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Defined are gravitational formulas in terms of Planck units and units of ~c. Mass is not assigned
as a constant property but is instead treated as a discrete event defined by units of Planck mass
with gravity as an interaction between these units, the gravitational orbit as the sum of these
mass-mass interactions and the gravitational coupling constant as a measure of the frequency of
these interactions and not the magnitude of the gravitational force itself. Each particle that is
in the mass-state (defined by a unit of Planck mass) per unit of Planck time is directly linked to
every other particle also in the mass-state by a discrete unit of mP v

2r = ~c, the velocity of a
gravitational orbit is summed from these individual v2. As this approach presumes a digital time,
it is suitable for use in programming Simulation Hypothesis models. As this link is responsible for
the particle-particle interaction it is analogous to the graviton. Orbital angular momentum of the
planetary orbits derives from the sum of the planet-sun particle-particle orbital angular momentum
irrespective of the angular momentum of the sun itself and the rotational angular momentum of a
planet includes particle-particle rotational angular momentum.

1 Introduction

A method for programming the Planck units for mass,
length, time and charge from a mathematical electron
has been proposed [1]. This approach uses frequencies
(the frequency of occurrence of an event at unit Planck
time) instead of probabilities, particles are treated as
oscillations between an electric wave-state (the particle
frequency) to a discrete unit of Planck-mass (at unit
Planck-time) mass point-state. Mass is therefore not
considered a constant property of the particle, conse-
quently for objects whose mass is less than Planck mass
there will be units of Planck time when the object has
no particles in the point-state and so no gravitational
interactions. Gravity, as with mass, is also not treated
as a constant property but rather as a discrete event,
the magnitude of the gravitational interaction per unit
time approximates the magnitude of the strong force, the
gravitational coupling constant represents a measure of
the frequency of these interactions and not the magni-
tude of the gravitational force itself.

Each particle that is in the mass point-state per unit
of Planck time is linked to every other particle simulta-
neously in the mass point-state by a unit of Planck mass
mP , velocity v2 and distance r whereby mP v

2r = ~c (an
orbital). The velocity of a gravitational orbit is summed
from these individual particle-particle v2.

Orbital angular momentum of the planetary orbits
derives from the sum of the planet-sun particle-particle
orbital angular momentum irrespective of the angular
momentum of the sun itself and the rotational angular
momentum of a planet includes particle-particle rota-
tional angular momentum.

As this method uses discrete Planck units and a dig-
ital Planck time it may be suitable for use in Planck
unit Simulation Hypothesis modeling. Each particle is

assigned a Planck mass center (an array address) and an
oscillation frequency. A 4-axis expanding hyper-sphere
array has been proposed to include relativistic effects [2]
[3]. As orbits are the result of summed particle-particle
links, information regarding macro orbiting objects is
not required.

2 Gravitational coupling constant

The gravitational coupling constant αG characterizes the
gravitational attraction between a given pair of elemen-
tary particles in terms of the electron mass to Planck
mass ratio;

αG =
Gm2

e

~c
=
m2

e

m2
P

= 1.75...x10−45 (1)

If particles oscillate between an electric wave-state to
Planck-mass (for 1 unit of Planck-time) point-state then
at any discrete unit of Planck time t a number of par-
ticles in the universe will simultaneously be in the mass
point-state. For example a 1kg satellite orbits the earth,
for any t, satellite (A) will have 1kg/mP = 45.9 x106

particles in the point-state. The earth (B) will have 5.97
x1024kg/mP = 0.274 x1033 particles in the point-state.
For any given unit of Planck time the gravitational cou-
pling links between the earth and the satellite will sum
to;

Nlinks =
mAmB

m2
P

= 0.126 x1041 (2)

If A and B are respectively Planck mass particles then
N = 1. If A and B are respectively electrons then the
probability that any 2 electrons are simultaneously in
the mass point-state for any chosen unit of Planck time
t, N = αG and so a gravitational interaction between
these 2 electrons will occur only once every 1045 units of
Planck time.
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3 Planck unit gravitational formulas

(inverse) fine structure constant α = 137.03599...
np = number of Planck units
λobject = Schwarzschild radius

distance from a point mass

r = αnp2lp (3)

orbital velocity associated with a point mass

v =
c√

2αnp
(4)

orbital period

T =
2πr

v
(5)

number of particles in the Planck mass point-state per
unit of Planck time per object mass M

