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Abstract 

We present a technique for the analysis of pattern formation by a 
class of models for the formation of ocular dominance stripes in the stri-
ate cortex of some mammals. The method, which employs the adiabatic 
approximation to derive a set of ordinary differential equations for pat-
terning modes, has been successfully applied to reaction-diffusion models 
for striped patterns [1]. Models of ocular dominance stripes have been 
studied [2,3] by computation, or by linearization of the model equations. 
These techniques do not provide a rationale for the origin of the stripes. 
We show here that stripe formation is a non-linear property of the mod-
els. Our analysis indicates that stripe selection is closely linked to a 
property in the dynamics of the models which arises from a symmetry 
between ipsilateral and contralateral synapses to the visual cortex of a 
given hemisphere. 

Introduction 
Much of biological pattern formation occurs in two-dimensional domains, such 
as single sheets of cells, surfaces of large single cells, or single layers of many 
nuclei within a single cell, such as the widely-studied Drosophila blastoderm. 
In many instances, the patterns formed are in essence a set of parallel stripes. 
For such cases as mammalian coat markings (e.g. zebra), while the general 
nature of the striped pattern may serve a biological purpose, a fair amount 
of variation from individual to individual may be tolerable in both the total 
number of stripes, their precise orientation, and the occurrence of defects such 
as branching. In other cases, such as the onset of insect segmentation, a pattern 
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of a precisely-determined number of stripes, properly oriented and with no 
tendencies to break into spots or to form branches, is essential to development of 
the body plan. Most mutantions which disturb this pattern are lethal at an early 
developmental stage. Our work on striped patterns had insect segmentation as 
its initial motivation. 

The mechanism of stripe formation remains in all cases unknown. The-
oreticians have found reaction-diffusion theory, as initiated by Turing [12], a 
promising possibility. There are, however, some instances in which the mecha-
nism is likely to be quite different, though the morphological phenomenon is the 
same. A well-known example of this kind is the formation of ocular dominance 
stripes. These are spatial patterns of synaptic connections observed in the stri-
ate cortex of some mammals, especially primates. In these highest vertebrates 
(and in contrast to some lower ones) each side of the brain receives roughly 
equal numbers of connections from both eyes. A stripe consists of cortical cells 
(in layer IVc) all of which receive connections from the same eye. The stripes 
bear a strong similarity to zebra stripes. 

Ocular dominance patterns also closely resemble the striped patterns which 
we obtained by computation using a particular class of reaction-diffusion mod-
els [1]. This class has a particular dynamical symmetry. In addition to the 
computations, we showed analytically, using the adiabatic approximation, that 
this particular symmetry should generate stripes. Bere, we apply the same 
technique to the ocular dominance models. 

Ocular Dominance Models 

Two well known models for OD patterns [2,3] take the form ofintegro-differential 
equations. We consider a phenomenological model originally proposed by Swin-
dale [2], based on a mechanism suggested by Bubel and Wiesel [4]. The densities 
of left and right synapses nL(r, t) and nR(r, t), which are functions of a two di-
mensional spatial coordinate r on the cortex and time, develop according to: 

f(nR) j(nR(T' - T")WRR(T") + nL(T' - T")WLR(T"))dT" , 

= f(nL) j (nR(T' - T")WRL(T") + nL(T' - T")wLL(T"))dT" • 

(1) 

(2) 

The integrals sum competitive and cooperative interactions between like and 
opposite terminals over the entire patterned region, weighted by the intracor-
tical interactions w(T") (shown in Figure 1). The function fen) takes into 
account the non-linear effects limiting the growth of the synaptic densities. We 
take a simple logistic form I( n) = n( N - n) where N is the maximum density of 
synapses. Equations (1,2) may be reduced to a single equation for the difference 
left and right densities with the assumption that the total density of synapses 
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N = nL + nR is constant [2]: 

8a at = (a * W + K)(N - a)(N + a) . (3) 

a = nR - nL. W = 1/4(wRR + WLL). K = (N/4) * (WRR - WLL) and * indicates 
convolution. (3) represents a minimal model for OD stripes which has been 
shown by computation to possess the essential patterning capabilities exhibited 
by more complex models [2,3,5). 
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Figure 1 Shows typical weighting functions (kernels) for interactions between 
like synapses (WI = WRR, WLL, solid line) as well as between terminals from 
opposite eyes (wo = WLR, WRL, broken line). Pattern formation in this model 
results from short range activation and long range inhibition of like synapses, 
and vice-versa for the cross interactions (after [2]). For constant total density 
of synapses N = nL + nR, W. = -Wo [2). 

