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1 Introduction

This chapter is about the role of trivalence in theories of anaphora. The seminal puzzle here
is the problem of donkey anaphora: how to account for the anaphoric dependency between
‘a cat’ and ‘her’/‘the cat’ in a sentence like (1):

(1) Everyone who has a cat loves
{

her
the cat

}
.

The idea that some kind of partiality is involved in the treatment of donkey anaphora is
central to the dynamic treatment of the phenomenon (as in Kamp 1981; Heim 1982 and
especially Krahmer and Muskens 1995). More recently, Rothschild (2017) has developed
an explicitly trivalent treatment of anaphora in a static framework. I will start by explaining
the puzzle; then I will explain the standard dynamic approach; Krahmer and Muskens’ bi-
lateral dynamic semantics; and Rothschild’s static trivalent account. Finally, I will develop
an alternative trivalent approach, based on the bivalent system in Mandelkern 2022b.

In the rest of the introduction, I will explain the problem of donkey anaphora. Readers
familiar with the problem should jump to §2.

The foil here is what I’ll call the ‘classical picture’: the framework you learn in introductory
logic for translating simple English sentences into sentences of predicate logic and then
interpreting them. On this picture, a sentence with an indefinite noun phrase like ‘A cat
sleeps’ has the logical form ∃x(Cx∧Sx), where C stands for ‘cat’ and S for ‘sleeps’. ‘The cat
sleeps’ gets a similar treatment, but with the addition of a uniqueness inference—that there
is only one cat. There is controversy about how exactly this gets added: in particular, there
is a divergence between Russell, on the one hand, and Frege/Strawson, on the other. Per
Russell, the right schematization of this is ∃x((Cx∧∀y(Cy→ x = y))∧Sx), where→ is the
material conditional. That is, ‘The cat sleeps’ says there is exactly one cat and it’s a sleeping
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cat. Frege/Strawson thought that uniqueness should be formulated as a presupposition, not
part of the entailed content. So they would have ‘The cat sleeps’ presupposes ∃x((Cx∧
∀y(Cy→ x = y))) and asserts ∃x(Cx∧Sx). It seems pretty clear that Frege/Strawson were
right on this count—insofar as you are going in for this kind of picture, uniqueness should
be thought of as a presupposition, not an entailment. But this is basically irrelevant for our
purposes, so I will schematize ‘The cat sleeps’ with ιx(Cx∧Sx), which you can read either
as Russell’s uniqueness-entailing or Frege’s uniqueness-presupposing definite. Universal
quantification is schematized with ∀ and→: ‘Every cat sleeps’ gets translated ∀x(Cx→ Sx).
Finally, pronouns like ‘her’ in ‘Every cat has a mother and loves her’ get translated as
variables: ∀x(Cx→ (∃y(M(y,x))∧L(x,y))).

Foil in hand, let’s see why this can’t be right. Consider again a sentence like (1):

(1) Everyone who has a cat loves
{

her
the cat

}
.

Focus first on the variant with pronouns. Apply the logic-class translation rules above to
‘Everyone who has a cat loves it’, and we get (2):

(2) ∀x((∃y(Cy∧H(x,y)))→ L(x,y))

The problem with (2) is that the y in the consequent of the material conditional is unbound.
Unbound variables are allowed in the classical picture, but on the understanding that they
refer to salient individuals via a contextually given variable assignment. So (2) is a rea-
sonable parse of (1), on standard assumptions, but only in the case where ‘her’ refers to a
contextually salient thing—say, a vet who you have just been discussing—not of the promi-
nent, covarying reading of (1) which says that every cat-owner loves the cat she owns.

Intuitively, what we need to get the covarying reading is for the y in the consequent to be
bound by a quantifier. The only way to achieve that with the tools we started with, however,
is to give the existential quantifier ∃y wide scope, as in (3):

(3) ∀x∃y((Cy∧H(x,y))→ L(x,y))

But this is, once more, a failure: these truth-conditions are absurdly weak. In fact, the mere
existence of a non-cat suffices to ensure that (3) is true. In other words, this is a reasonable
parse, not of (1), but rather of ‘For every person, there is something which is either not a
cat, not owned by that person, or loved by that person’.

What we want, for our translation to approximate the intuitive truth-conditions of (1) (on
its covarying reading), is something like (4):

(4) ∀x∀y((Cy∧H(x,y))→ L(x,y))

This says what (1) intuitively does: namely, that every cat owner loves the cats she owns.
But notice how we have transformed the original English sentence: we have taken an indef-
inite noun phrase from the restrictor of a quantifier, given it scope over the nuclear scope of
the quantifier, and turned it into a universal quantifier. The problem, of course, is not just
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that this is a departure from the standard rules, but that indefinites can’t generally be treated
as universal quantifiers: ‘A cat sleeps’ doesn’t mean the same thing as ∀x(Cx→ Sx).

One reaction to this problem would be to try to find translation rules that tell us when
indefinite noun phrases get translated as existential quantifiers and when they get translated
as universal quantifiers. Maybe that is a reasonable project for some purposes, but not if our
project is understand meaning in natural language, since rules of that kind would be totally
non-compositional. From the point of view of that approach, donkey sentences show that
the classical picture summarized above is wrong.

Things are slightly more complicated, but equally problematic, when we have definite de-
scriptions rather than pronouns. Consider ‘Everyone who has a cat loves the cat’. This has
a prominent covarying reading on which it seems to again express the same thing as (4):
namely, that every cat lover loves her cats. Consider the logic-class translation in (6):

(5) ∀x(∃y(Cy∧H(x,y))→ ιy(Cy,L(x,y)))

This says: for everyone, either there is nothing that is a cat owned by them; or else there is
a unique cat, and they love the cat. That’s obviously wrong, since it entails (or presupposes,
if you prefer) that there is at most one cat, while (1) obviously doesn’t communicate that.

To deal with this problem, we could either spot the definite article some covert material,
or relativize its uniqueness inference to a relevant domain. Both options are pursued in the
literature, and are indistinguishable for our purposes. So, if we pursued the first option, we
could say that (1) has the logical form ‘Everyone who has a cat loves the cat they have’.
Then we’d get:

(6) ∀x(∃y(Cy∧H(x,y))→ ιy(Cy∧H(x,y),L(x,y)))

Here the cats covary with the universal quantifier, as desired; and (6) does not entail that
there is at most one cat. So this is a lot closer to what we want. But it’s still not right,
because (6) entails/presupposes that every cat-owner has just one cat. Clearly, though,
‘Everyone who has a cat loves the cat’ can be true even when some people have more than
one cat. In case you aren’t immediately convinced of this, consider the variant of Heim
(1982)’s sage-plant sentence in (7):

(7) Everyone who has a cat has a second cat to play with
{

it
the cat

}
.

It’s clear enough what this says: that everyone who has one cat has at least two cats. But the
sentence would be trivial (in the sense of being true only if the restrictor is empty), if the
definite description carried a uniqueness inference. The basic issue is that (7) is predicted
to be equivalent to (8), which is obviously trivial:

(8) Everyone who has a cat has a second cat to play with the only cat they have.

In sum: when we turn from pronouns to definite articles, things are only marginally bet-
ter; while it is easier to get a covarying reading than with pronouns, the results predict
uniqueness inferences that are not in fact there.
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Although donkey quantification illustrates the problems with the classical approach in a
particularly striking way, we can illustrate the problem more simply with minimal pairs of
sequences or conjunctions, modeled on Partee’s marble sentences (Heim, 1982). Compare:

(9) a. Sue has a child. She lives at a boarding school.
b. Sue is a parent. She lives at a boarding school.

(9a) is most naturally interpreted as saying that Sue has a child at boarding school, while
(9b) is most naturally interpreted as saying that Sue has a child and Sue herself is at boarding
school. The classical picture does not have an obvious explanation of this contrast. We
could, of course, say that what is happening here is that ‘a child’ binds ‘She’ in (9a), while
this kind of binding is not possible in (9b). But it is not clear how this would be possible on
the classical approach, in which quantifiers can only bind variables that are in their syntactic
scope. Moreover, that response would not do anything to help explain donkey sentences.

We can characterize the contrast in (9) in general by saying that indefinites have open scope
to their right, as Egli (1979) observed: they can, at some level of description, “bind” def-
inites that follow them, whether the definite is in the indefinite’s syntactic scope or not.
In general, where some stands for the indefinite, the claim is that sentences with the form
some(p)∧q and some(p∧q) are, in some pragmatically relevant sense, equivalent.

Now, we might of course find different accounts of contrasts like those in (9), on the one
hand, and donkey sentences, on the other hand. But impressionistically, these look like very
much the same issue: the heart of the problem is how to account for anaphoric dependencies
between definite and indefinite noun phrases which go beyond syntactic binding relations.

