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Abstract  

Today decision-makers face surging increases in overall system complexity leading up to more 

unstable and unpredictable business environments. Leaders and decision-makers are 

confronted with volatility (dynamic and intense changes), uncertainty (lack of predictability), 

complexity (interconnection of parts which is sometimes overwhelmingly difficult to process), 

and ambiguity (unclear relationships), namely the VUCA-world. 

The implications of the VUCA-world for business and strategy can be applied to the rise of 

complex cyber-physical systems in Industry 4.0.  There is an expressed need to develop 

complexity management frameworks that integrate different individual measures of dealing 

with industrial system complexity into a synergetic strategic framework.   

In this regard new frameworks that reflect “real-life complexity” of industrial systems and their 

practitioners are being called for.  

It is therefore the core aim of the thesis to develop and apply a strategic complexity management 

framework (SCM) that fits in the individual reality of the decision-making practitioner by 

integrating different complexity dimensions of industrial systems in a holistic, synergetic, and 

strategic way.  

As a starting point for achieving this aim, an investigation and exploration of relevant 

theoretical frameworks is conducted and accumulates in the proposition of a set of hypotheses 

H1-H13 as an explanatory approach to achieve a multi-dimensional definition of industrial 

system complexity and to explore its impact on decision-making based on information growth 

in industrial systems. 

In a second step, H1-H13 are applied to develop a theoretical complexity space model for 

industrial systems. In the model the static and dynamic complexity of an industrial system are 

integrated in a complexity space modelling approach, where information complexity 

boundaries expand over time in a static compound space of a system and serve as an indicator 

for system instability in a static complexity space.  

The capabilities of the complexity space model are theoretically demonstrated, alongside a set 

of assumptions concerning the behavior of industrial system complexity. The developed 

complexity space model represents the core theoretical foundation for the establishment of the 

SCM in a third step.  



 

In the third step the complexity of an industrial system is captivated via the strategic complexity 

management framework (SCM) in the form of a strategic 8- quadrant matrix in adherence to 

the axioms of the paradigm of strategic complexity engineering which are to acknowledge, 

characterize, anticipate, and manage complexity.   

Definitions of static, dynamic and environmental conception of complexity of industrial systems 

are holistically integrated to capture the internal and external strategic management 

perspective in the SCM framework and the strategic capabilities of the SCM framework are 

theoretically demonstrated based on a set of generic norm strategies.  

In a fourth step the SCM is applied for strategic complexity management purposes to four 

different real-world cases of industrial manufacturing systems with the goal to test, explore and 

discuss the practical decision-aiding applicability of the framework via an interventionistic 

multi-case study based on qualitative document review.  

The individual results of the SCM application on the four different cases are described and 

discussed.   

Key-learnings across cases are identified and discussed as a conclusion.  

Finally, a research outlook is provided.  
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 1 

1 Introduction  

Today decision-makers face surging increases in volatility, uncertainty and overall business 

complexity leading up to more unstable and unpredictable business environments. Leaders and 

decision-makers are confronted with volatility (dynamic and intense changes), uncertainty (lack 

of predictability), complexity (interconnection of parts which is sometimes overwhelmingly 

difficult to process), and ambiguity (unclear relationships), which accumulate in the so-called 

VUCA-world.  (Krawczyńska-Zaucha, 2019) 

Even though individual VUCA aspects on their own can already lead to overwhelming 

challenges, a combination of VUCA aspects or the presence of all four combined can lead to 

complex business problems that are nearly unsolvable for decision-makers. (Milar et al.  2018) 

The components of the VUCA-world thus represent the main four challenges for doing 

sustainable business and designing strategy in the modern business world.  

They are consequently adopted by business leaders and decision-makers to describe and address 

the rapid changes of the business environment and to capture and benefit of overcoming 

challenges and newly arising opportunities.  (Krawczyńska-Zaucha, 2019, Milar et al.  2018) 

In the context of industrial systems, the implications of the VUCA-world for business and 

strategy can be applied to the rise of Industry 4.0 and cyber-physical systems (CPS). CPS 

represent new and complex systems or system environments, in the form of cyber-human 

systems (CHS) or cyber-physical systems of systems (CPSS), that combine the potentials of 

physical artifacts, humans and industrial systems due to integrated computational and physical 

capabilities. (Törngren & Sellgren, 2018) 

CPS are established to produce a global intelligent behaviour featuring autonomy, self-control 

and self-optimization and are expected to be a decisive driving force for advances in different 

areas in manufacturing, opening new areas of innovation. In contrast to the potential of CPS for 

manufacturing it is well understood that current and more traditional manufacturing and 

industrial systems are already stretching the limits in terms of the development of cost-efficient 

and trustworthy systems. (Pilloni, 2018, Xu & Ling, 2018) 

This urgent matter is additionally amplified by the circumstance that current CPS system design 

already is unable to support the level of complexity, scalability, security, safety, 

interoperability, and flexible design and operation that will be required to meet future needs. 

(Törngren & Grogan, 2018) 
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The line of argument makes visible that it is now imperative for industry decision-makers to 

obtain practical methods and tools of strategic planning addressing the management of complex 

industrial systems, like CPS, thus aiming to solve the challenges of the volatility, uncertainty, 

complexity, and ambiguity. (Knyazeva, 2020, Törngren & Sellgren, 2018) 

As demonstrated by the research of Freund et al. and Freund & Al-Majeed (2021d, 2021e, 

2021f) one option to achieve this are holistic strategic management frameworks in the form of 

strategic management tools and techniques (SMTT) dedicated to practical strategic complexity 

management. 

The mentioned aspects now form the central motivation of the thesis to showcase the 

development and application of a novel SMTT for strategic complexity management for 

industrial systems in the form of the SCM. 

To achieve this the thesis now follows the following structure: 

As a first step Chapter 2 introduces the core topics of the theoretical background of this thesis. 

Thus, the most relevant key-definitions of Industry 4.0 in the context of industrial systems are 

defined in the form of the terms Industry 4.0 itself, technological change, CPS and smart 

manufacturing.  

In Chapter 3 a structured literature review and analysis of Industry 4.0 and how it manifests 

complexity is established via the Industry 4.0 Knowledge and Technology Framework (IKTF).  

The IKTF represents a systematic and analytical approach to the introduced key-terms of 

Industry 4.0 and the relevant literature and provides a structured approach to Industry 4.0 on a 

micro-meso-macro level. The IKTF shows how different levels of Industry 4.0 can be assumed 

to be connected and how Industry 4.0 manifests complexity.  

In this light Chapter 4 now introduces the topic of complexity in the context of industrial 

systems. An overview over the terms complexity science, the process of defining complexity, 

scientific models based on complexity science and the concept of emergence is provided.  

Chapter 5 introduces and defines the concept of manufacturing complexity. It establishes a set 

of definitions of complexity symptoms and complexity assessment methods in industrial 

manufacturing systems. To achieve this, an overview of the current body of literature is 

provided in the areas of complexity types, complexity symptoms and complexity assessment 

methods.  



 3 

Chapter 6 now describes the concept of strategic management, complexity management and 

illustrates and compares four different complexity management frameworks. The addressed 

research gap in form of a strategic gap in complexity management frameworks is identified.  

Chapter 7 establishes a description of the research aim, four research objectives O1-O4, the 

main research question (MRQ) and the corresponding four sub-research questions (SRQ1-

SRQ4). 

As a next step, Chapter 8 introduces the chosen research philosophy and research methodology 

in the form of interventionism, decision-aiding and case study research and provides a paradigm 

for the establishment of strategic complexity management framework. 

Chapter 9 introduces a detailed analysis concerning the nature of complexity as an emerging 

phenomenon in complex industrial systems and its impact on the decision-making process. It 

establishes thirteen hypotheses (H1-H13) concerning the nature of complexity and the 

implications of complexity on the decision-making process in complex industrial systems.  

Based on H1-H13 Chapter 10 introduces a novel conceptual complexity space-based approach 

to model, quantify and visualize the complexity of modern and future industrial systems in a 

way that supports the visualization and potentially simulation of the complexity of both the 

physical and the informational system layers and their respective information flow in a three-

dimensional complexity space model.  

Building upon the previous achievements Chapter 11 presents the strategic complexity 

management (SCM) framework and how it works in terms of structure and functions. 

Chapter 12 provides the description and discussion of the dedicated SCM case study method 

for the application on real-world industrial systems based on the overall methodology of this 

thesis. The goal of this chapter is to methodologically allow the exploration and investigation 

of the practical applicability of the SCM framework on real-world industrial systems. To 

achieve this the SCM framework is executed four times as a decision-aiding tool, resulting in 

four individual case studies of real-world industry systems.  

As a final step, Chapter 13 concludes with the presentation and discussion of SCM case study 

results based on the four case studies. Each case study is presented individually and general 

key-learnings concerning the application of the SCM on real-world systems are obtained and 

discussed as the final conclusion to this study. 

After introducing the structure of this thesis, Chapter 2 now describes and discusses the topic 

of Industry 4.0 as a thematic starting point. 
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2 Industry 4.0  

This chapter introduces the core topics and definitions of industrial manufacturing in the context 

of Industry 4.0 industrial systems. For the purpose of this thesis the term industrial system shall 

define any manufacturing, productive system that contributes to the establishment of 

marketable products and thus to industrial economic value creation. (Rojko, 2017) 

Industry 4.0 is a manufacturing approach based on the integration of emerging technologies in 

the business and manufacturing processes to achieve superior production capacities. The 

technical aspects of the requirements of a successful integration are primarily addressed by the 

application of the concepts of cyber-physical systems (CPS). (Rojko, 2017, Pilloni, 2018)  

Any Industry 4.0 concept is therefore based on the connections of autonomous CPS building 

blocks. The CPS blocks are potentially heterogenous embedded systems equipped with 

intelligent, decentralized control and advanced connectivity. These blocks have the central 

ability to collect and exchange real-time information with the goal of monitoring and optimizing 

the production processes. (Rojko, 2017, Pilloni, 2018, Savastano et al., 2019, Roblek et al., 

2016) 

The technologies introduced by Industry 4.0 thus enable autonomous intelligent communication 

and cooperation among CPS, so that a higher level of intelligence, and therefore a higher level 

of flexibility and performance, can be achieved in industrial manufacturing processes.  Industry 

4.0 is thus assumed to enable three core aspects namely digitization of production, 

automatization of production and intelligent data interchange. The concept of Industry 4.0 

requires a converging combination of digitized, intelligent systems of production through the 

means of emerging enabling technologies primarily in the form of CPS, Internet of Things and 

cloud computing. (Rojko, 2017, Pilloni, 2018, Xu & Ling, 2018, Morraret al., 2017, Savastano 

et al., 2019, Roblek et al., 2016)  

The concept of Industry 4.0 therefore represents, in theory, a transformative, evolutionary 

advancement via technological change from traditional embedded industrial systems in 

manufacturing to smart industrial production systems defined by autonomous, interconnected 

CPS. This transformation is expected to allow the successful change from a more standardized 

mass-production system to a customizable, flexible, cost-efficient and demand responsive 

production that can efficiently fulfil the requirements of volatile market environments. (Rojko, 

2017, Pilloni, 2018, Savastano et al., 2019, Roblek et al., 2016)  
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Even though the vision and the concept of Industry 4.0. are already well-described on a 

theoretical level, several unsolved challenges on the technological, integrative, and general 

level of understanding remain to be better understood and captivated. (Savastano et al., 2019, 

Roblek et al., 2016)  

These challenges effectively inhibit a successful integration of the concept of Industry 4.0 in 

applied manufacturing systems and that until now, only a limited number of companies 

achieved performance increases through the integration of aspects of Industry 4.0. (Roblek, et 

al., 2016)  

It can therefore be concluded that the concept of Industry 4.0 while still not fully developed, is 

ambiguously connected to a variety of other meta-concepts or sub-concepts, like VUCA 

environments. (Gimpel & Röglinger, 2015)  

It is also made evident that the evolution and integration of Industry 4.0 is based on the 

underlying technological trends, manifested by technological change. Therefore, the next 

section expands on this.  

2.1 Technological change 

The term technological change describes a positive transition of a system from a technological 

level to a more advanced technological level in a transition time period. If the transition time 

periods between a series of technological levels decreases in an exponential manner, 

exponential technological change can be identified. (Bongomin et al., 2020) 

The transitioning from a technological level to a more advanced technological level shall 

furthermore encompass the emergence of new and more potent technologies, like more 

productive and efficient tools, facilities, or services (for example robotics or the internet) and 

the diminishment of less potent technologies. It also contains the habitual and institutional 

adjustments conducted by the society employing and interacting with the technologies. 

(Hochwallner & Ribeiro, 2018, Bongomin et al., 2020) 

It shall therefore be assumed that technological change can be regarded for a company as a 

main impact factor of corporate structural change responding to external market incentives that 

drive competition and economic growth.  

According to the research conducted by Bongomin et al. (2020), Industry 4.0 is being driven 

by exponentially growing disruptive technologies that inaugurate changes at a nonlinear pace, 

leading to exponential technological change. These emerging technologies have a potential to 
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cause broader societal transformation by changing the existing economic sectors, tenets of 

work, production, and consumption. This is leading up to Industry 4.0 differing in speed, scale, 

complexity, and transformative power as compared to the previous industrial revolutions. In 

general, two types of technologies can be differentiated:  

• Sustaining technologies: have a constant or incremental rate of improvement of 

existing customers. 

• Disruptive technologies: create disruption on the status quo as it produces a unique set 

of values. 

The major implication of disruptive technology is the demand for new course content, 

employment, knowledge, and skills. (Bongomin et al., 2020) As one central example for a 

simultaneously sustaining and disruptive technology CPS can now be introduced.  

2.2 Cyber-physical systems 

A CPS can now be described as a new generation of systems emerging from technological 

change that blend the knowledge of physical artifacts and industrial engineered systems due to 

integrated computational and physical capabilities. CPS are established in order to produce a 

global intelligent behaviour featuring autonomy, self-control and self-optimization and are 

expected to be a decisive driving force for advances in different applicative domains including 

manufacturing control and for opening up new areas of innovation. (Horvarth & Gerritsen, 

2012, Schiliro, 2017)  

CPS are characterized by advanced connectivity that ensures real-time data acquisition from 

the physical world and information feedback from the cyber space and intelligent data 

management, analytics and computational capability that constructs the cyber space. (Lee & 

Bagheri, 2015)  

CPS are also connected with high system complexity and contains an inherent trade-off 

relationship between the drawbacks of complexity and the performance increases gained. 

(Törngren & Sellgren, 2018) 

A cyber-human system (CHS) means that humans have an increasingly interconnected 

relationship with digitized and digital systems and represents an integral factor to establish a 

functioning CPS. This development is exemplified in the increasing human-machine interaction 

through new computer systems, the internet, mobile devices, improved sensor technology and 

possible future applications like brain-machine interfaces and leads to human lives and 
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decision-making increasingly merging with complex technology. (Gimpel & Röglinger, 2015, 

Horvarth & Gerritsen 2012) 

For the purpose of these thesis, the term CPS shall encompass the concept of CHS, if not 

mentioned otherwise. 

Figure 1 now illustrates the general concept of CPS, as shown in Freund & Al-Majeed (2020a). 

 

Figure 1: CPS example 

Figure 1 shows that an exemplary CPS architecture can be described as a closed loop 

heterogeneous system of a constellation of machine (M) and human (H) units with data 

interaction enabled through a reflexive and irreflexive multi-directional information flow with 

a shared data pool.  

As a result, the illustrated structure of a CPS is characterized by highly interconnected 

constellation of heterogeneous agent types situated in reinforcing information diffusion and 

generation feedback loops.  

2.2.1 Technologies associated with cyber-physical systems  

In a more practical context, cyber-physical manufacturing can now be understood as the 

utilization and integration several high-tech technology platforms, for example in a smart 

factory context. Based on the research of Juhas & Molnar (2017), Bongomin et al. (2020) and 

Andronie et al.  (2021) it is now possible to introduce the following technology platforms 

associated with cyber-physical systems as the following:  

• Advanced (autonomous) robotized production lines:  Modern automated and 

robotized production lines maximize efficiency, modern technology, accuracy, and 

speed of production are an essential element in the implementation of CPS. 

• Autonomous supervisory/service mobile units (drones with camera system or 

handlers to carry light objects): Drones are easy to use as independent mobile 
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supervisory units (equipped with a camera) or as highly mobile transport units with the 

appropriate equipment for the transfer of objects. 

• Industrial 3D printing: Technology of 3-dimensional printing (additive 

manufacturing) can provide a high degree of efficiency and variability in the production 

of a wide range of products. By creating 3D objects based on data from materials such 

as plastic or metal, it is possible to create complex, easily customizable products whose 

design is impossible to carry out with classic production techniques. 

• Autonomous traffic units (autonomous carts and manipulators): Ground handlers 

and vehicles for transporting heavy loads are forming a connection between the 

individual modules of CPS. 

• Intelligent management and control system: Central management and control of all 

production processes and units must be implemented in such a way as to eliminate the 

possible errors in the management of complex and time-dependent production 

processes. This presupposes the exclusion of classical control centres with human 

service. 

• Distributed communication systems, sensor networks, Internet of Things: All 

objects in the production process must communicate with the control system wirelessly. 

Together with the sensor system they create an information data network. Based on data, 

the central management system can analyse production procedures and processes and 

optimize them to achieve greater production efficiency. 

• Augmented operator: The physical capabilities of human staff can be improved using 

an additional technical solution, for example exoskeletons.  

• Energy-efficient production: Utilization of renewable energy sources such as solar 

panels, energy passive buildings or recycling of raw materials. 

To provide further illustration, the manifestation of Industry 4.0 is often exemplified through 

the concept of a smart factory.  

The next section now introduces the smart factory / smart manufacturing approach as a macro-

level concept to apply CPS in an Industry 4.0 manufacturing context. (Nagorny et al., 2017) 

Consequently, the next section now briefly describes the concept of a smart manufacturing 

systems or smart factory. 
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2.2.2 Smart factory / smart manufacturing  

Smart manufacturing systems are largely autonomous, non-hierarchical physical and logically 

capsulated systems based on the Industry 4.0 concept that form a complex manufacturing 

ecosystem. These systems are often summarized under the term smart factory. Smart factory 

systems are heterogeneous, loosely coupled, cyber-physical systems that again accumulate in a 

cyber-physical system architecture, a cyber-physical system of systems (CPSS). (Mittal et al. 

,2019, Gaham et al., 2013) 

Smart factories use information to continuously maintain and improve performance and can be 

expected to be producing a high variety and volume of data due to the interconnected nature of 

the contained CPS. (Mittal et al., 2019)  

Traditionally, manufacturing was defined as a sequence of processes through which raw 

materials were converted into finished goods for a fixed market. Smart manufacturing aims to 

integrate the properties of self-assembly to produce complex and customized products to exploit 

the new and existing markets. (Gaham et al., 2013)  

Figure 2 now illustrates the basic composition of a smart factory.  

 

Figure 2: Smart factory composition 

In an abstracted way, a smart factory network consists out of several interconnected CPS which 

are connected to the data analytics and data management centre of the factory. The data 

analytics and data management centre are now connected to the user interface and the system 

external enterprise database.  
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It can be shown that the topic of Industry 4.0 combines a wide variety of converging and 

interconnected concepts and technologies, like the smart factory approach, and challenges the 

traditional understanding of manufacturing due to merging formerly separated application 

layers in a monolithic production system into a highly interconnected, decentralized and 

dynamic system. (Trunzer et al., 2019)   

After introducing the first set of relevant concepts and key-terms to achieve a coherent basic 

level understanding, these can now be applied for the introduction of a more systematic and 

analytical approach to the literature body in the form of the Industry 4.0 Knowledge and 

Technology Framework (IKTF) developed by Freund & Al-Majeed (2020,2021).  

The IKTF is now described in detail in the next chapter to provide a structured view on Industry 

4.0 and how Industry 4.0 manifests complexity. 

3 Industry 4.0 and the manifestation of complexity  

The now introduced Industry 4.0 Knowledge and Technology Framework represents a 

systematic and analytical approach to the introduced key-terms of Industry 4.0 and the relevant 

literature and provides a structured approach to Industry 4.0. It shows how different levels of 

Industry 4.0 can be assumed to be connected and how complexity manifests as a result.  

As argued by Camarinha-Matos et al.  (2017) and Jäger et al. (2016), the concept of Industry 

4.0 has turned into a buzzword and an “everything fits” catalyser for various technologies and 

manufacturing approaches.  

The everything fits mentality, making the concept of Industry 4.0 difficult to understand, is 

additionally supported by companies and their respective managers utilizing their own 

descriptions and concepts, leading to a decreased diffusion of best practice methodologies. 

(Camarino-Matos et al., 2017) 

The presented Industry 4.0 Knowledge Framework (IKTF), as shown in the research of Freund 

et al. (2020c, 2021d), now wants to avoid an “everything fits” approach for this thesis and is 

based on the concept of the micro-meso-macro analysis framework and consequently is 

representative for the approach of micro-meso-macro analysis in managerial practice. (Dopfer 

et al., 2004)  

Based on this aim, the applied core concepts of the IKTF are now illustrated in Figure 3.  
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Figure 3: IKTF core concepts 

As shown, the already defined core-concepts of IKTF, Industry 4.0, Smart Manufacturing 

cyber-physical systems, cyber-human system and technological change now provide a basis for 

the introduction of the micro-meso-macro analysis approach of the IKTF in the next section. 

3.1 Micro-meso-macro analysis 

The micro–meso–macro analytical framework represents a proven method of analysis in the 

social sciences and economics and can greatly enhance the focus, clarity and strength of 

decision quality in many decision-making and analysis contexts. (Serpa & Ferreira, 2019)  

It proposes three categories of factors and places them in three basic levels layering them on 

top of each other. The macro-level includes the financial, political and sociocultural factors that 

influence Industry 4.0. The meso-level includes the technical and organizational factors.  

The micro-level refers to individual factors, particularly individual companies’ intention to use 

Industry 4.0 in practical economic contexts. This framework is useful in that it affords insight 

into the various factors that influence the integration and usage of Industry 4.0. It is also 

suggested that there is interaction between, and interdependence of the different factors. (Serpa 

& Ferreira, 2019, Dopfer et al., 2004) The micro-meso-macro approach also has seen 

application in the complexity science and complexity analysis, as shown by the research of 

Commendatore et al. (2017).  
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The applied micro-meso-macro framework is an adaption of the model is now illustrated in 

Figure 4.  

 

Figure 4: IKTF micro-meso-macro analysis 

Figure 4 shows, that change is the defining property of macro (i.e., the origination of new rules 

and the technological dynamics), and coordination occurs as micro and meso structures adapt 

and change according to or in combination with the macro-level dynamics.   

This makes visible that the micro level refers to the individual carriers of rules and decision 

makers in the organization and the systems they organize, and the macro level consists of the 

aggregated effect of the system dynamics of the meso level.  

The micro level is thus positioned between the elements of the meso, and the macro level is 

positioned between meso elements. (Dopfer et al., 2004) 

Based on these notions, the next section now introduces the IKTF.  
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3.2 Industry 4.0 knowledge and technology framework (IKTF)  

The IKTF can now be introduced and is based on the described concept of the micro-meso-

macro analysis framework. This is presented in Figure 6. 

Figure 5 now illustrates the basic structure of the IKTF. 

 

Figure 5: IKTF basic structure 

Figure 5 shows, that the basic structure of the IKTF follows an inverted micro-meso-macro 

logic in which the macro-development level (M) is positioned at the bottom, followed by the 

meso level in the form of the framework level (F) and the micro level in the form of the 

integration level (I) at the top with transition indicators between each level.  

Each level follows the three-step (M1-M3, F1-F3, I1-I3) one-directional logic of displaying the 

most relevant Industry 4.0 concept for this level, followed by the resulting technological 

manifestations and the specific attributes in the form of socio-economic and technological 

impacts for the level.  

When the level internal logic chain ends a transition to the next level is implemented, as 

indicated by the arrows. It is also shown that the transition from (M) to (F) implicates a 

transition from the company external macro-environment to a company internal perspective, 

while (F) to (I) remain company internal.  

The external environment consists of an organization’s external factors that affect its business 

operations in an indirect manner. Thus, the organization has no or little control over these 
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factors. That means the external environment is generally assumed to be non-controllable and 

represented by (M).  

The internal environment describes forces or conditions or surroundings within the boundary 

of the organization represented by (F) and (I). The internal environment includes all assets 

contained within the boundaries of the organization.  

Some of these assets are tangible, such as the physical facilities, the plant capacity technology, 

proprietary technology, or know-how; some are intangible, such as information processing and 

communication capabilities. Consequently, decision makers can only use company internal 

assets in (F) and (I) as resources to make decisions in response to (M).  

In a next step, all IKTF levels are presented and described in more detail.  

3.2.1 Macro development level 

The Macro Development Level (M) shall be defined as the larger and abstract level of 

understanding that stands above the other two levels of the framework.  

As already mentioned, (M) represents the company external world and the trends that impact 

Industry 4.0. (M) shall now be defined as the following level structure. 

 

Figure 6: IKTF macro development level 

Figure 6 shows, that the core concept of (M) is defined as the already described core concept 

exponential technological change, which results in the manifestations as described in Table 1.  
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Table 1: IKTF macro level manifestations 

Manifestation (M) Description  

M.2 Big Data The increased usage of networked machines and sensors generates 

high-volume data. High-tech technology, like advanced machine 

learning, is necessary that can analyze and leverage large data sets 

including real-time data that are difficult to analyze by traditional 

methods. (Lee & Bagheri, 2015, Gaham et al., 2013) 

M.2 Internet of Things 

(IoT) 

The IoT enables the communication between physical and 

Internet-enabled devices through connecting physical objects 

through the virtual realm. (Mittal et al., 2017) 

M.2 Cloud Cloud-based IT-platform serves as a technical backbone for the 

connection and communication of manifold elements of Industry 

4.0. and IoT as they, for example, allow flexible and cost-efficient 

data storage upscaling. (Rojko, 2018) 

These manifestations can now be attributed with the following properties as shown in Table 2.  

Table 2: IKTF macro level attributes 

Attributes (M) Description  

M.3 Technological 

disruption 

The combination of technologies like IoT, cloud and Big Data in 

the Industry 4.0 is disruptive and leads to significant paradigm 

shifts in manufacturing. CPS for example derive from important 

technical advances on the internet, embedded systems, computer 

science and artificial intelligence. (Morrar et al., 2017, Roblek, et 

al., 2016, Bongomin et al., 2020) 

M.3 New business 

models 

Industry 4.0 and its embedded technology diffusion progress is 

expected to grow exponentially in terms of technical change and 

socioeconomic impact and allow for new types of business 

models, for example platform business. Benefiting of such a 

transformation requires a holistic approach of value creation that 

integrates innovative and sustainable business and technology 
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solutions which modify or replace existing business models. 

(Morrar et al., 2017, Roblek et al., 2016, Thoben et al., 2016) 

M.3 Hyper-competition Industrial production is driven by a hyper-competitive rivalry for 

market shares between formerly separated industries generated 

caused by a more global, digital, and interconnected market 

environment. (Turgay & Emeagwali, 2012) 

M.3 Increasing 

complexity 

Cyber-physical system architectures are characterized by 

unprecedented scale, information flow and interconnectedness 

and are thus highly complex. Managing this complexity is a 

challenging task, as traditional analysis tools are unable to cope 

with the full complexity of CPS or adequately predict system 

behavior. One barrier to progress is the lack of appropriate science 

and technology to conceptualize and design the deep 

interdependencies among engineered systems of the Industry 4.0 

concept and the changes manifesting in the company external 

environment. (Rojko, 2017, Pilloni, 2018, Thoben et al., 2016) 

 

After describing the macro-level manifestations and attributes, the framework level can now 

be defined in detail.  
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3.2.2 Framework level 

The Framework Level (F) represents the meso level that lies between the macro and micro level 

of the framework, it represents the first, conceptual company internal reaction to (M). (F) shall 

now be defined as the following.  

 

Figure 7: IKTF framework level 

Figure 7 shows, that the concept of (F) is defined by the company internal concept Industry 4.0, 

which results in the already described manifestation smart factory and the attributes described 

in Table 3. 

Table 3: IKTF framework level attributes 

Attributes (F) Description  

F.3 Self-organization Manufacturing processes will be interconnected across corporate 

boundaries via CPS. These changes in supply and manufacturing 

chains require greater decentralization from existing traditional 

manufacturing systems. This results in a decomposition of the 

classic, centralized production hierarchy and a paradigm shift 

toward decentralized self-organization. (Lee & Bagheri, 2015, 

Pilloni, 2018, Roblek et al., 2016) 

F.3 Context awareness Context awareness is an important intelligent characteristic of a 

smart factory and its underlying CPS, and it is a combination of 

the following attributes: Awareness of identity, location, status, 

time. (Horvarth & Gerritsen, 2012, Bongomin et al., 2020)) 
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F.3 Intelligent control, 

artificial intelligence 

With the help of intelligent technology and context awareness, a 

CPS is expected to be able to change its actions based on its own 

experience and is thus self-learning and capable of evolutionary 

self-adapting to external changes. If it possesses intelligent control 

technology, it can make use of, for example, artificial intelligence 

techniques, like machine learning, to control its mechanisms via 

decision algorithms and is able to perform more reliable and 

accurate in a less stable environment. (Thoben et al., 2016, Mittal 

et al., 2019) 

F.3 Big Data analytics The collection and comprehensive evaluation of data from many 

different sources like production equipment and systems as well 

as enterprise and customer-management systems will become 

standard to support real-time decision making. (Pilloni, 2018, 

Morrar et al., 2017) 

F.3 Cloud & simulation With Industry 4.0, organization needs increased data sharing 

across the sites and companies, achieving superior reaction times 

in milliseconds or even faster. This leads to the idea of having the 

connections of different devices to the same cloud to share 

information to one another. This can be extended to set of 

machines from a shop floor as well as the entire manufacturing 

system. Simulations will be used more extensively in plant 

operations to leverage real-time data to mirror the physical world 

in a virtual model via double representation. This includes 

machines, products, and humans, reducing machine setup times 

and increasing quality. Decision making quality can also be 

improved with the help of simulations, as possible system 

trajectories can be featured into the decision-making process. 

(Rojko, 2017, Pilloni, 2018, Xu & Ling, 2018, Bongomin et al., 

2020) 

F.3 Complex industrial 

ecosystem 

Designing Industry 4.0 systems involves high complexity, which 

mainly originates from the high dimensionality and the internal 

complexity of components. As, for example, the IoT scales to 
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billions of connected devices – with the capacity to sense, control, 

and otherwise interact with the human and the physical world – 

the requirements for dependability, security, safety, and privacy 

grow significantly and must be managed accurately. (Savastano, 

et al., 2019, Bongomin et al., 2020) 

 

After describing the framework-level manifestations and attributes, the integration level can 

now be defined in detail.  

3.2.3 Integration level 

The Integration Level (I) represents micro level and the company internal reaction to (F). (I) 

shall now be defined as the following.  

 

Figure 8: IKTF integration level 

Figure 8 shows, that the concept of (I) is defined by the already described company internal 

core concept cyber-physical system architecture, which results in the manifestations cyber-

physical system and cyber-human system and the attributes shown in Table 4.  

Table 4: IKTF integration level attributes 

Attributes (I) Description  

I.3 Interoperability Interoperability is the characteristic due to which, system units are 

able to exchange and share information with each other. With the 

help of networkability, systems can collaborate in different process-

related aspects, and for this collaboration, they have to allow each 

other to share and exchange information. Similarly, distributed 
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systems allow the information and data of one system to be accessed 

by other systems in the network. (Nagorny et al., 2017, Gaham et al., 

2013) 

I.3 Heterogeneity Heterogeneity considers the diversity and dissimilarities in the units 

and components. (Thoben et al., 2016, Gaham et al., 2013)  

I.3 Modularity Modularity is the property of a system by which a unit can be 

decomposed into components that can be recombined to form 

different configurations. (Mittal et al., 2019, Gaham et al., 2013) 

I.3 Compositionality Compositionality is the property that deals with the understanding of 

the whole system based on the definition of its components and the 

combination of the constituents. (Mittal et al., 2019, Gaham, et al., 

2013) 

I.3 Increasing 

complexity 

CPS emerge through networking and integration of embedded 

systems, application systems, and infrastructure, enabled by human 

machine interaction. In comparison to conventional systems used for 

production such a system is expected to be increasingly more 

complex. (Thoben et al., 2016, Camarinha-Matos et al., 2017) 

After presenting all levels of the IKTF in detail, it is now possible to present the complete IKTF 

framework. 
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3.3 IKTF: complete framework 

The complete IKTF framework results and is displayed in Figure 9. 

 

 

Figure 9: IKTF complete framework 

The IKTF shows, that decision makers must acquire sufficient knowledge in the macro-level, 

with low context specificity (M) about the concept, manifestations and attributes of exponential 

technological change and its disruptive effects on the financial, political, and socio-economic 

external environment of the company.  

This can be achieved through understanding analysing the manifestations of Big Data, Internet 

of Things and Cloud and their attributes of technological disruption, new business models, 

hyper-competition and increasing complexity in the individual corporate context.  

A conceptual response through the utilization of company assets in the internal framework level 

(F) can then be formulated as a reaction by analysing the applicability of the concept of Industry 

4.0 with its manifestation smart factory and the attributes of self-organization, context 

awareness, intelligent control, artificial intelligence, Big Data analytics, cloud & simulation and 

the complexity of industrial ecosystems under the resource constraints and macro influence 

factors of the individual company.  
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If this is achieved an integration approach can be formulated by analysing the applicability of 

cyber-physical system architectures, their manifestations cyber-physical systems and cyber-

human systems with the attributes of interoperability, heterogeneity, modularity, 

compositionality and increasing complexity under the identified constraints on the framework 

level and macro level.  

This makes visible that a successful integration of Industry 4.0 is an extensive, difficult to 

achieve task which requires extensive knowledge, reflection, and insights on all levels of 

specificity.  

According to the IKTF no level of the framework can be skipped or only partially understood. 

Only a comprehensive understanding of the framework levels and the successful application on 

the individual corporate context allow a successful integration of Industry 4.0.   

This highlights the importance of informed, strategic and analytical decision making on all 

corporate areas in the context of Industry 4.0 integration.  

3.4 Increased system complexity as a conclusion to the IKTF 

Next to the mentioned aspects, it is also shown by the IKTF that complexity plays a major role 

on the micro, meso and macro level of the framework.  

Complexity in the context of the IKTF has thus to be regarded as one of the most essential 

attributes of Industry 4.0. The following Table 5 now provides a short overview of the resulting 

complexity attributes in the IKTF. 

Table 5: Complexity as a conclusion to IKTF 

Level Complexity  Description 

Macro (external) Increasing complexity  Exponential technological change leads to 

the emergence of new and more complex, 

interconnected technological environment.  

Framework 

(internal) 

Complex industrial 

ecosystem 

The enabling of the smart manufacturing 

approach leads to possibility to implement 

and utilize the potency of highly complex 

industrial ecosystems. 

Integration 

(internal) 

Increasing system 

complexity  

Highly complex industrial ecosystems are 

attributed with a complex CPS architecture.  
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The following Figure 10 now summarizes the meaning of complexity for the firm in an Industry 

4.0 context according to the IKTF. 

 

Figure 10: Components of Industry 4.0 integration 

Based on these insights it can now be stated that the IKTF example shows that the successful 

integration of Industry 4.0 is dependent from many layers of understanding which are 

sequentially connected on the micro-meso-macro levels of analysis.  

It is implicated that the integration of Industry 4.0 is accompanied by a large variety of research 

and development issues, for example the management of system complexity and the 

development of universally applicable reference models and foundational definitions of 

fundamental concepts for Industry 4.0.  

To summarize the implications introduced by the IKTF, the concept of Industry 4.0, represents, 

in theory, a transformative, evolutionary advancement from traditional embedded systems in 
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manufacturing to highly complex smart industrial production systems defined by autonomous, 

interconnected CPS.  

A successful transformation is expected to allow the paradigm change from a standardized 

mass-production system to a customizable, flexible, cost-efficient and demand responsive 

production that can efficiently fulfil the requirements of global, volatile, and hyper-competitive 

market environments. 

Even though the vision and the concept of Industry 4.0. are already well-described on a 

theoretical level, several unsolved challenges, like the challenge of complexity, on the 

technological, integrative/ managerial, and general level of understanding remain to be better 

understood and captivated.  

These challenges effectively inhibit a successful integration of the concept of Industry 4.0 in 

applied manufacturing systems.  

It can therefore be concluded that the concept of Industry 4.0 while still not fully developed, is 

ambiguously connected to a variety of other challenging meta-concepts or sub-concepts, like 

the increasingly difficult to conceptualize and manage complexity dynamics of the CPS 

components of current and future industrial manufacturing systems.  

Thus, the application of complexity on the manufacturing process in general and therefore the 

utilization of different CPS combinations across the value chain in the context of Industry 4.0 

enables great capabilities for innovation, within and across existing and future fields of 

application.  

In contrast to the potential of CPS it is well understood that already current systems are 

stretching the limits in terms of development of cost-efficient and trustworthy systems. It can 

be stated that today´s CPS system design is unable to support the level of complexity, 

scalability, security, safety, interoperability, and flexible design and operation that will be 

required to meet future needs. (Törngren & Sellgren, 2018) 

This statement is supported by Cotrino et al.  (2020) who identify in their research a significant 

strategic gap regarding the development of strategies to deploy Industry 4.0 technologies, 

especially in the context of small-medium enterprises. 

This leads up to the conclusion that future CPS can be expected to be of unprecedented 

complexity and obtaining an understanding of the meaning of complexity in the context of CPS 
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is an important asset to assure CPS functionality in the many CPS application fields that are 

vital for society, as well as business, and rely on optimal and safe CPS performance.  

One barrier here can be defined as the circumstance that an assessment of complexity cannot, 

and thus is not, typically made in industry at the design phase as managers and other key 

stakeholders require practical and efficient methods for measurement, which are often not 

available to them. (Törngren & Sellgren, 2018) 

In the terms of strategic management of complexity there is also a strong indication in the IKTF 

that the value of complexity management strategies increases as the complexity of the managed 

manufacturing system increases.  

