjoint from all of

the constants which occur in ∆ and λ(φ[
q̄
p̄],Θ[

q̄
p̄]Θ[

q̄
p̄]),S and q. Since the

order ofΠ is lower than the order ofΠ, the induction hypothesis applies

and we get that

∆[
r̄ ′
r̄ ] `S[

r̄′
r̄ ]

λ(φ[
r̄′
r̄ ][q̄p̄],Θ[

r̄′
r̄ ][q̄p̄],Θ[

r̄′
r̄ ][q̄p̄])

q[r̄
′

r̄ ]

We can assume that this proof has the form:

λ(φ[
r̄ ′
r̄ ][q̄p̄],Θ[

r̄ ′
r̄ ][q̄p̄]Θ[

r̄ ′
r̄ ][q̄p̄]) ∆′[

r̄ ′
r̄ ] : φ[

r̄ ′
r̄ ][q̄p̄] Γ ′i [r̄

′

r̄ ],Θi[
r̄ ′
r̄ ][q̄p̄] : q[r̄

′

r̄ ]

λ(φ[
r̄ ′
r̄ ][q̄p̄],Θ[

r̄ ′
r̄ ][q̄p̄],Θ[

r̄ ′
r̄ ][q̄p̄]),∆′[

r̄ ′
r̄ ],Γ ′[

r̄ ′
r̄ ] : q[r̄

′

r̄ ]

We now add the premisses φ[r̄
′

r̄ ][q̄p̄] −→ φ and θ −→ θ[r̄
′

r̄ ][q̄p̄], for each θ ∈Θi .

Let’s write Θi =⇒Θi[r̄
′

r̄ ][q̄p̄] for the latter collection of premisses.

It is easily seen that φ[
r̄ ′
r̄ ][q̄p̄],φ[

r̄ ′
r̄ ][q̄p̄] −→ φ 
 φ. By cut we then get

∆′[
r̄ ′
r̄ ],φ[

r̄ ′
r̄ ][q̄p̄] −→ φ 
S φ. It is also easy to see that Θi ,Γ ′[

r̄ ′
r̄ ],Θi =⇒
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Θi[
r̄ ′
r̄ ][q̄p̄] 
 q[r̄

′

r̄ ][q̄p̄].

Putting all this together we obtain the following proof.

λ(φ,Θ,Θ) ∆′[
r̄ ′
r̄ ],φ[

r̄ ′
r̄ ][q̄p̄] −→ φ : φ Γ ′[

r̄ ′
r̄ ],Θi =⇒Θi[r̄

′

r̄ ][q̄p̄],Θi : q[r̄
′

r̄ ][q̄p̄]

q[r̄
′

r̄ ][q̄p̄]

Since∆ 
S λ(φ,Θ,Θ) and the above proof has degree at most deg(λ(Σ,φ,Θ,Θ))

we get that

∆,∆′[
r̄ ′
r̄ ],φ[

r̄ ′
r̄ ][q̄p̄] −→ φ,Γ ′[

r̄ ′
r̄ ],Θi =⇒Θi[r̄

′

r̄ ][q̄p̄] 
 q[r̄
′

r̄ ][q̄p̄] 
S,S[r̄
′
r̄ ] q[r̄

′

r̄ ][q̄p̄]

The proof witnessing this has lower order than the proof than the proof

Π with which we started. By the induction hypothesis we can therefore

substitute q̄ for p̄ and then r̄ ′ for r̄ to get the following.

∆[r̄
′

r̄ ][q̄p̄],∆′[
r̄ ′
r̄ ],φ[

r̄ ′
r̄ ][q̄p̄] −→ φ̄[r̄

′

r̄ ][q̄p̄]),Γ ′[
r̄ ′
r̄ ],Θi[

r̄ ′
r̄ ][q̄p̄] =⇒Θi[r̄

′

r̄ ][q̄p̄] 
S[r̄
′
r̄ ],S[

r̄′
r̄ ] q[r̄

′

r̄ ][q̄p̄]

Since 
 φ −→ φ for any φ we can use theorem .. and the fact that

∆[
r̄ ′
r̄ ] = ∆′[

r̄ ′
r̄ ],Γ ′[

r̄ ′
r̄ ],Γ ′[

r̄ ′
r̄ ] to get that

∆[r̄
′

r̄ ][q̄p̄],∆[
r̄ ′
r̄ ] 
S[r̄

′
r̄ ],S[

r̄′
r̄ ] q[r̄

′

r̄ ][q̄p̄]

Substituting r̄ for r ′ we then obtain

∆[q̄p̄],∆ 
S,S q
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which is what we’re required to show.

�

.. Conservativity Results

Let L be a language generated by some connectives λ, . . . ,λn governed by

some rules R. Let L+ be a language extending L where the connectives in

L+ but not in L are governed by the rules R+ and the connectives both in L

and L+ are governed by R. We use 
S for validity in the logic generated by

R and we use 
+
S for validity in the logic generated by R∪R+.

We would now like to extend prove conservativity results analogous to

those in section ... The key to this is the following theorem.

Theorem ... Let L be a language generated by some connectives λ, . . . ,λn

governed by the general elimination rules R. Suppose that ∆ 1S φ; then there

is S and ∆ such that all the connectives in ∆ occur in ∆,φ and such that

∆ 
φ,S p but ∆,∆ 1S,S p.

Using this theorem we can prove the following two propositions simulta-

neously by induction.

Proposition ... Suppose L ⊆ L+ and that Γ `φ,S p. Then Γ `+φ,S p

Proposition ... Suppose Γ `+φ,S p where Γ ,φ ⊂ L, then Γ `φ,S p.

Proof of proposition ... Suppose thatΠ witnesses that Γ `φ,S p. The only

problematic case is where there are critical subarguments. Suppose that

∆ : φ is a critical subargument in Π. Now suppose that ∆ 1+
S ψ. Then by

theorem .. there is a ∆ and an S such that ∆ `+ψ,S p but ∆,∆ 1
+
S,S

p

where ∆ contains only connectives from ∆ and ψ. But then ∆ ⊆ L. And
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since the argument witnessing that ∆ `+ψ,s p is of lower order than Π it

follows by proposition .. that ∆ `ψ,S p. Since ∆ 
S ψ, it follows

that ∆,∆ 
S,S p. But then it follows by the induction hypothesis that

∆,∆ 

+
S,S

p. Contradiction. Hence ∆ 
+
S ψ. �

Proof of proposition ... Suppose that Γ 
+
φ p, where Γ ,φ ⊂ L. Let Π wit-

ness this. The problematic case is, again, where Π contains critical minor

sequents. So let ∆ : ψ be a critical minor sequent occurring in Π. We have to

show that ∆ 
S ψ. So suppose that ∆,S are such that ∆ `ψ,S p. Then by

proposition .. we get that ∆ `+ψ,S p. Hence we get that ∆,∆ 

+
S,S

p. By

the induction hypothesis we get that ∆,∆ 
S,S p. �

So we will prove theorem ... The technique is similar to the technique

used in the proof of cut-elimination above (theorem section ..))

Proof of theorem ... Suppose that ∆ 1S φ. There are two cases. Suppose

first that a conditional connective occurs in ∆,φ; we’ll use this connective to

create mock conditionals. As before we’ll write these conditionals using −→.

Now, let S+
 , ∆+

 and p witness that ∆ 1S φ. Assume, without loss of

generality, that φ is of the form λ(ψ,Θ,Θ). The proof Π witnessing that

∆+
 `φ,S+


p looks like this:

λ(ψ,Θ,Θ) : λ(ψ,Θ,Θ) Γ : ψ Γ,Θ : p Γ,Θ : p
λ(ψ,Θ,Θ),Γ ,Γ,Γ : p

Now let PΓi =
{
pγ : γ ∈ Γi

}
where the pγ are fresh atomic constants. Let

ΠΘi = {pθ : θ ∈Θi}, where the pθ are another collection of fresh atomic

constants. Now let S = S+
 ∪

{
PΓi , PΘi : q

}
where q is fresh atomic constant.
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Then let ∆ = ψ,Θi =⇒ PΘi ,i=,, PΓi ,i=,. The following proof witnesses that

∆ 
φ,S q.

λ(ψ,Θ,Θ) : λ(ψ,Θ,Θ) ψ : ψ

θ −→ pθ : θ −→ pθ θ : θ PΓi , P
′
Θi
,pθ : q

θ −→ pθ ,θ,P
′
Θi
, : q

...
Θi −→ PΘi ,Θi , : q

λ(ψ,Θ,Θ) : λ(ψ,Θ,Θ),ψ,Θi −→ PΘi , : q

Now suppose that ∆,∆ 
S,S q. LetΠ be a proof witnessing this. Since q

does not occur in ∆ or ∆, q has to be introduced by means of a boundary

rule. The only boundary rules which introduce q are the rules PΓi , PΘi : q.

Go up each track in the proof until we find a sequent of the form Γ ′ , PΓi , PΘi : q.

Now none of the atomic formulæ pθ, for θ ∈Θi occur in ∆,∆ except in the

form θ→ pθ. That means that every occurrence of a pθ has been discharged

by an instance of −→-elimination. That means, in particular, that we have

to have: ∆θ , [ψ] 
S,S θ, for each pθ, for some ∆θ. By lemma .. we

then get that ∆θ , [ψ] \
{
Θi =⇒ TΘi ∪ PΓi : i = ,

}

S,S+


θ. Since Γi ,Θi : p we

then get Γi ,

n+︷ ︸︸ ︷
Γ , . . . ,Γ ∆θ , . . . ,∆θn 
S,S+


p, by several applications of cut. But

Γi ,

n+︷ ︸︸ ︷
Γ , . . . ,Γ ∆θ , . . . ,∆θn 
S,S+


only contains formulæ in ∆,∆+

 . This contradicts

that ∆,∆+
 1S,S+


p.

The case where there is no conditional connectives in ∆,φ is dealt with as

follows.

Claim: If Γ does not contain any conditionals, then there are Γ, . . . ,Γn

where each Γi only contains atomic subformulæ of Γ such that for all ∆,q,S:

Γ ,∆ 
S q iff Γ,∆ 
S q, . . . ,Γn,∆S 
S q
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The result follows by the claim. Suppose that ∆ 1S φ, where ∆,φ don’t

contain any conditionals. Let S+
 , ∆,p witness this. That is we have ∆+

 
φ,S+


p but we don’t have ∆,∆+ 
S,S+

p. Now use the claim to obtain Γ,Γ, . . . ,Γn

such that each Γi is a set of atomic subformulæ of φ and such that Γi ,∆+
 
S+


p.

Now let p∆ and q be fresh atomic formulæ. Let S be the boundary rules in

S+
 as well as the boundary rules Γi ,p∆ : q. Let ∆ be p∆.

We then get that ∆ `φ,S q. Suppose then that ∆,∆ 
S,S q. Then since

q is fresh it can only be introduced by means of a boundary rule. Go up

each track until we hit something of the form Γ ′ ,Γi ,p∆ : q. Replace these

sequents with Γi ,∆+
 : p. What results is a proof witnessing that ∆,∆+

 
S,S+

p.

Contradiction.

To prove the claim, note that non-conditional connectives are basically

conjunctions of disjunctions of conjunctions. The result is proved pretty

much as theorem .. above and is left to the reader.

�

.. Maximality of intuitionistic logic

For verificationist meaning-theories we were able to establish not just that

any extension of intuitionistic logic by connectives governed by general

introduction rules is a conservative extension of intuitionistic logic: we were

also able to establish that any such connective can be defined by means of

the intuitionistic connectives. We can do the same here.

We’ll need the following definition.

Definition ... Let λ be a connective with k elimination rules. A formula

with λ dominant has the following schematic form: λ(φ, . . . ,φn,Θ, . . . ,Θm).





We define the functions I, J as follows. For all l < k

Iλ(l) = {φi : i ≤ n such that ∆ : φi is a critical minor premiss in the l’th elimination rule.}

Jλ(l) = {Θi : i ≤m such that Γ ,Θi : p is a non-critical minor premiss in the l’th elimination rule.}

We can now define the following translation.

Definition ... Let λ, . . . ,λn be some connectives governed by gen-

eral elimination rules. We define the translation ∗ of formulæ containing

λ, . . . ,λn into formulæ built only using the intuitionistic connectives as

follows.

. p∗ is p for every atomic formula p;

. if λ ∈ {λ, . . . ,λn} then λ(φ,φ, . . . ,φn,Θ,Θ, . . .Θm)∗ is

∧
k≤k

(
∧
i∈Ik

φi∗ →
∨
j∈Jk

∧
Θj∗

here k is the number of elimination rules governing λ; IfΘ = {θ, . . . ,θn}

then Θ∗ is {θ∗, . . . ,θn∗}.

Theorem ... Let L be the logic generated by the intuitionistic connectives

and the connectives λ, . . . ,λn. Then both φ : φ∗ and φ∗ : φ are L-valid for all φ.

Proof. The proof is by induction on φ. The case where φ is atomic is obvious.

We first show that φ∗ : φ. Without loss of generality we can assume that φ

has the form λ(φ,Θ,Θ) and that it’s associated with a single elimination

rule.
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λ(ψ,Θ,Θ) ∆ : ψ Γ,Θ : p Γ,Θ : p
∆,Γ,Γ,λ(ψ,Θ,Θ) : p

By the induction hypothesis we have ψ : ψ∗. Hence we have ∆ : ψ∗ by cut.

By the induction hypothesis we also have Θ∗i : Θi . By cut we then have

Γi ,Θi∗ : p. It is easy to see that ψ∗ → (
∧
Θ ∗ ∨

∧
Θ∗),∆,Γ,Γ : p, which is

what we have to show.

For the other direction, suppose that Γ `ψ∗→(
∧
Θ∗∨

∧
Θ∗) p. The proof then

takes the following form:

→ (
∧
Θ ∗ ∨

∧
Θ∗) ∆ : ψ∗ Γ , (

∧
Θ ∗ ∨

∧
Θ∗) : p

(
∧
Θ ∗ ∨

∧
Θ∗),∆,Γ : p

By the induction hypothesis and cut we get that ∆ : ψ is valid. By theorem

.. we now get that Γ ,Θ∗ : p and Γ ,Θ∗ : p. By the induction hypothesis

and cut we get that Γ ,Θ : p and Γ ,Θ : p are both valid. It is easy to find the

canonical argument witnessing λ(ψ,Θ,Θ),∆,Γ,Γ 
 p.

�

. Stability

So far we’ve considered verificationist and pragmatist meaning theories sep-

arately; it is now time to bring them together by studying Dummett’s notion

of stability. The notion of stability was originally introduced to diagnose

the following sort of failing. Consider the connective ∨̈ which has the elimi-

nation rule Γ : φ ∨̈ψ φ : σ ψ : σ
Γ : σ

, i.e., where we demand that σ

follows from φ(ψ) alone. Dummett observes that when we add a connective

∨ subject to the usual disjunction introduction and elimination rules to a

language already including ∨̈ we can derive unrestricted ∨̈-elimination as

follows.
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∆ : φ ∨̈ψ
φ : φ
φ : φ∨ψ

ψ : ψ
ψ : φ∨ψ

∆ : φ∨ψ Γ,φ : σ Γ,ψ : σ
∆,Γ,Γ : σ

This gives us a failure of cut-elimination.

Intuitively, the ∨̈-elimination rule is unstable in the sense that the stan-

dard ∨-introduction rule is validated by a pragmatist meaning-theory based

on ∨̈ elimination. But the unrestricted ∨-elimination rule is validated by a

verificationist meaning theory based on the standard ∨ rules.

What’s the importance of stable rules? If some connectives have unstable

rules, a verificationist and a pragmatist will not agree on the logic governing

those connectives; if the rules are stable, on the other hand, the verificationist

and pragmatist will agree on the logic governing the connectives.

Dummett makes an interesting conjecture concerning stability. First, a

definition.

Definition ... We’ll define two functions I , E

. Let R be some collection of introduction rules for the connectives

λ, . . . ,λn. Let E(R) be all the elimination rules for λ, . . . ,λn which are

validated by the verificationist meaning theory for λ, . . . ,λn based on

R.

. Let R be some collection of elimination rules for the connectives

λ, . . . ,λn. Let I(R) be all the elimination rules for λ, . . . ,λn which

are validated by the pragmatist meaning theory for λ, . . . ,λn based on

R.

Definition ... . Let R be a collection of introduction rules for some

connectives λ, . . . ,λn. The rules R are stable iff I(E(R)) ⊂ LR.
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. LetR be a collection of elimination rules for some connectives λ, . . . ,λn.

The rules R are stable iff E(I(R)) ⊂ LR.

Definition ... Let J = {λ, . . . ,λn} be some connectives governed by some

introduction (elimination) rules R. For each subset I ⊂ {λ, . . . ,λn} let LI be

the logic generated by verificationist (pragmatist) meaning-theory based

on the rules governing just the connectives in I . We use 
I for the induced

consequence relations. We say that L is in total harmony iff for all such I ⊂ J

if Γ ,φ contain only connectives in I and Γ 
J φ, then Γ 
I φ.

Dummett conjectures that “intrinsic harmony implies total harmony in a

context where stability prevails” (Dummett, , p. ). Given the results

obtained so far, haven’t we established this conjecture? After all, we have

shown that any logic induced by a verificationist or pragmatist meaning-

theory is totally harmonious. Indeed, in order to prove these results we did

not need to rely on the stability of the rules as all.

From the example of ∨̈ it should be clear that this is not what Dummett is

after. The above conservativity results shows that the verificationist (prag-

matist) meaning theory for the language L∪ {λ} is a conservative extension

of the verificationist (pragmatist) meaning-theory for L. What we want to

do is to look at “mixed” meaning-theories for L and L∪ {λ} and show that

the latter is a conservative extension of the former.

Definition ... Let R be a collection of introduction (elimination) rules.

We define the logic LR+ as the least set of sequents S such that

. Γ : φ ∈ LR+ iff Γ 
R φ or Γ 
I(E(R)) φ (Γ 
E(I(R)) φ))

In other words, 
J is a conservative extension of 
I for each I .
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. if ∆ : φ, . . . ,∆n : φn are in LR+ and
∆ : φ,∆ : φ . . .∆n : φn

Γ : φ
is in

I(E(R)) (E(I(R))) or LR then Γ : φ is in LR+.

We can now give a more interesting formulation of Dummett’s Conjecture.

Theorem .. (Dummett’s conjecture). Let J be a collection of connectives

governed by some introduction (elimination) rules R and assume that the rules

R are stable. Let Γ ,φ contain only connectives from I ⊂ J and let R′ be the rules

governing only the connectives in I . Then if Γ 
LR+ φ then Γ 
L
R
′ ,+ φ.

Proof. We prove the case where R is a collection of introduction rules. Sup-

pose that Γ ,φ contain only connectives in I . Suppose that Γ 
R+ φ. It suffices

to show that Γ 
R φ, for then the result follows by proposition .. . The

proof is by induction on the proof in LR+ witnessing that Γ 
LR+
φ. If the

proof is an axiom, Γ : φ, then we either have Γ 
R φ, in which case there is

nothing to prove; or else we have Γ 
I(E(R)) φ. In the latter case the result

follows by stability.

