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Abstract  There are two main ways in which the notion of mereological fusion is usually defined in 

the current literature in mereology which have been labelled ‘Leśniewski fusion’ and ‘Goodman 

fusion’. It is well-known that, with Minimal Mereology as the background theory, every Leśniewski 

fusion also qualifies as a Goodman fusion. However, the converse does not hold unless stronger 

mereological principles are assumed. In this paper I will discuss how the gap between the two 

notions can be filled, focussing in particular on two specific sets of principles that appear to be of 

particular philosophical interest. The first way to make the two notions equivalent can be used to 

shed some interesting light on the kind of intuition both notions seem to articulate. The second shows 

the importance of a little-known mereological principle which I will call ‘Mild Supplementation’. 

As I will show, the mereology obtained by adding Mild Supplementation to Minimal Mereology 

occupies an interesting position in the landscape of theories that are stronger than Minimal 

Mereology but weaker than what Achille Varzi and Roberto Casati have labelled ‘Extensional 

Mereology’. 
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1. Introduction 

The notion of mereological fusion is central to many debates in contemporary metaphysics. 

Two main definitions of this notion have been proposed in the literature which, following 

Cotnoir (2018), we can call ‘Leśniewski’ and ‘Goodman’ fusion, respectively.1,2 Let ‘<’ 

stand for the relation of proper parthood (which I will be assuming to be a primitive 

notion), and let us stipulate that x is part of y just in case x is either a proper part of y or 

identical to y, and that x and y overlap just in case they have a common part: 

 

(Parthood) 𝑥 ≤ 𝑦 =𝑑𝑓 𝑥 < 𝑦 ∨ 𝑥 = 𝑦 

 

                                                      

1 The notion of Leśniewski fusion corresponds to the definition given by Leśniewski (1916). Notice that 

although for the ease of exposition I choose here to follow Cotnoir (2018) and use the label ‘Goodman fusion’, 

the second notion of fusion was also originally formulated by Leśniewski (1931) (in terms of the relations 

‘exterior to’ and ‘discrete from’, respectively; many thanks to an anonymous referee of this Journal). The notion 

of Goodman fusion is also used by Leonard and Goodman (1940) and Goodman (1951). Hovda (2009) calls 

Goodman fusions ‘type 1 fusions’, and Leśniewski fusions ‘type 2 fusions’. Varzi (2019) calls Goodman and 

Leśniewski fusions ‘General Sums 2’, and ‘General Sums 3’, respectively. 
2 A third definition of fusion that can be found in the literature is the notion of ‘Algebraic’ fusion which consists 

in taking the fusion of a plurality of entities to be their least upper bound with respect to parthood (see Hovda 

2009: 61 and below: section 2). 
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(Overlap) 𝑂𝑥𝑦 =𝑑𝑓 ∃𝑧(𝑧 ≤ 𝑥 ∧ 𝑧 ≤ 𝑦) 

 

By adopting the following abbreviations for ease of exposition (where ‘𝑦𝑦’ is a plural 

variable and ‘≺’ is the one-many ‘one of’ relation) 

  

 𝑥𝑂𝑦𝑦 =𝑑𝑓 ∃𝑧(𝑧 ≺ 𝑦𝑦 ∧ 𝑂𝑥𝑧) 

 

 𝑥𝑥 ≤ 𝑦 =𝑑𝑓 ∀𝑧(𝑧 ≺ 𝑥𝑥 → 𝑧 ≤ 𝑦) 

 

(‘ 𝑥𝑂𝑦𝑦’ and ‘𝑥𝑥 ≤ 𝑦’ can be read as ‘x overlaps the yy’, and ‘all the xx are part of y’, 

respectively) the notions of Leśniewski fusion and Goodman fusion can be defined as 

follows: 

 

(L-def)    𝑥𝐹𝐿𝑦𝑦 =𝑑𝑓 𝑦𝑦 ≤ 𝑥 ∧ ∀𝑧(𝑧 ≤ 𝑥 → 𝑧𝑂𝑦𝑦)   

 

(G-def)    𝑥𝐹𝐺𝑦𝑦 =𝑑𝑓 ∀𝑧(𝑂𝑧𝑥 ↔ 𝑧𝑂𝑦𝑦) 

 

The mereological theory known in the literature as ‘Minimal Mereology’ (henceforth 

‘MM’) can be axiomatized by means of the following two principles—transitivity of proper 

parthood and Weak Supplementation: 

 

(<-Transitivity) ∀𝑥∀𝑦∀𝑧((𝑥 < 𝑦 ∧ 𝑦 < 𝑧) → 𝑥 < 𝑧) 

 

(WSP)  ∀𝑥∀𝑦(𝑥 < 𝑦 → ∃𝑧(𝑧 ≤ 𝑦 ∧ ~𝑂𝑧𝑥)) 

 

(notice that MM entails that proper parthood is a strict partial order, and so it is not only 

transitive but also irreflexive and asymmetric). As is well-known (see, for instance, 

Pietruszczak  2005: 216), in the presence of (<-Transitivity) every Leśniewski-fusion (or 

‘L-fusion’ for short) qualifies as a Goodman-fusion (or ‘G-fusion’ for short):  

 

(L-to-G) ∀𝑥∀𝑦𝑦(𝑥𝐹𝐿𝑦𝑦 → 𝑥𝐹𝐺𝑦𝑦)3 

 

                                                      

3 Proof. Suppose that x L-fuses the yy. If some entity z overlaps x, then z and x have at least a part w in common. 

By (L-def), w overlaps the yy and so has a part j in common with some of the yy. By (<-Transitivity) it follows 

that j is also part of z, so that also z overlaps the yy. By generalization, it follows that if something overlaps x 

then it overlaps the yy. Suppose, instead, that some entity z overlaps the yy. Then, z has at least a part w in 

common with some of the yy. By (L-def) the yy are all parts of x. Since w is part of one of the yy, we have, by 

(<-Transitivity), that w is part of x, so that z has a part in common with x. By generalization it follows that if 

something overlaps the yy, then it overlaps x. Therefore, something overlaps x if and only if it overlaps the yy, 

which means that x G-fuses the yy. ∎ 
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However, even under the assumption of MM, we don’t have that every G-fusion qualifies 

as an L-fusion, as one can easily appreciate from the model depicted in Figure 1. In fact, as 

noted by Pietruszczak (2018: 147), Hovda (2009: 64-5) and Varzi (2009: 602), in Figure 1 

many pluralities of entities have a G-fusion without having an L-fusion. For instance, the 

plurality [𝑎, 𝑏, 𝑐, 𝑑] (that is, the plurality of entities that are identical to either a, b, c, or d)4 

is G-fused by both a and b, and yet there is no entity that is their L-fusion, given that no 

entity has all of them as parts (as required by the first conjunct of (L-def)). It follows, 

therefore, that the following principle—stating that something is an L-fusion if and only if 

it is a G-fusion—is not a theorem of MM: 

 

(EqLG)  ∀𝑥∀𝑦𝑦(𝑥𝐹𝐿𝑦𝑦 ↔ 𝑥𝐹𝐺𝑦𝑦) 

 

This naturally raises the question as to which pluralities of pairwise logically independent 

principles jointly entail (EqLG)—with MM in the background—and are entailed by it. In 

other words: let say that a plurality 𝑆1, … , 𝑆𝑛 of sentences (taken together) are a way of 

expressing (or, more simply, express) the difference between L-fusions and G-fusions just 

in case the following is true: 

 

(Diff)  (i) for every 𝑚 and 𝑜 (1 ≤ 𝑚/𝑜 ≤ 𝑛), if 𝑚 ≠ 𝑜, then 𝐌𝐌, 𝑆𝑚 ⊬ 𝑆𝑂 

 (ii) 𝐌𝐌, 𝑆1, … , 𝑆𝑛 ⊢ (EqLG)  and, for every m (1 ≤ 𝑚 ≤ 𝑛),  𝐌𝐌, (EqLG) ⊢

𝑆𝑚 

 

The question raised by the considerations just made is, thus, the following: which pluralities 

of sentences comply with (Diff) and, thus, ‘express the difference’ between L-fusions and 

G-fusions? 

