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Abstract

Predictive processing (PP) has been repeatedly presented as a unificatory account of perception,

action, and cognition. In this paper, we argue that this is premature: As a unifying theory, PP fails

to deliver general, simple, homogeneous, and systematic explanations. By examining its current

trajectory of development, we conclude that PP remains only loosely connected both to its compu-

tational framework and to its hypothetical biological underpinnings, which makes its fundamentals

unclear. Instead of offering explanations that refer to the same set of principles, we observe sys-

tematic equivocations in PP-based models, or outright contradictions with its avowed principles.

To make matters worse, PP-based models are seldom empirically validated, and they are fre-

quently offered as mere just-so stories. The large number of PP-based models is thus not evidence

of theoretical progress in unifying perception, action, and cognition. On the contrary, we maintain

that the gap between theory and its biological and computational bases contributes to the arrested

development of PP as a unificatory theory. Thus, we urge the defenders of PP to focus on its criti-

cal problems instead of offering mere re-descriptions of known phenomena, and to validate their

models against possible alternative explanations that stem from different theoretical assumptions.

Otherwise, PP will ultimately fail as a unified theory of cognition.
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1. Introduction

To adaptively guide behavior in a rapidly changing environment, nervous systems must

unravel perplexingly complex relations between inherently ambiguous sensory inputs and

their underlying causes—hidden states of internal and external milieux. Predictive pro-

cessing (PP) theory has been gaining momentum, becoming a dominant candidate for a

unified explanatory strategy of how the brain manages this task. Since it has been dis-

cussed at length multiple times (Clark, 2013, 2016; Hohwy, 2013), we will keep our

introduction brief.

The central tenet of PP is that nervous systems predict their sensory inputs, following

the imperative to minimize the mismatch between these predictions and the actual sen-

sory signals. Through this recursive process, the statistical structure of intra- and inter-

modal sensory dependencies on various timescales is extracted to form an internal model

of the causal matrix underlying the system’s inputs that further informs consecutive pre-

dictions (Williams, 2018c).

Certain constraints must be imposed on the functioning and structure of the nervous

system for the internal model to operate efficiently. To instantiate predictions, the brain

uses approximate Bayesian causal inference, in which the mean value of the posterior is

determined by prior probability of the hypothesis (as determined by the causal structure

described in the model) and likelihood (probability of obtaining such evidence for a true

hypothesis). However, rather than focusing on a moment-to-moment mirroring of the

external causes of short-term activations in their sensorium, the brain aims at long-term

prediction error minimization through development of a comprehensive model, allowing

predictive control of the environment. This is held to be achieved through acquisition of

a multi-tiered, hierarchical organization with multiple levels conceived of as ensembles

of latent variables, simulating the underlying causal structure at varying levels of abstrac-

tion and spatiotemporal scaling (Kiefer & Hohwy, 2018; Williams, 2018b). At higher

levels, general, relatively invariable (at the ontogenetic time scale), and context-indepen-

dent assumptions about the world are conveyed. These assumptions constrain the gamut

of possible context-dependent hypotheses (posterior probability distributions) at the lower

levels of the model. In the process, inevitable mismatches (prediction errors) between

these predictions and actual sensory signals occur. Prediction errors may either be

explained away through optimization of lower-level model parameters or, if persistent,

propagated up the hierarchy to update higher-order hypotheses or revise the generative

model. The extent to which prediction errors influence posterior probability distributions

depends on the ratio between inverse variances of prior and likelihood density distribu-

tions (precisions).

Originally inspired by the work on bidirectional, hierarchical processing in the visual

cortex and Bayesian modeling in cognitive science, PP was developed within the realm

of perception science (Clark, 2013). It quickly expanded to other domains of cognitive

science and psychology to inspire theories of action (Adams, Shipp, & Friston, 2013;

Friston, Daunizeau, Kilner, & Kiebel, 2010), attention (Hohwy, 2012), language and

thought (Clark, 2016; Lupyan & Clark, 2015), interoception and emotion (Barrett &
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Simmons, 2015; Seth, Suzuki, & Critchley, 2012), psychiatric disorders (Friston, Stephan,

Montague, & Dolan, 2014), body perception (Apps & Tsakiris, 2014), pain perception

(Bissell, Ziadni, & Sturgeon, 2018), and many others. On a tide of this great explanatory

enthusiasm, PP was repeatedly anointed a grand unifying theory: “the first truly unifying

account of perception, cognition, and action” (Clark, 2016, p. 2), bringing “perception,

action, and attention into a single unifying framework” (Clark, 2013, p. 201), explaining

“perception and action and everything mental in between” (Hohwy, 2013, p. 1), and

bridging traditionally opposed theories of cognition and consciousness (e.g., Global

Workspace Theory and sensorimotor accounts; Jezczmi�nska, 2017) and research traditions

(e.g., representationalism and enactivism; Clark, 2015).

We argue that PP currently fails to stand as such a unifying theory, and that its failure is

deeply rooted in its current theoretical structure. The interpretation of its mathematical

underpinnings turns out to be ambiguous, and the PP hierarchy seems implausible as a gen-

eral blueprint of a cognitive architecture. A formalization does not make a theory strict. As

noted by Cooper and Shallice (1995), Clark Hull’s theory of behavior and the cognitive

architecture Soar are specified in a mathematically strict way but interpreted in a number of

inconsistent ways. We believe the same point applies to PP. In this case, the under-determi-

nation of fundamentals results in a “horizontal” trajectory of PP development: It expands

“to the side,” being extrapolated in the form of many re-descriptions to particular psycho-

logical and cognitive phenomena prematurely. Instead of developing “vertically,” or simply

going deeper into fundamentals of the theory to increase its theoretical virtues, a plethora of

proto-models and theories—frequently mutually exclusive and inconsistent with basic PP

tenets—is being formulated in liberally interpreted PP terms. This explanatory rush creates

conceptual confusion and effectively inhibits the theory’s advance, as fundamental concepts

of PP are either further blurred or, at best, remain ill-defined. We hope our criticism will

contribute to removing these obstacles in the future work on PP.

The paper is structured as follows: In the next section, we briefly explicate the notion

of unification, later used to analyze the tensions in the theoretical commitments of PP.

Then, we focus on the major problem of PP: its lack of clear fundamentals. It is difficult

to understand how some of its computational structures correspond to cognitive con-

structs, which creates a gap between the theory and its algorithmic underpinnings. Then,

we turn to the issue of the current developmental trajectory of the theory. Rather than

validating PP models empirically, researchers tend to either appeal to common rhetorical

strategies or point to empirical evidence that is merely consistent with their models,

which is insufficient to establish the grand unificatory nature of PP. In the penultimate

section, we deal with possible objections to our critique and, finally, conclude by pointing

out that the theory cannot reach unity without a substantial change in current practices.

2. Unification in cognitive science

As Colombo and Wright (2017, p. 5) observe, advocates of PP have left unspecified

the conditions that make their assertion that PP is a grand unifying theory true.
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Intuitively, a single theory capable of explaining all relevant cognitive phenomena by

appealing to the same principle of Bayesian inference as approximated by PP in percep-

tion and action certainly seems to be unificatory. In the unificationist account of explana-

tion, a genuinely unificatory theory should provide explanations of the widest possible

range of phenomena using as few explanatory patterns as possible (Kitcher, 1989).

Instead of simply collecting multiple explanations based on different approaches and

reducing them to a single theory, PP aspires to offer a unified mathematical theory, com-

posed of a limited number of explanatory patterns. In short, PP is supposed to be a single,

homogeneous theory whose scope covers all phenomena of interest.