So suppose that the proof ends with an application of a rule
∆ : φ,∆ : φ . . .∆n : φn

Γ : φ
. By the induction hypothesis we have that ∆i 
R φi for each i.

If the rule is in R, the result is immediate. So suppose that the rule is in

I(E(R)). Since the rules R are stable the rules is 
R-valid. The result follows.

�

Which rules are stable? We know that the introduction and elimination

rules of intuitionistic logic are stable.

Proposition ... . The introduction rules of intuitionistic logic are stable;

. The elimination rules of intuitionistic logic are stable.
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Proof. Let R be the standard intuitionistic introduction rules. E(R) is the

collection of all elimination rules which are validated by the verificationist

meaning theory based on R. By theorem .. every rule R ∈ R is an intu-

itionistically valid elimination rule. The standard intuitionistic elimination

rules are in E(R). By theorem section .. every intuitionistically valid

elimination rules is pragmatist consequence of the standard intuitionistic

elimination rules.

Suppose then that R ∈ I(E(R)). Suppose then that R′ is a collection of

introduction rules which are proof-theoretic consequences of the rules R.

Then the rule R is a pragmatist consequence of the standard intuitionistic

elimination rules. Hence R is an intuitionistically valid introduction. But ev-

ery intuitionistically valid introduction rule is a verificationist consequence

of the standard introduction rule. Hence R is verificationist consequence of

R.

An analogous argument shows that the intuitionistic elimination rules

are stable. �

Conjecture ... Every general introduction (elimination) rule is stable.

. Summing Up

In this paper I have settled the technical questions concerning proof-theoretic

meaning-theories in the style Dummett outlined in The Logical Basis of Meta-

physics. In particular, . I have given a semantic proof that intuitionistic

logic is validated by a verificationist meaning-theory; indeed, . I have

shown that intuitionistic logic is complete with respect to the verificationist

meaning-theory based on the intuitionistic introduction rules; moreover,
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. I have shown that intuitionistic logic is the strongest logic which can be

introduced by means of a verificationist meaning theory. . I have developed

the pragmatist meaning-theory sketched in The Logical Basis of Metaphysics

and shown that a pragmatist meaning-theory can be developed on the ba-

sis of any collection of general elimination rules. . If it is developed on

the basis of the intuitionistic elimination rules, we can justify intuition-

istic logic; indeed, . intuitionistic logic is complete with respect to the

pragmatist meaning-theory based on the intuitionistic elimination rules;

moreover, . intuitionistic logic, is the strongest logic which can be justified

by a pragmatist meaning-theory based on almost general elimination rules.

It would be of interest to show that cut-elimination holds for wholly

general elimination rules. It would also be of great interest to extend these

results to first-order logic; it would be particularly interesting to develop a

theory of general quantifiers.
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Part II

Metaphysics
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3
Is the Vagueness Argument Valid?

. Introduction

The vagueness argument, as I will understand it here, purports to establish

the following answer to the Special Composition Question:

Universalism for every class C there is an object x such that each member

of C is a part of x and every part of x shares a part with some member

Roughly, what are the conditions under which some objects compose some further object
(Inwagen, , pp. –). We’ll disregard tense throughout; this will not matter.
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of C.

Sider () gives the following three premisses (cf. Sider, , pp. –):

P If not every class has a fusion, then there must be a pair of cases con-

nected by a continuous series such that in one, composition occurs,

but in the other, composition does not occur (Sider, , p. ).

P In no continuous series is there a sharp cut-off in whether composition

occurs (Sider, , p. ).

P In any case of composition, either composition definitely occurs, or

composition definitely does not occur (Sider, , p. ).

The argument is seemingly straightforward. Suppose composition is

restricted. Then by (P) we find a pair of cases c and cn such that in c

composition definitely occurs and in cn composition definitely does not

occur and such that they are connected by a continuous series c, c, . . . , cn−.

By (P), in every ci composition definitely occurs or definitely does not occur.

Then there has to be a j such that 〈cj , cj+〉 is a sharp cut-off. This contradicts

(P). Hence composition always occurs and so (Universalism) is true.

While (Universalism) is commonly supposed to be counterintuitive, my

goal in this paper is not to quarrel with (Universalism) nor with any of the

premisses. I will rather show that, contrary to appearances, the vagueness

argument is invalid. Initially, however, the invalidity seems easily plugged.

Sider intends to improve on the argument in (Lewis, , pp. –). (Sider, ,
pp. –) extends the argument to argue in favor of arbitrary diachronic fusions; the
extended argument doesn’t raise any further problems.
See (Korman, ) for an exhaustive survey of how to deny one of (P), (P) or (P).

(see also Varzi, ) for an earlier overview of the options.
Nolan (, p. ) notes that the argument is not formally valid, pointing out that

Sider’s formulation leaves it open that the end points are outside the continuous series. By
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While this is not so, seeing that this is the case will force us to think hard

about the interplay between metaphysical modality and determinacy. The

issues are fairly subtle, and the vagueness argument gives us a fairly concrete

illustration of what’s at stake.

.. Overview

I’ll proceed as follows. In § . I define some central notions, in particular I

define the central notion ‘composition’s occurring in a case’. Having defined

it, a potential ambiguity in Sider’s premisses becomes apparent; in § . I’ll

present non-equivocal versions of the premisses. In §§ ..–.. I show

that Sider’s arguments only establish readings of the premisses on which the

vagueness argument is not valid. One way of witnessing that the argument

is invalid is by holding that it can be contingent whether composition occurs.

In § . I discuss a (very strong) sense of contingency required to make this

out. In § . I consider deflationary views of existence and argue that on

such views its being contingent whether composition occurs is exactly what

we should expect. In § . I discuss the notion of an “arbitrary” cut-off and

raise the worry that the deflationary view is itself committed to arbitrary

cut-offs; in § ..–.. I address this worry. In § .. I then show how

we can witness the invalidity of the argument without committing to the

possibility contingent composition. In § . I deal with some loose threads

and in § . I discuss the notion of supervenience. In § . I consider some

versions of the argument which are valid. We now have to reject some of

the premisses, but the cost of doing so should no longer appear great. I end

adding a premiss to that effect the validity of Sider’s argument is restored. The invalidity
pointed out in this paper is not of this enthymematic variety.
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with some methodological morals (§ .).

. Technicalities

Sider introduces the quasi-technical notion of a case as follows:

A ‘case of composition’ (‘case’ for short) [. . .] [is] [. . .] a possible situation

involving a class of objects having certain properties and standing in certain

relations. (Sider, , p. )

The notion of a sharp cut-off is defined as follows:

By a ‘sharp cut-off’ in a continuous series I mean a pair of adjacent cases in a

continuous series such that in one, composition definitely occurs, but in the

other, composition definitely does not occur. (Sider, , p. )

The problem is the notion of ‘composition occurring in a case’. Immedi-

ately after having given the definition of ‘case’ Sider writes:

We will ask with respect to various cases whether composition occurs; that is,

whether the class in the case would have a fusion. (Sider, , p. )

But we’re not told what it means for “the class in the case to have a fusion”.

To fix on terminology, let’s use c, c, . . . as variables over cases and C,C, . . .

as variables over classes (with the understanding that class Ci is the class

Some points of clarification. . For Sider a case of composition is not necessarily a case
in which composition occurs. I will reserve the label ‘case of composition’ for cases in which
composition does occur, using the simple ‘case’ for the neutral notion. . We will assume that
the relations which figure in a case are non-mereological. . As I will use the notion in this
paper, a case may obtain in more than one world. . Cases need not be detailed. For instance,
a case may consist of some objects x,y,z . . . and the relation being between  and  meters from
any of the other objects. . However, cases are precise in that for any proposition p the case
either settles p or does not settle p but . if a case does not settle that p it need not be the
case that the case settles that not p.
cf. Sider, , p. .





associated with case ci); we use O for ‘obtains’ and Fcx for ‘the class C of

objects associated with c has x as their fusion’.

That the notion is not defined might appear unproblematic. There are only

two serious candidate definitions. We can define the notion of composition’s

occurring in a case using either counterfactuals or strict conditionals; that is,

we have the following two options.

cc-cf if c were to obtain there would be an x such that the class C composed

x (Oc� ∃xFcx).

cc-sc Necessarily, if c obtains then there is an x such that the class C com-

poses x (�(Oc→∃xFcx)).

For definiteness, I will frame the argument in terms of strict conditionals.

There are two possibilities for defining ‘c is a case of non-composition’.

ncc It’s not necessary that if (c obtains then there is x such that the class C

composes x. (¬�(Oc→∃xFcx))

cnc Necessarily, if c obtains, then there is no x such that class C composes

x. (�(Oc→¬∃xFcx))

The correct definition is (cnc). As the mnemonics may suggest, (ncc) defines

that c is not a case of composition; that is, the case c is not such that whenever

it obtains the class C associated with it has a fusion. This does not define that
Couldn’t a case be associated with two classes? In one sense of ‘case’, sure; but we’ll take

cases to be individuated so finely that they are associated with only one class. At the cost of
complicating our formalism we could allow cases to be associated with several classes.
Though see § .. below.
That formulating the argument in terms of counterfactuals makes no a difference will be

made clear in § ..
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c is a case of non-composition, that is, that the class c is such that whenever

it obtains, the associated class C fails to have a fusion.

We’re now in a position to present precise versions of Sider’s premisses.

. The Argument

It will prove convenient to slightly change the presentation. Sider casts his

argument as a reductio of the proposition that composition is restricted. I

will assume that we have fixed on a continuous series of cases c, c, . . . , cn.

I’ll build the assumption that composition is restricted into (P) and recast

Sider’s argument as a purported demonstration that (P), (P), (P)—so

understood—are jointly inconsistent. This is unproblematic: Sider’s argu-

ment is successful if the triad is inconsistent; conversely, if there is a model

of the triad Sider’s reductio fails.

.. The premisses

We have seen how to define ‘composition’s occurring in a case’ and ‘compo-

sition’s not occurring in a case’, but Sider’s argument turns on the notion

of ‘composition’s definitely occurring in a case’. How are we to define this

notion? We’ll introduce an operator ‘determinately’ (D) to express this.

The presence of the determinacy operator gives us, unsurprisingly, a lot of

choice about how to formalize the premisses, the main question being where

to place the D-operator(s).

I choose this over ‘definitely’ since it has fewer epistemic overtones.
In order to make things a bit more manageable, I’ll make the following simplifying

assumptions. We assume that for all φ, D�φ is equivalent to �Dφ; we also assume that
D�(Oc↔ DOc) is valid; finally, we assume the Barcan and Converse Barcan Formulæ for
determinacy. Not all these principles are plausible, but assuming them only strengthens
Sider’s argument so it’s unproblematic to assume them here.
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We have the following options for (P).

Pa �(Oc→D∃xFcx)∧�(Ocn→D¬∃xFcnx)

Pb D�(Oc→∃xFcx)∧D�(Ocn→¬∃xFcnx)

P has the following readings:

Pa ¬(�(Oci →D∃xFcix)∧�(Oci+→D¬∃xFci+x))

Pb ¬(D�(Oci →∃xFcix)∧D�(Oci+→¬∃xFci+x))

Finally, and critically, for (P) we should distinguish these options.

Pa �(Oc→ (D∃xFcx∨D¬∃xFcx))

Pb D�(Oc→∃xFcx)∨D�(Oc→¬∃xFcx)

Pc �(Oc→D∃xFcx)∨�(Oc→D¬∃xFcx)

The principles (Pa), (Pa), (Pa) are intraworld determinacy principles.

(Pa), e.g., only commits us to holding that within each world it is either

determinate that the classC associated with c has a fusion or it is determinate

that it does not have a fusion. (Pb), (Pb) and (Pb), on the other hand,

are interworld determinacy principles. They concern not whether things

are determinate within one world but whether the structure of modal space

itself is determinate: they concern the determinacy of modal facts. (Pb), e.g.,

commits us to the claim that either it’s determinate that in every world (in

which c obtains), C has a fusion or that it’s determinate that in every world

(in which c obtains) C does not have a fusion. What about (Pc)? It has an

interestingly mixed status, about which more in § ...
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Which variants of these premisses are supported by Sider’s arguments in

favor of his (P), (P), (P)? Little turns on the difference between (Pa) and

(Pb). We’ll (P) more fully in § .; for now, suffice it to say that given our

assumptions about the interplay of � and D, (Pa) entails (Pb), so let’s just

grant Sider (Pa). The important questions concerns the argument for (P).

. Does Sider’s argument for (P) establish (Pb)?

. Does it establish (Pc)?

.. Sider’s argument for (P)

Sider argues as follows in favor of (P).

Now surely if (P) can be violated, then it could be violated in a ‘finite’ world,

a world with only finitely many concrete objects. That would mean that

some numerical sentence—a sentence asserting that there are exactly n concrete

objects, for some finite n—would be indeterminate. (Sider, , p. )

Numerical statements can be expressed in the language of first-order logic

with identity; so, Sider argues, if “any numerical statement is to be indeter-

minate in truth-value, it must be because one of the logical notions is vague.”

(Sider, , p. ) Since, so Sider holds, no logical expression is vague,

(P) has to be true.

There are, of course, many places to attack this argument. Set that aside:

even if this argument works it only establishes (Pa) and not (Pc) (much

less (Pb)).

Recently, several authors have argued that we can have indeterminate composition
without having indeterminate existence (hence without count-indeterminacy) (see e.g.,
Carmichael, forthcoming; Noonan, ; Donnelly, ).
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To see this consider what has to be the case in order for there not be

vagueness in how many things there are. What is needed is that the following

might-counterfactuals be false for each n:

ID Were c to obtain, then it might be that it’s not determinate whether there

are exactly n concrete things.

That (ID) is false is entailed by the following:

�(Oc→D∃nxCx∨D¬∃nxCx) (..)

And the following is sufficient for (..) to hold

LD For any case c, and any class C associated with c: in any world in which

the situation c obtains, there determinately is a fusion of the class C or

there determinately is not a fusion of the class C

(LD) suffices to justify (Pa), but it does not justify (Pc) (or (Pb) for that

matter).

.. Models

The following sets are consistent:

. {(Pb), (Pa), (Pa)}

. {(Pb), (Pb), (Pa)}

. {(Pb), (Pb), (Pc)}

To see that {(Pb), (Pa), (Pa)} and {(Pb), (Pb), (Pa)} are consistent is

straightforward.

To see that {(Pb), (Pb), (Pc)} is consistent takes a bit of work, so I’ll postpone discus-
sion of this until § ...





Here’s a model. We start off with some cases c, c, . . . , ck such that in any

world in which a case ci (with i ≤ k) obtains it’s determinate that Ci has a

fusion. Then we have some cases ck+, ck+, . . . , cl such that in some world in

which ci (with k +  ≤ i ≤ l) obtains Ci determinately has a fusion and in the

other worlds in which ci obtains Ci determinately does not have a fusion.

Finally we have some cases cl+, cl+, . . . , cn such that in every world in which

a ci with (l+ ≤ i ≤ n) obtains Ci determinately does not have a fusion. Since

(PA) holds, for each i from k through l, ci is a case of contingent composition;

that is, in some worlds in which ci obtains there determinately is a fusion

of the class Ci whereas in other worlds there determinately is no fusion of

the class Ci . Since in this model (Pa), (Pa) (and (Pb)) and (Pa) are true

and these are the premisses which are justified by Sider’s argument, we have

shown that the vagueness argument is invalid.

Objection: in this model it is contingent whether composition occurs,

and that is completely unacceptable! If we add as a further premiss that

composition cannot be contingent we save the argument.

As we will see in § .. this in fact does not save the argument. Before

we get there, however, let me first defend the idea that it may be contingent

whether or not composition occurs in a case.

. The Contingency of Composition

Of course, the claim that it may be contingent whether composition oc-

curs isn’t itself preposterous: a case may be insufficiently detailed to settle

whether its associated class has a fusion or not. Suppose, e.g., that whether

While this has been defended by (Cameron, ), the defense given here is different.
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the class C has a fusion or not hinges on whether the objects in C are in

contact to degree at least r. A case which consists of the objects in class C

and the relation being in contact to degree at least r ′ (where r ′ < r) is not going

to necessitate that the class C has a fusion or that class C does not have a

fusion.

What appears preposterous is that one can have included everything rele-

vant to whether composition occurs in a case, yet the case still doesn’t settle

whether composition occurs or not. Let us call such cases maximal cases.

When I say that composition is contingent I mean that there are maximal

cases c such that the obtaining of c neither necessitates that composition

occur nor necessitates that composition does not occur.

This is a much stronger view than just holding that facts about composi-

tion are brute. Markosian, e.g., holds that composition is brute in the sense

that if the class C has a fusion, then that fact does not obtain in virtue of

other (non-mereological) facts (Markosian, , p. ). He nevertheless

accepts that facts about composition globally supervene on facts about the

arrangement of simples (Markosian, , pp. –). That is, there cannot

be two worlds which are exactly alike non-mereologically but differ mere-

ologically. If composition is contingent in the above sense this rules out

the global supervenience of facts about composition on the facts about the

simples.

(Cameron, ) notwithstanding, this view seems indefensible: can’t we

In describing the continuous series Sider says that “each case in the series is extremely
similar to its immediately adjacent cases in all respects that might be relevant to whether
composition occurs; qualitative homogeneity, spatial proximity, unity of action, comprehen-
siveness of causal relations etc.” (Sider, , p. ). Clearly, Sider intends these cases to
include everything which is relevant to whether composition occurs or not.
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just shrug it off? Indeed, isn’t the invalidity obviously enthymematic: why

not just add the premiss that composition isn’t contingent (equivalently:

that whether composition occurs supervenes on facts about the simples)?

Later (§ ..) we will see this obvious fix in fact doesn’t work. First,

however, I’ll argue that there need be nothing mysterious about contingent

composition even in the above strong sense.

. Existence Deflated

.. Existence on the cheap

Suppose we have the following view about existence, or what it takes for

something to exist. We make a distinction between basic and non-basic

objects. For basic objects, the notion of existence is primitive in the sense

that the only answer to the question “what is it for basic object x to exist?”

is: “there is such a thing as x”. For non-basic objects, on the other hand, an

answer of the following form can be given.

NBE What it is for non-basic object x to exist is for (the) basic objects

x,x, . . . to stand in relations R,R, . . . .

The existence of a non-basic object just consists in certain basic objects’

standing in certain relations.

In the mereological case, we can take the basic objects to be mereological

simples, the non-basic objects to be complex objects, in particular, fusions of

simple objects. For simplicity, we’ll take all talk about basic objects to take

the form: ‘case c obtains’, assuming that cases only concern basic objects

and relations between basic objects.
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.. ‘Just consists in’

What does ‘just consists in’ mean here? We could spell this out in terms of

grounding: the basic objects x,x, . . . standing in relations R,R, . . . grounds

the existence of the object x. We could also cash it out in terms of analytic

or conceptual entailment: it’s a conceptual truth that if the objects x,x, . . .

stand in relations R,R, . . . then the object x exists. For present purposes we

don’t need to invoke such metaphysically committing machinery; the only

thing we need is the following.