The aim of this paper is not to list all the possible ways to express the difference 

between L-fusions and G-fusions. Rather, I will only discuss two ways to do so that appear 

to be of particular interest. In the literature, it is a well-known fact that, assuming (<-

Transitivity), (EqLG) is equivalent to Strong Supplementation: 

 

(SSP)  ∀𝑥∀𝑦(𝑥 ≰ 𝑦 → ∃𝑧(𝑧 ≤ 𝑥 ∧ ~𝑂𝑧𝑦)) 

 

                                                      

4 Letting ‘𝜄𝑥𝑥. 𝜙𝑥𝑥’ stand for the plural definite description ‘the xx that 𝜙’, ‘[𝑥1, … , 𝑥2]’ is short for 

‘𝜄𝑥𝑥. ∀𝑧(𝑧 ≺ 𝑥𝑥 ↔ (𝑧 = 𝑥1 ∨ … ∨ 𝑧 = 𝑥𝑛))’. 

c d 

a b 

 

Figure 1 
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(Pietruszczak 2005: 218, 2018: 142; Gruszczyński 2013: 140; Varzi 2019: section 4.3), and 

thus, that (SSP) complies with (Diff). As I will argue in section 2, however, there is a way 

to reach this result which shows how (L-def) and (G-def) can be seen as articulating the 

same, highly plausible intuition concerning the notion of mereological fusion. In section 3, 

I will argue that there is a second way of articulating the difference between L-fusions and 

G-fusions on the background of MM which reveals the importance of a little-known 

mereological principle that I will label ‘Mild Supplementation’. As I will show, Mild 

Supplementation  will allow us to unearth a theory which appears to occupy an interesting 

position in the logical space lying between MM and the theory that Casati and Varzi (1999) 

call ‘Extensional Mereology’. 

2. L-fusions, G-fusions and Strong Supplementation 

According to the definition of L-fusion, an entity x is an L-fusion of a plurality yy of entities 

just in case all the yy are part of x and every part of x overlaps at least one of the yy. Instead, 

according to the definition of G-fusion, an entity x is a G-fusion of a plurality yy of entities 

just in case something overlaps x if and only if it overlaps one of the yy: 

 

(L-def)    𝑥𝐹𝐿𝑦𝑦 =𝑑𝑓 𝑦𝑦 ≤ 𝑥 ∧ ∀𝑧(𝑧 ≤ 𝑥 → 𝑧𝑂𝑦𝑦)   

 

(G-def)    𝑥𝐹𝐺𝑦𝑦 =𝑑𝑓 ∀𝑧(𝑂𝑧𝑥 ↔ 𝑧𝑂𝑦𝑦) 

 

Consider, then, the second conjunct of (L-def) 

 

(1) ∀𝑧(𝑧 ≤ 𝑥 → 𝑧𝑂𝑦𝑦) 

 

Notice that, under the assumption of MM, (1) is equivalent to: 

 

(2) ∀𝑧(𝑂𝑧𝑥 → 𝑧𝑂𝑦𝑦)5 

 

But (2) is just the left-to-right direction of (G-def). Consider, then, the right-to-left direction 

of (G-def): 

 

(3) ∀𝑧(𝑧𝑂𝑦𝑦 → 𝑂𝑧𝑥) 

 

(3) can be unpacked as: 

 

(4) ∀𝑧(∃𝑤(𝑤 ≺ 𝑦𝑦 ∧ 𝑂𝑤𝑧) → 𝑂𝑧𝑥) 

 

                                                      

5 Proof. (1) entails (2). Suppose z overlaps x. Then, some entity w is part of both z and x. It follows, thus by (1) 

that w overlaps at least some of the yy. By the transitivity of parthood, every part of w is also a part of z, so that 

also z overlaps the yy. (2) entails (1). Suppose 𝑧 is part of x. Then, z overlaps x (since by the reflexivity of 

parthood they have at least a part in common, that is, z itself). By (2), x also overlaps the yy. ∎ 
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 In turn, (4) is logically equivalent to: 

 

(5) ∀𝑧(𝑧 ≺ 𝑦𝑦 → ∀𝑤(𝑂𝑤𝑧 → 𝑂𝑤𝑥)) 

 

Let, then, an entity x be covered by an entity y (‘𝑥 ⊑ 𝑦’) if and only if everything that 

overlaps x also overlaps y: 

 

(6) 𝑥 ⊑ 𝑦 =𝑑𝑓 ∀𝑧(𝑂𝑧𝑥 → 𝑂𝑧𝑦) 

 

 The right-to-left direction of (G-def) can, then, be rewritten as follows: 

 

(7) ∀𝑧(𝑧 ≺ 𝑦𝑦 → 𝑧 ⊑ 𝑥) 

 

Putting everything together, we have that, under the assumption of MM, (L-def) and (G-

def) are equivalent to the following two definitions: 

 

(L-def+) 𝑥𝐹𝐿𝑦𝑦 =𝑑𝑓 ∀𝑧(𝑧 ≺ 𝑦𝑦 → 𝑧 ≤ 𝑥) ∧ ∀𝑧(𝑧 ≤ 𝑥 → 𝑧𝑂𝑦𝑦) 

 

(G-def+) 𝑥𝐹𝐺𝑦𝑦 =𝑑𝑓 ∀𝑧(𝑧 ≺ 𝑦𝑦 → 𝑧 ⊑ 𝑥) ∧ ∀𝑧(𝑧 ≤ 𝑥 → 𝑧𝑂𝑦𝑦) 

 

Consider the following principle employing pre-theoretic notions of ‘containment’ 

and ‘covering’ (and in which ‘fusion’ can be taken to be a dummy term for an object that 

is made from a plurality of entities): 

 

(Fusion)  A an entity x is a fusion of a plurality yy of entities just in case (i) x 

‘contains’ all the yy, and (ii) the yy ‘cover’ all of x. 

 

(Fusion) strikes me as a highly intuitive principle. If x didn’t ‘contain’ z and z was one of 

the yy, how could one say that x a fusion of them? At the same time, if some part of x wasn’t 

completely ‘covered’ by the yy—if some part of x was free of the yy, so to speak—how 

could a fusion of the yy be identical to x? (L-def+) and (G-def+) allow one to appreciate at 

a glance how close the two definitions are. Both (L-def+) and (G-def+) consist, in fact, in 

a conjunction which can be seen as formulating the two conditions expressed by (Fusion). 

