
PUTTING THE STARS IN THEIR PLACES

SHAY ALLEN LOGAN

Abstract. This paper presents a new semantics for the weak relevant logic DW that makes
the role of the infamous Routley Star more explicable. Central to this rewriting is combining
aspects of both the American and Australian plan for understanding negations in relevance
logics.

This is a version of a paper published (with genuinely terrible typesetting) in Thought.
Citations should, I suppose, be directed there—though be warned, there’s a sneaky typo
in the title of the published version as well.

1. Introduction

In 1974, building on work of Alasdair Urquhart, Kit Fine published a semantic theory
for the usual range of sentential relevance logics.1 When Fine’s semantics is mentioned in
the literature, what tends to get highlighted is the technical differences between it and the
better-known Routley-Meyer semantics.2 Less often noted is the fact that Fine’s semantics
provides an alternative philosophical perspective on relevant logics as well.

Fine interprets the points in his models as theories. This makes it clear in exactly which
sense of ‘logic’ relevance logics are in fact logics. Specifically, relevance logics count as
logic in the sense of being collections of tools we are allowed to use when building theories,
no matter the subject matter of the theory or the context in which the theory building is
occurring. In other words, interpreting points in models as theories suggests that the logics
Fine captured can tell us what the universal theory building toolkit is.3

Of course, it’s one thing to say that the points in your models are theories; it’s quite
another to characterize them in such a way that it becomes clear your models actually model
the space of theories. In fleshing out these details, I will diverge in various ways from the
technical details Fine’s account. To motivate the way I will go about filling in the details, it
helps to make explicit a few fairly uncontroversial assumptions I will make about theories:

(1) Theories are characterized by the sentences they take as true and the sentences they
take as false. Theories, perhaps unlike states of affairs or worlds, can clearly take
the same sentence to be both true and false, and can clearly refuse to classify a
given sentence as either true or false.

(2) Theories can play two different roles: they can serve as foreground or as background.
A typical theory (e.g. arithmetic) is constructed by applying some background
theory (e.g. classical logic) to a foreground theory (e.g. the Peano Axioms). This

1See [5] and [10].
2See [7, 8, 9]
3There’s room, of course, for debate about whether the universal theory building toolkit is logic, properly

understood. Frankly, I don’t find that debate very interesting, so I won’t say anything about it other than to say that
I agree with the perspective enunciated [1] and [2]: part of logic’s role, traditionally, has been that of being the
universal theory building toolkit. Regardless of where you stand on the matter, I take it to be a clear matter of
philosophical importance to know what the universal theory building toolkit is.
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construction clearly iterates so that a given theory may be constructed by applying a
backbackground theory bb to a forebackground f b theory to construct a background
theory b = bb ◦ f b that is then applied to a foreground theory f to construct the
final theory t = (bb ◦ f b) ◦ f .

As in this note, we will typically use ‘◦’ to stand for the operation of theory
application. It seems clear that there is no reason to expect b ◦ f to be the same
theory as f ◦ b nor for (bb ◦ f b) ◦ f to be the same theory as bb ◦ ( f b ◦ f ). Thus,
theory application in our models will be both noncommutative and nonassociative.

(3) The way a theory behaves when being used as a background theory is determined by
features of the theory itself. Since our first point was that theories are characterized
by what they take to be true/false, this leads us to conclude that the way a theory
behaves when being used as a background theory is governed by what it takes to be
true/false

(4) Continuing the previous point, we might ask why it would be that using b as a
background theory and f as a foreground theory gives us a theory in which ψ is
true. The natural sort of answer is that there is some sentence φ that f takes to be
true and b takes it to be true that φ entails ψ. If we accept this explanation, it tells
us something interesting: there is a type of sentence – the entailment – that governs
the background-theory behavior of a given theory.

It’s not clear to me how to argue for this sort of story being the right story
about how background theory behavior emerges, but it’s also not clear to me what
alternatives there are to such a story. In any event, we will write ‘→’ for entailment
and suppose that entailments govern background theory related behavior.

With all of this on hand, it’s fairly natural to build a semantics and see where it leads.
Doing so is the purpose of the next section. The result is a semantics that captures the
relevant logic DW, as we prove in the final section.

