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Abstract This paper aims to establish several interconnected points. First, a particu-
lar interpretation of the mathematical definition of information, known as the causal
interpretation, is supported largely by misunderstandings of the engineering context
from which it was taken. A better interpretation, which makes the definition and
quantification of information relative to the function of its user, is outlined. The first
half of the paper is given over to introducing communication theory and its competing
interpretations. The second half explores three consequences of the main thesis. First,
a popular claim that the quantification of information in a signal is irrelevant for the
meaning of that signal is exposed as fallacious. Second, a popular distinction between
causal and semantic information is shown to be misleading, and I argue it should be
replaced with a related distinction between natural and intentional signs. Finally, I
argue that recent empirical work from microbiology and cognitive science drawing
on resources of mathematical communication theory is best interpreted by the func-
tional account. Overall, a functional approach is shown to be both theoretically and
empirically well-supported.
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1 Introduction

Several misconceptions about the application of information theory in natural sci-
ence are widespread in philosophy. This paper deals with some of the core mistakes,
demonstrating how they are mutually reinforcing and how they can be overturned.
At the centre of the theoretical tangle is Dretske’s interpretation of mathematical
communication theory and concurrent definition of information. Here I promote
a different account of information for natural science, one that makes it rela-
tive to a function or functions. This move allows us to solve problems and avoid
misinterpretations of the mathematical concept of information.

The paper is structured as follows. Section 2 outlines two core assumptions
of mathematical communication theory. To apply its mathematical tools elsewhere
in natural science, it will be necessary to dispense with these assumptions when
investigation shifts to wider contexts. Section 3 then shows how Dretske failed to
appropriately generalise communication theory for a wider setting. His account lead
to the contemporary causal interpretation of information, and I argue that an alter-
native functional interpretation is preferable. Following the first half of the paper,
Sections 4 and 5 explore, respectively, theoretical and empirical consequences of a
functional account of information. Highlights include refuting the claim that quan-
tification of information is irrelevant for meaning, rejecting a popular distinction
between causal and semantic information, and showing that recent work in diverse
areas of natural science accord well with a functional approach. Section 6 concludes.

2 Perspectives on Communication Theory

In order to locate the positive thesis, an overview of recent philosophical claims about
the application of information theory across the natural sciences is in order.

Phenomena in several subdisciplines of biology and cognitive science recommend
the use of information theoretic formalism. But differing assumptions entail different
interpretations of formal results. Unfortunately, the special details of mathematical
communication theory lead many to import one of its central tenets into areas where it
does not belong. It is often claimed that Shannon and Weaver (1949) established that
information theoretic formalism, in any domain, is irrelevant for the meaning of infor-
mation transmitted. The claim is false but widely believed (Owren et al. 2010, 761;
Piccinini and Scarantino 2011, 21; Lombardi et al. 2015, 1989). It is false because
Shannon and Weaver were not concerned with defining information in domains out-
side communication theory, so they could never have established such a claim. Their
definition was relative to a particular framework. In order to apply the definition
more widely, we must understand how to generalise the framework. Philosophical
understanding of information in natural science is misshapen.

One particular detail stands out as a potential source of confusion. Mathemati-
cal communication theory (MCT) deals with symbols that stand for symbols. The
encoded signal for which information is quantified represents a string of symbols
whose meaning is irrelevant for this quantification. In other contexts, information
can be quantified for signals that stand for things other than symbol strings. The
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engineering context is special, but its mathematics are general. A coherent account
of information, and an understanding of the fruitful application of existing mathe-
matical tools across natural science, results from rejecting the assumption that only
signals standing for symbol strings can be quantified. This is the subject of the present
essay.

The remainder of this section introduces MCT by detailing two components of the
engineering framework that are often taken to be necessary to interpret the mathemat-
ics. Both were introduced by Shannon (1948) as part of his foundational text. First,
the central transmitter-receiver model, which is applied in diverse scientific domains.
Second, the engineering problem whose solution is the aim of communication theory
has sometimes been taken as fundamental to the broader domain of information the-
ory. The crux of the present essay is that contemporary philosophical interpretations
of both of these factors are largely incorrect. In the remainder of this section I survey
them in order.

2.1 The Central Model

In MCT, information is quantified as the extent to which the source message can be
recovered at the target. To be transmitted, the source message is transformed into
an encoded message. Information transmission is a function of statistical proper-
ties of the source message and the channel through which it is sent. The meaning
of the source message — whatever its symbols represent or indicate — is irrele-
vant to measuring transmission. We might call this situation the “central model” of
MCT.

As an example of communication, the central model is a rather peculiar case.
Rarely does it apply exactly outside communications engineering. In order to apply
information theory in other domains, the formalism has to be generalised. To this
end, consider one of the special properties of messages in the central model. Because
the symbols in the encoded message are transformations of symbols in the source
message, encoded messages usually carry two meanings, one folded within the other.
First, an instruction how to recover the original symbol string. Second, and as a result
of the first, the meaning of the original symbol string, if it has one. It is often pointed
out that the formalism of information theory is blind to the second meaning. While
this is true, it neglects the possibility that formalism captures the first meaning, the
instruction how to recover the original symbol string. Indeed I argue below that this
is precisely what it quantifies. Moreover, there are communication systems whose
messages are not encoded in this way. In these systems, the meanings of messages
are quantified by information-theoretic formalism.