The ‘covering condition’ is expressed in the second conjunct of (L-def+) and (G-def+) in 

the same way: x is covered by the yy in the sense that every part of x overlaps at least one 

of the yy, so that no part of x is disjoint from—and, in this sense, ‘free of’—all of them. We 

can call this sense of covering plural covering (or many-one covering). The difference 

between (L-def+) and (G-def+) concerns the way in which the ‘containment condition’ is 

expressed in their first conjunct. According to (L-def+), to contain an entity is to have it as 

a part, so that x can contain all the yy only if it has all of them as parts. Instead, according 

to (G-def+), to contain an entity is to cover it, in the sense of overlapping everything it 

overlaps (we can call this sense of covering singular covering, or one-one covering, for 
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disambiguation). Therefore, (L-def+) and (G-def+) can be seen as disagreeing on how the 

pre-theoretical notion of (mereological) ‘containment’ should be properly expressed.6 

Before moving further, notice that a third definition of the notion of fusion can be 

found in the literature, which following Cotnoir (2018) we can call ‘Algebraic’ fusion: 

 

(A-def) 𝑥𝐹𝐴𝑦𝑦 =𝑑𝑓 ∀𝑧(𝑧 ≺ 𝑦𝑦 → 𝑧 ≤ 𝑥) ∧ ∀𝑧(∀𝑤(𝑤 ≺ 𝑦𝑦 → 𝑤 ≤ 𝑧) → 𝑥 ≤

𝑧) 

 

(A-def) gets the ‘containment part’ of (Fusion) right (or, at least, in a way that is at least 

prima facie legitimate). The problem with (A-def) is the way it gets the ‘covering part’ of 

(Fusion). Consider, for instance, the model depicted in Figure 2. In Figure 2 a counts as an 

A-fusion of [𝑏, 𝑑]. Yet there is clearly more to a than just b and d taken together, namely, 

c. b and d taken together clearly fail to cover all of a. Therefore, as long as we follow 

(Fusion) as our guiding intuition, the notion of A-fusion appears to fall short of being a live 

option to define the notion of mereological fusion.7 

Also the notion of G-fusion may be subjected to some criticism. Consider, in fact, 

the model depicted in Figure 1. a is a fusion of [𝑎, 𝑏, 𝑐, 𝑑] and yet it doesn’t have b as a 

part. However, as Varzi (2009) claims, it may seem that  

 

[…] no matter how exactly one defines the word, one should always expect a fusion 

to include, among its parts, all the things it fuses. (Varzi 2009: 602) 

 

Even worse, a is a fusion of [b]—the ‘improper’ plurality of the things that are identical to 

b—without having it a part. Yet, it may seem plausible to object that  

 

                                                      

6 As Cotnoir (2017) notices, ‘being in’ seems to be said in many ways. In particular, Cotnoir distinguishes 

between predicational ‘being in’, according to which the relata of ‘being in’ are objects on the one hand and 

entities of a higher ontological category on the other, and containment ‘being in’. The second divides in (i) set-

theoretical (set-membership), (i) plural-logical (being one of), and (ii) mereological. The focus here is on the 

notion of mereological containment. 
7 Cotnoir and Bacon (2012: 196) argue that, if parthood is not assumed to be antisymmetric, then the notion of 

A-fusion may be adequate if paired with the following Complementation axiom which (in the presence of MM) 

is strictly stronger than both (WSP) and (SSP)): 

 (Complementation)    ∀𝑥∀𝑦(𝑥 ≰ 𝑦 → ∃𝑧∀𝑤(𝑤 ≤ 𝑧 ↔ (𝑤 ≤ 𝑥 ∧ ~𝑂𝑤𝑦)) 

c d 

 a 

b 

 

Figure 2 
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surely a fusion is supposed to include, among its parts, at least some of the things it 

fuses. (Varzi 2009: 603) 

 

Notice, first, that G-mereologists endorsing a notion of ‘containment-as-covering’ 

agree that a fusion must contain all the entities it fuses. What they deny is that, in order to 

be contained by their fusion, the entities fused must be part of the fusion. Therefore, simply 

replying that a fusion must contain all the entities it fuses as parts seems to be dialectically 

ineffective in this case. Second, G-mereologists appear to have an independent way to 

argue that in Figure 1 a and b do contain each other, namely, by appealing to the idea that 

a fusion is ‘nothing over and above’ the plurality of its proper parts. This argument can be 

presented as follows: 

 

(A1) For every x and y and zz, if x contains the zz and y is nothing over and above 

the zz, then x also contains y.  

(A2) In Figure 1, a contains [c,d].  

(A3) b is nothing over and above [c,d] 

(A4) Therefore, a contains b 

 

(A2) is something that also containment-as-parthood theorists like Varzi (2009) accept. 

Therefore, whether or not this argument is successful depends on whether G-theorists can 

appeal to a notion of nothing-over-and-aboveness that is both compatible with anti-

extensionalism and such as to make (A1) and (A3) true.  

Many philosophers share the intuition that a whole is nothing over and above the 

parts it fuses:8 if I buy separately the four parts composing a certain lot of land, I don’t need 

to also buy the lot they compose. Similarly, if I buy six cans of beer, I don’t need to spend 

extra money to also buy the six-pack (Baxter 1988). Several ways to cash out the slippery 

notion of nothing-over-and-aboveness have been proposed in the literature.9 However, 

many of them appear to be incompatible with anti-extensionalist models like the one 

depicted in Figure 1. For instance, G-theorists cannot take a whole to be nothing over and 

above its parts in the sense that it is literally identical to its parts taken together (a thesis 

commonly known as ‘Strong Composition as Identity’).10 In fact, if both a and b in Figure 

1 were identical to the plurality of their proper parts then (by symmetry and transitivity of 

identity) they themselves would be identical. Similarly, G-mereologists cannot take a 

composite entity to be nothing over and above its parts in the sense that it is the only object 

that is composed of those parts (Smid 2017: 2; 12, fn 2), as that would also be 

straightforwardly inconsistent with Figure 1.  More generally, the idea that anti-

extensionalists cannot claim that entities sharing the same proper parts are nothing over 

and above them may indeed seem to have the ring of intuitiveness to it: 

                                                      

8 See, among many others, Lewis (1991), Varzi (2014), and for additional references Smid (2017).  
9 Smid (2017), for instance, recently distinguishes between five readings of ‘x is nothing over and above the 

yy’: (i) x is not an additional commitment with respect to the yy, (ii) the existence of the yy is sufficient for the 

existence of x, (iii) x is the only object that is composed of the yy, (iv) x has no properties that are not reducible 

to the yy, (v) x is identical to the yy. 
10 See Cotnoir (2014) for an introduction to Composition as Identity. 
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if some Xs compose two things, then wholes could not be “nothing over and above 

their parts.” How could distinct things each be nothing over and above the same 

parts? (Sider 2007: 70; my italics) 

 

Gilmore (2010: 181) formulates the principle that appears to be behind Sider’s 

(2007) intuition as follows: 

 

‘P1  For any Xs, any y, and any z, if y is nothing over and above the Xs, and z is 

nothing over and above the Xs, then y = z’ (Gilmore 2010: 181) 

 

As Gilmore argues, as intuitive as P1 may initially sound, there seem to be good reasons to 

doubt it. Consider, in fact, the following principle P1+ which extends P1 to pluralities of 

entities: 

 

‘P1+ For any Xs, any Ys, and any Zs, if [the Ys are nothing over and above the Xs, 

the Zs are nothing over and above the Xs, and there are exactly as many of the 

Ys as there are of the Zs], then the Ys = the Zs.’ (Gilmore 2010: 181) 

 

If being nothing over and above is ‘identity-like’ as P1 suggests, it seems that also P1+ 

should be accepted as true. However, P1+ is intuitively false: both the rows and the columns 

in my chessboard (which are equal in number) are nothing over and above the squares of 

my chessboard, and yet they are not identical (the rows run horizontally, the columns 

vertically). It seems, therefore, that if we are ‘free to endorse the nonidentity of pluralities 

[…] each of which [are] nothing over the same things’ we should also be ‘free to endorse 

the nonidentity of single individuals [that are] nothing over and above the same things’ 

(Gilmore 2010: 182). 