2

The obvious way to turn our assumptions into a semantics is by taking a model to be
some sort of structure containing all of the following:

• A set of theories,
• Some apparatus or other hooking the theories up, and
• Some coherent way of spelling out what each theory takes to be true and takes to

be false.

The usual way of ensuring the coherence mentioned in the last part is by explicitly declaring
only the atomic commitments of each theory, then determining the remaining commitments
recursively. This is very nearly the approach we will take. But we’ll make one small change:
rather than explicitly declaring the sentences a theory takes to be true and the sentences a
theory takes to be false, we’ll instead declare which sentences the theory takes to be true
and which sentences it takes to be non-false. This change, while seemingly minor, will
allow us to deal with the problematic issue of the Routley star in a fairly nice way, as we
will see below.

So what we know so far about our our semantics is that a model should be some structure
containing a set of theories together with some apparatus hooking the theories up, and
functions that tell us which atomic sentences each theory takes to be true and which atomic
sentences each theory takes to be non-false.
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The next bit of formalism is motivated by the following question: supposing t is a theory,
when is there a theory that takes as true exactly those things that t takes as non-false and
takes as non-false exactly those things that t takes to be true?

The answer, it turns out, is subtle. Suppose t is a theory and suppose t? is a theory and
also that t? takes as true exactly what t takes as non-false and takes as non-false exactly what
t takes as true. Provided it makes sense, it’s clear this star operation must be an involution.
What remains is to determine when it makes sense.

Suppose t takes φ ∨ ψ to be true. Then, by DeMorgan features of ∨, t must also take
¬(¬φ ∧ ¬ψ) to be true. Thus t takes ¬φ ∧ ¬ψ to be false. So t does not take ¬φ ∧ ¬ψ to be
non-false. So ¬φ ∧ ¬ψ is not something that t? takes to be true. Of course, if t? took both
¬φ and ¬ψ to be true, then t? (being, by assumption, a theory) would take ¬φ ∧ ¬ψ to be
true, contrary to what we just said. So t? must either not take ¬φ to be true or not take ¬ψ
to be true. But this just means that t? either takes φ to be non-false or ψ to be non-false. But
since t? takes as non-false exactly those things that t takes as true, this can only be the case
if either t already thought φ was true or already thought ψ was true.

The conclusion is that t? is only a theory when t is prime – that is, when it takes as true
at least one disjunct of each of the disjunctions it takes as true. Thus, we must require our
semantics to say that a model is some structure containing a set of theories, a specified
subset of which are the prime theories, together with some apparatus hooking the theories
up that includes the ? operation, and that finally contains functions that tell us which atomic
sentences each theory takes as true/false.

Finally, recall that our goal is to determine the universal theory building toolkit. So what
we really want is to know what inferences we can always make. The way to determine this
is by adding to the semantics a point ` (for `ogic) that every theory is closed under. The
sentences ` makes true thus codify the inferences usable in every theory in the model.

More formally, we say that a premodel consists of
• A set T ,
• A designated subset P of T ,
• A point ` ∈ T ,
• A binary relation v on T ,
• A binary operation ◦ on T ,
• A unary operation ? on P,
• Functions vt and vn f from T to sets of atoms.

The idea, of course, is for T to be the set of theories recognized by the model, P to be its
subset of prime theories, ` to be the theory that every other theory in the model is closed
under, v to be the relation that holds when the truths one theory recognizes are contained
in the truths another theory recognizes, ◦ to be the operation of applying one theory (as
a background theory) to another, ? to be the flip-flop operation discussed above, and for
vt and vn f to record the atomic sentences each theory takes as true and takes as non-false,
respectively. Given that this is what the pieces are supposed to be, they should be required
to behave appropriately. We call a premodel in which this happens a model. Explicitly, a
model is a premodel in which all of the following occur:

M1 v is a partial ordering,
M2 If s v t, then

– For all u, u ◦ s v u ◦ t;
– For all u, s ◦ u v t ◦ u;
– vt(s) ⊆ vt(t); and
– vn f (t) ⊆ vn f (s)
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M3 If s ◦ t v p ∈ P, then there are s′ ∈ P and t′ ∈ P so that
– s v s′ and s′ ◦ t v p and
– t v t′ and s ◦ t′ v p.