Since Bar-Hillel and Carnap (1953), philosophers have been told there is a deep
divide between “Shannon information” — codes — and “semantic information” — what
is expressed by codes. But whether or not the source message has a semantic mean-
ing, the encoded message certainly does, and it is a meaning that is directly relevant
to the quantification of information transmitted by it. Below in Section 4 I demon-
strate that the first meaning of an encoded message — the instruction (imperative)
how to recover the primary message, or equivalently the information (indicative)
about what it was — is a kind of primitive content familiar from signalling games.
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It is only because the central model is a very special kind of system that its relation
to other forms of communication has been neglected by philosophers. In this way,
contemporary positions on the use of information theory in natural science are
inordinately pessimistic.

The central model has been applied in diverse ways in the natural sciences. There
has been some difficulty establishing the conditions under which it is appropri-
ate. Below in Section 5 two examples are presented, and the justification for the
application of the central model in those domains is examined.

2.2 The Fundamental Problem

Shannon described the problem of his art as “that of reproducing at one point
either exactly or approximately a message selected at another point” (Shannon 1948,
379). A similar lesson applies here. Just because the fundamental problem does not
reappear exactly in natural science does not mean the formalism of information the-
ory cannot be applied outside mathematical communication theory. Mathematical
formalism, appropriately generalised, is never so rigorously context-bound.

To see how information theoretic formalism can be generalised beyond the funda-
mental problem of MCT, consider the qualifier “approximately” in Shannon’s quote
above. Where exactitude is not required, the system may be optimised to transmit at
a rate of ‘just enough’ information. But how can we determine how much is enough
unless the measurement of information has relevance for what the receiver does with
it? In other words, how do I know how many bits I need unless I know what actions
those bits are helping me choose between, or which states of the world those bits
are helping me infer? The cost of information loss is always measured relative to the
goal that information transmission subserves. Cognitive science and microbiology
are applying these ideas already (see below Section 5). Philosophy of information
needs to catch up.

The aim of this section was to pump intuitions against the received view of
information theory and its application outside MCT. The next section carries those
doubts which have hopefully been raised, and soothes them by providing an inclusive
understanding of information.

3 Causal and Functional Interpretations

In this section I lay out the canonical interpretation of MCT in naturalistic philosophy.
The interpretation is due primarily to Dretske, who developed a general application of
the central model of MCT and corresponding general definition of information. Fol-
lowing this, in Section 3.2 I outline an alternative account due primarily to Millikan.
I introduce both accounts briefly, because my aim is to describe their motivations
and characteristics before showing how the beneficial consequences of a functional
account speak in its favour. The functional account I endorse was not originally pro-
posed in relation to MCT. Nevertheless, we shall see in Section 4 that the central
model of communication theory has more in common with models inspired by the
functional approach than has previously been supposed.
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3.1 Dretske’s Causal Interpretation

In this subsection I give an outline of the causal interpretation of information
due mainly to Dretske (1981). I also describe one well-known problem for it: the
reference class problem.

One of the key motivations behind Dretske’s analysis of information was to
define an objective, mind-independent resource that agents could use to make reli-
able inferences about the world beyond their sensory reach. Information had to be
objective — definable independently of any given agent — because only then could it
ground an explanation of the emergence of rational, conscious agents (Dretske 1981,
vii). Dretske’s interpretation, which was to become the canonical account of causal
information, made “information” extremely broad. To distil the narrower notion of
semantic content he showed how more stringent conditions apply in the process of
belief formation.

It is only a short step from MCT to Dretske’s definition of information. He argued
that both the mathematical tools and the central model that interprets them (described
above in Section 2.1) are universally applicable. Any medium through which correla-
tions are borne is a channel. Any source of correlation — biological, artificial or inert —
is a transmitter. And anything capable of interpreting that correlation — given a plausi-
ble construal of “interpretation” — is a receiver. For example, the nuclear interactions
that take place in the sun generate electromagnetic radiation. This radiation tends to
strike the sunward surface of the earth, and could therefore be used as information
about the sun’s position in the sky. Interference such as thick cloud cover distorts the
signal, which entails that the amount of information received on the ground — and
concurrently the accuracy with which an inference can be made — is reduced.

On this interpretation, information is quantified independently of any observer.
The statistical probabilities governing the behaviour of the transmitter determine the
information carried by the signal. These probabilities are objective chances. They
are properties of events in the world, and are not defined relative to a potential or
actual observer. This satisfies Dretske’s criterion for a user-independent resource at
the foundation of naturalist epistemology. The MCT channel is applied to situations
where there is causal influence but no design. In the above example, the sun’s pro-
duction of electromagnetic radiation is not guided by earthlings’ need to infer its
position in the sky. This is what the label ‘causal’ connotes: information is defined
with respect to objective statistical probabilities and chains of causal influence, not
designed systems.

The desideratum of user-independence that Dretske felt was necessary for a prin-
cipled definition of information opens the door to critique. A version of the reference
class problem, familiar from philosophy of probability (Hajek 2007), was first raised
against Dretske in Harman’s early commentary (see p.72 of Dretske (1983) for the
commentary and p.84 for Dretske’s reply). The objection runs as follows. A given
instance of an event can only be ascribed a probability with respect to a wider class
of events of the same kind. Tokens, in other words, have probabilities only in virtue
of the types to which they belong. But token events do not belong unequivocally to
any given class of events. In most cases, there is no principled way to choose the
wider set to which a given event belongs. As a result no definite statistics govern a
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particular instance of the source event in Dretske’s model, so no definite quantity of
information can be obtained for the consequent signal.

A comprehensive defence of causal information in light of the reference class
problem might take up a whole paper (see Kraemer (2015) for example). Here we
need only take account of it as part of the motivation for an alternative, functional
approach. User-independence prompts the reference class problem, and as we shall
now see, construing information as relative to a user helps solve it.