Here, we adopt a slightly more nuanced account of unification (Miłkowski, 2016;

Miłkowski & Nowakowski, 2019) than that of Kitcher (1989). In short, there are four

dimensions of unification in our view: generality, simplicity, homogeneity (or non-mon-

strosity), and systematicity (for more details, see Miłkowski & Nowakowski, 2019).

While Kitcher’s account of explanation follows the received view of explanation in terms

of arguments, we do not assume as much. The argument view is not directly applicable

to cognitive theories which may take the form of computer programs, flow charts, or ver-

bal descriptions. Additionally, we believe that the account of unification in cognitive

science should view unified theories of cognition, defended forcefully by Allen Newell

(1990), as indeed unified. Newell’s view was that one could provide a unified theory by

proposing an outline of cognitive architecture. However, these architectures are not stated

in terms of laws or invariant regularities but as functional structures. Because PP offers

an outline of a functional structure (e.g., Kanai, Komura, Shipp, & Friston, 2015), in con-

trast to some other Bayesian approaches (Chater & Oaksford, 1999), such an account of

unification should also be applicable to PP.

The account we adopt is similar in some respects to that defended by Kitcher: We

posit that genuine unification requires the widest possible scope of a single, simple, and

homogeneous theory. Generality and simplicity are the features stressed by Kitcher: A

unified theory should be as general as possible to cover all relevant invariant structure in

target phenomena; at the same time, it should remain as simple as possible. But, in addi-

tion, it is crucial that a unified theory remains a single, homogeneous theory. By homo-

geneity, we mean that a theory should be more than a conjunction of disconnected

explanatory patterns, termed non-monstrosity by Votsis (2015). A scientific representation

is monstrous when it contains parts which cannot be disconfirmed by a single fact, which

implies that it contains something akin to isolated islands—collections of statements

assumed to be true at the same time, without any deeper connections. Moreover, a scien-

tific theory should be also systematic with respect to its domain of application (Hoynin-

gen-Huene, 2013). There should be a systematic body of explanatory principles

governing a class (or multiple classes) of phenomena; in cognitive science these could

relate, for example, to various levels of explanation or stages of processing.

We believe this is the understanding that underlies most claims about the unificatory

nature of PP; it is supposed to be a relatively simple theory with a large scope of applica-

tion, systematically built to homogeneously cover the whole domain. The same set of

assumptions also seems to be at play in Newell’s account of unified theories of cognition.
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The current account of unification is applicable to various kinds of scientific representa-

tion: models, families of models, theories, frameworks, and toolboxes. While these terms

are used somewhat liberally in the cognitive science community, by theories we mean

more general scientific representations that allow one to build models of particular phe-

nomena (such as tasks), and by frameworks, we mean, following Newell, “conceptual

structures (often computer systems) that are reputed to be relatively content free but that

permit specific cognitive theories to be inserted in them in some fashion” (1990, pp. 16–
17).1 Lastly, toolboxes are (mostly computational) methods used in various theoretical

approaches, although tool development may have crucial theoretical implications

(Gigerenzer, 1991). As we will argue below, PP is usually assumed to be a unifying the-

ory, but remains a computational framework at best.

3. Unclear fundamentals

Below, we aim to provide the examples of a fallacious explanatory pattern recurring in

PP-based explanations: repeatable identifications of technical PP terms with phenomena

in the cognitive domain. This renders the present unificatory power of PP questionable as

meanings of its technical terms are untenably broad and oscillate between particular sub-

theories (Section 3.1). Moreover, these core concepts are introduced into PP-based

explanatory schemes in a way that ignores major assumptions of the theory (Section 3.2).

We argue that the inconsistent or incorrect usage only creates an impression of the exis-

tence of the limited set of core explanatory patterns constitutive for PP, and this impres-

sion is wrong: Resulting incompatibilities between models of individual phenomena and

avowed tenets of PP are symptoms of heterogeneity and possible arrested development,

not hallmarks of grand unification.

3.1. Explanation by equivocation: Fluid core concepts

Consider as an example the notion of precision. In PP, precision is inversely

related to the variability or uncertainty of signals or priors (width of likelihood and

prior probability distributions) and proportional to the influence that prediction errors

or priors exert on the generative model (Kanai et al., 2015). Computationally, it is

identified with the confidence (Allen et al., 2016, p. 9; Friston et al., 2012, p. 238;

Kanai et al., 2015, p. 3) or salience (Barrett & Simmons, 2015, p. 2; Kanai et al.,

2015, p. 3; Friston et al. 2012, p. 1; Friston et al., 2014, p. 149) of (sensory) signals.

In this specific computational sense, such identifications are uncontroversial: Informa-

tion conveyed by less variant signals is more certain and reliable. Therefore, it should

be more “salient” to a cognitive system—it should influence further processing, for

example, update the system’s expectations, to a greater degree. However, PP propo-

nents tend to switch to the domain of subjective experience, as if, due to this seman-

tic identification on a computational level, precision were to be identified with

subjective feelings of confidence or salience. This is unwarranted.
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Let us consider following examples. Stephan et al. (2016, p. 88; our emphasis) propose

that “neuronal encoding of confidence in the beliefs (. . .) corresponds to the salience or

precision afforded to sensory evidence” and it does so “psychologically.” Engstr€om et al.

(2018) identify high precision with the subjective feelings of high confidence (p. 165) or

trust (p. 179). According to the theory linking aberrant functioning of the oxytocin system

to autism spectrum disorders (Quattrocki & Friston, 2014), the lack of proper interocep-

tive signal precision attenuation “impair[s] the child’s ability to prescribe precision (atten-

tion) to appropriate social cues” (p. 421) and, thus, engenders a failure to “assign

salience to a mother’s face” (p. 420). Finally, in a PP-based account of the dopaminergic

system (Friston et al., 2012), salience is downright synonymous with precision, being

defined as “an attribute of (probabilistic) representations that determines the confidence

or certainty about what is represented” (p. 2). According to the authors, “by associating

salience with precision we can also connect to constructs like incentive salience in psy-

chology and aberrant salience in psychopathology” (Friston et al., 2012, p. 2). This ten-

dency to define psychological phenomena as synonymous with precision (or other

functional PP terms2) is widespread.

Such identifications are problematic because they could lead to a fallacy of equivoca-

tion—the confusion of several meanings of a single term in an argument (cf. Copi &

Cohen, 1990; Section 3.3). For example, psychological salience and computational preci-

sion are semantically inequivalent, as incentive “magnetism” (or social salience, see

Quattrocki & Friston, 2014) has no clear-cut relation to the quality of perceptual repre-

sentation (Colombo & Wright, 2017) or sharpness of sensory attention. Without further

explication of how they refer to each other, the putative connection to functional psychi-

atric definitions is merely declarative—especially since some PP proponents seemingly

preserve the original meaning of the notion of salience in their works, for example, while

writing about the “salience network” in the brain (e.g., Barrett & Simmons, 2015). A uni-

fied theory of anything cannot be created simply via a series of equivocations, which are

then used to argue that the same theoretical construct underlies various phenomena.