. There are (necessarily) true conditionals of the forms “If c obtains, then

C determinately has a fusion” and “If d obtains then, D determinately

does not have a fusion”. Let’s call such conditionals positive (negative)

postulates for C.

. It is true that there is a fusion of class C if there is a case c such that c

obtains and such that “If c obtains, then C determinately has a fusion”

is a positive postulate for C.

. It is false that C has a fusion if there is a case c such that c obtains and

such that “If d obtains then, D determinately does not have a fusion”

is negative postulate for C.

Supposing that this is the case, we may then say that what it is for there to

be a fusion of the class C just is for c to obtain or c to obtain or . . . ; what it

is for there not to be a fusion of the class C is for d to obtain or d to obtain

or . . . .
For more on the notion of grounding see e.g., Fine, , forthcoming; Schaffer, .
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Since we have to specify both truth and falsity conditions we shouldn’t

expect that the positive and negative postulates for the claim that a certain

class has a fusion results in an exhaustive division of the maximal basic

cases. Why could this happen? We’ll say more about this in § ..; for now

we can think of it as follows. It might be vague whether a class c is a class of

composition; the class c might be a borderline case of composition, in which

case it figures in neither a positive nor a negative postulate.

.. Basic and non-basic worlds

It will be helpful to think of this in terms of possible worlds. Let us distin-

guish between basic and non-basic worlds. Basic worlds are (or encode) col-

lections of basic objects and relations amongst basic objects. We may think of

basic worlds as settling all questions in a basic, fundamental language—the

language of fundamental metaphysics, as it were.

While basic worlds are tailored for the needs of metaphysics, there is no

reason to expect that they can fill all the rôles possible worlds have been

found useful for; in particular, there is no reason to think that they are

particularly useful for semantic purposes. For the purposes of semantics we

may well need entities which have opinions about questions which aren’t

settled by the basic worlds. Non-basic worlds fill that role. We may think

of a non-basic world as consisting of an underlying basic world w together

with a collection of postulates governing the non-basic vocabulary. Together

this settles which non-basic sentences are true in w.

How does this apply to the mereological case we are considering? If there

are maximal basic cases which don’t settle whether composition occurs or
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not, doesn’t that mean that (Pa) is false?

.. Non-basic worlds and determinacy

Call a non-basic world w complete iff every sentence is either true or false

in w. There is no particular reason to have non-basic worlds be complete.

A particular application may demand that they be complete in a particular

respect; that does not mean that they have to be complete in every respect.

If the postulates governing the non-basic vocabulary does not exhaustively

partition the basic cases, then the non-basic worlds generated by those

postulates will, in general, not be complete.

For some applications we want complete non-basic worlds. For instance,

in order to make (Pa) true our non-basic worlds have to settle all questions

about which fusions exist. There is a very natural way of extending the

class of non-basic worlds in such a way that every non-basic world w has a

determinate opinion about whether a certain class C has a fusion in w.

Suppose c is aC-maximal case which doesn’t necessitate thatC has (hasn’t)

a fusion. Let w be a non-basic world in which c obtains, and extend w to two

non-basic worlds w,w such that in w, c obtains and C determinately has

a fusion and in w, c obtains and C determinately does not have a fusion.

Saying that only one is a real possibility is arbitrary; ex hypotesi there is

nothing which determines that composition does not occur in one of the

cases.

Why do we say that C determinately has a fusion in the world w when

nothing basic in w necessitates that C has a fusion? We don’t, in general,

A subtler construction is sketched in § ..





have to say this: when we extend a non-basic world w which is incomplete

with respect to which things are red, to a world w′ which is complete with

respect to which things are red, we don’t have to make it the case that if

something in w′ is red, it is determinately red. We make an exception for

existence and parthood: which things exist and which things are parts of

which things is something which has to be determinately settled in extending

non-complete world to a complete one. Do we have to treat existence as

always determinate? We don’t, but there is no dialectical problem in treating

it as always determinate. This just amounts to granting Sider what he needs

for his argument for premiss (P).

On this picture accepting contingency of composition doesn’t commit us

to positing a layer of brute compositional facts. As far as basic worlds go,

there are certain cases such that there are no facts about whether composition

occurs in those cases or not. When we want to extend our class of worlds

such that every world has an opinion about whether composition occurs or

not, we are forced to treat composition as contingent, but this is just a result

of how we choose to construct our worlds; it does not correspond to any

deep feature of reality. It is precisely because there is nothing basic which

makes it the case that C has (hasn’t) a fusion in w which allows us to extend

w both to w and w. We cannot go wrong: where there are no facts, there

are no facts to answer to.

.. Penumbral Counterfactuals

One reason for wanting complete non-basic worlds is simply to show that the

vagueness argument is invalid. There is, however, a less opportunistic reason
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for wanting complete worlds: they are useful for capturing “penumbral

connections”. In particular, they come in handy for dealing with what we

can call “penumbral counterfactuals”.

Suppose ci and ci− are (maximal) cases such that it is not required that

composition occur and it is not required that composition does not occur for

the classes Ci ,Ci−. And suppose that the cases ci , ci− both actually obtain.

In this case we would be correct in asserting the following counterfactual.

pcf-t If ci were to obtain and Ci have a fusion, then ci− would still obtain

and Ci− would also have a fusion.

(pcf-t) is to be read as follows. In evaluating the antecedent we are not to

envisage ci occurring in a (slightly) different way so as to be a case which

necessitates that C has a fusion; rather, we are to envisage ci obtaining in

exactly the way it does, but that it so occurs with C’s having a fusion.

In order to account for this on a possible-worlds semantics for counter-

factual conditionals we need worlds to have an opinion about things which

aren’t settled by what is basic in that world. For in every basic world in

which ci (ci−) obtains it is neither true nor false that Ci (Ci−) has a fusion.

Note that we cannot account for the truth of (pfc-t) by holding that its

antecedent is necessarily false. For let ck be a case which also obtains and

which is definitely a case of non-composition. Consider now,

pcf-f If ci were to obtain and Ci have a fusion, then ck would obtain and Ck

would have a fusion.

(pcf-f) is false. To get the truth-conditions for these (and similar) counterfac-

tuals right, we need to have worlds in which non-basic sentences which are
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not determined to be true (false) by the basic facts are true as well as worlds

in which they are false.

Such counterfactuals might appear to be of little interest—they may seem

frivolous even—so one could argue that little stock should be put getting

them right. This is mistaken. The impression that such counterfactuals

are uninteresting is caused, I think, by how we set up our toy model. In

particular, we assumed that we have a basic language at hand and that we

can describe the differences between the cases c, c, . . . in basic terms. In

real-world cases this is unrealistic.

At a given stage in the development of our language the only way of get-

ting at some basic phenomenon might be by way of non-basic descriptions.

And occasionally we may have to describe basic phenomena using non-basic

sentences the constituents of which are undetermined by basic facts. The

case of “penumbral counterfactuals” mentioned above illustrates this. We

might be given two cases such that neither is a case of (non-)composition,

but such that we can say that if one were to be a case of composition then the

other one would be as well. We certainly think that there are basic features

of the cases which make these counterfactuals true, but we may have no

way of describing these features in basic vocabulary. In particular, we might

think that there is some basic similarity relation that we’re trying to get

at, but we may have no way of getting at it except through the non-basic

counterfactuals.

This point applies generally. Three-valued logics are often faulted for not being able
to deal with penumbral connections. All statements which are in the penumbra are given
the same truth-value, so there is no way of distinguishing “if it’s burgundy, it’s red” from
“if he’s bald, he’s poor”. But why care about getting this right? We care about getting this
right because penumbral connections track non-vague relations and we may have no way of
getting at the non-vague relations except by using vague language.
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.. Matters dialectical

Sider certainly does not accept a deflationary view of existence, nor did he

accept that parthood is not a fundamental notion. Indeed, most defenders

of restricted composition themselves are opposed to deflationary views

of existence (see e.g., Merricks, ; Inwagen, ). What, then, is the

dialectical importance of this deflationary view of existence?

Well, the vagueness argument is a problem for everyone, not just those

who deny that existence can be lightweight; and there are costs to denying

each premiss. If the argument is invalid, one doesn’t have to worry about

this. Moreover, once we know that the argument is invalid, opponents of

unrestricted composition have more options than was previously thought.

In this connection, it is worth mentioning that instead of taking a defla-

tionary attitude towards existence one could take a deflationary attitude

towards (metaphysical) possibility. One could, e.g., take the view that what’s

possible is just what’s consistent with our use of the word ‘possible’. If we

adopt such a view, every fact about how the actual world is can be treated as

substantial. In particular, facts about which complex objects there are, are as

substantial as the facts about which simple objects there are. Moreover, one

could hold that facts about which objects there exist are always determinate.

What is not substantial are the facts about what is possible. As long as

our conventions about the use of the word ‘possible’ don’t settle whether a

case c is a case of composition or a case of non-composition, then c would

have to be a case of contingent composition, since it is consistent that c goes

either way. On this view, too, one will verify (Pb), (Pb) and (Pa), but not
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(Pb).

. Arbitrariness

(P) is supposed to capture the intuition that a cut-off in a series of com-

position would be “arbitrary”. One might think that the view considered

so far doesn’t do any better on this count. Just as the idea that there is a

sharp cut-off between cases of composition and cases of non-composition

is problematic, the idea that there is a sharp cut-off between cases of com-

position and cases of contingent composition appears problematic, and for

the same reasons. How could there be a sharp cut-off between the cases of

(non)composition and the cases of contingent composition? Wouldn’t such a

cut-off be as arbitrary as a sharp cut-off between cases of composition and

cases of non-composition?

.. Intraworld Arbitrariness

We should distinguish two types of arbitrariness. The first is intraworld:

for a particular world w, why is the cut-off between cases of composition

and non-composition, in w, at 〈ci , ci+〉? The second is interworld: in a

continuous series of cases 〈c, c, . . . , cn〉, why is the cut-off between the cases

of composition (non-composition) and the cases of contingent composition

where it is—at 〈ci , ci+〉, say?

If we take a deflationary view about existence, the answer to the first

question is simple: because the world w is the world it is. When we construct

complete non-basic worlds one of the things we do is to settle, for each world,

Thanks to Bryan Pickel for suggesting this view. The subtler construction in § .. can
also be appropriated by those who want to deflate modality.
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whether composition occurs for the class C associated with case c. In the

case where c necessitates that composition occurs (does not occur), there is

an answer to the question: what makes it the case that w is a world in which

composition occurs in case c? The answer: what it is for class C (not) to have

a fusion just is for case c to occur or for case c to occur or . . . . If c is not a

necessitating case, there is no interesting answer to the question what makes

w a world in which c has a fusion as opposed to a world in which c does not

have a fusion: w just is constructed that way.

.. Interworld arbitrariness and Sharp Cut-Offs

Interworld arbitrariness is a different matter: it does seem arbitrary that

there would be a sharp cut-off between the cases of composition and the

cases of contingent composition. How could our linguistic usage be such as

to determinately single out cut-off in a continuous series?

One might try to defend oneself by giving the following argument.

“The reason that it is contingent whether composition occurs”, one might

say, “is that our linguistic usage is such that certain cases are determined to

be cases of composition and certain other cases are determined to be cases of

non-composition. In the middle there are no facts either way. By extending

the basic worlds to non-basic worlds we make this middle area an area of

contingent composition. What’s preposterous about the idea that there is a

sharp cut-off between cases of composition and cases of non-composition is

the idea that our usage settles all the questions in that middle area.”

“But”, one continues, “that there is a sharp cut-off between the cases of

composition and the cases of contingent composition is determined: that
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the cut-off is where it is, is determined by the very fact that that’s where

our usage (together with the world) starts not settling whether composition

occurs. More briefly: if there is no fact which necessitates that composition

occurs, then it is necessary that there is no fact which necessitates that

composition occurs.”

This response is beside the point. The objection we are considering focuses

on how usage can determinately single out an interworld cut-off, that is, a cut-

off between the cases of composition and the cases of contingent composition.

When one says that a cut-off between cases of composition and cases of

contingent composition would be arbitrary, one should be understood as

saying that there is no way for our use of the words determinately to single

out a particular cut-off between the cases of composition and contingent

composition. And we can accept this while accepting that if c, c, . . . , cn is a

continuous series, then there is a cut-off between the cases of composition

and the cases of contingent composition; furthermore, not only is there a

cut-off in the series, it is necessary that the cut-off is where it is. How can we

claim this?

We can claim this by lifting to the modal case a standard supervaluationist

move. Consider what the supervaluationist says about excluded middle.

Since the supervaluationist wants to retain excluded middle, the way he

captures the claim that there can be no sharp cut-off in a sorites series does

not lead to a revision of classical logic; it leads rather to the introduction

of determinacy operators. Suppose, e.g., we’re given a sorites series of bald

This oversimplifies. On global supervaluationism all classical validities are retained, but
the consequence relation isn’t classical. For more on global and local supervaluationism see
e.g., (Varzi, ) and (Asher, Dever, and Pappas, ).
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men: a, a, . . . , an. While the claim that there is a cut-off in this series is, in

effect, a penumbral truth, it’s false that there is a determinate cut-off: that is,

there is no i such that ai is determinately bald, but ai+ is determinately not

bald.

Similarly, the claim that it’s necessary that the cut-off between the cases

of composition and the cases of non-composition necessarily is where it is,

could be taken as a penumbral truth. (Indeed, if we want to validate S

we’re forced to accept this.) The claim that there is no sharp cut-off should

be stated using determinacy operators. So while we will accept that there

is a case c such that c is the cut-off between composition and contingent

composition and that it’s necessary that this cut-off is at c we will deny that

it’s determinately necessary that the cut-off is at c.

Indeed, we have compelling independent grounds for denying that ne-

cessity entails determinacy; in fact, we’re forced to deny the entailment the

minute we consider languages with both modal and determinacy operators.

For consider a borderline bald man. The supervaluationist will insist on ex-

cluded middle, so either he’s bald or he isn’t. Equally, the supervaluationist

should insist that either he’s actually bald or he is actually not bald. But if

he’s actually bald, he’s necessarily actually bald; and if he’s actually not bald

he’s necessarily actually not bald. So either he’s necessarily actually bald or

he’s necessarily actually not bald. If necessity entails determinacy, we get

that either he’s determinately actually bald or determinately actually not

bald, and hence we get that he’s determinately bald or he’s determinately

not bald. That contradicts that he’s borderline bald.

In this argument there are, in effect, several applications of disjunction-elimination.
Notoriously, disjunction-elimination isn’t a valid rule in global supervaluationism. (This





.. Whence the lack of sharp cut-offs?

Why, on a deflationary view, should expect there not to be a determinate

cut-off between the cases of composition and the cases of contingent com-

position? Recall the picture of the construction of non-basic worlds from

the basic worlds. There is no indeterminacy—or so we assume—in which

basic worlds there are. And once we have settled what the postulates are,

we have fixed a unique non-basic world and there is no indeterminacy in

how we extend this non-basic world to a complete non-basic world. The

lack of sharp cut-offs therefore has to come from its being vague what the

postulates are.

There are at least two types of indeterminacy which can arise here. First,

there might be a determinate list of criteria for when composition occurs,

but it is indeterminate whether something satisfies the criteria on the list to

sufficient degree. Second, there might be indeterminacy in what’s on the list.

The resulting types of indeterminacy are rather different—e.g., the latter

does not give rise to sorites series—but for present purposes the difference

will not matter. What matters is that either form of vagueness will lead to

vagueness in what the postulates are.

is an instance of the often noted fact that not all classical rules of inference are valid in
supervaluationism, though all classical validities are supervaluationally valid.) However,
in the applications of disjunction-elimination here we only appealed to logical validities
as side premisses in the minor arguments. An instance of disjunction elimination where
the minor arguments only have logical validities as side-premisses is valid even on global
supervaluationism. (There is of course no problem for local supervaluationism.)
Thanks to Ned Hall here.
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.. In terms of possible worlds

How should we describe the above situation in terms of possible worlds? As

before we start out with fixed set of basic worlds. Since we now have allowed

it to be indeterminate what is necessitated to be the case by the basic facts,

each basic world a is now associated with a range of partial non-basic worlds

Wa. Each w ∈Wa represents one precisification of the property settled by the

basic facts of a. On this space of partial worlds there are defined two relations

R and R. R is the accessibility relation for metaphysical modality; R is

the accessibility relation for determinacy. R is (at least) reflexive; R is an

equivalence relation. We make the obvious definitions:

• �φ is true at w iff φ is true at all w′ such that wRw′;

• Dφ is true at w iff φ is true at all w′ such that wRw′.

In order for this to work out we have to impose the following restrictions on

the interaction of R,R.

Let Wa be the class of partial non-basic worlds associated with a basic

world a and letWb be the set of non-basic worlds associated with a (different)

basic world w. We’ll insist that if w ∈Wa and w′ ∈Wb, then it’s not the case

that wRw′; informally, if w is based on one basic world and w′ is based on

another basic world, then w′ cannot be a precisification of w (and vice versa.)

We also have to demand that if w,w′ ∈Wa then it’s not the case that wRw′,

unless w = w′; why is that? w and w′ are precisifications of the same world,

and so they differ on what’s determined by the basic facts, but agree on

the basic facts. It follows that one world, w say, thinks that basic fact p

necessitates non-basic fact q, but w′ disagrees. Since w′ disagrees there is
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a world w′′ such that w′Rw′′ and p is true at w′′ but q is false at w′′. Since

R is an equivalence relation, if w were to stand in R to w′, then w would

stand in R to w′′ contradicting that w thinks that p necessitates q.

We’ll also insist that for all w ∈Wa there is w′ ∈Wb such that wRw′. The

reason is as follows. The basic worlds a,b are mutually accessible, so if φ is

a complete basic description of b, it should be true, in a, that determinately

possibly φ. If a precisification of the world a ruled out all precisifications of

the world b, then there would be a precisification of the world a according

to which it would be impossible that φ.

What we have, then, is a set of basic worlds W , and for each basic world a

a setWa of partial worlds which represent the precisifications of the property

made true by the basic facts of a. In order to get the classical modal validities

we now have to extend these partial worlds to complete worlds. And we have

to do this while respecting the relations R,R which are already defined.

We can do this by a simpleminded extension of the technique suggested

in § .. If we take our initial collection of partial worlds to describe a

continuous series c, c, . . . , cn we’ll then end up verifying (Pa), (Pa) and

(Pa). Rather than go into detail on this, let me sketch a more interesting

construction.

.. Another way of blocking the argument

We are finally in a position to consider (Pc). This premiss (partly) expresses

that the mereological facts supervene on non-mereological facts. While we

have seen that (Pc) isn’t justified by Sider’s argument for (P) it is open to

us to hold that it’s a penumbral truth that the mereological facts supervene
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on the basic facts.

Suppose it’s not determinate whether c is a case of composition or not.