3.2 A Functional Interpretation

In this section a functional interpretation of information is outlined.! I describe how
user-relativity provides a solution to the reference class problem. Theoretical con-
sequences are discussed in Section 4, while examples from empirical science are
considered in Section 5.

The label ‘functional’ encompasses two aspects worthy of immediate note. The
first is the user-relative nature of the definition, which is the subject of this subsection.
The second is the pragmatic aspect of information, which is often emphasised in the
sciences, as opposed to its epistemic or ‘inferential’ nature which philosophy puts
to the fore. Section 4 advocates a return to theory that focuses on information as a
practical resource. In sum, a focus on the user solves the reference class problem,
and a focus on the user’s function provides a general foundation for information in
natural science.

The functional interpretation was prefigured by Dretske himself. Part of Dretske’s
definition concedes that the information carried by a signal is sometimes determined
with respect to its receiver. Some signals only carry information if their receivers have
sufficient ‘background knowledge’ to interpret them. But Dretske felt background
knowledge had ultimately to be cashed out in terms of information. In contrast, the
functional approach takes a general kind of ‘background knowledge’ to be antecedent
to information use. Supposing we have an account of what would constitute a user
of information, we can define information relative to it. As a result, we can extend
what Dretske considers a special case to all cases. We can consistently demand that
information be definitionally relative to a user’s background ‘knowledge’.

This is the line taken by Scarantino (2015), who describes a solution to the ref-
erence class problem (and several other problems) as a result of a user-relative
definition of information. Very roughly, what an agent already ‘believes’ will deter-
mine the quantity of information it can receive from a given signal. Here, ‘believes’ is
in scare quotes because it is to be read functionally or dispositionally: its ‘beliefs’ are
the propositions that must be true for its behaviour is to be successful. Scarantino’s
less provocative label for the same thing is ‘background data’. When behaviour

"For a history of approaches to information based on purposive behaviour, see Adams (2003, §3). More
recent work includes Bergstrom and Rosvall (2011), which offers a user-relative definition of genetic
information, and Rathkopf’s account of neural information, which defends a function-relative definition
against the worry that such an approach might threaten scientific objectivity (Rathkopf 2017). See also
Dennett (2017, §6) and Fresco et al. (2018). Space precludes a comparison between these works and the
account discussed here, but I suspect they are all broadly compatible.
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changes upon detection of a stimulus, we can model that stimulus as an information
source which, combined with the agent’s background data, produces that behavioural
change. For example, if a rat is able to learn that food will be served at the ring of a
bell, its background data will contain a proposition like ‘the bell ringing entails food
will almost certainly be served soon’. The information carried by the ring of the bell
is quantified by how much more probable the occurrence of food now is — which
is determined by the ‘almost certainly’ part of the phrase above.? According to this
framework, in order for a stimulus to carry information, the agent must already be
set up to respond to it — in other words, its background data must already contain a
hypothesis regarding the statistics governing the stimulus.

To reiterate: any agent, the success of whose behaviour depends on some external
condition, could be described as a potential user of information about that condition.

The statistics defined by an agent’s background data offer a principled solution to
the reference class problem. If we can show that background data is determined by
an agent’s behaviour, then we can quantify the information carried by a stimulus with
respect to that agent. Like the weight of an object considered with respect to differ-
ent planets, the information carried by a signal — its ‘weight of evidence’ — varies
depending on the consumer of that signal. Agents need not have full belief-desire
psychology for this descriptive strategy to work. They need not represent background
data to themselves. Scarantino’s framework, which falls into the broad class of cogni-
tive models labelled ‘Bayesian’, applies to simple biological systems with the ability
to respond to environmental stimuli. This is in part because it is intended as an exten-
sion of Millikan’s approach (Millikan 2013a), which is itself a response to Dretske’s
account (Dretske 1988, §3.2). All of these works are aimed at describing information
consumed by simple biological systems, not just sophisticated cognitive agents.

This functional account accords well with statistical decision theory, which pro-
vides strategies for agents depending on their goals and the information available
to them. As Stegmann (2013, p.7, Box 1) points out, information in this framework
is quantified relative to the agent in question. Ecological models in the Bayesian
paradigm define and measure information with respect to an agent’s prior and pos-
terior distribution over relevant states (see for example Dall et al. (2005, p. 189
Box 1)); this is what Scarantino seeks to capture. Although classical decision the-
ory typically construes agents as rational, the same mathematics applies to strategies
designed by evolution. In biological settings, we can explain organisms’ responses
to stimuli based on the information carried by those stimuli. But this explanation is
available only because of the learned or evolved response of the organism. Quan-
tifying information requires determining statistical correlations that held during the
learning period. This is the spirit of Millikan’s original solution to the reference class
problem (Millikan 2013a, §5.3).

On this approach, the reference class problem is avoided. A principled reference
class exists: the tokens of the stimulus encountered during the learning period that
contributed to the strategy the agent currently employs. This, I take it, is how to
cash out ‘background data’ for agents without full-fledged representational systems.

2For more on informational readings of classical conditioning, see Rescorla (1988) and Gallistel (2003).
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There remain problems for such an account that I will not address — for example,
which interactions in the learning period count as stimuli, or how the learning period
is itself determined. But I hope the spirit of the account is clear. Functional behaviour
is defined first, and information is defined in terms of its contribution to the success
of that behaviour.?

