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Abstract

STIT logic is a prominent framework for the analysis of multi-agent choice-making.
In the available deontic extensions of STIT, the principle of Ought-implies-Can (OiC)
fulfills a central role. However, in the philosophical literature a variety of alternative
OiC interpretations have been proposed and discussed. This paper provides a mod-
ular framework for deontic STIT that accounts for a multitude of OiC readings. In
particular, we discuss, compare, and formalize ten such readings. We provide sound
and complete sequent-style calculi for all of the various STIT logics accommodating
these OiC principles. We formally analyze the resulting logics and discuss how the dif-
ferent OiC principles are logically related. In particular, we propose an endorsement
principle describing which OiC readings logically commit one to other OiC readings.

Keywords: Deontic logic, STIT logic, Ought implies can, Labelled sequent calculus

1 Introduction

From its earliest days, the development of deontic logic has been accompa-
nied by the observation that reasoning about duties is essentially connected
to praxeology, that is, the theory of agency (e.g. [13,31,44]). A prominent
modal framework developed for the analysis of multi-agent interaction and
choice-making is the logic of ‘Seeing To It That’ [7] (henceforth, STIT), and
its potential for deontic reasoning was recognized from the outset [6]. Despite
several philosophical investigations of the subject [5,24], concern for its formal
specification lay dormant until the beginning of this century when a thorough
investigation of deontic STIT logic was finally conducted [23,32]. Up to the
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present day, deontic STIT continues to receive considerable attention, being
applied to epistemic [11], temporal [9], and juridical contexts [28].

The traditional deontic STIT setting [23] is rooted in a utilitarian ap-
proach to choice-making, which enforces certain minimal properties on its
agent-dependent obligation operators. In particular, it implies a version of the
eminent Ought-implies-Can principle (henceforth, OiC), a metaethical princi-
ple postulating that ‘what an agent ought to do, the agent can do’. OiC has a
long history within moral philosophy and can be traced back to, for example,
Aristotle [2, VII-3], or the “Roman legal maxim impossibilium nulla obligatio
est” [40]. Still, it is often accredited to the renowned philosopher Immanuel
Kant [25, A548/B576]. Aside from debates on whether OiC should be adopted
at all [19,36], most discussions revolve around which version of the principle
should be endorsed. Notable positions have been taken up by Hintikka [22],
Lemmon [27], Stocker [37], Von Wright [43], and, more recently, Vranas [40].
However, most of these authors advocate readings that are either weaker or
stronger than the minimally implied OiC principle of traditional deontic STIT.
In order to formally investigate these different readings, it is necessary to mod-
ify and fine-tune the traditional framework.

The contributions of this work are as follows: First, we discuss, com-
pare, and formalize ten OiC principles occurring in the philosophical literature
(Sect. 2). To the best of our knowledge, such a taxonomy of principles has not
yet been undertaken (cf. [40] for an extensive bibliography). The intrinsically
agentive setting provided within the STIT paradigm will enable us to conduct
a fine-grained analysis of the various renditions of OiC. Still, the available util-
itarian characterization of deontic STIT makes it cumbersome to accommodate
this multiplicity of principles. For that reason, the present endeavour will take
a more modular approach to STIT, adopting relational semantics [14] through
which the use of utilities may be omitted [9] (Sect. 3).

Second, we provide sound and complete sequent-style calculi for all classes
of deontic STIT logics accommodating the various kinds of formalized OiC prin-
ciples (Sect. 4). In particular, we adopt labelled sequent calculi which explicitly
incorporate useful semantic information into their rules [34,39]. A general ben-
efit of using sequent-style calculi [35], in contrast to axiomatic systems, is that
the former are suitable for applications (e.g. proof-search and counter-model
extraction) [29]. Although this work is not the first to address STIT through
alternative proof-systems [4,29,41], it is the first to address both the traditional
deontic setting [23] and a large class of novel deontic STIT logics.

Last, we will use the resulting deontic STIT calculi to obtain a formal tax-
onomy of the OiC readings discussed. The benefit of employing proof theory
is twofold: First, we classify the ten OiC principles according to the respective
strength of the underlying STIT logics in which they are embedded (Sect. 5).
The calculi can be used to determine which logics subsume each other, giving
rise to what we call an endorsement principle; it demonstrates which endorse-
ment of which OiC readings logically commits one to endorsing other OiC read-
ings (from the vantage of STIT). Second, the calculi can be applied to show
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the mutual independence of certain OiC readings through the construction of
counter-models from failed proof-search. This work will lay the foundations for
an extensive investigation of OiC within the realm of agential choice-making,
and future research directions will be addressed in Sect. 6.

2 A Variety of Ought-implies-Can Principles

The fields of moral philosophy and deontic logic have given rise to a variety
of metaethical principles, such as “no vacuous obligations” [42], “deontic con-
tingency” [3], “deontic consistency” [21], and the principle of “alternate pos-
sibilities” [15]. One of the most prevalent is perhaps the principle of “Ought-
implies-Can”. In fact, we will see that each of the former metaethical canons is
significant relative to different interpretations of OiC. In this section we intro-
duce and discuss ten such interpretations of OiC and indicate their relation to
the aforementioned metaethical principles. Many philosophers have addressed
OiC, and while earlier thinkers (e.g. Aristotle and Kant) only discussed it im-
plicitly, it was made an explicit subject of investigation in the past century.
We will focus solely on frequently recurring readings from authors that are—in
our opinion—central to the debate. Despite the apparent relationships between
some of the considered OiC readings, a precise taxonomy of their logical in-
terdependencies can only be achieved through a formal investigation of their
corresponding logics. We will provide such a taxonomy in Sect. 5.

One of the allures of OiC is that it releases agents from alleged duties which
are impossible, strenuous, or over-demanding [16,30]. Namely, in its basic
formulation—‘what an agent ought to do, the agent can do’—the principle
ensures that an agent can only be normatively bound by what it can do, i.e.,
‘what the agent can’t do, the agent is not obliged to do’. Most disagreement
concerning OiC can be understood in terms of the degree to which an agent
must be burdened or relieved. In essence, such discussions revolve around the
appropriate interpretation of the terms ‘ought’, ‘implies’, and predominantly,
‘can’. In what follows, we take ‘ought’ to represent agent-dependent obligations
and take ‘implies’ to stand for logical entailment (for a discussion see [1,40]).
With respect to the term ‘can’, we roughly identify four readings: (i) possibility,
(ii) ability, (iii) violability, and (iv) control. These four concepts give rise to
eight OiC principles. We close the section with a discussion of two additional
OiC principles which adopt a normative reading of the term ‘can’.

Throughout our discussion we introduce logical formalizations of the pro-
posed OiC readings that will be made formally precise in subsequent sections.
Therefore, it will be useful at this stage to introduce some notation employed
in our formal language: we let φ stand for an arbitrary STIT formula. The con-
nectives ¬,∧, and → are respectively interpreted as ‘not’, ‘and’, and ‘implies’.
Let [i] be the basic STIT operator such that, in the spirit of [7], we interpret
[i]φ both as ‘agent i sees to it that φ’ and ‘agent i has a choice to ensure φ’.
We use the operator 2 to refer to what is ‘settled true’, such that 2φ can be
read as ‘currently, φ is settled true’. The main use of 2 is to discern between
those state-of-affairs that can become true—i.e. actual—through an agent’s
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choice and those state-of-affairs that are true—i.e. actual—independent of the
agent’s choice. For this reason we will also interchangeably employ the term
‘actual’ in referring to 2 (for an extensive discussion see [7]). We take 2 to
be the dual of 2, denoting that some state of affairs is actualizable, i.e., can
become actual. Last, we read ⊗i as ‘it ought to be the case for agent i that’. 2

1. Ought implies Logical Possibility : ⊗iφ→ ¬⊗i¬φ (OiLP). What is obliga-
tory for an agent, should be consistent from an ideal point of view.