M4 vt(t) =
⋂

tvp∈P

vt(p).

M5 If t ◦ p v q and both p and q are in P, then t ◦ q? v p?.
M6 vt(p?) = vn f (p) and vn f (p?) = vt(p).
M7 p?? = p
M8 ` ◦ t = t

Most of these conditions should be unsurprising. Clauses M3, M4, and M5 are worth saying
more about.

Clause M3 characterizes the behavior of prime theories: if we apply s to t, then decide
every disjunction that arises, we end up at a theory we could have gotten to by deciding
every disjunction in s, then applying it to t or by deciding every disjunction in t, then
applying s to the result. Clause M4 forces us to accept that if every way of extending t to a
prime includes some atom, then t itself must already include that atom, which is plausible
enough given our disjunction-connected understanding of primality.

For M5, suppose q extends the theory we get by applying t to p and suppose that when
we apply t to q∗ we get a theory that takes φ to be true. For this to happen, there must be
some ψ that q∗ takes to be true which t takes to entail φ. Since q∗ takes ψ to be true, q
doesn’t take ψ to be false. But notice that if p took φ to be false, then since t takes ψ to
entail φ and q extends the theory we get by applying t to p, q would in fact have to take ψ to
be false, which is a contradiction. So p must not take φ to be false. But then p∗ takes φ to
be true, and thus p∗ extends the theory we get by applying t to q∗.

Finally, we give our complete account of what, besides atoms, theories take to be true
(�t) and take to be non-false (�n f ) using the following clauses:

• t �t A iff A ∈ vt(t) for A atomic.
• t �n f A iff A ∈ vn f (t) for A atomic.
• t �t φ ∧ ψ iff t �t φ and t �t ψ.
• t �n f φ ∧ ψ iff for some t v p ∈ P, p �n f φ and p �n f ψ.
• t �t φ ∨ ψ iff for all t v p ∈ P, p �t φ or p �t ψ.
• t �n f φ ∨ ψ iff t �n f φ or t �n f ψ.
• t �t ¬φ iff for all t v p ∈ P, p 2n f φ
• t �n f ¬φ iff for some t v p ∈ P, p 2t φ
• t �t φ→ ψ iff whenever u �t φ, t ◦ u �t ψ, and
• t �n f φ → ψ iff for some t v p ∈ P, for all q ∈ P and r ∈ P, if p? ◦ r? v q? and

r �n f φ, then q �n f ψ.

The first six clauses are fairly unobjectionable. They also display a pleasing symmetry that
is further evidence in favor of the approach being demonstrated. For the negation clauses,
one can read them as saying the following:

• t is already committed to φ being false when one cannot settle the matters t raises
while also accepting φ as true.
• t is fails to falsify ¬φ just if there is some way of settling the matters that t raises

that that leaves open the possibility that φ is true.

The ‘t’ clause for entailments is straightforward and simply details the work we expect
entailments to do to ensure theories can play their background role when needed.
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Finally, we turn to the lone clause featuring the star operation: the ‘n f ’ clause for
entailments. Despite its scary appearance, the clause is essentially the dual to the ‘t’ clause
for entailments. We want to detect φ→ ψ among the non-falsehoods of t by looking for it
among the truths of t?. But t? may not make sense, so we look instead at the star of a prime
extension of t. And we detect the presence of φ→ ψ by applying our theory to theories that
make φ true and seeing whether they make ψ true. But, modulo stars, that’s exactly what
the clause says.4

We round out the semantics by saying that a model validates a sentence when the
distinguished point ` in the model makes the sentence true and that a sentence is valid when
it is validated by every model.