Furthermore, there seems to be at least one possible way to account for the notion of 

‘being nothing over and above’ that is both consistent with anti-extensionalist models like 

the one of Figure 1 and with premises (A1) and (A3). The general idea behind this account 

can be briefly sketched as follows. Intuitively, certain entities seem to depend for their 

existence on other entities. In particular, composite entities are often claimed to depend for 

their existence on their proper parts. This notion of existential dependence can be 

understood by means of the notion of metaphysical grounding, in at least two ways.11 The 

first one, proposed by Correia (2005) and Schnieder (2006), is that of taking an entity x to 

depend existentially on a plurality yy of entities if and only if the fact that x exists is 

grounded in some facts concerning the yy. Alternatively, one could follow Schaffer (2009) 

and identify this notion of dependence with a primitive, cross-categorical relation of 

                                                      

11 For a general introduction on the notion of grounding see Correia and Schnieder (2012). On the idea that a 

whole is grounded in its parts see, among others, Cameron (2014) and Loss (2016). 
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grounding.12,13 In both cases, there seems to be at least some intuitive appeal to the idea 

that, if x’s existence is grounded in the yy, then x owes its existence to the yy, so that x and 

the yy are really the same ‘portion of reality’, or the same ‘amount of being’, so to speak.14 

This suggests the possibility of the following kind of grounding-based account of nothing-

over-and-aboveness: 

 

(NOA) The xx are nothing over and above the yy if and only if either (i) the xx depend 

for their existence on the yy, (ii) the yy depend for their existence on the xx, or 

(iii) for some zz, both the xx and the yy depend for their existence on the zz.  

 

According to (NOA), in order for the xx to really ‘add something’ to the yy in the required 

sense, the portion of reality in which the xx consist must not be completely contained in the 

portion of reality in which the yy consist. Therefore, in order to be something over and 

above the yy the xx cannot stand in a grounding relation to the yy or share a common ground 

with them. Given (NOA), (A3) follows directly from the assumption that b is grounded in 

[c,d], while (A1) appears to have at least the ring of plausibility to it. Suppose, in fact, that 

an entity x contains the zz and that the existence of a certain other entity y is grounded in 

the zz. In this case, it seems plausible to say that—in virtue of containing the ‘ontological 

root’ of y (as we may call it)—x also contains y.15 

Both this kind of account of the notion of being nothing over and above in terms of 

grounding and the general idea that anti-extensionalism is compatible with nothing-over-

and-aboveness may, of course, be challenged. Be that as it may, however, the foregoing 

considerations seem to show at least that the case against the notion of G-fusion is not as 

tight as it may appear at first sight and certainly not as straightforward as the case against 

the notion of A-fusion. Therefore, we seem to have at least some prima facie reason to 

conclude that, pace Sider (2007) and Varzi (2009), both the notion of L-fusion and the 

notion of G-fusion can be taken to be admissible notions of fusion. 

                                                      

12 See Schnieder (2020) for some discussion of these two grounding-based approaches to ontological 

dependence. 
13 Schaffer (2010) himself defends the idea that the cosmos is prior to its parts. However, this choice is clearly 

independent from the choice of identifying existential dependence with a primitive grounding relation. 
14 On the idea that, in general, the grounded is the same portion of reality of its grounds see Schaffer (2016). 

On the general idea that grounding entails nothing-over-and-aboveness see Fine (2001: 15–16; 2012: 39) and 

Schaffer (2009: 353). 
15 Skiles (2015: 739-41) has argued that the idea that grounding entails nothing-over-and-aboveness is 

compatible with ‘grounding contingentism’ (namely, the idea that grounds do not necessitate what they 

ground). Notice, however, that G-mereologists don’t appear to be forced to endorse grounding contingentism. 

In fact, at least under the assumption of Correia’s and Schnieder’s account of ontological dependence, entities 

that share the same proper parts can existentially depend on them by being grounded in different facts about 

them. For instance, the fact that a exists may be grounded simply in the fact that c exists and the fact that d 

exist, taken together, while the fact that b exists may be grounded in the fact that c and d are arranged in a 

certain way R. Therefore, when c and d cease to be R-arranged the fact that only b ceases to exist (while a keeps 

existing) doesn’t appear to be problematic for ‘grounding necessitarians’. 



 

10 

 

 

Let us now return to the issue concerning the difference between L-fusions and G-

fusions. It is a theorem of MM that parthood entails covering:16 

 

(8) ∀𝑥∀𝑦(𝑥 ≤ 𝑦 → 𝑥 ⊑ 𝑦) 

 

It is, thus, straightforward to observe from the first conjuncts of (L-def+) and (G-def+) that 

(assuming MM) if something is an L-fusion (of a certain plurality of entities) it is also a G-

fusion (of those entities): 

 

(9) ∀𝑥∀𝑦𝑦(𝑥𝐹𝐿𝑦𝑦 → 𝑥𝐹𝐺𝑦𝑦) 

 

In the same way, it is also straightforward to see what principle can fill by itself the gap 

between the two notions. In fact, if an entity x is a G-fusion of some entities yy, then 

although the yy cover all of x (as required by the second conjunct of (L-def+)) we only have 

that if something is one of the yy, it is only guaranteed to be covered by x and not to be part 

of it. It is, thus, sufficient to add to the mix the principle according to which if x is covered 

by y, then x is part of y—  

 

(10) ∀𝑥∀𝑦(𝑥 ⊑ 𝑦 → 𝑥 ≤ 𝑦) 

 

—in order to guarantee that every G-fusion is also an L-fusion: 

 

(11) ∀𝑥∀𝑦𝑦(𝑥𝐹𝐺𝑦𝑦 → 𝑥𝐹𝐿𝑦𝑦) 

 

Notice that if we unpack (10) we get 

 

(12) ∀𝑥∀𝑦(∀𝑧(𝑂𝑧𝑥 → 𝑂𝑧𝑦) → 𝑥 ≤ 𝑦)  

 

which, given MM, is equivalent to the Strong Supplementation principle 

 

(SSP) ∀𝑥∀𝑦(𝑥 ≰ 𝑦 → ∃𝑧(𝑧 ≤ 𝑥 ∧ ~𝑂𝑧𝑦))17 

 

Therefore, MM and (SSP) jointly entail (EqLG): 

 

(13) 𝐌𝐌, (SSP) ⊢ (EqLG)   

 

Similarly, it can be proved that (EqLG) and MM jointly entail (SSP) 

 

                                                      

16 Proof: Suppose that x is a part of y and assume that z overlaps x. There is, therefore, some entity w that is 

part of both z and x. So w is a part of x and x is a part of y. By the transitivity of parthood, w is a part of y. 

Therefore, z also overlaps y. By generalization, everything that overlaps x also overlaps y or, in other words, x 

is covered by y. ∎ 
17 See Pietruszczak (2018: 90; 2020: 34-35). 
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(14) 𝐌𝐌, (EqLG) ⊢ (SSP) 

 

Proof. Suppose that x is covered by y. Clearly, y covers itself. Therefore, each of the 

[𝑥, 𝑦] (that is, the plurality of x and y taken together) is covered by y. On the other 

hand, every part of y overlaps at least some of the [𝑥, 𝑦], since 𝑦 clearly overlaps 

itself. Therefore y is a G-fusion of [𝑥, 𝑦]. From (EqLG) it follows that 𝑦 is also an 

L-fusion of the [𝑥, 𝑦], so that 𝑥 is a part of 𝑦. We have, thus, proved (10), and namely 

that, for every 𝑥 and every 𝑦, if x is covered by y, then 𝑥 is a part of 𝑦. As we have 

just seen above, given MM (10) is equivalent to (SSP). ∎ 

 

We can, thus, conclude that (SSP) is a way to express the difference between L-fusions and 

G-fusions on the background of MM: 

 

(Difference 1) 𝐌𝐌, (SSP) ⊢ (EqLG)  and  𝐌𝐌, (EqLG) ⊢ (SSP) 

 

This result shouldn’t come as a surprise: the fact that, in the presence of (SSP), (L-

def) and (G-def) are equivalent is well-known in the literature.18 It is, however, the way in 

which we reached this result that is particularly interesting. In fact, what we have done in 

this section is to unpack both definitions of mereological fusion so as to make a 

‘containment’ part (requiring the fusion to ‘contain’ in some sense all the things it fuses) 

and a ‘covering’ part (requiring the things fused to completely ‘cover’ the fusion) explicit. 