The pair in (9) also brings out an important point: the phenomenon we are exploring has
something essentially to do with the relationship between definites and indefinites in par-
ticular. Hence ‘she’ can easily refer to Sue’s child if it’s preceded by ‘Sue has a child’, but
not so easily if preceded by ‘Sue is a parent’—even though these plausibly have the same
truth-conditions, and certainly do in the classical theory. We can see the same point in the
context of quantifiers with minimal variants on (1), as in (10):

(1) Everyone who has a cat loves her.

(10) Every cat-owner loves her.

Even though plausibly someone is a cat-owner iff she has a cat, the prominent covarying
reading of (1) seems unavailable for (10). So a different way of framing the problem of don-
key anaphora is to account for anaphoric dependencies between definites and corresponding
indefinites, and the unavailability of such dependencies between definites and other noun
phrases which are intuitively truth-conditionally equivalent to those indefinites.

4



2 E-type and dynamic responses

I will briefly describe the two main existing categories of response to this problem, e-type
and dynamic. Neither of these makes explicit use of trivalence, but partiality plays a cen-
tral role in the dynamic approach, which also forms the central backdrop for the trivalent
approaches we’ll explore, so I’ll explain the dynamic approach in some detail.

The e-type approach (sometimes, confusingly, called “d-type”) aims to rescue the classical
treatment of (in)definites by rejecting other parts of the classical picture.1 On this approach,
pronouns are, at some level of logical form, definite descriptions. Definite descriptions, in
turn, generally have unpronounced material which fill out their restrictor (in roughly the
way we’ve sketched so far). Uniqueness disappears because definite descriptions have their
uniqueness presuppositions evaluated relative to very small parts of the world, where they
can end up being trivially satisfied (we can truly say that there’s only one cat in existence
if we limit our viewpoint to this room). Although this approach in some sense tries to
save the classical semantics above, the saving doesn’t go very deep, since the classical
theory of quantifiers and connectives goes out the door (to be replaced with custom-made
replacements, not, for instance, any familiar Kleene semantics).

The dynamic approach, which starts in the work of Kamp 1981; Heim 1982 (in turn devel-
oping ideas from Karttunen 1976) rejects the classical picture wholesale. On the dynamic
approach, definite descriptions and pronouns (which I’ll refer to, together, as ‘definites’)
and indefinites are all essentially free variables. Indefinites are variables which must be
contextually new, while definites are variables which must be contextually familiar. This
approach gets coupled with a novel approach to sentential content and connectives, as I will
now explain.

2.1 Dynamic (in)definites

To illustrate the basic ideas of dynamic semantics, I’ll briefly sketch a slightly simplified
version of Heim 1982’s system. Start with the dynamic notion of a context: a set of pairs
of variable assignments and worlds. That is, a context is a set of pairs 〈g,w〉 where w is
a possible world and g is a (possibly partial) function which takes variables to individuals
in the domain of w. Sentential contents, in general, are context change potentials (CCPs):
(possibly partial) functions which, where defined, take an input context to a new context.
Where p is a sentence and c a context, we write [p] for the CCP denoted by p, and we write
c[p] for the result of applying [p] to c. c[p] is itself a new context, so we can write, for
instance, (c[p])[q] for the result of applying [q] to the result of applying [p] to c. We omit
parentheses since we can do so without risk of confusion.

The role of indefinites in this system is to extend the contextual variable assignments so
they are defined on a new variable, and then assign that variable to something satisfying the

1E.g. Geach 1962; Evans 1977; Parsons 1978; Cooper 1979; Neale 1990; Heim 1990; Ludlow 1994; Büring
2004; Elbourne 2005; Lewis 2012, 2019; Mandelkern and Rothschild 2020; Lewerentz 2020.
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indefinite’s argument. The role of definites, correspondingly, is to say something about a
variable that has already been introduced in this way. So, for instance, ‘There is a cat’ has
the CCP [somex(Cx)] which takes a context c and does two things. First, it checks whether
x is novel in c, that is, whether g is undefined on x for any g included in a pair 〈g,w〉 ∈ c. If
x is not novel, the CCP is undefined. Otherwise, the result is to extend c with all x-variants
on variable assignments in c, and then keep all and only those pairs that satisfy Cx. That
is, we find the set of pairs 〈g,w〉 such that there is some pair 〈g′,w′〉 ∈ c, such that w = w′,
and g is just like g′, except that it is also defined on x (in that case we can write g >x g′,
and say that 〈g,w〉 x-extends 〈g′,w′〉). Then keep just the pairs from that set such that Cx is
true—that is, where x is assigned to a cat in the world of the pair.

More formally, it is helpful for expository purposes to uncouple the contribution of somex

from that of its argument. First, we have:2

c[somex] =

{
# ∃〈g,w〉 ∈ c : g(x) 6= #
{〈g,w〉 : ∃〈g′,w′〉 ∈ c : w = w′∧g >x g′} otherwise

Then we can treat somex(p) just as successive update of the input context, first with somex,
then with p. In particular, where P is any n-ary predicate, and I takes any world and
predicate to that predicate’s extension at that world, we have:

c[P(x1,x2, . . .xn)] = {〈g,w〉 ∈ c : 〈g(x1),g(x2), . . .g(xn)〉 ∈I (w,P)}

Turning to definites, Heim’s proposal is that definites have a complementary definedness
requirement to indefinites: the definite ιx(Cx,Sx) (‘The cat sleeps’) requires that x be famil-
iar, in the sense of being defined everywhere in the context, and in particular assigned to a
cat. Assuming definedness, we then update with the restrictor, so we get exactly the pairs
〈g,w〉 where g(x) is a sleeping cat in w. Generally (we’ll assume the restrictor is always
free in x):

c[ιx(p,q)] =

{
c[q] c[p] = c
# otherwise

Pronouns, we can assume, simply have a tautological restrictor, so that ιx(>x,q) simply
requires that x be defined throughout the input context.

The intuition behind this approach is that indefinites “open a new file card”, in Heim’s
idiom, or “establish a new discourse referent”, in Karttunen’s. By extending variable as-
signments throughout the context, indefinites license subsequent anaphora with definites.

2Cases are to be read from top to bottom, so that, e.g.,

f (x) =


a b
c d
e otherwise

says that f (x) is a iff b holds; c iff b does not hold and d holds; and e in all other cases, i.e., iff neither b nor d
holds.
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So, for instance, once we have updated the context with somex(Cx), we can then use a
definite with the form ιx(Cx,q).

More concretely, this sketch puts us in a position to see how we account for the open scope
of definites. So recall (9):

(9) a. Sue has a child. She lives at a boarding school.
b. Sue is a parent. She lives at a boarding school.

Assume that (9a) gets parsed somex(Chx). ιx(>x,Bx). Assume x is novel in c; then this
is guaranteed to be defined, since the update of c with the first sentence ensures that x is
familiar by the time we get to the second sentence. Moreover, this update will be identical
to the update we get with somex(Chx∧Bx): both will take c to the set of pairs 〈g,w〉 such
that g assigns a child of Sue’s in w to x, that child is at boarding school in w, and 〈g,w〉
x-extends some pair in c.

This matches the intuition that (9a)’s most prominent reading says that Sue has a child at
boarding school. By contrast, this reading will not be available for (9b). Assuming (9b) has
the form somex(Sue(x)∧Px). ιx(>x,Bx), then it will be interpreted as saying that Sue is a
parent and Sue is at boarding school, matching its most prominent reading.

Conjunction is treated in dynamic systems as successive context update: that is, c[p∧q] =
c[p][q] (where defined; I’ll leave definedness caveats implicit throughout what follows). So
these points apply equally to the corresponding conjunctions:

(11) a. Sue has a child, and she lives at boarding school.
b. Sue is a parent, and she lives at boarding school.

More generally, in the system we’ve sketched so far, indefinites have open scope to their
right, in the sense that somex(p)∧ ιx(p,q) will always denote the same CCP as somex(p∧
q); likewise for somex(p). ιx(p,q).

2.2 Quantifiers

We can integrate quantifiers into the system by successively updating the context with the
restrictor and then the scope, so as to capture the dependencies between definites in the
scope and indefinites in the restrictor.

So consider ‘Everyone who has a cat loves
{

her
the cat

}
’, that is, everyx(somey(Cy∧H(x,y)), ιy(Cy,L(x,y))).

(I focus on the definite description case, but the reasoning in the pronoun case is the same.)
Essentially, we want everyx to temporarily extend c with the restrictor, then check that that
all the extended points in the resulting set also survive update with the scope. In more detail,
say that g extends g′, written g ≥ g′, just in case g is defined everywhere g′ is, and agrees
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with g′ everywhere that g′ is defined. Then we say:3

c[everyx(p,q)]= {〈g,w〉 ∈ c :∀g′ :
〈
g′,w

〉
∈ c[somex][p]→∃g′′≥ g′ :

〈
g′′,w

〉
∈ c[somex][p][q]}

This handles donkey anaphora in the same way that dynamic semantics predicts the open
scope of indefinites. Suppose the restrictor of a quantifier contains an indefinite and the
scope a corresponding definite. That indefinite will free up its corresponding variable, and
so the definite in the scope will be defined, and will covary with the values of the indefinite.