These equivocations become even more perplexing when we consider that precision

weighting mechanisms should actually correspond (psychologically) to sensory attenua-

tion or attention (Friston, 2018, p. 1019). This has led some researchers to claim that

“although the concepts of salience, confidence and attention may appear distinct, their

intimate relationship can be interpreted as an integral part of perceptual inference—
reflecting the different faces of precision” (Kanai et al., 2015, p. 9). However, while

mechanisms of how attention may result from neuromodulatory gains in hierarchical pre-

dictive systems have been sketched (Feldman & Friston, 2010; Hohwy, 2012, 2017), there

is a lack of such mechanisms for psychological salience and confidence. This leads to

inevitable confusion: For example, Quattrocki and Friston (2014) suggest that the attenu-

ated precision of exteroceptive cues results in an inability to pay attention to social

objects (p. 421) and diminished salience of these objects (p. 420). The spatiotemporal

order of this interplay between attention and salience is unclear; in the authors’ words,

sensory cues “take on a salience that will capture attention” (p. 414) but also “attention

can enhance visual saliency” (p. 420).
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Thus far in this section, we have aimed to show that there is a one-to-many mapping

between the key technical PP term of precision (having strict computational sense) and

the whole gamut of subjective phenomena. For instance, subjective feelings of trust, sal-

ience, confidence, or sharpened attention are all being attributed to “enhanced precision”;

however, such attempts to cover various psychological phenomena by identifying them

with a single computational term cannot result in informative explanations. As long as

the process through which precision regulation gives rise to particular subjective phenom-

ena is not specified exactly (e.g., enhanced precision of which signals? at which levels of

the predictive architecture?), it will remain unclear what differentiates them from one

another.

However, our concerns are not restricted to precision. The lure of equivocation may

even be stronger for technical PP terms that have homonymic counterparts in the sub-

jective domain, such as predictions, expectations, or beliefs. Humans are capable of

predicting, expecting, or believing, and PP-based explanations seem to be ready made

for these phenomena. Indeed, it has been argued that persisting negative expectations

(despite positive feedback) in patients with major depressive disorders result from

diminished precision of Bayesian expectations of positive events (Kube, Schwarting,

Rozenkrantz, Glombiewski, & Rief, 2019), that sustained religious beliefs stem from a

decreased ability to update higher-level Bayesian beliefs (van Elk & Aleman, 2017;

see Section 4.1), and that both prospection and predictive dynamics of the brain rely

on uncertainty mitigation (Gilead, Trope, & Liberman, 2019). However, despite the

appealing simplicity of such explanations, there are important differences between sub-

jective and computational (as envisioned by PP) domains (Litwin & Miłkowski, in

press). Most importantly, according to PP, computational processes that implement pre-

diction error minimization underlie all cognition. Should beliefs, certainty, confidence,

expectations, or ability to prospect be explained by PP, models of these phenomena,

distinguishing them from other aspects of our mental lives, must be proposed. One

cannot rely on intuitive arguments based on mere terminological affinity, especially

given that the ways in which human and Bayesian beliefs evolve often explicitly

diverge (Kahneman & Tversky, 1972).

One could object that the meanings of the technical terms of a theory naturally

fluctuate, that new experimental findings and theoretical considerations continuously

morph their senses, extending the explanatory scope of the theory and specifying dis-

tinctions between explanations of particular phenomena. We do not deny this. Indeed,

if defenders of PP had not claimed that the unique value of their theory is that it uni-

fies a huge range of neurocognitive phenomena, the ambiguity or vagueness of the

core concepts would be simply a by-product of the constant development of the the-

ory, to be removed at later stages of inquiry. But as long as formal objects of the

theory pertain to a range of widely differing phenomena and remain open to diverse

interpretations, one cannot speak about unification. Instead, we see a conceptual gap

between PP qua theory and its various implementations in models or verbal descrip-

tions of potential models.
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3.2. Models incompatible with the grand theory

Let us go back to precision, a central component of many PP-based explanations.

Many recent models go far beyond simple identifications, focusing on the way dynami-

cally changing ratios between prior and prediction error precisions give rise to particular

cognitive and psychiatric phenomena. To efficiently orchestrate the selection of relevant

information, precision estimation should be dependent on (among other factors) current

goals, task demands, or higher-level knowledge and contextualization (Miller & Clark,

2018), and should also be relatively independent at different levels of the inferential hier-

archy (Hohwy, 2017). PP proponents frequently refer to these contextualizing factors.

This approach carries the risk of precision taking the form of a “magic modulator,” a free

variable that can be adjusted to fit every explanation (Miller & Clark, 2018, p. 2568). In

this section, we seek to show that recourse to disturbed global dynamics of precision

weighting indeed leads to explanations which are at odds with the core tenets of the

grand paradigm.

We can point to contemporary computational models of psychosis and schizophrenia

as an example (Corlett et al., 2019; Sterzer et al., 2018; Sterzer, Voss, Schlagenhauf, &

Heinz, 2019). According to these models, the heterogeneous clinical picture of

schizophrenia (e.g., simultaneous presence of delusions, hallucinations, and altered lower-

level perceptual processing) results from disturbed global precision regulation: imbalances

between prior and prediction error precisions, with skewness of the ratio varying through-

out the levels of the inferential hierarchy. However, as we show below, these models are

inconsistent with fundamental commitments of PP.

Sterzer et al. (2018) provide an analysis of an interplay between higher and lower

levels of the hierarchy leading to the clinical manifestation of symptoms. Patients with

schizophrenia are less susceptible to perceptual oddball effects and certain visual illusions

(Friston, Brown, Siemerkus, & Stephan, 2016), such as the hollow mask illusion, in

which healthy people perceive the concave side of the mask as convex (Dima et al.,

2009). Thus, the percepts of patients in this population, even though more veridical, are

abnormal, and reflect a diminished precision of low-level perceptual priors. Weakened

priors also surface in studies using intermittent presentation of ambiguous stimuli that can

be perceived as rotating either leftward or rightward. While in healthy subjects this leads

to a late-trial dominance of one of the percepts (due to the steady build-up of prior

beliefs informed by previous experiences), percepts do not stabilize (priors do not accu-

mulate) in schizophrenic patients (Schmack, Schnack, Priller, & Sterzer, 2015). But how

could weak perceptual priors give rise to hallucinatory percepts? They should emerge as

a result of hyperprecise priors dominating inferences regardless of actual sensory evi-

dence (Corlett et al., 2019). Indeed, priors seem to exert greater influence on perceptual

inference in hallucination-prone individuals, regardless of whether or not they have

received a clinical diagnosis (Powers, Mathys, & Corlett, 2017).

PP proponents have reconciled strong and weak prior accounts to form a single model

of schizophrenia and psychosis arising from disturbed global precision regulation dynam-

ics. In this take, inefficient structural priors, derived from natural scene statistics, are

8 of 27 P. Litwin, M. Miłkowski / Cognitive Science 44 (2020)



compensated by precise higher-order priors semantically consistent with delusional beliefs

(Sterzer et al., 2018, 2019). The latter simultaneously facilitate sensory activations to give

rise to hallucinatory percepts semantically consistent with (delusional) expectations (Cor-

lett et al., 2019). Note that this line of reasoning rests on the assumption that the struc-

tural priors driving visual illusions are hard-wired into lower-level perceptual systems and

are relatively independent of higher-level influences (Teufel et al., 2015, p. 13405). How-

ever, this story is in stark contrast with major PP commitments on the structure and func-

tioning of the nervous system.

Predictive processing entails certain indispensable assumptions regarding functional

organization of the inferential structure. The generative model adopts a multi-level,

hierarchical, sphere-like (or tree-like) form, with the parts receiving input occupying

the outer edges (Williams, 2018b). The various levels are conceived of as latent vari-

ables, with higher levels capturing increasingly general regularities. The hierarchy is

homogeneous and organized along the single continuum, although what exactly orga-

nizes the hierarchy (e.g., abstractness, spatiotemporal scaling, complexity, detachment

from sensory processes) remains problematic (Williams, 2018a).3 Information passes

only between the adjacent levels, as each feeds predictions only to the level immedi-

ately below (providing constraints on the plausible parameter values/posterior distribu-

tions) and prediction errors to the level immediately above. Any interaction between

non-adjacent levels is indirect—for example, upper levels may constrain plausible pre-

dictions at lower levels, which in turn determine what is represented at the level

below (Williams, 2019). Top-down projections are inhibitory, as predictions suppress

prediction errors (Den�eve & Jardri, 2016). Whether they succeed in doing so depends

on the relative precisions of priors and errors.