The presented line of arguments makes visible that it is now imperative for industry decision-

makers to obtain methods and tools of strategic planning addressing the management of 

complexity in industrial systems, like CPS system architectures, which is line with the research 

objectives and the aim of this thesis.  

Consequently, the topic of complexity is introduced in the section to follow as a starting point 

to develop a comprehensive understanding of the topic of strategic complexity management for 

industrial systems. 
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4 Complexity  

This chapter now introduces the topic of complexity in the context of industrial systems. This 

is achieved to providing a brief overview over the terms complexity science, the process of 

defining complexity, scientific models based on complexity science and the concept of 

emergence. Consequently, the next section now discusses the topic of complexity science. 

4.1 Complexity science  

The science of complexity is often said to be an integral part of a new unifying theory of science 

that breaks with the traditional or “classical” Newtonian mechanistic scientific method of 

analysing, isolating, and gathering complete information about a phenomenon in the form of a 

model of the object of research. (Wolfram, 2002) 

In this light Homer-Dixon (2011) postulates the thought that a shift is necessary away from 

seeing the world as composed of simple machine to seeing it composed as of complex systems.  

Heylighen et al. (2006) state in this context that the traditional scientific method, which is based 

on analysis, isolation, and the gathering of complete information about a phenomenon, is 

incapable to deal with such complex interdependencies.  

This shows that the idea of the world as complex systems may allow to improve the 

understanding of complex and hard to predict systems that spread over various scientific 

disciplines, like the human brain in the field of biology, industrial systems engineering and 

management or the world economy in the field of the social sciences, indicating a strong 

interdisciplinary nature of thinking. (Ladyman et al., 2013, Mesjasz, 2010, Heylighen et al., 

2006, Frenken, 2006, Phelan, 2001, Homer-Dixon, 2011) 

The idea of complex systems and their underlying definitions of complexity are thus becoming 

more important in both natural and social sciences. 

4.2 Defining complexity  

Even though the importance of understanding complex systems and their influences on various 

disciplines of science is undenied by many scientists there is no definitive consensus on a 

concise definition of a complex system. Consequently, various and differing definitions of the 

terms “complexity” result and coexist and the conceptual framework of complexity is still 

lacking in applicability and precision and often either loses itself in mathematical intricacies or 

philosophical vagueness. (Ladyman et al., 2013, Heylighen et al., 2006, Edmonds, 1995)   
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In this context Edmonds (1995) already introduces the thought that many complex systems are 

in practice intractable which allows the assumption of all conducted theories to be inapplicable 

in practice and leads to the thought of the debate about complexity being a purely philosophical 

and non-practical issue.  

Therefore, various non-conclusive attempts exist to define the role of complexity in science and 

relevant research attempts often focus on collecting, summarizing, and discussing the various 

attempts established over time, as shown by the work of Ladyman et al. (2013), Mesjasz (2010) 

and Heylighen (2007). 

Due to the multitude of definitions the question arises if there is a single natural phenomenon 

of complexity or at least a strong common denominator of the type of a second law of 

thermodynamics that can be subjected to a specific scientific approach, coined as “a new kind 

of science” by Wolfram (2002), or if there are several types of complexity coexisting that may 

not share a common nature.  

Voices critical of the idea of a common denominator like Mesjasz (2010) argue that the attempts 

of scientist to define complexity results in a” complexity of complexities”, therefore relating to 

the impossibility to define an overarching universal theory of complexity.  

This circumstance additionally relates to the thoughts of Bechtel & Richardson (2000) and 

Ladyman et al. (2013), who articulate that the analysis of complex systems requires the 

consideration of multiple perspectives.  

They conclude that theoretical insights of already established analytical frameworks in the field 

of complexity science should serve as a starting point for the development of future explorations 

and as a source of creativity and not as the determining path for possible explorative directions.  

This notion strongly relates to the idea that it is necessary to develop an “intuition” for what 

complexity could be through studying complex systems. (Homer-Dixon, 2011) 

Based on these thoughts, the next section now introduces a general definition of complexity for 

the purpose of this thesis. 

 

 

 

 



 28 

4.2.1 A general definition of complexity  

In general, complexity shall now be defined according to Sherman & Schultz (1998) as a 

preliminary baseline definition at this point in the thesis before discussing industrial systems as 

a complex system: 

“Complexity refers to the condition of the universe which is integrated and yet too rich and 

varied for us to understand in simple common mechanistic or linear ways. We can understand 

many parts of the universe in these ways, but the larger and more intricately related phenomena 

can only be understood by principles and patterns – not in detail. Complexity deals with the 

nature of emergence, innovation, learning and adaptation.” 

Consequently, complexity shall be regarded for this thesis as a fundamental property of every 

dynamical system, which, in principle, can be assumed to be understood, measured, and 

managed.  

This allows to conclude that, if complexity can be managed by human activity, it becomes a 

strategic asset of the system for the decision-maker managing the system as a logical 

consequence.  

Therefore, this thesis does refute the stance that complexity science and related methods, 

especially in the managerial sphere, are non-applicable in theory and thus without value in 

practice.  

Consequently, this thesis thus assumes the stance that complexity is to be regarded as a strategic 

asset of any industrial system that can generally be managed and leveraged for a given definition 

of managerial success by the decision-maker.  

Reversely and as a logical consequence of this proposition, complexity must be become a 

potential threat for any system and managerial success if it is not adequately managed by the 

decision-maker.  

Based on this definition and to provide a wider context, the next section now illustrates and 

discusses the topic of scientific models and the “shift away from” classical Newtonian 

mechanics and analysis through the assumptions of complexity science. 
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4.3 Scientific models based on the assumptions of complexity 

science  

The described shift away from “classical” science is expressed by Downey (2012) as a gradual 

shift in the criteria scientific models are judged by.   

These assumptions lead, according do Downey (2012) and Knyazeva (2020), to the following 

evolutionary shift in the establishment of scientific models along two central axes of analysis:  

• Equation-based, positivistic and reductionistic: evolves to dynamic, holistic, 

potentially simulation-based.  

• Analysis through mathematical deduction: evolves to pragmatic or computation 

based. 

Both axes have a significant impact on how models based on complexity science generate 

knowledge, as they now serve in a more explanatory instrumentalist function instead of the 

“classical” more realist positivistic predictive function of traditional scientific models. 

(Knyazeva, 2020) Such models are already well represented by Schelling´s (1971) dynamic 

models of segregation (Schelling, 1971, Hatna & Benenson, 2011) or by cellular automata 

models (Wolfram, 2002) and have had a significant impact on their respective fields of research 

in the last decades. What these models have in common is that they are built on the twin-theme 

assumption that simple behaviours can produce complexity, as for example illustrated by 

Wolfram´s (2002) cellular automata or Schelling´s model of segregation, while complex or 

even chaotic behaviours paradoxically produce simplicity, as showcased by the research of 

Steward & Cohen (2000) It can now be stated that complexity science expands on the 

reductionistic, equation-based Newtonian framework by striving to not only understanding the 

parts that contribute to the whole but by understanding the nature and dynamics of how each 

part interact with all the other parts and emerges into a new meta-entity with its own behaviour.  

It is thus aiming to achieve a more comprehensive and complete understanding of the whole 

because of the holistic nature of the scientific inquiry. Under these assumptions, individual 

causal research concerning individual components in complex systems is assumed to be near 

futile and comprehensive, holistic approaches are required to account for the unpredictability 

found in complex systems. (Westhorp, 2012) In this light, new theoretical models that reflect 

“real-life complexity” of researched systems are being called for by researchers. (Haslberger, 

2005, Turner & Baker, 2019, Knyazeva, 2020) 

The next section now briefly illustrates how traditional complexity models, like the Schelling 

model, are structured and function in principle to reflect the introduced notions.  
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4.3.1 How complexity models work  

In the Schelling model, agents occupy cells of rectangular space. A cell can be occupied by a 

single agent only. Agents belong to one of two groups and can relocate according to the fraction 

of friends (i.e., agents of their own group) within a neighbourhood around their location.  

Figure 11 now illustrates the original Schelling model. 

 

Figure 11: Schelling model basic structure (Hatna & Benenson, 2021) 

Figure 12 now illustrates the Schelling model when used for computer simulation and how it 

manifests segregation effects in a population represented by black and white squares. 

 

Figure 12: Segregation in the Schelling model (Hatna & Benenson, 2021) 

Figure 13 now illustrates the Schelling model when used for simulation of segregation 

behaviour reflected by ethnic residential patterns over time in real world cities, again 

represented by black and white squares. 
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Figure 13: Real world segregation in the Schelling model (Hatna & Benenson, 2021) 

As shown in Figure 13, the Schelling model therefore allows to illustrate how individual 

incentives and individual perceptions of difference can lead collectively to complex urban 

segregation phenomena, based on the application of simple rules. (Hatna & Benenson, 2011) 

Preiser & Woermann (2018) add to these notions, that the necessary reductions applied to the 

system under study through modelling lead to the impossibility of objective knowledge of 

complex systems as these necessary reductions are subjectively defined for the instrumental 

purpose of the model. 

These assumptions manifest in different concrete modelling approaches for complex systems 

like discrete-time models, continuous-time models, cellular automata, continuous field models, 

agent-based models, network models or heuristic approaches. (Sayama, 2015, Wolfram, 2002, 

Knyazeva, 2020) 

After exemplifying how complexity models are defined and function, the next section covers 

another central topic to complexity by defining the term emergence. 
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4.4 Emergence   

Emergence is central topic in complexity, often as philosophical as it is of practical importance. 

As the topic of emergence can be discussed exhaustively in several areas, strong individual 

challenges remain to be answered. In response to these circumstances, a brief discussion of 

emergence as a property of complex systems shall be introduced in this section.  

Emergence is a property of a complex system resulting directly from the system’s evolution 

and occurs independently. Emergence means “to dive out” or to come out of the depths.  

In the context of complex systems, emergence relates to the apparition of new system behaviour 

due to the collective behaviour of the parts, as opposed to the individual behaviour of each part, 

and the system’s response to its environment. Emergence is an important characteristic of 

complex systems theory as it allows the identification of new opportunities. (McCarthy et al., 

2000, Mainzer, 2004, Mittal et al., 2018, Fromm, 2004) 

This results in the general concept of “more is different”.  

For example, emergence occurs in natural systems when water as a complex system of 

molecules changes spontaneously from a liquid to a frozen state at a critical temperature of zero 

Celsius.  

Another illustrative example would be the behaviour of a flock of birds, which is generally 

unexplainable by simply analysing a single bird´s behaviour.  

Anderson (1972) already summarized the idea of emergence by stating that a change of system 

scale often causes a qualitative change in system behaviour. He provides the following 

examples:  

“One water molecule is not fluid, 

One gold atom is not metallic, 

One neuron is not conscious, 

One amino acid is not alive, 

One sound is not eloquent.” 

 

To further define the concept of emergence in more detail it is possible to introduce the relevant 

main properties of emergence to narrow down on how emergence can work.  



 33 

Based on the work of Stepney et al. (2006) the following main properties of emergence in a 

system can now be coherently introduced: 

• Far from equilibrium: The system is an open far from equilibrium dissipative process, 

that is, with a constant flow of matter, energy, or information (entropy) through it. It 

exists in a context, or environment, which provides the material from which it organises 

its relatively stable pattern of existence. The properties of the system depend not purely 

on its own organisation, but also on this context, and the boundary (or initial) conditions. 

• Levels: The system has different levels, exhibiting different length- and timescales. The 

dynamics of the lower levels exhibits attractors. These attractors are identified with 

higher level emergent properties: extended low-level processes become high level 

atomic states, with their own dynamics. 

• Languages: The system has a low-level language L, used to describe the 

implementation, cast in terms of the local components and their local interactions, and 

a high-level language H, used to describe the resulting system. H employs concepts 

distinct from those of L, and, is cast in terms of more global concepts (concepts 

encompassing larger spatial or temporal scales). 

Based on Mittal et al. (2018) emergence can now be fundamentally defined as  

Emergent behaviour (System) = components + interactions + higher order effects 

Based on this definition the next section now introduces and briefly describes different types of 

emergence.  
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4.4.1 Types of emergence 

Mittal et al.  (2018) identify four types of emergence. These can be defined as the following: 

• Simple emergence: Refers to simple systems, cause-and-effect relations are 

perceivable, repeatable, and predictable. The emergent property is readily predicted by 

simplified models of the system. 

• Weak emergence: Refers to complicated systems, the cause-and-effect chains can be 

understood by reductionism and detailed analysis. Emergent behaviour in this system 

category is reproducible and consistently predictable. The emergent property is 

reproducible and consistently predicted with simulation. 

• Strong emergence: Refers to complex systems, the cause-and-effect relations are only 

coherent in retrospect and usually do not repeat. Although the behaviour is consistent 

and explainable within the system, it is not reproducible. The emergent property that is 

consistent with known properties but not reproducible in the simulation. It is 

unpredictable and inconsistent in simulation. 

• Spooky emergence: Refers to complex systems, spooky emergence is not predictable 

due to the absence of a system model that can explain the observation. The emergent 

property is inconsistent with the known properties of the system. 

This now allows to conclude that complex systems are expected to be mainly impacted by 

strong or spooky emergence. (Mittal et al., 2018) 

This notion is consistent with Ashby (1991) and Steward & Cohen (2000) who state that the 

main source of emergent behaviour is lack of knowledge about the system, implicating a strong 

human factor of how different human minds perceive and understand the complexity of a 

system.  

In conclusion, it can be stated that the embracement of the complexity perspective involves the 

shift of emphasis from how something works to how something behaves. (Wade & Heydari, 

2014) 

To provide further information on the practical relevancy of complexity the next chapter now 

introduces the topic of complexity in business by presenting and discussing the concept of 

VUCA.  
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4.5 Defining complexity in the business environment 

According to Turner & Baker (2019) and Knyazeva (2020) and as shown by the IKTF in 

Chapter 3, the implementation of new technological innovations causes the intensification and 

manifestation of complexity in business environments.  

In this line it is stated that organizations need to manage this growing complexity through the 

adoption and diffusion of complexity science in a managerial theory, a perspective of analysis, 

in which organizations are viewed as emergent, complex systems that cannot be observed using 

traditional analytical linear methodologies. (Turner & Baker, 2019, Knyazeva, 2020) 

According to Bennet & Lemoine (2014), Potsangbam (2017), Krawczynksa-Zaucha (2019), 

Milar et al.  (2018) and Liang & Gou (2021) decision-makers face in this context surging 

increases in volatility, uncertainty and overall business complexity leading up to more 

emergent, unstable, and therefore unpredictable business environments, which are named 

VUCA environments.  

Based on Mohanta et al.  (2020) it is now possible to describe the dimensions of VUCA in more 

detail.  

• Volatility: Indicates extreme and rapid fluctuations in business environment. The pace, 

the volume and the magnitude of change can define as the degree of turbulence it 

creates, in the business or industrial environments. 

• Uncertainty: The lack of knowledge about the situations causes uncertainty in any field 

which results an unpredictable future and affects the long-term grown of that 

organization.  

• Complexity: With the rapid industrialization, complexity arises due to the 

interconnected parts, networks and procedures within the organization in combination 

with the external business environment. Both might even be unidentifiable and 

contradicting with each other and lead to complexity in decision-making.  

• Ambiguity: If the problem statement lacks clarity, confidence in probability 

assessments and the diversity of potential results in which the outcome cannot be clearly 

described then it is termed as ambiguity in business environment.  

After defining VUCA, the next section now further expands on the importance of VUCA for 

management.  
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4.5.1 VUCA and the increasing importance of complexity science for 

management 

deMattos et al. (2012) describe three trends that are contributing to the increasing importance 

of complexity science for management: 

• Change: Changes are taking place for both organizations and governments in part due 

to globalization, intensive local and global competition, process re-engineering, 

workforce diversity, quality improvement, and continual exponential technological 

innovation. 

• Information revolution: The productivity of information processes is increasing, and 

costs are declining (e.g., information retrieval, processing, and storage). 

• Companies fail: Organizations are dissolving at alarming rates. 

The components of the VUCA-world thus represent the main challenges for doing sustainable 

business and designing strategy in the modern business world. It also gets visible that they 

strongly relate to the challenges generated by Industry 4.0.   

They are consequently adopted by business leaders and decision-makers in the manufacturing 

industries to describe and address the rapid changes of the business environment and to capture 

and benefit of overcoming challenges and newly arising opportunity.  

VUCA is furthermore in stark contrast to classical management theory, since Taylor’s scientific 

management theory emphasizes that optimal scientific management should be based on a 

Newtonian conception of clearly defined laws, regulations, and principles which connect cause 

and effect in a mechanistical manner. (Dean, 1997)   

This is reflected in the work of Aritua et al. (2009) who have challenged the discipline of 

management to draw on research from complex, dynamical systems and from complexity 

theory to gain new insights into developing new techniques and methodologies.  

In the context of industrial systems, the implications of the VUCA-world for business and 

strategy can be applied to the already described rise of CPS in Industry 4.0. (Mohanta et al., 

2020) 

Based on the introduced statements, Figure 14 now introduces a slightly modified, complexity 

centred, definition of VUCA for this thesis. 
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4.5.2 A complexity centred definition of VUCA 

Figure 14 shows that, VUCA shall still be defined by volatility, uncertainty and ambiguity and 

complexity as the core challenges to decision-making in modern and future business 

environments.  

In the provided figure the term complexity is now centred at the middle of all other terms since 

the complexity shall be regarded as the central aspect and challenge to be overcome to achieve 

more efficient and effective decision-making. 

Uncertainty, ambiguity, and volatility are thus regarded as derivates or symptoms of complexity 

for this thesis. 

It can also now be argued that uncertainty, ambiguity, or volatility alone may not be necessarily 

sufficient to make a situation complex in way that it causes strong or spooky emergence. 

 

Figure 14: Complexity centered VUCA definition 

Nevertheless, it can be established that individual VUCA aspects on their own can already lead 

to overwhelming challenges, a combination of VUCA aspects or the presence of all aspects 

combined can lead to complex business problems that are nearly unsolvable for decision-

makers by traditional means of analysis. (Krawczynksa-Zaucha, 2019, Milar et al.  2018)  

The next section now defines the requirements for effective strategy in a VUCA environment. 
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4.5.3 Requirements for effective strategy in a VUCA environment 

According to Busulwa et al.  (2018) and Knyazewa (2020) decision-makers must implement 

the following key aspects to enable strategy in a VUCA environment. 

• Clear understanding: Decision-makers need to get a clear understanding of the 

different dimensions of complexity and develop the ability to diagnose the dimensions 

of complexity that are at play.  

• Right type of strategy: Decision-makers must ensure that their organisations pursue 

the right types of strategies for their individual environment.  

• Effective strategy execution: Decision-makers must ensure that their organisations use 

the most effective strategy execution processes to realise those types of strategies.  

These aspects underline the importance of developing VUCA strategies for decision-makers in 

complex environments that synergize different complexity dimensions.  

It can be concluded that VUCA brings challenges to many areas of management, including 

design innovation, organizational structure, strategic planning, ecosystem management, 

manufacturing, talent management or strategic partnership. (Liang & Gou, 2021)  

VUCA furthermore underlines the increasing importance of the application of complexity 

science in industrial engineered systems management to overcome the current and upcoming 

challenges decision-makers face. (Mohanta, 2020)  

It is furthermore shown that the capability to identify complexity dimensions and to derive 

effective strategies based on the identified complexity dimensions again underlines the 

relevance of strategic complexity management. (Knyazewa, 2020) 

In the light of the statements established, the next chapter now introduces the topic of 

complexity in industrial manufacturing systems by providing definitions for different types 

manufacturing complexity, complexity symptoms and assessment methods. 
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5 Defining complexity in industrial manufacturing 

systems 

This chapter now introduces the concept of manufacturing complexity. To achieve this, an 

overview of the current body of literature is provided in three areas: 

1. Complexity types 

2. Complexity symptoms  

3. Complexity assessment methods 

Consequently, the next subsection describes different types of manufacturing complexity 

relevant for this thesis. 

5.1 Types of manufacturing complexity  

Complexity in manufacturing systems can be generally defined within two domains: static and 

dynamic, as shown in Figure 15. (Frizelle & Woodcock, 1995, Alkan et al., 2018)  

 

Figure 15: Domains of complexity in industrial systems 

Based on Alkan et al. (2018), the showcased complexity types are defined in more detail. It is 

important to mention that the definitions focus on complexity of design not complexity of use. 

• Static / structural complexity: Represents time independent characteristics of a 

manufacturing system and focuses on types of sub-systems and strength of 

interconnections. 

• Dynamic complexity: Represents system’s operational characteristics and involves 

aspects of time and randomness, dynamic complexity is often associated with a system 

deviating from its performance expectations due to the unpredictability. 

The next section now elaborates on objective and subjective sources of complexity in 

manufacturing systems.  
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5.2 Objective and subjective complexity in complex 

manufacturing systems 

Based on Törngren & Grogan (2018) dynamic and static complexity in CPS manufacturing 

systems can furthermore be defined as either a subjective or objective complexity source.  

These definitions differentiate between the objective, technical dimension of complexity that is 

varying between mechanical (reducible or decomposable) and systemic (irreducible) problem 

types which is assumed to be perceived by an omniscient designer.   

On the other hand, there is the subjective or social dimension of decision-making in the context 

of the technical dimension of a system which is highly dependent on the non-omniscient 

perceiver, namely the strategic decision-maker.  

The most complex problems consequently incorporate systemic-pluralistic contexts where 

technical and social sources complicate decision-making due to an inability of the decision-

maker to understand and link inter-dimensional cause-and-effect relations and to create a 

strategic vision of complexity. (Knyazeva, 2020)  

This situation is also often combined with a general lack of local, causal control over the 

decision-making process by the decision-maker, leading up to a lack of control in the decision-

making process. (Jackson & Keys, 1984, Törngren & Grogan, 2018, Knyazeva, 2020) 

Based on Törngren & Grogan (2018) and Wade & Heydari (2014) objective and subjective 

sources of complexity are now further defined: 

• Objective: Represents an inherent amount of work or information in a system 

independent of the people involved. They represent sources of effort for a hypothetical 

omniscient designer to achieve desired system functions with perfect knowledge. Thus, 

complexity is regarded as ontological. 

• Subjective: Subjective sources of complexity consider the challenges to interpreting, 

understanding, and anticipating design as a human activity rather than an omniscient 

one. Thus, complexity is regarded as epistemological.  

Based on these notions and according to Ameri et al. (2008) it is useful for design engineers to 

be equipped with objective, quantifiable measures of complexity aiding in rational design 

decision making. The measures in this regard are seen as objective in that they are dependent 

not on an engineer’s interpretation of information, but rather on a model generated to represent 

the system to be analysed. (Ameri et. al., 2008)  
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Contrasting this aim, in practice there are many different representations of system complexity 

existing to describe and analyse the complexity of a given manufacturing system, underlining 

the hypothetical nature of objective complexity, and illustrating the highly subjective 

component of system complexity analysis. (Törngren & Grogan, 2018, Schöttl & Lindemann, 

2015, Wade & Heydari, 2014) This notion is supported by Suh (2001) who states that 

complexity can be regarded as a relative measure relating to what is the desired objective against 

what is known and unknown.  

Figure 16 now illustrates this.  

 

Figure 16: Different representations of system complexity 

Figure 16 shows that different representations portray different views of manufacturing system 

complexity (C) in relation to the respective system and the underlying system target function. 

CA, CB, and CC now represent the complexity of the system with respect to representation A, B, 

and C. The question that now arises is whether these complexity measures are correlated with 

each other or not. If these measures are assumed to be correlated it is possible to argue that a 

holistic perspective might be beneficial to analysis meaning that it is imperative to study 

complexity of a single system from multiple perspectives and perceived complexities. (Ameri 

et al., 2007, Knyazeva, 2020, Schöttl & Lindemann, 2015) This stance is well summarized by 

Luhmann (2013) who states that if an observer is introduced one always faces the questions of 

who says a particular thing, and who does something, and from which system perspective the 

world is seen in a particular way. The introduced notion of varying and different complexity 

representations of a system are additionally supported in practice by Rouse (2003) and Schöttl 

& Lindemann (2015), who observe that the degree by which a system is perceived as 

complicated, or complex do vary with the level of education of the system engineer.  

After introducing the different concepts of manufacturing complexity, it is now possible to 

discuss the symptoms of complexity in industrial manufacturing systems in the next section.  
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5.3 Symptoms of complexity in industrial manufacturing systems  

The following categories of complexity symptoms in industrial manufacturing systems are 

described in this section:  

• Symptoms observed from nonlinear behaviours 

• Symptoms observed via operational uncertainties 

• Symptoms observed from the physical situation 

• Symptoms observed from human perceptions 

Consequently, the symptoms observed from nonlinear behaviours are now described. 

5.3.1 Symptoms observed from nonlinear behaviours  

The most typical feature of complex systems is the existence of nonlinear behaviours. In the 

literature, several studies perceive complexity in the existence of symptoms associated with 

unstable dynamic phenomena whose identification often require scanning of production records 

over a reasonable time interval. (Alkan et al., 2018, Frizelle & Suhov, 2008) 

Based on the research of Gahrbie (2013) these symptoms are described in more detail: 

• Repeating patterns: The existence of repeating patterns observed in the long-term 

behaviours of production systems. In this context, long-term behaviours indicate the 

interaction and evolution of dynamic system parameters which are defined by 

geometrical structures generated through phase space reconstruction methods. 

• Sensitivity to initial conditions: Systems exhibiting large deviations in meeting due 

dates or performance goals by even small changes in initial conditions or production 

control parameters can be considered as complex. This symptom is a result of both static 

and dynamic complexity resulting from the factors such as production delays, multiple-

feedback loops, and external and internal disturbances. 

• Emerging dynamic behaviours: Dynamic behaviours emerging from the coupling 

between the intrinsic configuration of the system and uncertainty linked with system’s 

operations. This symptom reflects static complexity occurring due to structural 

alterations (e.g., adding/removing equipment). 

The next section now describes symptoms observed via operational uncertainties.  
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5.3.2 Symptoms observed via operational uncertainties 

An increase in complexity results in various operational problems including batch-and-queue 

decision-making inefficiency, lack of process synchronisation, increased lead and ramp-up 

times, and performance fluctuations. (Alkan et al., 2018, Frizelle & Woodcock, 1995, Frizelle 

& Suhov, 2008) 

Based on Alkan et al. (2018) the introduced symptoms can be described as the following: 

• Increased amounts of information: This symptom reflects the inherent effort of the 

process for producing the required quantity and kind of products in a certain time 

interval and it arises due to the various factors, including increased number of parts, 

operations and machines, increased sequence flexibility, and increased resource sharing. 

In this context, information content is linked to the uncertainty associated with the 

probability of an entity being in a predefined state. 

• Operational dynamism: Is occurring due to several factors such as: part reject, rework, 

absenteeism, and resource breakdowns, etc. Accordingly, systems in which it is difficult 

to monitor their operational status, can be considered as complex. In this context, 

complexity is estimated by analysing the deviation between observed and scheduled 

resource states (in other words, the probability of a resource being out of schedule) 

which is captured through real-time process observations taken at regular intervals. 

• Uncertainty in handling increased product variety: Uncertainty in handling 

increased product variety which is often linked to the risk factors associated with 

operator’s choices of tools, fixtures, and assembly procedures. In this context, 

complexity is referred as the averaged vagueness in a random process of managing a 

number of product variants, which depends on the sum of the introduced varieties at a 

workstation and the conveyed varieties from all the upstream workstations. 

• Uncertainty associated to the predictability of manufacturing operations: This 

symptom is a consequence of dynamic complexity occurring due to the factors such as: 

incompleteness of information, disturbances, and uncertainties inherent to the 

manufacturing environment, and captured by analysing the prediction efficiency of 

manufacturing processes and by analysing unpredictability of manufacturing system 

performance. The last symptom in this class is the existence of manufacturing flow 

turbulence arising due to the interactions among system performance, lead time, process 

structure and manufacturing system configurations.  

The next section now describes the symptoms observed from the physical situation. 
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5.3.3 Symptoms observed from the physical situation 

Based on the research of Frizelle & Suhov (2011) and Espinoza et al. (2012) complex system 

theory describes a complex system as a system that is composed of many components and 

exhibits hierarchy and self-organisation arising due to the dynamic interaction of its 

components from this viewpoint, contains complexity symptoms that can be perceived through 

analysing system’s physical situation: 

• System element information: Increased variety, quantity, and information content of 

system elements. 

• System element interdependence: The significance of system element interrelations 

and interdependencies. 

These symptoms can be searched within the various aspects of the system, meaning system 

configuration, material flow patterns, control and information flow patterns, intrinsic process 

hierarchy, etc., and are often analysed by means of heuristics including enumeration and 

classification and coding, as well as the methods derived from graph theory. Enumeration based 

approaches try to capture information content of the system by counting system-related 

elements, e.g., resources, products, customer orders, tasks, etc. in a systematic manner. 

5.3.4 Symptoms observed from human perceptions 

As stated, complexity is subjective, making it dependent on the system being considered and 

on the view of the human spectator (Liang & Gou, 2021). In view of that, the last class of 

symptoms contains complexity indicators which can be perceived by humans. In this class, the 

symptoms are classified into four sub-groups: 

• Technological complexity: Indicating the complexity of the underlying technology 

used to perform system related activities. (Schöttl & Lindemann, 2015) 

• Knowledge complexity: Representing the domain-specific knowledge and decision-

making complexity. (Schöttl & Lindemann, 2015) 

• Shadow systems: Meaning that people don’t use the formal modes of the organization 

which are called legitimate system to handle the business of the organization but use 

other informed ways which organization did not make any provision and acknowledge 

to handle business. (Liang & Gou, 2021) 

• Information overload: Representing the increasing flow of information that the human 

brain must process to be able to navigate in complex systems (Turner & Baker, 2019, 

Phillips Wren & Adya, 2020) 
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The mentioned aspects show that symptoms of the human perception can be related to the 

subjective source of complexity. 

The introduced symptoms are now summarized in the following Table 6. 

Table 6: Complexity symptoms in manufacturing systems 

Symptom 

category 

Symptoms applied in the assessment of manufacturing system 

complexity  

Nonlinear 

behaviour 

• Repeating patterns in long-term system behaviour 

• Sensitivity to initial conditions  

• Emerging dynamic behaviours  

Operational 

uncertainties 

• Increased amounts of information 

• Operational dynamism 

• Uncertainty in handling increased product variety 

• Uncertainty associated to the predictability of manufacturing 

operations 

Physical 

situation 

• Increased variety, quantity, and information content of system 

elements. 

• The significance of their interrelations and interdependencies. 

Human 

perception  

• Technological complexity indicating the complexity of the 

underlying technology used to perform system related activities. 

• Knowledge complexity representing the domain-specific 

knowledge and decision-making complexity. 

• The existence of shadow systems  

• Information overload  

 

According to Sheard & Mostashari (2010) the consequences of these complexity symptoms can 

include if they remain unmanaged:  

• Increases in product life cycle costs  

• Difficulty of getting engineering changes made  

• Difficulty in servicing, leading to many failure modes  

• A complex supply chain, resulting in management and logistical problems  

• The need for a complex, and therefore costly, design process 
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The notions described in Table 6 are well summarized by Figure 17 which is based on 

introduced properties of manufacturing complexit and building on the research of Gorzen-

Mitka & Okreglicka (2014) and Sheard & Mostashari (2010).   

 

Figure 17: Characteristics of complex industrial systems 

Figure 17 shows that complex systems are characterized by a wide variety of characteristics 

which must be understood in the context of complex manufacturing systems.  

Consequently, this thesis rejects the definition of objective complexity sources and takes the 

stance that complexity symptoms must be understood and managed by human decision-making 

activity.  

Consequently, system complexity shall be regarded as a function of the inherent complexity 

potential of a system and the perception capacity of the human observer. (Schöttl & Lindemann, 

2015) This notion is underlined by the functionality of MITRE’s Enterprise Systems 

Engineering Profiler tool, which is a self-assessment tool for system complexity, there six of 

the eight octants have nothing to do with the technical system, they deal with stakeholders, 

scope, and acquisition context.  

These aspects fall outside the standard scope of engineering and if they are not properly 

addressed, complex technical solutions like CPS are likely to fail. (Sheard & Mostashari, 2010, 

Stevens, 2008)  

To underline this notion the next section now further elaborates on how these symptoms 

translate into complexity manifestations in systems engineering practice.  
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5.3.5 Complexity symptoms in systems engineering practice 

Based on the work of Rosser (2019), the following complexity manifestations can be observed 

in engineering practice:  

• Difficulty to agree on a definition of the problem: Can be caused by the existence of 

multiple perspectives and stakeholders.  

• A wide range of possible responses that may affect the problem, but none that solve 

it completely: Indicates a multivariate problem which must be balanced to provide 

acceptable outcomes for all aspects rather than optimizing for one. 

• Asking the same question or taking the same action multiple times can produce 

different results: Suggests emergent behaviour which may or may not be adaptive or 

intentional. 

• Difficulty in defining what “done” or “good enough” means: Often related to many 

participants, many perspectives required that are not completely aligned. 

• Problem does not respond to proven processes, methods, or approaches: Can be 

related to emergence, or to processes and methods that don’t account for the entire 

scope. 

• Risks persist despite attempts to mitigate: May indicate opacity of important 

variables, hidden dependencies or competing risks which must be balanced. 

According to Rosser (2019) and Liang & Gou (2021) practitioners are likely to have 

experienced the manifestations described above but may not necessarily associate them with 

complex systems science.  

Highlighting the relationship between common intractable problems in the engineering of 

industrial systems and the impacts of complexity enables the practitioner to recognize and 

respond to the impacts of complexity in their work and is a strong indicator for the relevancy 

of subjective complexity sources and the subjective perspective on complexity. 

To achieve this goal the next section now introduces and discusses methods to assess 

complexity in manufacturing systems.  
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5.4 Methods to assess complexity in manufacturing systems  

The previous section has identified the symptoms of complexity which exist within several 

dimensions of a manufacturing system. This chapter now examines a range of prominent 

assessment and analysis methods for capturing these symptoms. By following a classification 

scheme mainly based on the taxonomy presented by the work of Alkan et al.  (2018) and 

Efthymiou et al. (2016), these methods are now briefly investigated according to their 

respective theoretical origins: 

• Chaos and nonlinear dynamics theory 

• Information theory 

• Heuristics 

• Graph theory 

• Surveys 

Consequently, the topic of chaos and nonlinear dynamics theory is described first. 

5.4.1 Chaos and nonlinear dynamics theory 

Chaos and nonlinear dynamics system theory is a mathematical area with increasing interests 

in the fields of physics, engineering and social sciences. In the literature, the methods derived 

from chaos and nonlinear dynamics theory are often employed to measure complexity through 

analysing symptoms connected to the system’s dynamic behaviours. A dynamical system is a 

time-depending multi-component system of elements with local states determining a global 

state of the whole system. (Efthymiou et al., 2016) 

In a planetary system, for example, the state of a planet at a certain time is determined by its 

position and momentum. The states can also refer to moving molecules in a gas, the excitation 

of neurons in a neural network, nutrition of organisms in an ecological system, supply and 

demand of economic markets, the behaviour of social groups in human societies, routers in the 

complex network of the internet, or units of a complex electronic equipment in a car. (Mainzer, 

2004, Efthymiou et al., 2016) 

The dynamics of a system, i.e., the change of system’s states depending on time, is represented 

by linear or nonlinear differential equations. In the case of nonlinearity, several feedback 

activities take place between the elements of the system. These many- bodies problems 

correspond to nonlinear and non-integrable equations with instabilities and sometimes chaos. 

(Mainzer, 2004) 
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These methods include phase space reconstruction, maximal Lyapunov exponent testing and 

bifurcation diagrams. (Efthymiou et al. (2016), Subramanian et al. (2010) and Alkan et al.  

(2018), Mohanta et al. (2020) and Gao & Xu (2021) 

According to Efthymiou et al. (2016), the methods based on chaos and nonlinear dynamics 

theory often offer valuable understandings of the system behaviours, visualises the effect of 

system parameters on the key performance indicators, and depicts the sensitivity of the system. 

However, a set of limitations can be established.  

Modern manufacturing systems often exhibit stochastic events (e.g., machine breakdowns) 

rather than deterministic chaos. However, tools and methods developed based on this theory, 

are not able to capture and analyse such stochastic events.  

Moreover, only maximal Lyapunov exponents testing provides a quantitative measure for chaos 

within the manufacturing system, other methodologies are limited and offer only schematic 

analysis for the dynamic system behaviours. (Alkan et al., 2018) 

Furthermore, the approaches used for approximation of the Lyapunov exponents require 

relatively large datasets and they are highly sensitive to the fluctuations in the external factors 

such as measurement errors and noise (Efthymiou, 2016).  

In summary, the theory of chaos and nonlinear dynamics can be potentially considered as an 

highly valuable tool in behavioural analysis of manufacturing systems.  

However, these methods require a costly measurement-phase, and they are not able to capture 

stochastic complexity sources, therefore it is still questionable as to whether these tools are a 

practical solution for real industrial environments. (Alkan et al., 2018) 

The next section now describes the method of information theory. 
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5.4.2 Information theory 

Information theory, principally proposed in Shannon’s study of communication theory, 

considers entropy as the degree of ambiguity associated to the outcomes of a random 

experiment. In the manufacturing domain, this approach is used to capture the following 

symptoms: 

• Scheduling and observation-based information content of resource or queue states 

• Deviation between scheduled and actual states of the resources 

• Uncertainty in handling product variety with the context of risk factors related to the 

operator choices 

• Unpredictability of manufacturing processes and manufacturing performance indicators 

These methods include Shannon entropy, Kolmogorov complexity and Lempel-Ziv analysis of 

finite time series and computational mechanics. (Efthymiou et al., 2016, Alkan et al.  2018, 

Ding & Sun, 2012, Lempel & Ziv, 1976, Zupanovic et al., 2010, Swenson, 1988, Fortnow, 

2010, Li, 2021). 