To see the idea, let’s work through our example everyx(somey(Cy∧H(x,y)), ιy(Cy,L(x,y))).
Consider an arbitrary context c. Assume, for simplicity, that all variables are novel in c, so
that all the points in c have the form 〈g∅,w〉, where g∅ is the variable assignment that is
nowhere defined. Let cx stand for c[somex], i.e. the set of points which x-extend some point
from c. c[everyx(somey(Cy∧H(x,y)), ιy(Cy,L(x,y)))] will be the set of points from c such
that, for any extension of that point which is in cx[somey(Cy∧H(x,y))], there is a further
extension of that point which is in cx[somey(Cy∧H(x,y))][ιy(Cy,L(x,y))]. So let 〈g,w〉 be
in cx[somey(Cy∧H(x,y))]. That means that g(y) is a cat had by g(x). We check whether
there is a g′ ≥ g such that 〈g′,w〉 ∈ cx[somey(Cy∧H(x,y))][ιy(Cy,L(x,y))]. First note that
this update is guaranteed to be defined, since the indefinite licenses the definite by ensuring
that x is familiar and assigned to a cat throughout the input context. And this will hold just
in case g(x) loves g(y). So 〈g∅,w〉 survives update with our donkey sentence just in case
everything in w which owns a cat also loves that cat. We thus get the intended, covarying
reading of donkey sentences (without unwanted uniqueness inferences).

2.3 Negation and disjunction

There is much to be said for and against the dynamic approach. This is not the place
for a global assessment. However, I want to briefly explain a well-known problem which
provides an immediate motivation for trivalent alternatives: the problem of double negation
and disjunction.

To work up to the problem, we need to a semantics for negation. The obvious approach
simply says that c[¬p] = c \ c[p]. This is fine for a propositional dynamic fragment, and
indeed is suggested for that purpose by Heim (1983). But it doesn’t work for fragments
with anaphora. To see this, consider any context c, and consider the sentence ‘There is not
a cat’. Given the present semantics, c[¬somex(Cx)] would be c\ c[somex(Cx)]. But a little
reflection shows this is just c again, as long as it is defined: for, provided that x is novel in
c, every variable assignment in a pair in c[somex(Cx)] will properly x-extend a pair from c,
and hence will not be in c. This is obviously the wrong result.

The correct result must capture the universal truth-conditions of negated indefinites: ‘There
is not a cat’ says that nothing at all (in the relevant domain)4 is a cat. We can get this with

3Things need to be more complicated than this, because of the well-known proportion problem for this kind
of semantics, but this is good enough to give the general idea.

4I’ll ignore domain restriction throughout.
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the standard dynamic semantics for negation, which says that we keep the pairs from the
input context which don’t have any extensions in the context that results from updating the
input context with the negatum:

c[¬p] = {〈g,w〉 ∈ c : @
〈
g′,w′

〉
∈ c[p] :

〈
g′,w′

〉
≥ 〈g,w〉}

This nicely captures the universal import of negated indefinites. On this semantics, c[¬somex(Cx)]
is the set of pairs 〈g,w〉 ∈ c such that no extension of the pair is in c[somex(Cx)]. That is
the set of pairs 〈g,w〉 such that no x-extension of g assigns x to a cat in w, which is to say,
exactly those pairs 〈g,w〉 such that there there are no cats in w.

Note that this update does not license subsequent definites since variable assignments are
not extended by updates with negated indefinites. (This is easy to see from the fact that
c[¬p] is always a subset of c—that is, [¬p] is an eliminative update.) This is as desired; the
‘she’ in (12b) obviously can’t refer to Sue’s child (of course, this is overdetermined).

(12) a. Sue has a child. She is at boarding school.
b. Sue doesn’t have a child. She is at boarding school.

But, while things look good so far, this approach has an undesirable downstream effect.
Since single negations are eliminative, double negation is as well: c[¬¬p] is obviously
always a subset of c. But that means that doubly negated indefinites will not license subse-
quent definites, just like singly negated indefinites.

Here’s the intuition behind this. In the classical picture, indefinites are existential quanti-
fiers; the universal meaning of negated indefinites falls out immediately from the interaction
of Boolean negation with existential quantification. By contrast, in dynamic semantics, in-
definites are not existential quantifiers; they are, in essence, just free variables. This is what
allows us to capture the open scope of indefinites. But that means that, to capture the uni-
versal force of negated indefinites, we need to make negation a quantifier. This is exactly
what the standard dynamic negation does. But then when you layer two negations, you end
up with two quantifiers. But quantification is not involutive: two quantifiers is not the same
as no quantifiers! So negation is not involutive either: double negation elimination is not
valid; in particular, doubly negated indefinites will not license subsequent definites.

More concretely, consider a doubly negated indefinite sentence, like ‘It is not the case that
there is not a cat’, with the form¬¬somex(Cx). Given our semantics so far, c[¬¬somex(Cx)]
will comprise exactly the pairs 〈g,w〉 from c such that w contains cats.5 So x will remain
novel in c[¬¬somex(Cx)]. In other words, doubly negated indefinites have the updated
effect of the classical existential quantifier, rather than the dynamic indefinite.

Again, a quick way to see that doubly negated indefinites can never license subsequent
anaphora is from the fact that the dynamic negation above is eliminative: c[¬p] is always a
subset of c. If x is novel in c, then, obviously, x is novel in any subset of c. So if x is novel

5At least, provided that x is novel in c and hence our update is defined.
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in c, then x is novel in c[¬p], no matter what p is—and so definites will be undefined in
c[¬p] if they are undefined in c.6

So much for the prediction; what are the data? As Karttunen (1976) discussed, doubly
negated sentences do license anaphora—contrary to the present prediction. Compare:

(13) a. It’s not the case that Sue doesn’t have a child. She’s at boarding school.
b. It’s not the case that Sue isn’t a parent. She’s at boarding school.

Or, somewhat more naturally:

(14) a. - Sue doesn’t have a child. - That’s not true! She’s at boarding school.
b. - Sue isn’t a parent. - That’s not true! She’s at boarding school.

The prominent interpretation of the (a)-variants says that Sue has a child who is at boarding
school, while the prominent interpretation of the (b)-variants says that Sue herself is at
boarding school.

In general, it looks like definites are licensed by doubly negated indefinites.

Double negation is a somewhat exotic environment, to be sure. But the same problem turns
up in other, more ordinary environments, like disjunction. As Evans (1977) and Roberts
(1987) (citing Partee) observe, negated indefinites in left disjuncts license definites in right
disjuncts. Thus consider (15), where the definite naturally refers to the (potential) bath-
room:7

(15) Either there is no bathroom, or
{

it
the bathroom

}
is upstairs.

Intuitively, we want the negation of the left disjunct to be available when we process the
right disjunct. The natural way to try to capture this intuition in dynamic systems is as
follows (Beaver, 2001):

c[p∨q] = c[p]∪ c[¬p][q]

So consider a sentence with the form ¬somex(Bx)∨ ιx(Bx,Ux), like (15). Plugging in this
semantics for disjunction, we get c[¬somex(Bx)∨ιx(Bx,Ux)]= c[¬somex(Bx)]∪c[¬¬somex(Bx)][ιx(Bx,Ux)].
If double negation elimination were valid, this would give us exactly what we wanted: this
would be equivalent to c[¬somex(Bx)]∪ c[somex(Bx)][ιx(Bx,Ux)], ensuring that the defi-
nite in the right disjunct was licensed and, in the relevant sense, ‘referred’ to the bathroom.
But since double negation elimination is not valid, this is not what we get; in general, the
prediction is that the CCP of a sentence with this form will never be defined (except in a
degenerate case): the left disjunct will require that x is novel throughout the input context,
while the right disjunct will require that x be familiar in some subset of the input context,
which can happen only if that subset is the empty set.

The problem is deep. We do not have a lot of latitude in our general approach to negation:
if we are to capture the universal import of negated indefinites, given a framework broadly

6Except for the degenerate case where c[¬p] =∅.
7Talk of ‘reference’ throughout is just meant to get at some pretheoretical intuition, and is loose at best.
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like the one sketched above, we need negation to quantify over variable assignments. But
then it is hard to see how two negations could cancel each other out.

I have sketched this problem, however, not to convince you to abandon dynamic semantics,
but rather because it provides a particularly clear motivation for the trivalent systems which
are our main topic in this chapter, and which I now turn to.