This allowed us to interpret the difference between the two notions of fusion as a different 

way of articulating the notion of containment at play in the definition of fusion: 

containment-as-parthood and containment-as-covering. At that point, the ‘gap’ between 

the two notions emerged very naturally as the requirement that covering entail parthood, 

which is just a different way to express (SSP). Therefore, in this section we haven’t just 

proved that (SSP) is a way to express the difference between L-fusions and G-fusions. We 

have also provided a seemingly intuitive explanation as to why that is the case, namely 

because (SSP) functions as a bridge principle between the two different notions of 

containment in play.  

3. Mild Supplementation and Extensionality  

The model of Figure 1 was used to show that, if MM is the only mereological assumption 

in the background, then not every G-fusion is an L-fusion. Figure 1 is a counterexample to 

Extensionality of Proper Parthood: 

 

(EPP)   ∀𝑥∀𝑦(∃𝑧(𝑧 < 𝑥) → (∀𝑧(𝑧 < 𝑥 ↔ 𝑧 < 𝑦) → 𝑥 = 𝑦))  

 

This may lead one to suppose that (EPP) is another way to express the difference between 

the two notion of fusions. However, the model depicted in Figure 3 clearly shows that this 

is not the case. Consider, in fact, the plurality [𝑏1,𝑏2,𝑏3] (the ‘bs’). a is clearly a G-fusion 

                                                      

18 See, for instance, Pietruszczak (2005: 216-8), Cotnoir and Bacon (2012: 195-6), and Varzi (2019: 4.3). 
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of the bs, as it covers all of them and it is covered by them (taken together). However, no 

entity in Figure 3 is an L-fusion of the bs, as no entity in Figure 3—not even a—has all the 

bs as parts. Figure 3 is a model of (EPP). Therefore, (EPP) is not enough to fill the gap 

between L-fusions and G-fusions. 

In Figure 3 a would qualify as a fusion of the bs if it had all of the bs as parts. In that 

case each of the bs would be a proper part of a. This is, thus, what may appear to be odd 

about Figure 3: 19 a covers each of the bs, none of the bs covers a, and yet none of the bs is 

a proper part of a. Therefore, it is sufficient to add the following principle to MM (which 

I will label ‘Mild Supplementation’) to ensure that in Figure 3 a is also an L-fusion of the 

bs: 

 

(MSP)  ∀𝑥∀𝑦((𝑥 ⊑ 𝑦 ∧ 𝑦 ⋢ 𝑥) → 𝑥 < 𝑦)20 

 

or, in its contrapositive form 

 

(MSPc) ∀𝑥∀𝑦(𝑥 ≮ 𝑦 → (𝑥 ⋢ 𝑦 ∨ 𝑦 ⊑ 𝑥)) 

 

which is equivalent to the following formulation: 

 

(MSPc2)  ∀𝑥∀𝑦(𝑥 ≮ 𝑦 → (𝑥 ⊑ 𝑦 → 𝑦 ⊑ 𝑥)) 

 

Notice that, given MM, (SSP) is equivalent to the following principle: 

 

                                                      

19 Pietruszczak (2018: 145) uses this model to show that MM, what we may call ‘G-Universalism’ (that is, the 

principle according to which every non-empty set of entities has a G-fusion—where in this case the notion of 

G-fusion is defined in terms of sets, instead of pluralities) and the principle Extensionality of Overlap (see 

section 4 below) do not entail either (SSP) or ‘L-Universalism’. Hovda (2009: 71) uses this model to argue 

against the notion of G-fusion. His argument is the following. Classical Mereology can be axiomatized by just 

two axioms: (i) the transitivity of parthood and (ii) the existence of a unique L-fusion of any plurality of entities. 

Instead, it is not sufficient to assume that parthood is transitive and that every plurality of entities has a unique 

G-fusion to get Classical Mereology, as Figure 3 shows.  
20 Notice that (MSP) is the right-to-left reading of Goodman’s (1951: 49) definition of proper part when 

expressed solely in terms of overlap. 

b1 

Figure 3 

a 

c1 

b2 b3 

 c2 c3 
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(SSP2)  ∀𝑥∀𝑦(𝑥 ≮ 𝑦 → (𝑥 ⊑ 𝑦 → 𝑥 = 𝑦)) 

 

Therefore, for every x and y such that x is not a proper part of y and yet it is covered by y 

we have that, while (SSP2) demands that x be identical to y (thus excluding both models 

like the one depicted in Figure 1 and in Figure 3), (MSPc2) requires only that x cover y 

(thus excluding only models like the one in Figure 3 and leaving the door open to failure 

of extensionality). 

(MSP) and (EPP) are independent principles. Figure 1 is a model of (MSP) but not 

of (EPP), while Figure 3 is a model of (EPP) but not of (MSP). Furthermore, as Figure 1 

and 3 witness, both (MSP) and (EPP) are weaker than (SSP). However, (under the 

assumption of MM) (SSP) entails both (MSP) and (EPP), while (MSP) and (EPP) jointly 

entail (SSP): 

 

(15) a. 𝐌𝐌, (SSP) ⊢ (MSP)  

b. 𝐌𝐌, (SSP) ⊢ (EPP)  

c. 𝐌𝐌, (MSP), (EPP) ⊢ (SSP) 

 

The proofs of both (15a) and (15b) are straightforward.21 The proof of (15c) can be 

presented as follows. First, we prove that MM and (MSP) jointly entail the principle 

‘(OPP)’ according to which entities overlapping the same entities have the same proper 

parts 

 

(OPP)  ∀𝑧(𝑂𝑧𝑥 ↔ 𝑂𝑧𝑦) → ∀𝑧(𝑧 < 𝑦 ↔ 𝑧 < 𝑥) 

 

(16) 𝐌𝐌, (MSP) ⊢ (OPP)  

 

Proof. Suppose that x and y overlap the same entities. Suppose, for reductio, that 

some entity w is a proper part of only one of them (say, of x). w is not a proper part 

of y. It follows from (MSP) that either w is not covered by y or y is covered by w. 