The first principle, which is one of the weakest interpretations of OiC, requires
the content of an agent’s obligations to be non-contradictory. Within the philo-
sophical literature this interpretation has been referred to as “ought implies
logical possibility” [40] and the principle has been generally equated with the
metaethical principle of “deontic consistency” (e.g. [17,27]). 3 As a minimal
constraint on deontic reasoning, the principle is a cornerstone of (standard)
Deontic Logic [3,21,42], though it has been repudiated by some [27].

2. Ought implies Actually Possible: ⊗iφ → 2φ (OiAP). What is obligatory
for an agent, should be actualizable.

The above principle is slightly stronger than the previous one: it rules out those
conceptual consistencies that might not be realizable at the current moment. 4

That is, the principle requires that norm systems can only demand what can
presently become actual. For example, ‘although it is logically possible to open
the window, it is currently not actualizable, since I am tied to the chair’.

However, both OiLP and OiAP are arguably too weak, and do not involve
the concerned agent whilst interpreting ‘can’. For instance, although ‘a moon
eclipse’ is both logically and actually possible, it should not be considered as
something an agent ought to bring about. For this reason, most renditions of
OiC involve the agent explicitly:

3. Ought implies Ability : ⊗iφ → 2[i]φ (OiA). What is obligatory for an
agent, the agent must have the ability to see to, i.e. the choice to realize.

The above reading enforces an explicitly agentive precondition on obligations:
it requires ability as the agent’s capacity to guarantee the realization of that
which is prescribed. 5 The concept of ability has many formulations (cf.
[11,12,18,43]); for example, it may denote general ability, present ability, poten-
tial ability, learnability, know-how and even technical skill (also, see [30,37,40]

2 We stress that OiC is essentially agentive, but not necessarily referring to choice in particu-
lar. For this reason, we distinguish ‘it ought to be the case for agent i that’ from the stronger
‘agent i ought to see to it that’. The latter reading corresponds to the notion of ‘dominance
ought ’ advocated by Horty [23]. Initially, the distinction will be observed for OiC. In Sect. 5
we show how the logics can be expanded to obtain the stronger reading proposed in [23].
3 In [45], Von Wright baptizes OiLP ‘Bentham’s Law’ and points out that the canon was
already adopted by Mally in what is known as the first attempt to construct a deontic logic.
4 In [21], OiC is named ‘Kant’s law’ and OiLP and OiAP are classified as weak versions of
the law. However, it is open to debate which reading of OiC Kant would admit (e.g. [26,38]).
5 Similarly, Von Wright distinguishes between human and physical possibility (cf. OiA and
OiAP, resp.), both implying logical possibility (cf. OiLP) as a necessary condition [44, p.50].
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on the corresponding notion of ‘inability’). In what follows, we take ‘ability’ to
mean a moment-dependent possibility for an agent to guarantee that which is
commanded through an available choice.

Observe that OiA is the principle implied by the traditional, utilitarian
based deontic STIT logic [23,32]. However, this OiC reading does not com-
pletely capture the notion of ‘ability’ as generally encountered in the philo-
sophical literature. That is, OiA merely requires that what is prescribed for
the agent can be guaranteed through one of the agent’s choices, but does not
exclude what is called vacuously satisfied obligations. Agents could still have
obligations (and corresponding ‘abilities’) to bring about inevitable states-of-
affairs, such as the obligation to realize a tautology (cf. [9]). Philosophical
notions of ability regularly ban such consequences by strengthening the con-
cept of ability with either (i) the possibility that the obligation may be violated,
(ii) the agent’s ability to violate what is demanded (i.e. an agent may refrain
from fulfilling a duty), (iii) the right opportunity for the agent to exercise its
ability, or (iv) the agent’s control over the situation (i.e. the agent’s power
to decide over the fate of what is prescribed). All of the above conceptions of
agency are deliberative in nature, that is, they range over state-of-affairs which
are capable of being otherwise [24]. Each notion will be addressed in turn.

4. Ought implies Violability : ⊗iφ→ 2¬φ (OiV). An agent’s obligation must
be violable, that is, the opposite of what is prescribed must be possible.

The above principle corresponds to the metaethical principle of “no vacuous
obligations”, which ensures that neither tautologies are obligatory nor contra-
dictions are prohibited [3,21,43]. However, in OiV a violation might still arise
through causes external to the agent concerned; e.g. ‘the prescribed opening
of a window, might be closed through a strong gust of wind’. 6 The following
principle strengthens this notion by making violability an agentive matter:

5. Ought implies Refrainability : ⊗iφ → 2[i]¬[i]φ (OiR). An agent’s obliga-
tion must be deliberately violable by the agent, that is, the agent must be
able to refrain from satisfying its obligation.

In the jargon of STIT, we say that refraining from fulfilling one’s duty requires
“an embedding of a non-acting within an acting” [7, Ch.2]. That is, it requires
the possibility to see to it that one does not see to it that. However, the two
violation principles above are insubstantial when that which is obliged is not
possible in the first place. 7 For instance, it is not difficult for an agent to violate
an obligation to ‘create a moon eclipse’ (it could not be done otherwise). 8 To
avoid such cases, we often find that the ideas from 1−5 are combined:

6 Already in [42] Von Wright posed the ‘no vacuous obligations’ principle as a central prin-
ciple of deontic logic. There, he referred to it as “the principle of contingency”, however,
contingency requires that an obligation is not only violable, but also satisfiable (cf. OiO).
7 We conjecture that this is why Vranas states that OiR is strictly not an OiC principle [40].
8 Observe that violability relates strongly to the metaethical principle of “alternate possibil-
ity”, stating that an agent is morally culpable if it could have done otherwise (e.g. [15,47]).
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6. Ought implies Opportunity (OiO): ⊗iφ→ ( 2φ∧ 2¬φ). What is obligatory
for an agent, must be a contingent state-of-affairs.

The above uses the terms ‘opportunity’ and ‘contingency’ intentionally in an
interchangeable manner. Like previous terms, these terms know a variety of
readings in the literature (cf. [15,16,40,42]). Nevertheless, what these readings
share in relation to OiC is that they refer to the propriety of the circumstances
in which the agent is required to fulfill its duty. Minimally, opportunity and
contingency both require that a state-of-affairs within the scope of an active
norm must be presently manipulable; i.e. the state-of-affairs can still become
true or false. 9 This interpretation of OiO is related to what Von Wright has
in mind when he talks about the opportunity to interfere with the course of
nature [43], and to Anderson and Moore’s claim that sanctions (i.e. violations)
must be both provokable and avoidable, viz. contingent [3].

Taking the above a step further, agency can be more precisely described as
the agent’s ability together with the right opportunity. Following Vranas [40],
the latter component specifies “the situation hosting the event in which the
agent has to exercise her ability”. The following principle merges these ideas:

7. Ought implies Ability and Opportunity : ⊗iφ → ( 2[i]φ ∧ 2φ ∧ 2¬φ)
(OiA + O). What is obligatory for an agent, must be a contingent state-
of-affairs whose truth the agent has the ability to secure. 10

The above is the first completely agentive OiC principle, making that which is
obligatory fall, in all its facets, within the reach of the agent. Such a reading of
OiC can be said to be truly deliberative and both Vranas [40] and Von Wright
[43] appear to endorse a principle similar to OiA+O. However, there is an
even stronger reading which restricts norms to those state-of-affairs within the
agent’s complete control :

8. Ought implies Control : ⊗iφ→ ( 2[i]φ ∧ 2[i]¬φ) (OiCtrl). What is obliga-
tory for an agent, the agent must have the ability to see to and the agent
must have the ability to see to it that the obligation is violated.