3 Bilateral dynamic semantics

I’ll begin by considering the most influential response to this problem from within the
framework of dynamic semantics, namely, that of Krahmer and Muskens 1995. Krah-
mer and Muskens solve the problems I have sketched by moving to a bilateral dynamic
semantics which compositionally specifies both an extension and anti-extension for every
sentence. The basic idea is that somex(p) has as its extension the standard dynamic meaning
of indefinites, and as its anti-extension the universal meaning of negated classical indefi-
nites. Then negation can operate simply as a switch between extension and anti-extension.

So (translating the ideas from the relational framework Krahmer and Muskens use into the
functional framework we have been working with), we distinguish the extension [p]+ and
anti-extension [p]− of any sentence, both of which are still CCPs. Our entry for negation
simply switches from extension to anti-extension, and vice versa:

c[¬p]+ = c[p]−

c[¬p]− = c[p]+

It is already clear from this that double negation elimination will be valid, since c[¬¬p]+ =
c[¬p]− = c[p]+.

Our entry for atoms is predictable:

c[P(x1,x2, . . .xn)]
+ = {〈g,w〉 ∈ c : 〈g(x1),g(x2), . . .g(xn)〉 ∈I (w,P)}

c[P(x1,x2, . . .xn)]
− = {〈g,w〉 ∈ c : 〈g(x1),g(x2), . . .g(xn)〉 /∈I (w,P)}

The heart of the proposal is the following two-sided entry for some:8

c[somex(p)]+ = {〈g,w〉 : ∃
〈
g′,w′

〉
∈ c : w = w′∧g >x g′∧〈g,w〉 ∈ c[p]+}

c[somex(p)]− = {〈g,w〉 ∈ c : @
〈
g′,w′

〉
: w = w′∧g′ >x g∧

〈
g′,w′

〉
∈ c[p]+}

In essence, somex(p) has the extension of the dynamic update with indefinites, while it has
the anti-extension of the dynamic update with negated indefinites.

This bilateral approach allows Krahmer and Muskens to navigate the poles that squeeze any
theory of the indefinite. On the one hand, we want matrix indefinites to update contextual

8I leave out the novelty condition for readability.
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variable assignments, and hence not to quantify over assignments. On the other hand, we
want a universal meaning for negated indefinites, which means they need to quantify over
assignments. Achieving the latter by making negation itself a quantifier over assignments
yields the problematic failure of double negation elimination we have seen. By contrast,
making both of these meanings already a part of the semantics of indefinites—as an ex-
tension and anti-extension, respectively—lets us capture the two faces of indefinites, while
keeping quantification out of negation, and thus validating double negation elimination.

While Krahmer and Muskens’ approach is presented in a bilateral format, their original (re-
lational) semantics can be equivalently reformulated in trivalent terms, as Benjamin Spector
has helpfully pointed out to me.9 Their treatment can thus be seen as a landmark in the triva-
lent treatment of anaphora. (Of course, partiality is already an essential part of (Heimian)
dynamic semantics, so trivalence already, in a way, played a central role in that approach.)

Having said that, this system is somewhat complex. And once we start using trivalence, it
is not entirely clear that we need the powerful functional/relational apparatus of dynamic
semantics at all, as we will see presently.

Before going on, I should note that there are other, broadly related, broadly dynamic so-
lutions to the double negation problem: see especially van den Berg 1996; Gotham 2019;
Elliott 2020a, b. I omit discussion of these interesting systems only for reasons of space.

4 Rothschild’s trivalent approach

In the rest of the chapter, I will explore two systems which are trivalent but dispense with the
functional/relational setting of dynamic semantics (though both systems borrow ideas from
dynamic semantics, as will be clear throughout and as I discuss in the conclusion). The
idea of accounting for anaphora in a trivalent framework without the apparatus of dynamic
semantics is a very recent one, first explored, to my knowledge, in Rothschild 2017, which
I will now summarize.

4.1 Connectives

To lay out Rothschild’s system, I will work with the same language, closed under an addi-
tional one-place operator † (a closure operator, on which more shortly). Pronouns are now
translated into our language as variables, rather than using ι .

Rothschild’s treatment of the connectives is the standard strong Kleene one. That is, where

9It is not clear that this holds for the functional version of their semantics that I have presented here, but that
doesn’t affect the basic point.
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g is an assignment and w a world, and JpKg,w the truth-value of p at 〈g,w〉:

Jp∧qKg,w =


1 JpKg,w = JqKg,w = 1
0 JpKg,w = 0 or JqKg,w = 0
# otherwise

Jp∨qKg,w =


1 JpKg,w = 1 or JqKg,w = 1
0 JpKg,w = JqKg,w = 0
# otherwise

J¬pKg,w =


1 JpKg,w = 0
0 JpKg,w = 1
# JpKg,w = #

If you want an intuition behind these entries, a helpful heuristic: we can (though we don’t
have to) think of undefinedness as classical underdetermination. A sentence is true if it’s
classically true on every way of filling in the underdetermination, false if classically false
on every way of filling in the underdetermination, and undefined otherwise. Since these
entries will be familiar to most readers, I let them stand here without discussion; see the
Foundations section of this volume for more exposition.

Note that these are symmetric entries. Anaphora, of course, involves striking asymmetries:
‘he’ in (16b) is not naturally interpreted as being anaphoric on ‘a man’, while it is in (16a):

(16) a. A man came in and he was wearing a beret.
b. He was wearing a beret and a man came in.

Right-to-left anaphoric dependencies are, however, possible:

(17) He wasn’t satisfied, so a student of mine was disputing his grade.

While Rothschild develops a symmetric system, he notes that you could instead work with
an asymmetric, “middle Kleene” system instead (I lay out such a system in §5.2 below).

4.2 Anaphora

The first innovation in the system comes in the treatment of predicational sentences. Roth-
schild assumes that there is a contradictory object ⊥ in the domain which can be the value
of variable. The idea is that a predicational sentence P(x1,x2, . . .xn) is undefined at g if g
assigns any of x1 . . .xn to ⊥:

JP(x1,x2, . . .xn)Kg,w =


# g(x1) =⊥ or g(x2) =⊥ or . . .g(xn) =⊥
1 〈g(x1),g(x2), . . .g(xn)〉 ∈I (w,P)
0 otherwise
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Incidentally, while this is helpful heuristically, it should not be taken as ontologically com-
mittal; we could, as far as I can see, equally work with partial assignments, rather than with
total assignments and the object ⊥.

The final central move comes in treating somex(p) as having the same extension as p, but a
slightly wider anti-extension than p:

Jsomex(p)Kg,w =


1 JpKg,w = 1
0 g(x) =⊥ or JpKg,w = 0
# otherwise

To see the basic idea, consider a sentence like somex(Cx∧ Sx) (‘A cat sleeps’). This has
the same truth conditions as Cx∧ Sx: it is true at 〈g,w〉 just in case g(x) is a sleeping cat
in w. But this sentence slices falsity and undefinedness differently from the open sentence.
Both the open sentence Cx∧Sx and somex(Cx∧Sx) are false when g(x) is something other
than⊥ which is not a sleeping cat. But the open sentence is undefined if g(x) =⊥, whereas
somex(Cx∧Sx) is false when g(x) =⊥. So somex is, in Karttunen’s terminology, a plug for
undefinedness stemming from assignment of x to ⊥.

The final piece of the central picture is a fairly standard pragmatic story. Rothschild adopts a
combination of Heimian and Stalnakerian assumptions. Following Heim, Rothschild mod-
els a context as a set of pairs of worlds and variable assignments. Following Stalnaker, he
assumes that p is only assertable in a context c if p is defined at every point in c. When p is
defined throughout c, then if p is asserted and accepted, the subsequent context is the set of
points in c where p is true, that is, c∩ JpK.10

This puts us in a position to see how the characteristic law of dynamic semantics—the open
scope of indefinites—is validated by Rothschild’s system. Consider a sentence with the
form

(18) somex(Cx)∧Px.

That is, ‘There is a cat and it is purring’. The open scope of indefinites says that this
sentence should be equivalent to ‘There is a purring cat’:

(19) somex(Cx∧Px).

And indeed, in Rothschild’s system, these are equivalent. Consider any point 〈g,w〉. Given
the rules we have laid out, (18) and (19) are both true whenever g(x) is a purring cat in w.
Both are false otherwise: if g(x) = ⊥, then the right conjunct of (18) is undefined, but the
left conjunct is false, and so by the strong Kleene rules, the conjunction is false. And, by
our rule for some, (19) is false, too, if g(x) = ⊥. If g(x) 6= ⊥ but is not a purring cat in w,
then both sentences are false.

10JpK= {〈g,w〉 : JpKg,w = 1}.
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This reasoning is general: somex(p)∧ q is semantically equivalent to somex(p∧ q). And
this extends equally to sequences of sentences: somex(p). q will always lead to the same
update as somex(p∧q).