Consider a basic world a in which c obtains and consider a partial non-basic

world wa in which C neither has nor doesn’t have a fusion. As we consider

more precise extensions of wa one of the things we make more precise is the

property made true by the basic facts of a, or more formally, necessitated by the

obtaining of c. If we insist on treating the supervenience of the mereological

on the non-mereological as a penumbral truth, what we have to do is this.

Once we have extended wa to a world w+
a in which C has got a fusion, then

no world w′a which extends w+
a accesses a world wb in which the obtaining

of c does not necessitate that C has a fusion. As long as we ensure that wa is

also extended to a world w−a in which C is necessitated not to have a fusion,

we avoid verifying (Pb) whilst verifying (Pc). (For more details see § A..)

. Loose Threads

.. Counterfactual excluded middle

So far I’ve defined ‘c is a case of composition’ by means of strict conditionals.

Defining it by means of counterfactuals doesn’t make any difference unless

we have counterfactual excluded middle. The reason is that Sider’s argument

for (P) cannot establish more than

Pa-cf Oc� (D∃xFcx∨D¬∃xFcx)

If we have counterfactual excluded middle, or more generally the inference

rule:

φ� (ψ ∨θ)
(φ� ψ)∨ (φ� θ)
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this will get us the analogue of (Pc)

Pc-cf (Oc�D∃xFcx)∨ (Oc�D¬∃xFcx)

What Sider would need, however, is

Pb-cf D(Oc�D∃xFcx)∨D(Oc�D¬∃xFcx)

And this he cannot get. Even if counterfactual excluded middle holds, the

following does not hold:

D(Oc→∃xFcx)∨D(Oc→¬∃xFcx)

(Similar remarks apply to the above rule.)

.. “Drawn from different possible worlds”

We have assumed that the notion ‘composition occurring in a case’ has to

be defined in terms of strict or counterfactual conditionals. There might

be another option, however. (Sider, , p. ) holds that the cases are

drawn from different possible worlds. So could Sider say that composition

occurs in case c if there is a fusion of class C in the world wc from which c is

drawn?

If he makes that definition the argument is no longer invalid since (Pb) is

justified. More generally, the intraworld and the interworld principles now

come to the same thing. But there are several problems with this suggestion.

First, we don’t have access to what’s true in possible worlds directly. When

we evaluate what is true in a world we evaluate certain strict or counterfac-

tual conditionals where the antecedent gives a (partial) description of some

Interestingly, (Sider, , p. ) does not make this demand.
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features of the world in question. But then this alternative definition is just

a variant of the definitions in terms of strict or counterfactual conditionals.

Second, if this objection can be circumvented, so that (Pb) becomes

justified, it becomes hard to see why (P) is justified. What we in effect are

assuming now is that the mereological facts about a case are just given with

the case. But if the mereological facts are just given with the cases, why don’t

the mereological facts themselves partly determine the similarity relations

which underlie whether we have a continuous series of cases or not? And if

the mereological facts do enter into the similarity relations, how could we

have a continuous series? By construction there is going to be a sharp cut-off

in whether composition occurs or not: why doesn’t this ensure that there is

no continuous series?

. Supervenience

Back in § .. I remarked that it seemed easy to fix the vagueness argument:

just add the premiss that mereological facts supervene on non-mereological

facts. We are now in a position to see that this does not help. For to say that

the mereological facts supervene on the non-mereological facts is just to

say that there can be no difference in how the mereological structure of the

world is without there being a difference in the non-mereological structure

of the world. But that will give us principles of the form of (Pc), not of the

form (Pb).

Objection: the claim that the mereological supervenes on the non-mereo-

logical is stronger than that. In particular, every maximal case c is such that

For a somewhat similar argument, see (Merricks, ).
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either it determinately necessitates that C has a fusion or it determinately

necessitates that C does not have a fusion.

First, let me just note that this is just a much stronger claim than superve-

nience is usually taken to be. Significantly, it cannot be justified by the idea

that there can be no difference with respect to the supervenient properties

without there being a difference with respect to the subvenient properties.

Second, there are plenty of supervenience-claims that cannot be strength-

ened in this way; here’s one. Baldness presumably supervenes on facts not

involving baldness, moreover it supervenes on precise such facts, in the

following sense.

. If Alberich is bald then (determinately) there is a precise property P

such that Alberich determinately instantiates P and such that neces-

sarily, anyone who instantiates P is likewise bald;

. if Alberich is not bald, then (determinately) there is precise property

P ′ such that Alberich determinately instantiates P ′ and such that

necessarily, anyone who instantiates P ′ is likewise not bald.

But these claims cannot be strengthened to read:

. If Alberich is bald then (determinately) there is a precise property P

such that Alberich determinately instantiates P and such that determi-

nately necessarily, anyone who instantiates P is likewise bald;

. if Alberich is not bald, then (determinately) there is precise property

P ′ such that Alberich determinately instantiates P ′ and such that

Already this might be too strong, if supervenience does not entail that the supervenient
properties are necessitated by the subvenient ones. So much the worse for the objection.
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determinately necessarily, anyone who instantiates P ′ is likewise not

bald.

For suppose that Alberich is borderline bald. Then it’s still true that Alberich

is either bald or not bald. If we have  and  there would then determinately

be a property P such that either it’s determinately necessary that if Alberich

has P then Alberich is bald or it’s determinately necessary that if Alberich has

P then Alberich is not bald.) It then follows that Alberich is determinately

bald or Alberich is determinately not bald, contradicting that Alberich is

borderline bald.

. Is the Actual World a World?

The reader may have had a nagging doubt for a while now. I have presented

the vagueness argument in terms of cases and this is not the standard way

of doing it, though here I follow (Sider, , ). Could the problems

I’ve raised for the argument turn on a mere infelicity in its formulation?

The problems started when we observed that the notion of a ‘class having a

fusion in a case’ was not defined. Cannot we get around this problem?

Instead of envisaging that we have a continuous series of cases, let’s rather

envisage one world in which we find a continuous series of cases. We then

ask, with respect to that world whether there is a fusion in each case. Since

we’re talking about a particular world there is no need to consider whether

the cases necessitate that composition occur (does not occur): we can ask

directly whether the classes associated with the cases have a fusion in the

world in question.

I retort that we haven’t specified a particular possible world; we have
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rather specified a class of possible worlds—having in common that there is

a continuous series of cases of a certain character obtaining in them. When

we ask, with respect to a world, whether a certain class has a fusion in that

world what is going on is the following. The “world” in question is given to

us by way of certain statements. Take the conjunction of those statements.

When we are asked what is true with respect to that world we evaluate strict

(counterfactual) conditionals with that conjunction as antecedent. This

brings us back to the situation discussed in the body of this paper.

One might be impatient with this. Cannot we create an actual sorites

series of composition? In fact, isn’t this easy? Don’t we do it all the time

when we create artifacts? With respect to such a series we can now state the

argument without using any modal notions. ((Korman, ) presents the

argument this way.)

This leads to the final gambit. In order to block the argument, I deny that

the actual world is a possible world. By saying this I don’t just mean that

the actual world is concrete whereas possible worlds are abstract; I rather

mean that no one non-basic world accurately represents the actual world. (A

class of non-basic worlds which disagree with the a basic world only on the

statements about which the basic world has no opinion accurately represent

that world.)

What exactly to say depends on whether one allows for contingency of

composition or if one instead takes the route of § ... If one allows for

contingency of composition, one can say the following. In every world which

represents the actual world there is a determinate cut-off point in the series

of cases. But the location of the cut-off is not modally stable; in some worlds
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the cut-off is at 〈Ci ,Ci+〉, at others it is at 〈Cj ,Cj+〉.

If one takes the view of § .., one instead has to say the following. For

every non-basic world w which is an admissible precisification of the basic

world there is a determinate cut-off in the series of cases; moreover, this

cut-off is stable in the sense that in any world which w thinks is possible, the

cut-off is at the same place. But the cut-off is not determinately modally stable

in the sense that there is a different admissible precisification of the basic

world w′ in which the cut-off is at a different place.

There is also the question about how we are to describe this situation in

a modal object language without quantification over possible worlds. I’m

sympathetic to someone who says: “Look, I don’t care about what’s true in

various possible worlds, whether basic or otherwise. Here’s a continuous

series of classes. The first class determinately has a fusion. The last class

determinately doesn’t have a fusion. What do you say about a case like

that?”

To make it more concrete suppose that at a particular time t, n different

watchmakers are at n different stages in the assembly of some watch and

that the first watchmaker definitely has assembled the parts P in such a way

that they make up a watch and that the n-th watchmaker definitely hasn’t

yet assembled the parts Pn into a watch. Let’s further assume that the parts

of what would be a watch only compose something if they compose a watch.

Consider now the following premisses.

Pw P determinately composes some object; Pn determinately does not

compose an object.

Pw It’s not the case that Pi determinately composes an object and Pi+
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determinately does not compose an object.

Pw Pi determinately composes an object or Pi determinately does not com-

pose an object.

This triad is inconsistent: which premiss has to go? We should give up on

(Pw). But we should now be much less loath giving up (Pw). Let ci be

a maximal non-mereological description of how things are with Pi . What

expresses that there cannot be a sharp cut-off isn’t (Pw), but rather the

following principle.

Pw′ It’s not the case that (determinately necessarily (if ci obtains, then Pi

composes an object) and determinately necessarily (if ci+ obtains then

Pi+ does not compose an object)).

What we’re seeing here is that we have to distinguish between two senses

of determinacy. There is the sense of determinacy expressed by the com-

pound operator D�— we may call this external determinacy. The notion of

φ’s being determinately necessary, by itself, is not very interesting. Con-

sider again Alberich. No matter the state of his hair, he’s going to be a

borderline case of being bald—in this sense of “determinacy”. For surely

he’s neither necessarily bald nor necessarily not bald, and hence he’s neither

determinately necessarily bald nor determinately necessarily not bald. But

D� allows us to formulate a more interesting notion of determinacy as fol-

lows: there is some basic case c such that the obtaining of c determinately

necessitates that φ.

The other sense of determinacy, expressed just by D, we may call internal

determinacy. Something is determinate in this sense if it’s settled by how a
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non-basic world is given. A non-basic world can be given in vague terms,

so there is no reason to think that for all φ, it is determinate (in this sense)

whether φ or not φ. In accepting (suitable versions of) (P) we are accepting

that one thing which can never be vague is how many things there are in a

world, but this is compatible with its being indeterminate of a given world

whether a person in that world is bald or not.

. Conclusions

We’ve seen that the vagueness argument is invalid and that its invalidity

raises a host of issues about metaphysical modality and determinacy. Let

me end by drawing some broader methodological conclusions.

First, a general moral. A lot of metaphysics is done by describing a

possible world and then asking what’s the case in that world. This procedure

has its pitfalls. When we are describing a possible world we cannot be

singling out a particular possible world; we merely narrow down the class

of worlds. When we are asking what’s true in a world we’re not asking about

what’s true in a particular world, rather, we’re in effect evaluating certain

conditionals, be they strict or counterfactual. If we don’t pay attention to

that it’s easy fall into fallacies.

Second, the possibility of positions along the lines of this paper should

make us wary of relying on intuitive verdicts about truth-values of modal

sentences when doing metaphysics. In particular, we should be concerned

about the gloss we put on various “dependence-judgments”. Supervenience

is often taken to be a minimal requirement for dependence. The type of

contingency of composition envisaged in this paper shows that this is wrong:
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one can have failure of supervenience but still have dependence. Second, in

the presence of vagueness or indeterminacy, supervenience-claims, while

true, could fail to be determinate. So even if true the supervenience claims

may not be able to bear the argumentative burden one wants. This is what

happens with (Pc).
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4
Grounding Grounding

. Introduction

The notion of ground has come to prominence in metaphysics in the last

decade. As I will understand it here, grounding is a special type of meta-

physical explanation. As Fine puts it, the grounds explain the grounded

While (Fine, ) has been enormously influential, truth-maker theory is another
important source of the interest in the notion. (Particularly noteworthy in the present context
is Cameron’s (a, ) use of truth-making in a defense of ontological minimalism.)
Other philosophical locutions which play some of the same rôles are “in virtue of”, “makes it
the case that”, “makes it true that”, “metaphysically explains that”, “because”.
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in the sense that “there is no stricter or fuller account of that in virtue of

which the explandandum [the grounded] holds. If there is a gap between

the grounds and what is grounded, then it is not an explanatory gap.” (Fine,

forthcoming)

Many have found grounding to be a very useful notion. Rosen ()

argues that grounding is essential to giving an account of intrinsicality

and the relationship between determinables and determinates. Schnieder

() holds that grounding is needed to give a proper account of truth-

functionality. Fine holds that ground is the key to answering questions about

what is real and what is factual (Fine, ) and Schaffer () holds that

metaphysics is about figuring out what grounds what.

Unfortunately, grounding leads immediately to a nasty version of what

we may call the Status Problem: for what is the status of the grounding-

claims themselves? To begin with, what grounds grounding-claims? If φ

is metaphysically explained by ψ, what explains that φ is metaphysically

explained by ψ? In this paper I’ll do the following. In §§ .– ., I discuss

progressively more serious versions of the Status Problem. In §§ .–. I

then discuss and reject some proposed accounts of what grounds grounding-

claims. In § . I up the ante by presenting an antinomy of grounding

turning on iterated grounding claims: if we cannot resolve this antinomy

grounding should be given up. In § . I propose a solution to the Status

Problem and argue that it resolves the antinomy. This solution essentially

relies on Fine’s notion of the empty ground.

In the remainder of the paper I present a new way of expressing grounding

It is not clear that Schaffer’s notion of grounding is the same as those of the previous
authors. See further fn. .
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claims (§§ .–.). I then (§ .) show how we can construct logics for

iterated grounding-claims where the grounding-operators in such a way

that . the grounding-operators are equipped with both introduction- and

elimination-rules; . the solution to the Status Problem suggested in § .

is a theorem of the logic. After considering some objections (§ .) I end

by presenting some open questions and drawing a metaphysical conclusion

(§ .).

. The Status Problem: a Special Case

If grounding is a form of explanation, then what is explained is of the form

‘it’s the case that so-and-so’. Grounding relates facts or true propositions.

The world as the totality of facts is “layered”. But some philosophers have

wanted to go further. If one conceives the world as the totality of objects

one wants the objects to be divided into levels, with objects at higher levels

ontologically dependent on objects at lower levels. One may now hope to

use grounding to impose an ordering on the objects and properties which

figure in facts and propositions. The natural idea is that an object a is

ontologically prior to an object b if the existence and features of b can be

explained by the existence and features of a. In particular, one makes the

following definitions of fundamentality.

In this paper I sketch the main ideas behind the logics. For a rigorous development of
these ideas see (Litland, ).
Officially grounding is a sentential operator (see below § ..).
The distinctions drawn by (FundF ) and (FundO) are arguably a bit crude. (Raven, ,

pp. –) introduces a distinction between integrals and augments. An object a is integral
if some fact F involving a is such any set of facts ∆ which grounds F, contains a fact G in
which a is a constituent. An object can be integral without being fundamentalO. This does
not matter for present purposes: if an object in fundamentalO it is integral and that’s all
that’s needed to raise the present problem.
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FundF Fact F is fundamentalF iff there are no facts G,G, . . . that ground F

FundO An object a is fundamentalO iff a figures in a fundamental fact F

The problem is that if grounding-facts aren’t themselves grounded then

every object is fundamentalO! For consider some object a: either there is

nothing which grounds the fact that a exists or there is something which

grounds the fact that a exists. If the former, then a is fundamentalO since

the fact that a exists is fundamentalF , and a certainly figures in the fact

that a exists. If the latter, suppose that the fact that a exists is grounded

in the facts F,F, . . . . Then this is a further fact, viz., the fact that a’s ex-

istence is grounded in F,F, . . . . Is this fact fundamentalF? If it is, then

a is fundamentalO. It follows that if there are to be any objects that are

derivative—that is, which are not fundamentalO—then some facts about

what grounds what themselves have to be grounded.

What could ground grounding-facts? Before I try to answer this question,

it will be useful to discuss the Status Problem in greater generality, and

before I do that some clarifying remarks are in order.

What does it mean to say that a figures in a fact F? For now, think of facts as having
canonical descriptions. If a name for object a occurs in a canonical description of fact F, then
a figures in fact F.
This is an instance of the problem called “The Collapse” by deRosset (). In fact,

deRosset argues against the somewhat different view of (Schaffer, ). Schaffer operates
with a relation of grounding—Schaffer-Grounding—which can link entities in many different
categories. In particular, objects are amongst the relata of the grounding relation. Define an
object to be Schaffer-fundamental if there is nothing which Schaffer-grounds it. deRosset
argues that this makes no difference. First, he defends a linking principle:

Link If the object e is Schaffer-grounded in the objects e, . . . , en, then the existence and
features of e can be explained by the existence and features of e, . . . , en.

He then points out that it’s a consequence of (Link) that an object is Schaffer-fundamental if
it figures in a fundamentalF fact. This issue deserves more scrutiny than I can give it here;
let me just note that I agree with deRosset’s argument.
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. Clarifications

.. The Form of Grounding-Claims

Above I treated grounding as a predicate of true propositions (or facts). It

is, however, better to treat it as a sentential operator. Officially, I’ll express

grounding by means of the locution “. . . because . . .”. Here ‘because’ is

a sentential operator that can take any number of arguments: if ∆ is any

number of sentences and φ is a sentence then ‘φ because ∆’ is a sentence. In

particular, we will allow ∆ to be infinite and we will allow ∆ to be ∅—the

latter will be important later on. The form of a grounding-claim is “it’s the

case that so-and-so because it is the case that . . . ”.

One reason for treating ground as a sentential operator is to remain

neutral on the existence and nature of facts. Another reason is frankly prag-

matic. If we treat grounding as a relation we may be able to lay down some

axioms governing its behavior but the prospects for a genuinely informa-

tive model-theory and proof-theory seem very limited. Moreover, allowing

quantification over facts leads immediately to paradoxes—even when we

treat grounding as a sentential operator (Fine, a). To be sure, eventually

we’ll need a theory of grounding which can deal with quantification over

facts and propositions, but if we treat grounding as a sentential operator we

can at least postpone the day of reckoning.

Unofficially, I will continue to speak freely of facts being grounded in order to avoid
cumbersome language. Quantification into the scope of a grounding-operator gives rise to
concerns. See below § ...
cf. Fine, , , forthcoming; and Correia, forthcoming.
For the purposes of this paper, we would also need to invoke a notion of an object

“figuring” in a fact or a fact “involving” some objects or properties. Quite independently of
grounding such notions would seem to lead to paradox. Consider the conjunction of all facts
which do not figure in themselves. This is a fact, call it F. If F does not figure in itself it has to
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Fine (, forthcoming) introduces a slew of distinct notions of ground.

For the purposes of this paper I will only need a few. First, grounding

is factive: if it’s the case that φ because it’s the case that ∆, then both ∆

(that is each ψ ∈ ∆) and φ are true. We’ll also only be concerned with

strict and full ground. That ∆ fully grounds φ means that nothing need

be added to ∆ in order to get an explanation of why it is the case that φ.