Information theoretic measures propose a seemingly objective way for quantifying both static 

and dynamic complexity of manufacturing systems. Nevertheless, a set of problems hold back 

the applicability of the information theory. According to Efthymiou et al. (2016), information 

theoretic measures alone are insufficient to link complexity with the manufacturing system 

performance.  

Information theoretic complexity measures provide a single complexity value which provides 

an insufficient level of granularity to determine where efforts should be focused to make 

improvements. Furthermore, as there is a subjectivity associated with the selection of resource 

and queue states, information theoretic measures may struggle to explain perceived complexity, 

e.g., interactions between human and machine.    

Kolmogorov complexity, Lempel-Ziv analysis method heavily depend on the observed 

performance time series length (Efthymiou et al., 2014). Also, this approach requires a common 

time series length for the comparison of dynamic complexity of different manufacturing 

systems, which may not be the case in many situations (Efthymiou et al., 2016). Computational 

mechanics approach, on the other hand, suffers in terms of practicality, as it requires relatively 

big amount of data necessary to analyse dynamic complexity. 

The next section now describes the method of heuristics. 
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5.4.3 Heuristics 

Heuristics based complexity assessment approaches are close to industrial practice where they 

attempt to capture the overall information content of a production system using user-subjective 

or counting based information collection techniques. These methods can be a valuable solution 

when data availability is limited, and resources are scarce. Heuristics measures include 

Enumeration, product and process complexity and complexity management frameworks. 

(Efthymiou et al., 2016, Gorzen-Mitka & Okreglicka 2014, Fathi et al., 2016, Alkan et al., 2018, 

Schöttl & Lindemann, 2015) 

Due to their subjective nature, heuristics-based approaches build on an inherently subjective 

vision of manufacturing system complexity, and they potentially are unable to analyse 

complicated connections within a system in all objective detail. (ElMaraghy et al., 2012) 

Metrics of heuristics are thus heavily dependent on the industrial domain or specific focus that 

they are designed for, thus, the applicability of heuristics-based approaches over different types 

of production systems and focuses is often limited.  

In conclusion, heuristics-based approaches provide an intuitive and helpful view regarding 

complexity associated with the physical situation, however, due to its subjective nature, it is 

debatable as to whether these measures reflect overall system complexity very accurately. 

The next section now describes the method of graph theory. 

5.4.4 Graph theory complexity metrics 

According to Zenil et al. (2018) networks, which are used extensively in science and 

engineering, are often complex when representing static and dynamic data where edges are 

relations among objects or events. It addresses the challenge of quantifying this complexity to 

deal with such complexity and eventually steer such objects in educated ways. Graph theory 

provides a basis for investigating the entities and their relationships within a networked system.  

For example, Chryssolouris et al. (2013) propose a complexity measure called network 

complexity, in which graph theory is used to produce an adjacency matrix which represents the 

connection between product, process, and resource domains. The vertex degree is then used to 

assess the coupling between these domains.  ElMaraghy et al. (2014) on the other hand 

developed a complexity model based on the graph theory which incorporates information 

content of the system represented by characteristics of its layout.   

The next section now describes the method of surveys. 
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5.4.5 Surveys 

Questionnaires, surveys, and interviews attempt to provide insights on how humans perceive 

manufacturing systems during their lifecycle. They can be used to analyse bottlenecks and to 

get indications of potential improvements by flagging the interrelating complexity concerns. 

Although survey-based approaches can capture the perceived level of complexity, these 

approaches cannot be used in the evaluation of system designs since no physical mock-up or 

process trials are available. Also, they are limited to the questionnaire-stage and their results 

are dependent on the subjective interpretation of the interviewees. (Alkan et al., 2018, Calinescu 

et al., 1998)  

5.5 Complexity types, symptoms, and methods overview  

The following Table 7 now summarizes the described method categories and methods applied 

in each category. 

Table 7: Complexity types, symptoms, and methods 

Method category Methods applied in the assessment of manufacturing 

system complexity 

Chaos and nonlinear 

dynamics theory 

• Phase space reconstruction 

• Maximal Lyapunov exponent testing 

• Bifurcation diagrams 

Information theory • Shannon entropy 

• Kolmogorov complexity  

• Lempel-Ziv analysis of finite time series 

• Computational mechanics 

Heuristics • Enumeration 

• Product and process complexity  

• Complexity management frameworks 

Graph theory-based 

metrics 

• Network complexity  

• Graph-based complexity metrics  

Surveys • Questionnaires 

• Surveys  

• Interviews 
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After summarizing the different method categories and corresponding methods to assess 

industrial system complexity, these results are now integrated with the already defined 

complexity types and their respective symptoms in a coherent overview as illustrated in Figure 

18. 

 

Figure 18: Complexity symptoms and assessment methods in complex industrial systems 

Figure 18 makes visible that complexity symptoms of the physical situation and human 

perception are attributed to static / structural complexity. Symptoms like nonlinear behaviour, 

operational uncertainties and human perception are attributed to dynamic complexity. 

It is furthermore shown through the analysed literature that three methods can be applied to 

assess both static and dynamic complexity types:  

• Heuristics 

• Graph theory 

• Surveys 

It is also shown that alle three methods come with their own unique benefits and limitations 

when it comes to analyse the complexity of an industrial system.  

In the light of this statement and after introducing and discussing different methods to assess 

complexity in industrial systems, the next chapter now covers the topic of strategic management 

and heuristic strategic management tools and techniques as a baseline to define the concept of 

strategic complexity management in later sections of this study.  
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6 Strategic management & complexity management 

The terms strategy, strategic management, strategic complexity management, heuristics, 

complexity management and different complexity management frameworks in the form of the 

Cynefin Framework, Schuck´s Control Matrix and the Stacey Complexity Matrix are now 

defined and discussed in this chapter and the relevance of heuristics as a well-suited assessment 

method for complexity management tools is introduced, discussed and illustrated. In a first step, 

the term strategy is defined in the next section. 

6.1 Strategy 

Even though difficult to define in a precise and universal way, strategy is a central concept for 

the field of strategic management, as it directly concerns the planning process of the deployment 

of resources (e.g., investment) to achieve a given set of objectives (e.g., return on investment). 

(Berisha Qehaja et al., 2017a)  

Strategies shall be defined as a means for companies to generate a competitive advantage. In a 

business context, strategies are assumed to not be absolutely formulated or formed, also are 

they not purely realized or intended.  

Companies do not only create new strategies but also modifying existing ones, based on facts 

as well as on the intuition and experience of senior managers. (Jofre, 2020)  

This is supported by Vieweg (2015) who states that the so-called management by options is a 

well-suited approach for complexity management, where strategy means good preparations and 

reliable preliminary work to be well prepared at the right moment in time.  

Intuitively, it can be concluded, that in strategic management the process of strategy selection 

is of utmost importance to the decision-maker.  

In the process of strategy selection, as indicated by the previous section and explicitly stated by 

David & David (2017), decision-makers can never consider all feasible alternatives that may 

be or not be beneficial to the firm because there are an infinite number of possible actions and 

infinite ways of implementations that exist in a dynamic economic environment.  

Therefore, a manageable set of the most attractive alternative strategies is extracted, developed, 

examined, prioritized, and selected. This process is primarily based on the utilization of 

decision-making frameworks that allow to identify, evaluate, and select strategies in the process 

of strategic management in a combination of managerial intuition and analysis. (Afonina, 2015) 
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6.2 Strategic management  

Strategic management as a discipline now focuses on the development and implementation of 

strategies. It entails analysis, decisions, and actions as core components. It thus focuses on the 

direction of organizations, companies and businesses and the application of theories, 

frameworks, tools, and techniques to assist the decision-makers in the implementation of the 

planning, thinking and design process of strategy for organizational purposes, most of the time 

being the purpose of creating competitive advantage. (Berisha Qehaja et al., 2017a, Berisha 

Qehaja et al., 2017b, Jofre, 2020, Sammut-Bonnici, 2015, Afonina, 2015) 

6.2.1 Strategic management perspectives 

Strategic management can therefore be defined as a process consisting out of the steps: 

evaluation, planning and implementation of a business situation through strategy to improve 

the competitive advantage of the firm. (Sammut-Bonnici, 2015, David & David, 2017)  

These steps are now conducted from two different perspectives, the company internal and 

external perspective.  

The internal perspective is represented by the resource-based view, which states that the internal 

resources and capabilities of the firm are the critical determinant for success. Only if these 

resources are unique, difficult to copy and hard to imitate the firm will maintain its competitive 

advantage. Examples for company internal capabilities for example are development of 

innovative technology, reducing time to market of products, creation of more efficient 

production or distribution channels and the ability to deploy current and future technologies 

effectively and efficiently. (Sammut-Bonnici, 2015, Ghani et al., 2020)   

The external perspective is the environmental view of the industrial organization which assumes 

that the external environment determines the strategic actions a company can deploy. This 

shows that strategic management is based on the evaluation and analysis of company internal 

and external factors and requires to consider both internal and external factors in the strategic 

analysis of the firm. (Sammut-Bonnici, 2015, Ghani et al., 2020) Examples for company 

external factors are summarized under the acronym of PEST: political, economic, socio-

cultural, technological. (Ghani et al., 2020)  

Figure 19 now provides an overview of the applied definition of strategic management and its 

perspectives.  
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Figure 19: Perspectives of strategic management 

Based on this it is now possible to introduce the process of strategic management.  

6.2.2 The process of strategic management 

Based on the work of Freund (2013) and David & David (2017) the process of strategic 

management can be defined as illustrated in Figure 20.  

 

Figure 20: Strategic management process 

Figure 20 illustrates the strategic management process step by step, starting with the 

development of the strategy. The step of internal and external analysis of the corporate 

environment was already described in detail.  

The so-called strategy guideline plays an important role in the next step. It sums up the content 

of the strategy selection process, which ultimately results in the declared direction of the 

strategy from a multitude of conceivable strategic options, which shall be defined as a “norm 

strategy”.  

According to Freund (2013) it is important to differentiate very precisely between a corporate 

vision and a strategy guideline. If a vision tends to reflect the ambition of a company ("we want 

to become a leading company in the ... industry") and therefore has a very general and 
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comprehensive validity, the strategy guideline must serve as a central anchor point for all 

strategic building blocks and contains the derived considerations from the internal and external 

environmental analysis.  

This suggests starting points for competitive advantages and already indications of a possible 

implementation into practice. The strategy guideline has the important task of concisely 

articulating the normative core of a strategy and the decisions of the management in one precise 

sentence and in this way anchoring them in the minds of the stakeholders who partake in the 

strategy. In addition to its meaning in terms of content, a norm strategy has thus a significant 

communicative dimension in the development and implementation process of strategy. (Freund, 

2013, David & David, 2017) 

Based on this more detailed strategy hypotheses can be developed which then lead to precise 

strategic goals.  

After this is achieved the process of strategy development ends and the process of strategic 

planning begins. As stated by Freund (2013) it occupies a position between strategy 

development and organizational implementation on the one hand, but also between strategy 

development and the innovation process on the other.  

It must therefore ensure that a strategy is expressed at a functional level in organizational 

structures and the alignment of core competencies, and at the same time it must ensure that the 

right innovation focuses are set as part of a product portfolio. In this light, the next section 

describes strategic management tools & techniques as a practical application to manifest the 

strategy process of strategic management. 

6.3 Strategic management tools & techniques  

The applied definition of strategic management and the strategic management process make 

visible that SMTTs play a vital role in the evaluation and planning process of the strategy 

development process in strategic management. The term strategic tool is to be regarded as a 

generic term for any method, model, technique, tool, technology, framework, methodology or 

approach used to heuristically facilitate strategy. (Afonina, 2015, Berisha Qehaja et al., 2017b)  

In general, SMTTs are applied by decision-makers to increase operational performance through 

achieving the following goals: Investigate external and internal cost of products, services, 

production etc., obtain information (for example market information, knowledge management) 

and predict and assess various aspects of OP. (Afonina, 2015) 
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In today´s VUCA market environments decision-makers often must deal with a wide variety of 

decision-making problems from many directions simultaneously. SMTTs can provide valuable 

help to reduce the complexity and uncertainty in decision-making situations and are thus 

becoming increasingly attractive and important to achieve rational and knowledge-based 

strategic decision-making. (Nouri et al., 2017, Berisha Qehaja et al., 2017a) 

This aspect is also underlined by the wide variety of application areas of SMTTs which for 

example include operations management, information technology management, productivity, 

and efficiency management. These aspects show, that SMTT are not only important for 

analytical purposes but can also provide business strategy and help in maintaining competitive 

advantage. (Berisha Qehaja et al., 2017a, Afonina, 2015, Nouri et al., 2017, Berisha Qehaja et 

al., 2017b)  

SMTTs are also adhering to the practical need that strategic decision-making process must be 

very concise and direct, adhering to the ideal that in order to communicate the strategy, there 

must be exactly one declared strategy and, derived from it, action plans for the functions in the 

company which can be summarized on no more than one A4 page in size. (Freund, 2013) 

This indicates that strategic management is to be regarded as an interpretative, interactive, and 

meditative process that is, even though closely connected, not interchangeable with the process 

of strategic thinking, leadership and strategic planning. (Peressier, 2012, Freund, 2013)  

Figure 21 illustrates this relationship in more detail by showing that SMTTs are applied at the 

strategy level of strategic management which guides the subordinated level of implementation 

via decision-making. Strategic planning and strategic thinking are located at implementation 

level of the management of a system and are regarded as expressions of leadership. 

 

Figure 21: SMTTs in the context of strategic management 

Based on this, the next section now introduces a selection of SMTT examples. 
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6.3.1 SMTT: Examples  

It is important to mention that the list of existing SMTTs has been increasing over the last two 

decades. Various tools and techniques have been provided to help managers identify the 

decisions related to strategic planning.  

In correspondence to the increase of  existing SMTTs, Afonina (2015) shows that SMTTs are 

consistently applied in over 50% of situations by decision-makers, some prominent SMTT 

examples are:  

• SWOT analysis  

• Cost-Benefit analysis  

• PEST analysis  

• Benchmarking  

To illustrate the functioning of a SMTT the SMTT “SWOT analysis” in the form of the SWOT 

strategic matrix is now described and illustrated.  SWOT analysis was first designed and 

introduced in 1960 by Stanford´s research institute and since 1975 was widely used as an 

analytical framework for developing company strategies and it is still applied in current 

research applications. (Fahrhangi et al., 2021) 

The SWOT matrix properly analyses the internal strengths and weaknesses as well as external 

threats and opportunities of the company to guide the future expected strategies. This matrix, 

as shown in Figure 22, is a useful tool for strategic planning of strategic management and a 

fundamental basis for identifying conditions and planning future methods which are necessary 

for strategic observation.  

 

Figure 22: SWOT matrix (Fahrhangi et al., 2021) 
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Figure 22 shows, that in this analysis, the internal and external factors are evaluated first, which 

is called the input stage, and the information required for devising strategies is determined. 

During the second stage, which is called the comparison stage, all the possible strategies are 

considered through developing a SWOT matrix.  The objective of the SWOT matrix is to 

determine all applicable strategies and the best strategy is not sought at this stage. Strategists 

then use this matrix to create and introduce one of four kinds of generic norm strategies (SO, 

WO, ST, and WT strategies). (Fahrhangi et al., 2021)  

Another prominent example for a matrix based SMTTs is the BCG Matrix, which is now 

illustrated in Figure 23 and represents a SMTT often applied for the complex task of strategic 

product portfolio management. 

 

Figure 23: BCG matrix (Mohajan, 2018) 

Both provided examples share a generic matrix format with a simple two-dimensional analysis, 

which both reflect the company internal and external view. (Mohajan, 2018) 

Both examples allow to effectively and categorize decision-problems and to deduct first norm 

strategies as an answer in a holistic way.  

This is supported by the research of Afonina (2015) who shows that in general managers prefer 

to use holistic and heuristic tools and techniques. It can consequently be shown that SMTTs are 

heuristic tools that are valuable for decision-makers to provide strategic aid in decision-making, 

and which decrease the complexity of a decision- making situation. This statement is supported 

by Törngren & Grogan (2018) who state that in the context of CPS the application of strategic 



 61 

management in relation to the organization is essential since future CPS will require new 

competences, roles, and responsibilities. 

This aspect is especially important in the light of Conway´s Law which allows to state that a 

system´s architecture parallels its parent organization structure in terms of complexity since 

organization's structures, problem solving routines and communication patterns determine the 

space in which new solutions can be created. (MacCormack et al., 2012) 

According to David & David (2017) it is also important to acknowledge that the decision-

makers themselves, not strategic tools like SMTTs, must always be responsible and accountable 

for strategic decisions.  

To put the presented information into the context of complexity, the next section introduces the 

definition of complexity management.  

6.4 Defining complexity management  

According to Gorzen-Mitka & Okreglicka (2015) the “complex” view of reality is important in 

understanding the activities of an organization. In the context of industrial systems and 

according to Vogel & Lasch (2016) complexity management in the manufacturing company 

requires identification and controlling of complexity drivers because complexity drivers lead to 

increasing complexity in manufacturing.  

A complexity driver shall be defined as a condition that causes subsequent conditions or 

decisions to occur because of its own occurrence. Consequently, a complexity driver is 

responsible for a situation or condition and at least has an impact on it. (Vogel & Lasch, 2016) 

Complexity management is to be regarded as highly relevant topic for modern industrial 

systems management because projects related to complex systems exhibit Flyvbjerg’s 

performance paradox with the level of system performance contrasting with the levels of 

importance of such projects actually receive in the respective organizations. (Maylor & Turner, 

2017) 

Complexity is rated as one of the main reasons for this performance paradox, reinforcing the 

importance of developing applicable complexity management tools and to increase complexity 

management implementation in practice. (Flyvbjerg et al., 2003, Maylor & Turner, 2017) 

The inclusion of complexity in the scientific and management discourse for complex 

manufacturing systems like CPS is therefore a natural consequence but it is shown that not 
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many companies have implemented a complexity management approach, or they do not know 

if the used complexity management strategy and methods are efficient and adequate. (Vogel & 

Lasch, 2016, Törngren & Grogan, 2018) 

According to Maylor & Turner (2017) complexity management is more focused on the idea of 

a “complexity of”, subjective complexity representing the lived experience of managers of what 

they termed “complexity” than on a rationalist approach to the phenomenon with the goal of 

objectifying complexity.  

Consequently, the complexity of a system is to be regarded as the independent variable, with 

the managerial response being a function of that complexity.  

In this regard complexity management assumes that if this independent variable is well 

understood, then it is possible to make an input in complexity management practice. (Maylor 

& Turner, 2017)  

These statements are now illustrated in Figure 24. 

 

Figure 24: Basic assumptions of complexity management 

Based on Figure 24 and according to Kirchhoff et al (2003) the tasks of complexity management 

are now defined as the following:  

• Considering and solving problems: Resulting from the variety, the range, and the 

dynamics of internal and external elements and relations of the company or system and 

its environment.  

• Observing the problems of actors: Subjectively dealing with complexity, expressing 

themselves in thinking and behavior patterns, perceptions, decisions, and actions as well 

as in management and organizational structures.  

• Integrating different individual measures: Dealing with complexity into a synergetic 

strategic framework. 

In the light of the tasks of complexity management and according to Jackson (2019) it can now 

be stated that the core task of complexity management is thus to tackle so called organized 

complexity, which is contrasted by organized simplicity and unorganized complexity. 

Consequently, the concept of organized complexity is defined in more detail in the next section. 
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6.4.1 Organized complexity  

Based on Jackson (2019) the concept of organized complexity is illustrated by Figure 25.  

 

Figure 25: Organized complexity 

Figure 25 shows that three general type of complex system types can be differentiated in the 

form of organized simplicity, organized complexity, and unorganized complexity.  

As stated by Jackson (2019), Heino et.al (2021) and Wolfram (2002) traditional science is 

primarily able to tackle organized simplicity (very small number of objects that behave in 

predictable ways, e.g., mechanisms and machines) via for example, differential equations, and 

unorganized complexity (very large numbers of components exhibiting a high degree of 

unpredictability, e.g., aggregates, gases, and populations) via for example, Bayesian statistics.  

It can be noted that both organized simplicity and unorganized complexity represent the 

extremes of the scales of randomness and complexity.  

As Jackson (2019) and Heino et.al (2021) furthermore state, most real-world problems are 

located somewhere in between both and are situated in organized complexity.   
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One core example for this category is, among others, especially the area of problems associated 

with modern technology, like Industry 4.0 and CPS, as these systems exhibit neither organized 

nor unorganized complexity and models are still lacking to manage the complexity of these 

systems. (Collier, 2010, Jackson, 2019, Törngren & Grogan, 2018)  

Managing organized complexity shall thus be the central goal of strategic complexity 

management. 

Collier (2010) additionally distinguishes in the context of organized complexity between four 

types of dynamical systems differentiated by their degrees of complexity and organization. 

Complexity in this regard is defined as the number of independent pieces of information needed 

to specify a system.  

Organization now characterizes the extent of the interrelations among the components of the 

system in terms of their number, scope, and dynamics. Through these four different types of 

systems result as displayed in Figure 26, as displayed in Collier (2010).  

 

Figure 26: Types of complex systems (Collier, 2010) 

Colliers (2010) states that type I systems are exemplified by single element or decomposable 

multi-element systems on the edge to organized simplicity, e.g. one machine or few machines. 

Type II systems are defined by statistically specified systems at or near to equilibrium as 

bounded components of large-scale natural systems on the edge to unorganized complexity (e.g. 

gases, fluids, populations).  
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Type III systems are sufficiently well constrained but non-linearizable, difficult to decompose 

multi-element systems, with few or nonemergent effects, e.g. many machines, also positioned 

on the edge of organized simplicity.  

Type IV systems are not tractable and decomposable. They can show emergence and openness 

and can’t be understood except through a holistic treatment and heuristic understanding.  In 

comparison to systems of types I and III, whose organization, if any, is fully determined by 

their initial internal and boundary conditions, type IV systems can thus produce novel 

organization, emergence, through self-organizing processes.  

In comparison to type II systems, whose organization is entirely imposed and determined by 

external boundary conditions like natural laws, type IV systems contribute internally to their 

organization.  

This makes visible that many real-world business systems and their respective decision-making 

problems are assumed to be situated in type 4 systems and are thus assumed to be inherently 

non-linear with many parameters and are shaped by an interplay of internal and external 

dynamics.  

It has been shown in this study that especially Industry 4.0 systems like CPS are very likely to 

fall under the category of type 4 systems, as their core characteristics according to the IKTF are 

interoperability, heterogeneity, modularity, compositionality and increasing complexity. 

This leads to the circumstance and intuitive assumption that some or even most CPS systems, 

like smart manufacturing systems, can be expected to be too complex to be capable of exact 

analysis by traditional scientific means.  

As shown in Collier (2010), Figure 27 now reflects this statement.  

 

Figure 27: Complexity vs. traditional scientific analysis (Collier, 2010) 
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As defined type 4 systems like some CPS architectures can be expected to be non-linear and 

have many parameters, which leads, as displayed in Figure 27, to the circumstance that they are 

unsolvable via traditional analytical methods. This reenforces the statement made namely that 

there is a distinct gap in methods of analysis when it comes to the study of organized complexity 

in comparison to unorganized complexity or organized simplicity. 

It is nevertheless important to mention that recent research introduces approaches based on 

artificial intelligence (AI) and neural networks (NN) build on neural ordinary differential 

equations which aim to solve control problems of complex dynamic systems in a direct response 

to those problems being analytically and computationally intractable. (Böttcher et al., 2022) 

These advances might lead to real-world applicable solutions for system optimization in the 

future, for example in supply chain optimization. The core challenge to use such approaches as 

intended lies in the circumstance that it must first be provided with precise information on 

system dynamics in the first place. 

This information is then utilized to determine which areas need optimization. Users must 

additionally provide information on the system’s initial status, this could be information such 

as current stock levels, and its desired target status or the requirement to replenish stock to 

certain levels while minimizing the use of resources. (Böttcher et al., 2022) 

This shows that even most recent AI and NN approaches require that the system to be optimized 

is at least partially well-known so that input variables can be determined correctly and 

underlines the quasi-paradoxical dilemma that occurs when advanced traditional scientific 

methods are to be applied on problems of organized complexity, namely that the system and its 

dynamics must already be well-known to some degree in advance. 

One possible explanation for the phenomenon of the apparent non-applicability of traditional 

science in organized complexity is introduced by Wolfram (2002) in the form of the Principle 

of Computational Equivalence. This principle states that a system´s behaviour can be thought 

of as corresponding to a computation (or intelligence) of equivalent sophistication. This infers 

that there are systems which are executing computations that are at least as complex as the 

computations (or intelligence) that can be conducted by the observing human activity via 

mathematics or computation. This leads to the conclusion that many complex systems are in 

fact at least temporarily irreducible, and outcomes cannot be exactly predicted by human 

observers of the system with limited intelligence or computational potency and thus remain 

VUCA for the human mind.  
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Figure 28 now integrates the obtained insights into Figure 25 where type I & III systems are 

bordering to organized simplicity, type II systems bordering to unorganized complexity and 

type 4 systems represent most modern industrial systems in the realm of organized complexity, 

exemplified through CPS for the context of Industry 4.0 and a VUCA business environment.  

 

Figure 28: CPS in the context of organized complexity 

Based on Figure 28 this now allows to introduce the questions how strategic complexity 

management can potentially alleviate the introduced problem deriving from the assumptions of 

the Principle of Computational Equivalence, as it remains often unclear which methods are 

applicable to the management of the complexity of type 4 systems and organized complexity in 

general. (Jackson, 2019, Collier, 2010) According to Wilson (2014) one option to approach a 

system of organized complexity is the effective deployment of a metaphor for analysis and 

theory building, which is well-reflected in SMTTs like SWOT matrix or even more literally in 

the BCG matrix, in the form of dogs, cows, stars and question marks. 

In this context the aspects defined in the research of Kirchhoff et al.  (2003), Jackson (2019) 

and Collier (2010) are now particularly interesting when regarded in the context of corporate 

strategy and decision-making for complex systems to establish an argument why strategic 

complexity management can contribute to solve the described problem at hand. 

Therefore, the next section now further elaborates on complexity management and corporate 

strategy. 
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6.4.2 Complexity management and corporate strategy  

Eisenhardt & Piezunka (2011) and Hessami (2020) emphasize that strategy in the complexity 

perspective comes from the improvisational actions of managers within the guidelines of simple 

heuristic rules, leading to a strategy of simple rules, sometimes defined as “simplexity”. 

Complexity theory thus proposes simple rules to guide autonomously acting managers, 

decision-makers, accordingly to a pre-defined schema that aims to act on complexity with 

simplicity, thus leading to the idea of simplexity as the central theme of complexity 

management. (Hessami, 2020) 

In this context, Gorzen-Mitka & Okreglicka (2015) define the main strategic goal of complexity 

management on an abstract level as minimized value-destroying complexity and efficiently 

controlled value-adding complexity. They furthermore postulate that complexity management 

is determined by the search for new management strategies and methods that fit in with the 

reality of the decision-making practitioner facing complexity.  

It is concluded by Eisenhardt & Piezunka (2011) that complexity theory adds a rich 

understanding of corporate strategy to the organization theory and strategy through a holistic 

and systemic focus of complexity theory as an essential lens to better understand causalities in 

corporations in order to better manage problems of organized complexity and type 4 systems. 

The previous statements underline the importance of the requirements for innovative strategic 

thinking in a complex system environment of organized complexity and type 4 systems.  

Based on the research by Paparone et al.  (2008) and Mittal et al. (2018) these are now defined 

as the following:  

• Relationship building: Whereas traditional bureaucratic approaches have treated 

organizations as collections of roles and focused on role management, complexity 

management promotes and assist in building longer-term relationships that enhance 

operational effectiveness. 

• Improvising: Improvisation is a necessary condition in a VUCA environment, and the 

organization must have the capacity to respond to unanticipated circumstances. 

• Loose coupling: Micro-management and over-supervision can lead to suboptimal 

performance. Instead of one-stop solutions, decision-making in VUCA environments 

benefits from parallel searches for diverse solutions and their adaptive consideration as 

decision factors. 
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• Sense-making: Deriving as a shared understanding of the organizational purpose and 

one’s place therein, members can begin to create shared meaning which, in turn, can 

serve as a normative and heuristic decision- guide. 

• Learning: Complexity management is based on the concept of the learning organization 

that create opportunities for knowledge sharing and norm creation. 

• Emergent thinking: Under VUCA conditions, forecasting and formal planning is less 

than useful. Instead, thinking about the future in new ways is called for. 

In this light, Hummelbrunner & Jones (2013) define three key-barriers to effective complexity 

management:  

• Adaptation: Decision-makers should depart from command-and-control management 

traditions and be more open to adaptive approaches that are responsive to contextual 

changes and lessons learned from implementation.  

• Approaches: Integrating new approaches procedures and more adaptive complexity 

management tools.  

• New rules: Current practice and rules with respect to analytical performance / results-

based management should be revised to better make use of unexpected effects in 

complex situations. 

This shows that effective strategic complexity management models open a new perspective of 

looking at decision-making in organizations and that complexity can be managed via simple 

but unique strategies underlining the importance and relevancy of SMTTs for complexity 

management.  

This is in line with Boulton et al.  (2015), who describe their philosophy of strategic complexity 

management as interventionistic pragmatism, meaning that knowledge about the behavior of 

complex systems can only ever be local and contextual and possible action is limited to trying 

to find out “what works” based on trial and error and reflection, again underlining the 

importance and potency of SMTTs for complexity management to achieve the practical 

integration of strategic complexity management.  

Based on these insights, the next section now introduces and describes the concept of strategic 

complexity management for industrial systems.  
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6.5 Strategic complexity management for industrial systems 

In the light of the results of the previous sections and based on the works of Alkan et al. (2018), 

Furnari at. al (2021) and Morcov et al.  (2021) the now proposed underlying logic of strategic 

complexity management now summarizes the core statements made up to this point. The 

underlying logic is illustrated in the following Figure 29. 

 

Figure 29: Strategic complexity management for industrial systems 

The provided figure summarizes the existence and evolution of complexity in the 

manufacturing industry along with the identified and discussed cause-effect relationships based 

on the IKTF. It shows that the logic of strategic complexity management starts at the macro 

level of complexity drivers in the form of exponential technological change.   

The complexity drivers result in new manufacturing paradigms, embodied by Industry 4.0. 

These new manufacturing paradigms now enable the evolution of existing manufacturing 

systems, in the context of Industry 4.0 the evolution from traditional embedded systems to 

cyber-physical systems.  

These systems create increased complexity which then impact the performance of the respective 

system for example in terms of cost, time, safety, or productivity parameters. To enhance 

positive impacts and to mitigate negative impacts of the generated complexity the strategic 

complexity management cycle of Define, Manage and Measure is then applied to create a 

feedback loop to the evolution of manufacturing systems.  

Based on this, the next section now provides more detail on the strategic complexity 

management cycle.  
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6.5.1 The strategic complexity management cycle  

Based on the work of Alkan et al. (2018), Furnari at. al (2020) and Morcov et al.  (2021) the 

strategic complexity management cycle as shown in Figure 30 can be illustrated as the 

following. 

 

Figure 30: The strategic complexity management cycle 

As shown, the strategic complexity management cycle now consists out of three rudimentary 

steps, define, manage, and measure, which center around and are in a feedback loop with the 

system´s perceived complexity.  

The next sections now further define the illustrated steps. 

6.5.2 Define  

The step of “Define” can now be defined as the following:  

• Identify: Identify sources of complexity in the analysed system. 

• Analyse: Evaluate the impact of the identified sources of complexity. 

• Visualize: Visualize the results in a comprehensive manner. 

Consequently, the main goal of this step is to better understand the complexity of the analysed 

system. 
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6.5.3 Manage 

The step of “Manage” can now be defined as the following: 

• Develop: Develop strategic directions to improve the complexity situation. 

• Decide: Decide on one strategic direction. 

• Apply: Apply the strategic direction on the system. 

Therefore, the main goal of this step is to develop a strategy to deal with the complexity of the 

analysed system. 

 

6.5.4 Measure 

The step of “Measure” can now be defined as the following: 

• Monitor: Track the systems behaviour. 

• Control: Regulate the system according to its target function with optimization 

approaches, for example six-sigma or simplex models. 

• Evaluate: Evaluate the efficiency and efficacy of the regulation. Restart the cycle with 

new knowledge, when necessary. 

To conclude, the main goal of this step is to achieve maintenance of the complexity of the 

analysed system. 

After explaining the strategic complexity management cycle in more detail, the section to 

follow elaborates on why heuristics are highly relevant to enable strategic complexity 

management.  
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6.6 Why heuristics matter for strategic complexity management 

As already indicated by the previous chapters, SMTTs are based on the heuristics category of 

methods to assess manufacturing complexity and appear to be generally applicable by 

complexity management approaches in the context of solving problems of organized 

complexity.  

To underline the importance and relevance of heuristics as a foundational paradigm for the 

development of SMTTs for complex industrial systems, this section now further elaborates on 

this topic and on how heuristics help to solve complex decision-making problems. 

The origin of the term heuristic is the Greek word for “serving to find out or discover.” 

Heuristics are strategies to solve problems that logic and probability theory cannot handle. 

Heuristics can thus be highly functional in uncertain environments. (Artinger et al., 2014) 

According to Gigerenzer & Gaissmaier (2011), decisions can generally be made in three 

different ways.  

The human mind either applies logics, statistics, or heuristics. These tools often are not treated 

as equals, with rules of logic and statistics having been linked to rational reasoning and 

heuristics linked to error-prone intuitions or even irrationality.  

The bottom line of this train of thought often is that people rely on heuristics, but they would 

be better off in terms of accuracy if they did not.  

These arguments are often based on the perception of fully informed, completely rational agents 

positioned in so-called small-world situations, worlds which are predictable and without 

surprises.  

In so-called large worlds parts of the information are unknown, making optimal reasoning 

impossible. (Binnmore, 2009) 

Gigerenzer & Gaissmaier (2011) further state that for many situations simple heuristics were 

more accurate than statistical methods. The study of heuristics is furthermore based on two 

central questions which are to be answered if heuristics shall be applied. (Gigerenzer & 

Gaissmaier. 2011) 

• Prescription: When should people rely on a given heuristic rather than a complex 

strategy to make more accurate judgments? 

• Description: Which heuristics do people use in which situations? 
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Based on the statements made the following definition of heuristics shall be applied for this 

thesis, based on Gigerenzer & Gaissmaier (2011):  

“(…) heuristic is a strategy that ignores part of the information, with the goal of making 

decisions more quickly, frugally, and/or accurately than more complex methods.” 

It is important to mention that heuristics in this context are to be regarded as a subset of 

strategies, in which there is no strict dichotomy between heuristic and non-heuristic, as 

strategies can ignore a more or a less amount of information.  

Consequently, it may be possible that Bayesian approaches, AI or NN can also fall in the 

category of heuristics if they are heuristically applied, in sense that one could use these 

approaches more intensively or alternatively try to test smarter when faced with complex 

system which exhibit emergent behavior. (Haugen & Ghaderi, 2021) 

As a next step, the following sub-section now describes how heuristics work.  

6.6.1 How heuristics work 

Heuristics rely on limited information and employ simple computational mechanisms. As 

mentioned, they have often been regarded as second-best solutions compared with optimization 

models, like Six-Sigma, based on the assumption of an accuracy–effort trade-off, meaning that 

lower effort yields lower accuracy.  

As information search is usually costly, optimization under information and resource 

constraints might still ignore some of the potentially available information and be less effective 

and efficient due to information search costs.  

This nevertheless still implies that, in theory, more information is always better, apart from its 

costs.  

6.6.2 The less-is more effect of heuristics  

It can be indicated that there are several conditions under which there exists a less-is more 

effect, where more information and computation in optimization models beyond a certain point 

can in fact decrease performance, even if there are no costs associated with information search 

(Gigerenzer & Gaissmaier, 2011, Gigerenzer & Brighton, 2009). Optimization shall be defined 

as a class of problems that seek to maximize or minimize a mathematical function of several 

variables and are subject to certain constraints with the goal to maximize or minimize. (Gill 

et.al, 2019) 
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This allows to infer that the empirical observation of the less-is more effect thus at least partially 

may disagree with the Principle of Computational Equivalence by Wolfram (2002) as defined 

in Chapter 6.4.1.  

The explanation why the less-is more effect is the case is based on the relation between effort 

and accuracy, which is U-shaped: Too little or too much effort is detrimental.  

For example, it might not be best for a firm to respond to new information about changes in a 

market immediately. Instead, a certain degree of rigidity can provide a competitive edge. 

(Bingham et al., 2007) 

Wübben and von Wangenheim (2008) compared in their studies the so-called optimization 

models (for example Bayesian analysis or Six-Sigma and thus representative for traditional 

scientific analysis and AI and NN representative for more recent optimization advances) with 

simple heuristic approaches and found that the heuristic consistently performed at least as well 

as or better than the optimization models across several different industries. 

Figure 31 now illustrates the less-is more effect of heuristics. 

 

Figure 31: Heuristics vs. optimization 

Figure 31 shows that the efficiency of a decision-making model can be characterized by two 

dimensions:  

• Accuracy / Performance: How well the decision-making model achieves a system´s 

target function 
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• Information / Effort: How much information and thus effort is required to achieve the 

relative level of accuracy / performance. 

It is now furthermore shown that the efficiency of a decision-model is characterized by a U-

shaped function with three paradigms:  

• Heuristics only: Only heuristic decision models can be applied 

• Heuristics & Optimization: Both heuristic and optimization decision-making models 

can be applied  

• Optimization only: Only optimization decision-making models can be applied 

In this light it is now shown that heuristics require less effort to be generally applied and to 

achieve a given performance until reaching maximum performance at the theoretical 

performance optimum point.  

Optimization in comparison requires more effort and information to be generally applied and 

has only a short interval where effort and performance are in a proportionate relationship until 

the performance deteriorates with significant information and effort, leading to a more-is less 

effect of optimization models.  