N on-linear Analysis 
We are primarily interested in models with symmetry between left and right 
terminals, i.e. WRR = WLL so J( = O. This implies that equation (3) is 
unchanged under the operation a -+ -a. We analyze the simplest possible 
pattern-forming system having this symmetry: 

ú ú = = a * W - a3 • (4) 

The coefficient of the cubic term can be set to unity without loss of generality 
by changing the dimensions of the ocular dominance a. Other constants may 
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be absorbed into w. (4) has homogeneous steady state solution given by a = 0 
which corresponds to an unpatterned state consisting of an equal mixture of 
left and right terminals. Close to this state the linear part of the equation 
predominates: 

8a 
at = a * w • (5) 

Equation (5) is exactly soluble by Fourier analysis. For the moment, we treat 
a finite domain, but otherwise leave the boundary conditions unspecified. The 
general solution is a superposition of plane waves with amplitudes {tr(t) 

a(r',t) = L{k(t)eik .... , 

k 

{k,1 = {o(k)eW(k)l. 

(6) 

(7) 

W(k) is the Fourier tranform of the kernel w(r) which depends only on the 
magnitude of k, and the {o(k) are to be determined from the initial condition. 

To obtain an approximate solution to the nonlinear equations (4) we con-
tinue to write the solution as a sum of plane waves (6), and derive differential 
equations for the mode amplitudes. Substituting (6) into (4), multiplying 011 

the left by eik .... and integrating over the domain using the orthogonality of 
plane waves: 

1 J i(k-k ') .... dA - 6- ú = A = domain area, A e - k,l;' (8) 

we obtain the mode amplitude equations: 

E {k'{k"{kIllOk,k'+k"+k lll ' 
(9) 

k'k"i'" 

A similar set of equations has been derived for reaction-diffusion models of 
pattern formation [1]. Equation (9) is equivalent to the original form (4), and 
is intractable. It is possible to understand some of the behaviour of model 
(4) by studying it with a special form for w(r) which allows an approximate 
solution of equations (9) by the adiabatic method. Briefly, the conditions for 
the approximation to hold are: 

W(ke) > 
W(k) < 

\W(k)\ > 

o for one value of ke , 

o for k # ke, 

\W(kc)\ . 

(lO) 
(11) 
(12) 

If these conditions are satisfied then the relaxation times of the stable modes 
are much shorter than that for the unstable modes. The stable mode ampli-
tudes then adjust rapidly to the current values of the {k.. In the adiabatic 
approximation [6] all of the stable modes (k # ke ) are then eliminated from the 
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dynamics leaving a set of ODEs for the unstable mode amplitudes, k = kc at 
all possible relative orientations </>: 

ú ? == W(kc){" - 3{"{;{,, - 6 L {",{if,.{"., 0 < </>, </>' < 11", </>' :f </> • (13) 
q, ' 

For details on the derivation of equation (13) from (9) we suggest the reader 
consults [1], where a similar equation was found for a class of reaction-diffusion 
models which make striped patterns (see Figure 2). 

(a) t::O (b) t=3000 

(c) t=5000 (d) t=15000 

Figure 2 Time evolution of the concentration profile for one of the morphogens 
in a reaction-diffusion system with the same dynamical symmetry as equation 
(4)[1,7,8]. Times are iterations of a finite-difference algorithm. The domain is 
square with no-flux boundary conditions to mimic the behaviour observed at 
the boundary of area 17 of the cortex where OD stripes run perpendicular to 
the edge. The similarity of the RD patterns to OD stripes led us to investigate 
the properties of OD models. 
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It may be shown for any number of unstable modes (same ke, variable 
¢) that the only stable solutions of (13) are stripes [1]. We illustrate this for 
the simple case of a square domain where there are only four unstable modes 
corresponding to striped patterns in mutually perpendicular directions. The 
unstable modes have ¢ = 0, 1f' /2, 1f', 31f' /2 and ke = 21f'le, Ie E Z+ This constrains 
ä ú = to integers which cannot be written as the sum of two squares. Then eqns. 
(13) are: 