This reading, arguably advocated by Stocker [37], requires that an agent can
act freely : “it has often been maintained that we act freely in doing or not
doing an act only if we both can do it and are able not to do it” [37]. 11 This
last, perhaps too strong, instance of OiC implies that an agent is only subject
to norms whose subject matter is within the power of the agent.

In all its readings, OiC has still been regarded as too strong. For example,

9 A more fine-grained distinction can be made: in temporal settings a state-of-affairs can be
occasionally true and false (i.e. contingent), despite the fact that at the present moment it is
settled true and thus beyond the scope of the agent’s influence (i.e. there is no opportunity).
In the current atemporal STIT setting, this will not be explored.
10 In basic atemporal STIT the occurrence of 2φ in the consequent of OiA+O can be omitted
since it is strictly implied by 2[i]φ; that is, if φ can be the result of an agent’s choice, then
by definition it can be actualized. For the sake of completion we leave 2φ present in OiA+O.
11 In the above quote, ‘able not to do [φ]’ can also be interpreted as 2[i]¬[i]¬φ, instead of

2[i]¬φ. The resulting principle would then equate with the weaker OiA+O in basic STIT.
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Label Ought implies... Formalized References

OiLP Logical Possibility ⊗iφ→ ¬⊗i¬φ [3], [17], [42], [45]
OiAP Actually Possible ⊗iφ→ 2φ [17], [23, Ch.3]
OiA Ability ⊗iφ→ 2[i]φ [23, Ch.4], [43, Ch.7]
OiV Violability ⊗iφ→ 2¬φ [3], [16], [18], [43, Ch.8]
OiR Refrainability ⊗iφ→ 2[i]¬[i]φ [18]
OiO Opportunity ⊗iφ→ ( 2φ ∧ 2¬φ) [3], [15], [16], [42], [44]
OiA+O Ability and Opp. ⊗iφ→ ( 2[i]φ ∧ 2φ ∧ 2¬φ) [1], [26], [40], [43]
OiCtrl Control ⊗iφ→ ( 2[i]φ ∧ 2[i]¬φ) [16], [37], [30]
OiNC Normatively Can ⊗iφ→ ⊗i 2φ [1], [22]
OiNA Normatively Able ⊗iφ→ ⊗i 2[i]φ [1], [22]

Fig. 1. List of the ten OiC principles together with their treatment in the literature.

Lemmon challenged the legitimacy of OiLP in light of the existence of moral
dilemmas [27]. Other philosophers, like Hintikka [22], adopted more modest
standpoints toward OiC, suggesting weaker, normative versions of the princi-
ple. In light of the latter, it has been argued that OiC is dispositional, merely
capturing a normative attitude towards OiC [1]. Two approaches present them-
selves: (i) ‘it ought to be the case that what morality prescribes is possible’ or
(ii) ‘it ought to be possible for an agent to fulfill its obligations’. 12 The for-
mer does not correspond to an OiC principle, but only expresses that OiC
should hold as a metaethical principle (we return to this in Sect. 5). The latter
approach does provide OiC principles—we consider two possible readings:

9. Ought implies Normatively Can: ⊗iφ→ ⊗i 2φ (OiNC). What is obligatory
for an agent, ought to be actually possible (for the agent).

10. Ought implies Normatively Able: ⊗iφ→ ⊗i 2[i]φ (OiNA). What is obliga-
tory for an agent, ought to be actualizable through the agent’s behaviour.

Hence, both OiNC and OiNA require that, ‘if φ ought to be the case for agent
i, it ought to be the case for agent i that φ is actually possible (as a result
of the agent’s choice-making)’. In Fig. 1, the ten principles are collected and
associated with references to the various authors that treat such principles.

It is not our aim to decide which OiC principle should be adopted, as good
cases have been made for each. Instead, our present aim is as follows: first, we
appropriate the framework of STIT such that all ten principles can be explicitly
formulated (Sect. 4). Second, we use the resulting logics to formally determine
the logical relations between the ten principles (Sect. 5). The final result will
be a logical hierarchy of OiC principles, identifying which principles subsume
others and which are mutually independent within the setting of STIT.

3 Deontic STIT Logic for Ought-implies-Can

In this section, we will introduce a general deontic STIT language and semantics
whose modularity enables us to define a collection of deontic STIT logics that

12Hintikka advocates the first possibility; i.e. “O(Oφ→ 2φ)” [22]. However, one could argue
that the first occurrence of O is actually agent-independent, and the latter agent-dependent.
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will accommodate the variety of OiC principles discussed previously. It will
suffice to consider a multi-agent modal language containing the basic STIT
operator (i.e. the Chellas STIT) and the ‘settled true’ operator, extended with
agent-dependent deontic operators.

Definition 3.1 (The Language Ln) Let Ag = {1, 2, ..., n} be a finite set of
agent labels and let Atm = {p1, p2, p3...} be a denumerable set of propositional
atoms. The language Ln is defined via the following BNF grammar:

φ ::= p | ¬p | φ ∨ φ | φ ∧ φ | 2φ | 2φ | [i]φ | 〈i〉φ | ⊗i φ | 	i φ

where i ∈ Ag and p ∈ Atm.

We note that the formulae of Ln are defined in negation normal form. In
line with [8,29], we opt for this notation because it will substantially enhance
the readability of the technical part of this paper. Namely, negation normal
form will reduce the number of logical rules needed in our sequent-style calculi
(see Sect. 4), and will simplify the structure of sequents used in derivations
(see Sect. 5). Briefly, the negation of a formula φ ∈ Ln, denoted by ¬φ, can
be obtained by replacing each positive propositional atom p with its negation
¬p (and vice versa), each ∧ with ∨ (and vice versa), and each modal operator
with its corresponding dual (and vice versa).

The logical connectives ∨ and ∧ stand for ‘or’ and ‘and’, respectively. Other
connectives and abbreviations are defined accordingly: φ→ ψ iff ¬φ ∨ ψ, φ ≡
ψ iff (φ→ ψ) ∧ (ψ → φ), > iff p ∨ ¬p, and ⊥ iff p ∧ ¬p. The modal operators
2, [i], and ⊗i express, respectively, ‘currently, it is settled true that’, ‘agent i
sees to it that’, and ‘it ought to be the case for agent i that’. We take 2, 〈i〉,
and 	i as their respective duals. Last, we interpret 	i as ‘it is not obligatory
for agent i that not’ (a similar interpretation is applied to 2 and 〈i〉). (NB.
negation normal form requires us to take diamond-modalities as primitive.) 13

3.1 Minimal Deontic STIT Frames

Since we are dealing with an atemporal STIT language, we can forgo the tra-
ditional semantics of branching time frames with agential choice functions [7].
Instead, we adopt a more modular approach using relational semantics [14]. As
shown in [20], it suffices to semantically characterize basic STIT using frames
that only model moments partitioned into equivalence classes, with the latter
representing the choices available to the agents at the respective moment. As
our starting point, we propose the following minimal deontic STIT models:

Definition 3.2 (Frames and Models for DSn) A DSn-frame is defined to
be a tuple F = 〈W,R2, {R[i] | i ∈ Ag}, {R⊗i | i ∈ Ag}〉 with n = |Ag|. Let
Rα ⊆W ×W and Rα(w) := {v ∈W | (w, v) ∈ Rα} for α ∈ {2} ∪ {[i],⊗i | i ∈
Ag}. Let W be a non-empty set of worlds w, v, u... where:

13 In line with [32], we take the concatenation ⊗i[i] to stand for ‘agent i ought to see to
it that’, thus expressing the stronger agentive reading of obligation defended by [23] (also,
see footnote 2). However, whether ⊗i[i] will capture the intended logical behaviour of this
reading will depend on the adopted class of STIT-frames. We will discuss this in Sect. 5.
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C1 R2 is an equivalence relation.