It is consequently implied that relying on heuristics can be rational in the sense that costs of 

effort are higher than the gain in accuracy, while the decision is also impacted by the limited 

cognitive capacities of the decision-maker. (Gigerenzer & Gaissmaier, 2011) 

Based on these thoughts Artinger et al. (2014) and Hallo el. al (2020) furthermore underline the 

statements made by proposing that heuristics are to be regarded as simple decision strategies 

that function well with relatively little information in a complex environment like VUCA and 

often lead to higher outcomes and profit.  

This circumstance is also supported by the research of Islam et al. (2014) who show in their 

study that medical experts manage complexity using heuristics to develop efficient and fast 

decision strategies to simplify complex decision tasks while focusing on only the most relevant 

information. 

This stresses the importance of management practitioners being aware of the different basic 

decision strategies that have been identified as successful tools in an uncertain, complex 

environment like a VUCA manufacturing system and organized complexity in general. 

To support this argumentation the next section now introduces the so-called bias-variance 

dilemma as a more in-depth explanation for the less-is more effect of heuristics. 
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6.6.3 The bias-variance dilemma  

A general statistical explanation for the less-is more effect of heuristics is the so-called bias-

variance dilemma. Often the term bias refers to the deviation of average judgment from a 

rational decision-making norm. This contrasts with the statistical literature that investigates the 

role of bias when a decision maker operates in an uncertain world where an inference needs to 

be drawn from limited data or is faced with problems of high complexity, such as it is often the 

case in managerial decision making in a VUCA world. (Artinger et al., 2015) The bias-variance 

dilemma is now defined by Equation (1).  

 

(1) 𝑇𝑜𝑡𝑎𝑙 𝑒𝑟𝑟𝑜𝑟 =  (𝑏𝑖𝑎𝑠)2 +  𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 +  𝑛𝑜𝑖𝑠𝑒 

 

Equation (1) summarizes a decision strategy’s sources of error when making predictions. The 

true underlying function is not known but must be estimated from a sample. The components 

of Equation (1) can be defined as the following: 

• Bias: Refers to the deviation of the mean across samples from the true underlying mean.  

• Variance: Reflects the degree of systematic variation of the individual sample means.  

• Noise: Refers to unsystematic variation of the data. 

As already established, a central element of any heuristic is that it is simple, meaning that it 

estimates few or even no parameters and ignores the remaining information.  

Through this, it is possible to minimize variance owing to estimation error. Thus, its error in 

prediction comes mainly from bias and less so from variance. (Artinger et al., 2015) 

This also provides an explanation for the lacking efficiency of optimization models in complex 

environments, which by nature rely on the underlying sample of data to be accurate with as less 

variance and noise as possible.  

In this light it appears reasonable to assume that variance and noise are high in a VUCA 

environment, providing further indications why optimization models might be difficult to 

implement for decision-makers in such environments.   

As a next step, the following section now describes how heuristics can be applied to establish 

a SMTT for strategic complexity management.  
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6.6.4 Heuristics as the basis for the development of SMTTs for strategic 

complexity management 

Heuristics describe thus a shift in thinking that can be harmonized with the assumptions of 

complexity theory, complexity management and the requirements of strategic complexity 

management and SMTTs for industrial systems. 

As already established, managers of complex industrial systems must make increasingly 

difficult decisions in an uncertain environment with limited information and time constraints 

often owing to competitive pressure while they might use complex models for well-understood, 

simple environment in organized simplicity to increase competitive advantage. 

In summary, in a complex environment with limited information at hand, there is strong 

evidence in the reviewed and discussed literature that a heuristic approach often can be 

beneficial over a pure optimization approach due to the less-is more effect of heuristics and the 

more-is less characteristics of optimization models, indicating the high potential of SMTTs for 

strategic complexity management.  

In this context strategic complexity management for complex industrial systems positioned in 

organized complexity shall be defined as directly linked to heuristics and the application of 

SMTTs for the purpose of this study. 

Figure 32 now summarizes the statements made in the context of organized complexity.  

 

Figure 32: Heuristics in the context of organized complexity 
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Figure 32 shows, that organized complexity and, accordingly, type 4 systems like CPS, are to 

be regarded as represented in the line of argument of this thesis as the realm of heuristics in 

terms of analytic method of choice and thus is assumed to be the primary applicative zone of 

SMTTs for strategic complexity management of industrial systems in a VUCA business 

environment. (Wade & Heydari, 2014) 

Based on these statements the next section now introduces and discusses four prominent 

complexity management frameworks to illustrate how heuristics are translated into applicable 

management frameworks for industry practitioners to better deal with complex decision-

making environments and type 4 systems in general. 

6.7 Complexity management frameworks 

As a next step, this section now introduces, discusses, and compares four prominent complexity 

management frameworks applicable for industrial systems: 

• Cynefin Framework  

• Stacey Agreement and Certainty Matrix  

• Schuck´s Knowledge-Control Matrix 

• MITRE Enterprise Systems Engineering Profiler 

Consequently, the Cynefin Framework is described and discussed in the next subsection 

6.7.1  Cynefin Framework 

The Cynefin framework is a phenomenological framework, meaning that it is about how people 

perceive and make sense of situations to make decisions. It is consequently focused on solving 

symptoms of complexity related to human perception.   

Cynefin has two large domains: Order and Unorder, each containing two smaller domains: 

Simple and Complicated in the Ordered domain, and Complex and Chaotic in the Unordered 

domain. (Gray, 2017, Wade & Heydari, 2014)  

The Cynefin framework sees relevant application in practice, for example by the research 

offices of the European Union. (Snowden & Rancati, 2021) 

Figure 33 now illustrates the Cynefin framework. 
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Figure 33: Cynefin framework (Gray, 2017) 

Based on Gray (2017) the 5 Cynefin domains can be summarized as the following:  

• Simple: Simple is the domain of best practices, where problems are well understood, 

and a solution requires minimal expertise. Many issues addressed by help desks fall into 

this category. They are handled via pre-written scripts. The correct approach is to sense 

the situation, categorize it into a known pattern, and apply a well-known, and potentially 

scripted, solution. 

• Complicated: Complicated is the domain of good practices, where you are likely to 

know the questions that need to be answered and how to obtain the answers. Assessing 

the situation requires expert knowledge to determine the appropriate course of action. 

The correct approach is to sense the problem and apply expert knowledge to assess the 

situation and determine a course of action. 

• Complex: Complex is the domain of emergent solutions, where there are unknown 

unknowns, and the final solution is only apparent once discovered. The correct approach 

is to develop and experiment to gather more knowledge to determine the next steps, 

with the goal of moving your problem into the ‘Complicated’ domain. 

• Chaotic: Chaotic is the domain of novel solutions where the immediate priority is 

containment. The correct approach is to triage, once you have a measure of control, 

assess the situation and determine next steps, with the goal of moving your problem into 

another domain. 
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• Disorder: Disorder is the space in the middle where you don’t know where you are and 

the priority one is to move you to a known domain. The correct approach is to gather 

more information on what you know or identify what you don’t know to be able to move 

to a more defined domain. 

It is shown that the tool is based on the idea that decision-makers learn to better “sense” the 

characteristics of the decision environment they are situated in and provides help to change and 

adapt to this context.   

Consequently, the Cynefin Framework can be regarded as generalist “sensemaking” tool which 

focuses on how the decision-maker as a leader and how this person perceives a situation.   

In a best-case scenario applying the Cynefin framework can help decision-makers sense and 

better perceive which context they are in so that they can not only make better decisions but 

also avoid the problems through applying the right type of leadership practice. (Gray, 2017) 

It is important to state that the Cynefin framework does not provide clear directions in the form 

of strategies how a decision-maker might implement the knowledge generated through the 

framework.   

The next section now introduces and discusses the Stacey Agreement and Certainty Matrix. 
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6.7.2  Stacey Agreement and Certainty Matrix  

In the Stacey Agreement and Certainty Matrix (Stacy Matrix) complexity is analyzed on two 

dimensions, the degree of certainty and the level of agreement and is illustrated in Figure 34. 

 

Figure 34: Stacey Agreement and Certainty Matrix (Cristobal et al., 2018) 

Based on Cristobal et al. (2018), these dimensions can be described as the following:  

• Close to agreement, close to certainty: Traditional management techniques work well, 

and the goal is to identify the right process to maximize efficiency and effectives. 

• Far from agreement, close to certainty: Coalitions, compromise, and negotiation are 

used to solve this type of situations. 

• Close to agreement, far from certainty: Traditional management techniques may not 

work, and leadership approaches must be used to solve this type of situations. 

• Far from agreement far from certainty: Anarchy with a high level of uncertainty and 

where traditional management techniques will not work. 

The Stacey Matrix can be regarded as tool that allows decision-makers to, like the Cynefin 

Framework, make sense of an array of decisions in a decision-making environment. Also, the 

Stacey Matrix is based on “political” decision-making aspects like communicating and 

negotiation with other system stakeholders in order to clarify why a given particular leadership 

approach might be appropriate to solve the complex situation. Nevertheless, the Stacey Matrix 
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does not provide any precise strategic guidance how this leadership approach might manifest. 

Consequently, the Stacey Matrix must be regarded as a generalist “sensemaking” tool as well. 

The next section now introduces and discusses Schuck´s Knowledge -Control Matrix. 

6.7.3  Schuck´s Knowledge – Control Matrix  

Schuck (2019) introduces the Knowledge – Control Matrix (Schuck Matrix) which is based on 

the two-dimensional knowledge matrix that is related to the practice of risk analysis, control, 

and management science.  

The Knowledge-Control Matrix follows the pattern shown in Figure 35. 

 

Figure 35: Schuck´s Knowledge - Control Matrix (Schuck, 2019) 

According to Schuck (2019) the Schuck matrix is a way of generating knowledge about an 

industrial system or engineering event via four quadrants that include “known knowns”, 

“known unknowns”, “unknown knowns”, and “unknown unknowns”. A general systems 

assumption will default to quadrants 1 and 3 in Figure X. It is assumed to be much more difficult 

to understand and quantify the “Don’t Know” column (quadrants 2 and 4), at least during the 

early design stage before system prototypes are built and tested. Quadrants 2 and 4 is where 

emergence is likely to occur. As already stated, emergent properties are very often destabilizing 

in human engineered complex systems unless accounted for in design and execution.  

The Schuck Matrix aims to allow decision-makers to better understand a given system in terms 

of controllability of the system.  
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Consequently, the Schuck Matrix is to be regarded as a sensemaking tool but differs from the 

Cynefin Framework and the Stacey Matrix as it is primarily concerned with generating 

knowledge about an industrial system in terms of control and is less focused on how the 

decision-maker perceives a situation from a personal or political point of view. Also, the Schuck 

Matrix does not provide any proposals how a situation might be approached strategically by the 

decision-maker after having generated knowledge.  

The next section now introduces and discusses MITRE Enterprise Systems Engineering 

Profiler. 

6.7.4 MITRE Enterprise Systems Engineering Profiler 

According to Stevens (2008) and Gorod et al. (2014) it is designed to be a complexity self-

assessment tool that can help the systems engineer and program manager understand the nature 

and context of the program/project of interest. It is also intended as the basis of a situational 

model that can help in selecting and adapting the processes, tools, and techniques most 

applicable to the problem and its context.  

The MITRE Enterprise Systems Engineering Profiler is now shown in Figure 36. 

 

Figure 36: MITRE Enterprise Systems Engineering Profiler (Stevens, 2008) 
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As shown in Figure 36 the MITRE Enterprise Systems Engineering Profiler is based on a four-

quadrant matrix format that is enhanced by three rings. The quadrants describe the different 

dimensions of the broader context in which the system, system-of-systems, or enterprise-wide 

system are developed, will operate in, or will evolve to. The three concentric rings reflect 

increasing levels of complexity and uncertainty.  

Based on Stevens (2008), the dimensions can be described as the following:  

• Strategic context: Dimensions related to the stability of the task environment and the 

scope of the intended effort. Requirements for systems that are to operate in a stable 

environment are expected to change more slowly than those for systems that will operate 

in environments that are themselves changing. 

• Implementation context: This context can range, at its simplest, from a single program 

that is established to implement a single system to the obviously more complicated 

activities associated with multiple programs organized to implement multiple, though 

operationally interrelated systems. 

• Stakeholder context: The extent to which stakeholders agree with the goals and 

objectives of the effort and the extent to which stakeholder relationships are changing. 

• Systems context: The expected outcome of the effort as well as on the behavior of the 

system itself. The expected outcome can range from small improvements to an existing 

capability to the development of a fundamentally new capability, often by leveraging 

emerging technologies. 

In this context the rings now reflect increasing complexity, uncertainty, and variability with 

complexity increasing from the innermost ring to the outermost ring.  

The MITRE Enterprise Systems Engineering Profiler allows decision-makers to better 

understand the complexity of a system or system of systems in terms of a wide range of 

characteristics and in the context in which it is being engineered, developed, and acquired and 

in which the system will operate. To achieve this, the framework focuses on how decision-

makers perceive the system and aims to improve intra and inter team communication.  

Also, the MITRE Enterprise Systems Engineering Profiler itself does not provide any structured 

proposals how a situation might be approached strategically by the decision-maker after having 

generated knowledge. Strategies have thus to be individually defined based on the individual 

situation of application. (Stevens, 2008) 

The next section now provides a comparison and discussion of the presented frameworks.  
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6.7.5  Comparison of complexity management frameworks 

Table 8 now compares the presented frameworks with each other and with an SMTT in the 

form of the SWOT analysis.  

Table 8: Comparison of complexity management frameworks 

Framework Method Format  Purpose  Focus   Strategic  

Cynefin Heuristics Matrix Sensemaking  Complexity   no 

Stacey Heuristics Matrix Sensemaking  Complexity  no 

Schuck Heuristics Matrix  Sensemaking  Control / 

Complexity 

no 

MITRE  Heuristics  Matrix Sensemaking Complexity no  

SWOT (SMTT)  Heuristics Matrix  Strategic external 

and internal analysis 

of system 

Business  yes 

 

Based on Table 8, the introduced complexity management frameworks allow to draw several 

conclusions concerning the underlying generalities of prominent complexity management 

frameworks.  These are now shown in Table 9.  

Table 9: Complexity management framework generalities 

Generality  Description  

Format  All frameworks are based on a matrix format. 

Method All frameworks utilize simple categorization functionalities / heuristics. 

Purpose  All presented complexity management frameworks are general 

“sensemaking” tools.  

Focus  Three complexity management frameworks (Cynefin, MITRE and Stacey 

Matrix) are focused on how a decision-maker, or a team perceives a 

situation, the Schuck Matrix has a focus on a given industrial system.  

Lack of 

strategic 

functionality  

No complexity management framework can be regarded as of inherently 

strategic when compared to the functionality of a SMTT dedicated to 

business strategy, exemplified by SWOT.  

 

Overall, it can be stated that the presented complexity management frameworks have distinct 

unifying characteristics in terms of format, method, purpose and, partially, focus. 
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It is made evident that even though there are similarities to a SMTT in term of basic format, 

method and functionality, contemporary complexity management frameworks differ in the core 

aspect that they are of a primarily phenomenological nature without any precise strategic and 

system component integrated like it can be found in an inherently strategic SMTT like SWOT. 

The next section now integrates and interprets these results in the strategic complexity 

management cycle. 

6.8  The strategy gap of current complexity management 

frameworks 

If interpreted in the context of the strategic complexity management cycle the following Figure 

results.  

 

Figure 37: The strategy gap of current complexity management frameworks 

Figure 37 shows that complexity management frameworks appear generally applicable to the 

first step of the cycle “Define – Understanding complexity” as they in principle allow to 

identify, analyze, and often visualize complexity.  

Optimization models, like Six Sigma, are now attributed to third step “Measure – Maintaining 

the system” ,if applicable, due to reasons already described and discussed and are not to be 

regarded as an essential topic for this thesis.  

It is now apparent that there is a definitive gap in the strategic complexity management cycle, 

since the second step “Manage- Developing and applying strategy” is not covered by the 

complexity management frameworks presented and discussed but would be covered in a more 

general business context by a SMTT like SWOT.  
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The identified gap is in line with the propositions of Törgren & Grogan (2018) in the context 

of complex CPS who state that there is a strong need for new models to engineer and manage 

industrial CPS. 

To practically underline the statements made, Kasser´s (2018) comprehensive collection of one 

hundred heuristic complexity management tools does primarily contain sense-making or 

creative tools and does not contain explicitly strategic complexity management tools.  

Figure 38 now summarizes the position and methodological approach of strategic management 

in the light of the literature reviewed. 

 

Figure 38: SMTT methodology in the context of complex industrial systems 

As a conclusion to the previous chapters Figure 38 now illustrates that SMTTs are a 

theoretically applicable heuristics-based assessment method for both complexity dimensions in 

manufacturing systems to address the identified gap.  

This described gap shall be defined for this thesis as the strategic complexity management gap 

and provides a coherent explanation for the motivation of the research question and core aim 

of this study as the central conclusion to this section. 

Consequently, the research aim, objectives and research questions of this thesis are introduced 

in the next section. 
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7 Research aim, research objectives and research 

questions  

The research aim, research objectives and the research questions of the thesis are now 

introduced. 

7.1  Research aim 

In accordance with the identified strategic complexity management gap the research aim of this 

thesis shall be defined as the following: 

Development and practical application of a strategic complexity management framework for 

complex industrial systems. 

Based on the research aim, the research objectives can now be introduced. 

7.2  Research objectives   

To achieve the defined aim this thesis now has the goal to develop and present a novel strategic 

complexity management tool (SCM). This goal is achieved through reaching the following 

thesis objectives:  

• Objective 1 (O1): Development of a multi-dimensional definition for industrial 

system complexity 

Description: Through review, synthesis, and analysis of the current body of research a 

working definition of complexity is developed in the form of a set of hypotheses 

concerning the nature of complexity and its implications for decision-makers in 

industrial systems. 

• Objective 2 (O2): Development of a complexity model for industrial systems 

Description: Based on (O1), a modelling approach for exploratory analysis is developed 

to theoretically model and visualize the developed conception of complexity for 

industrial systems. 

• Objective 3 (O3): Development of a strategic complexity management framework  

Description: (O1) and (O2) are applied to develop a strategic management tool for 

practical industry application in the form of the Strategic Complexity Management 

framework (SCM). 

• Objective 4 (O4): Application of the SCM on real-world cases in the European 

manufacturing industry 
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Description: Based on (O3): The SCM is applied on real-world industry case studies 

with a document review and analysis methodology. 

Based on the introduced objectives of the thesis the corresponding main research question can 

now be formulated.  

7.3  Research question  

In the light of O1-O4 the main research question (MR) for this thesis can now be defined as the 

following:  

Main research question (MRQ): Can the complexity of industrial manufacturing systems 

be managed via the strategic complexity management framework (SCM)?  

Based on the MRQ, the resulting sub-research questions (SRQ) can be introduced. 

7.3.1 Sub-research questions  

The following sub-research questions (SRQ 1-SRQ4) of the MRQ result in accordance with the 

defined research objectives (O1 – O4): 

• Sub-research question 1 (SRQ1; O1): How can the nature of complexity in 

industrial systems and its impact on decision-makers be defined?  

• Sub-research question 2 (SRQ2; O2): How can industrial system complexity be 

theoretically modelled?  

• Sub-research question 3 (SRQ3; O3): How can the strategic complexity 

management framework (SCM) for industrial systems be coherently established?  

• Sub-research question 4 (SRQ4; O4): Can the strategic complexity management 

framework (SCM) be applied on real-world industrial systems?  

The MRQ and SRQ1-SRQ4 are providing a novel contribution to industry decision-makers so 

that they can obtain methods and tools of strategic planning addressing the management of 

complex industrial systems, like CPS system architectures. 

The study achieves this by the development and practical application and evaluation of a 

strategic management framework SMTT based on a solid theoretical foundation of hypotheses 

and a dedicated model.   

On this basis the addressed research gap is described in more detail in the next section. 
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7.4  Addressed research gap 

As shown in the previous chapters, there is an expressed need to develop complexity 

management frameworks that integrate different individual, subjective measures of identifying 

and dealing with complexity into a synergetic strategic framework.  

This then allows to effectively address the already defined strategic complexity management 

gap. 

In correspondence to this notion and as reflected in MRQ, SRQ1- SRQ4 and O1-O4 the core 

aim of the proposed study is to develop a strategic complexity management SMTT.  

Such an SMTT dedicated for the strategic management of complex industrial systems can 

contribute to mitigate the identified gap and to develop novel strategic complexity management 

strategies and methods that fit in with the individual reality of the decision-making practitioner. 

This is achieved by integrating different complexity dimensions in a holistic, synergetic way, 

while being based on a coherent in-depth theoretical foundation, namely a dedicated model of 

complexity.  

This model is in turn based on the development of a specific and dedicated multi-dimensional 

definition of complexity for industrial systems, which is expressed by a set of hypotheses.  

As a next step the following chapter now introduces the chosen research philosophy, 

methodology and paradigm to achieve the defined aim, objectives and to answer the MRQ and 

the SRQs and to fulfill O1-O4. 
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8 Research methodology 

This chapter now describes the underlying philosophy, applied methodology and paradigm to 

achieve the research goal and objectives of this thesis and has the goal to provide an in-depth 

discussion and definitions of the applied methodological framework.  

To achieve this, this chapter discusses and defines the applied research philosophy, research 

methodology, research paradigm and thus how a SMTT for strategic complexity management 

can be developed and applied on real-world industrial systems in a coherent methodological 

framework. 

The structure of this chapter is that it starts with classification of the research philosophy on a 

meta-level, proceeds with the introduction of the research methodology and proceeds with the 

presentation of the methodology applied for the operationalization of the research and 

concludes with the applied research paradigm for the development of a strategic complexity 

management framework (SMTT) and its application on real-world industrial systems via a 

multi-case study approach.  

The chosen research framework is oriented on the complexity management case study research 

design as showcased by Myrodia (2016), Ardolino et al.  (2018), Fernandez et al. (2019), Gorod 

et.al. (2014) and Anderson et al. (2005).  Figure 39 now shows the applied framework of 

research philosophy, methodology and paradigm and how they are connected in a hierarchical 

order. The chosen research framework is based on the so-called “ladder of knowledge” 

dedicated for complexity management as proposed by Mariotti & Zauhy (2013). 

 

Figure 39: Research methodology overview 
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Figure 39 shows that the chosen research philosophy for this thesis is interventionism, the 

corresponding methodology is decision-aiding, and the resulting paradigm for framework 

establishment is strategic complexity engineering. The developed strategic complexity 

management framework will then be applied and evaluated based on multi-case study research.  

Consequently, the next section now describes the research philosophy of interventionism. 

8.1  Research philosophy: interventionism 

The research philosophy of interventionism can be regarded as a cluster of subjectivistic 

research approaches where the researcher deeply immerses herself with the object of her study. 

(Jönnson et al., 2005)  

To avoid confusion, a research philosophy shall be defined as a system of beliefs and 

assumptions concerning the development of knowledge in the scientific process. (Saunders et 

al., 2009)  

In the case of interventionism, it shall be true that the researcher is directly involved with the 

system under investigation. Out of this immersive approach results a situation in which the 

researcher accepts a lack of control over her research design and acts on the situation in concert 

with the host organization of the system, while analysing findings. (Jönsson et al., 2005, 

Woodward, 2014) 

The researcher therefore aims to refute an objective perspective on the object of research and 

becomes an insider of the world that is researched. It can therefore be stated that 

interventionistic research can be regarded as an umbrella concept that can incorporate different 

types of research approaches, such as action research, case study research or constructivist 

research.  (Jönnson et al., 2005) 

The core theoretical assumptions of interventionism are well summarized by Woodward (2014) 

who proposes a characterization where interventionism is defined as an intervention on a given 

variable X (e.g., complexity) with respect to variable Y (e.g., a system performance).  

This interventionism causes a change in the value of X (e.g., complexity) which is such that the 

value of Y (e.g., system performance) changes if at all via a route (or routes) that goes through 

X (e.g., complexity) and not in some other way.  
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Based on Woodward (2014) interventionism thus assumes two propositions to be the case:  

• Intervention: It exists a commitment to the possibility of intervening on X. 

• Effect: It exists a claim about what would happen to Y under such an intervention. 

Based on these statements the next section now covers the four general principles of 

intervention research.  

8.1.1 General principles of intervention research 

To further illustrate the reasoning behind intervention research, the following general principles 

of intervention research, based on David (2002) can now be introduced:  

• Understanding: The aim is to gain an in-depth understanding of the way in which the 

system operates, to help it to define possible paths for change, to help it to choose one, 

to implement it and evaluate the results. 

• Knowledge: Knowledge is produced in interaction with the field, but takes a special, 

delocalized position. 

• Theory: The researcher runs through different theoretical levels or dimensions of 

analysis. 

• Scientific principles: The normative position of intervening with reality is justified 

with reference to scientific principles (search for the truth) and democratic principles 

(equal respect for all actors). 

The four principles show that intervention research enables the formalization and 

contextualization of models and management tools to progress in an interactive manner.  

In the context of complex systems of organized complexity, Heino et al. (2021) state that there 

is a growing interest in the development of intervention models that explicitly model 

complexity by the current research community.  

As a next step, the next chapter defines the methodology of decision-aiding as a methodological 

approach of interventionism in managerial science. 
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8.2  Interventionism in the managerial sciences: decision-aiding  

As indicated, decision-aiding shall be regarded as the chosen methodology in the context of the 

philosophy of interventionism.  

To again avoid confusion, a research methodology shall be defined as how a scientific 

investigation to obtain knowledge shall be executed in terms of reasoning, learning, and 

investigating in the constraints of the research philosophy. (Woodward, 2014)  

In general, it can be stated the decision-aiding approach represents a "de-optimization" of 

classical operational research. (Roy, 1996, Montagna, 2011) 

The proposed application of decision-aiding and the utilization of tools in the context of 

complex systems decision-making for this thesis furthermore draws upon the propositions of 

Yurtseven & Buchanan (2016), Montagna (2011), Gorod et al. (2014), Bigaret et al. (2017), as 

well as Le Bris et al. (2019). 

The relation of prescription expressed by the concept of decision aiding breaks away from the 

idea of traditional "decision-making science" in the sense of not being a normative approach 

enabling a prescription of the "best rational decision" which is independent of the actors and 

the organizational context. (Roy,1996) 

Roy (1996) shows that it is impossible to uphold this normative position in concrete situations 

and supports the idea of a "science of decision aiding", that helps to obtain more subjective 

responses to the questions posed by a stakeholder of the underlying decision process. 

The research of Montagna (2011) furthermore illustrates the applicability of this approach in 

the context of complexity management and emphasizes the value of developing and applying 

appropriate decision-aiding tools and processes in the context of complexity management.  

The next section now describes the decision-aiding process. 

8.2.1 The decision-aiding process  

According to Tsoukias (2007) the decision aiding process consists out of a decision-maker, who 

deploys a decision-theoretic tool, for example a SMTT, to establish potential actions to 

undertake to solve a problem for a “client”, who is often a corporation / host organisation.  In 

such a setting, a researcher is functioning as an “analyst” and supports the decision-maker, in 

this case regarded as the “client”, to deploy said tool.  
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In this context a decision-aiding model or tool shall be defined according to Roy (1996), namely 

that as a model that is applicable to a certain family of questions and that is considered as a 

representation for a given class of phenomena of a posed problem. 

In general, any decision-aiding model can only relate to a fragment of reality. Such a fragment 

is to be considered as a functioning system that can be isolated in a manner consistent with its 

intended purpose. The fragment of reality is, therefore, specified both by the way it relates to a 

certain class of phenomena and by the purpose of the family of questions to be addressed. (Roy, 

1996, Montagna, 2011, Bigaret et al., 2017) 

Consequently, decision-aiding is to be regarded for the purpose of this thesis as a specific form 

of model/ tool-based client-analyst interconnected decision-making to solve a given client 

problem in respect to a given industrial system located at the host organisation.  

This leads to the conclusion that decision-aiding situations appear in the interaction space of at 

least two actors: the client and the analyst.  

This interaction space is characterized by a meta-object which is the consensual reconstruction 

of a client´s concern, the decision-problem to be solved. (Tsoukias, 2007) 

Figure 40 now illustrates the concept of the decision-aiding process.  

 

Figure 40: The process of decision-aiding 

Figure 40 makes visible, that the decision-aiding process is to be regarded as a highly subjective 

problem-solving approach based on the utilization of SMTTs for a pre-defined client / analyst 

interaction space that contains the consensual reconstruction of a client concern, namely a 

problem and a problem solution in the form of results. 
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In general, the process can be outlined as the following:  

A problem for a client exists (1), this problem is given to an analyst (2), the analyst applies a 

SMTT fitting to the consensual problem reconstruction (3), the SMTT is applied on the problem 

(4), results are obtained by the client (5) through the analyst.  

After the describing the process of decision-aiding in general, the next section further expands 

on how different approaches of decision-aiding can manifest. 

8.2.2 Decision-aiding approaches  

According to Tsoukias (2007) four different approach of decision-aiding can now be identified.  

• Normative: Deriving of models based on a priori norms. Deviations from these norms 

are to be regarded as mistakes by the client. These models intend to be universally 

applicable to all clients who want to behave rationally in the context of the applied 

decision-making model. 

• Descriptive: Deriving of models based on real-world observations how decision-

makers make decisions. 

• Prescriptive: A prescriptive approach aims to provide answers to a problem based on 

the assumptions of limited information and is thus closely related to heuristics. 

• Constructive: Based on an a posteriori discussion of analyst and client to construct a 

model based on the view of the client. It is important to mention that the interaction 

between client and analyst is to be regarded as part of the decision-making process. 

This shows that work in decision aiding is focused directly on knowledge, potentially even 

independent of relations between the client and analyst. It is important to mention at this point, 

that the described approaches are not to regarded as necessarily exclusive to each other, 

monistic, and can be combined with each other to achieve pluralistic, hybrid approaches being 

both a priori and a posteriori. 

For example, it could be possible to apply a heuristics-based prescriptive approach while 

applying a priori normative decision rules or strategies. (Tsoukias, 2007, Montagna, 2011)  

Montagna (2011) state in this context, that hybrid approaches and hybrid decision-aiding tools 

are particularly valuable models for managerial decision-making when faced with complexity. 

For example, a SWOT matrix SMTT can be regarded as a prescriptive, normative, hybrid 

decision-aiding tool, since it aims to provide answers to a problem based on limited information 
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which then allows to derive norm strategies which the client should apply and where deviations 

are to be regarded as strategic mistakes in the context of the SWOT matrix.  

In this context, Roy (1996) states that the construction and the use of such a model force the 

analyst to introduce a set of so-called voluntary hypotheses.  

These are hypotheses that, by definition, could not be proven true or false, either because no 

conclusive tests could be designed or because they are imposed as policy / axioms. These 

hypotheses concern the values of certain model parameters (interest rates, growth rates, timing 

of a future event etc.) or the dimensions of the model itself (consideration of certain scenarios, 

definition of decision variables, causal variables and data, existence, and nature of a relationship 

etc.). Consequently, the development of a set of voluntary hypotheses is to be regarded as the 

predisposition of any tool application. 

The next section now introduces the artefacts which are contained in the decision-aiding 

process. 

8.2.3 Artefacts of the decision-aiding process 

The decision-aiding process shall now contain the following core artifacts, based on the 

research of Tsoukias (2007), Bisdorff et al. (2015) and Montagna (2011). These are described 

in Table 10.  

Table 10: Decision-aiding artefacts 

Artefact Description 

Representation of the 

problem situation  

Aimed at answering the following questions: 

• Who has a problem? 

• Why is this a problem? 

• Who decides on the problem? 

• Who is responsible for the consequences of a decision? 

The problem situation shall be defined as the following triplet:  

P= (A, O, S) 

Where: 

• A is the set of participants to the decision process. 

• is the set of stakes each participant brings within the 

decision process. 
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• S is the set of resources the participants commit on their 

stakes and the other participants’ stakes. 

Problem formulation A problem formulation reduces the reality of the decision process 

in which the client is involved to a formal and abstract problem. The 

result is that now formal and abstract methods can be applied to 

study the situation. 

The problem formulation shall be defined as the following triplet:  

F= (W,V,N) 

Where:  

• W is the set of potential actions the client may undertake 

within the problem situation as represented in P.  

• V is the set of points of view under which the potential 

actions are expected to be observed, analyzed, evaluated, 

compared, including different scenarios for the future. 

• N is the problem statement, the type of application to 

perform on the set A, an anticipation of what the client 

expects. 

Evaluation model An evaluation model shall be defined as an n-uplet.  

 

M= (A, (D,E),H,U,R) 

Where: 

• A is the set of alternatives on which the model applies. It 

establishes the universe of discourse of all relations and 

functions which describe the client´s problem. 

• D is the set of dimensions under which the elements of a are 

described, measured, or observed. 

• E is the set of scales associated to each element of D.  

• H is the set of criteria under which element of A is evaluated.  

• U is the set of uncertainty structures or epistemic states 

applied on D and H.  

• R is a set of operators such as information available on A. R 

can be synthesized to a more concise evaluation through D 

and H allowing a final recommendation. 
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Final recommendation Represents the return to reality in the decision-aiding process and a 

result will be produced by the evaluation model. The final 

recommendation now translates the abstract and formal language of 

the model to the current language of the client.  

Some elements are very important in constructing this artifact: 

• The analyst must be sure that the model is formally correct. 

• The client must be confident that the model represents all 

preferences, that one understands it and that one should be 

able to use its conclusions. 

• The recommendation should be “legitimated” with respect 

to the decision process for which the decision aiding has 

been asked. 

 

Figure 41 now summarizes how the different artifacts of decision-aiding are connected to each 

other based in the context of a SMTT application.  

 

Figure 41: SMTT application in the context of decision-aiding 

Figure 41 showcases that decision-aiding now must be regarded as subjective problem-solving 

approach that is limited by the capacities of the ability to adequately reconstruct the problem in 

terms of representation and formulation, by the choice of SMTT as the evaluation model in the 

process of problem evaluation and by ability to translate the problem evaluation into a final 

recommendation. 
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Nevertheless, to highlight the relevance of the decision-aiding approach for the research 

question of this thesis, Montagna (2011) state that especially two issues must be considered 

when it comes to deploying decision-aiding artefacts for complexity management: 

• The breaking down of the problematic situation into the relevant aspects. 

• The use of new tools because classical tools (optimization methods, statistical tools, 

etc.) on their own are insufficient to face a problem. 

The next section now describes how intervention and decision-aiding research is to be 

conducted in practice by introducing the case study approach as the chosen research method for 

the operationalization of interventionism and decision-aiding for this thesis.  

8.3  Research operationalization: case study approach  

Based on the mentioned characteristics of interventionism and decision-aiding the case study 

approach is often the most approachable research method for this kind of research. This is 

reenforced by the complex system case study research conducted by Gorod et al. (2014) and as 

shown the context of complex system decision-aiding case study research by Daniell et al. 

(2010). 

 For clarification, a research method shall be defined as the planned procedure to find an answer 

to a research problem and guides data collection and evaluation. (Saunders, 2009) 

According to Baard (2010), in the case of interventionism often results a research methodology 

based on case study research, whereby researchers involve themselves in working directly with 

managers in organizations to solve real world problems by deploying theory for designing and 

implementing solutions through interventions and analyzing the results from both a theoretical 

and practice perspective.  

Therefore, interventionistic research is not focusing on providing explanatory theories on an 

objective conceptual level but aims to test, illustrate or to refine existing theory by intervening 

and interfering in the object of research. (Jönsson et al., 2005)  

Based on the displayed information, interventionism can now be regarded as broad term for a 

wide cluster of research approaches that often manifest in a case study approach.  

As a result, interventionistic research can be regarded as a highly subjective, interpretative case 

study approach that refutes the idea of objective observation and replaces it by an immersive in 
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vivo approach in which the researcher observers the research object whilst being part of the 

object itself.   

Thus, it is required of a non-pragmatist researcher to belief in the importance and effectiveness 

of active involvement through intervention and to employ the necessary skillset to make this 

approach effective since researchers can never be separate from their own values and beliefs, 

so these will inevitably inform the way in which they collect, interpret, and analyse data. (Baard, 

2010)  

The next section now provides a general definition of the case study approach.  

8.3.1 A general definition of the case study approach 

According to Harrison et al.  (2017) the case study research has grown in reputation and is seen 

as an effective methodology to investigate and understand complex issues. The main 

advantages of this approach are its functionality in real world settings and its usability in a high 

number of disciplines, particularly the social sciences, education, business, law, and health, to 

address a wide range of research questions. Case study research is described as a versatile form 

of qualitative inquiry most suitable for a comprehensive, holistic, and in-depth investigation of 

a complex issue (phenomena, event, situation, organization, program individual or group) in 

contexts, where the boundary between the context and issue is unclear and contains many 

variables. (Harrison et al., 2017) 

Yamashita & Moonen (2014) state in this context that case studies can deal with complex causal 

relations and complex interaction effects. They furthermore state that case studies enable the 

in-depth study of detailed causal mechanisms.   

A case study shall now be conclusively defined for this study as proposed by Gustaffson (2017), 

namely as an analysis of systems that are studied with a comprehensive view by either one or 

several methods. 

Beside the variety of case study-based research opportunities, the case study approach has 

common characteristics.  

The following Table 11 gives an overview about the by Harrison et al.  (2017) defined elements 

of case-study based research, their description, and the transfer of the research on a given 

research object. 
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Table 11: Case study elements 

Elements  General description 

The case 

• Object of the case study identified as the entity of interest or unit of 

analysis  

• Program, individual, group, social situation, organization, event, 

phenomena, or process 

A bounded 

system 

• Bounded by time, space, and activity 

• Encompasses a system of connections 

• Bounding applies frames to manage contextual variables  

• Boundaries between the case and context can be blurred 

Studied in 

context 

• Studied in its real life setting or natural environment context is 

significant to understanding the case  

• Contextual variables include political, economic, social, cultural, 

historical, and/or organizational factors 

Selecting 

the case 

• Based on the purpose and conditions of the study  

• Involves decisions about people, settings, events, phenomena, social 

processes  

• Scope: single, within case and multiple case sampling 

• Broad: capture ordinary, unique, varied and/or accessible aspects  

• Methods: specified criteria, methodical and purposive, replication 

logic, theoretical or literal replication  

Multiple 

sources of 

evidence 

• Multiple sources of evidence for comprehensive depth and breadth of 

inquiry 

• Methods of data collection: interviews, observations, focus groups, 

artifact and document review, questionnaires and/or surveys  

• Methods of analysis: vary and depend on data collection methods and 

cases; need to be systematic and rigorous  

Case study 

design 

• Descriptive, exploratory, explanatory, illustrative, evaluative, single or 

multiple cases                     

• Embedded or holistic            
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• Particularistic, heuristic, descriptive, intrinsic, instrumental, and 

collective  

 

After defining the case study method in detail, the next section now discusses the multi-case 

study approach. 