Since w is a proper part of x, everything that overlaps w also overlaps x (by the 

transitivity of parthood). But we are assuming that everything that overlaps x also 

overlaps y. Therefore, everything that overlaps w overlaps y so that w is covered by 

y. Therefore, y is covered by w, so that everything that overlaps y also overlaps w. w 

is a proper part of x. It follows by (WSP) that some entity k is part of x and doesn’t 

overlap w. Therefore, k doesn’t overlap y. But we are assuming that x and y overlap 

the same entities, so that k doesn’t overlap x either. Yet, k is a proper part of x and 

                                                      

21 Proof of (15a): Suppose x is covered by y. By (SSP), x is part of y. Suppose, furthermore, that y is not covered 

by x. It follows from Leibniz’s Law that x is different from y. Therefore, x is a proper part of y. We can, thus, 

conclude that if x is covered by y and y isn’t covered by x, then x is a proper part of y. ∎ 

Proof of (15b): Suppose x and y are two composite entities with the same proper parts. Therefore, every part of 

x overlaps y, and every of y overlaps x. It follows from (SSP) that x is part of y and y is part of x. By the anti-

symmetry of parthood it follows that x is identical to y. ∎ 
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so it overlaps x. Contradiction! Therefore, for every x and y, if x and y overlap the 

same entities they have the same proper parts. ∎ 

 

Second, we show that MM, (MSP), and (EPP) jointly entail (SSP):  

 

(17) 𝐌𝐌, (MSP), (EPP) ⊢ (SSP)  

 

Proof. Suppose that x is not part of y and that yet every part of x overlaps y. It follows 

by the transitivity of parthood that everything that overlaps x also overlaps y or, in 

other words, that x is covered by y. Since x is not a part of y, x is not a proper part of 

y. By (MSP) we have that either x is not covered by y or y is covered by x. y is, thus, 

covered by x. x and y cover each other. By (OPP) they have the same proper parts. 

Suppose that x is an atom (the reasoning being similar in the case of y). x is, thus, a 

part of y that is different from y. Therefore, x is a proper part of y. But x and y have 

the same proper parts, so that x is a proper part of itself, contra the irreflexivity of 

proper parthood. Therefore, x and y are two different composite entities with the 

same proper parts. By (EPP), they are identical. Contradiction! Therefore, some part 

of x doesn’t overlap y. By generalization it follows that, for every x and y, if x is not 

a part of y, then some part of x doesn’t overlap y. ∎ 

 

From (15) and (Difference-1) it follows, thus, that (MSP) and (EPP) taken together are a 

further way to express the difference between L-fusions and G-fusions: 

 

(Difference 2)  𝐌𝐌, (MSP) ⊬ (EPP) and 𝐌𝐌, (EPP) ⊬ (MSP) 

𝐌𝐌, (MSP), (EPP) ⊢ (EqLG)  

𝐌𝐌, (EqLG) ⊢ (MSP) and  𝐌𝐌, (EqLG) ⊢ (EPP) 

4. Between Minimal Mereology and Extensional Mereology 

Casati and Varzi (1999) call ‘Extensional Mereology’ (‘EM’) a theory that is equivalent to 

MM+(SSP) (and, thus, to MM+(EPP)+(MSP)). They justify the label ‘extensional’ with 

the fact that EM rules out countermodels to (EPP) (Casati and Varzi 1999: 40). Other 

extensionality principles that can be found in the literature are the principles ‘Extensionality 

of Overlap’, ‘Uniqueness of G-Fusion’, and ‘Uniqueness of L-Fusion’: 

 

(EO)  ∀𝑥∀𝑦(∀𝑧(𝑂𝑧𝑥 ↔ 𝑂𝑧𝑦) → 𝑥 = 𝑦) 

 

(UGF) ∀𝑥∀𝑦(∃𝑧𝑧(𝑥𝐹𝐺𝑧𝑧 ∧ 𝑦𝐹𝐺𝑧𝑧) → 𝑥 = 𝑦) 

 

(ULF)  ∀𝑥∀𝑦(∃𝑧𝑧(𝑥𝐹𝐿𝑧𝑧 ∧ 𝑦𝐹𝐿𝑧𝑧) → 𝑥 = 𝑦) 

 

In addition we also have the principle that Varzi (2008) calls ‘Extensionality of 

Composition’: 
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(EC) ‘If x and y are composed of the same things, then x = y’ (Varzi 2008: 109) 

 

where 

 

(C)   ‘x is composed of the zs =df x is a [fusion] of the zs and the zs are pairwise 

disjoint (i.e., no two of them have any parts in common)’ (Varzi 2008: 109; 

see also van Inwagen 1990: 29) 

 

Letting ‘𝔻𝑥𝑥’ stand for ‘the xx are pairwise disjoint’ 

 

(𝔻-def) 𝔻𝑥𝑥 =𝑑𝑓 ∀𝑥∀𝑦((𝑥 ≺ 𝑥𝑥 ∧ 𝑦 ≺ 𝑥𝑥 ∧ 𝑥 ≠ 𝑦) → ~𝑂𝑥𝑦) 

 

we can define two notions of composition in this sense, namely, Goodman-composition (or 

G-composition) and Leśniewski-composition (or L-composition): 

 

(GC) 𝑥𝑥𝐶𝐺𝑦 =𝑑𝑓 𝑦𝐹𝐺𝑥𝑥 ∧ 𝔻𝑥𝑥  

 

(LC) 𝑥𝑥𝐶𝐿𝑦 =𝑑𝑓 𝑦𝐹𝐿𝑥𝑥 ∧ 𝔻𝑥𝑥 

 

In turn, (GC) and (LC) allow us to state two different versions of Varzi’s principle (EC): 

 

(EGC) ∀𝑥∀𝑦(∃𝑧𝑧(𝑧𝑧𝐶𝐺𝑥 ∧ 𝑧𝑧𝐶𝐺𝑦) → 𝑥 = 𝑦) 

 

(ELC)  ∀𝑥∀𝑦(∃𝑧𝑧(𝑧𝑧𝐶𝐿𝑥 ∧ 𝑧𝑧𝐶𝐿𝑦) → 𝑥 = 𝑦) 

 

 Most of the ways in which (with MM in the background) (SSP), (EPP), (EO), 

(UGF), (ULF), (EGC), and (ELC) relate to each other are well-known in the literature. It 

may be useful to briefly review them in turn:22  

 

a) (EPP) doesn’t entail any of the other principles. For instance, the model depicted in 

Figure 4 is a model of (EPP) but not a model of either (EO), (UGF), (ULF), (EGC), 

or (ELC). In fact, although a1 and a2 are different, they (i) overlap the same entities 

                                                      

22 See, among others, Varzi (2008) and Pietruszczak (2018: 174; 2020: 37-42).  
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(contra (EO) and (ii) are both G-fusions and L-fusions of the cs (contra (UGF), 

(ULF), (EGC), and (ELC)). 

 

b) MM and (EO) jointly entail (EPP): 

 

(18) 𝐌𝐌, (EO) ⊢ (EPP)23  

 

c) MM+(EO), MM+(UGF), and MM+(ULF) are logically equivalent. One elegant 

way to prove this is due to Pietruszczak (2018: 85-6, 144) and can be briefly 

reformulated within this framework as follows. 24 First, it is proved from (<-

Transitivity) that if every part of x overlaps y, then x is an L-fusion of the plurality 

of entities that are parts of both x and y: 

 

(19) ∀𝑧(𝑧 ≤ 𝑥 → 𝑂𝑧𝑦) → 𝑥𝐹𝐿(𝜄𝑥𝑥. ∀𝑧(𝑧 ≺ 𝑥𝑥 ↔ (𝑧 ≤ 𝑥 ∧ 𝑧 ≤ 𝑦))25,26 

 

Given (19), (EO) can be shown to be equivalent to (ULF), under the assumption of 

MM: 

 

(20) a. 𝐌𝐌, (EO) ⊢ (ULF)  

b. 𝐌𝐌, (ULF) ⊢ (EO)27 

                                                      

23 Proof. Suppose that x and y are composite entities having the same proper parts. Suppose, furthermore, that 

some z overlaps, say, x but not y (the reasoning being identical if we assume that something overlaps y but not 

x). Then, there is some w that is a common part of z and x but is disjoint from y. x has all of its proper parts in 

common with y, and so it clearly overlaps y. Therefore, z must be a proper part of x. But we are supposing that 

every proper part of x is also a proper part of y. Therefore, z is also a proper part of y and, thus, overlaps y. 