C2 For all i ∈ Ag, R[i] ⊆ R2 is an equivalence relation.

C3 For all w ∈W and all u1, ..., un ∈ R2(w),
⋂
i∈Ag R[i](ui) 6= ∅.

D1 For all w, v, u ∈W , if R2wv and R⊗i
wu, then R⊗i

vu.

A DSn-model is a tupleM = (F, V ) where F is a DSn-frame and V is a valuation
function mapping propositional atoms to subsets of W , i.e. V : Atm 7→ P(W ).

In Def. 3.2, property C1 stipulates that DSn-frames are partitioned into
R2-equivalence classes, which we will refer to as moments. Intuitively, a mo-
ment is a collection of worlds that can become actual. For every agent in
the language, C2 partitions moments into equivalence classes, representing the
agent’s choices at such moments. The elements of a choice represent those
worlds that can become actual through exercising that choice. C3 captures
the pivotal STIT principle called ‘independence of agents’, ensuring that all
agents can jointly perform their available choices; i.e. simultaneous choices
are consistent (cf. [7]). D1 enforces that ideal worlds do not vary from differ-
ent perspectives within a single moment; i.e. an ideal world is ideal from the
perspective of the entire moment. In addition, D1 states that obligations are
moment-dependent; i.e. obligations might vary from moment to moment. We
emphasize that the class of DSn-frames does not require that worlds ideal at
a certain moment lie within that very moment. Hence, what is ideal might
not be realizable by any of the agents’ (combined) choices, and so, might be
beyond the grasp of agency. 14

Definition 3.3 (Semantics for Ln) Let M be a DSn-model and let w ∈ W
of M . The satisfaction of a formula φ ∈ Ln in M at w is defined accordingly:

1. w 
 p iff w ∈ V (p)

2. w 
 ¬p iff w 6∈ V (p)

3. w 
 φ ∧ ψ iff w 
 φ and w 
 ψ

4. w 
 φ ∨ ψ iff w 
 φ or w 
 ψ

5. w 
 2φ iff ∀u ∈ R2(w), u 
 φ

6. w 
 3φ iff ∃u ∈ R2(w), u 
 φ

7. w 
 [i]φ iff ∀u ∈ R[i](w), u 
 φ

8. w 
 〈i〉φ iff ∃u ∈ R[i](w), u 
 φ

9. w 
 ⊗iφ iff ∀u ∈ R⊗i
(w), u 
 φ

10. w 
 	iφ iff ∃u ∈ R⊗i(w), u 
 φ

Global truth, validity, and semantic entailment are defined as usual (see [10]).
We define the logic DSn as the set of Ln formulae valid on all DSn-frames.

3.2 Expanded Deontic STIT Frames

In order to obtain an assortment of deontic STIT characterizations accommo-
dating the different OiC principles, we proceed in two ways: first, we define
more fine-grained deontic STIT operators capturing deliberative aspects of obli-
gation, and second, we introduce a class of frame properties that change the
behaviour of the ⊗i operator when imposed on DSn-frames.

14Traditional deontic STIT confines ideal worlds to moments since it restricts the evaluation
of utilities to moments [23]. Consequently, (⊗iφ→ 	iφ) ≡ (⊗iφ→ 2φ) is valid for the tradi-
tional approach, and thus, logical and actual possibility coincide. Our alternative semantics
enables us to differentiate between OiLP, OiAP and a variety of other OiC principles.
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Observe that in basic STIT the choice-operator [i] is a normal modal opera-
tor, which implies that [i]> is one of its validities. In contrast, the more refined
deliberative STIT operator—i.e. [i]dφ iff [i]φ ∧ 2¬φ—is non-normal and, for
this reason, has been taken as defined [24] (with the exception of [46]). (NB.
For deliberative STIT, choices thus range over contingent state of affairs.) For
the same reason that ⊗i> is a validity of basic DSn, we will similarly introduce
two defined modalities for deliberative obligations. Namely, we take

⊗di φ iff ⊗i φ ∧ 2¬φ

to define a weak deliberative obligation, expressing that an agent’s obligations
can be violated (cf. [32,9]). Furthermore, we introduce

⊗ciφ iff ⊗i φ ∧ 2[i]¬φ

as defining a strong deliberative obligation, asserting that the obligation is
violable through the agent’s behaviour. These operators will be necessary to
formally capture the deliberative versions of OiC in the present STIT setting.

Additionally, we provide four properties that may be imposed on DSn-
frames to change the logical behaviour of the ⊗i operator:

D2 For all w ∈W there exists v ∈W s.t. R⊗iwv.

D3 For all w, v ∈W , if R⊗iwv then R2wv.

D4 For all w, v, u ∈W , if R⊗i
wv and R[i]vu, then R⊗i

wu.

D5 For all w ∈W , there exists a v ∈W , such that R⊗i
wv and

for all u ∈W , if R[i]vu, then R⊗i
wu.

Property D2 requires that obligations are consistent; i.e. at every moment
and for every agent, there exists an ideal situation for which the agent should
strive (cf. seriality in Standard Deontic Logic [21]). D3 enforces that ideal
worlds are confined to moments (implying that every ideal world is realizable
at its corresponding moment; cf. footnote 14). Subsequently, D4 expresses
that agent-dependent obligations are about choices, thus enforcing that every
ideal world coincides with an ideal choice (cf. footnote 13): i.e. when ‘it ought
to be the case for agent i that’ then ‘agent i ought to see to it that’ (the other
direction follows from C2 Def. 3.2). Lastly, D5 states that for every agent
i there always exists at least one ideal choice (depending on whether D3 is
adopted, this ideal choice will be guaranteed accessible by an agent or not). It
must be noted that, as shown in [9], all four properties hold for the traditional
approach to deontic STIT [32]. We return to this in Sect. 5.

We define the entire class of STIT logics considered in this paper as follows:

Definition 3.4 (The logics DSnX) Let D = {D2, D3, D4, D5}, n = |Ag|
and X ⊆ D. A DSnX-frame is a tuple F = 〈W,R2, {R[i] | i ∈ Ag}, {R⊗i

| i ∈
Ag}〉 such that F satisfies all properties of a DSn-frame (Def. 3.2) expanded
with the frame properties X. A DSnX-model is a tuple (F, V ) where F is a
DSnX-frame and V is a valuation function as in Def. 3.2. We define the logic
DSnX to be the set of formulae from Ln valid on all DSnX-frames.
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In the following section we provide sound and complete sequent-style calculi
for all logics DSnX obtainable through Def. 3.4. Together with the defined
deliberative obligation modalities ⊗di and ⊗ci , the resulting class of calculi will
suffice to capture all the deontic STIT logics accommodating the different OiC
principles of Sect. 2. This will be demonstrated in Sect. 5.