8.3.2 Multi-case study approach  

According to Campbell et al. (2018), a case study can contain either a single study or multiple 

studies. The researcher therefore must consider if it is sensible to make a single case study or if 

it is more appropriate to analyse multiple cases for the understanding of the phenomenon. It is 

explained that when the researcher chooses to do a multiple case study it is possible to analyse 

the data within each situation and potentially across different situations, unlike when a single 

case study is chosen, and strong and reliable evidence can be created.  

In general, it can be stated that if a multitude of cases is selected and analysed, a multi-case 

study approach is resulting. 

Thus multiple-case designs may generally be preferred over single-case designs since the 

analytic benefits from having two or more cases may be substantial. (Campbell et al., 2018) 

The next figure illustrates the multi-case study approach. 

Based on Campbell et al.  (2018), Figure 42 illustrates the multi-case study approach.  

 

Figure 42: Multi-case study design 

Figure 42 shows that the multi-case study approach combines several case studies to explore 

and improve a developed theory.  
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The multi-case study approach is thus based on cross case comparison and conclusions which 

aim to make the derived individual case conclusions more reliable and stronger and can be 

regarded as the preferred approach to the single-case study.  

The next section now briefly expands on the benefits and limitations of the case study approach. 

8.3.3 Benefits and limitations of case study research 

This section now briefly introduces and discusses the benefits and limitations of case study 

research. 

Yamashita & Moonen (2014) identify the following core benefits to case study research: 

• Potential for higher results validity 

• Strong procedures for fostering new hypotheses 

• Reasoning about causal mechanisms in individual cases 

• Capacity to address causal complexity 

In the context of complex industrial systems and the application of management tools the value 

of such case studies does not only lie in the development of a repository of well-documented 

examples but also in the potential to discover patterns that provide insight into what works and 

what does not work and into what circumstances produce which result. (Stevens, 2006) 

Yamashita & Moonen (2014) identify the following core challenges in case study research: 

• Selection of cases and bias due to case availability 

• Determining relative causal weights for variables of analysis  

This shows that many studies examine multiple cases involving systems with different 

functionality and contexts, which hinders the comparability of cases. One of the main 

underlying reasons is that it is difficult to identify, and get access to, multiple cases with the 

necessary characteristics.A similar challenge applies to determining the relative causal weighs 

of variables. Case studies are often better at assessing whether and how a variable mattered to 

the outcome rather than how much it mattered. (Yamashita & Moonen, 2014) 

In the light of these challenges, it is thus necessary to state for this study that the cross-case 

comparability of cases in a multi-case study research design is to be regarded as limited in 

general and most emphasis to is be positioned on the knowledge obtained in individual cases. 

As a next step, the section to follow now describes how the chosen paradigm for the 

establishment of a strategic complexity management framework. 
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8.4 Paradigm to establish a strategic complexity management 

framework  

After introducing the underlying research philosophy, methodology and the multi-case study 

approach a consistent definition of a strategic complexity management paradigm for complex 

industrial systems shall now be established to allow a methodological and scientific pursuit of 

the actual establishment of a SMTT for strategic complexity management for industrial 

systems.  

Such a paradigm shall be based on a set of axioms defined to establish the goals of strategic 

complexity management before introducing the paradigm itself. To avoid misconceptions, a 

paradigm shall now be defined as a basic belief system and theoretical framework with 

assumptions about ontology, epistemology, methodology and methods for a given scientific 

purpose. It is thus a research approach of understanding reality and studying it and shall guide 

the development of the proposed SMTT in later chapters of this study. (Rehman & Alharti, 

2016, Mariotti & Zauhy, 2013) 

8.4.1  Axioms of strategic complexity management  

Based on the thoughts of Frizelle et al. (2000), Stevens (2006) and in line with Rosser´s (2019) 

propositions, strategic complexity management shall primarily concern itself with the following 

aspects which are to be regarded as the core axioms of strategic complexity management for 

this thesis. 

These axioms are now defined in detail in the next Table 12.   

Table 12: Axioms of strategic complexity management 

Axiom (A) Description 

A1: Acknowledge  

Complexity must be acknowledged. 

- Complexity hypotheses   

This axiom requires to recognize non-deterministic 

behaviour in complex industrial systems. It means: 

• Recognizing that industrial systems are 

difficult to comprehend because of complex 

system behaviour. This means understanding 

how the parts of a system give rise to the 

collective behaviours of the system. 

• Recognizing that many industrial systems can 

be classified as complex systems, because they 

exhibit degrees of self-organization, 



 107 

emergence, innovation, learning and 

adaptation. 

• Establishment of hypotheses how complexity 

may work in industrial systems.  

A2: Characterize  

Complexity must be characterized. 

- Complexity model  

This axiom focuses on learning about where the 

complexity is coming from and what kind of 

complexity it is. It means:  

• To acknowledge that the study and modelling 

of such systems requires metaphors and 

models that can theoretically capture the in A1 

hypothesized complexity characteristics and 

complexity sources.  

A3: Anticipate & Manage 

Complexity must be anticipated and 

managed. 

- Heuristics-based framework  

This axiom is achieved by broadly anticipating 

practical complexity manifestations and applying 

strategies to manage their impact. This means:  

• To acknowledge that the strategic 

management of complex industrial systems 

can require the strategic application of 

heuristics, in the form of SMTTs to allow 

effective decision-making.  

• Recognizing that an effective SMTT for 

strategic complexity management must be 

based on the results generated in order to fulfil 

A1 and A2. 

• Recognizing that practical application not 

theory drives the development of processes 

and tools for strategic complexity management 

for complex industrial systems.  

  

The axioms A1-A3 show that strategic complexity management shall be regarded as neither an 

overarching science or philosophy nor a specified singular individual technique from a 

methodological point of view. It is thus to be regarded as a distinct methodology of strategic 

corporate thinking with a set of connected decision-aiding techniques and methods which allow 

decision-makers to view and influence industrial systems of economic value creation through 
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the perception of industrial systems as complex systems that can have emergent behaviour and 

can be strategically managed via heuristics in the form of SMTTs.   

A1-A3 are now serving as the paradigmatic baseline for the development of a paradigm for 

strategic complexity management that defines the nature and requirements of the scientific 

inquiry of establishing such an SMTT and thus the scientific inquiry of this study.    

8.4.2  The paradigm of strategic complexity engineering  

This section now introduces a paradigm for a coherent strategic development and application 

of strategic complexity management frameworks in the context of industrial systems for this 

thesis which allows the defined axiom A3 to be scientifically captured and practically pursued 

and manifested.  

According to Frei & Serugendo (2011) complexity engineering aims at the concrete use of 

complexity inspired methods for practical systems engineering of industrial systems. 

Buchli & Santini (2005) state in this context that in complexity engineering it is especially 

important to look at different systems and their underlying principles from the point of practical 

application.  

The goal of looking at a system with the goal of applying complexity inspired methods for 

practical and strategic systems engineering of industrial systems shall be defined by the 

overarching term of strategic complexity engineering.  

Based on the propositions of Frei & Serugendo (2011) modern industrial systems exhibit three 

main research directions in which the perspective of complexity can contribute to the 

development and integration of modern industrial system, like CPS, to achieve economic value 

creation. These are the directions of philosophical value, instrumental scientific value, and 

instrumental practical value and can be described as the following: 

• Philosophical value: A unified and structured body of knowledge, is generated through 

the analysis of the nature of complexity and the establishment of corresponding 

voluntary hypotheses to capture and better understand the general phenomenon of 

complexity in the context of the system to be analysed and managed. 

• Instrumental scientific value: Results from the establishment of a model of complexity 

to capture and analyse a given engineering problem based on the structured body of 

knowledge in the form of the hypotheses established.  
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• Instrumental practical value: The value of answering to material economic needs is 

generated through the development and practical application of dedicated SMTTs which 

are based on the assumptions of the model generated, thus fulfilling the defined core 

premise of strategic complexity engineering.  

Consequently, it can be stated that the in the provided paradigm the system dependent 

complexity phenomenon is regarded as the causal source for the resulting engineering problem 

which is again the causal source for the resulting strategic opportunity.  

The phenomenon is assumed to be captured by a system dependent definition of the nature of 

complexity. The resulting engineering problem is then captured through the means of a 

complexity model and the respective strategic opportunity can be captured through the 

application of dedicated SMTTs. 

Consequently, the research direction of understanding complexity as a strategic opportunity can 

be regarded as the most comprehensive and ambitious approach to integrate complexity science 

into a context of industrial economic value creation.  

It is shown that any practical strategical application of complexity via strategic complexity 

management SMTTs requires to be based on a complexity model which is in turn based on a 

conception of the nature of complexity in the form of voluntary hypotheses related to the 

respective context of analysis.  

The presented paradigm of strategic complexity engineering shall now be regarded as an 

overarching scientific paradigm that governs the pursuit of the establishment of a strategic 

complexity management SMTT in the form of a strategic complexity management framework 

(SCM).  

Therefore, the next part of this thesis concerns itself with developing a conception of the nature 

of complexity in the respective context of complex industrial systems to fulfil the first axiom 

of strategic complexity management: Acknowledging complexity and to answer SRQ1 /O1.  
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9 Hypotheses concerning the nature of complexity in 

industrial systems  

To fulfil SRQ1 and O1 of this thesis, the first axiom of strategic complexity management, 

acknowledging complexity is now approached in this chapter. This is achieved through 

introducing a detailed analysis concerning the nature of complexity as an emerging 

phenomenon in complex industrial systems and its impact on the decision-making process.  

A novel set of voluntary hypotheses (as defined by Roy (1996) defined as hypotheses that by 

definition, cannot be proven true or false, either because no conclusive tests could be designed 

or because they are imposed as policy) concerning the nature of dynamic complexity as the core 

obstacle to the performance in industrial systems is introduced, as shown in the research of 

Freund & Al-Majeed (2021a). These voluntary hypotheses serve as foundational assumptions 

concerning the nature and therefore the behaviour of complexity in industrial systems for all 

further inquiries conducted in this thesis.   

The intellectual basis for the analysis conducted in this part is provided by the Stevens (2006) 

who proposes three dimensions of analysis for complex industrial systems via a dedicated 

framework for the exploration of such systems.   

Figure 43 now illustrates the framework proposed by Stevens (2006).  

 

Figure 43: Dimensions of analysis for complex systems 

Figure 43 shows that three dimensions are necessary to explore, namely system behaviour, 

decision-making, and system environment. 
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Consequently, the analysis and voluntary hypotheses presented in this part strongly refer to 

these dimensions of analysis to establish voluntary hypotheses that function in a well-organized, 

combined, and synergistic manner. To avoid confusion, an hypothesis in general shall be 

defined for this thesis as a first tentative explanation of the research problem and comes close 

to an educated guess.  

The next section now focuses on the dimension of the behaviour of complex systems in the 

form of dynamic complexity. 

9.1  Complex system behaviour 

As already shown, it is possible to introduce the definitions of static complexity and dynamic 

complexity for industrial systems. Static or structural complexity can be defined as how the 

industrial system is structured (e.g., number of processors/machines, machine connections). In 

this case the static complexity refers to the constellation of information sources and their 

reflexive and irreflexive relations between them in a CPS.   

Dynamic complexity shall be defined as a time-dependent, information-based measure of the 

unpredictability in the behaviour of the system over a time-period. A common example of 

dynamic complexity is any type of unwanted system behaviour, like a machine breakdown. 

(Deshmuk et al., 1998) Dynamic complexity represents the core obstacle to achieving the 

systems target function and shall be the focus of the line of argumentation of this chapter. 

(Mourtzis, 2019) The focus of this section lies therefore on the application of the concept of 

dynamic complexity on CPS and does not consider static complexity metrics or system external 

complexity influence factors at this point in the thesis to provide to avoid confusion. 

As a starting point the term “information” is now defined for the context of this thesis. 

9.1.1  A definition of information 

It is necessary to state that the term “information” is itself to be regarded as a polymorphic 

phenomenon and a poly-semantic concept with many possible meanings. The term 

“information” is now defined for this thesis according to the notions established by Meijer 

(2013) under the assumption that information is generated through the interactions of a set of 

communicating agents. The term information shall therefore be defined as anything that an 

agent can sense, detect, observe, perceive, infer or anticipate.   

To make this statement clearer, the term agent is now defined in more clarity. 
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9.1.2 Agents 

An agent shall be defined according to Meijer (2013) as a description of an entity that acts on 

its environment. Note that agents and their environments are also information, as they can be 

perceived by other agents. An agent can be an electron, an atom, a molecule, a cell, a human, a 

computer program, a market, a machine, an institution, a society, a city, a country, or a planet. 

Each of these can be described as acting on their environment because they interact with it. 

According to Monostori et al. (2006) an agent operates in an environment from which it is 

clearly separated.  

In this constellation an agent does the following things: 

• It makes observations about its environment. 

• It has its own knowledge about its environment. 

• It has preferences regarding the states of the environment.  

• It initiates and executes actions to change the environment. 

Agents operate in environments that are only partly known, observable and predictable. 

Autonomous agents have the opportunity and ability to make decisions of their own. Rational 

agents act in the manner most appropriate for the situation at hand and do the best they can do 

for themselves. These agents maximize their expected utility given their own local goals and 

knowledge. Rationality can be bound by the complexity of a decision problem, the limitation 

of resources, or by both. An agent with optimization objectives but with limited means is a 

bounded rational agent. (Monostori et al., 2006)  

The following Figure 44 now describes the relationship of agent / environment. 

 

Figure 44: Relationship agent / environment 
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In a rudimentary sense, an agent shall be able to act on its environment in three ways: (Burgin, 

2009) 

• Receptor: Agent receives raw information, “data”, from its environment  

• Processor: Agent processes received data to descriptive information   

• Effector: Agent transfers descriptive information to other agents in the form of 

prescriptive information 

In this light, it is important to mention that strategic complexity engineering thus acknowledges 

the presence and action of “autonomous agents” as important elements which must either be 

eliminated or augmented by applying a set of tools to deal with their existence as interconnected 

system elements. (Norman, 2004)  

The next section now defines the term system. 

9.1.3 System 

A system is now defined as the concept of portioning an operating entity into a set of interacting 

units with specific relationship among them. A system therefore represents not only physical, 

spatial objects but also immaterial, temporal concepts like information and can maintain both 

system external and system internal interactions. (Jalil & Perc, 2017, Mourtzis et al., 2019)  

Consequently, for the purpose of this thesis a system is regarded as an open adaptive industrial 

manufacturing system if not defined otherwise. Based on this statement a system is defined as 

a production network of a given number of agents which are characterized by the ability to 

interact with each other and the system external world by transferring, storing, and circulating 

information in the network topology in order to produce marketable products. 

A network therefore comprises a system of at least two elements in the form of agents that are 

connected and that exchange information between them and the system external world. Such a 

system shall be characterized by three invariant properties, as defined by Fromm (2004).  

• Communication and complexity by specialization and cooperation between agents  

• Adaptation, feedback, growth and reproduction of information 

• Spatial and temporal organization  

Such a system shall therefore be defined as a complex adaptive system (CAS).  

Based on these notions the next section now further defines the concept of agents in a system.  
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9.1.4 Agents in a system 

Figure 45 now summarizes and illustrates the ways an agent can act on its environment in more 

detail by providing a simple example in which two agents (A1 and A2) circulate information in 

a system and thus forming a complex adaptative system (CAS). (Fromm, 2004) 

 

Figure 45: Basic structure complex adaptive system 

In relation to Figure 45, Figure 46 shows a possible conceptual classification of agents as either 

biological, robotic, and software agents. (Park & Tran, 2017) 

 

Figure 46: Types of agents 

Consequently, an agent in a system can be defined for this thesis as either a human, a task-

specific software or a production robot when defined in a manufacturing system. 
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The idea of the environment of an agent, the system, is defined as concept of that the 

environment of an agent consists of all the information interacting with it. (Meijer, 2013) 

The environment of an agent shall from this point onwards be regarded as a near-synonym of 

the term “system”.  

The term “data” is now described as the basic individual items of information, obtained and 

conserved through observation and data storage but devoid of an attributed context. There are 

many kinds of data existing, like sensory data, geographical data or network data. (Duan et al., 

2019)  

As a logical consequence of the presented definitions of the term data and information the 

relationship of data and information can be described as the following concept:   

Data + storing / recovering by an agent / set of agents in a given environment→ Information   

Consequently, any form of stored and recoverable data through the means of an agent in a 

system via the described receptor, processor and effector logic shall be regarded as information.  

This results in the core assumption that if data is stored and recoverable in any given form it 

shall be regarded as information.  

The relationship of agents, data and information can be defined on the basis for Hypothesis 1 

(H1). 

 

9.1.5 Hypothesis 1: Agent based information and data hypothesis 

(H1) The amount of information in a system is represented by the amount of data stored and 

recoverable by agents contained in the system. 

After introducing H1 the next section now discusses the how agents can function as sources of 

information in an industrial system. 
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9.1.6  Agents as sources of information in a CPS 

To further expand on the statements made, it is possible to classify the following agents and 

agent combinations as major sources of information under the assumptions of a modern, 

interconnected technological environment or multi-agent system. (Duan et al., 2019, Gimpel & 

Röglinger, 2015)  

The following sources of information in the form of agents are hypothesized for this thesis and 

are displayed in Table 13. 

Table 13: Agent types 

Agents  Description  

Machine generator (M) Autonomously generated by machine activity 

through sensors and instruments, for example 

the amount of information generated and 

stored by a smart factory or an artificial 

intelligence.  

Machine-machine generator constellation 

(MC) 

The combination of autonomously generated 

by machine activity through sensors and 

instruments that processed by another 

machine, for example the amount of 

information generated and stored by a smart 

factory that is again processed by an artificial 

intelligence. 

Human generator (H) Generated by human activities, for example a 

poem memorized by the human brain that 

generated the poem. 

Human-human generator constellation (HC) Generated by human activities, for example a 

poem memorized by the human brain that 

generated the poem and that is also 

memorized by the other human brains. 

Human-machine generator (HM) The combination of human activity and 

autonomous machine activity, for example 
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uploading a photo of the poem to the internet 

with an app on a smartphone device. 

Human-machine generator constellation 

(HMC) 

The alternating process of generating and 

processing information by humans and 

machines in a tandem, for example uploading 

a photo of the mentioned poem to the internet 

with a smartphone device which gets 

processed by an algorithm to generate 

advertisements for an app on the smartphone 

of the user who uploaded the photo, which 

stimulates the user to buy and download the 

app. 

 

The following sources of information in the form of agents are now introduced as CPS 

components accumulating in a CPS.  Each introduced agent shall be engaging in the process of 

transferring, storing, recovering, and generating information through agency execution. The next 

sections illustrate this. 

9.1.7 Agent type functioning as components of a CPS manufacturing 

system 

A machine generator (M) shall describe information autonomously generated by machine 

activity through sensors and instruments, for example the amount of information generated and 

stored by a processor unit in a CPS. (M) shall now be defined by a self-referring feedback loop 

in the form of a reflexive relation, as displayed in Figure 47.   

 

Figure 47: Machine generator 

Figure 47 shows the alternating process of generating and processing information by machine 

processors in a tandem positioned in a machine-machine generator constellation (MC). Thus, 

the combination of information autonomously generated by machine activity through sensors 
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and instruments that processed by another machine, for example the amount of information 

generated and stored by a set of processor units in a CPS.  

(MC) shall now be defined by a graph that contains reflexive and irreflexive relations. 

 

Figure 48: Machine-Machine Generator constellation 

Figure 49 shows how information is generated by human activities by a human generator (H), 

for example human learning. (H) shall now be defined as a reflexive relation.  

 

Figure 49: Human generator 

Figure 50 shows the alternating process of generating and processing information by humans in 

a tandem by a human-human generator constellation (HHC), for example receiving a message 

and sending a message back in return. 

 

Figure 50: Human-Human Generator constellation 
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Figure 51 shows the alternating process of generating and processing information by humans 

and machines in a tandem, for example a human acting on a machine processor via an interface 

in a human-machine constellation (HMC). (HMC) shall now be defined by a graph that contains 

reflexive and irreflexive relations.  

 

Figure 51: Human-Machine Generator constellation 

Figure 51 shows that the described sources of information are indicating that different types of 

agents represent collections of basic functions which can be placed in an interconnected relation 

in the form of a heterogenous network system where their position and inherent internal 

irreflexive or reflexive functioning leads to different flows information being created and stored 

in the system  

For this thesis, any of systems that contains at least one machine generator unit (M) shall be 

named CPS.   

Based H1, Hypothesis 2 (H2) now results. 

 

9.1.8  Hypothesis 2: Agent based information flow hypothesis 

(H2) Any type of information flow in any given industrial information system can be explained 

by a given combination of sources of information positioned in a network constellation in the 

form of agents. 

H1 and H2 is now accumulating in the practical context in the concepts of cyber-physical 

systems (CPS) and is further discussed on the context of information as complexity in CPS in 

the next section. 
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9.1.9  Information as complexity in CPS  

As already established, a CPS can be described as a new generation of complex systems that 

blend the knowledge of physical artifacts and engineered systems due to integrated 

computational and physical capabilities.  

The provided definitions also make it evident, that a CPS represents a specific network topology 

with an agent combination that manifests in a practical context of complex economic value 

creation, for example intelligent manufacturing infrastructure. 

Figure 52 now illustrates the basic layout of a completely integrated CPS.  

 

Figure 52: Integrated CPS with different components 

Figure 52 shows that a CPS can be abstractly described as a network of machine / physical 

object (M) and data interaction enabled through a rich multi-directional information flow, 

positioned in a network topology, that increases in contained information over time. (Garcia et 

al., 2019)  

Based on this Figure 53 now provides illustration of how information is assumed to be 

aggregated over time in such a CPS.  
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Figure 53: Information aggregation over time in CPS 

Figure 53 shows, that any type of CPS can be expected to lead to a cascadic growth of circulated 

information if an undistorted feedback loop is in place. (Jalil & Perc, 2017)  

This now allows the introduction of Hypothesis 3 (H3). 

 

9.1.10 Hypothesis 3: Cascadic growth of information in industrial 

information systems hypothesis 

(H3) Any type of information flow in a given industrial information system in the form of CPS, 

CHS can be expected to generate cascadic growth of circulated information if an undistorted 

feedback loop is in place.  

 

After presenting hypothesis H3 it is now necessary to provide further information on the 

concept of increases in generated information through introducing and applying the theory of 

Shannon Entropy to the notions of H1-H3 to further validate the hypotheses.  
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9.1.11  Shannon entropy 

As already shown, it is possible to introduce the idea of a common dominator of complexity by 

linking the notion of complexity with notion of system entropy. The entropy of a system is in 

this context regarded as a measure of disorder in the system. Additionally, the concept of energy 

entropy can directly be linked to the concept of Shannon Entropy, which measures the 

information content of a message. (Li, 2016, Mourtzis et al., 2019)  

This shows that dynamic complexity, when brought into the context of industrial information 

systems, appears to have a common metric for complexity in the form of energy translated to 

information under the conception of Shannon Entropy.  

The entropy of a system of messages is defined by Shannon as described in equation (2). 

 

(2) 𝐻(𝑋) =  −∑𝑝𝑖(𝑥)𝑙𝑜𝑔2𝑝𝑖(𝑥)                 

 

Where in this formula pi is the probability of message i in A, which can be identified exactly as 

the formula for Gibb’s entropy in physics. (Mourtzis et al., 2019) 

The use of base-2 logarithms ensures that the code length is measured in bits (binary digits). 

(Mourtzis et al., 2019) 

It can now be seen that the communication entropy of a system is maximal, and the 

predictability is minimal when all the messages have equal probability and thus are typical.  (Li, 

2016)  

The key concept is that of the order of a system, a well-ordered system (message) is simple, 

therefore non-complex, and vice versa.    

The entropy of a system is in this context regarded as a measure of disorder in the form of 

uncertainty in the system, where a low entropy value implies low uncertainty and vice versa. 

The higher the disorder, the higher the entropy.  If the system is well ordered, it is easy to 

understand, to predict its behaviour, and to describe and communicate it.  

Complexity of CPS shall thus not be regarded as binary state of complex / non-complex but as 

a degree between total order / certainty and total disorder / uncertainty. (Lent, 2018) 

Consequently, Shannon Entropy can be regarded a measure of the information content of data, 

where information content refers to what the underlying data could contain, as opposed to the 
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more intuitive notion of what it does contain. Therefore, Shannon Entropy is essentially about 

quantifying predictability or conversely randomness in information. (Mourtzis et al., 2019) 

The degree of complexity of a system shall now be determined through Shannon Entropy and 

therefore by the aggregated amount of information contained in the system with an increase of 

system complexity resulting from any increase in the amount of information transferred and 

aggregated in the system and vice versa. (Mourtzis et al., 2019) 

The already introduced concept of Shannon Entropy can serve as an explanatory approach to 

why the amount information contained in a system can serve as a metric for complexity.   

The concept of Shannon Entropy can additionally be linked to the context of complex systems 

through principle of maximum entropy which states that those complex systems tend to 

maximize entropy production under their present constraints while evolving over time. (Hanel 

et al., 2014, Jalil & Perc, 2017) 

Hypothesis 4 (H4) now results. 

 

9.1.12 Hypothesis 4: Complexity of industrial information systems 

hypothesis 

(H4) The complexity of an industrial information system is defined by the amount of information 

contained and produced in the system with more information leading to more complexity and 

vice versa. 
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Figure 54 now summarizes the assumptions made in H1-H4.  

 

Figure 54: Hypothetical development of complexity in CPS over time 

Figure 54 shows that a CPS is thus characterized by the characteristics of complexity, volatility, 

uncertainty and ambiguity (VUCA) as it is characterized by highly interconnected constellation 

of agent types which lead to an increase of dynamic complexity as defined by Shannon Entropy. 

(Gimpel & Röglinger, 2015, Mourtzis et al., 2019)  

It is therefore shown that it is possible to construct a theoretical connection between the 

increased implementation of advanced CPS technology, informational growth, and the growth 

of dynamic system complexity.  

The notion of H4 is strongly in line with the research of Wade & Heydari (2014), who propose 

that system complexity is increasing exponentially over time due to increases in the 

interconnectivity and the role of human agents in the system. 

Based on H1 – H4 it can be theoretically indicated that the amount information aggregated and 

transferred in a system can serve as an indicator for the development of dynamic system 

complexity and as a possible explanatory concept for the surges of system complexity in 

industrial information systems, like CPS.  

H1 – H4 now provide the theoretical foundation for further the further exploration of how 

complexity impacts complex industrial systems like CPS in a system of systems perspective 

through the discussion of the influence of dynamic complexity on cyber-physical systems of 

systems (CPSS).   
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9.2  System environment: influence of dynamic complexity on 

systems of CPS 

To underline and to further expand on H1-H4, this section now discusses the development of 

dynamic complexity in cyber-physical system of systems (CPSS), where CPS components 

function as information sources in an interconnected network topology based on Joint Shannon 

Entropy.  

The Joint Shannon Entropy is now a measure of the uncertainty associated with a set of variables. 

(Mistry & Banerjee, 2013)  

The joint entropy H(X, Y) of a pair of discrete random variables (X, Y) with a joint distribution 

p(X, Y) is defined as shown in Equation (3). 

(3) 𝐻(𝑋, 𝑌)  =  𝐻(𝑋) + (𝐻(𝑌) − 𝐼(𝑋, 𝑌))  

Where H(X) and H(Y) are the entropies of the random variables (X, Y) and I(X, Y) is the mutual 

information both random variables share.  

If X and Y are mutually independent then I(X, Y) must be 0 and their joint entropy is equal to 

the sum of their entropies H(X) and H(Y). If X and Y are not mutually independent their joint 

entropy will lower than the sum of H(X) and H(Y) since I(X, Y)>0 but greater or equal to the 

maximum entropy of the individual entities contained.(Mistry & Banerjee, 2013) 

The degree of complexity of a CPS shall now be determined through the joint Shannon Entropy 

of a CPS, H(CPS). For example, a CPS containing two MC components (MC1, MC2) has the 

joint entropy as displayed in Equation (4). 

(4) 𝐻(𝐶𝑃𝑆) =  𝐻(𝑀𝐶1) + 𝐻(𝑀𝐶2) –  𝐼(𝑀𝐶1, 𝑀𝐶2)      

Where H(CPS)≤ H(MC1) +H(MC2). H(CPS) now serves as a metric for complexity, entropy and 

thus, uncertainty of the CPS, with a greater H(CPS) indicating a greater uncertainty and vice 

versa. 

The degree of complexity of a CPSS, H(CPSS), containing two CPS (CPS1, CPS2), shall be 

determined by the joint entropy as displayed in Equation (5). 

(5) 𝐻(𝐶𝑃𝑆1, 𝐶𝑃𝑆2) = 𝐻(𝐶𝑃𝑆1) + 𝐻(𝐶𝑃𝑆2) − 𝐼(𝐶𝑃𝑆1, 𝐶𝑃𝑆2) 

Where the entropy of all CPS contained in the CPSS, with H(CPSS) ≤ H(CPS1) +H(CPS2). 

Since CPS are defined as a constellation of information sources executing agency in the form of 

machine and human processor units or constellations and a data pool contained, a CPS itself can 

be defined as a source of information if the CPS is part of a larger cyber-physical system of 
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systems (CPSS) in which CPS represent the components that exchange and generate mutual and 

non-mutual information flow in a receptor / processor / effector logic.  

Consequently, CPS and CPSS are expected to maximize H(CPS) and H(CPSS) over time if H1-

H4 are the case.  

This development can be linked to the Principle of Maximum Entropy which states that complex 

systems tend to maximize entropy production under their present constraints while evolving over 

time. It can also be linked to Lehman´s Law of increasing complexity, which states that a systems 

complexity must increase over time, if the system is not artificially regulated and to the general 

laws of entropy in a in a system, exemplified in the second law of thermodynamics. (Mistry & 

Banerjee, 2013, Godfrey & German, 2012, Lent, 2018, Hanel et al., 2014) 

If CPS are positioned in a CPSS, information transmission between CPS components is 

significantly increased and overall system complexity must increase as well.   

This is now conceptually illustrated by a scenario where two CPS, as illustrated in Figure 55, are 

positioned in a closed loop CPSS setup. 

 

Figure 55: CPSS example layout 
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Figure 55 shows, that the combination of CPS in a CPPS leads to significantly increased 

information transmission, generation, and storage potential if total interconnectedness is the 

case since more information sources and data pools are connected.  

Figure 56 now illustrates this by showcasing two CPS components of a mechatronics machine 

which are both physically connected and via a communication network to underline the line of 

argument. The components of the mechatronics machine interact physically and via information 

exchange.  

The connectivity between components enables direct collaboration among machines with edge 

or cloud computing resources. Subsystems and components also include machine external 

computing and communication resources. (Törngren & Sellgren, 2018) 

 

Figure 56: CPSS of two mechatronic CPS (Törngren& Sellgren, 2018) 

Figure 56 underlines the argument illustrated in Figure 55 and practically exemplifies the high 

complexity and the extent of multi-dimensional information exchange in current CPSS systems 

that is even more increased when the CPSS is open loop with enabled environment 

communication.  
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Based on H1-H4 and the conception of CPS as sources of information in CPSS and thus sources 

of entropy H(CPS) which maximize information entropy over time, it is reasonable to define 

CPS as sources of disorder and uncertainty in CPSS, which maximize joint entropy H(CPSS).  

Uncertainty shall now be defined as the situation when the information necessary to obtain to 

understand and anticipate system developments and changes is insufficient or unavailable 

leading to decreased system predictability. (Thoma et al., 2020) 

Complexity in this context can furthermore be defined as the measure of uncertainty that a 

system can satisfy the functionality of the system. (Blecker & Abdelkafi, 2006)  

System functionality shall be defined as a low or non-existing probability of occurrence of 

undesired events and thus of a low overall system risk. (Törgren & Grogan, 2018)  

As a first conclusion and as shown in Freund & Al-Majeed (2020a) the impact of dynamic 

complexity on cyber-physical systems is illustrated in Figure 57. 

 

Figure 57: Impact of dynamic complexity on CPS(S) (Freund & Al-Majeed, 2020a) 

It can consequently be shown that an increase in system complexity is expected to lead to a 

decrease of system functionality in the form of an increase in unpredictability and an increase of 

system risk, represented through the occurrence of undesired events in the system lifecycle.  
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At the same time a trade-off relationship exists with an increase in system functionality in the 

form system performance as an increase in dynamic complexity enables more functionality in 

the CPS and potentially allows the creation of more expected and desired events.  

Therefore, CPS function as both sources of increased system risk and increased system 

performance at the same time in CPSS, leading up to a trade-off relationship between both 

aspects, which must be considered when designing CPSS architectures. (Törngren & Sellgren, 

2018) 

The established trade-off relationship shows that CPS and CPSS can be regarded as effective 

technologies to increase system performance with higher output where the impact of dynamic 

complexity can lead to decreased system efficiency, as potential benefits are possibly 

accompanied by high system input cost to assure system stability.  

It is shown that CPS itself can be expected to maximize entropy for themselves and for the 

CPSS they are positioned in over time if not artificially regulated. It can thus be theoretically 

indicated that the amount of information aggregated and transferred in a CPS can serve as an 

indicator for the development of dynamic system complexity in both the system itself and any 

CPSS it is positioned in.  

It can thus serve as an indicator for the implications of increased dynamic system complexity 

in CPS and CPSS like increased system risk through system uncertainty.  

It is shown that the increase of effectiveness through the introduction of a CPSS architecture is 

accompanied by a decrease of overall system efficiency, since dynamic complexity increases.  

Consequently, the importance of developing appropriate, cost-efficient risk management and 

control systems for CPS and CPSS must be highlighted to achieve effective, efficient, and safe 

deployment for system stakeholders by decision makers.  

It furthermore allows the line of argument, that complex systems management leads to a quasi-

paradoxical situation: The decision to implement complex systems to achieve higher 

performance leads to a at least proportionate cost of system uncertainty and risk which might 

mitigate the performance increases achieved.  

This paradox shall be named the “complex system performance / risk trade-off”.  

The meaning of this paradox for decision-makers is now further explored in the next chapter in 

the context of the dimension of decision-making and system regulation.   
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9.3  Decision-making: influence of dynamic complexity on 

decision making and system regulation  

After defining the concepts of information and complexity in industrial system in H1-H4 and 

the introduction of the “complex system performance / risk trade-off” it is now possible to 

introduce further theoretical assumptions in the form of additional voluntary hypotheses 

concerning the subjective, epistemological nature of complexity via system regulation as the 

strategic act of a decision-maker intervening in a system´s dynamics. 

9.3.1 System regulation 

The core function of system regulation (SR) in a complex industrial system shall be defined as 

a direct reduction of system disturbance (D) to keep the goal of the system intact.  

A regulator / decision-maker of system thus imposes a set (R) of regulatory responses on a set 

(D) of system disturbances.  

Disturbance (D) shall be defined in proportion to information complexity and consequently as 

an expression of joint system Shannon Entropy H(P). Consequently, the act of system 

regulation can be broadly defined as a function (f) of regulatory responses (R) and system 

disturbances (D), as shown in Equation (6). 

(6) 𝑆𝑅 = 𝑓(𝑅, 𝐷) 

The central goal of a system regulator shall thus be to reduce the flow of information in the 

system against a set of disturbances by systematically intervening in the systems dynamics. 

(Schuck, 2019) 

Figure 58 now illustrates this process. 

 

Figure 58: Basic process of system regulation 
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Based on Figure 58, the basic function of regulation can be illustrated by considering two 

models of temperature records of a set of two water pools (A, B) exposed to the same 

environment conditions, which shall be regulated to a constant temperature by a heater.  

Figure 59 illustrates this.  

 

Figure 59: Regulation of two water pools 

The provided example shows that water pool B is better regulated as no information about any 

disturbances induced by environment temperature changes can be identified and no deviations 

from the desired temperature took place.  

Consequently, regulation (SR) blocks the flow of variety and therefore provides the control of 

influence. The perfect thermostat would be one that, despite a disturbance, kept the temperature 

constant at the desired level. (Schuck, 2019) 

Based on these thoughts the next chapter now provides an approach to model the relationship 

of disturbance and regulation in an industrial system.  
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9.3.2 A model of disturbance and regulation in complex systems  

An industrial system (Sn) with a given complexity defined as static and dynamic complexity 

and the resulting disturbance set (D(Sn)) shall be met by a set (R(Sn)) of regulatory responses 

where R [r1…rn]. (Ashby, 1991) A regulatory response might be any counter measure that can 

be undertaken as a reaction to a system disturbance by a rational decision-maker.  

Figure 60 illustrates this.  

 

Figure 60: Disturbance set with regulatory response set 

Consequently, it can be stated that a maximization of system disturbances leads to a 

maximization of the regulatory response set.  

Equation (7) describes this.  

 

(7) D(𝑆𝑛)𝑚𝑎𝑥 = 𝑅(𝑆𝑛)𝑚𝑎𝑥 

Where D(𝑆𝑛)𝑚𝑎𝑥 = maximum system disturbances and 𝑅(𝑆𝑛)𝑚𝑎𝑥 = maximum regulatory 

responses. 

Based on Equation (7), Hypothesis 5 can now be derived. 

9.3.3 Hypothesis 5: Disturbance and regulatory response proportionality 

hypotheses 

If a system maximizes its set of system disturbances, the set of regulatory responses must also 

be maximized.  
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9.3.4  Regulation & Outcome 

Based on the Hypothesis 5, it is now possible to attribute to every disturbance / regulatory 

response combination a given outcome set Z with [z11…zij].  