At a high level, this approach mimics Heim’s treatment, and the novelty/familiarity intu-
ition. An indefinite sentence somex(p) is assertable in a context which includes assignments
of x to ⊥, since somex(p) is simply false at any such assignment. Once somex(p) has been
asserted, subsequent sentences which are free in x—that is, a sentence with a pronoun in-
dexed to x—will be assertable, since, once we’ve updated with somex(p), the context won’t
include any assignments of x to⊥. By contrast, a sentence which is free in x won’t generally
be assertable without a preceding indefinite sentence, since the context then may contain
assignments which take x to ⊥, in which case the assertion would crash (modulo the usual
points about accommodation).11

Rothschild focuses on anaphora involving pronouns, but we can extend his system to defi-
nite descriptions easily enough. Extend our language so that, for any variable x and sentence
p free in x, x(p) is also a formula. Let the terms of our language be all the strings of the
language starting with a variable (so, the variables, plus the definite descriptions). The idea
is that a bare variable x is interpreted as a pronoun, while a string like x(Cx) stands for
‘the cat’. We extend our semantics for predication in the usual way: where τ1 . . .τn are any
terms,

JP(τ1,τ2, . . .τn)Kg,w =


# Jτ1Kg,w = # or Jτ2Kg,w = # . . . or JτnKg,w = #
1 〈Jτ1Kg,w,Jτ2Kg,w, . . .JτnKg,w〉 ∈I (w,P)
0 otherwise

For any variable x, we have:

JxKg,w =

{
g(x) g(x) 6=⊥
# g(x) =⊥

Finally, for a definite description x(p), we have:

Jx(p)Kg,w =

{
g(x) JpKg,w = 1
# JpKg,w 6= 1

That is, a definite like x(Cx) will denote g(x) provides that g(x) is a cat in w, and otherwise
⊥. This will extend the reasoning about the open scope of indefinites to definite descriptions
in a straightforward way. P(x(Cx)) (‘The cat purrs’) will lead to a crash in any context where
x is somewhere assigned to a non-cat. But if we first update with somex(Cx), then all the
points in the context will assign x to a cat, and hence P(x(Cx)) is guaranteed to be defined.

11Note that Rothschild only encodes “familiarity” (that is, his definedness condition on predicational sen-
tences), and not novelty. But, as he notes, it’s not clear that there is any direct empirical evidence for novelty.
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4.3 Negation

So far, this is supremely elegant. If we can do things with such minimal resources, we
should.

The rest of the system is somewhat less compelling. Problems start when we come to
negation. Consider ‘There’s not a sleeping cat’: ¬somex(Cx∧Sx). Given the strong Kleene
negation, this is true at 〈g,w〉 just in case g(x) is a non-sleeping-cat in w or is ⊥. This does
not get us the strong, universal meaning we want for negated indefinites.

To deal with this problem, as we have seen, Heim (1982), in essence, makes negation a
quantifier over assignments. That is the approach, anyway, of Chapter 3 of Heim 1982; a
different approach comes from the second chapter of Heim 1982. That approach is to insert
existential closure operators which take scope over indefinites, and, in essence, transform
them from open sentences to existentially quantified sentences.

Rothschild follows this latter approach. Say that p is definedness-sensitive to a variable x iff
there is a pair 〈g,w〉 such that JpKg[x→⊥],w= #, while JpKg[x→o],w 6= # for all individuals o other
than ⊥ (g[x→a] is the variable assignment which takes x to a but is otherwise just like g). In
essence, p is definedness-sensitive to x iff x appears in p but is not bound by an indefinite
in p. We write g′[p]g to say that g′ and g agree on all definedness-sensitive variables in p.
This, in turn, lets us define our closure operator †:

J†pKg,w =


1 ∃g′[p]g : JpKg′,w = 1
0 ∀g′[p]g : JpKg′,w = 0
# otherwise

So, in essence, †p quantifies over variable assignments which vary variables bound by
indefinites in p; so the truth conditions of †somex(p) are those, not of the open sentence p,
but rather of the classical existential quantification ∃x(p).

The idea is that the dagger can be inserted under negation, to existentially close a sentence.
There are not explicit rules about when this happens: we obviously don’t want to exis-
tentially close all sentences, since this would rob the fragment of its ability to account for
anaphora. So ‘There’s not a sleeping cat’ gets parsed as somex(Cx∧ Sx), but ‘There’s not
a sleeping cat’ gets parsed, not as ¬somex(Cx∧Sx), but rather as ¬† somex(Cx∧Sx). This
has the desired universal truth-conditions. somex(Cx∧Sx) is not definedness-sensitive to x,
since taking x to⊥would make the sentence false, not undefined. Hence ¬†somex(Cx∧Sx)
is true at 〈g,w〉 just in case †somex(Cx∧Sx) is false at 〈g,w〉 just in case, for every o in the
domain, Cx∧Sx is false at

〈
g[x→o],w

〉
, just in case there is no sleeping cat in w, as desired.

What about double negation elimination? Well, double negation elimination is valid for
the strong Kleene connectives, as we noted. So as long as ‘It’s not true that there is not a
sleeping cat’ gets parsed ¬¬somex(Cx∧Sx), without any intervening daggers, it will have
the desired anaphoric properties, since this is equivalent to somex(Cx∧Sx). So, unlike the
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dynamic approach, this approach is capable of accounting for the anaphoric potential of
doubly negated indefinites.

Having said that, this approach does not give us an account of when we insert daggers
and when we don’t, which makes it unsatisfyingly unconstrained. For instance, nothing
in the account rules out the parse ¬¬† somex(Cx∧ Sx), or indeed, ¬†¬somex(Cx∧ Sx) or
¬†¬†somex(Cx∧Sx). On any of these parses, doubly negated indefinites would not license
subsequent anaphora. Likewise, nothing in this approach rules out the parse †somex(Cx)
for a matrix indefinite; that parse, of course, makes the indefinite equivalent to the classical
existential quantifier, and hence will ensure that it does not license subsequent anaphora.
Nor does it rule out the parse ¬ † somex(Cx) for a singly negated indefinite, which would
predict a reading of ‘it’s not the case that there is a cat’ as saying ‘A particular thing is not
a cat’. All these questions are raised, and not answered, by Rothschild’s account.

4.4 Disjunction

This treatment of double negation elimination nearly puts us in a position to deal with
bathroom disjunctions, but we need one more tool. Consider (20):

(20) Either there is no bathroom, or it is upstairs.

Assume first that this gets parsed:

(21) ¬somex(Bx)∨Ux

This parse isn’t acceptable: we want the negated indefinite in the left disjunct to get its usual
strong interpretation. (To see the problem, suppose there is a bathroom in the basement but
not upstairs. Then intuitively (20) is false. But (21) will be true, relative to any variable
assignment which takes x to something other than a bathroom.)

To get the intended strong reading of the left disjunct, we can insert a dagger:

(22) ¬† somex(Bx)∨Ux

This lets us avoid the problem just sketched, but now we have a different problem: the
pronoun in the right disjunct of (22) will not be licensed by the indefinite in the left. That
is, (22) still puts a non-trivial requirement on the input context: namely, that it not contain
any pairs 〈g,w〉 such that there is a bathroom in w, but g(x) = ⊥. For otherwise, if w
contains a bathroom but g(x) =⊥, then by our truth-conditions for disjunction, (22) will be
undefined at 〈g,w〉 since the left conjunct is false and the right conjunct is undefined. But
intuitively, bathroom disjunctions don’t require any contextual set-up—that is, they don’t
require a preceding indefinite to license the pronoun in the right disjunct.

So we seem stuck: we somehow need the dagger to get the intuitive truth-conditions of the
left disjunct, but we can’t have it if we are to capture the intuitive licensing conditions of
the right disjunct. Rothschild deals with this by having it both ways. Rothschild says that
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a sentence with the surface form p can have the logical form q′ provided that for some sen-
tence q, p and q are classically equivalent (that is, equivalent under a classical interpretation
of the language) and q′ is identical to q except perhaps for the addition of some daggers.
Call this mechanism of free copying cloaking. Since ¬p∨q and ¬p∨(p∧q) are classically
equivalent, we can according to this rule parse (20) as (23):

(23) ¬† somex(Bx)∨ (somex(Bx)∧Ux)

This has the desired meaning and (lack of) anaphoric requirements. The whole disjunction
is true when there is no bathroom. In case there is a bathroom, it is true iff g(x) is an upstairs
bathroom in w. And it is never undefined: if g(x) =⊥, then the right disjunct will be false,
not undefined, since some plugs undefinedness.