Strict ground moves us downwards in an explanatory hierarchy: no fact can

contribute to grounding any of its strict grounds. A conjunction, e.g., is

strictly grounded in its conjuncts, but neither conjunct is (strictly) grounded

in the conjunction. I’ll follow Fine’s notation and use < for strict full

ground.

.. Grounding as a primitive

Grounding is commonly taken to be a primitive notion. I will follow this

tradition subject to the following caveat. In taking grounding as primitive,

one just rejects the demand that grounding be defined in other terms. This

does not mean that facts about what grounds what aren’t grounded in facts

not themselves involving grounding; facts about grounding don’t have to

be one of the conjuncts. But then F does figure in itself. So F figures in itself. But something
figures in a conjunction iff it figures in one of the conjuncts, is one of the conjuncts, or is the
conjunction operation. F is not the conjunction operation so F figures in one of the conjuncts
or is one of the conjuncts. Say it figures in conjunct Fi or is conjunct Fi . But Fi is a conjunct
of F so Fi figures in Fi . Contradiction. I don’t mean to suggest that this paradox cannot be
blocked. I just want to illustrate how quickly paradoxes come when we start talking about
facts. We’re better off putting this to the side.
We may take this to follow from explanation’s being factive. If φ is explained by ψ then

it’s the case that ψ.
Fine accepts the implication that a conjunction φ∧φ is strictly grounded in φ; Correia

(forthcoming) employs a theory of “factual equivalence” to avoid this.
The notion of weak ground and the various notions of partial ground are treated in

(Litland, ).
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be brute. By way of comparison, suppose we take a sentential operator for

metaphysical possibility as primitive. That does not mean that we think

that all or even any facts about what is metaphysically possible are brute. It

is, e.g., consistent with taking metaphysical possibility as a primitive that

every metaphysical possibility is grounded in some contingent feature of

the actual world.

The reason for bringing this up is that treating grounding as primitive

does not offer an easy way out of the Status Problem. In asking what grounds

a true grounding-claim, we’re not asking for an analysis of grounding: we’re

just noting that if ‘φ because ∆’ is true, then this is a truth like any other

and we can ask what grounds it.

.. Higher-Order Quantification

In stating the Status Problem I treated grounding as a relation between facts

or propositions while, officially, grounding is a sentential operator. This

leads to the following problem. In order to state the Status Problem on an

operator view, we need some mechanism for quantifying into predicate and

sentence position. For instance, in defining what it is for an object to be

fundamentalO we need to say something like

• a is fundamentalO iff ∃G FundamentalF G(a)

If every fact involving grounding is grounded in facts not involving grounding, does this
mean that grounding is not a fundamental component of reality? The issue is subtle. If every
fact involving grounding is grounded in a fact not involving grounding, there is a sense in
which grounding needn’t figure in a complete description of reality. On the other hand, if
grounding really cannot be defined in other terms there is something which can be said
about how the world is using the grounding-vocabulary which cannot be said without using
it. Similarly, even if every particular fact about what’s metaphysically possible is grounded in
a non-modal fact, if metaphysical possibility isn’t definable in non-modal terms, then there
is something which can be said about how the world is using the vocabulary of metaphysical
possibility which cannot be said without using it.
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This makes no sense unless we can quantify into predicate position. More-

over, since the grounding operators take any number of arguments we need

some mechanism for quantifying into “sequence-of-sentences” position in

order to define ‘fundamentalF ’ .

• φ is fundamentalF iff there is no ∆ such that φ because ∆

I’m going to assume that this problem can be solved in a way which

is consistent with taking grounding to be a sentential operator. Let me,

however, say a few things in defense of substitutional quantification. (We

can also use objectual quantification over sentences together with a truth-

predicate.)

I suggest that we define fundamentalF as follows:

• φ is fundamentalF iff there is no sequence of sentences ∆ such that

‘∆<φ’ true

The definition of FundamentalO takes the following form.

• a is fundamentalO iff there is a predicate P such that the sentence ‘P a

is fundamentalF ’ is true.

One could object that this makes grounding and fundamentality a meta-

linguistic matter. Whether φ is grounded or not now turns on the existence

of sentences and their semantic properties, whereas grounding is supposed

to concern not the sentences themselves but what they are about (Trogdon,

forthcoming). I’m not worried about this criticism. If we have a deflationary

view of the truth-predicate what we’re saying is just that it’s not the case

that ∆ <φ and it’s not the case that ∆ <φ and it’s not the case that . . . and





so on—for each set of sentences ∆. Unfortunately, we’re unable to list all

the sets of sentences so we have to use a truth-predicate to generalize, but

that does not make what we want to say in any way meta-linguistic.

A more serious worry concerns impoverished substitution classes. Our

present language may not contain sentences ∆ which would witness that φ

is not fundamentalF , whilst extensions of our language do. In this case we

would wrongly count φ is fundamentalF .

This is a problem not just for substitutional quantification. There is

some reason to think that the generality in the claim that there is nothing

which strictly grounds φ is not quantificational at all. For suppose that it

is impossible to quantify over absolutely everything. Then the generality

intended by stating that there is no (strict) ground for φ cannot be captured

by any type of quantifier, even quantifiers over facts or properties. After all,

as the domain of quantification expands, so does the domain of facts and

properties.

One way of proceeding would be by taking the statement that nothing

grounds φ to have schematic element. We could then understand substitu-

tional quantification in such a way that for any language L we can come to

understand and any sequence of sentences ∆ from L, ‘∆<φ’ is not true (in

L) (cf. Lavine, , ; Parsons, , ).

Arguably, we need take no stance on deflationism (see Heck, ).
If substitutional quantification cannot do the work, we will need quantification directly

into predicate and sequence-of-sentences position; first-order quantification over properties
and propositions will not do the work. (Or if they can do the work, this depends on
substantial metaphysical commitments.) The reason is as follows. Consider the following
view about properties (and propositions). For every predicate P there is a corresponding
property P and whenever some a is such that P(a), a also instantiates the property P.
However, the direction of explanation is as follows: it is because P(a) that a instantiates the
property P, but it’s not because a instantiates the property P that P(a). On this type of
view, the following situation is possible. There is no property P and no objects a, a, . . . such
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.. Explaining explanations

The problem of iterated grounding-claims is to say what grounds that ∆

grounds φ; alternatively, to find Γ such that Γ explains why ∆ explains φ.

But what does this mean?

There is a use of ‘explain why’ on which explaining why it is the case

that φ because ∆ does not give us iterated grounding-claims. Some of us

are often asked to “explain our explanations”. Most of the time, what we

are asked to do in these cases is not to explain why an argument we gave

constituted an explanation; rather, what we are asked to do is essentially

to give the same explanation again, filling in some detail here and there,

pointing out that steps that may look perplexing in fact are instances of

common inferences and so on. In so doing we hopefully put our audience

in a position to appreciate that the original explanation did in fact explain

what it purported to explain.

Suppose we claim that ∆ explains φ, and we provide an argument E to

support this claim. Explaining that ∆ explains φ in the above sense comes

down to giving another explanation of φ. If we succeed we have of course

witnessed that the claim ∆<φ is true, but this does not amount to explaining

why it’s the case that ∆<φ.

.. Matters of Ideology

The problem as I presented it in § . above concerned ontology: unless

grounding-claims themselves have grounds then every object is fundamentalO.

that φ because a, a, . . . instantiate P ; nevertheless, there is a sentence ψ such ‘φ because ψ’
is true. (See also fn. .)
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There is an analogous—and perhaps more important—problem for ideology.

While the elements of one’s ontology are the objects the existence of which

one is committed to, the elements of one’s ideology are the predicates one

accepts as meaningful.

Just as one may want to use grounding to impose an ordering on one’s

ontology one may want to use grounding to impose an ordering on one’s

ideology. One may, e.g., want to hold that the ideology of simple objects and

their properties is more fundamental than the ideology of complex objects

and their properties.

FundamentalityP A predicate P is fundamental if there is some φ such that

it is fundamentalF that φ(P )

Unless some grounding-claims are grounded we get an exactly analogous

problem to the one in § . above: every predicate would be fundamentalp.

In particular, the operator because is itself fundamentalP .

. The Status Problem in General

The problem presented in § . above is an instance of the Status Problem.

This problem arises for those metaphysicians who think that some classes of

statements have some desirable feature whereas other classes of statements

have some undesirable feature. The generic Status Problem is: do the

metaphysician’s statements themselves have the desirable features? The

One cannot reduce the question which: “which predicates are fundamentalP ?” to the
question: “which properties are fundamentalO?”. For suppose we take what we may call an
Aristotelian view of properties: the existence of the property of being F is (strictly) grounded
in there being something which is F. We may then suppose that it’s not fundamentalF
that the property of being F exists since its existence is grounded in a’s being F, for some
particular a. But this does not mean that ‘F’ is not fundamentalP : it could very well be
fundamentalF that a is F.
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version of the Status Problem we considered above concerned grounding:

are the metaphysician’s statements about what grounds what themselves

ungrounded?

It will be important to distinguish between desirable features which

concern objectivity and desirable features which concern irreducibility. A

meta-ethical realist and a meta-ethical expressivist disagree about the ob-

jectivity of ethical discourse. The realist thinks that moral claims report

mind-independent objective facts; the expressivist thinks that moral claims

(merely) express the attitudes of those who make them. But thinking that

an area of discourse is objective is not the same as thinking that it’s irre-

ducible. A meta-ethical naturalist, e.g., would hold that any ethical fact,

while perfectly objective, is reducible to a (very complex) naturalistic fact.

I will adapt the terminology of (Fine, ) to facilitate the discussion.

To mark that a certain statement is objective (and true) Fine introduces a

sentential operator “It’s factual that”; to mark that a certain statement is

irreducible he introduces a sentential operator “it’s constitutive of reality

that”.

These notions relate to each other and to ground as follows.

• If it’s constitutive of reality that φ then it’s factual that φ; moreover,

• if it’s factual that φ, and it’s not constitutive of reality that φ, then

Examples of desirable features may be: being representational, carving nature at the joints,
having irreducible vocabulary. Some undesirable features may be: being (merely) expressive,
being gerrymandered, having reducible vocabulary. An important recent discussion of (in effect)
the Status Problem is (Sider, ). In ch. . he discusses it as it arises for his notion of
structure. Ch.  discusses it as it arises for other views.
Fine characteristically suggests that the notions of reality and factuality and ground

have to be taken as primitive and that they cannot be defined in other terms. The problem I
present here does not turn on these notions being taken as primitive.
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there is some ∆ such that φ is grounded in ∆ and it’s constitutive of

reality that ψ for each ψ ∈ ∆..

We say that it’s basic that φ if there is no ∆ which grounds φ (and it’s the

case that φ). It now follows that

• if it is basic that φ and it’s factual that φ then it’s constitutive of reality

that φ.

On the other hand, if it’s basic that φ it needn’t be constitutive of reality that

φ. Consider again an expressivist about ethics. An expressivist could hold

that it’s basic that one should always act so as to maximize expected utility.

There is no more basic fact in virtue of which this is the case. But of course

the expressivist is going to deny that it’s factual that one should always so

act.,

Theological imagery is quite helpful for understanding the operators.

This is principle (c) of (Fine, , p. )
“[] any basic factual proposition will be real. For any true factual proposition is real or

grounded in what is real; and so the proposition, if basic, will be real.” (Fine, , p. )
Modern expressivists (e.g., Blackburn, , ) typically allow that a disquotational

truth-predicate applies to merely expressive discourse. Similarly, they should allow a trivial
“it’s a fact that” operator to attach to merely expressive statements. This leads to some
linguistic oddities. We will then find ourselves saying things like: it’s a fact that one should
act so as to maximize expected utility but it is not factual that one should act so as to
maximize expected utility.
If it’s constitutive of reality that φ, need it be basic that φ? No, if it’s possible that there

be a sequence φ,φ, . . . such that φ because φ and φ because φ and φ because φ . . .
and the φi are not all grounded in some φω and all the φi are factual, then all the φi have to
be constitutive of reality since any cut-off point would be arbitrary. See (Fine, , p. ;
and Fine, b, pp. -). for some examples of this. (For more about the possibility
of “infinite descent” see Schaffer, ; and Cameron, b). It is arguable that what we
should conclude from examples like this is not that being constitutive of reality can come
apart from being basic, but rather that the “it’s constitutive of reality”-operator is not a unary
opearator, but rather takes a “plurality” of arguments. What’s constitutive of reality isn’t
the φi taken individually, but rather the φi taken collectively. Thanks to Ned Hall for the
suggestion. This view would go very well with a view where what is grounded (and not just
the grounds) are irreducible plural. Then one could say that the φi taken collectively are
ungrounded. (For more on this idea see Dasgupta, Manuscript)
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When God created the world, He didn’t have to ensure that every fact

obtains. He only had to make sure that those facts that are constitutive of

reality obtain. If it’s factual that φ but not constitutive of reality that φ, φ

does not represent reality as it intrinsically is, but reality as it intrinsically is

fully grounds φ.

We can now draw more distinctions than we can when we only have

grounding; but just as in the case of grounding, the structure is a structure

on facts. Again it is tempting to go further and impose structure on the

objects of the world. The natural definition is that an object a is real (or a

really exists) if it’s constitutive of reality that φ(a) for some φ (Fine, b,

p. ).

We now get a slightly more sophisticated version of the problem in § ..

Philosophers who like to talk about which objects really exist generally

don’t think that all objects really exist: that would make their view boring.

Such philosophers are in a bind. Consider a philosopher who believes that

the Fs aren’t real, but who believes, for each a which is F, that it’s factual

that a is F. Now consider an F, a say. Such a philosopher would deny that

it’s constitutive of reality that a exists but would hold that it’s factual that

a exists. Since it’s factual that a exists there has to be some ∆ such that the

existence of a is grounded in ∆. (Otherwise, it would be basic that a exists

and since it’s factual that a exists, it would be constitutive of reality that a

We cannot give a similar definition of x is factual. For suppose we think that wrongness
is a non-factual property. We might still want to say that the proposition Bob believes that
vagrancy instantiates wrongness is a factual proposition. If we apply the parallel definition,
wrongness would then be a factual property. For a suggestion about how to define factual
object see (Fine, , p. n).
Cameron’s (a, ) view that (of course) there are numbers but there aren’t really

numbers, is an instance of such a view.
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exists and so a would be real.) Consider now the fact that the existence a is

grounded in ∆. Is it constitutive of reality that the existence of a is grounded

in ∆? If it is, then, since a figures in this fact, a is, by definition, real.

So if the object a is not to be real after all, we have to deny that it’s

constitutive of reality that a’s existence is grounded in ∆; but merely denying

this will not do. The problem is that even if it’s not constitutive of reality

that φ is grounded in ∆, it should at least be factual that φ is grounded in

∆. It would be quite awkward for a metaphysician first to complain that

various areas of discourse were non-factual for then later to have to admit

that the pronouncements of metaphysics themselves are non-factual. But if

it’s factual that φ is grounded in ∆ but it’s not constitutive of reality that φ

is grounded in ∆, then it’s not basic that φ is grounded in ∆.

Unless every object is to be real, grounding-facts themselves have to be

grounded. If its being the case that φ metaphysically explains its being the

case that ψ, there has to be a metaphysical explanation of why it is that its

being the case that φ metaphysically explains its being the case that ψ.

.. No layering of objects?

The problems I have discussed so far concern attempts at reading off a

fundamentality-ordering on objects from the ordering on facts given by

grounding; but even if grounding-claims are ungrounded there is no prob-

lem with the fundamentality ordering on facts. And maybe the ordering on

facts is all we need? Alternatively, maybe we can tweak the definition of the

fundamentality ordering for objects so that we don’t run into the problems

A version of the problem discussed in this section is also discussed in (Sider, , §. ).
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we’ve encountered so far?

This will not help for two reasons. To give the first argument let’s consider

a concrete example: mereology. (The second argument has to wait for § ..)

In this case a standard dialectic goes something like this. There are the

mereological atoms and their properties and the facts that the mereological

atoms have such-and-such properties; call these the A-facts. Then there

are the complex objects and their properties and the facts that the complex

objects have such-and-such properties; call these the B-facts. Now, why are

there B-facts? All the causal work is being done by the simples and their

properties, so why posit facts of type B?

I think unease of this sort reflects adherence to the principle that we

should minimize unexplained reality. One should only postulate facts P that

are both unexplained and constitutive of reality if forced to do so. If one

holds that certain facts about complex objects are grounded in certain facts

about simples and their properties one avoids postulating those facts about

complex objects as unexplained reality.

But we avoided committing ourselves to unexplained real facts about

complex objects only by committing ourselves to grounding-facts. Indeed,

for every fact about complex objects we explain we commit ourselves to a

distinct grounding-fact. If those grounding-facts are themselves constitutive

of reality, we’ve made a bad trade. For whatever one might think about facts

It does this in one of two ways. We can either be reductionists (in the sense of (Fine,
)) about facts about complex objects, and hold that the fact that a certain complex object
a exists is not constitutive of reality, but that the existence of a is grounded in the existence
and features of a’s parts. Alternatively, we could be non-reductionists: while it’s constitutive
of reality that a exists, this is not an unexplained reality. Its being constitutive of reality
that a exists is explained by its being constitutive of reality that a’s parts exists and have the
features they do. (Not only is φ grounded in ψ, the reality of φ is grounded in the reality of
ψ.)
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about complex objects, in comparison to facts about grounding it’s perfectly

clear what they are. Better to have unexplained real facts about complex

objects than unexplained real facts about what grounds what. There is

therefore little point in trying to tweak the definition of fundamentalO or

real.

. An Account of Iterated Ground

deRosset () and Bennett () argue that if φ is grounded in ∆, then

what grounds this is just ∆ itself. If one adopts this view one avoids all

the problems we’ve considered so far. Grounding-facts are always grounded

so they are not fundamentalF . Moreover, if φ is grounded in ∆ and it’s

constitutive of reality that ψ for each ψ ∈ ∆, then this grounding-fact is

grounded in the real and so it’s factual that ∆ grounds φ. We’re now free to

use grounding to impose an ordering on our ontology and ideology.

As we will see (§ .) this view is almost right; it does, however, have to be

rejected.

The problem is that if ∆ grounds φ, then ∆ explains φ: whatever grounds

that ∆ grounds φ has to explain that ∆ explains φ. And ∆ by itself cannot

explain why∆ explainsφ. Let’s take a concrete example. Suppose it’s raining

or snowing. Suppose we ask why it’s either raining or snowing. Suppose it is

because it’s raining. Then the fact that it’s raining explains that it’s raining or

snowing. Suppose now that we ask: why is it the case that the fact that it’s

raining explains that it’s raining or snowing? The mere fact that it’s raining

is not going to explain that! The fact that it’s raining does not know anything

A similar view is tentatively suggested in (Raven, ).
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about explanation, as it were.