So much for semantics. As it turns out, we can give a fairly nice Hilbert-system
description of the valid formulas. Explicitly, all and only the formulas provable from the
following axioms and rules are valid:

Axioms:
(1) φ→ φ
(2) φ→ (φ ∨ ψ)
(3) ψ→ (φ ∨ ψ)
(4) (φ ∧ ψ)→ φ
(5) (φ ∧ ψ)→ ψ
(6) [φ∧(ψ∨λ)]→ [(φ∧ψ)∨(φ∧λ)]
(7) [(φ→ ψ)∧(φ→ λ)]→ [φ→ (ψ∧λ)]
(8) [(φ→ ψ)∧(λ→ ψ)]→ [(φ∨λ)→ ψ]

(9) ¬¬φ→ φ
(10) (φ→ ¬ψ)→ (ψ→ ¬φ)

Rules:
(1)

φ φ→ ψ

ψ

(2)
φ ψ

φ ∧ ψ

(3)
φ→ ψ λ→ γ

(ψ→ λ)→ (φ→ γ)

We prove this assertion in the final section of the paper. Before doing so, let’s reflect on
what we’ve learned. There are a few points to be made.

First, we’ve given a plausible defense of the logic just described as the universal theory
building toolkit. It happens to be the case that the logic described by the above axioms and
rules is well-known to relevance logicians as DW. So we’ve learned the DW is the universal
theory building toolkit.

We’ve also learned that DW is important for relevance-free reasons. This is good news –
the concept of relevance has taken a beating in recent years, so alternate reasons for being
interested in these logics are (or at least should be) very welcome.

Finally, we’ve given a semantics that, while still using the Routley star, uses it in a pretty
innocuous way. In particular, we don’t need to appeal to notions of incompatibility or ‘perp’
(a la [3] or [4]) to explain the role the stars are playing. Again, this should be welcome in
the community.

3. Metatheory

Lemma 1. If t �t φ and t v u, then u �t φ and if t �n f φ and u v t, then u �n f φ.

Lemma 2. If p �t φ for all t v p ∈ P, then t �t φ and if p �n f φ for some t v p ∈ P, then
t �n f φ.

Both lemmas are proved by straightforward induction on φ. We will tend to use them
without comment.

Lemma 3. For p ∈ P, p �t φ iff p? �n f φ and p �n f φ iff p? �t φ.

4The form of this clause was heavily influenced by [6], though Routley sought to completely avoid stars, where
I seek only to make their role a bit more transparent.
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Proof. By induction on φ. Most cases are straightforward; the entailment cases, which we
examine, are the exception:

Let p �t φ → ψ. Let q ∈ P, r ∈ P, p?? ◦ r? v q?, and r �n f φ. Since p?? = p,
p?? �t φ → ψ. By the inductive hypothesis (IH), r? �t φ. So q? �t ψ. Thus by IH
q �n f ψ. So p? �n f φ→ ψ. Essentially the same argument shows that if p? �t φ→ ψ, then
p �n f φ→ ψ.

Let p? �n f φ → ψ. Then for some p? v j, for all q ∈ P and r ∈ P, if j? ◦ r? v q? and
r �n f φ, then q �n f ψ. Let u �t φ and p ◦ u v q ∈ P, Then for some u v r ∈ P, p ◦ r v q.
Thus p ◦ r?? v q??. Since u v r, r �t φ. So by IH, r? �n f φ. Since p? v j, j? v p. So
j? ◦ r?? v p ◦ r?? v q??, and thus q? �n f φ. So by IH, q �t φ. Since q was an arbitrary
prime extension of p ◦ u, p ◦ u �t φ, establishing that p �t φ → ψ. Essentially the same
argument shows that if p �n f φ→ ψ, then p? �t φ→ ψ. �

Theorem 1. If φ is provable then φ is valid.

Proof. By induction on the proof of φ. Everything is essentially trivial, so left to the
reader. �

We now turn to completeness. First we need some definitions:
• If φ is provable, then we write ` φ. We extend this by saying that X ` φ iff for some

sequence ψ1, ψ2, . . . , ψn = φ, for 1 ≤ i ≤ n, either (i) ψi ∈ X, or (ii) for some j < i
and k < i, ψi = ψ j ∧ ψk, or (iii) for some j < i, ` ψ j → ψi.

• Say the set of formulas X is a formal theory when X ` φ only if φ ∈ X.
• Say the set of formulas X is prime when φ ∨ ψ ∈ X only if φ ∈ X or ψ ∈ X.
• Say the set of formulas X is closed under disjunction when φ ∈ X and ψ ∈ X only

if φ ∨ ψ ∈ X.
• Write 〈X〉 for {φ : X ` φ}.
• Write X · Y for {ψ : φ→ ψ ∈ X and φ ∈ Y}
• Write X∗ for {φ : ¬φ < X}.
• Write at for the function X 7→ {p : p is an atom and p ∈ X}.
• Write an f for the function X 7→ {p : p is an atom and ¬p < X}.