PP-based models of schizophrenia cannot abide by most of these commitments.

First, within PP, illusory percepts arise due to constraints imposed on perceptual pro-

cessing by priors learned empirically over time (Hohwy, Roepstorff, & Friston, 2008;

Notredame, Pins, Deneve, & Jardri, 2014), for example, that faces are convex. These

priors capture long-term regularities in the perceptual stream and are acquired over a

lifetime of experiences; as such, they should be represented at much higher levels

than context-dependent, short-term, and newly learned associations (e.g., between

wearing glasses and the direction of rotation of the stimulus; Schmack, Rothkirch,

Priller, & Sterzer, 2017). Nonetheless, these contextual expectations are taken to be

“higher-level cognitive beliefs” (Sterzer et al., 2019, p. 138). This should be impossi-

ble according to the PP principle that higher-level beliefs are learned over large time-

scales. Note that this holds even if we consider that structural priors may be easily

overridden at relatively short time scales by context-dependent priors after repeated

exposure inconsistent with the structural prior (see Colombo, 2018; Seri�es & Seitz,

2013 for example). Regardless of the nature of the interplay between structural and

context-dependent priors, the former should be represented at higher levels.4 Moreover,

PP-based models of psychopathology, highlighting “potentially different roles of high

and low levels of the hierarchy” (Sterzer et al., 2018, p. 639), make recourse to a

classic distinction between a “lower-level perceptual system” (with certain expectations
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hard-wired within) and a “higher-level cognitive system,” effectively doing away with

the continuity of the hierarchy.

Second, proponents of PP-informed schizophrenia models do not specify how higher-

level cognitive beliefs could compensate for imprecise low-level priors. Corlett et al.

(2019, p. 4; our emphasis) suggest that their influence is direct: “At the same time, precise
cognitive priors at a higher hierarchical level will sculpt perception, subtending halluci-

nations and the maintenance of delusions.” This is, however, impossible from the PP per-

spective, as it would violate the assumption that the influence of non-adjacent

representations must be mediated by the levels in between (i.e., lower-level perceptual

priors). Moreover, the influence cannot be indirect, since imprecise predictions conveyed

at lower-level sensory processing stages would fail at constraining in accordance with

higher-level demands. Simultaneous compensatory influences from higher-order levels are

not provided for in hierarchical architectures—all computational mechanisms proposed in

dynamic predictive models of psychopathology, for example, deep Boltzmann machine

(Corlett et al., 2019), hierarchical Gaussian filter (Powers et al., 2017), belief propagation

algorithm (Den�eve & Jardri, 2016), and Bayesian predictive coding (Sterzer et al., 2018),

only allow information to pass directly between neighboring levels.

Third, PP suggests that top-down influences should be essentially suppressive: Back-

ward connections are inhibitory or modulatory, and forward connections are excitatory

(Kanai et al., 2015). Conversely, Sterzer et al. (2018, p. 638) propose that higher-level

abstract or semantic beliefs enhance or facilitate signals in sensory cortices, driving hallu-

cinations. PP does not currently offer a computational mechanism that could underlie

such top-down excitatory signaling.

Importantly, all these difficulties cannot be simply explained away by the fact that

“priors at low and high levels may be differentially affected” (Sterzer et al., 2018, p.

638). Certainly, the predictive system could be biased (yet stable) due to systemic

perturbations of inferential loops and the resulting local differences in prior/prediction

error precision ratios. For instance, Jardri and Den�eve (2013) implemented a belief

propagation algorithm in a hierarchical neural network and impaired its inferential

loops by altering the excitatory-inhibitory balance, which resulted in a circular inferen-

tial pattern. Results of successive iterations of the perturbed network squared with

actual behavior observed in schizophrenic patients (e.g., overconfidence in beliefs

despite weak evidence). However, one cannot argue for the fruitfulness of a particular

paradigm based on successful applications of similar yet distinct theories. Belief prop-

agation differs from PP. In the former, inter-level connections are essentially excita-

tory, whereas inhibitory interneurons control the informational flow, canceling out

reverberated signals (so prior beliefs could not be fed back to the upper levels, which

would result in overcounting of the priors; Den�eve & Jardri, 2016). In PP, feedback

connections are inhibitory. Thus, impaired inhibition in belief propagation networks

leads to circular inference, resulting in either strong or weak priors (depending on the

loops that are impaired), whereas in PP it necessarily leads to weak priors (Jardri,

Duverne, Litvinova, & Den�eve, 2017).
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4. Avoiding empirical validation

A recent surge of reports further suggests that PP models of psychopathology may

actually be misled. For example, the acquisition of priors from visual scene statistics is

not affected in patients with schizophrenia (Kaliuzhna et al., 2019; Valton et al., 2019).

However, even though PP models of schizophrenia are not indicative of unificatory pow-

ers of PP, there are good reasons to applaud the actions of their proponents. These mod-

els offer computational rigor and generate clearly formulated predictions which are being

experimentally tested; when they do not match the data obtained, the authors call for the

revision of their models (e.g., Kaliuzhna et al., 2019). Iteration of this process may result

in a narrowing of the set of possible interpretations of core terms or tenets, which may

clarify the conceptual territory.

Unfortunately, this approach to modeling is an exception rather than a rule in the PP

universe. As we show in the section below, researchers tend to pick low-hanging fruits,

creating numerous theoretical re-descriptions of psychological, psychiatric, and cognitive

models in liberally interpreted PP terms, and interpreting the results of their studies as

consistent with loose commitments of PP, even in the case of available alternatives or

internal inconsistencies of PP-based explanations. We argue that mere consistency does

not validate the approach. Conversely, this “horizontal” trajectory of development of PP

(theoretical re-descriptions and ubiquitous post-hoc just-so stories) only exacerbates the

extant problems: The resulting models are mutually exclusive, inconsistent with PP tenets,

or general enough to accommodate almost every empirical finding, which makes the the-

ory even more heterogeneous, or monstrous. Certain argumentative strategies are also

used to justify these re-descriptions that offer scarce, if any, new empirical predictions. In

this section, we aim to expose them.

4.1. Horizontal development and just-so stories

PP is not easily applicable to cognition, which is frequently detached from immediate

perceptual input. As a result, such applications face serious theoretical challenges (for a

discussion, see Williams, 2018a, b) and mostly take the form of conceptual or verbal

models (Kwisthout, Bekkering, & van Rooij, 2017), as it is unclear how to approach the

problem computationally. While computational or mechanistic models are scarce, concep-

tual and verbal theories proliferate. To name just a few, PP-based theoretical models of

distorted cognitive processing in depression (Kube et al., 2019), meditation (Lutz, Mat-

tout, & Pagnoni, 2019), perceived injustice in chronic pain (Bissell et al., 2018), drivers’

behavior (Engstr€om et al., 2018), and religion and spirituality (van Elk & Aleman, 2017)

have been recently proposed. The last model will be analyzed below.

van Elk and Aleman (2017) present PP as an alternative for dual-process accounts of

religiosity. In particular, the authors propose that their model explains four phenomena

associated with religiosity and spirituality, for which four corresponding “neurocognitive

mechanisms” are outlined:
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1. Religious visions and hallucinations. Drawing from PP approaches to schizophrenia,

they propose that visions and hallucinations may arise from imprecise coding of

efferent signals and low-level priors, rendering sensory activations unpredictable.

The volatility of low-level priors results in overreliance on context- and culture-

informed religious or delusional beliefs.

2. Mystical experiences. Self-transcendental feelings and associated reduced body

awareness stem from differential weighing of exteroceptive and interoceptive sig-

nals, with significantly diminished precision of the latter.