So we are in a similar situation as in the case of double negation. We can deal with Partee
sentences. This requires extra machinery, however: in this case, not only a dagger, but
also a cloak. It is worth noting a dialectical wrinkle at this point: cloaking could also
save the dynamic account of disjunction, and perhaps also of double negation. If we are
allowed to interpret (20) as ¬somex(Bx)∨ (somex(Bx)∧Ux), then the standard dynamic
interpretation works unproblematically. Likewise, if we can copy double-negated material
across discourses, then dynamic semantics has no trouble with those cases. So, although
Rothschild sells these as empirical advantages of his account, the dynamic approach could
in principle also help itself to cloaking and then deal with these cases in the same way
(though of course, we might still find other reasons to prefer Rothschild’s account).12

4.5 Quantifiers

Rothschild adopts a natural extension of the strong Kleene system to the universal quan-
tifier: roughly speaking, everyx(p,q) is true if p is defined on every object, and q is true
of every object that p is true of; false if there is a p∧¬q object; and # otherwise.13 So,
where D is the domain (which we assume is fixed across worlds, but does not include the
contradictory object):

Jeveryx(p,q)Kg,w =


1 ∀o ∈ D : JpKg[x→o],w 6= # and JpKg[x→o],w = 1→ JqKg[x→o],w = 1
0 ∃o ∈ D : Jp∧¬qKg[x→o],w = 1
# otherwise

To make this work for donkey anaphora, we once more need cloaks and daggers. To see
this, return to our running donkey sentence, focusing on the variant with the pronoun:

(24) Everyone who has a cat loves it.

12Rothschild also points to two nice further features of his account: its ability to deal with Stone (1992)’s
disjunctive anaphora, like ‘If you see a dog or a cat, give it a kiss’; and corresponding conditional cases which
Rothschild points out, like ‘Either it’s a holiday or a customer will come in. And if it’s not a holiday, he’ll want
to be served’. The variant we develop presently can also deal with these cases in a parallel way.

13What I present here is slightly different from Rothschild’s presentation, which I think contains an error.
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Assume first this gets parsed as in (25):

(25) everyx(somey(Cy∧H(x,y)),L(x,y))

This won’t work. The problem is, in essence, that some isn’t quantificational at all in this
system—modulo definedness, indefinite sentences are equivalent to open sentences. But we
need to quantify over cats to get the intended meaning. We can work around this, again,
with appropriately copied material, and appropriately placed daggers: namely, by parsing
(24) as (26) rather than (25):

(26) everyx(†somey(Cy∧H(x,y)),†(somey(Cy∧H(x,y))∧L(x,y)))

The reason this works is that the † turns the indefinite into, in essence, a classical existential
quantifier. So consider an arbitrary object o in the domain. o is a witness to the truth of
our sentence at 〈g,w〉 just in case (i) either the restrictor is false, relative to

〈
g[x→o],w

〉
, or

else (ii) both the restrictor and scope are true, relative to
〈
g[x→o],w

〉
. So suppose that the

restrictor is true; then there is some cat that o has. The scope is true just in case there is some
cat that o has and loves. The sentence is true iff every individual in the domain witnesses
its truth; in other words, iff every cat-owner loves some cat they own. We thus derive the
intuitive meaning of the donkey sentence. (To be precise, we derive one of two apparent
interpretations, the “weak” one. A stronger interpretation says that every cat-owner loves
every cat they own. It’s controversial whether both readings are semantically available, or
if there is instead some kind of flexibility in interpretation.14)

5 Adding local contexts

There is a thrilling simplicity to Rothschild’s system, until you confront the necessity of
cloaks and daggers, which make the system both more revisionary and less constrained than
the negation-free fragment promises to be. Being revisionary is not in itself an objection, but
it does deprive this approach of some of its apparent advantages over dynamic semantics—
especially when you see that dynamic semantics can avoid its problems with disjunction and
double negation if it, too, invokes some kind of cloaking mechanism. Being unconstrained
is a more acute problem: to have a predictive theory, we need to know when we insert
daggers and when we don’t. For instance, we want an explanation of why it is very hard
to get a dagger-free reading of singly negated indefinites (that is, a reading on which the
negated indefinite does not have universal quantificational force), and why it is, conversely,
very hard to get a daggered reading of doubly negated indefinites (that is, a reading on
which the doubly negated indefinite does not license anaphora).

In the rest of this chapter, I will develop an alternative picture—a different ending to Roth-
schild’s trivalent story. The central idea about indefinites is based on a similar proposal
which I develop in Mandelkern 2022b. In that paper, I develop the idea in a bivalent but

14See e.g. Heim 1982; Root 1986; Rooth 1987; Schubert and Pelletier 1989; Chierchia 1992; Kanazawa
1994; Chierchia 1995; Champollion et al. 2019.
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two-dimensional framework, rather than a trivalent framework; in the conclusion, I return
briefly to the choice between these frameworks. Both that proposal and the one I presently
develop have their roots in Krahmer and Muskens (1995)’s bilateral account, as will become
clear.

At a high level, here is how we deal with the problems that lead Rothschild to invoke cloaks
and daggers. First, instead of using a closure operator, we derive the strong force of negated
indefinites by encoding it directly in the trivalent truth-conditions: somex(Px) is true just
in case Px is, but false just in case nothing is in I (w,P). That means that indefinites have
the update effect of open sentences—hence licensing anaphoric dependencies. But singly
negated indefinites have only the desired universal truth-conditions, no anaphoric effects.
Together with Kleene connectives (middle, in our case, instead of strong), this gets us what
we need as far as double negation goes.

Second, instead of freely copying classically redundant material, we use the apparatus of
local contexts to define the familiarity condition on definites. This is not so different from
Rothschild’s approach: in fact, Schlenker (2008) influentially showed that local contexts
can simply be viewed as the strongest locally redundant material in a sentence. But the
result is more constrained: local contexts are recursively specified, whereas cloaking is in
Rothschild’s system optional but not mandatory; and the ideology of local contexts, unlike
cloaking, does not require new commitments about the relationship between surface and
logical form.

5.1 (In)definites

I’ll work with essentially the same fragment, but we will no longer need †. I’ll write defi-
nites ιx(p) (‘The p’) and ιx(>(x)) (‘he’/‘she’/‘it’), treating these as terms.

Start with indefinites. The idea, again, is that indefinites have the extension of open sen-
tences, but the anti-extension of negated existential quantifiers. That is, for any world w,
assignment g, and context c (more on the role of contexts shortly):

Jsomex(p)Kc,g,w =


1 JpKc,g,w = 1
0 ∀o ∈ D : JpKc,g[x→o],w = 0
# otherwise

So, for instance, somex(Cx) is true at 〈c,g,w〉 just in case g(x) is a cat in w; false just in
case w is cat-less; and undefined otherwise.

Turning to definites: as in the extension of Rothschild’s system above, definites have the
value of the corresponding variable, provided that the variable’s prejacent is true throughout
the context (which is still a set of world/variable assignment pairs):

Jιx(p)Kc,g,w =

{
JxKc,g,w ∀〈g′,w′〉 ∈ c : JpKc,g′,w′ = 1
# otherwise
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Since we are assuming that pronouns are definites with tautological restrictors—that is,
with the form ιx(>x)—this amounts to the requirement for pronouns that all the variable
assignments in the context are defined on the variable in question. For definite descriptions,
the requirement is stronger—namely, that all the variable assignments in the context be
defined on the variable in question and moreover assign it to something that makes the
restrictor true. So, for instance, ιx(Cx) is defined in c only if x is assigned to a cat throughout
c; in that case, its value at 〈g,w〉 is JxKc,g,w.

Variables, in turn, get the value assigned to them by the variable assignment in the usual
way; we assume that assignments can be partial, so JxKc,g,w is g(x) provided the latter is
defined, and undefined otherwise. (We assume that variables are always in the scope of a
co-indexed ι , some, or quantifier.)