Figure 61 now introduces the outcome matrix of a given disturbance and regulatory response 

set. (Ashby, 1991) 

 

Figure 61: Outcome matrix 

The displayed outcomes shall furthermore not be attributed with any kind of desirability for the 

decision maker and only map the product set D x R into the set Z of possible events in the form 

of outcomes.  

Consequently, it can be stated that a maximization of system disturbances leads to a 

maximization of the outcome set.  

Equation (8) describes this.  

 

(8) D(𝑆𝑛)𝑚𝑎𝑥 = 𝑍(𝑆𝑛)𝑚𝑎𝑥 

Where D(𝑆𝑛)𝑚𝑎𝑥 = maximum system disturbances and 𝑍(𝑆𝑛)𝑚𝑎𝑥 = maximum possible 

outcomes. 

 

Based on Equation (8) Hypothesis 6 can now be derived. 
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9.3.5 Hypothesis 6: Disturbance and system outcome proportionality 

hypotheses 

If a system maximizes its set of system disturbances, the set of possible outcomes must also be 

maximized.  

The Hypotheses 5 and 6 can now summarized by the effect diagram displayed in Figure 62.  

 

Figure 62: The relationship of disturbance, regulation, and outcome 

Figure 62 shows, that the extent of the regulation is directly dependent on the extent of 

disturbances in a system, while the extent of outcomes in dependent on the extent of regulation 

and disturbance.  

This allows to extent the function proposed in Equation (8) to the Equation (9): 

(9) 𝑆𝑅 = 𝑓(𝑅, 𝐷, 𝑂) 

Equation (9) shows that system regulation (SR) now can be defined as the function of regulatory 

response (R), disturbance (D) and the outcome (O).  

After introducing the concepts of the disturbance, regulatory response, and outcome set, as well 

as H5 and H6 it is now possible to explore how the decision-making process of a rational 

decision-maker functioning as the system regulator can be modelled under the given 

assumptions. 
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9.3.6  Rational decision making and complex system regulation 

When describing the process of decision-making in complex industrial systems, it is necessary 

to define the assumed modus operandi of the individual´s decision making process if situated 

in a decision problem.  

This is achieved in the form of the standard theory of rational choice and assumptions 

concerning the nature of rational decisions made under uncertainty and under risk. A decision 

problem in this case shall be defined as the act of defining the most optimal, utility maximizing 

function of (SR) for a given system in each managerial situation and its parameters.  

To allow the creation of a model to demonstrate how the decision-making in a complex 

industrial system can function, the assumptions of the standard theory of rational choice (SRC) 

are now introduced.  

SRC assumes that individuals do not act randomly, but follow a more consistent approach, a 

strategy, while making decisions. They therefore exercise instruments of rational choice, while 

aiming to achieve an optimized outcome.  

It shall now be assumed that rational agents are the starting point of every action, that these 

rational agents are provided with usable resources. They exercise preferences and can choose 

between at least two options and that agents act according to a coherent decision rule that can 

predict how the agent chooses. (Bradley, 2014, Diekmann, 2004) 

This indicates that the standard definition of rational choice describes a consistent approach to 

define individual thinking to maximize a certain outcome in a certain scenario of choices. It is 

therefore based on the assumption, that individuals have preferences and act according to these 

preferences and therefore are exercising an optimization-based approach. (Levin & Milgrom, 

2004) 

Agent preferences are expressed through preference relations, meaning that an individual either 

strictly prefers x to y, with x>y, or is indifferent between x and y, with x ∼ y. All preferences 

combined result in a choice set (X) of the rational agent. (Levin & Milgrom, 2004, Bradley, 

2014, Straub & Welpe, 2014) 

Furthermore, it is assumed in this instance that the individual chooses under certainty, therefore 

attributing a probability of p=1 to every preference. In the context of a rational agent positioned 

in an industrial system outcome matrix, the choice set (X), with [x1…xn] with x ∈ X, of the 
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rational agent equals the response set (R), with [r1…rn] for the given system, resulting in               

r ∈ X. Consequently, an increase in (R) must lead to an increase in (X) and vice versa.  

 

Hypotheses 7 and 8 can now be derived. 

 

9.3.7 Hypothesis 7: Choice set hypothesis 

The choice set of a rational decision-maker in the role of a system regulator is equal to the set 

of regulatory responses. 

 

9.3.8 Hypothesis 8: Choice set maximization hypothesis 

If a system maximizes its set of disturbances, the resulting choice set of a regulating decision-

maker is also maximized. 

 

If the assumptions of SRC are met, the described rational agent is at any time capable to choose 

the preferred preference from the underlying choice set. (Levin & Milgrom, 2004)  

Therefore, a metric for desirability (∂) can be attributed to every outcome (zij) in an outcome 

set (Z) of a given system.  

To illustrate this, Figure 63 shows an exemplary outcome matrix with D[d1…d4], R[r1…r4] in 

which every disturbance / response combination results in either a preferred outcome or a non-

preferred outcome for the deciding agent.  

A preferred outcome shall be noted as the binary notions of (1) and the non-preferred outcome 

shall be noted as (0), with the attributed preferences based on the assumption that a rational 

agent prefers any solution to a system disturbance set over no solution at all times. 
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Figure 63: Outcome matrix with preferences 

Figure 63 shows that an outcome matrix of a complex industrial system represents a decision 

situation in which a rational agent has the choice set (X)=(R), with [r1…r4]. Based on the 

assigned preference values in the shown example the rational agent has the following preference 

relation: r3>r1>r4>r2.  

Consequently, the rational agent chooses response r3 in the given scenario to maximize 

preferences and the overall outcome, by deciding for the most optimal counter measure against 

system disturbance. 

Based on Figure 68, Equation (9) can now be modified to Equation (10) which includes 

desirability (∂) in the defined function.  

 

(10) SR = f(R, D, O, ∂) 

Applying the standard theory of rational choice to model strategic individual decision-making 

behaviour in a scenario of complex industrial system allows to normatively model the acting 

individuals as rational agents driven by clearly defined preference relations in a clearly defined 

choice set.  

The application of mathematics to increase the deductive and predictive capability of the model 

and to obtain an overall understanding of the decision problem is furthermore enhanced through 

the introduction of the concept of utility. (Levin & Milgrom, 2004, Diekmann, 2004) 
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9.3.9 Utility functions 

The concept of utility assumes, that if an agent has complete and transitive preferences then 

preferences can be associated with a utility function. (Board, 2009) The existence of a utility 

function (u(x)) ranks and represents an individual´s preferences by equipping each preference 

with a certain number of utilities.  

A utility function associates different numbers to different preferences, and have the agent 

choose the preference with the highest number. These numbers are called utilities. In turn, a 

utility function tells the utility associated with each preference x ∈ X and is denoted by u(x) ∈ 

<. (Bradley, 2014, Levin & Milgrom, 2004, Diekmann, 2004, Board, 2009) 

 Equation (11) illustrates this. 

 

(11) u(x) ≥ u(y), if and only if x < y 

 

This means than an agent makes the same choices whether it is based on the preference relation, 

<, or the utility function u(x).   

Consequently, if the attributed values (1) and (0) for preferability and non-preferability 

displayed in Figure 63 are assumed to be utility, the resulting utility function for the rational 

agent would be u(r3=4, r1=3, r4=1, r2=0) resulting in u(r3,r1,r4,r2) and therefore in a utility 

function consistent with the underlying preference relation r3>r1>r4>r2 that maximizes both 

utility and preferences of the rational system regulator. 

To make the model more realistic, the next section now investigates decisions under uncertainty 

by introducing Von Neumann-Morgenstern utility functions. 

 

9.3.10 Decisions under uncertainty: Von Neumann-Morgenstern utility 

functions 

Up until this point, SRC was assumed and therefore the rational agent expected to decide under 

the condition of being fully informed about all possible outcomes of the R x D decision matrix. 

Consequently, the rational agent maximizes utility under the assumption of outcome certainty 

and complete information about all R x D combinations and resulting outcomes O.  
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To achieve a more nuanced model of rational behaviour, the concept of uncertainty can be 

introduced to the decision matrix by utilizing the concept of expected utility.  

Uncertainty shall be defined as a state of a lack of information and therefore can be defined as 

the decision-maker making decisions based on incomplete knowledge about the outcomes that 

result from a disturbance / regulation combination.  

This shall be modelled by the addition of a probability set to the outcomes of an outcome matrix 

and thus in the form of an expected utility function. (Kurhade & Wankhade, 2016, Briggs, 2019, 

Straub & Welpe, 2014) 

To do this the basic principle of utility theory developed by Von Neumann-Morgenstern is 

applied. 

Utility is assigned to the attributes in such a way that a decision (on which action to take) is 

preferred over another if, and only if, the expected utility of the former is larger than the 

expected utility of the latter. (Bradley, 2014) 

The resulting expected utility of a decision (A) by rational agent shall be defined as described 

in equation (12). 

(12) EU(A) = ∑ PA(o)U(o)o∈O  

where O is the set of outcomes, PA(o) is the probability of outcome o conditional on A, and 

U(o) is the utility of o. The term PA(o) represents the probability of o given A and thus how 

likely it is that outcome o will occur, on the supposition that the agent chooses act A. (Briggs, 

2019)  

Decision making based on the expected utility theory therefore requires decision-makers to 

assess the probability of all relevant system outcomes, thus increasing the extent of necessary 

information to be obtained by the decision-maker. 

The assigned probabilities therefore represent the knowledge in the form of information about 

the system of the decision maker at the time of making the decision. (Briggs, 2019, Straub & 

Welpe, 2014) 

Figure 64 now integrates the concept of expected utility into the presented outcome matrix by 

attributing a probability (pn), with (p1+p2+pn=1) to every outcome (zij). 
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Figure 64: Outcome matrix with uncertain outcomes 

Consequently, the utility function of a rational regulating decision maker can be described by 

the expected utility form, in the form of a Von Neumann-Morgenstern utility function as shown 

in equation (13). 

 

(13) U(p) = ∑ pi × ui
n
i=1  

Where there are numbers (u1, ..., un) for each of the O outcomes (z11, ..., zij) for every p ∈ P. 

(Briggs, 2019) 

 

Based on this, Hypothesis 9 and 10 can now be derived. 

9.3.11 Hypothesis 9: Required information hypothesis 

If a system maximizes its set of disturbances, the necessary knowledge in form of information 

about the system a decision-maker must have to attribute objective probabilities is also 

maximized. 

 

9.3.12 Hypothesis 10: Uncertainty maximization hypothesis 

If a system maximizes its set of disturbances, the resulting uncertainty in a choice set of a 

regulating decision-maker is also maximized. 
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Hypotheses 9 and 10 are additionally supported by the Law of requisite variety, which states 

that a decrease of disturbance and outcome variety must always be accompanied by a 

proportional increase in regulation variety.  

For example, if a disturbance set introduces a variety of 10 bits for outcomes and only a variety 

of 5 bits shall be acceptable, the variety of regulation must at least encompass a variety of 5 

bits. (Ashby, 1991)  

This notion is further expanded on by Shannon communication theory which states that if noise 

appears in a message, the amount of noise that can be removed by a correction channel is limited 

to the amount of information that can be carried by that channel.  

As a next step, decisions under risk are now integrated into the model. 

9.3.13  Decisions under Risk 

Since uncertainty can be attributed with risk, a situation where the decision-maker is unsure 

which outcome might occur because of the decisions made shall be defined as a decision 

situation under risk. (Kurhade & Wankhade, 2016, Briggs, 2019)  

The term risk shall therefore be defined as the expected change in utility associated with 

uncertain, undesirable outcomes. (Straub & Welpe, 2014) 

The word “risk” shall furthermore be comprised of the following two elements: 

• The probability (or likelihood) of occurrence of a negative event during the lifetime of 

a system. 

• The resultant consequence when a negative event has taken place. 

The objective of regulation is now to conduct an assessment to bode negative effects so that 

adverse outcome can be minimized. 

Consequently, the risk of a decision-maker contained in the act of system regulation (SR) can 

be associated with unexpected changes in utility as shown in equation the following Equation 

(14): 

(14) EU(r) = u(zijx pij) + u(−azij x 1 −   pij) 

 

Where EU(r) = expected utility for a regulation r, u(zijx pij) = expected utility of desirable 

outcome, u(−azij x 1 −   pij)=expected utility of undesirable, deviating outcome.  
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Based on Equation (9) the final hypothesis of this paper can now be derived. 

 

9.3.14  Hypothesis 11: Risk maximization hypothesis 

If a system maximizes its set of disturbances, the risk contained in a choice set of a decision-

maker is also maximized. 

 

Based on these thoughts Equation (14) can now be modified through the addition of an 

undesirable outcome (-∂) to the following function displayed in Equation (15). 

 

(15) SR = f(R, D, O, ∂, − ∂) 

 

Equation (14) can now be regarded as the central conclusion to this section. 

It is shown that it is possible to hypothesize in the form of H5 to H11 that the act of system 

regulation is highly dependent on the underlying information complexity und corresponding 

disturbance set of the system.  

A growth of system complexity thus leads for the rational decision maker to a proportional 

increase in choice risk and choice uncertainty, leading to up to an increasingly difficult 

decision-making process.  

H5 – H11 now show that complex industrial systems like CPS involve an increasingly difficult 

decision-making process and as complexity of the system increases the strategic capabilities of 

the decision-maker must decline.  

Consequently, the proposed “complex system performance / risk trade-off” is additionally 

supported through the hypotheses developed.  

To formulate an answer to the identified dynamics the next section now provides an argument 

why heuristics are important to complex systems management, based on cybernetics theory to 

further support and further expand the hypotheses introduced in the dimension of decision-

making.  
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9.4 Heuristics in the context of cybernetics and systems 

management  

To further expand on the hypotheses H5-H11 and on the “complex system performance / risk 

trade-off” introduced and defined in the last chapters, an advanced argument for the necessity 

of heuristics in the management of complex systems based on cybernetics theory is proposed. 

The cybernetician Ashby (1991) researched the variety of situations that a machine could 

respond to and adapt to while exploring the field of cybernetics, the science of control and 

communication in animals and machines.  

9.4.1  Cybernetics 

Cybernetics is based on the idea that all living, and most mechanical systems are sustained by 

the presence of positive and negative feedback loops; the first amplifying and the second 

dampening information bearing signals of relevance to them. The study of negative feedback 

in general systems theory showed how systems act to preserve themselves under changing 

external conditions.  

The distinction between the system’s interior and its exterior is essential to the preservation of 

a system’s identity and continued survival under conditions of environmental change. Through 

the mechanism of homeostasis, a system can maintain an internal equilibrium in the face of 

external perturbations. (Ashby, 1991), 

Systems are also capable of generating change autonomously by amplifying feedback instead 

of merely adapting to external contingencies by dampening it. (Boisot & McKelvey, 2011) 

9.4.2  The law of requisite variety 

In this context Ashby introduced the Law of Requisite Variety (Ashby´s Law) which states that 

“only variety can destroy variety”:  

 “(…) a system survives to the extent that the range of responses it is able to marshal – as it 

attempts to adapt to imposing tensions – successfully matches the range of situations – threats 

and opportunities – confronting it.” (Ashby, 1991) 

Based on Ashby´s Law it can now be concluded that to not to waste energy responding to every 

possible internal or external fluctuation, a system must build schemas in ways that distinguish 

meaningful information from noise.  In the context of strategic complexity management, it must 

be distinguished between what Gell-Mann has labelled ‘effective’, meaningful, and ‘crude’, 

noise, complexity. (Schuck, 2019, Boisot & McKelvey, 2011, Coleman 1994) Based on 
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Ashby´s Law it is possible to introduce the Conant-Ashby Theorem, which states that every 

good regulator of a system must be a model of that system. In other words, the result of an 

organizational process cannot be better than the model on which the management of that process 

is based, except by chance. This thus indicates the high relevancy of appropriate management 

models and strongly supports the hypotheses introduced. (Schwaninger, 2000) 

Boisot & McKelvey (2011) state that it must be noted that what constitutes information or noise 

for a system is partly a function of the system’s target function and that it can be inferred that 

valid and timely representations of a system in the form of decision-making models must 

economize a system´s limited energy resources.  

9.4.3  Ashby Space  

To illustrate the functioning of Ashby´s law it is possible to introduce Boisot & McKelvey´s 

concept of Ashby space. Ashby space is now illustrated in Figure 65. 

 

Figure 65: Ashby space 

On the vertical axis the real-world stimuli that impinge on a system are placed. These range in 

variety from low to high. On the horizontal axis, the variety of a system’s responses to the 

stimuli are placed. These also range from low to high.  

The diagonal in the diagram indicates the set of points at which variety can be considered 

“requisite”, where the variety of a system’s response matches that of incoming stimuli in an 

adaptive way. It is keeping a system´s target function intact, whether or not it does so with an 

efficient use of resources. The concept of Ashby space can now be used to introduce the concept 

of an adaptive frontier to allow interpretation in the context of strategic complexity 

management. (Boisot & McKelvey, 2011) 
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9.4.4  The adaptive frontier  

Figure 66 describes a response or resource budget available to a system defined in terms of 

energetic, temporal, and spatial resources.  

The curve constitutes the system’s adaptive frontier, the region in which it reaches the limit of 

the budget it can draw on for the purposes of adaptation.  

To the right of this region, the mix of variety required to respond to incoming stimuli is too 

high for adaptive purposes, causing the system to spend too much of its resource budget and 

eventually leading to its disintegration.  

Furthermore, the resources consumed by the data processing required to register incoming 

stimuli, to interpret them, and to formulate adaptive responses also exceed the system’s resource 

budget, eventually leading to errors and to adaptive failure. (Boisot & McKelvey, 2011)  

This is illustrated by Figure 66.  

 

Figure 66: Adaptive frontier 

Under the assumption of the already introduced and discussed U-shaped performance / effort 

relationship and the underlying “complex system performance / risk trade-off” and a restricted 

resource budget, it is possible to re-introduce the line of argument that optimization models 

appear to be not well suited to work efficiently under realistic complex system conditions.  
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The premise of highest importance for this argument is the premise of a limited resource budget 

of system in relation to its adaptive frontier.  

Figure 67 illustrates the impact of heuristics on the adaptive frontier of a given system.  

 

Figure 67: Adaptive frontier enhanced by heuristics 

Figure 67 shows that the goal of heuristics can be translated in the context of Ashby space and 

the adaptive frontier to increasing the resource budget of the system and thus leading to a higher 

variety of responses and a higher variety of stimuli the system can withstand before it reaches 

disintegration.  

Due to the less-is more effect of heuristics the overall risk of reaching the adaptive frontier 

through resource budget utilization is effectively minimized.  

In the case of resource intensive optimization models, it can be argued, that they exploit the 

resource budget of a system in an intensive fashion, thus risking system disintegration of they 

not effectively enhance the adaptive frontier of the system.    

Based on the statements made the next section now further expands on the relationship between 

system complexity and system assessment type performance.   
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9.5 The relationship between system complexity and system 

assessment type performance  

The relationship between system complexity and system assessment performance in relation to 

heuristic and optimization methods is illustrated in Figure 68.  

 

Figure 68: Relationship system complexity and assessment type performance 

 

Figure 68 shows, that in the context of complexity the relationship of heuristics and 

optimization methods is to be regarded as of an inverted nature.  

In low complexity system optimization methods are resulting in a higher performance and in 

an increasingly complex system their performance deteriorates.  

In contrast heuristics perform increasingly well in a high complexity environment, while their 

performance might not be as high as optimization methods in a low complexity environment.  

Consequently, H12 and H13 shall be established for this thesis.  
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9.5.1  Hypothesis 12: positive heuristics effect hypothesis 

If a system maximizes its set of disturbances, the risk contained in a choice set of a decision-

maker can be minimized through the application of heuristics models.  

 

9.5.2  Hypothesis 13: negative optimization effect hypothesis 

If a system maximizes its set of disturbances, the risk contained in a choice set of a decision-

maker can be maximized through the application of optimization models.  

 

The provided results of this part of the thesis allow to draw the following implications for the 

coming parts of this study.  

Considering the established hypotheses H1-H13 it can thus be shown that humans present both 

the source of and means to impact the balance of complexity positively by mitigating the 

negative downsides in the form of increased system disturbance, outcome and regulation sets 

with improved new knowledge and heuristic tools via exercising strategic complexity 

management.  

 

As defined in the paradigm of strategic complexity engineering and as postulated by Törngren 

& Grogan (2018) knowledge in the form of hypotheses establishes explanatory links between 

complexity phenomena and help improve anticipation of the engineering problem and perception 

of negative downsides.  

 

In this regard, tools help humans to focus efforts at higher levels of abstraction, execute strategy 

and in the best-case scenario, to optimally solve well-characterized complexity decision-making 

problems.  
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Figure 69 illustrates this.  

 

Figure 69: Human activity in the context of the impact of complexity on CPS 

Figure 69 shows that it can now be established that human activity in the context of strategic 

complexity management in CPS is primarily aimed at system uncertainty reduction via the 

generation of knowledge and the practical application of strategic tools. 

The next section now provides an overview of the established hypotheses for this thesis. 
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9.6 Overview of established hypotheses 

This section now provides an overview of all hypotheses H1-H13 established.  

9.6.1 Hypotheses concerning system behaviour & system environment of 

complex industrial systems 

H1-H4 provide theories concerning the behaviour of complexity as information in industrial 

systems. These are now displayed in Table 14.  

Table 14: Overview H1-H4 

Hypothesis  Description 

H1 The amount of information in a system is represented by the amount of data 

stored and recoverable by agents contained in the system 

H2 Any type of information flow in a given industrial information system can 

be explained by a given combination of sources of information positioned 

in a network constellation in the form of agents. 

H3 Any type of information flow in a given industrial information system in the 

form of CPS can be expected to generate cascadic growth of circulated 

information if an undistorted feedback loop is in place. 

H4 The complexity of an industrial information system is defined by the amount 

of information contained and produced in the system with more information 

leading to more complexity and vice versa. 

 

The next section now displays the hypotheses introduced for the dimension of decision-making.  

9.6.2 Hypotheses concerning decision-making for complex industrial 

systems 

H5-H13 provide theories concerning the impact of complexity on the decision-making process 

in industrial systems. These are now displayed in Table 15. 

Table 15: Overview H5-H13 

Hypothesis  Description 

H5 If a system maximizes its set of system disturbances, the set of regulatory 

responses must also be maximized.  
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H6 If a system maximizes its set of system disturbances, the set of possible 

outcomes must also be maximized.  

H7 The choice set of a rational decision-maker in the role of a system regulator 

is equal to the set of regulatory responses. 

H8 If a system maximizes its set of disturbances, the resulting choice set of a 

regulating decision-maker is also maximized. 

H9 If a system maximizes its set of disturbances, the necessary knowledge in 

form of information about the system a decision-maker must have to 

attribute objective probabilities is also maximized. 

H10 If a system maximizes its set of disturbances, the resulting uncertainty in a 

choice set of a regulating decision-maker is also maximized. 

H11 If a system maximizes its set of disturbances, the risk contained in a choice 

set of a decision-maker is also maximized. 

H12 If a system maximizes its set of disturbances, the risk contained in a choice 

set of a decision-maker can be minimized through the application of 

heuristics models. 

H13 If a system maximizes its set of disturbances, the risk contained in a choice 

set of a decision-maker can be maximized through the application of 

optimization models. 

 

As a summary, Figure 70 now provides an approximation of H1-H13 in a final overview.  
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Figure 70: Overview of the general implications of H1-H13 

Figure 70 illustrates that H1-H13 establish a direct relationship between the dimensions of 

complexity, disturbance, uncertainty / risk / emergence, and the relevancy of heuristics in this 

context.  

Consequently, it is shown that the relevancy of heuristics is directly dependent on the other 

dimensions and significantly increases as the complexity of a system increases. 

H1-H13 now allow to coherently answer SRQ1 and O1 of this thesis:  

• Sub-research question 1 (SRQ1; O1): How can the nature of complexity in 

industrial systems and its impact on decision-makers be defined? 

  

Answer: Based on the achievement of O1 through H1-H13 it can be coherently argued 

that the importance of the application of heuristics for industrial complex systems 

management / decision-making is expected to increase in importance at least in 

proportion to any increase of complexity, disturbance and system uncertainty in the 

system behaviour and system environment.  

 

After answering SRQ1 and achieving the corresponding objective O1, the next chapter now 

presents a coherent definition of industrial system complexity via a complexity space modelling 

approach to answer SRQ 2 and to achieve O2. 
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10 Modelling industrial system complexity  

To answer SRQ2 and achieve O2 this chapter introduces an approach, based on H1-H13, to 

model the complexity of a system in a three-dimensional Euclidean space with the means of a 

set of theoretical axiomatic assumptions concerning the developed definitions of static and 

dynamic complexity. This chapter thus also has the goal to adhere to axiom A2: characterizing 

complexity. 

 

The core motivation of this chapter is to answer to the key-challenge of developing conceptual 

complexity models which can deliver instrumental value via uncertainty-reducing, 

communicative or strategic purposes in the decision-making process between different 

stakeholders (for example system engineer and manager).  

 

Such a model can also serve as a first baseline to be developed to more determinate and 

executable simulation models and frameworks in the future, for example through supporting the 

development of in-depth and specialized mathematical formalisms, coded computational 

methods like computer algorithms or as a theoretical baseline for SMTTs in order to solve 

problems in relation to complexity of industrial systems. (Fujimoto et al., 2017, Petnga & Austin, 

2016)  

 

To achieve this, the chapter introduces a novel conceptual “complexity space-based” approach 

as shown in the research of Freund et al. (2021c) and Freund & Al-Majeed (2020b) to model, 

quantify and visualize the complexity of modern and future industrial systems in a way that 

supports the visualization and potentially simulation of the complexity of both the physical and 

the informational system layers and their respective information flow in a three-dimensional 

complexity space model.  

 

The proposed model is to be regarded as an early-stage artifact that integrates two different 

complexity dimensions, as well as provides axiomatic requirements for more specialized, 

formal, and mathematically operable models and which allows exploratory analysis of complex 

industrial systems.   

 

Exploratory analysis is focused on describing ranges of possible system development trajectories 

and extreme behavior patterns or drastic changes in the system while focusing on endogenous 

and system internal complexity dynamics. (Fujimoto et al., 2017, Johnson et al., 2012)  
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To adhere to the concept of exploratory analysis, the aim of this chapter is to introduce a 

perspective on complexity modelling that represents industrial system complexity through 

conceptions of static and dynamic complexity dimensions via an integrated, compounded state 

in a conceptual model, the concept of complexity space.  

 

The proposed complexity space model now has the following functions: 

 

• Characterize the basic constituents and/or governing dynamics of industrial system 

complexity in a coherent framework via the introduction of complexity space in line with 

the propositions introduced by H1-H13.  

• Provide a coherent understanding of the dimensions and factors that unify the complexity 

of industrial systems.  

• Serve as an early-stage artifact component or starting point for more advanced modelling, 

simulation or SMTT approaches for complex industrial systems management. 

• Enable early-stage exploratory analysis for industrial system analysis.  

• Supporting the decision-making process between different system stakeholders through 

reducing uncertainty about the systems properties, for example in the strategic system 

management or design process of the system. 

 

Based on this, the next chapter now introduces the applied conception of complexity for the 

proposed model. 
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10.1  Applied conception of complexity  

As already shown, complexity has many metrics, dimensions and definitions and has been 

defined as the measure of uncertainty or difficulty in achieving the functional requirements of 

a system within the ranges of its design. (Petnga & Austin, 2016, Ragavan & Shanmugavel, 

2016, Deshmuk et al., 1998) 

The described two conceptions of complexity shall be applied for the proposed modelling 

approach:  

• Static / structural complexity  

• Dynamic complexity  

 

Static or structural complexity shall now be defined as how the industrial system is structured 

(e.g., number of processors/machines, machine connections and interconnections). (Sheard & 

Mostashari, 2010) 

Dynamic complexity is now defined as a measure of the unpredictability in the behavior of the 

system over a time-period based on information entropy. A common example of dynamic 

complexity is any type of unwanted system behavior, like a machine breakdown. Dynamic 

complexity is thus the core obstacle to achieving the systems target function. (Ragavan & 

Shanmugavel, 2016, Deshmuk et al., 1998, Frizelle, 1996)  

Both types of complexity shall serve as the two foundational dimensions of the applied 

complexity modelling approach.  

Both dimensions represent reliable measurement dimensions for complexity for modelling 

approaches, for example Defense Advanced Research Projects Agency (DARPA) of the US 

Government expects complexity of next generation products to reach 1.0E+08, measured in 

parts and lines of code. (Ragavan & Shanmugavel, 2016) 

The notions of static and dynamic complexity make also visible that the presented model 

focuses on system intra-dependency, the internal complexity of the layout of the manufacturing 

system. For simplicity, the model does not regard stand-alone equipment complexity, stand-

alone environmental system complexity or any external factors that may impact system 

complexity, if not stated otherwise.  

In the next section the idea of the inherent spatiality of complexity as a the core foundation of 

the developed model is introduced.  
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10.2  The inherent spatiality of complexity  

The proposed model shall now be based on the notion that complexity is inherently of a spatial 

nature. 

Consequently, interactions among system elements are spatially structured in ways that 

contribute to the evolution of the spatial structure in which they play out. Complex 

manufacturing systems shall be regarded for this thesis as dynamic networks of various nodes 

and linkages between processor unites created in space operating in a particular place. (Koehler, 

2014, O`Sullivan et al., 2006) 

Space shall be defined in this context as a construction of where system behaviour is organized 

as relationships of system components via complex interactions. (Koehler, 2014) 

Space shall therefore be defined as an “openness” in which the relations and the 

interdependencies that come with it matter for the explanation of individual system parts or the 

collective behaviour of the system. (Koehler, 2014) 

Space shall therefore be assumed to function as a static theoretical compound state, a 

“container”, of related, abstracted, and subjective dimensions of perception in which system 

behaviour is organized and complex, time-dependent emergent dynamic system behaviour can 

occur.  

In the case of information systems, the concept of spatiality is already introduced by Hepworth 

(1987), especially in the area of early computer networks and already underlines the notion that 

system spatiality is often overlooked due to its cyber-physical nature and that information 

environments are often taken for granted by users. This phenomenon is compared by Hepworth 

(1987) to the well-known allegory of the fish that is not aware of the water in which it swims.  

Building on these propositions, complexity science for complex industrial manufacturing 

systems shall be concerned with simultaneous spatial and temporal analysis of industrial 

systems. (Klamut et al., 2020) 

In the proposed space-based complexity model the spatial analysis shall be centred around the 

concept of static industrial system complexity while the temporal analysis shall be defined by 

the concept of dynamic complexity. 

Figure 71 illustrates the chosen approach for the model established in this thesis. 
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Figure 71: Basic components of complexity space modelling approach 

Figure 71 shows that in the proposed model the spatial dimension is defined as the static 

complexity of the represented system in a 3D space. The resulting extent of the “complexity 

space” of the static compound state is now functioning as the container for the temporal 

component of the model which represents the dynamic complexity of the system at a given 

point time.  

Based on these thoughts the next section now briefly discusses the general concept of space-

based modelling for complex manufacturing systems before defining the concrete modelling 

approach for this thesis. 

10.2.1  Related complexity concepts to complexity space 

To underline the applicability of the chosen model, this section now briefly touches upon the 

utilization of “space-based” models in the complexity literature.  

Next to the already introduced concepts of Schelling´s model or Ashby space, the concept of 

complexity space can be seen in the tradition of possibility space as developed by McCarthy & 

Tan (2000) who utilized a three-dimensional cube is used to represent the possible space of 

solutions and how they relate to each other to investigate the process of self-organization and 

natural selection in the fitness landscape of a given manufacturing system.  
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Hatna & Benenson (2012) introduced a similar concept in their studies of the Schelling model 

in the form of a parameter space. 

Mourtzis et al.  (2019) introduce an information-based entropy space for industrial systems. 

The next section now further expands on the dimensions of the proposed complexity space 

model before introducing the model itself.  

10.3  Static industrial system complexity  

The concept of static industrial system complexity (SC) shall be defined by the static, time-

independent architectural layout of a manufacturing process represented by machines 

/operations (m), their connections via links (l), and their interconnectedness via gates (g) as 

shown by equation (16).  

(16) 𝑆𝐶 = {𝑚, 𝑙, 𝑔}   

This definition offers a more nuanced definition than just the often-used simple enumeration of 

the number of system parts as a starting point for system complexity modelling. It must be 

mentioned at this point that the number of parts, connection and gates do represent a multi-

dimensional quantity, as for example a machine may contain several subsystems. It is thus 

necessary to apply pre-defined levels of abstraction to allow system representation in the form 

of pre-set system boundaries and pre-defined system entities. (Mourtzis, 2019, Frizelle, 1998, 

Gharbie, 2012, Wortmann, 1991) 

The next section now further elaborates on the assumptions made for the proposed model. 

10.3.1  Modelling assumptions 

These pre-set and pre-defined boundaries and entities shall be utilized as abstractions, to allow 

a formalized modelling of industrial manufacturing systems to narrow down on the issue on 

system complexity via a clearly defined set of parameters.  

For the case of the model, an industrial system shall be defined as a manufacturing system. 

Any manufacturing system itself shall be regarded as a flux of material (input) going through a 

transformation process (adding information), consisting out of machines, links and gates, which 

then results in a flux of output materials (products) with a higher complexity. (Mourtzis, 2019, 

Frizelle, 1998, Gharbie, 2012, Wortmann, 1991) 

 This is illustrated by Figure 72. 
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Figure 72: Manufacturing system 

In the context of industrial system complexity, the term machine (m) shall be defined as an agent, 

a physical processor / receptor / effector of information in the transformation process of a 

manufacturing system, an active element or artifact, that performs actions in the form of 

processing information via transformation of energy, material, and information. An action is 

defined as a change in the state of the model, e.g., any action contained in the transformation 

process.  

Different processors can execute in parallel, and they proceed with the performance of actions 

independently or dependent of each other. This means that different processors can be active at 

the same time or can function in a sequential manner.  

A machine shall also be capable to function as an expanded processor. This means that a machine 

encompasses a given set of sub-processors in the form of operations. For example, a 

manufacturing machine could contain two sub-operations in the form of a packaging machine 

and a manual operator. (Mourtzis, 2019, Gharbie, 2012) 

The term links (l) shall refer to interaction pathways between machines in the transformation 

process where information is passed from one machine to the other, for example in the form of 

materials over conveyor belts, intermediate products, or wireless data flows in the already 

described receptor / effector / processor logic. 

It is thus modelled that material or immaterial objects can flow from one processor to a receptor 

/ processor / effector only if processors are connected via links, allowing them to be effectors.  

The term gate (g) shall refer to connection points where links connect machines within the 

system.   

Gates specify interaction and decision-points between processors and thus define the modus 

operandi of how different processors interact with each other in a system, for example through 
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digital interfaces, machine interfaces, manual quality tests, sensors, or others. (Gharbie, 2012, 

Wortmann, 1991, Sheard & Mostashari, 2010)  

Consequently, a gate transforms the information that is send by one processor to another via 

links, so that the receiving processor unit can process and transform the received information in 

a correct fashion, effectively providing the receptor of information the capability to function as 

a processor. 

This assumption is based on the research Toro et al. (2003) who state that the number of 

components in an assembly system can be regarded as a precise indicator for system complexity.  

The next section now further elaborates on the dimensions of static industrial system complexity. 

10.3.2  Dimensions of static industrial system complexity  

The conception of static complexity leads to the conclusion that the static and time-independent 

complexity (SC) of an industrial production system shall be reduced to, captured, and quantified 

by three dimensions:  

• Structural complexity (Cs): Machine layout 

• Connectivity complexity (Cc): Link layout 

• Interconnectivity complexity (Ci): Gate layout 

Figure 73 illustrates the three dimensions by showcasing the block chart of a hypothetical 

production system (S1) based on the complexity dimensions machines, links and gates. 

 

Figure 73: Abstraction of manufacturing system 
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Figure 78 shows, that S1 consists out of a machine layout with two machines, with m(1) and 

m(2), which are connected by a link layout with three links, with l(1)-l(3), and which 

interconnect with a gate layout of three gates, with g(1)-g(3).  

Based on this, the next section now introduces the concept of complexity space. 

10.4  Complexity space  

The modelling of the static complexity of a manufacturing system shall now be expressed by 

the theoretical three-dimensional compound state volume that results from the three dimensions 

combined, which shall be named complexity space of a system with the volume (VCspace).  

This is now illustrated in equation (17). 

(17) 𝑉𝐶𝑠𝑝𝑎𝑐𝑒 =  𝐶𝑠 𝑥 𝐶𝑐 𝑥 𝐶𝑖  

Where Cs is the machine layout (structural complexity), Cc the link layout (connectivity 

complexity) and the Ci (interconnectivity complexity) the gate layout of a given system.  

This is illustrated in Figure 74 accordingly. 

 

Figure 74: Complexity space 

The theory of complexity space can now be applied as a foundational basis for system 

complexity Modelling and visualization of static industrial system complexity (SC) of a 

manufacturing system.  
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Equation (18) reflects this.  

(18) 𝑉𝐶𝑠𝑝𝑎𝑐𝑒 =  𝑆𝐶 

Equation (18) shows, that (VCspace) can now be utilized to represent the compound state of (SC) 

for this study.  

The three dimensions (Cs, Cc, Ci) of complexity space (VCspace) are assumed to comprise the 

variables of the compound state of the complexity of the static structure of a modeled 

manufacturing system.  

The basic arrangements and relations between the individual system parts in the form of 

machines, gates and links and are now further described.  

The logarithm to the base of 2 is utilized to decrease the impact of higher numbers in the different 

dimensions and to allow a quantification in units of bits. (Gharbie, 2012, Johansson, 2002) 

10.4.1 Structural complexity 

(Cs) shall be defined by a systems structural, static layout of machineries (m). Consequently, 

(Cs) of an industrial production system is expected to be maximized if (m) is maximized.  

This is shown in equation (19).  