3. Personal experiences of a godly presence. Feelings of supernatural presence come

from simulated offline inferences of God’s mental states, based on internal genera-

tive models linking social cues to the interoceptive states of others.

4. Acceptance and maintenance of religious beliefs. Reduced error monitoring pro-

cesses facilitate increased reliance on high-level priors, which results in a tendency

to accept and sustain prior religious and spiritual beliefs, and a decreased ability to

update priors in the face of conflicting sensory information.

van Elk and Aleman (2017) provide an exceptionally comprehensive overview of neu-

rocognitive studies on religiosity and spirituality to argue that PP allows theoretical inte-

gration of all past findings. However, their claim is unsubstantiated. The argumentation is

based on a collage of reinterpretations of results from neuroscientific studies and re-de-

scriptions of hypothetical religious visions in PP terms (e.g., mystical experience of a

mountaineer, p. 366) as well as arguments intuitively speaking to the reader (e.g., the fact

that contents of religious and spiritual experiences are culture-informed and shaped by

previous experiences is in line with PP accounts predicting the important role of prior

beliefs). Thus, the detailed neurocognitive mechanisms announced in the introduction are

not actually specified, and PP merely provides a new language with which to talk about

diverse phenomena. To make matters worse, the authors tell an inconsistent story using

this language, for instance, their references to the distinction between rigid high-level pri-

ors sculpting perception and imprecise perceptual priors violate central PP tenets (see

Section 3.2). Moreover, neuroscientific findings which are “broadly congruent” (p. 368),

“broadly compatible” (p. 368), or “in line” (p. 371) with PP are taken to “substantiate

[the] model with empirical evidence” (p. 360; see Section 4.2 for a thorough treatment of

the consistency fallacy in PP models).

What matters for evidential support is whether the model actually fits the data better

than alternatives. van Elk and Aleman (2017) do not show that—they simply use PP as a

generic language to talk about disparate aspects of religiosity and spirituality. A concep-

tual model, which consists of speculative (and inconsistent) re-description of to-be-ex-

plained-phenomena, does not deepen our understanding of them. Therefore, PP

proponents harness certain argumentative strategies to justify their introduction. These

patterns of rhetoric are repeatable and surface in many recent PP models (see Table 1).

In particular, the models are presented as follows:

1. An answer for the need to unify the scattered field of study—The model is not pre-

sented as an alternative or a new approach, but as an umbrella theory gathering all
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Table 1

Repeatable Rhetorical Strategies in PP-Based Theoretical Models

PP-Based

Model of

Answers the Need

for Unification

Apparent or Post-Hoc

Predictions Model as a Starting Point

Religiosity and

spirituality;

van Elk and

Aleman

(2017)

“There is currently no up-to-

date review and integrative

framework that accounts

for the different findings

that have been reported in

the literature (. . .) Our
proposed model is unique

as it provides a unifying

account of the

neurocognitive basis of

religiosity and spirituality

thereby integrating recent

findings from different

fields.”

“Imprecise predictions may

result in a failure to

properly update one’s prior

models, while hyper-

precise prediction error

signals may result in a

malfunctioning learning

process potentially leading

up to delusional beliefs.

(. . .) Thus, our theoretical
framework makes testable

predictions about when we

may expect the

development and

maintenance of fixed belief

systems.”

“(. . .) research is needed

before stronger conclusions

on the role of dopamine in

religious beliefs can be

reached. Thus, the notion

that error monitoring

mechanisms play a central

role in adopting and

sustaining religious and

paranormal beliefs and the

supposed involvement of

the dopaminergic system in

this process opens

interesting avenues for

future research.”

Drivers’

behavior;

Engstr€om
et al. (2018)

“Several of the general

concepts underlying the

present framework are

accounted for by existing

human factors frameworks

and models (. . .). Thus,
predictive processing

should not be viewed as a

radical alternative to these

existing models but rather

as a framework for

bringing together different

strands of human factors

research based on the

unifying principle of

prediction error

minimisation.”

“Finally, we discuss how

predictive processing

concepts may help to

understand drivers’

interaction with automatic

steering interventions and

AD functions. These

examples are intended to

provide a first illustration

of how the proposed

framework can improve our

understanding, and generate

testable hypotheses of

different aspects of driver

behaviour, and encourage

its application to other

driving-related

phenomena.”

“The present paper is

intended as a first

exploration of the

application of predictive

processing to driving and

we hope that it will

encourage others to apply

and further develop these

ideas. Efforts towards more

specific quantitative driver

behaviour models based on

predictive processing

concepts are currently

underway and will be

reported in future

publications.”

(continued)
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Table 1. (continued)

PP-Based

Model of

Answers the Need

for Unification

Apparent or Post-Hoc

Predictions Model as a Starting Point

Self-

recognition;

Apps and

Tsakiris

(2014)

“Recent reviews of this

literature have concluded

that the absence of a

unifying theoretical

framework has resulted in

a largely incoherent picture

of the circuits and

mechanisms which are

engaged during self-

recognition. (. . .) In this

paper we attempt to

highlight how the free-

energy principle, a recent

attempt at a unifying

theory of the brain, can

explain many previous

findings in self-recognition

research.”

“Our third prediction was

that that there will be a

suppression of activity

when a self-stimulus is

predicted or when a self-

stimulus leads to the

expectation of a sensory

event. Evidence is provided

of such a notion by

research examining self-

touch. A seminal paper

(. . .) found that participants

cannot experience a

tickling sensation when

they apply tactile

stimulation to their own

skin, only when tactile

stimulation is externally

delivered.”

“We have provided evidence

in support of our theory,

although we note that to

date, empirical data neither

largely supports nor refutes

our account of self-

recognition. However, this

work does provide a broad

range and extensive set of

prediction about the nature

of self-recognition that can

be tested empirically. We

hope that such empirical

investigation will generate

important and novel

findings.”

Emotion in

action;

Ridderinkhof

(2017)

“These proposals are

consistent with, on the one

hand, Frijda’s recent views

on emotion vis-�a-vis
impulsive action (. . .), and,
on the other hand, the

principles and mechanisms

of perception–action
coordination laid out in a

recent integrative

theoretical framework (. . .)
Thus, this article aims at a

synthesis that integrates

previous work and extends

it with the notion of

forward modeling.”

“Forward modeling and its

computational bases have

been developed extensively

in the literature on motor

control (. . .) and have

recently been elaborated in

the literature on predictive

processing (. . .) Such a

framing may help generate

novel hypotheses, that

allow for empirical tests

(. . .).”

“Rephrasing questions about

emotional behavior in terms

of underlying constructs

and mechanisms of

information processing may

not in itself add much

explanation. Our aim here

was to evaluate whether,

from an action control

perspective, a meaningful

integration and synthesis

with emotion theory is

feasible, at least at the level

of the conceptual

components. It is our hope

that the present theoretical

synthesis, and in particular

its inclusion of forward

modeling, may engender a

deeper understanding of

emotion in action (or at

least a framework from

which novel and testable

predictions can be

derived).”
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present models of a given phenomenon. While specific models are good at explain-

ing particularities, they cannot be generalized to the whole field of study. This is

what its proponents claim PP does: allow explanatory pluralism to be replaced by a

single unifying account.

2. Generating new, specific and testable predictions—This is certainly to be expected

from a new model or theory. PP proponents claim to specify such predictions in

their papers; however, upon a closer look, these “predictions” are not framed as

hypotheses or measurable phenomena that are interpretable without additional PP

assumptions. For example, van Elk and Aleman (2017, p. 371, our emphasis) refer

the reader to a table (p. 364) for “hypotheses and theoretical predictions to be

addressed in future research.” However, the table contains only open research ques-

tions (such as “Do mystical and self-transcendent experiences rely on a differential

weighting of exteroceptive compared to interoceptive information for an inferred

model of the bodily self?”).