4 Deontic STIT Calculi for Ought-implies-Can

This section comprises the technical part of the paper: we introduce sound
and complete sequent-style calculi G3DSnX for the multi-agent logics DSnX
defined in Def. 3.4. In what follows, we build on a simplified version of the
refined labelled calculi for basic STIT proposed in [29]. In the present work,
we modify this framework to include the deontic setting. Due to space con-
straints, we refer to [29] for an extensive discussion on refined labelled calculi.
For an introduction to sequent-style calculi in general see [35], and for labelled
calculi in particular, see [34,39]. Labelled calculi offer a procedural, compu-
tational approach to making explicit semantic arguments. This approach not
only allows for a precise understanding of the logical relationships between the
different OiC readings and corresponding logics, but can additionally be har-
nessed to construct counter-models confirming the independence of certain OiC
principles. We will demonstrate this in Sect. 5.

Definition 4.1 Let Lab := {x, y, z, ...} be a denumerable set of labels. The
language of our calculi consists of sequents Λ, which are syntactic objects of
the form R ` Γ. R and Γ are defined via the following BNF grammars:

R ::= ε | R2xy | R[i]xy | R⊗i
xy | R,R Γ ::= ε | x : φ | Γ,Γ

with i ∈ Ag, φ ∈ Ln, and x, y ∈ Lab.

We refer to R as the antecedent of Λ and to Γ as the consequent of Λ. We
use R, R′, . . . to denote strings generated by the top left grammar and refer to
formulae (e.g. R[i]xy and R⊗ixy) occurring in such strings as relational atoms.
We use Γ, Γ′, . . . to denote strings generated by the top right grammar and
refer to formulae (e.g. x : φ) occurring in such strings as labelled formulae. We
take the comma operator to commute and associate in R and Γ (i.e. R and Γ
are multisets) and read its presence in R and Γ, respectively, as a conjunction
and a disjunction (cf. Def. 4.5). We let ε represent the empty string. 15 Last,
we use Lab(R ` Γ) to represent the set of labels contained in R ` Γ.

The calculus G3DSn for the minimal deontic STIT logic DSn (with n ∈ N)
is shown in Fig. 2. Intuitively, G3DSn can be seen as a transformation of the
semantic clauses of Def. 3.3 and DSn-frame properties of Def. 3.2 into inference
rules. For example, the (id) rule encodes the fact that either a propositional
atom p holds at a world in a DSn-model, or it does not (recall that a comma

15The empty string ε serves as an identity element for comma (e.g. R2xy, ε ` x : p, ε, y : q
identifies with R2xy ` x : p, y : q). If ε is the entire antecedent or consequent, it is left empty
by convention (e.g. ε ` Γ identifies with ` Γ). In what follows, it suffices to leave ε implicit.
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(id)
R ` x : p, x : ¬p,Γ

R ` x : φ,w : ψ,Γ
(∨)

R ` x : φ ∨ ψ,Γ
R ` x : φ,Γ R ` x : ψ,Γ

(∧)
R ` x : φ ∧ ψ,Γ

R, R[1]x1y, ..., R[n]xny ` Γ
(IOA)†2R ` Γ

R, R2xy ` y : φ,Γ
(2)†1R ` x : 2φ,Γ

R ` x : 3φ, y : φ,Γ
(3)†3R ` x : 3φ,Γ

R, R[i]xy ` y : φ,Γ
([i])†1R ` x : [i]φ,Γ

R ` x : 〈i〉φ, y : φ,Γ
(〈i〉)†4R ` x : 〈i〉φ,Γ

R, R⊗ixy ` y : φ,Γ
(⊗i)

†1
R ` x : ⊗iφ,Γ

R, R⊗ixy ` x : 	iφ, y : φ,Γ
(	i)R, R⊗ixy ` x : 	iφ,Γ

R, R⊗ixz,R⊗iyz ` Γ
(D1i)

†3
R, R⊗ixz ` Γ

Fig. 2. The calculi G3DSn (with n = |Ag|). †1 on (2), ([i]), and (⊗i) indicates that y
is an eigenvariable, i.e. y does not occur in the rule’s conclusion. †2 on (IOA) states
that y is an eigenvariable and for all i ∈ {1, . . . , n}, xi ∼R3 xi+1 (see Def. 4.3). †3
on (3) and (D1i) and †4 on (〈i〉) state, respectively, that x ∼R3 y and x ∼Ri y (see
Def. 4.3 and Def. 4.2). We have ([i]), (〈i〉), (⊗i), (	i), and (D1i) rules for each i ∈ Ag.

in the consequent reads disjunctively). The rules (IOA) and (D1i) encode, re-
spectively, condition C3 (i.e. independence of agents) and condition D1 of
Def. 3.2. A particular feature of refinement, is that we can incorporate the
semantic behaviour of modalities into their corresponding rules. For instance,
the side condition †4 of the (〈i〉) rule integrates the fact that 〈i〉 is semanti-
cally characterized as an equivalence relation. These side conditions—including
those for the rules (3), (〈i〉) and (D1i)—rely on the notion of a 3- and 〈i〉-path.

Definition 4.2 (〈i〉-path) Let x ∼i y ∈ {R[i]xy,R[i]yx} and Λ = R ` Γ.
An 〈i〉-path of relational atoms from a label x to y occurs in Λ (written as
x ∼Ri y) iff x = y, x ∼i y, or there exist labels zj (j ∈ {1, . . . , k}) such that
x ∼i z1, . . . , zk ∼i y occurs in R.

Definition 4.3 ( 2-path) Let x ∼
2
y ∈ {R2xy,R2yx} ∪ {R[i]xy,R[i]yx | i ∈

Ag}, and Λ = R ` Γ. An 2-path of relational atoms from a label x to y
occurs in Λ (written as x ∼R

2
y) iff x = y, x ∼

2
y, or there exist labels zj

(j ∈ {1, . . . , k}) such that x ∼
2
z1, . . . , zk ∼ 2

y occurs in R.

The definition of an 〈i〉- and 2-path captures a notion of reachability that
simulates the fact that R[i] and R2 are equivalence relations. Moreover, 2-
paths also incorporate the fact that choices are subsumed under moments
(cf. C2 of Def. 3.2). Observe that the 2-path condition on (IOA) indicates
that ‘independence of agents’ can only be applied to choices that occur at the
same moment. One of the advantages of using such paths as side conditions is
that it allows us to reduce the number of rules in our calculi [29].

Fig. 3 contains four additional structural rules with which the base calculi
G3DSn can be extended. As their names suggest, these rules simulate their
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R, R⊗i
xy ` Γ

(D2i)
†1

R ` Γ

R, R⊗i
xy,R2xy ` Γ

(D3i)R, R⊗i
xy ` Γ

R, R⊗ixy,R⊗ixz ` Γ
(D4i)

†2
R, R⊗i

xy ` Γ

R′, R⊗i
xz ` Γ′

(D52i )
†2

R′ ` Γ′

...
R, R⊗i

xy ` Γ
(D51i )

†1
R ` Γ

Fig. 3. The Deontic Structural Rules. Condition †1 on (D2i) and (D51i ) states that y
is a eigenvariable. Condition †2 on (D4i) and (D52i ) indicates that y ∼Ri z (Def. 4.2).
Last, we let (D5i)

‡ be 〈(D51i ), (D52i )〉 with ‡ the global restriction (mentioned below),
and have (D2i), (D3i), (D4i), (D5i) rules for each i ∈ Ag.

respective frame properties (cf. Def. 3.4). In doing so, we obtain calculi for
the logics DSnX. As an example, the logic DSn{D2,D4} corresponds to the
calculus G3DSn{(D2i), (D4i) | i ∈ Ag} (henceforth, we write G3DSn{D2i,D3i}).
Definition 4.4 (The calculi G3DSnX) Let DSnX be a logic from Def. 3.4.
Let n = |Ag| ∈ N and X ⊆ {D2,D3,D4,D5}. We define G3DSnX to consist of
G3DSn extended with (DKi), if DK ∈ X (with K ∈ {2, 3, 4, 5}) for all i ∈ Ag.