(14) 

Eqn (18) has fixed points: 

(I) {Mo = t L P I ô ú = = 0 or è ô ú == W/3,{o = 0 , (15) 

(II) ô ú ô ç == è ô ú == W/g . (16) 

The linear stability matrix Aij = U ú á =/8{j is: 

(17) 

evaluated at the fixed points. For solution (II), A has a negative and a positive 
eigenvalue indicating a saddle point. With solution (I) we find two negative 
eigenvalues, so the only stable pattern is a set of stripes, in either direction 
¢ = 0 or 1f' /2. Mode suppression arises as a result of 'competitive'interactions. 

Discussion 

In the macaque monkey, ipsilateral and contralateral afferents to the cortex 
(i.e. connections from right or left eye to the same or the opposite side of the 
brain) are approximately equal in numbers. Also, left and right dominance 
stripes in layer IVc are similar in form and width (Figure 3(a)). The only dif-
ference between left and right dominated bands appears to be their connection 
to different eyes. This symmetry between ipsilateral and contralateral inputs 
is related to the selection of stripes rather than any other spatial pattern. In 
monocular deprivation experiments, this symmetry is disrupted, leading to a 
spotted pattern of ocular dominance in which terminals from the eye receiv-
ing visual information are more numerous than ones from the blindfolded eye. 
Binocular deprivation restores the left/right symmetry and stripes are observed 
when neither eye receives input during development. 

In the cat, there is normally a quantitative asymmetry between the ipsi-
lateral (about 30%) and cOIitralateral (about 70%) inputs to the cortex [9]. A 
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splotchy pattern of ocular dominance is found (Figure 3(b». Binocular de-
privation gives a pattern quite unlike stripes. To examine the effect on oc-
ular dominance patterns of varying degrees of asymmetry we suggest a com-
parative survey of various species of mammals with different ratios of ipsilat-
eral/contralateral afferents. 

(a) (b) 

Figure 3 (a) shows the pattern of ocular dominance in layer lVc of a macaque 
monkey's primary visual cortex. (b) shows the pattern for the visual cortex of 
a cat. (a) was adapted from a digitally scanned image of figure 5 of [10], (b) 
was adapted from figure 7b of [11]. 

Acknowledgements 

We thank Ken Miller, Nick Swindale, Martin Zuckermann, and Thurston Lacalli 
for helpful discussions. Thanks also to Florence Tam for drawing Figure 1, and 
Leah Keshet for useful comments on the manuscript. This work was made 
possible by financial support from NSERC Canada. 

References 

[1] M. J. Lyons and L. G. Harrison, Chemical Physics Letters, (accepted for 
publication) . 

[2] N. V. Swindale, Proc. R. Soc. Lond. B 208 (1980) 243. 



46 

[3] K.D. Miller, J.B. Keller, and Michael P. Stryker, Science 245 (1989) 605. 

[4] D. B. Bubel and T. N. Wiesel, Proc. R. Soc. Lond. B 198 (1977) 1. 

[5] J. R. Thomson, Z. Zhang, Wm. Cowan, M. Grant, J. A. Bertz, and 
M. J. Zuckermann, Physica Scripta, T33 (1990) 102. 

[6] B. Baken, Synergetics, 3rd ed. (Springer-Verlag, Berlin, 1983). 

[7] L. G. Barrison and M. J. Lyons, Proceedings of the Les Bouches Winter 
Workshop, D. Beysens and G. Forgacs, eds. 1991. 

[8] L. G. Barrison and T. C. LacalIi, Proc. R. Soc. Lond. B 202 (1978) 361. 

[9] S. Levay, M. P. Stryker, and C. J. Shatz, J. Compo Neurol. 179 (1978) 
223. 

[10] S. LeVay, T. N. Wiesel, and D. B. Bubel, J. Compo Neurol. 191 (1980) 
1. 

[11] P. A. Anderson, J. Olavarria, and R. C. Van Sluyters, J. Neuroscience 8 
(1988) 2183. 

[12] A. M. Turing, Phil. TrailS. R. Soc. London B 237 (1952) 37. 