Let’s be a bit more precise. If we want to know why ∆ explains φ we

have to say something about the relationship between ∆ and φ. We have to

say something about what it is about ∆ and φ and their relationship which

makes ∆ apt to explain φ. Let E(∆;φ) be a statement describing the features

of ∆, φ and the relationship between ∆ and φ that makes ∆ apt to explain

φ. We now get the following schematic account of what explains that ∆

grounds φ. It is ∆ and E(∆;φ) (taken together).

What is it about the fact that it’s raining and the fact it’s raining or snowing

which makes the former apt to explain the latter? Whatever it is, it doesn’t

have anything to with the rain outside. In fact, we should go further. No ∆

which contributes to making it the case that it’s raining, could explain why

the fact that it’s raining explains the fact that it’s raining or snowing. If the

fact that it’s raining does not know anything about explanation, then any

facts which (partly) make it the case that it’s raining don’t know anything

about explanation either.

We now have an abstract proposal about what grounds grounding-claims.

Suppose that ∆<φ. This is grounded in ∆ and E(∆;φ), where E describes the

aptness of ∆ to ground φ. This is completely schematic: what kind of fact is

E(∆;φ)? What grounds it? Before we go on to consider some possibilities let

me first avert a possible misunderstanding.

It’s crucial to observe that E(∆;φ) cannot be part of the explanation of

φ—∆ by itself fully explains φ. If we have to add the aptness of ∆ to explain

φ to ∆ in order to obtain an explanation of φ we’re off on a regress à la Lewis

Carroll (). For then ∆ wouldn’t, by itself, fully explain φ. We would
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have to add E(∆;φ). But E(∆;φ) and ∆ could not fully explain φ either; we

would have to add E(E(∆;φ),∆;φ))—that is, the aptness of E(∆;φ) and ∆ to

explain φ—to ∆ and E(∆;φ) in order to obtain an explanation of φ. This

would not do either, we would have to add . . . .

. The Essentialist View of Iterated Ground

(Rosen, , pp. –; Dasgupta, ; and Fine, forthcoming) have made

some tantalizing suggestions about what may ground grounding claims; let’s

call it the rdf-proposal. We can take their proposals to be proposals about

what E(∆;φ) is (or about what grounds E(∆;φ)).

It will help to begin with a simple example. If φ is true, then it’s true that

φ∨ψ is grounded in φ. (If there are uncontroversial principles of grounding,

this is one.) So suppose that φ∨ψ is grounded in φ: what grounds this?

Rosen holds that this is grounded in

. its being the case that φ

. its being true in virtue of the nature of disjunction that for all p,q if p

then p grounds p∨ q.

‘In virtue of’ as it appears in () is not the ‘in virtue of’ which can be

synonymous with ‘grounding’. As Rosen uses it it is one of the locutions

used to indicate essentialist claims in the Logic of Essence (Fine, ). We’ll

I should say that Fine may be advocating this view of iterated ground. It is not clear to
me whether Fine intends this claim about essence to form part of the grounds for particular
grounding-claims, or whether he just wants to assert that statements of essence and ground
are correlated in this way.
I’ve changed Rosen’s notation to bring it in line with the one used in this paper. Moreover,

since on the present approach I treat grounding as an operator, some of Rosen’s clauses aren’t
necessary. Their omission is of no importance to the criticism I’m giving.
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adopt Fine’s notation �F ,�G, . . . for essentialist operators. A formula of the

form �Fφ can be read: “It’s true in virtue of the identity of the objects which

are F that φ” or “it’s true in virtue of the nature of the objects which are F

that φ”.

The rdf- view is quite tempting. Ifφ groundsψ then there is a particularly

intimate relationship between what it is for φ to be the case and what it

is for ψ to be the case. It’s natural to suppose that the obtaining of this

intimate relationship is part of what makes it the case that φ grounds ψ. The

rdf-proposal holds that the notion of essence gives us the tools for spelling

out in what this intimate relationship consists.

I have my misgivings about this whole idea and I think there are very

serious problems in formulating the view properly. I discuss these problems

in §§ ..–... These sections are a bit of a digression; the reader who’s

not so interested in questions about essence can safely skip ahead to § ...

.. Canonical forms

So far we’ve only looked at one example. How, in general, should the

essentialist thesis be formulated? We can take the general form to be the

following:

Essential Iteration If ∆<φ then there is a constituent y of φ such that ∆<φ

is grounded in

. ∆

. its being essential to y that Θ
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Now, what’s this claim Θ? Rosen and Fine thinks that it is a suitably gener-

alized version of the grounding-claim ∆<φ—in  above this is ∀p∀q(p→

p < p ∨ q). Dasgupta holds instead that it’s (a generalized version of) the

claim that ∆ is “materially sufficient” for (a suitably generalized version of)

φ. In the case of the above example the claim could be ∀p∀q(p→ p∨ q).

So far, we have only one example. Can we say something, in general,

about what these generalized claims look like? There are serious problems

here, and there are reasons to be skeptical that there is one general form

which works in all cases (see Dasgupta, ). Here I’ll just assume that

these problems can be overcome. Why, however, do we need to generalize?

Generalization comes in for two reasons. First, because one wants to

defend a version of what (Rosen, , p. ) calls Formality. The idea is

this:

If Fred is handsome in virtue of his symmetrical features and deep green eyes,

then anyone with a similar face would have to be handsome for the same

reason. Particular grounding facts must always be subsumable under general

laws, or so it seems. (Rosen, , p. )

Second, because the essentialist claims shouldn’t concern particular ob-

jects. It’s not essential to disjunction that if it’s raining, then its raining or

snowing is grounded in its raining. Disjunction does not know anything

about rain, as it were. (For more on this point see Fine, forthcoming; and

Dasgupta, ).

Which of the two views should be preferred? Is a grounding claim partly

grounded in the essential truth of a generalized grounding claim or is it

grounded in the essential truth of a generalized claim of material sufficiency?

I will argue that both views fail, but if one isn’t convinced of that, the view
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where what’s essential is that a certain generalized grounding-claim holds

is preferable. The reason is that whatever grounds ∆<φ has to ground the

asymmetry of the relationship between ∆ and φ. If ∆<φ, then φ cannot, in

turn, partly ground a member of ψ of ∆. Whatever grounds that ∆<φ has

to account for this asymmetry. But the mere fact that there is a constituent

y of φ such that it’s essential to y that (a suitably generalized version of ∆)

is materially sufficient for (a suitably generalized version of) φ, does not

guarantee such asymmetry.

.. The problem of constituents

There are some technical difficulties combining the idea of grounding as a

sentential operator with the essentialist idea. Here’s the problem.

Suppose that Alberich is treacherous or Siegfried is fearless because

Alberich is treacherous. The essentialist wants to say that this is grounded

in

. Alberich’s being treacherous

. its being essential to disjunction that for all p, if p then p grounds p∨q

where the idea is that disjunction is a constituent of the claim that Alberich

is treacherous or Siegfried is fearless. The problem is that disjunction just

isn’t a constituent of the claim that Alberich is treacherous or Siegfried is

fearless in the same sense that Alberich and Siegfried are constituents of this

claim—disjunction does not figure “as an object” in the claim that Alberich

There are plausibly cases where there is asymmetry in grounding but no asymmetry in
claims of essence. Fine (forthcoming) gives the example of an object which exists in time. It’s
true in virtue of the nature of such an object that it exists simpliciter iff it exists at a time .
But we may want to claim that the object exists simpliciter in virtue of existing at a time.
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is treacherous and Siegfried is fearless. Indeed, the formalism of the logic

of essence only allows objects as constituents. To deal with this problem

one would have augment the logic of ground to encompass non-objectual

constituents (e.g., Fregean concepts).

One way of making sense of this talk of constituents within the framework

of the logic of ground is to give up the idea that grounding is a sentential

operator, treating it instead as a relation between facts. Facts, in turn, are

to be treated as structured entities as follows. The fact that Alberich is

treacherous or Siegfried is fearless has as constituents the fact that Alberich

is treacherous, the fact that Siegfried is fearless and it also has disjunction

itself as a constituent. This approach would vindicate talk of constituents.

The price is giving up treating grounding as a sentential operator, and more

seriously, committing to a controversial view of what facts (or propositions)

are.

.. Do essences enter into the grounds?

Modulo the problem of constituents I do accept the following: it is essential

to disjunction that if p then p∨ q is grounded in p and that if q, then p∨ q

is grounded in p. What’s much less clear to me is whether this fact about

essences is part of the grounds for its being the case that Siegfried’s fearless-

ness grounds the fact that Siegfried is fearless or Alberich is treacherous.

Rosen introduces his tentative proposal about what grounds grounding-

claims by saying that “[i]n many cases, when one fact obtains in virtue

Instead of facts one could work with structured propositions. This may be preferable.
For what are the constituents of the fact that Siegfried is fearless or Brünnhilde is meek?
(Brünnhilde isn’t meek.)
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of another we can begin to explain why this grounding fact obtains by

pointing to one or more constituents of those whose nature ‘mediate’ the

connection.” (Rosen, , p. ) The idea is that certain general, broadly

formal, principles of grounding are true in virtue of one of the constituents

of a grounding-claim. It is certainly true that if we were to know that

the grounding claim we’re interested in, say ∆ < φ, was an instance of a

general claim, say (∆ < φ)∗ about grounding which in turn is essentially

true, this would in one sense explain why the grounding-claim ∆<φ is true.

(Subsumption under a general law is often explanatory.) But would it be

part of the grounds for ∆<φ?

It seems to me that it would not. Certainly, the particular grounding-claim

is not grounded in the general grounding-claim of which it is an instance,

for a general claim is always partly (strictly) grounded in its instances; if

the reverse was also true we would have a circle of strict ground. And that’s

impossible.

Presumably, then, what grounds that ∆<φ isn’t the generalization (∆<φ)∗

of this grounding-claim but the essential truth of (∆ < φ)∗. But this, too,

it seems to me, is wrong. The claim ∆ <φ is a particular claim, and even

though it is not an instance of the claim that it’s essential to some constituent

of φ that (∆<φ)∗, the latter claim is in some sense a generalization of the

former, and a more particular claim should not obtain in virtue of a more

general one.

This can perhaps be made more precise using Fine’s notion of strict

partial ground. (In what follows the quantifiers into sentence position will

be restricted to range over true propositions (facts).) The general claim
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∀p∀q(p < (p∨ q)) is strictly partly grounded in the particular claim that its

raining of snowing is grounded in its raining. The claim that it’s essential to

disjunction that ∀p∀q(p<(p∨q)) is strictly partly grounded in ∀p∀q(p<(p∨q))

because the essential truth of claim is partly grounded in the truth of the

claim. But then the claim about essences is strictly partly grounded in what

it is supposed to ground, contradicting the asymmetry of strict ground.

Setting this problem aside, the position is in any case subject to what we

may call the Problem of Factuality.

.. The problem of factuality

A view of this form does not have the problem of leaving out the explanatory

connection between the ground and the grounded: it spells out what the

connection is in terms of essence. Moreover, if we adopt this proposal

we no longer have a problem about groundless grounding-claims. In the

case of disjunction, in particular, we can expect the following sequence of
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grounding-claims:

p <p∨ q

(p,�∨∀p∀q(p→ p < (p∨ q)))<p(<p∨ q)

p,�∨∀p∀q(p→ p < (p∨ q)),�∨,<∀p∀q(p,�∨(p→ p < (p∨ q))< (p < (p∨ q)))<

(p,�∨∀p∀q(p→ p < (p∨ q)))<p < (p∨ q)

...

(..)

The problem now is with ungrounded grounds. In particular, we have

a problem with the essentialist claims �∨∀p∀q(p → p < (p ∨ q)): for what

grounds these claims? If these claims are ungrounded, we haven’t progressed

very far. These essentialist claims are presumably factual, so if they’re basic

they have to be constitutive of reality. The ideology which figures in the

essentialist claims will then be real ideology.

One may be fine with this for disjunction and other logical operators.

But in any case where one wants to reject P as a real predicate one gets into

trouble. Suppose, e.g., that one wants to deny that ‘ . . . is a fusion of the

objects . . . ’ is a real predicate. One begins by defending grounding-claims

of the form

• Its being the case that a is a fusion of the objects a, a, . . . is grounded

in ∆
�∨,< is the operator for “ true in virtue of the nature of disjunction and strict grounding”.
But even this is problematic: it rules out the view that the world as it is intrinsically can

be described using only atomic sentences.





where ∆ is some condition on the objects a, a, . . . (or their parts) that does

not involve the predicate ‘ . . . is a fusion of the objects . . . ’. Part of the

grounds for this grounding-claim is then a claim about essences of the form:

�?∀x,x, . . . , (Φ(x,x, . . . )→ (∆(x,x, . . . )< a is a fusion of the x,x, . . . ))

If this is ungrounded, then ‘. . . is a fusion of . . . ’ is a real predicate after all.

Rosen and Dasgupta here take different lines. Dasgupta bites the bullet

and holds that the essentialist facts themselves are ungrounded. He claims

that they are facts of a special sort, calling them “autonomous”. The idea is

that a fact is autonomous if the question of what grounds it doesn’t properly

arise. Autonomous facts are then held to be irrelevant to what our real

ontological and ideological commitments are. I’m sympathetic to the notion

of autonomous fact, but as I think the idea is better expressed in terms of

zero-grounding, I’ll postpone discussion of it until § ...

For Rosen, on the other hand, there are candidate grounds for the essen-

tialist claims. Rosen accepts a principle of “essential grounding” (Rosen,

, pp. , n).

Essential Grounding �Fφ→ �Fφ<φ

In words, if φ is essentially true, φ is true because φ is essentially true. If we

were guaranteed that if φ is essentially true, then it’s essentially true that φ

is essentially true, (Essential Grounding) would ensure that each essential

truth was grounded. Fortunately, it’s theorem of the logic of essence that

�Fφ→ �F�Fφ Does this solve the problem?

The theorem only holds when F is “quasi-rigid” (Fine, , p. ). But it’s reasonable
to assume that F will be quasi-rigid in the cases which concern us.





Let me first say that I don’t find (Essential Grounding) plausible. Das-

gupta rejects it because he takes the essentialist claims that ground grounding-

claims to be claims of constitutive (as opposed to consequential essence (Fine,

)). To state the constitutive essence of something is to state what it is

in the most direct and immediate sense. While being human is plausible

part of the constitutive essence of Socrates, being (constitutively) essentially

human plausibly isn’t part of his constitutive essence.

I think we should go further. Even when essence is understood as con-

sequential essence, the principle of (Essential Grounding) isn’t plausible.

Socrates is human, in fact, he’s essentially human. But to me it does not seem

right to say that Socrates is human because he is essentially human. Rather,

he is essentially human partly because he is human. Surely, the essential

truth of a claim φ is partly grounded in the truth of φ? But if that’s the case

(Essential Grounding) would give a violation of asymmetry. What’s right

about (Essential Grounding) will become clear in § ...

Be that as it may. The appeal to (Essential Grounding) does not help. It

doesn’t suffice that grounding-claims always have grounds; since grounding-

claims have to be factual what we have to show is that the grounding-

claims are grounded in something which is constitutive of reality. (Essential

Grounding) does not provide us with an answer to that question. Every

claim about what’s essential is grounded, but only in further claims about

Such essential predications are very interesting from a grounding theoretic point of
view. Socrates’s being human partly grounds Socrates’s essentially human, but not vice versa.
However, there seems to be no fact F which can be added to Socrates’s being human—short
of Socrates’s being essentially human itself—such that Socrates’ being human and F together
strictly ground Socrates’ being essentially human. For dealing with examples like these
Fine’s notions of weak ground and, in particular, strict partial ground come in handy (Fine,
, forthcoming).
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what’s essential, and if any of these claims are constitutive of reality we get

unwanted real ideology.

In fact, the problem of unwanted real ideology is but the beginning of the

trouble.

. The Antinomy of Grounding

To appreciate the next problem, we can forget about the details of the

proposal of last section. Abstractly, the proposal at hand is that ∆ < φ is

grounded in ∆ and E(∆;φ). The problem at the end of last section was that

since ∆<φ is factual, E(∆,φ) has to be factual. (Something factual is only

grounded in the factual.) Eventually, then, E(∆;φ) has to be grounded in

something which is constitutive of reality.

Setting aside the worry about unwanted ideology, an initial problem is just

that it’s very hard to see how facts of the form E(∆;φ) could be grounded in

anything which is constitutive of reality. Facts of this form seem not to turn

on how the world is. They appear to be unwordly facts, in the terminology

of (Fine, ). I find this quite compelling, but we can do better. If the

facts E(∆;φ) are grounded in facts which are constitutive of reality we get a

paradox. To see this let us revisit the standard theological picture.

When God creates the world, what does He have to do? He only has to

ensure that it’s the case that φ for each φ that is constitutive of reality.

Every other fact will be grounded in facts that are constitutive of reality. In

In fact, (Essential Grounding) only helps us avoid that every object is fundamentalO. It
does not help us avoid that every object is integral (see fn. ).
Dasgupta’s notion of an autonomous fact is a close relative of the unwordly facts.
One may even think that the only thing God can do is to fix the facts which are constitute

of reality. Once that is done, there are no further facts to fix.
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particular, if it’s the case that each ψ ∈ ∆ is constitutive of reality and ∆<φ,

then the only thing God has to do to ensure that φ is the case is to ensure

that each ψ ∈ ∆ is the case. Contrapositive: if each ψ ∈ ∆ is constitutive of

reality and God has to do more to ensure that φ is the case than to ensure

that each ψ ∈ ∆ is the case, then it’s not the case that ∆ <φ. We have the

following principle.

CP-Creation If God has to do more in order to make it the case that φ than

to make it the case that ∆, where ∆ is constitutive of reality, then it’s

not the case that ∆<φ.

The problem is as follows. Suppose that ∆ is constitutive of reality and

that ∆<φ. Then in order to ensure that φ is the case God had to do nothing

more than to ensure that ∆ is the case. Now, what makes it the case that ∆

makes it the case that φ is (in part) E(∆;φ). If it is not the case that E(∆;φ),

then it is not the case that ∆<φ.

So E(∆;φ) has to be the case. But since it’s factual that E(∆;φ) there has

to be some ∆ such that each ψ ∈ ∆ is constitutive of reality and such that

∆ <E(∆;φ). But then God has to do more than merely make sure that it’s

the case that ∆ in order to make sure that it’s the case that φ. In particular,

God has to make sure that ∆ obtains. By (CP-Creation) this contradicts that

∆<φ.

It’s essential for this argument that it’s factual that ∆<φ and hence that

it’s factual that E(∆;φ). For if it were non-factual that E(∆;φ) there wouldn’t

Strictly speaking, if G were not the case, there could be G′ which grounds its being the
case that ψ grounds φ. The argument below can be reformulated to take account of this. Let
G,G, . . . be all the G′ such that if G′ were to obtain, G′ would ground that ψ grounds φ. We
can now substitute “If none of the Gi obtain, then ψ would not ground φ” for “If G is not the
case, then it is not the case that ψ grounds φ.”
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have to be any real ∆ that strictly grounded E(∆;φ) and hence God wouldn’t

have to do more than make it the case that ∆ in order to make it the case

that φ.

But grounding-claims have to be factual: what are we to do?