We point out that the first order condition D5 (Def. 3.2) is a generalized
geometric axiom. In [34], it was shown that properties of this form require
system of rules in their corresponding calculi. We adopt this approach in our
calculi as well and use (D5i) to denote the system of rules 〈(D51i ), (D5

2
i )〉 (see

Fig. 3). The global restriction ‡ imposed on applying (D5i) is that, although we
may use (D51i ) wherever, if we use (D52i ) we must also use (D51i ) further down
in the derivation. In Sect. 5, Ex. 5.1 demonstrates an application of (D5i).

To confirm soundness and completeness for our calculi—thus demonstrating
an equivalence between the semantics (DSnX) and proof-theory (G3DSnX) of
our logics—we need to provide a semantic interpretations of sequents:

Definition 4.5 (Sequent Semantics) Let M be a DSnX-model with domain
W and I an interpretation function mapping labels to worlds; i.e. I: Lab 7→W .
A sequent Λ = R ` Γ is satisfied in M with I (written, M, I |= Λ) iff for all
relational atoms Rαxy ∈ R (where α ∈ {2} ∪ {[i],⊗i | i ∈ Ag}), if RαI(x)I(y)
holds in M , then there exists a z : φ ∈ Γ such that M, I(z) 
 φ. Λ is valid
relative to DSnX iff it is satisfiable in any DSnX-model M with any I.

Theorem 4.6 (Soundness and Completeness of G3DSnX) A sequent Λ
is derivable in G3DSnX iff it is valid relative to DSnX.

Proof. Follows from Thm. A.1 and A.3. See the Appendix A for details. 2

5 A formal analysis of Deontic STIT and OiC

In this section, we put our G3DSnX calculi to work. First, we make use of our
calculi to organize our logics in terms of their strength—observing which are
equivalent, distinct, or subsumed by another. Second, we discuss the logical
(in)dependencies between our various OiC principles by confirming the minimal
logic in which each principle is validated.



14 The Varieties of Ought-implies-Can and Deontic STIT Logic

5.1 A Taxonomy of Deontic STIT Logics

In Fig. 4, a lattice is provided ordering the sixteen deontic STIT calculi of
Def. 4.4 on the basis of their respective strength (reflexive and transitive edges
are left implicit). We consider a calculus G3DSnX stronger than another calcu-
lus G3DSnY whenever the former generates at least the same set of theorems
as the latter. Consequently, the lattice simultaneously orders the deontic STIT
logics of Def. 3.4, generated by these calculi, on the basis of their expressivity.
In Fig. 4, the calculi are ordered bottom-up: G3DSn is the weakest system, gen-
erating the smallest logic subsumed by all others, whereas G3DSn{D2i,D3i,D4i}
is the strongest calculus with its logic subsuming all others. Notice that the
latter calculus generates the traditional deontic STIT logic of [23,32]. To de-
termine the existence of a directed edge from one calculus G3DSnX to another
G3DSnY in the lattice, we need to show that every derivation in the former can
be transformed into a derivation in the latter. As an example of this procedure,
we consider the edge from G3DSn{D3i,D5i} to G3DSn{D2i,D3i,D4i}.

Example 5.1 To transform a G3DSn{D3i,D5i}-derivation into a derivation of
G3DSn{D2i,D3i,D4i}, it suffices to show that each instance of (D51i ) and (D52i )
can be replaced, respectively, by instances of (D2i) and (D4i). For example:

R2xy,R⊗ixy,R[i]yz,R⊗ixz ` z : ¬φ, ..., z : φ
(	i)

R2xy,R⊗i
xy,R[i]yz,R⊗i

xz ` x : 	i¬φ, ..., z : φ
(D52i )R2xy,R⊗i

xy,R[i]yz ` x : 	i¬φ, ..., z : φ
([i])

R2xy,R⊗i
xy ` x : 	i¬φ, ..., y : [i]φ

(3)
R2xy,R⊗i

xy ` x : 	i¬φ, x : 2[i]φ
(D3i) ;

R⊗i
xy ` x : 	i¬φ, x : 2[i]φ

(D51i )` x : 	i¬φ, x : 2[i]φ
(∨)

` x : 	i¬φ ∨ 2[i]φ
. . . . . . . . . . . . . . . . . . . . . . =
` x : ⊗iφ→ 2[i]φ

R2xy,R⊗ixy,R[i]yz,R⊗ixz ` z : ¬φ, ..., z : φ
(	i)

R2xy,R⊗i
xy,R[i]yz,R⊗i

xz ` x : 	i¬φ, ..., z : φ
(D4i)

R2xy,R⊗i
xy,R[i]yz ` x : 	i¬φ, ..., z : φ

([i])
R2xy,R⊗i

xy ` x : 	i¬φ, ..., y : [i]φ
(3)

R2xy,R⊗i
xy ` x : 	i¬φ, x : 2[i]φ

(D3i)
R⊗i

xy ` x : 	i¬φ, x : 2[i]φ
(D2i)` x : 	i¬φ, x : 2[i]φ

(∨)
` x : 	i¬φ ∨ 2[i]φ

. . . . . . . . . . . . . . . . . . . . . . =
` x : ⊗iφ→ 2[i]φ

The non-existence of a directed edge in the opposite direction is implied by the
fact that G3DSn{D2i,D3i,D4i} ` ⊗iφ→ ⊗i[i]φ and G3DSn{D3i,D5i} 6` ⊗iφ→
⊗i[i]φ. The latter is shown through failed proof search (See Ex. 5.2 for an
illustration of how failed proof-search can be used to determine underivability.)

To determine that two calculi G3DSnX and G3DSnY are equivalent (i.e.
G3DSnX ≡ G3DSnY), thus implying that the associated logics are identical,
one shows that every derivation in the former can be transformed into a deriva-
tion in the latter, and vice-versa. Last, to prove that two calculi G3DSnX
and G3DSnY are independent—yielding incomparable logics—it is sufficient to
show that there exist formulae φ and ψ such that G3DSnX ` φ, G3DSnY 6` φ,
G3DSnY ` ψ, and G3DSnX 6` ψ. We come back to this in the following subsec-
tion when we consider an example of an underivable OiC formula.