Despite the authors’ claim that their account “makes testable predictions” (p. 372), not

a single specific, testable hypothesis is elaborated. Instead, they re-discuss their theoreti-

cal model and refer to assumptions stemming from other PP-based models (e.g., that

biased learning processes arise from imbalances between precisions of priors and predic-

tive errors, caused by a dopamine system malfunction). Thus, the model presupposes that

the brain works in a certain way to guide empirical research intended to decide whether

it actually works this way, by giving rise to particular cognitive phenomena. The account

cannot be tested without these assumptions determining the interpretation of what the

observables mean, for example, that top-down modulations reflect prior beliefs explaining

away prediction errors. PP serves as a theory and interpretative context at the same time.

As a result, its actual hypothesis-generating potential is minimal.

3. A starting point—re-description of observables (e.g., behavior, neuroscientific data)

in terms of hypothetical and unobservable underlying processes is presented as a

first step toward comprehensive understanding of a given phenomenon. Proponents

of PP models postpone the verification of their models, hoping that their proposition

will inspire other scientists to carry out further research.

Summing up, such “theoretical proposals” (van Elk & Aleman, 2017, p. 362) or

“purely conceptual account[s]” (Engstr€om et al., 2018, p. 174) do not extend our under-

standing of re-described phenomena. They may actually be a step backwards compared to

heavily criticized Bayesian models (e.g., Bowers & Davis, 2012; Jones & Love, 2011).

While Bayesian models and their assumptions tend to be fitted post-hoc around data, they

are at least quantitative and allow simulations. On the other hand, PP-informed models

predominantly take the form of theoretical reinterpretation of data in light of such post

hoc assumptions. This reinterpretation is simply an application of a theory to interpret a

wide range of phenomena, and does not entail a common explanation for that range

(Colombo, Elkin, & Hartmann, 2018). In other words, PP is not applied systematically,

and it could become monstrous if these applications are purely post hoc.
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4.2. Consistency fallacy in PP models

In neuroscience, conclusions that observed data provide evidence for a given hypothe-

sis often come from over-confirmatory research and data interpretation strategies, rather

than being substantiated by data (Mole & Klein, 2010). In particular, researchers are

prone to the “consistency fallacy” (Coltheart, 2013): They claim that they found support
for a given theory after collecting data which are merely consistent (or not inconsistent)
with this theory. However, this is not sufficient for confirmation. Consistent data might

come from observations from an unrelated set (e.g., observation of black ravens is consis-

tent with the theory that all bears are brown) or their consistency may rely on the the-

ory’s degree of adaptability. For example, let us consider the example of psychoanalysis.

The fact that the client denies that his or her psychological struggle stems from a dys-

functional relationship with his or her father is consistent with the hypothesis that this

relationship is actually a root problem, as associated adverse feelings may be psychologi-

cally repressed. On the other hand, acknowledgment and willingness to talk about father

issues may be a sign of insight. Any kind of patient behavior can be consistent with the

original hypothesis of a psychoanalyst.

Thus, a body of data cannot provide evidence for a theory only in virtue of its consis-

tency. It must also weigh against the competing hypotheses. The data d support a hypothe-

sis only if the conditional probability of hypothesis H, given that data d were accurately

observed, exceeds the conditional probability of an alternative (i.e., P(H|d)> P(non-H|d)).
If competing hypotheses are equally capable of accommodating the data, the study is non-

diagnostic. Coltheart (2013) proposes that this can be avoided by the use of proper study

and data analysis design: Prior to the experiment, one should specify observable outcomes

that (a) would speak in favor of the tested theory (and against the contradictory one) and

(b) are inconsistent with the tested theory (and accommodated by the contradictory one).

When no alternative theories are present, at least one outcome irreconcilable with the

tested theory should be possible. For non-experimental work, such as theoretically driven

simulation, at least one alternative model that accounts for the same results should be

specified. This alternative model could be extremely simplistic, but what is important is

that all testing is comparative (Sober, 1999), so it requires a baseline for comparison.

Although the consistency fallacy is evident in neuroscience (see Mole & Klein, 2010

and Coltheart, 2013 for example), we argue that its prevalence in PP models leads to

inevitable contradictions between studies on the same phenomenon. We focus on studies

on neural underpinnings of the rubber hand illusion (RHI; Limanowski & Blankenburg,

2015; Zeller, Friston, & Classen, 2016), which supposedly support a PP model of body

ownership and self-recognition (Apps & Tsakiris, 2014).

Limanowski and Blankenburg (2015) employed dynamic causal modeling (Friston, Har-

rison, & Penny, 2003) to test nine neurodynamic models of information exchange between

neural structures involved during RHI. All models had a two-level structure, with visual

(lateral occipital cortex, LOC) and somatosensory areas (secondary somatosensory cortex,

SII) separately providing sensory input to a multisensory integration hub (intraparietal sul-

cus, IPS) at the upper level. The models also allowed for inter-level connectivity between
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the IPS and premotor ventral cortex (PMv), and they were divided into three families,

depending on the effective connectivities that were predicted to be strengthened during the

illusion compared to the control condition: (a) bottom-up (from LOC/SII to IPS), (b) top-

down (from IPS to LOC/SII), and (c) bidirectional. One of the bottom-up models strongly

outperformed competing models. According to the authors, spatiotemporal congruence of

visual and somatosensory signals drives the cognitive system to assume their common

cause. This results in intersensory conflict between touch represented visually on a dummy

and felt on one’s real arm, which elicits prediction errors. These errors are streamed from

the LOC to upper-level multisensory integration regions. The IPS tries to counter this mis-

match via switching of somatosensory coordinates onto the visual reference frame. These

adjusted coordinates are also signaled to the SII, where they do not match the somatosen-

sory information (e.g., proprioceptively encoded position of one’s arm), thus eliciting fur-

ther prediction errors.

In another paper on the topic, Zeller et al. (2016) used the same approach and pro-

posed their own neurodynamic model in which RHI arises as a result of attenuation of

intrinsic connections in the primary somatosensory cortex (SI) and enhanced effective

bottom-up connectivity from the contralateral occipital cortex (OC) to the contralateral

ventral premotor cortex (PMC). The authors continue the story told by Limanowski and

Blankenburg (2015): To suppress prediction errors arising in SI, top-down modulations

from PMC attenuate their precision, which offers greater weight (enhanced attention) to

visual signals.

Fig. 1. Consistency fallacy in the study performed by Limanowski and Blankenburg (2015). All dynamic

models reprinted from Limanowski and Blankenburg (2015). (A) A much simpler explanation could be pro-

posed for the winning bottom-up model: Spatiotemporally congruent stimulation results in enhanced signaling

from lower-level perceptual cortices to the multisensory integration area. This interpretation is particularly

appealing given no differences in top-down signaling, which should appear if predictive processes were at

work. (B) Kindred PP interpretations of the results could be proposed for bidirectional and top-down models.

The narrative only makes particular effective connectivities more or less relevant. Consider the following

examples from the authors: Bidirectional: Intersensory conflict between visual and tactile signals elicits visual

prediction errors from LOC to IPS. Top-down signals from IPS counter the mismatch through recalibration

of somatosensory coordinates on a rubber hand and signal new coordinates to SII. This elicits somatosensory

prediction errors, as somatosensory signals do not match new coordinates. Top-down: Intersensory conflict

between visual and tactile signals elicits visual prediction errors from LOC to IPS. For the illusion to arise,

top-down signals from IPS suppress these errors through recalibration of somatosensory coordinates on a rub-

ber hand, and signal new coordinates to SII. Somatosensory prediction errors—arising due to switched coor-

dinates—are further suppressed by top-down signals from IPS. Otherwise, they would break the illusion.
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Both research teams succumb to a consistency fallacy in a number of ways. First, data

observed by Limanowski and Blankenburg (2015) do not make improbable a competing

hypothesis that congruent stimulation simply evokes multisensory integration processes.