We also need the following facts, whose proofs are straightforward and omitted:
Fact 1 ` ¬(φ ∧ ψ)↔ ¬φ ∨ ¬ψ.
Fact 2 ` ¬(φ ∨ ψ)↔ ¬φ ∧ ¬ψ.
Fact 3 ` φ→ ¬¬φ.
Fact 4 If {φ} ` ψ, then ` φ→ ψ.
Fact 5 If ` (γ1 ∧ φ)→ δ1 and ` (γ2 ∧ ψ)→ δ2, then ` (γ1 ∧ γ2 ∧ (φ ∨ ψ))→ (δ1 ∨ δ2).
Fact 6 If ` φ1 → (φ2 → φ3) and ` ψ1 → (ψ2 → ψ3), then ` (φ1∨ψ1)→ [(φ2∧ψ2)→ (φ3∨ψ3)].

The next three lemmas are each proved by straightforward inductions on the length of
the witnessing proof. The proofs are omitted.

Lemma 4. For any set of formulas X, 〈X〉 is a theory.

Lemma 5. If t1 and t2 are theories, then t1 · t2 is also a theory

Lemma 6. If p is a prime theory, then so is p∗.

Lemma 7 (Lindenbaum). If ∆ is closed under disjunction, t is a theory and t ∩ ∆ = ∅, then
there is a prime theory t′ ⊇ t with t′ ∩ ∆ = ∅.

Proof. Let φ0 ∨ ψ0, φ1 ∨ ψ1, . . . be an enumeration of the disjunctions in the language.
Define sets ti

j as follows:
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• t0
0 = t

• If ti
j 0 φ j ∨ ψ j, then ti

j+1 = ti
j; otherwise

• ti
j+1 =

{
ti

j ∪ {φ j} if 〈ti
j ∪ {φ j}〉 ∩ ∆ = ∅

ti
j ∪ {ψ j} otherwise

• ti+1
0 =

∞⋃
j=0

ti
j

Let t′ = ∪∞i=0ti
0. Seeing that t′ is prime and a theory is straightforward. Suppose t′ ∩ ∆ , ∅.

Then there are i and j so that 〈ti
j〉∩∆ , ∅. Let i0 be the least i so that for some j, 〈ti

j〉∩∆ , ∅

and let j0 be the least j so that 〈ti0
j 〉 ∩ ∆ , ∅. Note that by construction, j0 , 0.

If ti0
j0−1 0 φ j0−1 ∨ ψ j0−1, then ti0

j0−1 = ti0
j0

. But then since 〈ti0
j0
〉 ∩ ∆ , ∅, 〈ti0

j0−1〉 ∩ ∆ , ∅,
contradicting the minimality of j0. So ti0

j0−1 ` φ j0−1 ∨ ψ j0−1.
If 〈ti0

j0−1 ∪ {φ j0−1}〉 ∩ ∆ = ∅, then ti0
j0

= ti0
j0−1 ∪ {φ j0−1}. But 〈ti0

j0
〉 ∩ ∆ , ∅, so then

〈ti0
j0
〉 ∩ ∆ = 〈ti0

j0−1 ∪ {φ j0−1}〉 ∩ ∆ , ∅, a contradiction. Thus 〈ti0
j0−1 ∪ {φ j0−1}〉 ∩ ∆ , ∅.

It follows that ti0
j0

= ti0
j0−1 ∪ {ψ j0−1}. And again, since 〈ti0

j0
〉 ∩ ∆ , ∅, we have that

〈ti0
j0
〉 ∩ ∆ = 〈ti0

j0−1 ∪ {ψ j0−1}〉 ∩ ∆ , ∅.
Altogether, we’ve now gathered the following information about ti0

j0−1:

(1) ti0
j0−1 ` φ j0−1 ∨ ψ j0−1,

(2) 〈ti0
j0−1 ∪ {φ j0−1}〉 ∩ ∆ , ∅, and

(3) 〈ti0
j0−1 ∪ {ψ j0−1}〉 ∩ ∆ , ∅.