5.2 Logical (In)Dependencies of OiC Principles

Fig. 4 also represents which deontic STIT calculi should at least be adopted
to make certain OiC principles theorems of the corresponding logics. These
principles were initially formalized in Sect. 2. However, as discussed in Sect. 3,
in order to formally represent deliberative readings of OiC in a normal modal
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G3DSn{D2i,D3i,D4i,D5i}
≡ G3DSn{D2i,D3i,D4i}
≡ G3DSn{D3i,D4i,D5i}

G3DSn{D2i,D4i,D5i}
≡ G3DSn{D2i,D4i}
≡ G3DSn{D4i,D5i}

G3DSn{D2i,D3i,D5i}
≡ G3DSn{D3i,D5i}

` OiA
` OiA+O∗

` OiCtrl∗

G3DSn{D3i,D4i}

G3DSn{D2i,D3i}

` OiAP
` OiO∗

G3DSn{D2i,D5i}
≡ G3DSn{D5i}

` NOiA

G3DSn{D3i}G3DSn{D2i}

` OiLP

G3DSn{D4i}

` OiNA

G3DSn` OiNC
` OiV∗

` OiR∗

Fig. 4. The lattice of deontic STIT calculi. Directed edges point from weaker calculi
to stronger calculi, consequently ordering the corresponding logics w.r.t. their expres-
sivity (reflexive and transitive edges are left implicit). We use ≡ to denote equivalent
calculi. Dotted nodes show which calculi should at least be adopted to make the
indicated OiC principles theorems (for the final OiC formalizations see Fig. 5).

setting, we must replace the initial antecedent ⊗iφ with its deliberative cor-
respondent ⊗di φ in OiV,OiR,OiO,OiA+O and with ⊗ciφ in OiCtrl. The final
list of OiC formalizations is presented in Fig. 5. Although for now the above
suffices—i.e. the approach being in line with the traditional treatment of delib-
erative agency [7,23,24]—the solution may be considered ad hoc. We note that
these deliberative canons may alternatively be captured as follows: (i) through
characterizing deliberation directly in the logic, taking ⊗di and ⊗ci as primitive
operators (cf. [46]), or (ii) through characterizing contingency via the use of
sanction constants (cf. [3]). We leave this to future work.

In Ex. 5.1, we saw that OiA is derivable in both G3DSn{D2i,D3i,D4i} and
G3DSn{D3i,D5i}. What is more, since ⊗i[i]φ → ⊗iφ is already a theorem of
G3DSn, we find that the weaker logic generated by G3DSn{D3i,D5i} already
suffices to accommodate OiC of the traditional deontic STIT setting [23], that
is, G3DSn{D3i,D5i} ` ⊗i[i]φ→ 2[i]φ. We emphasize that only through the ad-
dition of D4i do we restore the position advocated by Horty in [23] (cf. footnote
2). Namely, by adding D4i to a calculus, the distinction between ⊗i and ⊗i[i]
collapses—i.e. G3DSn{D4i} ` ⊗iφ ≡ ⊗i[i]φ—and the agent-dependent obliga-
tion operator will demonstrate the same logical behaviour as the interpretation
of obligation restricted to complete choices; i.e. the ‘dominance ought’. (NB. In
[9] it was shown that the relational characterization of ⊗i in DSn{D2,D3,D4}
is equivalent to the logic of ‘dominance ought’ [23,32].)
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G3DSn{D2i} ` ⊗iφ→ ¬⊗i¬φ OiLP G3DSn{D2i,D3i} ` ⊗d
i φ→ ( 2φ ∧ 2¬φ) OiO∗

G3DSn{D2i,D3i} ` ⊗iφ→ 2φ OiAP G3DSn{D3i,D5i} ` ⊗d
i φ→ ( 2[i]φ ∧ 2φ ∧ 2¬φ) OiA+O∗

G3DSn{D3i,D5i} ` ⊗iφ→ 2[i]φ OiA G3DSn{D3i,D5i} ` ⊗c
iφ→ ( 2[i]φ ∧ 2[i]¬φ) OiCtrl∗

G3DSn ` ⊗d
i φ→ 2¬φ OiV∗ G3DSn ` ⊗iφ→ ⊗i 2φ OiNC

G3DSn ` ⊗d
i φ→ 2[i]¬[i]φ OiR∗ G3DSn{D4i} ` ⊗iφ→ ⊗i 2[i]φ OiNA

Fig. 5. STIT formalizations of OiC, with the minimal G3DSnX calculi entailing them.

From a philosophical perspective, Fig. 4 gives rise to what we will call the
endorsement principle of the philosophy of OiC. Namely, the ordering of calculi
tells us which endorsements of which OiC readings will logically commit us to
endorsing other OiC readings (within the realm of agential choice-making). For
instance, endorsing OiA tells us that we must also endorse the weaker OiLP and
OiAP since they are logically entailed in the minimal calculus for OiA.

Furthermore, the taxonomy of deontic STIT logics shows which readings of
OiC are independent from one another. In particular, we note that the norma-
tive principle OiNA is strictly independent of OiA,OiLP,OiAP. An advantage
of the present proof theoretic approach is that we can constructively prove why
certain readings of OiC fail to entail one another (relative to their calculi):

Example 5.2 To show that OiNA is not entailed by OiLP in G3DS1{D21} one
attempts to prove an instance of OiNA via bottom-up proof-search (left):

...
R⊗1

wu,R[1]vz,R⊗1
wv ` w : 	1¬p, v : ¬p, u : ¬p, z : p

(	1)
R⊗1

wu,R[1]vz,R⊗1
wv ` w : 	1¬p, z : p

(D21)
R[1]vz,R⊗1wv ` w : 	1¬p, z : p

([1]) ;
R⊗1wv ` w : 	1¬p, v : [1]p

( 2)
R⊗1wv ` w : 	1¬p, v : 2[1]p

(⊗1)
` w : 	1¬p, w : ⊗1 2[1]p

. . . . . . . . . . . . . . . . . . . . . . . . . . . . =
` w : ⊗1p→ ⊗1 2[1]p

w : p

u : p

v : p

z : ¬p

⊗1

⊗1

⊗1

⊗1

⊗1

· · · nodes indicate agent 1’s choices

— nodes indicate moments

In theory, the left derivation will be infinite, but a quick inspection of the rules
of G3DS1{D21} (with Ag = {1}) ensures us that no additional rule application
will cause the proof to successfully terminate: ¬p will never be propagated to
z. The topsequent (left) will give the DS1{D2}-countermodel for OiNA (right),
provided that the model is appropriately closed under D1 and D2: i.e. M,w 6|=
OiNA with W = {w, v, u, z}, R[1] = {(v, z), (z, v)}, R2 = {(v, z), (z, v)}, R⊗1

=
{(w, u), (w, v), (u, u), (v, v), (z, v)} and V (p) = {w, v, u} (reflexivity is omitted
for R[1] and R2). We leave development of terminating proof-search procedures
with automated countermodel extraction to future work (cf. [29]).

We close with two remarks: First, recall Hintikka’s position that OiC merely
captures the normative disposition that ‘it ought to be that OiC’. An agent-
dependent variation of this principle (referred to as NOiA in Fig. 4) turns out
to be a theorem of G3DSn{D3i,D4i}; i.e. G3DSn{D3i,D4i} ` ⊗i(⊗iφ→ 2[i]φ).
Second, we observe that the calculus G3DSn{D5i} gives rise to an interesting,
yet unaddressed, OiC principle which combines the ideas behind OiLP and
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OiNA, namely, G3DSn{D5i} ` ⊗iφ→ 	i 2[i]φ. Loosely, this principle expresses
that ‘ought implies that it is ideally consistent that the agent has the ability to
fulfil its duties’. Future research will be directed toward further investigation of
the philosophical consequences of our logical taxonomy of deontic STIT logics.

6 Conclusion

In this work, we analyzed, formalized, and compared ten distinct readings of
Ought-implies-Can as taken from the philosophical literature. We modified the
deontic STIT setting to accommodate this variety of OiC principles. Sound and
complete deontic STIT calculi were provided of which the aforementioned OiC
principles were shown to be theorems. We used these calculi to determine the
logical interdependencies between these principles, resulting in a logical taxon-
omy of Ought-implies-Can according to each principle’s respective strength. In
particular, we proposed an endorsement principle describing which OiC read-
ings commit one to other readings logically entailed by the former.