The next two sections discuss consequences of such an account. Section 4 deals
with theoretical consequences, demonstrating how MCT employs a definition of
information that is derivable from this one, and how the popular ‘irrelevance claim’
is fallacious. Section 5 demonstrates recent empirical work that makes use of MCT
and how it can be fruitfully interpreted in light of this functional account.

4 Theoretical Consequences: The Irrelevance Claim
and the Causal/Semantic Distinction

In this section I argue for two claims. First, mathematical communication theory is
not irrelevant for semantic concepts of information. Although Dretske was wrong
in the specifics of his approach, communication theory can be leveraged to under-
stand content in signalling systems. This undermines a popular distinction between
causal and semantic information. Second and consequently, the explanatory work
currently assigned to the causal/semantic distinction is best performed by a more
clearly understood distinction between natural and intentional signs. Intentional signs
are transmitted and received by codesigned entities, while natural signs are received
by an entity not codesigned with the information source. The conceptual differences
between these two categories, as well as the range of formal tools required to analyse
them, are well understood and well supported.

4.1 Overturning the Irrelevance Claim

The irrelevance claim is the claim that formal measures from MCT have no rele-
vance for the meaning or content of signals. I argue against it by applying the recent
concept of subpersonal content. I demonstrate that signals in the central MCT model
possess subpersonal content by definition, and it is this that is quantified by infor-
mational equations.* To approach the argument, I beg the reader’s patience while a
little background is put in place, introducing the notion of subpersonal content and
its significance for the issues at hand.

A growing trend in naturalistic epistemology is the use of a concept of content
that does not require personal-level intentional states. Its value lies in its explanatory
role describing the behaviour of organisms and artificial devices too simple to be

3The ‘success semantics’ account of mental content has a similar structure (Whyte 1990).

4See also Mann (2018, 10-12).

S5The irrelevance claim has been challenged by others, but it seems tough to overturn: “By the time of our
Third London Symposium on Information Theory in 1955, it had become something of an accepted saying
that ‘information theory has nothing to do with meaning’. The time seemed ripe to question this hardening
dogma...” (MacKay 1969, 79).
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ascribed personalities (Millikan 1995; Shea et al. 2017). The classic example of this
move is Skyrms’s account of signals (Skyrms 2010), which borrowed formal tools
from Lewis (1969). Lewis applied a game theory framework to study the behaviour
of rational actors, extracting a notion of content from the dynamics of behaviour
observed in such games. Skyrms demonstrated that rationality on behalf of the actors
is unnecessary. The same notion of content — the same explanations and descriptions
of behaviour of the players — can be put to work when agents in the game act in accor-
dance with evolutionary design rather than rational decision. As with the theoretical
approach spearheaded by Millikan and Shea, this move can be regarded as a demon-
stration that concepts previously developed for the intentional level are applicable at
the design level too.

Consider the following similarity between the formal concept of information and
subpersonal content. One of the important aspects of content, discussed by Millikan,
Lewis, Skyrms and others, is its dual aspect of indicative and imperative conditions.
Signals — intentional signs — can say both how things are and what is to be done.®
When it comes to information we tend to consider only the indicative aspect of sig-
nals. In turn, we favour an epistemic interpretation of its use, on which information is
an inference-supporting resource, independent of how an agent might act in response
to it. The agent may be actual or hypothetical, but it is their actual or possible know-
ing that lends an indicative flavour to “information”. I contend that once we focus not
just on knowing but on actual or possible doing we regain the instructional aspect of
signals, thus moving closer to the contemporary understanding of content.”

In terms of subpersonal content, an encoded signal in the central model of communication
theory is primitive. Primitive content denotes a signal that is equally indicative and imper-
ative. We can see that this is true of the encoded signal in the central model by overlaying
a sender-receiver model on the inner portion of the Shannon system, taking the
sender to be the encoding transmitter and the receiver to be the decoding receiver.
The signal is then the stream of encoded symbols. Sender and receiver are dealing
with encoded information whose ‘meaning’ is the primary message. The information
can equally be seen as telling the decoder what the source message is (informative)
and telling the decoder which target message to construct (instructional).

A test for primitivity is deliberation (Lewis 1969, 144; Huttegger 2007, 410).
Where receivers are permitted to deliberate over the action they will perform, the
signal they receive has a more indicative flavour. In contrast, where senders are per-
mitted to deliberate over what signal to send, it seems they are telling the receiver
what to do. (If both are permitted to deliberate, the correlational link between world
and act is in danger of being destroyed, and communication breaks down.) In the
present case, neither encoder nor decoder deliberates. Neither draws on information
outside the channel through which the signal in question is flowing. The encoder

SIn the terminology of traditional philosophy of language, signs can have both kinds of ‘direction of fit’ at
once (Millikan 1995).

71t is not immediately clear how to interpret the formalism, but here is a suggestion: while 1 bit of informa-
tion allows the receiver to infer one out of two equiprobable states of the world, perhaps 1 bit of instruction
allows the receiver to choose one out of two equifavourable acts.

@ Springer



678 S.F. Mann

takes the message as input and produces a stream of code. The decoder takes that
code as input and produces a message. Since the same primary message cannot give
rise to a different code, the encoder does not deliberate. And since the same code
cannot be translated into different messages, the decoder does not deliberate. Finally,
since neither deliberates, the code is an instance of primitive content.

The previous two paragraphs showed that signals in the central model of MCT can
be consistently interpreted as having semantic content. It is worth noting this holds
regardless of the meaning of the source message. Indeed, the source “message” need
not be a string of symbols. It need only be an element or sequence selected from a
set. Similarly, the target need only be an element or sequence drawn from a set, and it
need not be the same set as the source.® As pointed out in Section 2.2, informational
equations can be applied outside the restricted context of the fundamental problem.