From (2) and the finitude of proofs we see that there is D1 ∈ ∆ and τ1 ∈ 〈t
i0
j0−1〉 so that

τ1∧φ j0−1 ` D1. Similarly, (3) gives D2 ∈ ∆ and τ2 ∈ 〈t
i0
j0−1〉 so that τ2∧ψ j0−1 ` D2. Applying

Fact 4 to both of these conclusions we see that ` (τ1∧φ j0−1)→ D1 and ` (τ2∧ψ j0−1)→ D2.
It follows by Fact 5 that ` (τ1 ∧ τ2 ∧ (φ j0−1 ∨ ψ j0−1))→ (D1 ∨ D2).

But clearly ti0
j0−1 ` τ1 ∧ τ2 ∧ (φ j0−1 ∨ ψ j0−1). Thus ti0

j0−1 ` D1 ∨ D2. But since ∆ is closed
under disjunction, it follows from this that 〈ti0

j0−1〉 ∩ ∆ , ∅, contradicting the minimality of
j0. So t′ does not intersect ∆. �

Lemma 8. Let P be the set of prime theories. Then for all theories t, t =
⋂

t⊆p∈P

p.

Proof. Clearly t ⊆
⋂

t⊆p∈P

p. Now suppose φ < t. Let ∆ be the disjunctive closure of {φ}. Then

t ∩ ∆ = ∅. So by the Lindenbaum Lemma, there is a prime theory t′ ⊇ t with t′ ∩ ∆ = ∅. So
φ <
⋂

t⊆p∈P

p. �

Lemma 9. p∗∗ = p for all prime theories p.

Proof. If φ ∈ p∗∗, then ¬φ < p∗, so ¬¬φ ∈ p. Thus by Axiom 9, φ ∈ p. For the other
direction, notice that if φ ∈ p, then by Fact 3, ¬¬φ ∈ p as well. So ¬φ < p∗, and thus
φ ∈ p∗∗. �

Lemma 10. If T is the set of formal theories, and P is the set of prime formal theories, then
〈T, P,⊆, ·, ∗, at, an f ,DW〉 is a model. We call this model the canonical model.
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Proof. It’s clear from previous work that the canonical model is a premodel. Of conditions
M1-M8, only M3 remains outstanding.

So, suppose t · u ⊆ p ∈ P. Let ∆t = {φ : 〈φ〉 · u * p} and let ∆u = {φ : t · 〈φ〉 * p}. I claim
both ∆t and ∆u are closed under disjunction.

To see this, first suppose that φ and ψ are in ∆t. Then φ ` φ1 → φ2 for some φ1 ∈ u and
φ2 < p and ψ ` ψ1 → ψ2 for some ψ1 ∈ u and ψ2 < p. So by Fact 4, ` φ → (φ1 → φ2)
and ` ψ → (ψ1 → ψ2). Thus by Fact 6, ` (φ ∨ ψ) → [(φ1 ∧ ψ1) → (φ2 ∨ ψ2)]. So
(φ1 ∧ψ1)→ (φ2 ∨ψ2) ∈ 〈φ∨ψ〉. And since u is a theory and φ1 ∈ u and ψ1 ∈ u, φ1 ∧ψ1 ∈ u.
So φ2 ∨ ψ2 ∈ 〈φ ∨ ψ〉 · u. But since φ2 < p and ψ2 < p, it follows that φ2 ∨ ψ2 < p. Thus
〈φ ∨ ψ〉 · u * p, so φ ∨ ψ ∈ ∆t.