Future work will be twofold: First, from a technical perspective, we aim to
provide decision algorithms based on the deontic STIT calculi G3DSnX, follow-
ing the work in [29]. Thus, we will leverage our calculi for the desired automa-
tion of normative reasoning within STIT. Furthermore, we aim to logically
capture the deliberative OiC principles, bypassing the use of defined deliber-
ative operators. Second, from a more philosophical perspective, future work
will be directed toward the identification and analysis of further OiC principles
derived from our logical taxonomy of deontic STIT logics.

Appendix

A Soundness and Completeness Proofs

Theorem A.1 (Soundness) If a sequent Λ is derivable in G3DSnX, then it
is valid relative to DSnX.

Proof. It suffices to show that (id) is valid and each rule of G3DSnX preserves
validity relative to DSnX. With the exception of (D5i) = 〈(D51i ), (D5

2
i )〉, all

cases are relatively straightforward (cf. [8,29]). The (D5i) case follows from the
general soundness result for systems of rules presented in [34]. 2

Lemma A.2 For any sequent Λ, either Λ is provable in G3DSnX, or there
exists a DSnX-model M with I such that M, I 6|= Λ.

Proof. For the proof we expand on the methods employed in [33]. In brief, we
first (1) define a reduction-tree RT for an arbitrary sequent Λ = R ` Γ. Either
RT terminates and represents a proof in G3DSnX, implying the provability of
Λ, or it does not terminate. In the latter case the tree will be infinite and,
using König’s Lemma, we therefore know that (at least) one of RT’s branches
is infinite. We use this infinite branch to show that (2) a DSnX-model M can
be constructed with an interpretation I such that M, I 6|= Λ.

(1) The inductive construction of RT consists of phases, each phase having
two cases: (i) if every topmost sequent of every branch of RT is an initial se-
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quent (id) the construction terminates. (ii) If not, then for those open branches,
the construction proceeds and we continue applying—when possible—the rules
of the calculus in a roundabout fashion. (NB. If no rule can be applied to
a top sequent, yet it is not an initial sequent, then we copy the top sequent
indefinitely.) We show how the (〈i〉) and (D5i) rules are applied (bottom-up)
below; all remaining cases are similar or simple (cf. [8,33]).

We first consider the (〈i〉) case, and suppose that m top sequents Λj = Rj `
Γj (with 1 ≤ j ≤ m) are open in RT (i.e. no Λj is an instance of the (id) rule).
Let x1 : 〈i〉φ1, ..., xkj : 〈i〉φkj be all labelled formulae in Λj prefixed with a 〈i〉
modality. Moreover, let yl,1, . . . , yl,rl ∈ Lab(Λj) s.t. xl ∼

Rj

i yl,s (for 1 ≤ l ≤ kj
and 1 ≤ s ≤ rl). We add Λj+1 = Rj ` y1,1 : φ1, . . . , y1,r1 : φ1, . . . , ykj ,1 :
φkj , . . . , ykj ,rkj

: φkj ,Γj on top of Λj . We apply this procedure for all i ∈ Ag.

For the (D5i) case, assume that m top sequents Λj = Rj ` Γj (with
1 ≤ j ≤ m) are still open in RT. First, for all x1, ..., xkj ∈ Lab(Λj), we
set Rj+1 := R⊗ix1y1, ..., R⊗ixkjykj ,Rj , set Γj+1 := Γj , and add Λj+1 =
Rj+1 ` Γj+1 on top of Λj , where y1, ..., ykj are fresh. (NB. This corre-

sponds to applications of (D51i ).) Second, for all z′1, . . . , z
′
lr
∈ Lab(Λj+1)

such that zr ∼
Rj+1

i z′1, . . ., zr ∼
Rj+1

i z′lr and R⊗i
x′rzr was introduced by

an application of (D51i ) at any stage s ≤ j (with 1 ≤ r ≤ h), we add
Λj+2 = R⊗i

x′1z
′
1, ..., R⊗i

x′1, z
′
l1
, . . . , R⊗i

x′hz
′
1, ..., R⊗i

x′h, z
′
lh
,Rj+1 ` Γj+1 on

top of Λj+1. We apply this procedure for all agents i ∈ Ag.
(2) If the construction of the RT for Λ terminates, we know that the topmost

sequents of all branches are initial sequents and hence RT corresponds to a
proof. If RT does not terminate, the tree is infinite and, with König’s Lemma,
we obtain an infinite branch from which we can construct a DSnX counter-
model for Λ. Let R0 ` Γ0, ...,Rj ` Γj , ... be the sequence of sequents from the
infinite branch, such that, (i) Λ = R0 ` Γ0 and (ii) Λ+ = R+ ` Γ+, where
R+ =

⋃
j≥0Rj and Γ+ =

⋃
j≥0 Γj .

We construct a model M+ = 〈W,R2, {R[i]|i ∈ Ag}, {R⊗i
|i ∈ Ag}, V 〉 as

follows: W := Lab(Λ+); R2 := {(x, y) | x ∼R+

2
y}; R[i] := {(x, y) | x ∼R+

i y}
(for all i ∈ Ag); R⊗i := {(x, y) | R⊗ixy ∈ R+} (for all i ∈ Ag); last, x ∈ V (p)
iff x : p ∈ Γ+. It is straightforward to show that M+ is a DSnX-model. We
show that M+ satisfies C2 and D5 (assuming that D5 ∈ X). The cases for all
other conditions C1, C3, D1, and those in X are similar or simple.

To show that M+ satisfies C2 we need to show (i) R[i] ⊆ R2, and (ii) R[i]

is an equivalence relation. To show (i), assume that (x, y) ∈ R[i]. This implies

that x ∼R+

i y holds, which further implies that x ∼R+

3 y holds by Def. 4.2
and 4.3. Therefore, by the definition of R2 in M+ above, (x, y) ∈ R2. To see
that R[i] is an equivalence relation, it suffices to observe that the relation is

defined relative to ∼R+

i , which is an equivalence relation.
To prove that M+ satisfies D5, we assume x ∈W . By the definition of RT,

we know that there exists a Λj in the infinite branch such that x ∈ Lab(Λj).
Since the branch is infinite and rules are applied in a roundabout fashion we
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know that at some point k > j the (D5i) step of the RT procedure must have
been applied (and so, (D51i ) must have been applied). Hence, R⊗i

xy ∈ Rk+1

for Λk+1 = Rk+1 ` Γk+1 with y fresh, implying that (x, y) ∈ R⊗i
. We aim to

show that for all z ∈ W , if (y, z) ∈ R[i], then (x, z) ∈ R⊗i
. Take an arbitrary

z ∈ W for which (y, z) ∈ R[i]. By the assumption that (y, z) ∈ R[i] and by
the definition of RT, we know that at some point m ≥ k + 1 that the (D5i)
step of the RT procedure must have been applied (and so, (D52i ) must have
been applied) with y ∼Rm

i z for Λm = Rm ` Γm. Hence, R⊗i
xz ∈ Rm+1 in

Λm+1 = Rm+1 ` Γm+1, implying that (x, z) ∈ R⊗i
.

Let I : Lab 7→ W be the identity function (we may assume w.l.o.g. that
Lab = W ). By construction, M+ satisfies each relational atom occurring in
R+ with I, meaning that M+ satisfies each relational atom in R with I (recall
Λ = R ` Γ). It can be shown by induction on the complexity of φ that for any
x : φ ∈ Γ+, M+, I(x) 6|= φ. Consequently, since Γ ⊆ Γ+, M+, I 6|= Λ. 2

Theorem A.3 (Completeness) If a sequent Λ is valid relative to DSnX, then
it is derivable in G3DSnX.

Proof. Follows directly from A.2. 2
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