Within the central model, encoded messages possess primitive content. Compare
Piccinini and Scarantino (2011, 19): “Shannon’s messages need not have semantic
content at all — they need not stand for anything.” (Compare also Owren et al. 2010,
761.) Taken literally, this is false. An encoded message in the central model must
stand for its source message, otherwise there can be no definition of information rate.
The authors might reply that what they meant to say is that the meaning of the source
message is irrelevant to the quantification of information transmission. It could be
a string of meaningless symbols and transmission rate would not change. But this
latter point is repeatedly conflated with the much stronger and entirely unsupported
claim that “Shannon information” is irrelevant for meaning in all domains in which
information can be quantified. It is by failing to appreciate the special nature of the
central model that the claim of universal irrelevance gains traction.

Primitive content is prevalent in simple systems, which is why it was christened
“primitive” by Harms (2004). Where what matters is coordinated behaviour, being
told that another agent is performing act A is equivalent to being told fo perform act
B. Studies of simple agents in signalling games demonstrate that the indicative and
imperative aspects of subpersonal content — the informative and instructional aspects
of the MCT concept of information — are useful concepts to apply at the level of
the design stance. The causal interpretation encourages inordinate emphasis on the
epistemic. Naturalistic intentionality is better off grounded in function. Both infor-
mative (indicative, descriptive) and instructional (imperative, prescriptive) aspects
are of equal significance.’

8Shannon (1959, 326-7) points out that source and target sets need not be identical, nor even ‘symbols’
in the familiar sense. Lean (2016, 239-40) makes a similar point, forging a path for the adoption of
informational models in other domains.

9A recent trend seeks to distinguish two concepts I treat as equivalent. The distinction, advocated by
several authors including Price (2008, §5), Hutto and Myin (2013, 67), Rescorla (2013) (who cites Burge
(2010) as inspiration) and Lean (2014), runs as follows. Simple signalling systems carry information in the
guise of reliable correlation (“functional isomorphism”, “Shannon information”) — tokens that correspond
to worldly states in a manner sufficient for successful behaviour. But correlational information is to be
distinguished from the much richer notion of content, which is characterised by truth conditions. There
is far more to say about this distinction and its motivations than can be addressed here. For a defence of
the use of semantic concepts in simple signalling systems, see Millikan (2013b). For some remarks on the
term “Shannon information” see below, page 11.
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To sum up: within the informational paradigm, there is something that looks like
instruction or can fruitfully be interpreted as such. Information and instruction look
like indicative and imperative content. We already have a comprehensive account
of content — the teleosemantic/evolutionary game theory approach whose unifica-
tion has recently been argued by Artiga (2016, 494-6) — that endorses amalgamating
indicative and imperative content for simple systems. The bottom-up approach of sig-
nalling systems coincides with the top-down approach of teleosemantics. We should
embrace their coherence. In contrast, the causal interpretation of information has no
notion of user action. It embodies an epistemic approach that focuses on knowing
rather than doing. The next subsection uses these considerations to argue that the pop-
ular distinction between causal and semantic information is misleading, and should
be replaced by a distinction between natural and intentional signs.

4.2 Natural Signs and Intentional Signs

In this subsection I demonstrate that the natural/intentional distinction is well placed
to do the explanatory work typically ascribed to the causal/semantic distinction.
‘Natural information’ denotes information whose sender is not codesigned with its
receiver. A receiver benefits from learning how to respond to the stimulus, but the
source of the stimulus does not benefit — either because it has incompatible interests
with the receiver or because is not an agent at all. In contrast, ‘intentional informa-
tion’ describes a cooperative relationship between sender and receiver, where both
benefit from coordinating their behaviour with the use of a signal. I shall argue
that the natural/intentional distinction is useful and accords with both theory and
practice in natural science. Meanwhile, the causal/semantic distinction is inspired
by a confusion about MCT, and obscures fruitful relationships between models of
communication and strategic behaviour.

The causal/semantic distinction (Piccinini and Scarantino 2011, §§4.1-2; Godfrey-
Smith and Sterelny 2016, §§2-3) has at least two sources. It is firstly a mutated
form of an earlier distinction between natural and intentional meaning, which may
be traced back at least to Brentano and found its clearest statement in Grice (1957).
Prompted by Dretske (1981, 1988) the distinction took centre stage in the teleose-
mantic literature of the 90’s (Millikan 2001). The original distinction is still hard at
work in Millikan’s teleosemantics (Millikan 2017, §§11-12), but its mutated form
is misleading. A second source is Bar-Hillel and Carnap’s clarification of “informa-
tion” as it appears in MCT. They distinguished the mathematical quantity from the
semantic notion which is of interest to philosophers (Bar-Hillel and Carnap 1953).
Dretske compared Grice’s approach, as well as that of Bar-Hillel and Carnap, to his
own project (Dretske 1981, pp. 241-2, n.1 and n.10). Soon after, the “still imperfectly
understood” distinction was cited by Dennett (1983, p. 344 col. 2) and picked up by
Krebs and Dawkins (1984, §§4.1-2), whence it found its way into the behavioural
ecology literature and prompted ongoing scepticism about the use of information theory
in the study of animal signalling (Pfeifer 2006; Owren et al. 2010; Sarkar 2013).