Npoints =
M

mP
(6)

gravitational analogue to the principal quantum number

n =

√
np

Npoints
(7)

distance from a center of mass

rg = αnp2lp = αn2Npoints2lp = αn2λM (8)

gravitational orbit velocity from summed point velocities

vg =
√
Npointsv =

c√
2αn

(9)

gravitational acceleration

ag =
v2g
rg

(10)

gravitational orbital period

Tg =
2πrg
vg

(11)

orbital angular momentum

Loam = Nlinksn
h

2π

√
2α (12)

rotational angular momentum

Lram = (
2

5
)Nlinks n

h

2π
(13)

3.1. Example - Earth orbits

Npoints = Mearth/mP

Earth surface orbits
rg = 6371.0 km
ag = 9.820 m/s2

Tg = 5060.837 s
vg = 7909.792 m/s

Geosynchronous orbit
rg = 42164.0 km
ag = 0.2242 m/s2

Tg = 86163.6 s
vg = 3074.666 m/s

Moon orbit (d = 84600s)
rg = 384400 km
ag = .0026976 m/s2

Tg = 27.4519 d
vg = 1.0183 km/s

3.2. Example - Planetary orbits

Npoints = Msun/mP

mercury rg = 57 (109)m,Tg = 87.969d, vg = 47.87km/s
venus rg = 108 (109m,Tg = 224.698d, vg = 35.02km/s
earth rg = 149 (109)m,Tg = 365.26d, vg = 29.78km/s
mars rg = 227 (109)m,Tg = 686.97d, vg = 24.13km/s
jupiter rg = 778 (109)m,Tg = 4336.7d, vg = 13.06km/s
pluto rg = 5.9 (1012)m,Tg = 90613.4d, vg = 4.74km/s

The energy required to lift a 1kg satellite into a geosyn-
chronous orbit is the difference between the energy of
each of the 2 orbits (geosynchronous and earth).

Eorbital =
hc

2πr6371
− hc

2πr42164
(14)

Nlinks = (Mearthmsatellite)/m
2
P = 0.126x1041

Etotal = EorbitalNlinks = 53MJ/kg

4 Angular momentum

Nsun =
Msun

mP
(15)

Nplanet =
Mplanet

mP
(16)

Nlinks = NsunNplanet (17)

4.1 Orbital angular momentum Loam

Loam = 2π
Mr2

T
= NsunNplanet

h

2π

√
2αnp
Nsun

= Nlinks n
h

2π

√
2α,

kgm2

s
(18)
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Orbital angular momentum of the planets;
mercury = .9153 x1039

venus = .1844 x1041

earth = .2662 x1041

mars = .3530 x1040

jupiter = .1929 x1044

pluto = .365 x1039

Angular momentum combined with orbit velocity re-
duces to a unit of ~c irrespective of distance between
the orbiting bodies.

Loamvg = Nlinks
hc

2π
,
kgm3

s2
(19)

4.2 Rotational angular momentum Lram

Nlinks = (Nplanet)
2 (20)

Rotational angular momentum contribution to planet ro-
tation.

vrot =
√
Npoints

c

2α
√
np

=
c

2αn
(21)

Trot =
2πr

vrot
(22)

Lram = (
2

5
)
2πMr2

T
= (

2

5
)Nlinks n

h

2π
,
kgm2

s
(23)

nearth = 2289.4 (radius = 6371km)
Trot = 83847.7s (86400)
vrot = 477.8m/s (463.3)

Lram = .727 x1034 kgm2

s (.705)
nmars = 5094.7 (radius = 3390km)

Trot = 99208s (88643)
vrot = 214.7m/s (240.29)

Lram = .187 x1033 kgm2

s (.209)

Lramvrot = (
2

5
)Nlinks

hc

2π2α
,
kgm3

s2
(24)

4.3. Time dilation.
4.3.1. Velocity: In the article ‘Programming Relativity
in a Planck unit Universe’, a model of a virtual hyper-
sphere universe expanding in Planck steps was proposed
[2]. In that model the universe hyper-sphere expands
in all directions evenly, objects are pulled along by the
expansion of the hyper-sphere irrespective of any motion
in 3-D space. As such, while B (satellite) has a circular
orbit in 3-D space co-ordinates it has a cylindrical orbit
around the A (planet) time-line axis in the hyper-sphere
co-ordinates with orbital period Tgc (from B1 to B2) at
radius rg and orbital velocity vg. If A is moving with the
universe expansion (albeit stationary in 3-D space) then
the orbital time tg alongside the A time-line axis (fig. 1)
becomes;

tg =
√

(Tgc)2 − (2πrg)2 = (Tgc)