Finally, predicational sentences again get the natural trivalent semantics:

JP(τ1,τ2, . . .τn)Kc,g,w =


# Jτ1Kc,g,w = # or Jτ2Kc,g,w = # . . . or JτnKc,g,w = #
1 〈Jτ1Kc,g,w,Jτ2Kc,g,w, . . .JτnKc,g,w〉 ∈I (w,P)
0 otherwise

5.2 Connectives

Turning to the connectives, I’ll make two changes from Rothschild’s approach. First, we
switch from strong to middle Kleene connectives, for reasons I’ll explain below. This is
not a deep change, since as Rothschild notes, his approach could be developed in a middle
Kleene context as well. Second, more significantly, we incorporate local contexts into our
treatment of the connectives; that is, the context we use to evaluate the part of a complex
sentence is not necessarily the input context, but may be a part of the input context. There
are a lot of different ways of thinking about local contexts. A central question is whether
they are part of the recursive semantic machinery, or something separable from (but de-
termined by) the semantic machinery. Karttunen (1973, 1974) puts them in the former
category; Stalnaker (1974); Schlenker (2008) in the latter. Partly for expository purposes,
I’ll follow the first route, specifying them recursively; see Spector 2021 for an attempt to
follow the latter route in the context of a theory of anaphora. Another question is whether
to implement local contexts symmetrically or asymmetrically; I will opt for an asymmetric
implementation here, though, again, there is controversy about order. For any sentence p
and context c, I write cp for {〈g,w〉 ∈ c : JpKc,g,w = 1}. Then the middle Kleene semantics
with local contexts is:

Jp∧qKc,g,w =


1 JpKc,g,w = JqKcp,g,w = 1
0 JpKc,p,w = 0 or (JpKc,p,w = 1 and JqKcp,p,w = 0)
# otherwise
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Jp∨qKc,g,w =


1 JpKc,g,w = 1 or (JpKc,g,w = 0 and JqKc¬p,g,w = 1)
0 JpKc,g,w = JqKc¬p,g,w = 0
# otherwise

J¬pKc,g,w =


1 JpKc,g,w = 0
0 JpKc,g,w = 1
# JpKc,g,w = #

The middle Kleene connectives are essentially order-sensitive versions of the strong Kleene
connectives; if the left clause suffices to determine the truth-value of the whole sentence,
whatever the truth-value of the right clause is, that suffices for the sentence to have a value;
otherwise, both clauses must be valued. So for instance if p is true and q indeterminate,
then p∨ q is true (since, whether q is determined as true or as false, the classical value of
the sentence would be true either way); while q∨ p is indeterminate (since just the material
to the left of q—of which there isn’t any—doesn’t suffice to fix the classical value of this
sentence).

5.3 Pragmatics

Like Rothschild, we will borrow from Heim the notion of a context as a set of pairs of
possible worlds and (possibly partial) variable assignments.15 Unlike Rothschild, however,
we don’t adopt the Stalnakerian update rule, which says that you can only assert p when
p is defined throughout the context. Instead we just have (what seems to me) the simplest
possible update rule: we update with p by keeping all and only points from the input context
c where p is true relative to c.16 We thus reject “Stalnaker’s Bridge”, the rule that says you
can only assert p if p is defined throughout the context. This rule plays a crucial role
in Rothschild’s treatment of anaphora, and, more generally, in the trivalent approach to
presupposition. But it is crucial for us that we don’t have this rule.

To see this, consider a sentence like somex(Cx). We want to be able to update an unin-
formative context c with a sentence like this, with the result licensing subsequent definites
indexed to x. On my proposed update rule, we update by keeping the points 〈g,w〉 from c
such that somex(Cx) is true at 〈c,g,w〉. Given our semantics, that means that the updated
context c′ comprises exactly the points 〈g,w〉 such that g(x) is a cat in w. That means that a
subsequent definite indexed to x will be licensed, since x will be assigned to a cat throughout
the updated context. That is, P(ιx(Cx)) (‘The cat is purring’) or P(ιx(>x)) (‘It is purring’)
will be defined throughout c′, and in particular true at exactly those points 〈g,w〉 where g(x)
is purring. By contrast, in a context where x is not familiar, P(ιx(>x)) would be undefined
at every point in that context.

15We dispense with Rothschild’s contradictory object.
16This simplifies in irrelevant ways: if we think of context as representing the common ground, then further

adjustments will follow, e.g., we will also update with the fact that we now accept p, and so on.
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If, however, we took on board Stalnaker’s Bridge, indefinites would not be able to play this
essential role in setting up subsequent anaphora. In a context c where x is not familiar,
somex(Cx) will be undefined at any point 〈g,w〉 ∈ c where g(x) is undefined or where w has
a cat but g(x) is not a cat. So in a context where x is novel, somex(Cx) will be undefined
at many points in the context. Hence if we required any assertion to be defined throughout
the context, we could never use an indefinite sentence to make a novel variable familiar and
hence set up subsequent anaphora.

Although Stalnaker’s Bridge is an important part of the traditional picture of semantic pre-
supposition projection, it’s also stipulative, as many have noted (Soames, 1989; von Fintel,
2008); so it does not seem intrinsically problematic to reject it. It does mean that our ap-
proach can’t be coupled with the standard trivalent treatment of presupposition. We have
an alternative, though. Given that we also have the apparatus of local contexts in our sys-
tem, we can follow the tradition of Karttunen, Stalnaker, Heim and Schlenker and say that
a sentence is only defined if its semantic presuppositions are satisfied throughout their lo-
cal context. Once you have that, Stalnaker’s Bridge is superfluous—the quantification over
context worlds implicit in Stalnaker’s Bridge is instead taken care of by way of the presup-
position satisfaction rule.

5.4 Open scope

This is the core of the theory. We have seen how updating with an indefinite licenses
subsequent anaphora. We are also in a position to see how this approach validates the open
scope of indefinites, and how it avoids problems with negation and disjunction.

Hence, consider (27) and (28) (‘There is a cat and it is purring’ and ‘A cat is purring’):

(27) somex(Cx)∧P(ιx(>x))

(28) somex(Cx∧Px)

In the present system, (27) and (28) are not semantically equivalent. But that is only because
their falsity conditions differ. They still have the same truth-conditions: each is true at
〈c,g,w〉 iff g(w) is a purring cat. This entails (given our pragmatic system) that they have
the same update effect; and that they have the same truth-value whenever both are defined
(they are Strawson equivalent).

To see the central point—that these have identical truth-conditions—consider any point
〈g,w〉 and context c. Suppose first that (27) is true at that point, relative to c. Recall that
indefinites are true just in case the corresponding open sentence is, which means that g(x) is
a cat in w. The truth of the right conjunct guarantees that g(x) is also purring in w. But that
means that (28) is true too, since the corresponding open sentence is. Suppose next that (28)
is true; then the corresponding open sentence is, so g(x) is a purring cat in w. That means
that the left conjunct of (27) is true. For the conjunction to be true at 〈c,g,w〉, P(ιx(>x))
must be true at

〈
csomex(Cx),g,w

〉
. For that to hold, (i) x must be defined throughout csomex(Cx)
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and (ii) g(x) must be purring. But (i) will hold, since by definition csomex(Cx) is the set of
points 〈g′,w′〉 from c where somex(Cx) is true, which are all points where g′ is defined on
x. And (ii) will hold given that (28) is true.

More generally, sentences with the form somex(p)∧q and somex(p∧q) will always have the
same truth-conditions. For somex(p)∧ q is true at 〈c,g,w〉 iff somex(p) is true at 〈c,g,w〉
and q is true at

〈
csomex(p),g,w

〉
, iff p is true at 〈c,g,w〉 and q is true at

〈
csomex(p),g,w

〉
.

somex(p∧ q) is true at 〈c,g,w〉 iff p∧ q is true at 〈c,g,w〉 iff p is true at 〈c,g,w〉 and q is
true at 〈cp,g,w〉. But now note that csomex(p) = cp, since the points in c where somex(p)
are true are precisely those where p is true. So these truth-conditions are the same. The
same reasoning extends to pairs like (27) and (28), which have the form somex(p)∧q and
somex(p∧ q′) where q′ differs from q by replacing a definite with a corresponding bare
variable. As long as the prejacent of the definite is entailed by the indefinite somex(p), as
in this case, this reasoning will go through unchanged.

Since truth is what matters for pragmatics in our system (that is, if two assertions have the
same truth-conditions, they induce the same updates), I’m inclined to think this is enough
to account for the intuitions that motivate open scope.17

5.5 Negation and disjunction

Our account, crucially, avoids the problems with negation and disjunction for dynamic se-
mantics which we explored above. Start with negation. First, note that negated indefinites
have the intuitively correct meaning. ¬somex(Cx) is true at 〈c,g,w〉 just in case there is
no cat in w. Hence we capture the intuition that negated indefinites have strong, universal
meanings. This does not require any kind of extra closure operator, but is simply thanks
to the trivalent semantics for indefinites: on our approach, indefinites have the truth con-
ditions of the corresponding open sentence but the falsity conditions of the corresponding
existential quantifier.

So consider doubly negated indefinites. ¬¬somex(Cx) is semantically equivalent to somex(Cx):
this is obvious from our Kleene semantics for negation, which switches true to false and
false to true (and leaves undefinedness unchanged). So doubly negated indefinites will have
the same meaning as matrix indefinites, and hence are predicted to license anaphora, as
desired.

One perspective is that we have simply folded Rothschild’s dagger operator into the falsity
conditions of indefinites, rather than positing it as a syntactically separate entity. That means
that we don’t face the question of when the dagger operator is inserted. This also brings out
clearly the precedent for the present approach in Krahmer and Muskens’ proposal, which is
based on the same basic idea.