The causal/semantic distinction is predicated on taking a causal interpretation of
MCT along with the irrelevance claim. Together, they entail that whatever seman-
tic information is, it must be something richer than causal information, something
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that requires a different formal framework.!? This distinction has become so widely
accepted that the Stanford Encyclopedia entry “Biological Information” is currently
organised around it (Godfrey-Smith and Sterelny 2016). I have already argued against
both premises of the distinction: Section 3 offered a better interpretation of MCT
while Section 4.1 overturned the irrelevance claim. I will now demonstrate that the
job vacated by the redundant causal/semantic distinction is best performed by the
natural/intentional distinction.

Natural and intentional signs lie on a common spectrum. Just as there can be
degrees of adaptation leading from disposition to behaviour, there are degrees of
coadaptation from joint disposition to joint behaviour. A sign that mediates an
interaction becomes more ‘intentional’, on this definition, when production of and
response to the sign become coadapted behaviours. The sign is more ‘natural’ as pro-
duction and response are less coadapted. Behavioural ecology affirms this idea with
a useful distinction between signals and cues. Signals are typically defined in terms
of coadapted behaviour. Cues can be environmental stimuli or behaviour performed
by other organisms, but they are opportunistically exploited by receivers. Sometimes
cues become signals, when the receiver’s behaviour turns out to be beneficial to the
sender. This process is called ritualisation, because the properties of the cue tend
to become ‘ritualised’ — made more salient, easier to recognise, or repeated several
times — in order to promote the receiver’s behavioural response.!!

A natural sign has no function gua natural sign. Whatever ‘sends’ a natural sign,
if it has a function, is not the same function as that for which the natural sign is used.
So for example, a signal sent between two cooperating entities is an intentional sign
for them, but is a natural sign for an eavesdropper.'? The contemporary view seems
to have confused natural signs for “causal information”, which prompts the belief
that informational quantification can only measure natural signs. Given that anything
could in principle become a natural sign if there was an agent who could make use
of it, causal information is thought to be an incredibly broad resource, and as a result
virtually useless for biological theorising.

Contemporary scholars, I suggest, often unknowingly aim for the natu-
ral/intentional distinction, especially when they invoke “Shannon information”. The
popular claim is that Shannon information captures statistical correlations, and this
alone cannot distinguish between natural and intentional signs — between cues and

19Due to space constraints I neglect several possible positions. For example, it is possible to accept the
causal interpretation of information and deny that anything further is needed for semantic information; see
Skyrms (2010, §3). I also ignore Grice’s term “non-natural meaning” to prevent confusion.

T omit a third category, manipulations, which are influential behaviours performed by senders to the
detriment of receivers. These may display the same ‘ritualised’ qualities described for signals. The theoret-
ical status of manipulations is still in dispute, with some arguing they should be included in the definition
of signals (Owren et al. 2010). I resist that categorisation because I see coadaptation (or more broadly,
codesign) as central to the mathematical and conceptual tools we use to analyse the varieties of informa-
tion. On the other hand, Owren et al. (2010) see information as a deeply problematic concept that should
be left out of animal communication studies altogether. See Mann (2018) for a fuller discussion.

121t is this difference that Millikan (2013a) leverages to analyse the correctness conditions of intentional
signs in terms of their function. Natural signs, by definition, have no correctness conditions; they are
neither true nor false.
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signals (Godfrey-Smith and Sterelny 2016, §2) (Owren et al. 2010, 772-3). How-
ever, the term “Shannon information” seems to promote confusion. It is true that the
information measure employed by statistical decision theory is typically applied to
natural signs and not intentional signs. It is also true that this measure is derived from
Shannon’s work (Shannon 1948) which is itself a continuation of Hartley (1928).
But communication theory has other formal tools beyond measures of correlation. It
has other commitments besides the condition that signals covary with their sources.
Communication theory is not simply statistical decision theory, though it is closely
related. The mistake is likely promulgated by the association of Shannon’s name with
the quantity used in decision theory. It might be best to retire the misleading label.

Overall in this section, we have seen grounds to reject some popular positions
within the philosophy of information. At the very least, the central model of MCT is
apt for analysis in terms of one of the meanings of its signals. The next section goes
further by examining two recent applications of MCT in natural science. Although the
earliest theoretical work was concerned with countering noise in order to eradicate
error completely, subsequent theory generalised that problem to one where a certain
level of error is tolerable. This already makes its models more amenable to biological
application.

5 Empirical Consequences: Rate-Distortion Theory in Natural Science

In this section, I show how two case studies bring out a wider lesson recommending
function as a foundation for the application of information-theoretic concepts in cog-
nitive science and biology. I discuss the case studies in the following two subsections,
before describing how the functional account helps to account for these applications
of information theory. To anticipate, a functional account offers a clear interpretation
of the cost of error, which is central to the case studies.

5.1 Microbiology

Many single-celled organisms can sense chemical changes in their surroundings. By
navigating along gradients of changing density they can find food or avoid toxins.
One species, Dictyostelium discoideum, uses this process of chemotaxis to coordi-
nate mass response to a lack of nutrients. When food is scarce it is beneficial to
pool resources by aggregating. D. discoideum cells seek each other out by alternately
releasing waves of chemicals and moving in the direction of greatest concentration.
When enough cells aggregate, a fruiting body forms, which helps propagate spores
into a more favourable environment. These become the next generation of cells, once
again adopting an individual lifestyle.