Contradiction! Therefore, everything that overlaps x also overlaps y. By (EO) it follows that x is identical to y. 

Therefore, if x and y are composite entities having the same proper parts, they are identical. ∎ See also 

Pietruszczak (2018: 174; 2020: 42). 
24 As Pietruszczak (2018: 85-6, 144) shows, it is sufficient to assume that parthood is transitive in order to 

prove that (EO), (UGF) and (ULF) are equivalent. Notice, furthermore, that MM+(EO), MM+(UGF), 

MM+(ULF) are all equivalent to POS+(EO), POS+(UGF), POS+(ULF), where in this context POS can be 

taken to be the mereology axiomatised by (<-Transitivity) and (<-Irreflexivity) and entailing thus that proper 

parthood is a strict partial order (see on this Pietruszczak 2018: 86, 144; 2020: 46, 58). 
25 Recall that ‘𝜄𝑥𝑥. 𝜙𝑥𝑥’ stands for the plural definite description ‘the xx that 𝜙’ (see footnote 4). 
26 Proof (see Pietruszczak 2018: 85). Suppose that every part of x overlaps y and let the zz be the entities that 

are parts of both x and y. The zz are all part of x, so that they comply with the first conjunct of (L-def). Consider 

an arbitrary part k of x. k overlaps y and so there is some j such that j is part of both k and y. By (<-transitivity) 

j is part of both x and y and so it is one of the zz. Therefore, k overlaps one of the zz. By generalization, every 

part of x overlaps one of the zz, so that they comply also with the second conjunct of (L-def). It follows that x 

is an L-fusion of the entities that are parts of both x and y. ∎ 
27 Proof (see Pietruszczak 2018: 86). (20a). Assume (EO) and suppose that both x and y L-fuse the zz and that 

w overlaps x. Therefore, w has a part k in common with x. By (L-def), k overlaps the zz. k has thus a part j in 

common with some of the zz. Each of the zz is part of y. By (<-transitivity), j is part of both w and y. Therefore, 

w overlaps y. It follows that everything that overlaps x also overlaps y. By symmetry of reasoning we also have 

that everything that overlaps y overlaps x. It follows from (EO) that x is identical to y. (20b). Assume (ULG) 

and suppose that x and y overlap the same entities. It follows that every part of x overlaps y and every part of y 
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Finally, (20) can be used to prove that, given MM, (UGF) and (ULF) are equivalent: 

 

(21) 𝐌𝐌, (UGF) ⊢ (ULF) and 𝐌𝐌, (ULF) ⊢ (UGF)28 

 

d) EM isn’t entailed by either MM+(EO) or MM+(ELC): 

 

(22)  𝐌𝐌, (EO) ⊬ 𝐄𝐌  and  𝐌𝐌, (ELC) ⊬ 𝐄𝐌   

 

For instance, the model depicted in Figure 3—which is a counter-model to EM —is 

a model of both MM+(EO) and MM+(ELC).  

 

e) Finally, EM entails (EO): 

 

(23) 𝐄𝐌 ⊢ (EO)29 

 

In addition to (a)-(e) we clearly have that MM+(ULF) entails both (ELC) and (EGC): 

 

(24) 𝐌𝐌, (ULF) ⊢ (ELC)  and 𝐌𝐌, (UGF) ⊢ (EGC) 

 

Also, it follows directly from the fact that MM entails (L-to-G) (see section 1) that (EGC) 

and MM jointly entail (ELC): 

 

(25) 𝐌𝐌, (EGC) ⊢ (ELC)    

 

Interestingly, given the axiom of choice it can also be proved that (ELC) and MM jointly 

entail (UGF): 

 

(26)  𝐌𝐌, (ELC) ⊢ (UGF) 

 

                                                      

overlaps x. By (19) we have that both x and y are an L-fusion of the same plurality of entities, namely, the 

entities that are part of both x and y. By (ULG) it follows that x and y are identical. ∎ 
28 Proof (see Pietruszczak 2018: 144). Left-to-right. Assume (UGF) and suppose that both x and y are an L-

fusion of the zz. By (L-to-G) (section 1) it follows that they are a G-fusion of the zz so that, by (UGF), they are 

identical. Right-to-left. Assume (ULF) and suppose that both x and y are a G-fusion of the zz. By (G-def) it 

follows that if something overlaps either x or y, it overlaps the zz, and that if something overlaps the zz, then it 

overlaps both x and y. Therefore, x and y overlap the same entities. It follows, thus, from (EO)—which, by (20), 

is equivalent to (ULF)—that x and y are identical. ∎ 
29 Proof. Suppose that x and y overlap the same entities and yet they are different. By the anti-symmetry of 

parthood, either x is not a part of y or y is not a part of x. Suppose that x is not a part of y. By (SSP) there is a 

part of x that doesn’t overlap y. But every part of x clearly overlaps x, so that this means that something overlaps 

x without overlapping y. Contradiction! The same kind of reasoning applies if we suppose that y is not a part 

of x. Therefore, x and y are identical. ∎ See, also, Pietruszczak (2018: 92-3) for a proof that EM entails (ULG).  
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Proof. Part I. Suppose a and b are both G-fusions of the zz (which may or may not be 

pairwise disjoint). Let W be the non-empty set of parts that a and b have in common,30 

𝑅 be a well-order on W,31 𝑒1 be the least element of W under 𝑅, and 𝕊 be a subset of W 

that is defined as follows:  

(i) 𝑒1 ∈ 𝕊;  

(ii) ∀𝑥 ((𝑥 ∈ 𝑊 ∧ (∀𝑦(𝑦𝑅𝑥 ∧ 𝑦 ∈ 𝕊) → 𝐷𝑥𝑦)) → 𝑥 ∈ 𝕊)  

(an item in W is in 𝕊 whenever every R-smaller item in 𝕊 is disjoint from 

it);  

(iii) nothing else is a member of 𝕊.32 

We have, thus, the following: (a) 𝑒1 is disjoint from any other member of 𝕊;33 (b) any 

two other members c and d of 𝕊 are disjoint.34 Therefore, the members of 𝕊 are pairwise 

disjoint.35  

Part II. Suppose that z is a part of a. If z is a member of 𝕊, then it clearly overlaps 

some member of 𝕊 (by ≤-reflexivity). Suppose that z is not a member of 𝕊. Since a and 

b are G-fusions of the same plurality of entities it follows from (G-def) that they overlap 

the same entities. By the reflexivity of parthood, z overlaps a. Therefore, z also overlaps 

b and has, thus, a part v in common with b. By the transitivity of parthood v is a member 

of W (namely, the set of entities that are parts of both a and b; see Part I). If v is also a 

member of 𝕊, then z clearly overlaps some member of 𝕊 (by ≤-reflexivity). If v is not a 

member of 𝕊, it follows from the definition of 𝕊 that some member w of 𝕊 is such that 

𝑤𝑅𝑣 and v overlaps w. Since v is part of z, the part that v has in common with w is also 

part of z (by ≤-transitivity) so that z overlaps w. Therefore, in each of these cases z 

overlaps some member of 𝕊. By generalization, we have that every part of a overlaps 

                                                      

30 We can prove that W is non-empty as follows. It follows from the definition of G-fusion that a and b overlap 

the same entities. Since overlap is reflexive, a and b overlap and have, thus, some part in common. ∎ 
31 The existence of 𝑅 is guaranteed by the Well-Ordering Theorem, which is equivalent to the axiom of choice 