The authors themselves acknowledge this, writing that “predictive coding is only one can-

didate explanation for the mechanisms underlying the brain’s hierarchical inference about

the world and the body” (p. 2301). Both the PP-based account and the traditional multi-

sensory integration approach seem quite likely in the face of the data (Fig. 1A). However,

the authors waive off this concern with a short remark that the alternative hypothesis is

not inconsistent with PP. And Zeller et al. (2016) did not discuss any competing theory

or hypothesis.

Second, models potentially incompatible with PP were not specified in either study.

This raises the suspicion that post-hoc PP interpretations could be tailored to virtually all

possible outcomes (see Fig. 1). After all, in line with the interpretation of Limanowski

and Blankenburg (2015), one could also expect top-down modulations suppressing errors

in perceptual areas to come forward. Yet, in the winning model, top-down effective con-

nectivity from IPS to LOC was present regardless of the experimental context (illusion/

control), and effective connectivity from IPS to SII was altogether absent. Finally, predic-

tion errors from LOC to IPS should be suppressed for the illusion to arise (according to

authors); if so, why does error-related bottom-up effective connectivity from LOC to IPS

arise? None of these problems is even discussed in the article, which prompts us to ask:

Could the very same interpretation be fitted post-hoc to each of the nine models tested

(Fig. 1B)? Nonetheless, the authors “interpret these results as support for a predictive

coding account of hierarchical inference in the brain” (Limanowski & Blankenburg,

2015, p. 2285) and other researchers follow (e.g., Tsakiris, 2017, p. 604).

The study by Zeller et al. (2016) succumbs to a consistency fallacy in a very similar

fashion. None of the 32 tested models was defined beforehand as an outcome potentially

inconsistent with PP, and the interpretation of the results is highly questionable. None of

the chosen models allowed for effective top-down connectivities; therefore, such modula-

tions should be excluded from explanation. Since “the choice of model families was moti-

vated by our hypotheses” (p. 269), the authors must have earlier considered such top-down

modulations irrelevant. Moreover, two effects of interest were specified: CONGRUENT-

REAL (differences between RHI and condition in which participants were simply observ-

ing their own hand) and INCONGRUENT-REAL (differences between a control palm-up

condition and a simple observation of one’s own hand), with the latter “refer[ring] to the

visual perception of an artificial hand without an associated feeling of ownership” (p. 268).

Enhanced connectivity from left OC to left PMC was much more pronounced in the

INCONGRUENT than the CONGRUENT condition and, accordingly, should be inter-

preted as associated with visual processing of the hand or incongruence rather than owner-

ship. Therefore, claims that “during illusory perception, greater precision is afforded to

visual input (from the OC)” (p. 270) or that the results “highlight an increase in ascending

visual influences (e.g., prediction error) to multimodal sources during illusory percepts” (p.
272, our emphases) are simply unwarranted, even if the OC-PMC connection was stronger

during the CONGRUENT than during the REAL condition.
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The consistency fallacy is detrimental to scientific progress, since it creates an impression

that the theory was empirically corroborated—when it was not. It also leads inevitably to

contradictions between various parts of the theory-driven explanation. For example, the

enhanced top-down effective connectivity from IPS to LOC, present regardless of the exper-

imental condition in the first study (Limanowski & Blankenburg, 2015), was interpreted by

the authors as enhanced top-down visual attention to the rubber hand. However, their win-

ning model predicted the attenuation of intrinsic connectivities in both the LOC and SII.

Attenuated intrinsic connectivity in the somatosensory cortex was also found and expressly

interpreted as reduced precision weighting by Zeller et al. (2016). If this interpretation is

true, top-down visual attention could not result in lowered intrinsic connectivity in the LOC,

as it increases the gain of error units and precision weighting of bottom-up signals (Hohwy,

2012). Thus, even though both models were taken to support the same theory of body own-

ership, they are irreconcilable in its own terms. As opposed to other inconsistencies between

them (e.g., pertaining to presence or absence of particular effective connectivities), this can-

not be explained away by methodological differences between the studies.

The consistency fallacy may even lead researchers to claim that they have found sup-

port for PP in the face of results incongruent with the theory on the behavioral level.

Once again, let us consider Schmack et al.’s (2017) study on schizophrenia that found

that the effect of experimentally induced association between wearing glasses and the

direction of the moving stimulus was weaker in patients than in healthy controls. Never-

theless, the authors focus on enhanced effective top-down connectivity from the orbito-

frontal to visual cortex, which they assume, based on the very theory they committed to

experimentally validate, to be belief-related. On that basis, they conclude that their results

are in line with predictive coding accounts.

Summing up, the consistency fallacy is prevalent in empirical studies devised to test

PP. As long as outcomes compatible and incompatible with both PP and competing theo-

ries are not specified prior to the experiment (e.g., in the form of a preregistered study),

PP cannot obtain legitimate empirical support. Assumptions about what a neural signal

actually means should also be clarified to avoid post-hoc just-so stories and resulting con-

tradictions. Otherwise, PP-based neuroscience will remain a muddled territory with theo-

ries that are mutually inconsistent and irreconcilable with PP’s core tenets.

5. Possible objections

Defenders of PP might object to our criticisms in several ways. Here, we provide short

replies to possible objections.

All research programs are chaotic when they grow, and faulty application is to blame.
One could object that our criticism is too harsh: All new theories incite new work, which

is not always of the highest quality. Hence, our criticism misses the mark, as there is

nothing special about PP. All grand research programs must deal with this problem. Some

researchers are simply insufficiently cautious in its application to various phenomena.
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Indeed, this is a reasonable point—rapidly developing approaches may incite many sci-

entists to jump on the bandwagon. However, we are unaware of any criticism from within

the PP community of overeager attempts to stretch the theory to fit every possible appli-

cation. Thus, we believe that for this objection to be successful, PP proponents should

proceed with more caution—as of today, they neither control the inflow of theoretical

models nor critically evaluate them. The mere growth of the scope of theory—the grow-

ing number of phenomena “covered” by PP—is actually being used as an argument in

the debate over the unificatory potential or explanatory usefulness of PP (e.g., Clark,

2016; Kiefer & Hohwy, 2018).

PP should not be considered in isolation from the FEP (the free energy principle; Fris-

ton, 2009) or other Bayesian approaches. Our critic might also stress that predictive cod-

ing models are usually motivated by free energy considerations or Bayesian approaches

to rationality or adaptive behavior.

Indeed, it was argued that FEP may be viewed as a first principle that makes PP a cog-

nitive architecture of all living systems (Colombo & Wright, 2018); as such, it grants PP

its unificatory credentials. However, such universal constraints on cognitive organization

—specifying, for instance, what “prior beliefs” or “sensory states” generally are—would

have to be extremely liberal to apply to all organisms (from single-cell organisms through

to humans). PP provides details on cognitive architecture that go beyond the assumptions

of FEP (Gładziejewski, 2019). Moreover, even though there are several versions of PP,

for example, stated in terms of Bayesian brain dynamics, or merely as predictive coding

algorithms (Spratling, 2017), none logically requires the FEP to be true, even if it could

provide a theoretical background for solving problems with the fundamentals of PP. Even

supposing the main job of the brain is not to minimize (informational) free energy, or

even to provide accurate Bayesian inference, or form predictions for motor control, one

could still adhere to PP to account for the way cognitive processes are performed (see,

e.g., Thornton, 2017). Thus, the potential unifying power of PP does not seem to depend

on external theoretical virtues.

Not all proponents of Bayesian approaches defend the idea of the grand unification.
Our criticism is aimed at the claim that PP can satisfactorily unify theories of cognition.