During the aggregation phase, individual cells face an informational problem.
They need to determine the best direction in which to travel, and they need to be sen-
sitive to external changes in order to do this. The metabolic cost of sensitivity to fine
changes in gradient impedes perfect behaviour. Like many other living things, D. dis-
coideum must strike a balance. It must optimise its behaviour relative to informational
constraints and the requirements of behavioural accuracy. Fortunately, rate-distortion
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theory is designed to analyse such trade-offs. At the heart of the theory is a cost
function describing the penalty for misinterpreting a signal. Depending on the cost
an agent is willing to incur, it is permitted to obtain smaller amounts of information.
Because each situation — across engineering, computer science, cognitive science and
biology — is likely to involve different trade-offs between information and cost, the
rate-distortion function describing optimal behaviour is usually calculated anew each
time.

In recognition of the problem facing D. discoideum, Iglesias (2016) describes how
rate-distortion theory could be applied to explain and predict optimal behaviour. He
uses a nonstandard application of the central model to describe the cell’s predica-
ment. The signal is not the external chemical gradient. Instead, it is the hypothetical
decision located between the cell’s receptors (whose state corresponds more or less
exactly to the immediate gradient) and the cell’s behaviour. The central model is
applied entirely within a single cell. Mathematically the approach is acceptable, since
a channel need be nothing more than a probabilistic connection between two pieces
of behaviour. Given this way of modelling the situation, an appropriate optimisation
function describes the amount of information required by a migrating cell to success-
fully reach its target, which is equivalent to how well-correlated the cell’s decision
should be with its external receptors. How can we estimate information rate and
cost schedule in order to derive such a function? Iglesias takes a function that mea-
sures angular deviation from the direction the cell is supposed to be moving towards.
Cost increases as the angle between the cell’s movement and the true direction of
aggregation increases.

Iglesias provides a plausible starting point for the application of information the-
ory to optimisation problems of this kind. However, some of the details are as
yet unjustified. It is not clear how sharply cost should grow as angular deviation
increases. Nor is it clear how this function might change as the cell approaches its
target. Presumably the cell needs to be more sensitive to information the further it
is from the goal. As it gets closer, its internal bias could override transient changes
of chemical gradient that would otherwise send it in the wrong direction. Iglesias
considers the possibility of internal bias, but only to demonstrate how it affects the
mathematics in an idealised case. Empirical work is required to determine how much
and what type of bias develops during chemotaxis. This entails a methodological
problem: both bias and cost function must be derived from behaviour, but both of
them are unknown or only broadly guessable at the outset. Perhaps parametric models
describing both functions at once can be employed to generate testable hypotheses.
These are typical methodological issues faced when fitting a model to reality. The
application of information theory in microbiology is in its early days, but signs are
positive it can provide a real contribution.

The next subsection describes the application of rate-distortion theory in a rather
different domain, namely human perception.

5.2 Perception

We just saw an application of rate-distortion theory for which the output of infor-
mation transmission was a piece of behaviour, namely directional orientation and
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movement towards a goal. Sims (2016) applies rate-distortion theory in a domain
closer to its original home, in which the output of information transmission is another
piece of information.

Sims discusses two experiments. The first examines how accurately human sub-
jects can categorise straight lines by length (“absolute identification”). The second
determines how accurately subjects can choose the longest of two lines seen one after
the other (“perceptual working memory”). Accuracy in each of these tasks is impeded
by the information capacity of perceptual processing. Sims applies rate-distortion
theory to estimate the optimum rate given the cost of inaccuracy. He places emphasis
on the lack of a known cost function, and the methods by which we can estimate one.
As aresult of applying the theory to both experimental procedures, Sims purportedly
derives new insights into human perceptual performance (Sims 2016, p. 185 col. 2
and p. 190 col. 2).

Consider the absolute identification task (taken from Rouder 2004). A set of lines
of N different lengths were presented randomly. Subjects were asked to choose the
category, from 1 to N, in which the line belonged. After each choice the subject was
informed whether or not they were correct. The mapping of the central model onto
perception is more intuitive than the microbiological case. The source is the percep-
tual stimuli — lines of differing lengths — and the output is the subject’s response.
Encoding and decoding take place within the subject’s perceptual system, and the
channel capacity is inferred from the probabilities of correct responses as the number
of possible lines increases. Subjects seem to reach a point at which their performance
cannot improve indefinitely (Sims 2016, 185-6), implying capacity is limited and
rate-distortion theory can be fruitfully applied.

What are the cost functions constraining human perceptual performance? Sims
admits they are largely unknown. But he offers resources for estimating them from
performance data. His figure 5 (Sims 2016, 186) depicts three different models of
increasing fit with the data, corresponding to three different cost functions of increas-
ing complexity. The final and most accurate cost function accords with existing ideas
about perceptual “anchors” used by subjects to generate best guesses. By presenting a
sequence of potential models, Sims advocates something like the following method-
ology. We can use rate-distortion theory to derive increasingly accurate estimations of
the cost function guiding perceptual tasks, while at the same time providing hypothe-
ses as to why those cost functions should be at work rather than some other. One of
the problems with this approach is that the cost function is not the only unknown.
In the second study, performance varies with the subject’s implicit estimation of
source statistics (Sims 2016, p. 191 col. 2). The experimenter must use performance
data to infer both the subjective cost function and the subjective statistics. Similarly
with the microbiology case, we have two unknown parameters and only one set of
data for inferring their values. As above, the situation is not insurmountable. Sims
details methods for inferring appropriate models by using empirical data together
with reasonable hypotheses.

Overall, Sims sees rate-distortion theory as a tool to investigate the processing
capabilities of biological systems (Sims 2016, p. 193 col. 1). Though he deals with
what are essentially informational outputs — the responses of test subjects — he
emphasises the generality of goals subserved by information processes (Sims 2016,
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p- 193 col. 1): “The objective for biological information processing is not (merely) the
communication of information, but rather the minimization of relevant costs. Infor-
mation is simply a means to an end.” This approach accords with the interpretation
of Iglesias presented above.