(19) 𝐿𝑜𝑔2(𝑚) = 𝐶𝑠𝑚𝑎𝑥                     

 

Where m=number of machines and Cs=structural complexity of the system. 

10.4.2 Connectivity complexity  

(Cc) shall be defined by a systems structural, static layout containing transfer links (l) between 

the system machinery layouts. Consequently, (Cc) of an industrial production system is expected 

to be maximized if (l) is maximized.  

This is shown in equation (20). 

 

(20) 𝐿𝑜𝑔2(𝑙) = 𝐶𝑐𝑚𝑎𝑥    

Where l=number of links and Cc=connectivity complexity of the system.  
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10.4.3 Interconnectivity complexity  

(Ci) shall be defined by a systems structural, static layout of number of gates (g) connecting 

different transfer links to the system static structural machinery layout and types of gates, for 

example data or material gates.  

Consequently, (Ci) of a manufacturing system is expected to be maximized if (g) is maximized.  

This is shown in equation (21).  

(21) 𝐿𝑜𝑔2(𝑔) = 𝐶𝑖𝑚𝑎𝑥    

Where g=number of gates and Ci=interconnectivity complexity of the system. 

The definition of the complexity dimensions shows that the total volume of the complexity space 

(VCspace) of an industrial system can be maximized by maximizing each complexity dimension 

and is calculated in units of bits via the use of a base-2 logarithm to encode all static system 

states in information and to reduce the overall impact of larger dimension sizes on the overall 

complexity space volume. 

(VCspace) can now be calculated a space of information in units of bits as shown in equation (22). 

 

(22) 𝑉𝐶𝑠𝑝𝑎𝑐𝑒 =  𝐿𝑜𝑔2(𝑚) 𝑥 𝐿𝑜𝑔2(𝑙) 𝑥 𝐿𝑜𝑔2(𝑔)  

Where VCspace = complexity space volume of the system and Log2(m) = Cs, Log2(l)=Cc and 

Log2(g)=Ci. 

After introducing the concept of complexity space and complexity space volume as the metric 

for static system complexity in detail, the next section now describes briefly expands on the 

integration of multiple system levels in complexity space. 
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10.4.4 Multiple system levels in complexity space 

Figure 75 now illustrates a multi-system-layer complexity space model by introducing a 

hypothetical layer of complexity spaces of a hypothetical automotive factory system (S1 contains 

S2, S2 contains S3) positioned in complexity space. 

 

Figure 75: Levels of a system in complexity space 

Based on the provided example it can be shown that multiple system levels of a manufacturing 

system can be captured and visualized in complexity space model at once, allowing the 

representation of different system layers in the model through the utilization of complexity 

space. 

Based on this notion it is now possible to introduce and integrate a dynamic complexity 

component to the model in the form of a definition of dynamic complexity. 
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10.5  Dynamic complexity in complexity space  

As defined in H1-H4, a common dominator of dynamic complexity shall be introduced through 

the notion of system information entropy. As stated, the entropy of a system is in this context 

regarded as a measure of disorder in the system and fits the applied conception of Deshmuk et 

al. (1998) and Klamut et.al (2020). 

Based on this notion, a dynamic element of industrial system complexity in the form of 

information complexity is conceptualized and serves as an information entropic indicator for 

system instability and decision-risk when integrated in the complexity space model of a 

manufacturing system, as defined in H1-H13. 

10.5.1 Properties of dynamic complexity  

Dynamic system complexity shall be associated with three main properties:  

• Qi: Quantity of information  

• Vi: Variety of information  

• Hi: Information content  

These properties correspond dynamically and time-dependent to the transformation efforts in a 

manufacturing system to achieve the high output complexity in correspondence to a given 

production goal within a given industrial system. (Frizelle, 1998, Mourtzis, 2019, Gharbie, 2012) 

Consequently, the dynamic system complexity in the form of information complexity (CN) is 

proposed to represent the quantity, variety and information content of information contained in 

a system at a given point in time.  

Equation (23) illustrates this.  

 

(23) 𝐶𝑁 = {𝑄𝑖, 𝑉𝑖, 𝐻𝑖}    

Where CN = Information complexity, Oi= information quantity, Vi= information variety and Hi= 

information content. 

 

Based on this the next section now introduces the concept of information complexity as machine 

memory space. 
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10.5.2 Information complexity as machine memory space  

To allow a potential practical application of the model, a given machine (m) in a manufacturing 

system shall be expected to utilize a given amount of information (N) to contribute to the 

transformation process of the system. To allow a more nuanced and practical definition of the 

term information it is possible to introduce the concept of machine memory space (mms). 

(Johansson, 2002, Cilliers, 2002, Yanofsky, 2006) 

A machine (m) in a manufacturing system and the system itself shall for this purpose be regarded 

as algorithms, a sequence of well-ordered instructions (input), that serve to solve a well-

formulated problem (output) to obtain the overall goal of the system. (Yanofsky, 2006) 

(mmssystem) now describes the total amount of memory space units and therefore the extent of 

the encoded information content (Hi), quantity (Qi) and variety (Vi) needed by the static layout 

of a system to produce the expected solution as an output in relation to its input instructions.  

Equation (24) illustrates this.  

 

(24) 𝑚𝑚𝑠𝑠𝑦𝑠𝑡𝑒𝑚 = {𝑄𝑖, 𝑉𝑖, 𝐻𝑖}  

Where mmssystem= amount of system memory space, Oi= information quantity, Vi= information 

variety and Hi= information content. 

 

For example, in the case of a linear programming problem this process shall be defined as the 

problem of either minimizing or maximizing a linear function subject to a finite set of linear 

constraints, for example with a simplex algorithm. (Yanofsky, 2006, Heintz et al. , 2001, Comen, 

2009)  

The total information complexity contained in a system (CN(T)) can now be defined.  

This is shown in equation (25). 

 

(25) 𝐿𝑜𝑔2(𝑚𝑚𝑠𝑠𝑦𝑠𝑡𝑒𝑚) =  𝐶𝑁(𝑇)  

Where mmssystem= amount of system memory space and CN(T)= total information complexity 

contained in a system. 

It can now be stated that a system must be regarded as non-complex if no or only minimal 

information is flowing, irrespective of the size of complexity space volume.  
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10.6  Information complexity within complexity space  

The introduced definition of information complexity in H1-H4 can now be integrated in the 

concept of three-dimensional complexity space and shall be assumed to take the form of an 

information complexity sphere with a volume (VSphere) situated in (VCspace), with 

(VCspace)>(VSphere), ((VSphere), (VCspace))>0.  

To achieve this a hypothetical information complexity inception point (I(S)) is assumed to exist 

at the center of complexity space. From I(S) the total information complexity (CN(T)) is expected 

to expand in all directions into complexity space over time as the static layout of the system 

circulates, stores and generates information via machines, gates and links.  

For simplification, the volume of the information complexity shall be defined by the conception 

of information complexity as a spherical body that occupies complexity space, where (CN(T)) is 

regarded as the radius (r) of the information complexity sphere situated in the complexity space. 

This is shown in equations (26) and (27). 

 

(26) 𝑉𝑆𝑝ℎ𝑒𝑟𝑒 =
4

3
𝑥 𝜋 𝑥 𝐶𝑁(𝑇)3 

(27) 𝑉𝑆𝑝ℎ𝑒𝑟𝑒 =  
4

3
 𝑥 𝜋 𝑥 𝐿𝑜𝑔2(𝑚𝑚𝑠𝑠𝑦𝑠𝑡𝑒𝑚 )3 

 

Equations (26) and (27) are now integrated into complexity space as displayed in Figure 76.  

 

Figure 76: Information complexity in complexity space 
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Based on H1-H4 and Figure 76 it shall furthermore be assumed that the informational complexity 

of an industrial system increases over a timespan t0-tn when the input / output instructions of the 

system change over time and no mitigating or inhibiting regulations of the system are in place. 

Figure 77 illustrates this. 

 

Figure 77: Expansion of information complexity in complexity space 

Consequently, a manufacturing system that is expected to function under varying input / output 

instructions as an algorithm to meet changing system transformations can be expected to 

maximize the volume of its information complexity sphere over time.  

This is shown by Lehman´s Law of increasing complexity, which states that a systems 

complexity must increase over time if the system is not artificially regulated and by the laws of 

entropy in a system, exemplified in the second law of thermodynamics. (Ragavan & 

Shanmugavel, 2016, Johansson, 2002, Godfrey & German, 2012, Lent, 2018)  

Information complexity thus suggests the expenditure until the boundary of the systems 

complexity space is reached over time.  

The application of Ashby´s law of requisite variety and H5-H13 allow to draw definitive 

conclusions concerning an increase of regulation effort or hidden cost of the system over time 

in proportion to informational complexity as modeled in complexity space.  (Ashby, 1991)  
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10.6.1 System distortion 

The volume of the complexity space of a manufacturing system resulting from the dimensions 

(Cs), (Ci) and (Cc) predefines the theoretical limits for the expansion of (CN) and the maximum 

volume of the information complexity sphere.  

If expansion of (CN) is not inhibited, the radius of the information complexity sphere (rn) must 

reach the boundaries of one or more dimensions of the complexity space in a time (tn) and creates 

the distortion point D(S) in the given dimension(s).  

When D(S) is reached the system shall be in a distorted state, leading up maximum deviation of 

the system target function in the distorted dimension and information complexity is unable to 

expand further in this dimension. This is in line with the assumptions described by Klamut et.al 

(2020) who state that the fully ordered system essentially has no complexity because of maximal 

possible ordered symmetry of the system, but the fully disordered system also contains no 

information, thus must be non-complex, as it distorts and eventually dissipates. It is thus 

concluded that maximum dynamic complexity must be positioned between these two extreme 

positions. 

In this light, distortion in a system shall thus be defined as the upper limit of useful system 

operational ability where the system behaviour becomes random, chaotic and may dissipate. 

Figure 78 illustrates this.  

 

Figure 78: System distortion in complexity space 
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Based on Klamut et al. (2020), the expansion of information complexity in complexity space 

shall now be conceptualized via a logistic growth function. 

This is shown in Equation (28). 

 

(28) 𝐶𝑁(𝑇)(𝑡)  =  𝐶𝑁0 𝑥 𝑒𝑥𝑝(𝑘𝑡) / (1 + 𝑑/𝑘 𝑥 𝐶𝑁0 (𝑒𝑥𝑝(𝑘𝑡) − 1))  

Where CN(T)(t) = amount of information complexity at a given point in time t, CN0 = amount of 

information complexity at t0, k=growth factor, d= degression factor. 

Consequently, a convergence of the volume of the information complexity sphere (entropy) to 

its extensive asymptotic limit defined by the maximum complexity space volume of the system 

is to be regarded as a signature of dynamic complexity in complexity space and complexity in 

general.  

Figure 79 now illustrates the assumptions made. 

 

Figure 79: Logistic growth function of information complexity expansion in complexity space 

Based on Equation (28), Figure 84 shows that CN(T) is now expected to show logistic growth 

behaviour over time (t0-tn) in the boundaries of complexity space.  

While doing this, CN(T) is not only limited by the inherent degression factor of the function (d), 

representing any potential natural or superimposed inhibitor of information growth, but also by 
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the volume of complexity space dimensions of the system in which the information complexity 

sphere expands until D(S), with VSphere (MAX), is reached. 

To illustrate the points made, the next section now covers multiple system layers with integrated 

information complexity spheres.  

10.6.2 Multiple system layers with integrated information complexity 

spheres in complexity space 

Figure 80 now illustrates how multiple systems with integrated information complexity spheres 

could behave to complete the picture by providing a complete first concept of environmental 

complexity in complexity space in which three systems (S1-S3) overlap in terms of complexity 

space and information complexity. 

 

Figure 80: Multiple system layers with integrated information complexity in complexity space 

In conclusion, the provided complexity space modelling approach now allows to draw the 

following implications for the scientific instrumental value of the approach:  

• The model allows to characterize the basic constituents and/or governing dynamics of 

industrial system complexity in a coherent framework based on H1-H11. 

• A coherent understanding of the dimensions and factors that unify the complexity of the 

analyzed complex system is achieved. 

• The results can serve as a baseline component for more advanced modelling and 

simulation approaches for complex engineered systems  
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• The model can support the reduction of uncertainty in the decision-making process 

between different system stakeholders. 

 

The mentioned implications show that the proposed complexity space modelling approach 

achieves its primary goals of enabling early-stage exploratory system analysis while serving as 

a potential conceptual baseline for more advanced system models and frameworks to solve 

problems of complexity in an engineering context. 

 

A complexity space modelling approach for industrial system complexity based on H1-H11 is 

introduced and aims to serve as a conceptual modelling approach with the primary function of 

early-stage exploratory system analysis and enabling more advanced modelling and simulation 

approaches. The model is based on the axiomatic conception of a three-dimensional static 

complexity space in which informational complexity is modelled as a sphere that expands 

dynamically over time until expansion is limited by the boundaries of complexity space.   

The complexity space model can furthermore be differentiated from more traditional space / 

phase models, as those models describe the trajectory predefined by equations of motion of a 

given system through a phase space by assigning a velocity vector in a vector field.  (Mitra, 

2018) 

It can now be concluded in the context of the model, that any industrial system maximizes 

information complexity over time and thus also maximizes entropy over time, making the system 

increasingly prone to error, hazardous and cost intensive over time, if the system information 

complexity expansion is not adequately artificially controlled via an external control system of 

proportionate size and ability.  

This now allows to answer SRQ2. 

• Sub-research question 2 (SRQ2; O2): How can industrial system complexity be 

theoretically modelled?  

Answer: Industrial system complexity shall be modelled via a three-dimensional static 

complexity space in which informational complexity is modelled as a sphere that 

expands dynamically over time until expansion is limited by the boundaries of 

complexity space.   

After answering SRQ2 and achieving the corresponding objective O2, the next chapter now 

presents the development of a strategic complexity management framework in order to answer 

SRQ 3 and to achieve O3. 
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11 Development of a strategic complexity management 

framework (SCM) 

After achieving the SRQ1 & 2 and O1 & 2 of the thesis the theoretical foundation for the 

development of a strategic complexity management (SCM) framework is now established as 

the next step to fulfil A3 and SRQ3 / O4 of this thesis. This chapter thus also has the goal to 

adhere to axiom A3: managing complexity.  

As shown in the work of Freund et al. (2021d, 2021e, 2021f), the resulting SCM framework is 

now introduced and is building upon the notions of the IKTF in Chapter 3, H1-H13 in Chapter 

9, and the propositions of the developed complexity space model in Chapter 10.  

The SCM is also inspired by the structure and function of proven, valued and practice based 

SMTTs like the described SWOT or BCG matrix.  

Figure 81 now illustrates the SCM framework.  

 

Figure 81: Basic structure SCM framework 

Figure 81 shows, that the SCM is a SMTT that consists out of two generic 2x2 matrixes, 

resulting in an 8-quadrant matrix, with two perspectives of analysis (internal, external) in three 

complexity dimensions where structural and dynamic complexity represent the internal 
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perspective and environmental complexity represents the external perspective of strategic 

management.  

In this analysis The SCM now allows to qualify each complexity dimensions in a scale between 

HIGH and LOW.  

The resulting intersections of the qualifications result in a system internal and system external 

classification leading up to a total system qualification and classification.  

The next section now elaborates on the utilized SCM matrix approach.  

11.1  Matrix-based approach for SCM analysis 

Matrix-based approaches like the SCM have a long history in system modelling and analysis. 

(Kasser, 2018) Based on Lindemann et al. (2009) four different types of general matrix systems 

can be identified and applied for system analysis.  

As shown in Lindemann et al. (2009) these matrix types are now illustrated in Figure 82.   

 

 

Figure 82: Matrix domain types (Lindemann, 2009) 

 

Figure 82 makes visible that the SCM is best reflected by the concept of a multiple-domain 

matrix in which an intra-domain matrix, a square matrix that maps elements and their 
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relationships in one domain via dependencies, for example the internal system complexity 

perspective, and a second domain and its interdependencies, for example the external system 

complexity perspective, are put together to a combined intra-domain and inter-domain matrix 

that allows systematic statements about the system.  

The creation of the multiple-domain matrix includes the identification of required domains, the 

determination of system elements and their level of detail, and the linking of dependency types, 

meaning the mapping logics between specific domains.  

Generally, the objective of creating the multiple-domain matrix is to identify required 

information sources and set up the basis for the systematic generation of knowledge about the 

system represented by the multiple-domain matrix. (Lindemann et al., 2009) 

11.2  SCM complexity dimensions 

As shown, the multiple-domain matrix of the SCM shall be based on three complexity 

dimensions, which are formulated for the application on current and future industrial systems:  

• Structural complexity 

• Dynamic complexity 

• Environmental complexity 

The proposed complexity dimensions suggest that there is a direct connection between the 

environmental complexity and its resulting uncertainty and the internal complexity of a system 

in the form of structural and dynamic complexity.  

Figure 83 illustrates the interdependent relationship between all three dimensions. 

 

Figure 83: SCM conception of system complexity 
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Figure 84 builds on the established definitions and hypotheses and indicates that the greater the 

complexity of the system, the greater the amount of information that must be processed between 

decision-makers during its execution in every complexity dimension. (Junior et al., 2012) 

This shows that any heuristic strategic analysis of the applied final complexity conception can 

only be valuable to the decision-maker if the analysis holistically integrates all mentioned 

dimensions of complexity in a balanced, coherent and strategic way.   

This allows the decision-maker to assess the system and its behaviour as a whole and to identify 

as well as investigate individual drivers that influence system performance in the individual 

complexity dimensions. (Brinzer et al., 2017)  

11.3  SCM core structure 

The SCM is now based on three different complexity dimensions:  

• Structural complexity 

• Dynamic complexity 

• Environmental complexity 

Figure 84 illustrates the applied conception of complexity for the SCM in the form of three 

connected complexity dimensions as the core structure for the framework.   

 

Figure 84: SCM dimensions of complexity 

The next section now further expands on the chosen structure of the SCM in the context of the 

developed complexity space model.  
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11.3.1 The SCM structure in the context of complexity space modelling  

Figure 85 now illustrates how the assumptions of the described complexity space model 

translate coherently into the development of the SCM basic structure. 

 

Figure 85: SCM structure in the context of complexity space 

Figure 85 shows that the SCM structure is based on the proposed complexity space model: 

• Structural SCM dimensions: Complexity space volume, VCspace 

• Dynamic SCM dimension: Information complexity sphere volume in complexity 

space, VSphere 

• Environmental SCM dimension: Multiple system layers in complexity space, 

VCspace, VSphere of all system levels. 

It is shown that the SCM can be regarded as a coherent derivate of the developed complexity 

space model and is thus in line with the theoretical assumptions introduced.  

The next section now describes the SCM dimension of environmental complexity in more 

detail. 

11.3.2  Environmental complexity  

In contrast to the other two dimensions, environmental complexity is more difficult to define. 

It can be stated that environmental complexity shall encompass the relationship of the analysed 
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system to its system external environment and shall refer to how different parts of the system 

are connected to system exterior elements in the static and dynamic complexity dimensions.  

According to Jofre (2020), in the context of business and economic-driven systems three main 

environments can be identified:  

• Task environment: All aspects relevant to setting goals and achieving them. 

• Technical environment: Location where companies produce their products and 

services. 

• Institutional environment: Formal rules and beliefs of the company running the 

system. 

It shall be assumed for this dimension, that when the environment of a system is difficult to 

define and unstable it results a higher degree of uncertainty and complexity, since the overall 

information that decision-makers must process is complex, fragmented, scarce, difficult to 

collect or interpret. (Godwyn & Gittel, 2012, Jamshidnezhad, 2015)  

In the context of CPS, the system environment can thus be defined as any other system, its 

components (technical environment), tasks and institutional rules contained which are 

connected to the system but are outside of the defined system boundary. (Törngren & Grogan, 

2018)  

This interrelationship now illustrated by the system, where two systems (S1, S2) form a system 

environment. This is shown in Figure 86.  

 

Figure 86: Environmental complexity 
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Overall, it can be stated that the more complex a system´s environment is the more beneficial 

is the application of a complexity based view for strategic management. (Mason, 2007) 

After introducing the complexity dimensions of the SCM in more detail, the next section now 

discusses the SCM in the context of strategic management perspective. 

11.4  The SCM in the context of strategic management  

Figure 87 now illustrates to which perspective of strategic management the defined SCM 

complexity dimensions shall be attributed. (Freund et al., 2021) 

 

Figure 87: SCM in the context of strategic management 

Figure 87 shows that the SCM analyses complexity in the two dimensions of strategic 

management.  

This is achieved by assuming the internal and external perspective of strategic management 

which are attributed with the defined dimensions of complexity.  

The SCM thus answers the challenge of the strategy gap in complexity management 

frameworks by designing a SMTT for complex industrial systems which analyses complexity 

in the internal and external perspective of strategic management.  

The core challenge in this case therefore lies in the premise of the strategic complexity 

engineering, especially for systems of unprecedented complexity like CPS and CPSS, by 

establishing a heuristics-based holistic SMTT framework to study complexity in adequate 

specificity which is at the same time applicable for practice-based use. (Afonina, 2015, Brinzer 

et al., 2017) 

After clarifying how the three dimensions can be attributed in the internal analysis process of 

the SCM can now be introduced. 
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11.4.1 Internal analysis & classification 

Initially, the internal complexity of the analysed system is determined by qualifying the 

dimensions of structural and dynamic complexity to achieve system classification. It is now 

possible to summarize all internal system classifications that can result in the SCM.  

• Low/Low: Complicated system, non-complex, well-understood system. 

• High/High: Complex system, non-linear, partially random system with strong emergent 

properties. 

• High / Low: Structurally complex, structure as main source of complexity 

• Low/High: Dynamically complex, information as main source of complexity 

Figure 88 now expands on this.  

 

 

Figure 88: SCM internal system classification 

 

Figure 88 now shows that both dimensions are analyzed individually and then combined via 

qualification combination to achieve an internal classification of internal system complexity. 

The next section now covers the external analysis and classification.  

11.5  External analysis & classification in the SCM 

The resulting internal system classification is now applied to the LOW/HIGH qualification of 

the system external dimension.  

For example, a LOW/HIGH dynamically complex system is combined with a HIGH 

environmental complexity and results in the classification complex system.  

Figure 89 illustrates all possible outcome combinations. 
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Figure 89: SCM outcomes 

Overall, it can be stated that a LOW external qualification generally means in the context of the 

SCM framework that the external environment of the system is clearly definable and is not 

contributing to uncertainty, while a HIGH external qualification means that the external 

environment of the system is a major source of uncertainty and is likely to lead to a system of 

higher complexity classification. (Brinzer et al., 2017, Jamshidnezhad, 2015) 

Figure 90 illustrates the external classification process.  

 

Figure 90: SCM external classification process 

Figure 90 shows that the analysis of environmental complexity is a linear process of 

qualification which results in an external classification of environmental complexity. This 

classification can either manifest in a complicated environment (low) and a complex 

environment (high). 

The next section now covers all possible SCM combinations that can result in the framework. 
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11.5.1 SCM combinations overview 

Table 16 now describes all possible SCM combinations.  

Table 16: SCM combinations 

Classification Qualification 

combination 

(Structural /Dynamic 

/Environmental 

complexity) 

Description 

Complicated 

system 

Low/Low/Low Non-complex, well-understood system. 

Chaotic system High/High/High Non-linear, random system, several main sources 

of complexity in all three dimensions of analysis. 

Complex system High/High/Low 

Low/High/High  

High/Low/High 

Non-linear, partially random system, several main 

sources of complexity in at least two dimensions of 

analysis. 

Structurally 

complex 

High / Low /Low Structure as main source of complexity. 

Dynamically 

complex 

Low/High/Low  Information as main source of complexity. 

Environmentally 

complex 

Low/Low/High System environment as main source of complexity. 

 

After expanding on all possible SCM combinations the next section now illustrates and 

describes the complete SCM process. 
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11.5.2  The complete SCM process 

Figure 91 now summarizes the complete SCM process of analysis. 

 

Figure 91: Complete SCM process 

Figure 91 shows that the SCM is based on two different types of analysis, the internal and 

external analysis of system complexity.  

Both types of analysis lead to their respective system qualifications and classifications which 

are then combined to the final system qualification and classification.  

Table 17 now summarizes each step in the SCM process.  

Table 17: SCM process summary 

Step  Description 

Internal analysis & external analysis  Analysis of structural, dynamic, and 

environmental complexity dimensions of the 

system.  

Internal & external complexity qualification  Low / high qualification of each dimension.  

System complexity qualification and 

classification  

Resulting final qualification combination and 

generation of system classification. 

Norm strategies  Enabling the deduction of norm strategy 

based on SCM logic and obtained system 

classification. 

 

In a next step, it is introduced and explained how the final system qualification and 

classification is applied to generate norm strategies in the SCM.  

To achieve this the next chapter introduces and discusses different complexity management 

strategies. 



 184 

11.6  Complexity management strategies for the SCM 

To react on existing complexity within the mentioned complexity dimensions, different 

strategies can be developed and can be applied. These strategies can aim either at manipulating 

the complexity or at coping with the existing complexity. Based on Kluth et al.  (2014) and 

Lindemann et al.  (2009) three general strategies, norm strategies, of complexity management 

can be distinguished in the context of the SCM.  

These strategies are now described in Table 18. 

Table 18: SCM norm strategies 

Strategy  SCM norm 

strategy  

Description  

Avoiding 

complexity  

Avoid Prophylactic prevention of the emergence of complexity. The 

reappearance of over-complexity must be prevented by 

proactive use of instruments. These include, for example, the 

modularization, standardization or outsourcing of products, 

processes, or organizational structures or even total the 

replacement of a system in extreme cases. 

Reducing 

complexity  

Manage  Complexity reduction is about reducing identified existing 

complexity. This can be achieved by the reduction of variety 

and heterogeneity. This means by achieving the 

simplifications in the various fields of complexity. This 

includes, for example, the elimination of unprofitable product 

variants, the reduction of non-value-added process steps, the 

reduction of interconnection, information flow, information 

amount as well as the reduction of interfaces. 

Dealing 

with 

complexity  

Identify  The dealing with complexity is aiming at the efficient coping 

with unavoidable complexity. This includes the identification 

of complexity, the increase of process transparency or 

transformation of the processes to avoid hidden complexities. 

 

The next section now shows how these strategies can manifest in the SCM via norm strategies. 
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11.6.1 SCM norm strategies 

Based on the provided strategies and after achieving system qualification and classification in 

the SCM a first set of norm strategies for the SCM in the form of identify, manage, and avoid 

can now be introduced. 

These norm strategies are put into the context of the SCM as described in Figure 92.  

 

Figure 92: SCM norm strategies 

Figure 92 shows that the SCM attributes the defined three different norm strategies in relation 

to the level of the overall system complexity. The level of the overall system complexity is 

furthermore corresponding to the obtained SCM qualifications and resulting system 

classification.  

This allows to coherently deduct the fitting norm strategy to each system analysed via the SCM 

analysis. 

To illustrate the mechanics of the SCM the next section now provides an example. 

 

 



 186 

11.7  How the SCM works  

To illustrate the mechanics of the SCM, a given hypothetical system shall be defined by the 

following properties as shown by the SCM matrix in Figure 93.  

 

 

Figure 93: SCM example application 

The provided SCM matrix in Figure 93 shows that the system shall be classified as a 

dynamically complex system. 

The underlying process of analysis can now be defined as the illustrated in Figure 94. 

 

Figure 94: SCM example analysis 

Based on this result, the generated norm strategy for the dynamically complex system can be 

defined in more detail in Figure 99. 
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Figure 95 now illustrates the meaning of a generated norm strategy as an indicator for system 

complexity and how to deal with it. 

 

Figure 95: SCM practical meaning of norm strategies example 

Figure 95 shows that a given analysed case can now be coherently interpreted in the context of 

the provided norm strategy manage and a first starting point to optimize the analysed system is 

provided due the potential practical meaning of the norm strategy. The norm strategy thus refers 

to several practical measures which could be implemented to avoid cost escalation and other 

major inefficiencies.  

Due to the SCM analysis it is now also clearly defined how complex the system is in general, 

what the dimensional source of complexity in the system is and in which dimension the practical 

measured would have to be implemented to achieve increased system performance and 

therefore creates a holistic system strategic vision of how to improve the system. (Knyazeva, 

2020) The provided example illustrates that the SCM represents a holistic SMTT that 

coherently allows the classification of complexity in manufacturing systems and the 

development of norm strategies to enable decision-aiding.  

In the light of this statement, the next section now further discusses the SCM in the context of 

the applied decision-aiding methodology to further validate the SCM structure and mechanics. 
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11.8  SCM implications for application   

To summarize, it is now possible to draw the following implications for the practical 

instrumental value of the SCM:  

• A strategic complexity framework in the form of the SCM framework is proposed. The 

SCM framework functions as a practice based SMTT, a SMTT for complexity analysis 

of current and future complex industrial systems, like CPS.  

• The dimensions of the model in the form of structural, dynamic, and environmental 

complexity are introduced and described.  

• The core capabilities in the form of system qualification, classification, and norm 

strategies of the SCM framework are theoretically demonstrated. 

The mentioned implications show that the proposed SCM framework achieves its primary goals 

of theoretically enabling strategic complexity management while serving as a SMTT to solve 

problems of complexity in a practical engineering decision-making context. 

 

The SCM complexity dimensions, structural, dynamic, and environmental, as well as the 

framework's strategic capabilities are theoretically demonstrated based on a set of generic norm 

strategies and illustrates via an example analysis.  

SRQ3 can now be answered.  

• Sub-research question 3 (SRQ3; O3): How can a strategic complexity management 

framework for industrial systems be coherently established?  

 

Answer: Based on the integration of the complexity dimensions structural, dynamic, 

and environmental complexity in a holistic SMTT, a strategic complexity management 

framework for industrial systems is coherently established in the form of the SCM.   

After answering SRQ3 and achieving the corresponding objective O3, the next chapter now 

presents the applied SCM case study method in more detail.  
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12  SCM applied case study method  

Building on the described structure and functioning of the SCM in the previous chapter and the 

defined methodology in Chapter 8, this chapter now describes in detail how the SCM is applied 

on real-world industrial systems. 

As stated in O4, the final objective of this thesis is to investigate the practical applicability of 

the SCM framework on real-world production systems. This chapter thus also has the goal to 

adhere to axiom A3: managing complexity. 

To achieve this the SCM framework is executed four times, resulting in four individual case 

studies of real-world industry systems.  

This results in four systems which are analysed in the context of the research question to explore 

and investigate the applicability of the SCM on real world decision-making problems in the 

area of complexity in industrial systems.  

As already established in Chapter 8 and based on the complex system multi-case study research 

displayed in Gorod et al. (2014), the role of the researcher is that of an interpretative analyst in 

the decision-aiding process for a given company / client and thus is directly involved in the 

SCM projects through interventionist research.  

Therefore, all the cases are executed while the researcher and the company are being positioned 

in an interventionist client / analyst relationship process of decision-aiding.  

Consequently, the results and learnings of each SCM project are produced by the author of the 

thesis in the respective analyst role and thus represent exploratory, subjective results. 

Based on Chapter 8, the following Table 19 gives an overview about the relevant elements of 

case-study based research for the SCM case studies and provides a more detailed description. 

Table 19: SCM case study elements 

Element Description (Case specific) 

Unit of analysis  Application of SCM on industrial manufacturing system of two 

different companies in Austria and Hungary. 

Selection criterion Industrial manufacturing system poses a complex decision-making 

problem to senior decision-makers. 
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Data collection 

process  

Companies provide a set of documents as the primary information 

source. 

Collecting the data 

(forming the 

database)  

Information sources include:         

I. Project documents (factory layouts)    

II. Project reports, including quarterly reports, midterm review     

III. Calculations 

IV. Facility assessment reports 

V. Maintenance reports                      and others (videos etc.) 

Analyzing the data Document review & analysis process + application of SCM  

Interpretation of data 

/ SCM analysis  

Interpretation of results of SCM with the aim to generate norm 

strategy for individual case. 

 

In reference to Chapter 8, Figure 96 now illustrates how each case is approached from a 

methodological standpoint by integrating the SCM into the decision-aiding process.   

 

Figure 96: SCM case studies in the context of decision-aiding 

 

Figure 96 shows that in the conducted case study research the researcher has been positioned 

in the analyst role with the goal of achieving problem formulation, problem evaluation and the 

generation of a final recommendation while drawing on a data base.  
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The next section now introduces and describes the SCM case study design in detail to provide 

further information on the concrete utilization of the SCM in the conducted case studies and 

how knowledge is obtained from methodological standpoint. 

12.1  Case study design 

Based on Campbell et al.  (2018) and in correspondence to Chapter 8, Figure 97 now provides 

an overview about the general applied case study structure for an individual case. 

 

Figure 97: SCM case study design 

Figure 97 shows that the domain of the client, the company, is defined as the system to be 

analysed and the documents provided to the analyst / researcher by the company which then 

form a database for the analyst / researcher to apply the SCM on. 

The domain of the researcher in the role of the analyst is the establishment of the data base and 

the application of the data to achieve internal and external complexity analysis for the SCM, 

which then leads to the generation of system complexity qualification and classification and the 

respective norm strategy as the result.  

The norm strategy is then reported back to the company / client, who can then choose to 

implement the strategy on the system or not.  

In theory, this would allow a second application of the SCM on new system documents which 

reflect the changes implemented to allow benchmarking over time in the form of a longitudinal 

case study for further research. It is important to mention, that this is not a part of the shown 

research. 

The next section now describes in more detail how the resulting multi-case study approach can 

be defined for the SCM application.  
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12.1.1 Multi-case study approach 

Based on Campbell et al.  (2018) and in correspondence to Chapter 8, the applied multi-case 

approach for the SCM is illustrated by Figure 98.  

 

Figure 98: SCM multi-case study approach 

Figure 98 shows that the chosen multi-case study approach is based on the analysis of four 

different manufacturing systems, which represent four isolated case studies. These case studies 

encompass the respective SCM analysis for the individual case. 

The SCM is thus applied to each system individually via an established database, leading up to 

four individual and separate SCM analyses conducted by the researcher.  

Each analysis contains therefore its own isolated learnings and conclusions regarding the 

applicability of the SCM on the respective system. 

In a next step these conclusions and learnings of the individual SCM analysis are generally 

compared and discussed to achieve key-learnings concerning the general applicability of the 

SCM on industrial systems. 

Based on this process the next chapter now defines how the case data base is established and 

analysed via the researcher in the context of the SCM via qualitative document review and 

analysis (QDA). 

The next section now describes the applied QDA procedure in more detail.  
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12.2  Data analysis method: qualitative document review & 

analysis  

Qualitative document review and analysis (QDA) describes a qualitative, systematic procedure 

for reviewing or evaluating documents, printed and electronic (computer-based and internet-

transmitted) material, which then can provide data on the research context, for example in the 

form of background information or historical insight.  

This aspect is especially important for events that cannot or no longer be directly observed. 

(Bowen, 2009, Wach, 2013) 

The core understanding of QDA for this thesis is established by Bowen (2009) as the process 

of evaluating documents in such a way that empirical knowledge is produced, and 

understanding is developed. 

The documents that were used for systematic evaluation as part of the data base of the presented 

case studies were provided by the partner companies and take a variety of forms, for example 

factory layouts, calculations, or maintenance reports.  

Figure 99 now illustrates the general concept of QDA for this thesis, based on Altheide & 

Schneider (1996), Wach (2013) and Bowen (2009) 

 
Figure 99: QDA process of SCM case studies 

Figure 99 shows that the QDA process consists out of four different steps, which entail the 

company providing the documents, document storage in a data base, document coding and 

analysis.  

The next section now describes the procedure of QDA in more detail. 
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12.2.1 SCM QDA procedure 

Based on Wach (2013) and Altheide & Schneider (2013) the QDA contains the following steps 

as described in Table 20.   

Table 20: QDA procedure 

Step Description 

Setting inclusion criteria 

for documents 

• Included organizations  

• Types of documents to be reviewed 

Collecting documents • Inside the organization (internal) 

Articulating key areas of 

analysis 

• SCM dimensions  

Document coding Each document was analyzed to determine the extent to which 

the SCM complexity dimensions are described, addressed or 

considered each of the identified themes or dimensions via a 

document analysis taxonomy. 

Verification To ensure consistency and reliability of the coding and 

assessment process, the analysis of every document was 

verified by the research team.  

Analysis This data was then analyzed via thematic analysis to determine 

the results of each case study via the SCM and generates a norm 

strategy. 

The next section now describes the first step of QDA, namely the SCM analysis inclusion 

criteria. 

12.2.2 SCM analysis inclusion criteria 

The following inclusion criteria were applied to select the partner companies for the SCM case 

studies.  

• Company is a manufacturer in Europe. 

• Senior management of company wants to address a relevant problem of complexity 

concerning a production system with the help of SCM analysis. 

• Company can provide electronic documents for analysis. 

The next section describes the step of document collection in the data base. 
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12.2.3 Collecting documents 

The chosen case study design allows to achieve the following principles of data collection to 

contribute to the validity and reliability of the study as well as rigor and thoroughness in the 

case study process. (Bowen, 2009) 

• Multiple sources of evidence in the form multiple document types  

• Database creation  

• Maintaining a transparent chain of evidence in the SCM analysis process. 

In total, 44 computer-based and internet-transmitted documents of various types collected in 

the database were individually reviewed by research team and applied to the three different 

dimensions of the SCM in nine different document type categories.  The following Table 21 

now displays the distribution of document types in the generated database and the attributed 

complexity dimensions for analysis in the SCM. 

Table 21: SCM case studies document database 

Document Type Amount 

Production schedule 17 

Cost calculations  3 

Shop floor layouts  2 

Maintenance procedures  10 

Quality management  5 

Material treatment  2 

Operating procedures 1 

Supply chain  2 

Other (videos etc.) 2 

 

It is shown that the received 44 documents are distributed among 9 different types of 

documents, with the type of production schedule having the highest number of documents 

received (39%). 
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The next section now covers the step of how key areas of analysis are defined for the QDA of 

the SCM case studies.  