. Zero-Grounding

.. Zero-grounding and factuality

Formally, the constraint on factuality is this (writing R,F) for “it’s constitu-

tive of reality that” and “it’s factual that”.

F(φ)→ (Rφ∨∀∆∀ψ ∈ ∆∃∆′(∆<φ→ ∆′ <ψ∧∀σ ∈ ∆(Rσ )))

That is, if it’s factual that φ then either φ is constitutive of reality or anything

which partially grounds φ is fully grounded in the real. Note the following

way for φ to be factual: the only ∆ such that ∆ < φ is ∅. (Since there are

no members of ∅, every member of ∅ is real.) In this case we say that φ is

zero-grounded. In fact, the only way of avoiding the above paradox is to treat

facts of the form E(∆;φ) as being zero-grounded.

Now, what does it mean to say that something is zero-grounded? One

might think of the grounding-claims as providing the instructions to a

machine. The machine is fed facts, and the machine churns out facts which

are grounded in the facts which it is fed. A fact is ungrounded if the machine

never churns it out unless the machine is fed it as input. A fact is zero-

Incidentally, this shows that we cannot define the notion of ground in terms of the notion:
“In order to make it the case that . . . God only has to make it the case that . . . ”. For if φ is
(wholly) non-factual, there if nothing God could do to make it the case that φ, since the God
cannot make what is non-factual the case.
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grounded if the machine churns it out when it’s fed no input. In theological

terms: when God creates the world He only has to create the facts which

are constitutive of reality. All the other facts are generated from some

collection of such facts, the zero-grounded facts being generated from the

empty collection of facts. Prior to God’s making anything the case E(∆;φ)

and its ilk already have to be the case. There is a sense, then, in which the

view discussed in § . above is correct. If ∆<φ, then nothing more has to

be done, in order to make it the case that φ, than to make it the case that ∆.

But that does not mean that nothing more has to be the case in order for it

to be the case that ∆<φ.

.. Zero-grounding and essence

We can now see what’s right about the principle of (Essential Grounding).

When it’s essential (to x say) that φ, then its being the case that φ is zero-

grounded. If one wants to hold that facts about essence partly ground

grounding-claims, then since these facts about essence are zero-grounded

the Problem of Factuality is overcome; moreover, the antinomy of grounding

is also dealt with. This is of importance not just to the defender of the

essentialist view. While I don’t that the facts about essence themselves enter

into grounding-claims, I do accept the essentialist claims. Since these claims

are zero-grounded, I avoid the problem of unwanted real ideology.

This is cute, and it fits the bill; indeed, one suspects that it fits rather too

well. There is a challenge here. One has to tell a story making it plausible

that something is zero-grounded. What we’re asking for here is not an

account of the grounds for something’s being zero-grounded. Presumably,
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if something is zero-grounded this fact itself is zero-grounded. Rather,

what we’re after is an account making it intelligible that something is zero-

grounded.

In the remainder of the paper, I will do just that; in the course of doing

so, I will also hopefully take some of the mystery out of the notion of the

empty ground. In order to do that it will be necessary to take several steps

back and consider what exactly we mean when we say that grounding is a

form of explanation.

. Grounding an Explanation: The Grammar of Ground

One thought one may have when one first considers iterated grounding

claims is that they represent some sort of category mistake. Grounding, is

it were, is only defined for ordinary claims, and the result of applying the

grounding operator to some ordinary claims is an extraordinary claim. If

such a line could be defended all the above trouble would go away: iterated

grounding-claims pose no problem because there aren’t any. But why believe

that it doesn’t make sense to ask what grounds grounding-claims?

If one treats grounding as a sentential operator (read as “because”) the

sentence ‘φ because ψ’ is just another sentence; and “(φ because ψ) because

θ” is well-formed. And if grounding is a relation between facts the fact

that φ is grounded in the fact that ψ is just another fact: why couldn’t we

The logics pplg and pnlg both deliver this result. See (Litland, ).
 The possibility of zero-grounding is a strong reason for treating grounding as an operator

rather than as a relation between facts. It is very hard to make sense of a notion of an empty
fact.
As does Fine, ; and Correia, forthcoming.
As in Rosen, ; Audi, forthcoming; deRosset, ; Bennett, ; and Trogdon,

forthcoming.
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ask what grounds it?

To ask what grounds its being the case that φ is to ask for a special type

of explanation of φ. And if it’s the case that ∆ grounds φ, then that’s just

one more thing which can be the case, and we can ask what explains it. Why

couldn’t we?

The best answer to that question is that sentences of the form ‘φ because

∆’ don’t make claims at all. One has overlooked an option for how to express

grounding. Since grounding is supposed to be a special sort of explanation;

let’s step back and consider how explanations in general are expressed. One

way of expressing explanations uses relational expressions, e.g., “explains”;

another way uses a sentential operator, e.g., “because”. Some examples:

R Its raining or not raining is explained by its raining

O It’s raining or not raining because it’s raining

But there is a different way of expressing explanations: one can express

explanations as answers to questions.

Q&A Why is it raining or not raining? It’s raining.

I suggest that the basic of way of expressing the special form of (metaphysi-

cal) explanation known as grounding is by means of question-and-answer

pairs:

General Q&A Why is it the case that φ? Because φ,φ, . . .

While (Schaffer, ) treats grounding as a relation between objects in arbitrary onto-
logical categories, if the grounding relation holds between two entities, then there is the fact
that it so holds and the same problem arises.
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Here ‘because’ does not function as a sentential operator; its job is rather to

indicate that φ,φ, . . . are to be considered as answering the question “why

is it the case that φ?”.

In order fully to defend this view of grounding-claims we have to make the

case that there is a sense of the question “Why φ?” such that any satisfactory

answer would provide the grounds for its being the case that φ. (Moreover,

we have to be capable of grasping this sense of the question “Why φ?” prior

to grasping a grounding-operator.) Rather than meet this challenge head-on,

I will here adopt as my working hypothesis that grounding-claims are best

expressed as question-and-answer pairs and explore the benefits of this view.

One immediate benefit is that it accounts for why grounding is factive. If

grounding-claims take the above form, then in claiming that φ is grounded

in ψ, φ is presupposed and ψ is asserted.

Another immediate benefit is that we can now account for our difficulty

in dealing with iterated grounding claims: there aren’t any! An iterated

grounding claim would have the form

iterated Q&A Why is it the case that (Why is it the case that φ? Because

φ,φ, . . . )? Because ψ,ψ, . . .

and this is ungrammatical.

The most important benefit, however, is the light we can now throw on

the logic of ground.

. Grounding and Explanation: Explanatory Arguments

In general, an answer ψ to a question “Why is it the case that φ?” can

be shown to be correct by an argument from ψ to φ. When the question
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“Why is it the case that φ?” has the special sense relevant to grounding,

the existence of a merely valid argument from ψ to φ does not suffice to

show that ψ is an acceptable answer. For instance, the argument from φ∧ψ

to φ had better not show that φ is grounded in φ ∧ψ. (A conjunction is

grounded in the conjuncts but not vice versa.) The argument from φ to φ∨ψ,

on the other hand, does show that φ is an acceptable answer to the question

“Why is it the case that φ∨ψ?”. Let’s call the arguments which can back up

grounding-claims metaphysically explanatory arguments.

Can we develop a logic of metaphysically explanatory arguments? Logic

cannot say anything about particular arguments. Which particular argu-

ments are explanatory is a material not a formal matter: it depends on the

content of the premisses and conclusions. Logic can tell us something about

the structural relationship between various arguments, however.

Let us represent arguments as trees without infinite branches. It will be

necessary to consider two types of argument. There are the strictly ex-

planatory arguments: ifΠ is a strictly explanatory argument from premisses

∆ to conclusion φ, then “because ∆” is an acceptable answer to the question

“Why φ?”. We also have the plain arguments: ifΠ is plain argument from ∆

to φ, then if ∆ is true, then φ is true—there is, however, no guarantee that ∆

explains φ.

I submit that the plain and strict arguments are related as follows:

A fully adequate treatment needs to consider weakly explanatory arguments. These
correspond to Fine’s () notion of a weak full ground. The notion of a weakly explanatory
argument plays a prominent rôle in (Litland, ).
I should note that there is nothing in the formalism which forces the plain arguments to

be deductively valid. Thanks to Louis deRosset here.

The notation

,,, . . .
φ,φ,φ, . . .

Π ,,, . . .
ψ

is to be understood as follows. The top occur-
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Strict-is-plain Any strictly explanatory argument is a plain argument.

Non-circularity If Π is a strictly explanatory argument from premisses

φ,φ,φ, . . . to φ, then the following is a plain argument for any ψ

,,,, . . .
φ,φ,φ, . . .

Π

φ
,,, . . .

ψ

Cut IfΠi is a strictly explanatory argument from ∆i to φi for each i and Σ

is a strictly explanatory argument to φ from φ,φ, . . . then

∆

Π

φ

∆
Π
φ

... . . .

Σ

φ

is a strictly explanatory argument from ∆,∆, . . . to φ.

(Non-circularity) can be explained as followed. Anything which strictly

explains φ is of lower “order” than φ: φ cannot contribute to strictly explain-

ing itself. If, per impossibile, φ did contribute to strictly explaining φ, then

the concept of strict metaphysical explanation is incoherent, and anything

would follow from no premisses whatsoever. This is what (Non-circularity)

expresses.

It’s crucial to note that we don’t have weakening: if there is a strictly

explanatory argument from ∆ to φ there needn’t be a strictly explanatory

argument from ∆,ψ to φ. ψ might be irrelevant for explaining φ.

rences of ‘,,, . . . ’ label the occurrences of the formulæ φ,φ, . . . . The bottom occurrences
indicate that those occurrences are discharged in passing to the conclusion ψ.
Note that in an application of (Non-circularity) all the premisses on which φ depends

are discharged. We can assert ψ on the basis of no assumptions. I should note that there are
technical reasons for writing the rule in this way (see Litland, ).
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When people talk about grounding as a relation they typically take

grounding to be irreflexive, asymmetric and transitive (see e.g., Schaffer, ,

pp. –). Those formal features of a grounding-relation are nicely ex-

plained by the above features of strictly explanatory arguments. (Cut) en-

sures that grounding is transitive. (Non-circularity) ensures that grounding

is irreflexive. (Cut) and (Non-circularity) together ensure that grounding

is asymmetric.

. Expressive Limitations

There are, however, reasons not to rest content with this view. Not only do

we answer particular “Why”-questions and give metaphysical explanations

backing up those answers, we also reason about metaphysical explanations

and assert general principles about them. For instance, we may want to say

that if it’s the case that φ∨ψ, then either φ explains that φ∨ψ or ψ explains

that φ∨ψ.

We could specify such principles meta-linguistically: “if we have a meta-

physical explanation of this form, then we have a metaphysical explanation

of this other form”. But it is very tempting to try to “push” these meta-

linguistic statements down into the object-language. The principles about

metaphysical explanation we want to assert aren’t tied to any one particular

language. If we express the principles meta-linguistically, we only assert

that the connections hold for all metaphysical explanations that can be

formulated in a particular language. The structural principles governing

metaphysical explanations are not parochial in this way: we surely intend

the claim that metaphysical explanations are transitive as a claim about
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anything we could recognize as a metaphysical explanation and not just as a

claim about the metaphysical explanations which happen to be expressible

in English.

This is particularly important when we want to express that φ is not

metaphysically explained by ψ. We don’t want claims of this form to come

out true just because no metaphysically explanatory argument from ψ to φ

can be formulated in English.

In order to be able to reason about metaphysical explanations in the object

language I will introduce grounding-operators. Once we have grounding-

operators we can, of course, formulate iterated grounding-claims. Fortu-

nately, it turns out that there is a natural way of introducing grounding-

operators such that true grounding-claims are partly zero-grounded, just as

required in § ..

. Grounding as an Operator

We’ll introduce a sentential operator ⇒s. Think of ∆ ⇒s φ as an object-

language correlate of the metalinguistic claim that there is a strictly ex-

planatory argument to φ from ∆. We allow ∆ to be of any cardinality; in

particular, ∆ can be ∅. Since ∆⇒s φ is just meant to report that there is an

strictly explanatory argument to φ from ∆, it’s clear that⇒s has to have the

following introduction rule.

,,, . . .
φ,φ, . . .

Π

φ
,,, . . . ,⇒s-Introduction

φ,φ, . . .⇒s φ
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HereΠ is a strictly explanatory argument and φ,φ, . . . are all and only the

premisses on which φ depends. We treat arguments of the form depicted in

the⇒s-I rule as strictly explanatory.

Note that the⇒s operator isn’t factive;⇒s isn’t itself a grounding operator.

We use⇒s to state the introduction rules for a factive grounding operator

(<).

∆ ∆⇒s φ
<-Introduction

∆<φ

Arguments of this form are strict. (Note the similarity to conjunction-

introduction.)

Can we find matching elimination rules for < and⇒s? Yes: we can. A

proof-theoretic inversion principle (see e.g., Read, ) provides a heuristic.

This principle says that the elimination rule(s) for an operator λ should be

such that if φ follows from the grounds for asserting λ(ψ, . . . ,ψn), then φ

should follow from λ(ψ, . . . ,ψn) by an elimination rule. And conversely, if φ

follows from λ(ψ, . . . ,ψn) by an elimination rule, then φ has to follow from

any grounds for asserting λ(ψ, . . . ,ψn).

According to the <-introduction rule, we are entitled to conclude ∆<φ

from premisses∆ and∆⇒s φ. Anything which follows from those premisses

must therefore follow from ∆<φ. The elimination rule for < has to take the

form:

∆<φ


∆


∆⇒s φ

Π

ψ
,: <-Elimination

ψ
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(Note the similarity to conjunction-elimination.)

Is the resulting argument plain or explanatory? Clearly, it should only be

plain. For by an application of <-Elimination we can derive θ from ∆<φ,

for any θ ∈ ∆. But ∆’s grounding φ should not explain any θ ∈ ∆. (Similar

arguments show that any application of an elimination rule will result in a

plain argument.)

The elimination rule for⇒s is much more interesting. The introduction

rule for⇒s tells us that we are entitled to assert ∆⇒s φ if there is a strictly

explanatory argument with premisses ∆ and conclusion φ. So anything

which follows from the existence of such an argument should follow from

∆⇒s φ. In order to formulate this elimination rule we have to be able to

assume and discharge hypothetical arguments as well as formulæ. Let terms

of the form ∆ 
s φ stand for hypothetical strict arguments with conclusion

φ and premisses (exactly) ∆. A hypothetical argument ∆ 
 φ only occurs

in the following type of context:

∆ [∆ 
s φ]
φ

Arguments of this form are strict.

We can now write down the following elimination rule for⇒s:

∆⇒s φ


∆ 
s φ

Π

ψ
,⇒s-Elimination

ψ

It can be shown that these introduction and elimination rules suffice

to derive the uncontentious principles governing simple grounding. For

For an application of hypothetical arguments in a different context see Schroeder-Heister,
.
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instance, we can establish that grounding is factive, that grounding is transi-

tive and that nothing strictly grounds itself. In order to say anything about

iterated grounding-claims we have to consider whether arguments of the

form depicted in the⇒s-Introduction rules are strict or merely plain.

What about iterated grounding-claims? It turns out that facts of the

form ∆⇒s φ are always zero-grounded. This is witnessed by the following

derivation.

∆⇒s φ


∆ [∆ 
s φ]
φ

,⇒s-Introduction
∆⇒s φ ⇒s-Introduction

⇒s (∆⇒s φ)
,⇒s-Elimination

⇒s (∆⇒s φ)

It is easily shown that claims of the form ∆<φ are grounded in ∆ and ∆⇒s φ.

Since claims of the latter form are zero-grounded, we get the result that

claims of the form ∆<φ are partly grounded in ∆ and partly grounded in

nothing at all.

. Objections and Clarifications

Objection

Doesn’t this solve the Status Problem too handily? Am I saying that if

somebody asks why ∆ grounds φ that we can just answer like this: “Oh, it’s

because ∆ and ∆⇒s φ.” And if somebody asks why it’s the case that ∆⇒s φ

we can just say “because”?

We can do better. The above system can be extended to a natural deduction system for
all the grounding operators in Fine’s () Pure Logic of Ground and it can be shown that
this system is a conservative extension of the Pure Logic of Ground.
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Reply

No. I’m not saying that. If our opponent is trying to challenge us to provide

a metaphysical explanation of why it is the case that φ because ∆, then, I

suggest, the above is indeed the correct response. But such a challenge only

has a point if it is agreed that we are in possession of a metaphysical expla-

nation of φ in terms of ∆. If our opponent doesn’t agree that we have that,

then he should just challenge us to produce that explanation or challenge

an explanation we have given at a particular point. Any particular meta-

physical explanationΠ of φ can be challenged as an explanation of φ, but

once it’s agreed thatΠmetaphysically explains φ, thatΠ is a metaphysical

explanation of φ is not a further source of trouble.

Objection

On your view, both p⇒s ¬¬p and p⇒s p ∨ q have the same ground: the

empty one. But surely the explanations for why these claims hold differs?

One of them turns on the nature of disjunction, the other one turns on the

nature of negation. It is because of something about how disjunction works

that p is a sufficient explanation for p∨ q.

First reply

In order to make someone understand that these grounding relationships

hold, one has to do different things in the two cases. If somebody doesn’t

get that the first grounding relationship holds one has to tell him something

about negation; if he doesn’t understand that the second one holds, one has

to tell him something about disjunction. But these facts about negation and
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disjunction don’t enter into the grounds for p⇒s ¬¬p and p⇒s p∨ q.

Second Reply

One should accept that it’s in virtue of the nature of disjunction that if p

is the case, then p grounds p∨ q, but that it’s not in virtue of the nature of

negation that if p is the case, then p grounds p∨ q. As long as the “because

something about how disjunction works” locution is understood to be a

claim about essence and not ground one should accept the claim.

Objection

What justifies taking arguments having the form depicted in the⇒s-introduction

rule to be strictly explanatory? Why not just treat these arguments as plain?

Reply

If we treat these arguments as just plain, the solution to the antinomy doesn’t

follow from the logic, so that’s one reason for treating the rule as giving rise

to strict arguments.

More decisive is the following consideration. If we adopt the view that

the central notion is ‘metaphysically explanatory argument’ and that the

grounding operators are just meant to allow us to put reasoning about the

existence of such derivations in the material mode, then the only constraint

on the choice of introduction rules for the grounding operators is that they

represent the logic of metaphysical explanations correctly. The logic of

metaphysical explanation is represented by the logic of simple grounding-

claims. In particular, the constraint is that as long as the introduction rule for
For more on this see (deRosset, ; and Dasgupta, ).
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the⇒s operator gives rise to the right logic for simple grounding-claims, how

we end up treating iterated grounding-claims is comparatively unimportant.

So if we can treat claims of the form ∆⇒s φ as being zero-grounded we

can; and given that treating them as being zero-grounded gets us out of the

problem with the antinomy of grounding, we should.