Now suppose that φ and ψ are in ∆u. Then there are φ1 and φ2 with φ ` φ1, φ1 → φ2 ∈ t
and φ2 < p and there are ψ1 and ψ2 with ψ ` ψ1, ψ1 → ψ2 ∈ t and ψ2 < p. By similar
reasoning as in the previous part, this gives ` φ → φ1, ` ψ → ψ1, and φ2 ∨ ψ2 < p. Since
` φ → φ1 and ` ψ → ψ1, applications of Rule 3 and Axiom 1 give that ` φ → (φ1 ∨ ψ1)
and ` ψ → (φ1 ∨ ψ1). So applying Rule 1 and Axiom 8, ` (φ ∨ ψ) → (φ1 ∨ ψ1). Thus
φ1 ∨ ψ1 ∈ 〈φ ∨ ψ〉. By a brief argument, one sees that since φ1 → φ2 and ψ1 → ψ2 are in t,
so are φ1 → (φ2 ∨ ψ2) and ψ1 → (φ2 ∨ ψ2). Thus, applying an instance of Axiom 8, we see
that (φ1 ∨ ψ1)→ (φ2 ∨ ψ2) ∈ t. Thus p = φ2 ∨ ψ2 ∈ t · 〈φ ∨ ψ〉, so φ ∨ ψ ∈ ∆u.

Now we apply the Lindenbaum Lemma. First, notice that by construction t ∩ ∆t = ∅ and
u ∩ ∆u = ∅. Thus, by the Lindenbaum Lemma, there are t′ ⊇ t and u′ ⊇ u so that t′ ∩ ∆t = ∅

and u′ ∩ ∆u = ∅. But it follows from these equalities that t′ · u ⊆ p and t · u′ ⊆ p as required
by M3. �

Lemma 11. If t is a theory and φ → ψ < t, then there are prime theories p and q so that
t ◦ p ⊆ q, φ ∈ p, and ψ < q

Proof. To begin, let p′ = 〈φ〉, and let q′ = t ◦ r′. By Lemma 4, p′ is a theory and then by
Lemma 5, q′ is a theory. Clearly φ ∈ r′. Suppose for contradiction that ψ ∈ q′. Then for
some α ∈ r′, α → ψ ∈ t. But then {φ} ` α, so by Fact 4, ` φ → α. Thus since ` ψ → ψ,
Rule 3 gives that ` (α→ ψ)→ (φ→ ψ). Thus since α→ ψ ∈ t, φ→ ψ ∈ t as well, which
is a contradiction. So ψ < q′. Extending q′ and then p′ to prime theories q and p meeting
the necessary conditions is now straightforward using the Lindenbaum Lemma. �

Lemma 12. In the canonical model, t �t φ iff φ ∈ t and t �n f φ iff ¬φ < t.

Proof. The proof is by induction on φ. Only entailments present any difficulties.
First, suppose φ→ ψ ∈ t and u �t φ. Then by IH, φ ∈ u. So ψ ∈ t · u and by IH, t · u �t ψ.
Next, suppose φ → ψ < t. Let u = 〈φ〉. By Lemma 4, u is a theory. Clearly φ ∈ u.

Suppose ψ ∈ t · u. Then there is µ with φ ` µ and µ → ψ ∈ t. Since φ ` µ, ` φ → µ. But
` ψ → ψ as well, so by Rule 3, ` (µ → ψ) → (φ → ψ). So φ → ψ ∈ t as well, which is a
contradiction. Thus ψ < t · u and t 2t φ→ ψ. From here IH finishes the job.

Penultimately, suppose ¬(φ → ψ) < t. Let ∆ be the disjunctive closure of {¬(φ → ψ)}.
Since ¬(φ→ ψ) < t, t ∩ ∆ = ∅. So there is a t ⊆ p ∈ P with p ∩ ∆ = ∅. So ¬(φ→ ψ) < p.
Thus φ → ψ ∈ p∗. Let P 3 r �n f φ. Then by IH, ¬φ < r. So φ ∈ r∗ and thus by IH r∗ �t φ.
Thus, if p∗ · r∗ ⊆ q∗, then ψ ∈ q∗. So ¬ψ < q. Thus by IH q �n f ψ. So t �n f φ→ ψ.

Finally, let ¬(φ → ψ) ∈ t. Suppose t ⊆ p ∈ P. Then ¬(φ → ψ) ∈ p. Thus φ → ψ < p∗.
So by Lemma 11, there are q ∈ P and r ∈ P with p∗ · r ⊆ q, φ ∈ r, and ψ < q. So
p∗ · r∗∗ ⊆ q∗∗, r∗ �n f φ, and q∗ 2n f ψ. Thus t 2n f φ→ ψ.

�

Theorem 2. If φ is not provable, then φ is invalid.
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Proof. Immediate from the previous two lemmas. �
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