12.2.4 Articulating key areas of analysis  

To allow a consistent and coherent application of the SCM on a given set of data base 

documents, an interpretative scheme of analysis key-areas which are applied to achieve problem 

formulation is introduced through the three dimensions of complexity analysed by the SCM in 

Table 22.  

Table 22: QDA key areas of analysis 

Key-area Description  

Structural 

complexity  

(S) 

Document primarily refers to the static architectural layout of the system. For 

example: 

• Amount of machines 

• Number of links between machines  

• Number of interfaces 

Dynamic 

complexity  

(D) 

Document primarily refers to the amount of information contained and 

circulated in the system in terms of information entropy. For example: 

• Random system breakdowns 

• Random system errors  

• Deviating system behavior  

• Flow of material/information  

Environmental 

complexity  

(E) 

Document primarily refers to: 

• Task environment (all aspects relevant to setting goals and achieving 

them) 

• Technical environment (location where companies produce their 

products and services) 

• Institutional environment (formal rules and beliefs of the company) 

 

After presenting the key areas of analysis, the section to follow now introduces the chosen 

document coding approach.  
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12.2.5 Document coding approach 

The goal of the document coding process is defined by Bowen (2009) as organizing the 

information into a structure that provides knowledge about what is related to central questions 

of research. Figure 100 now illustrates the applied complexity scope taxonomy for multi-level 

document coding in the context of the dimensions of the SCM.  

 

Figure 100: SCM document coding taxonomy 

The applied taxonomy is based on the Taxonomy Dimensions of Complexity Metrics described 

by Falah & Magel (2015). 

As a next step, the SCM taxonomy scope levels are defined in more detail in the next section. 

The individual document scope levels can now be defined as the following:  

• Level 1: Provides insight into a single-subsystem (production step), component 

(intermediate product) or provides product context (list of product parts). 

• Level 2: Provides insight into an applied method (quality management procedures, 

material treatment procedures, maintenance procedures, supply chain). 

• Level 3: Provides insight into an overall body of knowledge that encompasses the whole 

system (production schedules or cost calculations). 

It is shown that documents are evaluated based on the level of insight they can offer in the three 

complexity dimensions of the SCM in which they are to be interpreted and analysed. 

The next section now provides document and document scope examples for each level to 

illustrate how the applied SCM taxonomy works. 
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12.2.6  Document and document scope illustration 

Based on the described document scope levels, obtained real-world original documents can now 

be provided to illustrate the approach. Figure 101 now illustrates a Level 1 document in the 

form of a standard operation procedure for a rubber tube assembly. 

 

Figure 101: Level 1 document 

Table 23 describes the displayed Level 1 document in more detail. 

Table 23: Level 1 document description 

Document detail  Description 

Name  Rubber tube assembly  

Context  Part assembly instruction  

Scope  Level 1 

SCM dimensions  (D) since it refers to the information / material flow in the system.  

 

The next section provides an example for a Level 2 document.  
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Figure 102 illustrates a Level 2 document in the form of a 5S-Audit manual. 

 

Figure 102: Level 2 document 

Table 24 describes the displayed Level 2 document in more detail. 

Table 24: Level document description 

Document detail  Description 

Name  AA 075-5S Audit 

Context  Instruction to clean the system according to 5S method and how the 

system shall be managed and maintained.  

Scope  Level 2 

SCM dimensions  (D) and (E), refers to information flow, unwanted system behavior 

and task, and informal environment of the analysed system. 

 

The next section now provides an example for a Level 3 document.  
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Figure 103 illustrates a Level 3 document in the form of material and labor cost calculation. 

 

Figure 103: Level 3 document 

Table 25 describes the displayed Level 2 document in more detail. 

Table 25: Level 3 document description 

Document detail  Description 

Name  Material and labor cost calculation via Methods-Time-

Measurement and material cost analysis. 

Context  Definition of layout and component cost composition. 

Scope  Level 3 

SCM dimensions  (S) (D) (E). Refers to all dimensions, since system architecture, 

dynamics, and system environment (supply chain) are described 

and illustrated.  

 

The next section now elaborates on how the verification of the coding.  
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12.2.7 Verification of coding  

During the SCM process the classification of the individual documents in terms of scope and 

type was regularly discussed with other members of the research team as well as the senior 

management of the company providing the documents to avoid errors and misjudgments.  

12.3  Document coding: results  

The distribution of received documents among complexity dimensions of the SCM based on 

the SCM taxonomy is now defined as the following Table 26. 

Table 26: Document coding results 

Document Type Complexity dimensions  Taxonomy 

scope 

Taxonomy 

reasoning 

Amount 

Production 

schedule 

Dynamic, Environmental, 

Structural  

Level 3 Statement 17 

Cost calculations  Dynamic, Environmental, 

Structural  

Level 3 Statement 3 

Shop floor layouts  Structural  Level 1 Single 

Sub-

Systems, 

Product 

Context 

2 

Maintenance 

procedures  

Dynamic  Level 2 Method  10 

Quality 

management  

Structural, Dynamic Level 2 Method 5 

Material treatment  Structural, Environmental Level 2 Method 2 

Operating 

procedures 

Structural, Dynamic Level 2 Method 1 

Supply chain  Environmental, Dynamic Level 2 Method 2 
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Other (videos etc.) Dynamic, Environmental, 

Structural 

Level 1- 

Level 3 

Misc. 2 

 

The shown distribution of document types on SCM dimensions is based on the specificity, 

purpose, and the contextual richness of the individual document in the individual dimension 

according to the defined document scope level in the applied taxonomy. (Bowen, 2009) 

For example, documents of the type of production schedule have shown to provide relevant 

insights into all SCM dimensions, since the reviewed documents of this type were connecting 

most relevant aspects of production in the production schedule.  

On the other hand, documents of the type of shop floor layouts and maintenance procedures 

are highly specific in their individual nature and can thus only be applied to a singular 

dimension of analysis.  

The described document review and analysis process therefore establishes a clear chain of 

evidence explicitly linking the data collected, the framework applied, and the conclusions 

drawn from the SCM in a logically coherent, reliable, replicable with high validity. (Kaman & 

Othman, 2016) 

The resulting distribution of documents among the document scope level of the taxonomy can 

now be illustrated in Figure 104. 

 

Figure 104: Received document distribution in taxonomy 
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The provided SCM taxonomy allows to classify database documents in a coherent way to 

achieve SCM applicability via the S,D,E complexity dimensions.  

It can be shown, that 40 out 44 documents are Level 2 or Level 3 documents, while only 4 of 

the 44 received documents are Level 1 documents, underlining the contextual richness of the 

database for the conducted SCM analysis making the data base suitable for heuristic SCM 

analysis.  

12.3.1 Analysis and interpretation of documents  

After the document coding process, the documents are interpreted via manual thematic analysis 

in the context of the SCM.  

Thematic analysis in QDA shall be considered a form of pattern recognition with the 

document’s data. The analysis takes emerging themes and makes them into categories used for 

further analysis. It includes careful, focused reading and re-reading of data, as well as coding 

and category construction. (Bowen, 2009) The interpretative process is both recursive and 

reflexive as the researcher / analyst moves between concept development, sampling, data 

collection, data analysis and interpretation. QDA is thus defined as an open-minded, creative, 

subjective, and emergent process focused on the search for underlying meanings, themes, and 

patterns, rather than a rigid set of procedures with tight parameters. Consequently, it is to be 

expected that the results are significantly impacted by the researcher’s subjective perspective. 

(Wood et al., 2020) 

Thematic analysis in the context of the SCM therefore means that the coded documents are now 

interpreted via a baseline interpretation scheme in the different a priori SCM dimensions to 

allow the qualification high / low in the matrix.  

This achieves a guided, semi-open approach, that avoids the fully open approaches like 

brainstorming or mind maps which would be used in a less a priori way of open data exploration 

and interpretation.  

This then leads to a more stringent analysis and interpretation that avoids the pitfalls of a 

“garden path analysis” which is characterized by the exploration of attractive themes that leads 

potentially nowhere. (Wood et al., 2020) 

To prepare for the analysis and interpretation process, the documents were read concurrently as 

data collection progressed, to develop familiarity with the data and document structures. 
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Due to the novelty of the SCM as a strategic complexity management framework the applied 

heuristic interpretation scheme is defined as illustrated in Figure 105.  

 

Figure 105: Document heuristic interpretation scheme 

The provided interpretation scheme represents a set of conclusions for interpretative analysis in 

the key areas of analysis and shall therefore be a heuristic baseline framework that initially 

guides the subjective SCM qualification process conducted by the researcher in the client / 

analyst constellation.  

To summarize, there are many benefits in using document analysis for the purpose of this study.  

According to Bowen (2009) these are benefits can be defined as the following.  

• Document analysis is an efficient and effective way of gathering data because 

documents are manageable and practical resources. 

• Documents are commonplace and come in a variety of forms.  

• Obtaining and analyzing documents is cost efficient and time efficient. 

• Documents are stable, non-reactive data sources, meaning that they can be read and 

reviewed multiple times and remain unchanged by the researcher’s influence or research 

process. 

• Documents can also contain data that no longer can be observed, provide details that 

informants have forgotten, and can track change and development. 

After presenting the method and benefits of QDA for SCM analysis, the next section discusses 

the limitations of QDA. 
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12.4  QDA limitations  

The following limitations for QDA can be identified and must be considered at any time in 

the context of the results of the case study application of the SCM. (Ward & Wach, 2015, 

Bowen 2009) 

• Document number reviewed: Only a limited number of documents were reviewed. A 

detailed assessment of a single company or a single system on all possible areas would 

require analysing additional documents. The number of documents analysed are directly 

dependent from the document amount provided by the partner company. 

• Company differences: Each company invests a different level of time and effort in its 

policy documents, and the documents reviewed were different in type and style. Each 

document has a different level of detail, scope and focus with the intended audience and 

individual purpose. Any findings do not represent an overall picture of a company´s 

activities. A comparison between different company documents is not intended. 

Depending on the system analysed and its integration status, documentation may not be 

complete. 

• Non-universality: Caution must be taken not to infer that the developed SCM results 

represent anything other than a general picture and an indicative strategic direction. For 

a detailed understanding of how each document was assessed and performed, it is 

necessary to investigate the documents themselves via the SCM. Depending on the 

coding approach, interpretation scheme, framework and analysis purpose, different 

analysts may produce deviating results.  

• Measurement: Complexity is inherently difficult to accurately translate into a 

qualitative measurement. The SCM qualification scheme used are primarily indicative 

of trends and bigger-picture issues with goal to generate norm strategies. The coding 

and interpretation of a document in relation to the SCM dimensions does furthermore 

not represent an evaluation of its intrinsic functionality as a document of the 

organisation or any other functionality. 

Based on these statements the next section now briefly summarizes the overall SCM case study 

design in the context of its decision-aiding properties.  
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12.5  Summary of SCM case study design 

It is established that the SCM represents a heuristic, prescriptive-normative hybrid decision-

aiding tool that allows prescriptive and normative distinct features. 

These features are now put into the perspective of the chosen case study approach to discuss 

the applicability of the chosen case study design, as shown in Table 27.  

Table 27: Summary SCM case study design 

Type Features  Case study design  

Prescriptive Providing answers to a problem based on 

the assumptions of limited information 

contained in a data base by applying a 

heuristic approach through internal and 

external system complexity qualification 

and classification. 

Data base enables internal 

and external system 

complexity qualification and 

classification via established 

document review taxonomy 

and interpretation scheme.  

Normative Deriving a priori strategic norms which 

intend to be universally applicable to all 

clients who want to behave rationally in the 

context of the model through the norm 

strategies identify, manage, and avoid. 

SCM can be applied to 

coherently derive norm 

strategies based on data base 

analysis via QDA. 

 

The next chapter now introduces the conducted SCM case studies. 
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13  SCM case studies results 

Building upon the achievements of the previous parts, the final part of the study now coherently 

answers SRQ4/ O4 and the main research question (MRQ) of this thesis. 

The main motivation of this part is to contribute to the topic of strategic complexity 

management for industrial systems by presenting, testing, and discussing the application of the 

SCM. 

This is achieved by testing the overall applicability of SCM on a range of real-world industrial 

systems within a range of market-leading European small/medium enterprises (SME) were 

evaluated by the author via the SCM framework in an analyst / client relationship of decision-

aiding.  

This chapter thus presents the results of the conducted SCM case study research, as shown in 

the research of Freund et al. (2021d, 2021f).  

The showcased case studies have the goal to evaluate and underline the potential of application 

of the proposed SCM framework for practical application.  

To achieve this the SCM is applied on four different, isolated cases of industrial systems 

obtained by two European manufacturers in Austria and Hungary.  

The central goal of the conducted SCM case studies is to showcase and evaluate on a 

preliminary basis if the SCM is generally applicable on real-world systems. 

The application of the SCM thus aims to support the overall line of argument made that SMTTs, 

like the SCM, can be regarded as a highly relevant holistic and practice-based approaches for 

decision-makers to strategically solve problems of complexity for industrial engineered 

systems. 

The analysed cases, the SCM specific case study approach and the case study results and 

obtained key-learnings are described and discussed in the next sections.  
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13.1  Description SCM of case studies  

This section now describes the specific research design of case study application of the SCM 

in correspondence to Chapter 8.  

Four different industrial manufacturing systems (denoted by cases: 1, 2, 3, 4 for anonymization) 

located at two different international manufacturers in Hungary (H) and Austria (A) were 

analysed by the researcher via the SCM.  

The case studies were conducted in the time between January 2021 to March 2021 and are 

described as showcased in the research of Freund et al. (2021d, 2021e, 2021f) 

The author of this study contacted 25 European SMEs via Email in December 2020 with a 

concrete project proposition concerning system analysis via the SCM.  

Of these 25 contacted companies, 5 companies replied with active interest in the proposed 

project. Two companies were selected by the author based on system scale and document 

availability, resulting in four different systems analysed via the SCM in four individual case 

studies.  

The selection of cases was based on the criteria of intensity (information rich case, but not an 

extreme case), theoretical (case is about a theoretical construct and is used to examine and 

elaborate about it) and comparability in reference to the system to be analysed. (Campbell et.al, 

2018)  

Table 28 now provides further information on the context of each case. 

Table 28: SCM case descriptions 

Case  Context of case study 

1 Support senior management in analysis of the development and planning of an 

infrared lamp assembly line production system. 

2 Support senior management in analysis of the development and planning of a 

blood pressure monitor assembly line production system.  

3 Support senior management in analysis of the development and planning of a 

thermometer assembly line production system. 

4 Support CEO in analysis of error prone automated injection moulding plant via 

SCM analysis.  
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It can be stated that all case contexts represented concrete decision-making situations in a highly 

complex environment for all involved decision-makers.  Table 29 now provides further 

information on the case sector, system status and analysed system type. 

Table 29: SCM case sector, system status and system type 

 

 

 

 

 

 

 

 

 

 

 

Table 29 shows, that three of the analysed cases (1, 2, 3) are situated in the health and beauty 

sector with manufacturer H and are of the same system type manual assembly line. The analysed 

assembly lines were also planned to be in the same manufacturing hall but were also planned 

to represent three independent systems.  The status of these systems while the case studies 1,2 

and 3 were conducted was therefore that these systems were still in development. Case 4 is 

situated in the Silicone LSR (Liquid-silicone rubber) sector with manufacturer A and is of the 

system type automated and with the status active during the duration of this study. Each case 

study now follows the same structure and tries to answer a set of corresponding questions: 

• Description: Where and why is the SCM applied?  

• Data collection & analysis: How can the documents be distributed among SCM levels? 

• Case results: How can the analysed system be classified and managed in the SCM?  

• Case summary: How can the case be summarized in the decision-aiding context? 

The next section now showcases the results for each case analysed starting with Case 1. 

Case  Manufacturer Sector System status System type 

1 H Health 

& 

Beauty 

In development Manual assembly line 

2 H Health 

& 

Beauty 

In development Manual assembly line 

3 H Health 

& 

Beauty 

In development Manual assembly line 

4 A Silicone 

LSR  

Active  Automated  
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13.2  Case 1: analysis of the development and planning of an 

infrared lamp assembly line production system  

The SCM has been utilized for complexity analysis in the planning process of a new production 

system for infrared lamps at an international health & beauty SME.  

A central motivation and goal of the SME to use SCM analysis was to support senior 

management in development and planning of the mentioned production line.  

The SCM has been utilized for strategic complexity analysis in the analysis of the development 

and planning process of a partly automated infrared lamp assembly line production system. 

13.2.1 Data collection and analysis 

To achieve this, the company provided all existing documentation as the data basis for SCM 

analysis.  

This distribution of documents is displayed in Table 30.  

Table 30: Case 1 document distribution 

Document Type Complexity dimensions  Taxonomy 

scope 

Taxonomy 

reasoning 

Amount 

Production schedule Dynamic, Environmental, 

Structural  

Level 3 Statement 2 

Cost calculations  Dynamic, Environmental, 

Structural  

Level 3 Statement 1 

Shop floor layouts  Structural  Level 1 Single 

Sub-

Systems, 

Product 

Context 

1 

Maintenance 

procedures  

Dynamic  Level 2 Method  0 

Quality management  Structural, Dynamic Level 2 Method 1 

Material treatment  Structural, Environmental Level 2 Method 1 



 211 

Operating procedures Structural, Dynamic Level 2 Method 0 

Supply chain  Environmental, Dynamic Level 2 Method 1 

Other (videos etc.) Dynamic, Environmental, 

Structural 

Level 1- 

Level 3 

Misc. 0 

 

Table 30 shows, that the received 7 documents are distributed among 6 different types of 

documents. The shown distribution of document types on SCM dimensions is based on the 

specificity, purpose, and the contextual richness of the individual document in the individual 

dimension. (Bowen, 2009) 

13.2.2 Case 1: results  

Through the application of the SCM on the database the production system is classified as a 

dynamically complex system with the qualification ((S/D/E); (LOW/HIGH/LOW)). Through 

the application of the SCM on the database the production system is classified as a dynamically 

complex system with the qualification ((S/D/E); (LOW/HIGH/LOW)).  

Figure 106 illustrates this. 

 

Figure 106: SCM analysis of automated infrared assembly line 



 212 

As shown in Figure 107, the resulting norm strategy for the system is MANAGE, with 

intermediate system complexity and potential starting points of cost-escalation and major 

inefficiencies. 

 

 

Figure 107: Resulting norm strategy Case 1 

The following two measures were defined to allow norm strategy implementation into practice.  

• Outsourcing of non-essential production steps to external suppliers  

• Identification of points of cost escalation through cost scenario analysis of insourcing / 

outsourcing combinations of non-essential production steps 

In the next section the case study is summarized.  
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13.2.3 Case 1: summary 

Figure 108 summarizes Case 1 in the established decision-aiding context. 

 

Figure 108: Case 1 summary 

 

The following learnings can now be obtained for Case 1:  

• Manufacturer was able to provide the research team with sufficient documents of 

significance and information richness to allow meaningful and valid analysis and results  

• The researcher was able to apply the SCM on the case without having to depart from 

the framework structure and functioning or breaking the coherence of the SCM  

• All received documents were successfully applied to SCM dimensions  

 

The next section now describes Case 2.  
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13.3  Case 2: analysis of the development and planning of a blood 

pressure monitor assembly line production system 

The SCM has been utilized for complexity analysis in the planning process of a new blood 

pressure monitor production system at an international health & beauty SME.  

A central motivation and goal of the SME to use SCM analysis was to support senior 

management in development and planning of the mentioned production line.  

The SCM has been utilized for complexity analysis in the development process of a partly 

automated blood pressure monitor assembly line.  

13.3.1  Data collection and analysis 

To achieve this, the company provided all existing documentation as the data basis for SCM 

analysis.  

This distribution of documents is displayed in Table 31.  

Table 31: Case 2 document distribution 

Document Type Complexity dimensions  Taxonomy 

scope 

Taxonomy 

reasoning 

Amount 

Production schedule Dynamic, Environmental, 

Structural  

Level 3 Statement 2 

Cost calculations  Dynamic, Environmental, 

Structural  

Level 3 Statement 1 

Shop floor layouts  Structural  Level 1 Single 

Sub-

Systems, 

Product 

Context 

1 

Maintenance 

procedures  

Dynamic  Level 2 Method  0 

Quality management  Structural, Dynamic Level 2 Method 1 

Material treatment  Structural, Environmental Level 2 Method 2 
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Operating procedures Structural, Dynamic Level 2 Method 1 

Supply chain  Environmental, Dynamic Level 2 Method 1 

Other (videos etc.) Dynamic, Environmental, 

Structural 

Level 1- 

Level 3 

Misc. 0 

 

Table 4 shows, that the received 9 documents are distributed among 7 different types of 

documents. The shown distribution of document types on SCM dimensions is based on the 

specificity, purpose, and the contextual richness of the individual document in the individual 

dimension. (Bowen, 2009) 

13.3.2 Case 2: results  

Through the application of the SCM on the database the production system is classified as a 

complex system with the qualification ((S/D/E); (HIGH / HIGH / LOW)) 

Figure 109 illustrates this. 

 

Figure 109: SCM analysis of blood pressure monitor 
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As shown in Figure 109, the resulting norm strategy for the system is AVOID, with high 

complexity and radical decisions necessary. This is illustrated in Figure 110. 

 

 

Figure 110: Resulting norm strategy Case 2 

 

The following two measures were defined to allow norm strategy implementation into practice.  

• Outsourcing of non-essential and essential production steps to external suppliers.  

• Identification of points of cost escalation through cost scenario analysis of insourcing / 

outsourcing combinations of non-essential and essential production steps. 

In the next section the case study is summarized.  
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13.3.3  Case 2: summary 

Figure 111 summarizes Case 2 in the established decision-aiding context. 

 

 

Figure 111: Summary Case 2 

 

The following learnings can be obtained for Case 2: 

• Manufacturer was able to provide the research team with sufficient documents of 

significance and information richness to allow meaningful and valid analysis and 

results.  

• The researcher was able to apply the SCM on the case without having to depart from 

the framework structure and functioning or breaking the coherence of the SCM. 

• All received documents were successfully applied to SCM dimensions.  

• The SCM was capable to generate valid results in the form of norm strategies for all 

analysed cases. 

 

The next section now describes Case 3.  
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13.4  Case 3: analysis of the development and planning of a 

thermometer assembly line production system 

The SCM has been utilized for complexity analysis in the planning process of a new production 

system at an international health & beauty SME.  

A central motivation and goal of the SME to use SCM analysis was to support senior 

management in development and planning of the mentioned production line.  

The SCM has been utilized for complexity analysis in the analysis of the development and 

planning of a thermometer assembly line production system.  

13.4.1  Data collection and analysis 

To achieve this, the company provided all existing documentation as the data basis for SCM 

analysis.  

This distribution of documents is displayed in Table 32.  

Table 32: Case 3 document distribution  

Document Type Complexity dimensions  Taxonomy 

scope 

Taxonomy 

reasoning 

Amount 

Production schedule Dynamic, Environmental, 

Structural  

Level 3 Statement 1 

Cost calculations  Dynamic, Environmental, 

Structural  

Level 3 Statement 1 

Shop floor layouts  Structural  Level 1 Single 

Sub-

Systems, 

Product 

Context 

2 

Maintenance 

procedures  

Dynamic  Level 2 Method  0 

Quality management  Structural, Dynamic Level 2 Method 1 

Material treatment  Structural, Environmental Level 2 Method 1 
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Operating procedures Structural, Dynamic Level 2 Method 3 

Supply chain  Environmental, Dynamic Level 2 Method 1 

Other (videos etc.) Dynamic, Environmental, 

Structural 

Level 1- 

Level 3 

Misc. 1 

 

Table 32 shows, that the received 11 documents are distributed among 8 different types of 

documents. The shown distribution of document types on SCM dimensions is based on the 

specificity, purpose, and the contextual richness of the individual document in the individual 

dimension. (Bowen, 2009) 

13.4.2  Case 3: results  

Through the application of the SCM on the database the production system is classified as a 

complex system with the qualification ((S/D/E); (HIGH / HIGH / LOW))  

Figure 112 illustrates this. 

 

Figure 112: SCM analysis of thermometer assembly line 
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As shown in Figure 113, the resulting norm strategy for the system is AVOID, with high 

complexity and radical decisions necessary. This is now displayed in Figure 117. 

 

Figure 113: Resulting norm strategy Case 3 

 

The following two measures were defined to allow norm strategy implementation into practice.  

• Outsourcing of non-essential and essential production steps to external suppliers. 

• Identification of points of cost escalation through cost scenario analysis of insourcing / 

outsourcing combinations of non-essential and essential production steps 

 

In the next section the case study is summarized.  
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13.4.3  Case 3: summary  

Figure 114 summarizes Case 3 in the established decision-aiding context. 

 

Figure 114: Summary Case 3 

The following learnings can be obtained:  

• Manufacturer was able to provide the research team with sufficient documents of 

significance and information richness to allow meaningful and valid analysis and 

results. 

• The researcher was able to apply the SCM on the case without having to depart from 

the frame-work structure and functioning or breaking the coherence of the SCM. 

• All received documents were successfully applied to SCM dimensions. 

• The SCM was capable to generate valid results in the form of norm strategies for all 

analysed cases. 

 

The next section now describes Case 4.  
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13.5  Case 4: automated injection molding plant  

The SCM has been utilized for complexity analysis in the analysis of the maintenance process 

of an automated injection moulding system at a European LSR manufacturer which had an 

increased rate of unexpected, abnormal errors.   

A central motivation and goal of the SME to use SCM analysis was to support senior 

management in reducing system downtime and unexpected error rate of the mentioned 

production line.  

The SCM has been utilized for complexity analysis in the analysis of the maintenance process 

of an automated injection moulding system at an European LSR manufacturer which had an 

increased rate of unexpected, abnormal errors.   

13.5.1  Data collection and analysis 

To achieve this, the company provided all existing documentation as the data basis for SCM 

analysis. The Case 4 data base is shown in Table 33. 

Table 33: Case 4 document distribution 

Document Type Complexity dimensions  Taxonomy 

scope 

Taxonomy 

reasoning 

Amount 

Production schedule Dynamic, Environmental, 

Structural  

Level 3 Statement 3 

Cost calculations  Dynamic, Environmental, 

Structural  

Level 3 Statement 3 

Shop floor layouts  Structural  Level 1 Single 

Sub-

Systems, 

Product 

Context 

1 

Maintenance 

procedures  

Dynamic  Level 2 Method  2 

Quality management  Structural, Dynamic Level 2 Method 2 

Material treatment  Structural, Environmental Level 2 Method 3 
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Operating procedures Structural, Dynamic Level 2 Method 2 

Supply chain  Environmental, Dynamic Level 2 Method 3 

Other (videos etc.) Dynamic, Environmental, 

Structural 

Level 1- 

Level 3 

Misc. 0 

 

Table 33 shows, that the received 33 documents are distributed among 6 different types of 

documents. The shown distribution of document types on SCM dimensions is based on the 

specificity, purpose, and the contextual richness of the individual document in the individual 

dimension. (Bowen, 2009) 

13.5.2  Case 4: results  

Through the application of the SCM on the database the production system is classified as a 

dynamically complex system with the qualification ((S/D/E); (LOW/HIGH/LOW)).  

Figure 115 illustrates this. 

 

Figure 115: SCM analysis of automated injection molding plant 
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As shown in Figure 116, the resulting norm strategy for the system is MANAGE, with 

intermediate system complexity and potential starting points of cost-escalation and major 

inefficiencies.  

This is now illustrated in Figure 116.  

 

 

Figure 116: Resulting norm strategy Case 4 

 

The following measures were determined based on the SCM analysis.  

• Anticipating: Intensified Due-Diligence program based on 5S and Kaizen approach with 

the goals: understanding the complexity of the system, building practical knowledge of 

the system, invention of new approach for maintenance. 

 

• Reactive: Introduction of an expert group of consisting of interdisciplinary specialists 

that can react when an unexpected error occurs. This group has furthermore the goal to 

track, archive and report.  

 

In the next section the case study is summarized. 
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13.5.3  Case 4: summary 

Figure 117 summarizes Case 4 in the established decision-aiding context. 

 

Figure 117: Summary Case 4 

 

The following learnings can be obtained:  

• Manufacturer was able to provide the research team with sufficient documents of 

significance and information richness to allow meaningful and valid analysis and 

results. 

• The researcher was able to apply the SCM on the case without having to depart from 

the framework structure and functioning or breaking the coherence of the SCM.  

• All received documents were successfully applied to SCM dimensions. 

• The SCM was capable to generate valid results in the form of norm strategies for all 

analysed cases. 

• The generated SCM norm strategies were successfully implemented into practice. 

 

After presenting all cases in detail, the next section provides an overview of the results. 
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13.6  Overview of case study results  

Table 34 now shows the isolated SCM classification and qualification for each case analysed.   

Table 34: Case studies classifications and qualifications 

Case  Classification Qualification (S/D/E) 

1 Dynamically 

complex  

Low / High / Low  

2 Complex  High / High / Low  

3 Complex High / High / Low  

4 Dynamically 

complex  

Low / High / Low  

 

Table 35 now illustrates the resulting norm strategy distribution for each case. 

Table 35: Case studies norm strategies 

Case  Norm strategy  

1 Manage: Identification of cost escalation  

2,3 Avoid: Radical decisions  

4 Manage: Identification of cost escalation 

 

Table 35 shows that it was possible to derive a norm strategy for each analysed case via the 

SCM that is coherent with the framework.  

To achieve practical implementation the SCM norm strategies were then applied as strategic 

guidance and direction to achieve a more specific context-oriented strategies for the individual 

manufacturer.  

The resulting context-oriented strategies are now described and represent the practical 

interpretation and implementation of the generated SCM norm strategies displayed in Table 36.  
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Table 36 now describes the context-oriented strategies for each analyzed case.  

Table 36: Case studies context-oriented strategies 

Case  Context-oriented strategy  

1 Manage: Outsourcing of non-essential production steps to external suppliers; 

Identification of points of cost escalation through cost scenario analysis of 

insourcing / outsourcing combinations of non-essential production steps.  

2, 3 Avoid: Outsourcing of non-essential and essential production steps to external 

suppliers; Identification of points of cost escalation and steps that can potentially 

be outsourced through cost scenario analysis of insourcing / outsourcing 

combinations of production of essential and non-essential production steps. 

4 Manage: Cost management and identification of points of cost escalation through 

definition and implementation of combination of reactive (Kaizen approach) and 

anticipative (establishment of expert group as main investigators in the case of 

unknown errors) measures.  

 

Table 36 shows, that it was possible to derive specific context-oriented strategies based on the 

SCM norm strategies that are meaningful, applicable, and helpful for the individual context of 

the analysed cases.  

The next section now provides a brief cross-case analysis of the results obtained in the 

individual case to derive key-learnings out of the cases conducted via the SCM. 
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13.6.1  Key-learnings  

Based on the cross-case comparison and the results of the SCM analysis for the cases 1, 2, 3, 4 

the following six key-learnings were obtained after the case study SCM analysis.   

It is important to state at this point that the key-learnings obtained primarily refer to the overall 

applicability of the framework and not to the applicative value of the strategies derived, 

especially not in a long-term perspective. 

The obtained key-learnings of the collective body of cases are now displayed in Table 37.  

Table 37: Case studies cross-case analysis 

Key-learning  Description 

Documentation Manufacturers were able to provide the research team 

with sufficient documents of significance and 

information richness to allow meaningful and valid 

analysis and results. 

Framework applicability  The research team was able to apply the SCM on a 

range of divergent cases without having to depart from 

the framework structure and functioning or breaking 

the coherence of the SCM. 

Document integration  All received documents were successfully integrated 

into the chosen document typology. 

Document interpretation All received documents were successfully applied to 

SCM dimensions. 

SCM norm strategies  The SCM was capable to generate valid results in the 

form of norm strategies for all analysed cases. 

Norm strategy applicability  The generated SCM norm strategies were successfully 

applied for the generation of context-oriented 

strategies without exception. 

 

The next section now provides a discussion of the obtained case study results.  
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13.7  Limitations & discussion of case study results  

As shown and described, four isolated case studies were conducted via SCM based on four 

individual complexity management problems. 

The application and results generated by the SCM, and the key-learnings obtained indicate that 

holistic practice-based SMTTs for strategic complexity management can provide meaningful 

and helpful assistance to decision-makers in the manufacturing industry in the process of 

strategy development when dealing with complex problems concerning volatility, uncertainty, 

complexity, and ambiguity.  

Due to the system types of cases analysed, even though still complex, it remains unclear if 

SMTTs are also as useful in the context of hyper-complex, less traditional and generally less 

understood systems like CPS and CPSS. It is also unclear how valuable the SCM analyses are 

in a mid to long term perspective. Also, CPS systems might be documented in more unorthodox 

or non-standard ways and document analysis might be less efficient and effective for the SCM.  

Results are also inherently limited by QDA limitations and contain a subjective, interpretive 

component induced by the researcher in the role of the analyst, documents received, company 

bias and many more, and are thus not to be regarded as objective or universal. Consequently, 

the obtained results shall be regarded as indicative of the general applicability of the SCM. 

Nevertheless, the results show that the SCM is capable to generate results and a strategic 

directive for each case, while always adhering to the framework structure and format. 

The obtained case study results allow to draw the following central implication for the 

applicative value of the approach which is illustrated by Figure 118.  

Figure 118 now shows the position of the SCM in the strategic complexity management cycle.  

 

Figure 118: The SCM in the context of the strategy gap of complexity management frameworks 
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Figure 118 shows that the SCM is expected to be applied to the steps Define and Manage in the 

cycle and provides an answer to the identified strategy gaps of complexity management 

frameworks.  

The application and results generated by the individual SCM case studies, and the key-learnings 

obtained allow to indicate that holistic practice-based SMTTs for strategic complexity 

management, like the SCM, can provide meaningful and helpful assistance to decision-makers 

in the manufacturing industry in the process of strategy development when dealing with 

complexity problems in industrial systems. 

Finally, it can be concluded that the SCM is expected to be applied to the steps understanding 

and strategy in the strategic complexity management cycle and provides a first answer to the 

identified strategy gap of complexity management frameworks.  

SRQ4 can now be answered.  

• Sub-research question 4 (SRQ4; O4): Can a strategic complexity management 

framework be applied on real-world industrial systems?  

 

Answer: Based on the results obtained in the conducted case studies, it can be 

established that the SCM can be generally applied on real world industrial systems and 

can solve the identified strategy gap in complexity management frameworks.  

After answering SRQ4 and achieving the corresponding objective O4, the MRQ of this thesis 

can now be answered.  

• Main research question (MRQ): Can the complexity of industrial manufacturing 

systems be managed via a strategic complexity management framework?  

 

Answer: Based on the results of the conducted case study research, the complexity of 

an industrial manufacturing system can be generally managed via the SCM.    

After answering the MRQ and achieving O4, the final chapter of this study now presents the 

conclusion to this thesis.  
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14 Conclusion & outlook 

This study shows through the developed hypotheses H1-H3 that it can be theoretically indicated 

that the amount information aggregated and transferred in a system can serve as an indicator 

for the development of system complexity and as a possible explanatory concept for the surges 

of system complexity in industrial information systems, like CPS. 

 It is shown via H1-H13 that the act of system regulation is highly dependent on the underlying 

complexity und disturbance set of the system. A growth of system complexity thus leads for 

the rational decision maker to a proportional increase in choice risk and choice uncertainty, 

leading to up to an increasingly difficult decision-making process.  

This is described through the “complex system performance / risk trade-off”. The thesis 

furthermore provides a first approach to consistently model the relationship of disturbance, 

regulatory response, outcome, and outcome desirability via the described matrixes. 

Additionally, an argument for heuristics in complex systems management via SMTTs is made 

and a strategy gap in existing complexity management frameworks is identified.  

A complexity space modelling approach for industrial system complexity is introduced and 

aims to serve as a conceptual modelling approach with the primary function of early-stage 

exploratory system analysis and enabling more advanced modelling and simulation approaches, 

as well as the construction of dedicated strategic complexity management SMTTs.   

The model is based on the axiomatic conception of a three-dimensional static complexity space 

in which informational complexity is modelled as a sphere that expands dynamically over time 

until expansion is limited by the boundaries of complexity space.   

It can be concluded in the context of the model, that any industrial system maximizes 

information complexity over time and thus also maximizes entropy over time, making the 

system increasingly prone to error, hazardous and cost intensive over time, if the system 

information complexity expansion is not adequately artificially controlled via an external 

control system of proportionate size and ability.  

A strategic complexity framework in the form of the SCM is introduced and functions as a 

practice based SMTT for complexity analysis of current and future complex industrial systems. 

The dimensions of the model in the form of structural, dynamic, and environmental complexity 

are introduced and described.  



 232 

The core capabilities in the form of system qualification, classification, and norm strategies of 

the SCM framework are theoretically demonstrated.  

The SCM is applied on four different cases obtained by two European manufacturers in Austria 

and Hungary.  

The application and results generated by the SCM case studies, and the key-learnings obtained 

indicate that holistic practice-based SMTTs for strategic complexity management, like the 

SCM, can provide meaningful and helpful assistance to decision-makers in the manufacturing 

industry in the process of strategy development when dealing with complex problems in 

industrial system management. 

There are now many open directions for future work:  

Conducting more similar, real-world case study applications and cross-case analysis would be 

helpful to define the practical value of the norm strategies of the SCM more clearly.  

Applying the SCM on real-word CPS and it would be interesting to study current real-world 

complex industrial systems through complexity space modelling in more detail, perhaps even 

in a combined approach.  

Longitudinal case applications of the SCM framework would help in understanding the long-

term value of results. 

Also, it appears necessary to further explore the validity of the hypotheses H1-H13 proposed 

by conducting further research for example through more specified literature review, system 

simulations or dedicated case study research, especially in the area of the notion of complexity 

and the practical applications of complex industrial information systems in the form of CPS. 

In the context of the developed complexity space model, it would be interesting to further 

analyse the behaviour of information growth in current and future industrial systems. It would 

be interesting to study current real-world systems, like cyber-physical systems, through 

complexity space modelling in more detail and explore potential simulation capabilities of the 

model. 

Finally, it appears reasonable to propose further investigations on how the SCM is used by 

managers in practice and how it supports management activities in a company environment. 
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