5.3 A Functional Account of Information Provides a Clear Interpretation
of Cost

We have seen two applications of rate-distortion theory in two rather different
domains. Iglesias and Sims analyse biological signals with unavoidable reference to
their meaning. This practice is more easily explicable on the functional view than
the causal approach. One way to interpret cost is in terms of biological function.
While the causal interpretation has been criticised as too broad and failing to priori-
tise useful information over idle correlations,'? the functional interpretation explicitly
considers the cost of inaccuracy that is a consequence of reduced information rate.
Here, information rate gets its significance from the magnitude of benefit it induces.
Functional information is useful ex hypothesi, but there are principled bounds on its
utility, as with any other resource.

In communications engineering, rate-distortion curves can be interpreted one of
two ways. Suppose you know the maximum cost of inaccuracy you are willing to
incur. Then the curve tells you the minimum information rate you need to transmit
at in order not to exceed that cost. Alternatively, suppose you know the maximum
rate you are able to transmit at. Then the curve tells you the minimum cost you can
hope to incur. In biology, however, it seems cost will always come first. Obtaining
information is a strategy for reaching a goal. The metabolic resources invested in
gathering and transmitting information depend on how much you need, which is
determined by a cost schedule covering the many ways of failing to achieve the goal.
The cost of failure is then traded off against metabolic cost.

Increasing information rate in a communication system plausibly imposes
metabolic costs. The situation is a special case of behavioural optimisation. Here
a rate-distortion curve is the correct model to describe the relationship between
improvement and metabolic cost, because the means of improvement is informa-
tion transmission. Mathematical tools used to describe this kind of optimisation are
taken directly from MCT. One significant change is that instead of state space being
a message in a lexicon it is a biologically relevant state of affairs. The signal con-
tains information about that state of affairs, and quantifying that information is a
crucial aspect of explaining optimal behaviour. The application of information theory
in biology and cognitive science concerns optimisation with respect to the statistical
properties of both source and target, which need not be (and in the biological case
hardly ever are) messages in well-defined lexicons. The same sentiment is echoed in
recent work applying mathematical tools to molecular communication:

13In particular by Rathkopf (2017), who advocates a relativist approach to neural information. Rathkopf
also criticises the overly permissive notion of Shannon information as being out of step with the
mathematical definition of information at work in engineering.
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Signals are being regularly transmitted within and between individual cells
and microorganisms. These signals may not be sending packets of data in the
conventional communication sense, but nevertheless they enable conventional
communication applications such as sensing, coordination, and control. Thus,
we can adapt conventional communication engineering theory and techniques
to study these signaling mechanisms and understand how they work (Noel et
al. 2017, 1).

One final point about biological cost is in order. Ultimately, the costs that shape the
behaviours described above are provided by natural selection. Environmental pres-
sures determine optimal behaviour. Functions like microbe motility and perceptual
categorisation are not performed for their own sake. They contribute to the survival
and reproduction of whichever entity or entities are under selection. We should there-
fore expect the cost function of an individual piece of behaviour to derive from cost
functions that govern selective pressures. Donaldson-Matasci et al. (2010) describe
evolutionary fitness in informational terms. In an analysis deriving ultimately from
Kelly’s interpretation of information rate (Kelly 1956), the fitness penalty of failing
to heed information is bounded by the quantity of that information. Frank (2012)
offers an informational interpretation of evolutionary fitness that seems to accord
with this view. For simple models at least, our concepts of information and fitness
cost are deeply entangled. When fitness is interpreted as growth rate, it can be mea-
sured with a unit that is commensurable with information units (Donaldson-Matasci
et al. 2010, p. 228 col. 2), of which the ‘bit’ is a familiar example. And when cost
functions are interpreted as fitness penalties, their proper unit of measure is the same
as that of information. Rate-distortion curves can then be interpreted directly as the
contribution to fitness afforded by information transmission. To apply these ideas
more concretely, such as to the work of Iglesias, would require an understanding of
how individual behaviours contribute quantitatively to the fitness of organisms.

In sum, a functional interpretation of information accords well with a growing
trend that seeks to understand the optimisation of natural communication systems.
In contrast to the causal interpretation, biological information cannot be pulled apart
from the costs incurred to handle it and the benefits attained by using it. Infor-
mation allows a principled redistribution of physical resources, entailing optimised
behaviour that contributes to downstream functions and, eventually, evolutionary
fitness.

6 Recapitulation

Four connected points have been raised in the paper.

1. The concept of “information” as defined in communication theory can be
interpreted as relative to user function (Section 3). Although the causal inter-
pretation due primarily to Dretske is currently orthodox, it is supported by a
misinterpretation of communication theory.

2. The claim that information is irrelevant for meaning in every domain in which it
can be quantified is mistaken (Section 4.1).

@ Springer



686 S.F. Mann

3. Points 1 and 2 together encourage us to replace the causal/semantic distinction
with the natural/intentional distinction (Section 4.2).

4. Contemporary uses of MCT in two diverse areas of natural science are well-
interpreted on a functional account (Section 5).

I hope to have shed light on one strand of a web of theoretical and empirical
work organised around the vexed concept of information. The bottleneck between
communication theory as a mathematical and engineering discipline, and philosoph-
ical interpretations of “information” in natural science, is distressingly narrow. By
exposing some pernicious misconceptions we can pave the way for a principled
understanding of a naturalistically respectable concept of information that can do
useful work in many scientific domains.
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