But not all proponents of the theory necessarily have such ambitions (Clark, 2013).

We do not deny this. Among PP proponents, we may distinguish “neats”—who posit

that all cognition arises from the imperative to minimize informational uncertainty in

hierarchical PP architectures—from “scruffies,” who perceive PP as a framework or

even a toolbox. This toolbox could be a common stock of algorithmic specifications

and concepts that find their precise empirical meanings in individual models (Clark,

2013). If PP is a toolbox, then its main virtue lies in its fruitfulness in displaying com-

monalities across phenomena. We actually sympathize with the scruffies: PP might be

a useful theory even if it is not necessarily unifying to a high degree. However, tools

from any toolbox are used for particular purposes. In this case, the issues with the pro-

cessing hierarchy we indicated above (see also Williams, 2018a, 2018b, 2018c) could

be circumvented by limiting the intended scope of the theory to perception and action,
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and by excluding cognitive or psychopathological phenomena which remain problem-

atic for PP.

However, “scruffiness” does not relieve one from a duty to provide good and coherent

scientific explanations. Our critique is aimed at showing that many PP proponents fail to

do so: They confuse subjective and computational orders of description, provide inconsis-

tent and mutually exclusive models, do not understand (or regard) the core tenets of the

theory, ignore the fact that these tenets are at odds with empirical data, propose untest-

able theoretical re-descriptions generating only apparent predictions, and serially adhere

to the consistency fallacy. These are the signs of the misapplication of a theory’s tools,

regardless of one’s individual view on the unificatory potential or the scope of applicabil-

ity of a given theory. We agree that it is particularly problematic if one is anointing PP

to the role of a grand overarching theory in cognitive science, but we do not believe that

our concerns may be easily waived off in this way. A “scruffy” should also be committed

to work with reliable explanations.

Fundamental and conceptual problems may not be targeted first—the progress goes
the other way around in science. Our opponents may insist that our professed solution to

problems that plague PP—focusing on theoretical fundamentals—is premature.

While it is certainly true that there is no special preference to be given to one

sequence of solving scientific problems (“general first” or “particular first”), our focus is

on the unificatory claims of PP. They will remain dubious unless the theoretically funda-

mental issues are addressed. These include not only the conceptual and theoretical confu-

sions we point out in Section 3 but also crucial problems with neuroscientific evidence.

For example, it is questionable that top-down modulation in the brain is essentially sup-

pressive; it often facilitates neural responses (Den�eve & Jardri, 2016). It is unlikely that

one could also define one homogeneous processing hierarchy for all perceptual and cogni-

tive processes (Williams, 2018b), in either theoretical or neurobiological terms.

We agree that solving particular problems is essential to the progress of PP. This is

why we urge its supporters to develop empirically validated models of cognitive phenom-

ena that remain especially problematic to PP (such as thinking and its pathological forms;

cf. Williams, 2018a, 2018b). The success in developing them may depend on addressing

deeper theoretical issues as well, however.

Unifying accounts may be desirable even if they do not diverge or add any explanatory
advantage, as they bring all explanations under a common unifying theory.

The core of this objection is probably aimed at the potential virtue of unification: A

unified theory may fail to provide new empirical predictions but offer pure theoretical

progress (Gładziejewski, 2019). One could, for example, point out that Copernicus did

not provide better calculations or new predictions than Ptolemy, but his theory was much

more systematic. This is in line with our take on unification: Systematization of a class

of phenomena may indeed increase unification without providing any new predictions or

explanations. However, it should contribute to a deeper understanding of phenomena, for

example by providing their taxonomy. While there are debates over what exactly scien-

tific understanding is, at a minimum it should provide substantially new inferences about

phenomena in question, for example about their connections (for a comprehensive review
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of the issue of unificatory understanding, see Regt, 2017). Mere re-description is insuffi-

cient for this; all it provides are new synonymous terms and no other inferentially rele-

vant information. For example, we cannot fathom any new inferences licensed by the

models of religiosity or drivers’ behavior discussed in Section 4.

6. Conclusions

In this paper, we have argued that the development of PP as a unificatory theory of

perception, action, and cognition is stalled. This is because of two gaps: one between PP

as a theory in cognitive science and its computational implementation, and another

between this theory and its biological underpinnings. The mere fact that predictive algo-

rithms are specified mathematically does not suffice to make a strict theory; on the con-

trary, the fundamentals of PP remain unclear, and the trajectory of its development seems

to be in stark contrast to the unificatory claims of its proponents.

In our analysis, we assumed that unified theories should display at least four features.

They should be as general as possible, while remaining simple, homogeneous, and sys-

tematic. PP, however, fails to be homogeneous because its computational framework does

not sufficiently constrain numerous and diverse interpretations in theoretical and biologi-

cal terms. Technical terms and computational structures are posited in a fairly ad hoc

manner, and while it is certainly possible to re-describe a number of known models in PP

terms, these re-descriptions are not driven by sufficiently precise theoretical considera-

tions. This has led to a proliferation of various models that apply PP terms liberally, or

even contradict its basic assumptions. Unfortunately, the known problems of PP remain

unaddressed, and defenders of PP as a unified theory seem satisfied with merely noting

that the number of PP models grows over time. But this growth, we claim, is a source of

conceptual confusion rather than evidence of ongoing unification.

To argue for these points, we showed that crucial PP concepts, such as precision, are

interpreted in diverse ways. Moreover, the modeling practices of PP defenders are quite

lax regarding the theoretical principles of PP, which gives rise to models that contradict

the theory’s avowed fundamentals. A deep unified theory cannot be compatible with con-

tradictory computational models that are supposed to implement it; otherwise, it is either

underspecified or contradictory itself. It is definitely not homogeneous in such a case.

We also showed that PP models are not validated empirically and are usually stated as

just-so stories, or re-descriptions of various phenomena. Worse, instead of validating them

against possible alternatives, proponents of PP are content to point out that PP does not

seem to be inconsistent with (selected) empirical evidence, usually from neuroscience.

But the assumption that consistency is sufficient for evidential support is fallacious.

We stress that our focus is on PP as a unified theory, and our criticisms are not direc-

ted against using it as a computational framework. Indeed, PP is frequently used in this

way in scientific practice, without any concern for its theoretical underpinnings. This

framework, however, fails to be a unified theory of cognition, action, and perception, and

it is not being developed currently in the way that could license a reasonable expectation
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that it would become such a theory in the future. What it actually might become, given

the current diversity of approaches within the PP community, is rather a research program

or tradition in the sense of Laudan (1977), encompassing multiple alternative and mutu-

ally exclusive theories. While these theories may still have some unifying power

(Miłkowski & Nowakowski, 2019), diversified research traditions are unlikely to provide

most general, simple, homogenous, and systematic explanations of their phenomena of

interest. Certainly, it is possible for one particular theory to attain a dominant position

within the PP research tradition, but it will not be unificatory as long as the gap between

the mathematical formalism of PP and its (neuro) cognitive interpretations remains unad-

dressed.
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Notes

1. Note that in cognitive science, the terms theory and framework are often used inter-

changeably, as evidenced by citations of defenders of PP who consider it theory in

our sense but call it a framework (e.g., citations in Section 4.1, Table 1).

2. For example, Veissi�ere and Stendel (2018, pp. 4–5) write: “Cravings, on this view,

could be conceptualized as prediction errors.”

3. Note that this makes the main theoretical term of PP vague: the scope of the proper

application of hierarchy is unclear, as its conditions of accuracy are only dimly
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sketched. Even worse, the organization of computational mechanisms in the brain

that could be responsible for hierarchical processing is unclear.

4. The fact that they are so easily overridden by context-dependent and newly learned

associations is actually another problem for PP.
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