(see e.g. Moschovakis 2006: 112). 
32 The fact that 𝕊 is well-defined can be shown as follows. Let 𝑓 be a function such that, for every part x of b, 

𝑓(𝑥) = 1 if it can be decided, given the definition of 𝕊, whether x is a member of 𝕊 (𝑓(𝑥) = 0 otherwise). We 

have that:  

(a) 𝑓(𝑒1) = 1;  

(b) ∀𝑥((∀𝑦(𝑦𝑅𝑥 → 𝑓(𝑦) = (1)) → 𝑓(𝑥) = 1) 

[Proof. (a) From (i) we have that 𝑒1 ∈ 𝕊. Therefore, 𝑓(𝑒1) = 1. (b) Assume that for every y, such that 𝑦𝑅𝑥, 

𝑓(𝑦) = 1. It follows that for every y, such that 𝑦𝑅𝑥, it can be decided, given the definition of 𝕊, whether x is a 

member of 𝕊 or not. From (ii) and (iii) in the definition of 𝕊 we have, thus, that, if for every y, such that 𝑦𝑅𝑥 

and 𝑦 ∈ 𝕊, x is disjoint from y, then 𝑥 ∈ 𝕊, otherwise 𝑥 ∉ 𝕊. Therefore, 𝑓(𝑥) = 1]. By the Transfinite Induction 

Theorem (see e.g. Moschovakis 2006: 94) it follows from (a) and (b) that, for every part x of b, 𝑓(𝑥) = 1. 

Therefore, for every part x of b, the definition of 𝕊 allows us to decide whether x is a member of 𝕊 or not, so 

that 𝕊 is well-defined. ∎ 
33 Proof. Suppose x is a member of 𝕊 that is different from 𝑒1. By (iii), x must satisfy condition (ii). So every 

member of 𝕊 that is R-smaller than x is disjoint from x. By (i) 𝑒1 is in 𝕊. Being the least element of 𝕊 under R, 

𝑒1 is R-smaller than x, so that 𝑒1 is disjoint from 𝑥. ∎  
34 Proof. By assumption, both c and d must satisfy (ii). Since R is well-order, we have that either 𝑐𝑅𝑑 or 𝑑𝑅𝑐. 

Suppose 𝑐𝑅𝑑 (the other case being similar). It follows from (ii) that d is disjoint from c. ∎ 
35 Many thanks to Scott Dixon and Stephan Krämer for feedback on this part of the proof. 
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some member of 𝕊. By symmetry of reasoning, we can also conclude that every part of 

b overlaps some member of 𝕊. 

Part III. Let the cc be the plurality of entities that are in 𝕊. Each of the cc is part of 

both a and b. As we just proved in Part II, every part of either a or b overlaps the cc. 

Therefore, both a and b are an L-fusion of the cc. The cc are pairwise disjoint. It follows, 

thus, from (ELC) that a and b are identical.36 ∎ 

 

It follows from (21), (24), and (26) that (pace Varzi 2008: 110-1),37 given MM, (EO), 

(ELC), (EGC), (UGF), and (ULF) are all equivalent: 

 

(27) MM+(EO)=MM+(ELC)=MM+(EGC)=MM+(UGF)=MM+(ULF) 

 

Notice, finally, that MM+(EO) doesn’t entail MM+(MSP):  

 

(28)  𝐌𝐌, (EO) ⊬ 𝐌𝐌+(MSP) 

 

For instance, the model depicted in Figure 3 is a model of MM+(EO) but not of 

MM+(MSP).  

                                                      

36 This proof was inspired by a somewhat similar proof (showing that, under the assumption of classical 

mereology, every G-fusion is a G-composition) discussed by Ballast (2020: §6.3). 
37 Varzi (2008: 110-1) claims that—even assuming MM and, thus, (WSP) (which he takes to be a principle that 

‘expresses a minimal requirement which any relation must satisfy (besides reflexivity, anti-symmetry and 

transitivity) if it is to qualify as parthood at all’; Varzi 2008: 110)—(ELC) (which he labels ‘(EC)’) doesn’t 

entail (ULF) (which he labels ‘(UC)’). In order to argue for this claim he presents an ‘infinite atomless model’ 

(depicted in the figure labelled ‘Figure 2’ at p. 110) for which (ELC) is true but (ULF) is false. As Varzi himself 

notices, (ELC) is only vacuously true in the model, given that in the model ‘everything overlaps everything’ (p. 

110). However, this means that in the model in question no proper part of any composite entity complies with 

(WSP), as every proper part of every composite entity x overlaps all of x’s parts. Therefore, it is false that ‘both 

models [presented at p. 110, including the model depicted in Figure 2] satisfy […] weak supplementation’ 

(Varzi 2008: 110).   
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Therefore, it can be concluded that that MM+(MSP) appears to occupy an interesting 

place among the theories under consideration (see Figure 5).38 In fact, while MM+(MSP) 

is a non-extensional mereology that is stronger than MM,39 the only extensional mereology 

(among those under consideration) that is stronger than MM+(MSP) is EM. 

5. Conclusion 

In this paper I have addressed the question concerning the ‘difference’—with MM in the 

background—between the notion of Leśniewski fusion and the notion of Goodman fusion. 

Although it is well known that the Strong Supplementation principle is sufficient to fill this 

gap, I have argued that this fact can be proved in a way that sheds some interesting light on 

the relationship between the two notions of fusion. I have also shown how the difference 

between Leśniewski fusions and Goodman fusions can be broken down into two logically 

independent components, namely, the well-known principle Extensionality of Proper 

                                                      

38 The diagram depicted in Figure 5 is not meant to be exhaustive. Consider, for instance, that if we add 

Simons’s (1987: 28) ‘Proper Parts Principle’ (PPP) to MM+(EO) 

(PPP)   ∀𝑥∀𝑦((∃𝑧(𝑧 < 𝑥) ∧ ∀𝑧(𝑧 < 𝑥 → 𝑧 < 𝑦) → 𝑥 ≤ 𝑦)  

we obtain a system that is stronger than MM+(EO) but weaker than EM (see Pietruszczak 2020: 42) (many 

thanks to an anonymous referee of this Journal). 
39 MM+(MSP) is not the strongest mereology containing MM but not (EPP). For instance, MM+(MSP) could 

be extended by the addition of the following ‘artificially weaker’ version of (EPP): 

(EPP3) ∀𝑥∀𝑦(∃𝑣∃𝑤∃𝑧(𝑣 < 𝑥 ∧ 𝑤 < 𝑥 ∧ 𝑧 < 𝑥 ∧ 𝑣 ≠ 𝑤 ∧ 𝑤 ≠ 𝑧 ∧ 𝑣 ≠ 𝑧) → (∀𝑧(𝑧 < 𝑥 ↔ 𝑧 < 𝑦) → 𝑥 =

𝑦)) 

(many thanks to an anonymous referee for this Journal). 

MM 

Extensional 

MM+(MSP) 

MM+(EPP) 

EM=MM+(SSP)=MM+(EPP)+(MSP)=MM+(EqLG) 

Non-Extensional 

Figure 5 

MM+(EO)=MM+(ULF)=MM+(UGF)= 

=MM+(ELC)=MM+(EGC) 
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Parthood and the lesser-known Mild Supplementation. Finally, the theory combining 

Minimal Mereology and Mild Supplementation has also emerged as a non-extensional 

theory that occupies an interesting position in the logical space of theories that are stronger 

than Minimal Mereology but weaker than Casati and Varzi’s (1999) Extensional 

Mereology.40   
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