√
1−

v2g
c2

(25)

Fig. 1: orbit relative to A timeline axis

4.3.2. Gravitational:

vs = vescape =
√

2.vg (26)√
1− 2GM

rgc2
=

√
1− v2s

c2
(27)

4.4. Binding energy in the nucleus

mnuc = mp +mn (28)

λs =
lpmP

mnuc
(29)

r0 =
√
αλs (30)

Rs = αλs (31)

v2s =
c2

α
(32)

The gravitational binding energy (µG) is the energy re-
quired to pull apart an object consisting of loose material
and held together only by gravity.

µG =
3Gm2

nuc

5Rs
=

3mnucc
2

5α
=

3mnucv
2
s

5
(33)

Nuclear binding energy is the energy required to split
a nucleus of an atom into its component parts. The
electrostatic coulomb constant;

ac =
3e2

20πεr0
(34)

E =
√

(α)ac =
3mnucc

2

5α
=

3mnucv
2
s

5
(35)

Average binding energy in nucleus;
µG = 8.22MeV/nucleon

4.5. Anomalous precession
semi-minor axis: b = αl2λsun
semi-major axis: a = αn2λsun
radius of curvature L

L =
b2

a
=
al4λsun
n2

(36)
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3λsun
2L

=
3n2

2αl4
(37)

precession =
3n2

2αl4
.1296000.(100Tearth/Tplanet) (38)

Mercury = 42.9814
Venus = 8.6248
Earth = 3.8388
Mars = 1.3510
Jupiter = 0.0623

4.6. Fp = Planck force;

Fp =
mP c

2

lp

Ma =
mPλa

2lp
, mb =

mPλb
2lp

(39)

Fg =
MambG

R2
=
λaλbFp

4R2
g

=
λaλbFp

4α2n4(λa + λb)2
(40)

a) Ma = mb

Fg =
Fp

(4αn2)
2 (41)

b) Ma >> mb

Fg =
λbFp

(2αn2)
2
λa

=
mbc

2

2α2n4λa
= mbag (42)

5 Orbital transition

Atomic electron transition is defined as a change of an
electron from one energy level to another, theoretically
this should be a discontinuous electron jump from one
energy level to another although the mechanism for this
is not clear. The following presumes ‘physical links’ in-
stead of mathematical orbital regions.
Let us consider the Hydrogen Rydberg formula for tran-
sition between and initial i and a final f orbit. The
incoming photon λR causes the electron to ‘jump’ from
the n = i to n = f orbit.

λR = R.(
1

n2i
− 1

n2f
) =

R

n2i
− R

n2f
(43)

The above can be interpreted as referring to 2 photons;

λR = (+λi)− (+λf )

Let us suppose a region of space between a free proton p+

and a free electron e− which we may define as zero. This
region then divides into 2 waves of inverse phase which
we may designate as photon (+λ) and anti-photon (−λ)
whereby

(+λ) + (−λ) = zero

The photon (+λ) leaves (at the speed of light), the anti-
photon (−λ) however is trapped between the electron
and proton and forms a standing wave orbital. Due to
the loss of the photon, the energy of (p+ + e− + −λ) <
(p+ + e− + 0) and so is stable.

Let us define an (n = i) orbital as (−λi). The in-
coming Rydberg photon λR = (+λi) − (+λf ) arrives in
a 2-step process. First the (+λi) adds to the existing
(−λi) orbital.

(−λi) + (+λi) = zero

The (−λi) orbital is canceled and we revert to the
free electron and free proton; p+ + e− + 0 (ionization).
However we still have the remaining −(+λf ) from the
Rydberg formula.

0− (+λf ) = (−λf )

From this wave addition followed by subtraction we
have replaced the n = i orbital with an n = f orbital.
The electron has not moved (there was no transition from
an ni to nf orbital), however the electron region (bound-
ary) is now determined by the new n = f orbital (−λf ).
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