This idea can be made precise as follows. Suppose that we have a logic

L of simple grounding-claims which encodes the logic of metaphysical

explanation. A logic of iterated ground is acceptable if it is a conservative

extension of L. One may say that one adopts a “formalist” attitude towards

the grounding operators. So is the logic we obtain by treating the ⇒s-

Introduction rule as strictly explanatory acceptable in this sense? Yes, it

is.,

Objection

If you take a “formalist” attitude to the grounding-operators, can you really

object to a view like deRosset’s and Bennett’s? Suppose I accept everything

I prove this in (Litland, ). In particular, I argue that there are two ways of thinking
about strict metaphysical explanation. One way of thinking about it gives us Fine’s Pure
Logic of Ground plg. The other way of thinking about it gives us a certain subsystem plg(-)

of plg. I define the logics pplg and pnlg of iterated grounding and show that they are
conservative extensions of plg(-) and plg respectively.
There is a technical complication which I would be remiss in not mentioning. What

I have claimed so far is only that claims of the form ∆⇒s φ are zero-grounded if true; in
order to show that they are factual, I have to do more. I have to show that they are only
zero-grounded. That is, I have to show that any ground of ∆⇒s φ is itself zero-grounded.
It is not in general the case that if something is zero-grounded that all its grounds are in
turn zero-grounded. Suppose, e.g., that the fact that Socrates is identical to Socrates is zero-
grounded. Then the fact that (Socrates is zero-grounded or it’s raining) is zero-grounded;
but, supposing that it’s raining, it’s also grounded in the fact that it’s raining. The fact that
it’s raining is, we can suppose, not zero-grounded. The technical situation is as follows. In
the logics pplg and pnlg we cannot derive that Γ is zero-grounded from the supposition that
Γ ⇒s (∆⇒s φ). We do however have the following. If Γ ⇒s (∆⇒s φ) is derivable from a
collection of simple grounding-claims Θ then Γ is in fact ∅.
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you say about strictly explanatory arguments and that I, like you, want

to introduce grounding-operators. What’s to stop me from introducing a

factive grounding-operator by means of the following rule:

∆

Π

φ

∆<∗ φ

Here Π is a strictly explanatory argument and ∆ are all and only the pre-

misses on which φ depends. The difference between this rule and the⇒s

rule is that ∆ is not discharged in passing to the conclusion. Your technique

for finding elimination rules can be applied here as well.

Reply

One cannot be stopped from proceeding in this way, and if one takes a

formalist attitude it’s not as if one is doing anything wrong. However, if

one constructs one’s grounding-operators in this way one squashes together

what is more illuminatingly kept separate. That ∆<φ is true turns not just

on whether ∆ is true, it also turns on the existence of strictly explanatory

argument from ∆ to φ. It is useful to be able to state this. Doing it my

favored way allows us to do this; doing it your way doesn’t.

Objection

If the grounding operators are object-language reflections of metaphysical

explanations, why think that it’s an objective matter whether ∆ grounds

φ? Why think that it’s an objective matter whether Π is a metaphysical

explanation of φ from premisses ∆? Why couldn’t this just be projection of

our attitudes?
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Reply

Nothing I’ve said in this paper rules this out. Two points about this. First,

if I’m right about how grounding-claims are to be expressed the question

isn’t the status of grounding claims, but rather the status of metaphysical

explanations; this shifts the debate. Second, the sense in which it’s objective

or not that something is a metaphysically explanatory argument cannot

be captured by means of the sentential operator “it’s factual that”, for if ∆

metaphysically explains φ then the fact that ∆metaphysically explains φ is

itself partly zero-grounded and so is factual by definition.

. Conclusions

I’ll end with an open question and a metaphysical conclusion.

The open question is more technical in nature. Starting from the sug-

gestions in this paper one can create a satisfactory logic of iterated pure

ground; but one would like to get logics which can deal with various logical

connectives. It appears relatively straightforward to construct a logic which

can deal with conjunctions and disjunctions. Negation, on the other hand,

is a great problem. The problem comes down to saying what grounds a

negated grounding claim. Plausibly ¬(∆ < φ) is grounded either in what

grounds ¬∆ or what grounds ¬(∆⇒s φ) so the problem reduces to what

grounds ∆⇒s φ. I think the right answer is the following: if it’s the case

that ¬(∆⇒s φ), then this is zero-grounded. The technical problem is to

construct a nice logic which gives that result.

Finally, the metaphysical conclusion. To begin with, if grounding-claims

are merely factual, ‘grounding’ is not real ideology. Grounding then plays
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a curious rôle: the notion of grounding is essential for doing metaphysics

but it is not one of the notions which have to be used in giving a description

of Reality as it intrinsically is. Now, this much we would already get if

grounding-claims ∆<φ were just grounded in ∆ (as suggested by deRosset

and Bennett). What’s distinctive about holding that grounding-claims are

partly zero-grounded is what this tells us about the source of the structure

of the world. The explanatory connection between the grounds and the

grounded does not depend in any way on how Reality intrinsically is. The

structure of the world is not in the world.
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A
Appendix

A. (Pb), (Pb), (Pc) are jointly consistent

Definition A... A 〈D,�〉-model is a tupleM = 〈K,R,R,D,I〉 where R

is an equivalence relation and R is a reflexive relation. D is the (constant)

domain of objects. And I : K × Pred ×D<ω 7→ {,} is an interpretation of

the atomic predicates of L.

We defineM,w |= φ in the obvious way. To get a more realistic model we

should allow variable domains along the relation R.
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w : Fca,Oc w′ : ¬Fca,Oc

w :

R

OO

R
w′ : cases.

R

OO

Figure A..: Model of (Pb)

We have K = {w,w,w′,w′}We put wRw and wRw and similarly

for w′ and w′. We put wRw′. There are three states c, c, c and three

objects a,b,c. All the worlds model Oc,Oc and Fca and ¬Fcc. Only

the worlds w,w′ model Oc. And w |= Fcb whereas w′ |= ¬Fcb. (The

essentials of the model is depicted in fig. A...)

Think of w and w′ as being two different precisifications of what is true

at a basic world w. Now according to precisification w at every possible

world in which c obtains there is a fusion of the class c. According to

precisification w′, at every possible world in which c obtains there isn’t a

fusion of the class c.

It is easy to verify that w and w′ verify (Pb), (Pc) and (Pb).





Bibliography

Asher, Nicholas, Josh Dever, and Chris Pappas (). “Supervaluations

debugged”. In: Mind ..

Audi, Paul (forthcoming). “A Clarification and Defense of the Notion of

Grounding”. In: Grounding and Explanation. Ed. by Fabrice Correia and

Benjamin Schnieder. Cambridge University Press.

Bennett, K. (). “By Our Bootstraps”. In: Philosophical Perspectives .,

pp. –.

Blackburn, S. (). Spreading the word. Oxford: Clarendon Press.

– (). Ruling passions: A theory of practical reasoning. Oxford University

Press, USA.

Cameron, R.P. (). “The contingency of composition”. In: Philosophical

Studies ., pp. –. issn: -.

– (a). “Truthmakers and ontological commitment: or how to deal with

complex objects and mathematical ontology without getting into trouble”.

In: Philosophical Studies ., pp. –. issn: -.

– (b). “Turtles all the way down: regress, priority and fundamentality”.

In: The Philosophical Quarterly ., pp. –.





Cameron, R.P. (). “How to have a radically minimal ontology”. In:

Philosophical studies, pp. –.

Carmichael, C. (forthcoming). “Moderate Composition Without Vague Exis-

tence”. In: Noûs.

Carroll, L. (). “What the tortoise said to Achilles”. In: Mind .,

pp. –.

Correia, Fabrice (forthcoming). “Grounding and Truth-functions”. In: Logique

et Analyse.

Correia, Fabrice and Benjamin Schnieder, eds. (forthcoming). Grounding and

ExplanationS. Cambridge University Press.

Dasgupta, Shamik (). “The Status of Ground”. In: Manuscript. url:

http://www.shamik.net/Research.html.

– (Manuscript). “On the Plurality of Grounds”. url: http://www.shami

k.net/Research_files/dasgupta%20on%20the%20plurality%20of%2

0grounds.pdf.

deRosset, Louis (). “Grounding Explanations”. Unpublished Manuscript.

url: http://www.uvm.edu/~lderosse/grounding_explz.pdf.

Donnelly, Maureen (). “Mereological vagueness and existential vague-

ness”. In: Synthese ..

Dummett, Michael (). Frege: Philosophy of Language. London: Duck-

worth.

– (). “What is a theory of meaning? Part II”. In: Truth and meaning. Ed.

by John McDowell Gareth Evans. Oxford: Clarendon Press, pp. –.

– (). “The Justification of Deduction”. In: Truth and other Enigmas.

London: Harvard University Press. Chap. , pp. –.



http://www.shamik.net/Research.html
http://www.shamik.net/Research_files/dasgupta%20on%20the%20plurality%20of%20grounds.pdf
http://www.shamik.net/Research_files/dasgupta%20on%20the%20plurality%20of%20grounds.pdf
http://www.shamik.net/Research_files/dasgupta%20on%20the%20plurality%20of%20grounds.pdf
http://www.uvm.edu/~lderosse/grounding_explz.pdf


Dummett, Michael (). The Logical Basis of Metaphysics. Cambridge, MA:

Harvard University Press.

Fine, Kit (). “Senses of Essence”. In: Modality, Morality , and Belief: Essays

in Honor of Ruth Barcan Marcus. Ed. by N. Ascher D. Raffman W. Sinnott

Armstrong. Chicago: University of Chicago Press.

– (). “The Logic of Essence”. In: Journal of Philosophical Logic .,

pp. –.

– (). “The Question of Realism”. In: Philosophers Imprint ., pp. –.

– (). “Necessity and Non-Existence”. In: Modality and Tense. Oxford

University Press. Chap. , pp. –.

– (a). “Some Puzzles of Ground”. In: Notre Dame J. Formal Logic .,

pp. –.

– (b). “The Question of Ontology”. In: Metametaphysics: new essays

on the foundations of ontology. Ed. by D.J. Chalmers, D. Manley, and R.

Wasserman. Clarendon Press. Chap. , pp. –. isbn: .

– (). “The Pure Logic of Ground”. In: The Review of Symbolic Logic .

– (forthcoming). “Guide to Ground”. In: Grounding and Explanation. Ed. by

Fabrice Correia and Benjamin Schnieder. Cambridge University Press.

Gentzen, G. (). “Untersuchungen ueber das logische Schliessen. I”. In:

Mathematische Zeitschrift ., pp. –.

Goldfarb, Warren (). “On Dummett’s “Proof-Theoretic Justifications of

Logical Laws””. Manuscript.

Heck, Richard (). “Truth and Disquotation”. In: Synthese ., pp. –

.





Humberstone, Lloyd (). “The Revival of Rejective Negation”. In: Journal

of Philosophical Logic , pp. –.

Inwagen, Peter van (). Material Beings. Ithaca: Cornell University Press.

Korman, D.Z. (). “The Argument from Vagueness”. In: Philosophy Com-

pass ., pp. –. issn: -.

Lavine, Shaughan (). “Quantification and Ontology”. In: Synthese ,

pp. –.

– (). “Something About Everything”. In: Absolute Generality. Ed. by

Augstin Rayo and Gabriel Uzquiano. Oxford University Press.

Lewis, David (). On the Plurality of Worlds. Oxford: Blackwell.

Litland, Jon Erling (). “Natural Deduction for Logics of Ground”. in

preparation. url: http://harvard.academia.edu/JonLitland.

Markosian, N. (). “Brutal composition”. In: Philosophical Studies .,

pp. –.

Merricks, T. (). “Composition and vagueness”. In: Mind ., p. .

Nolan, D. (). “Vagueness, multiplicity and parts”. In: Noûs ., pp. –

. issn: -.

Noonan, H.W. (). “A flaw in Sider’s vagueness argument for unrestricted

mereological composition”. In: Analysis.

Parsons, C. (). “The Problem of Absolute Universality”. In: Absolute

Generality. Ed. by Agustin Rayo and Gabriel Uzquiano. Oxford University

Press. Chap. , pp. –.

– (). Mathematical Thought and Its Objects. Cambridge University Press.

Peregrin, Jaroslav (). “What is the logic of inference”. In: Studia Logica.



http://harvard.academia.edu/JonLitland


Prawitz, Dag (). “Ideas and Results in Proof Theory”. In: Proceedings of

the nd Scandinavian Logic Symposium. Ed. by J. E. Fenstad. Amsterdam:

North-Holland, pp. –.

– (). “Toward a foundation for general proof theory”. In: Logic, Method-

ology, and Philosophy of Science IV. Ed. by G. Moisil P. Suppes L. Henkin.

Amsterdam: North-Holland, pp. –.

– (). “Pragmatist and Verificationist Theories of Meaning”. In: The

Philosophy of Michael Dummett. Ed. by Randall E. Auxier and Lewis Edwin

Hahn. Vol. . The Library of Living Philosophers. Open Court. Chap. ,

pp. –.

Queiroz, R.J.G.B. De (). “On reduction rules, meaning-as-use, and proof-

theoretic semantics”. In: Studia Logica ., pp. –. issn: -.

Raven, Michael J. (). “Ontology, From a Fundamentalist Point of View”.

PhD thesis. New York University.

Rayo, Agustin and Gabriel Uzquiano, eds. (). Absolute Generality. Oxford

University Press.

Read, Stephen (). “Harmony and Autonomy in Classical Logic”. In:

Journal of Philosophical Logic , pp. –.

– (). “General-elimination harmony and the meaning of the logical

constants”. In: Journal of Philosophical Logic ., pp. –.

Rosen, G. (). “Metaphysical Dependence: Grounding and Reduction”.

In: Modality: Metaphysics, Logic, and Epistemology. Oxford University Press,

pp. –. isbn: .

Rumfitt, Ian (). ““Yes” and “No””. In: Mind ., pp. –.





Schaffer, Jonathan (). “Is there a fundamental level?” In: Nous .,

pp. –.

– (). “On what grounds what”. In: Metametaphysics: New Essays on the

Foundations of Ontology, ed. by David Chalmers, David Manley & Ryan

Wasserman, Oxford University Press, Oxford, UK, pp. –.

Schnieder, Benjamin (). “Truth-Functionality”. In: The Review of Sym-

bolic Logic ., pp. –.

Schroeder-Heister, Peter (). “The completeness of intuitionistic logic

with respect to a validity concept based on an inversion principle”. In:

Journal of Philosophical Logic ., pp. –.

– (). “A natural extension of natural deduction”. In: Journal of Symbolic

Logic , pp. –.

– (). “Proof-Theoretic Validity and the Completeness of Intuitionistic

Logic”. In: Foundations of Logic and Linguistics: Problems and Their Solu-

tions. [Proceedings of the Seventh International Congress of Logic, Methodol-

ogy, and Philosophy of Science, held July  - , , in Salzburg, Austria].

Ed. by Georg J. W. Dorn and Paul Weingartner. New York: Plenum Press,

pp. –.

– (). “Validity Concepts in Proof-Theoretic Semantics”. In: Synthese

., pp. –.

Sider, T. (). “Four-Dimensionalism”. In: The Philosophical Review .,

pp. –. issn: . url: http://www.jstor.org/stable/29983

57.

– (). Four-dimensionalism. Oxford: Oxford University Press.

– (). Writing the book of the World. Oxford University Press.



http://www.jstor.org/stable/2998357
http://www.jstor.org/stable/2998357


Steinberger, Florian (). “Why Conclusions Should Remain Single”. In:

Journal of Philosophical Logic , pp. –. doi: 10.1007/s10992-010-9

153-3.

– (forthcoming). “What Harmony Could And Could Not Be”. In: Aus-

tralasian Journal of Philosophy, pp. –.

Tennant, Neil (). Anti-realism and logic. Oxford: Oxford University

Press.

– (). The taming of the true. Oxford: Oxford University Press.

Trogdon, Kelly (forthcoming). “Grounding: An Overview”. In: Grounding

and Explanation. Ed. by Fabrice Correia and Benjamin Schnieder. Cam-

bridge University Press.

Varzi, A.C. (). “Change, temporal parts, and the argument from vague-

ness”. In: Dialectica ., p. .

– (). “Supervaluationism and its logics”. In: Mind ., p. .

von Plato, Jan (). “Rereading Gentzen”. English. In: Synthese: An In-

ternational Journal for Epistemology, Methodology and Philosophy of Science

.-, pp. –.

Zucker, JI and RS Tragesser (). “The adequacy problem for inferential

logic”. In: Journal of Philosophical Logic ., pp. –.



http://dx.doi.org/10.1007/s10992-010-9153-3
http://dx.doi.org/10.1007/s10992-010-9153-3

	I Proof-theoretic Justification of Logic
	Intuitionistic Rules
	Introduction
	Philosophical Remarks
	Verificationist Meaning-Theory
	Boundary Rules
	Another Approach

	Pragmatist Meaning-Theories
	Examples
	Rules of inference
	Canonical Proofs
	Typographical conventions
	Basic facts about canonical arguments
	Justifying introduction rules

	Properties of Valid Sequents
	Structural properties
	Cut-elimination
	Introduction rules
	Completeness
	Doing without the conditional


	General Rules
	General Introduction Rules
	Canonical Arguments
	Characterization of the general introduction rules
	Maximality of intuitionistic logic

	General Elimination Rules
	Canonical Arguments
	Cut-elimination
	Conservativity Results
	Maximality of intuitionistic logic

	Stability
	Summing Up


	II Metaphysics
	Is the Vagueness Argument Valid?
	Introduction
	Overview

	Technicalities
	The Argument
	The premisses
	Sider's argument for [P3](P3)
	Models

	The Contingency of Composition
	Existence Deflated
	Existence on the cheap
	"Just consists in"
	Basic and non-basic worlds
	Non-basic worlds and determinacy
	Penumbral Counterfactuals
	Matters dialectical

	Arbitrariness
	Intraworld Arbitrariness
	Interworld arbitrariness and Sharp Cut-Offs
	Whence the lack of sharp cut-offs?
	In terms of possible worlds
	Another way of blocking the argument

	Loose Threads
	Counterfactual excluded middle
	"Drawn from different possible worlds"

	Supervenience
	Is the Actual World a World?
	Conclusions

	Grounding Grounding
	Introduction
	The Status Problem: a Special Case
	Clarifications
	The Form of Grounding-Claims
	Grounding as a primitive
	Higher-Order Quantification
	Explaining explanations
	Matters of Ideology

	The Status Problem in General
	No layering of objects?

	An Account of Iterated Ground
	The Essentialist View of Iterated Ground
	Canonical forms
	The problem of constituents
	Do essences enter into the grounds?
	The problem of factuality

	The Antinomy of Grounding
	Zero-Grounding
	Zero-grounding and factuality
	Zero-grounding and essence

	Grounding an Explanation: The Grammar of Ground
	Grounding and Explanation: Explanatory Arguments
	Expressive Limitations
	Grounding as an Operator
	Objections and Clarifications
	Conclusions

	Appendix
	[P1b](P1b), [P2b](P2b), [P3c](P3c) are jointly consistent

	Bibliography