17It is, of course, true in our system that sentences like (27) and (28) have different falsity-conditions, and
thus that their negations have different truth-conditions. But ‘It’s not the case that there is a purring cat’ and
‘It is not the case that there is a cat and it is purring’ do seem to differ slightly, though intuitions are extremely
subtle.
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Next, consider a bathroom disjunctions like ‘Either there is no bathroom, or it is upstairs’.
The obvious parse, in (29), yields the desired truth-conditions: there is no copying or closure
needed.

(29) ¬somex(Bx)∨U(ιx(>x))

Consider an arbitrary point 〈g,w〉 in context c. Suppose first that w is bathroom-free. Then
the left disjunct will be true, and so (21) will be true, by our middle Kleene connectives.
Suppose next that w contains a bathroom. Then, since the left disjunct is not true, the
sentence is true just in case the left disjunct is false and the right disjunct is true. The left
disjunct is false just in case g(x) is a bathroom in w. In that case, the right disjunct will be
defined, because (i) g(x) is defined and (ii) the definite’s familiarity constraint is satisfied.
To see the latter point, note that the right disjunct’s local context is c¬¬somex(Bx). Since
double negation elimination is valid, this is equal to csomex(Bx), which will only contain pairs
which assign x to a bathroom and hence which are defined on x. Given all this, the right
disjunct is true just in case g(x) is upstairs. In sum: (29) is true at 〈c,g,w〉 iff w is bathroom-
free, or else g(x) is a bathroom which is upstairs. This nicely captures the intuitive truth-
conditions (modulo domain restriction, which, again, we set aside here). Things work in
just the same way for a version with ‘the bathroom’ in place of ‘it’ in the right disjunct.

This helps bring out why I have adopted the middle Kleene connectives rather than weak
or strong Kleene. Suppose we had weak Kleene connectives; then (29) would be undefined
whenever g(x) is, even if w is bathroom-free. That would mean that updating with (29)
would license subsequent anaphora to x, since the sentence would only be defined at points
where g(x) is. But you can’t say ‘There is either no bathroom, or it is upstairs. It has a nice
mirror in it.’ By contrast, given middle Kleene, (29) will be true, not undefined, when g(x)
is undefined, provided that there is no bathroom. Strong Kleene connectives would also go
wrong here: suppose that w has only downstairs bathrooms, but g(x) is something upstairs.
Then on the strong Kleene semantics, (29) would wrongly be predicted true at 〈c,g,w〉,
since the right disjunct would be true.

Besides bringing out clearly the motivations for our approach to the connectives, this case
helps bring out the motivation for our semantics for indefinites. The semantics looks hap-
hazard at first. But we need something along precisely these lines if we are to capture the
open scope of indefinites, while also capturing the strong meaning of negation. One way to
get at the intuition behind this semantics is via a reformulation that Keny Chatain (p.c.) has
suggested to me: we can equivalently think about this semantics as giving indefinites the
semantics of existential quantifiers, together with a conditional definedness condition (what
I call the witness bound in Mandelkern 2022b). The witness bound says that a sentence like
somex(Cx) is only defined at 〈g,w〉 if the following conditional holds: if there is any cat in
w, then g(x) is a cat in w. That is, if there’s a witness to the indefinite, then we make sure we
keep track of all the witnesses with the context’s variable assignments. Otherwise, we don’t
have anything to keep track of. Essentially, indefinites are still existential quantifiers—just
with the added requirement that they must keep track of witnesses to their truth, if there are
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any.

5.6 Quantifiers

I turn, finally, to quantifiers. In the classical approach, quantifiers quantify over assignments
which vary just the value of the variable they bind. Donkey sentences suggest we need
more flexibility than this. Consider the covariation between, say, cats and cat-owners in
‘Everyonex whox has a caty loves ity’. In order to capture that covariation, quantifiers need
to range over assignments which vary the value both of variables they bind (in this case, x)
and of variables bound by indefinites in their scope (here, y). But we cannot quantify over
all assignments, since we need to hold fixed the values of already-familiar definites. Hence,
in a sentence like (30), ‘him’ is interpreted as being anaphoric on the cat I have, and cannot
covary with ‘everyone’:

(30) I have a cat. Everyone loves him.

To get the right amount of variation to capture both of these facts, we will let our quantifiers
range over assignments which hold fixed the values of all the variables already familiar in
c. Write g′[c]g just in case g′ and g agree on all variables familiar in c.

A final wrinkle is that we want the quantifier’s variable to count as familiar within the scope
of the quantifier, so that it won’t get re-shifted by embedded quantifiers. That is, when we
have a sentence like ‘Everyonex loves everyoney’, we don’t want to re-shift the value of
x when we arrive at the second quantifier. So we will evaluate the restrictor and scope
relative to a minimal variant on the input context which makes the quantifier’s variable
familiar; write cx for the context which is just like c but without any assignments where x is
undefined.

With this in hand, we can extend the Kleene idea to quantifiers as follows:

Jeveryx(p,q)Kc,g,w =


1 ∀o : ∃g′[c]g : JpKcx,g′[x→o],w 6= # and

(∃g′[c]g : JpKcx,g′[x→o],w = 1)→∃g′′[c]g : Jp∧qKcx,g′′[x→o],w = 1

0 ∃o : ∃g′[c]g : Jp∧¬qKcx,g′[x→o],w = 1
# otherwise

The core is the classical idea that everyx(p,q) is true iff every o which is p is also q, and
false iff some o is p and ¬q. We add a natural extension of the Kleene idea to quantifiers:
namely, the quantified sentence cannot be true if, for some o, it is indeterminate (on all
relevant assignments) whether o is p (compare George 2008).

For quantifiers not embedding (in)definites, the result will be equivalent to the classical
treatment of quantifiers. In, e.g., everyx(Cx,Px) (‘every cat is purring’), our semantics tells
us to simply check whether every cat is purring; the sentence is true if so, false otherwise.

As for donkey quantification, the central difference to Rothschild’s approach is, again, that
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we don’t need any extra material in the logical form. Consider ‘Everyone who has a cat
loves it’, as in (31), assessed at 〈c,g,w〉:

(31) everyx(somey(Cy∧H(x,y)),L(x, ιy(>y)))

We must consider every individual o in the domain, and check whether the restrictor somey(Cy∧
H(x,y)) is true at

〈
cx,g′[x→o],w

〉
for any g′[c]g. As long as y is not already familiar in c, g′

can vary the value of y. Hence the restrictor will be true at some such
〈

cx,g′[x→o],w
〉

just
in case o is a cat-owner. If this holds, we must then check whether the conjunction of the
restrictor and scope is true at

〈
cx,g′′[x→o],w

〉
for some g′′[c]g. Once more, we get to vary y,

and so this holds just in case there is some way of assigning y to a cat which is both owned
and loved by o in w. The quantified sentence is thus true just in case every cat-owner in w
is also a cat-lover.

Crucially, we get covariance between the definite in the scope and the indefinite in the
restrictor; and the definite in the scope is guaranteed to be licensed, since its local context
entails the scope, which contains an indefinite indexed to y. A definite description ‘the
cat’ would likewise be licensed in the same place. By contrast, without a corresponding
indefinite, we won’t get covariance. ‘Every cat-owner loves hery’ will be undefined if y is
novel in the input context, thanks to the definedness constraint of definites. If y is already
familiar, then the sentence gets a non-covarying reading, as desired, thanks to our definition
of g′[c]g.

Like Rothschild, we get the weak reading of donkey sentences. Again, I’m not sure what to
make of the weak/strong issue, and as far as I can tell, the present approach does not shed
special light on it (though there are different, trivalent approaches which may, as discussed
in Champollion et al. 2019); a close variant would get us the strong reading instead.

Donkey quantification is, of course, not restricted to universal quantifiers, as (32) illustrates:

(32)
{

Most
Few

}
people who have a cat love it.

Extending our treatment to these constructions is conceptually straightforward. For in-
stance, ‘most’ can be treated as follows (ignoring definedness conditions, which will be as
for every):

Jmostx(p,q)Kc,g,w = 1 iff
|{o : ∃g′[c]g : Jp∧qKcx,g′[x→o],w = 1}|
|{o : ∃g′[c]g : JpKcx,g′[x→o],w = 1}|

>
1
2

6 Conclusion

In the light of Partee pairs and donkey sentences, pretty much everyone rejects the classical
theory of anaphora and its interaction with quantifiers and connectives. After that, there
is a lot of disagreement. E-type approaches defend the classical treatment of (in)definites,
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by taking on revisionary semantics of the quantifiers and connectives. Dynamic semantics
departs from classical assumptions in its treatment of (in)definites as well. Trivalence is
(implicitly) a central part of some dynamic systems. But in the dynamic literature, triva-
lence has tended to be at least somewhat in the background, overshadowed by other, more
revisionary features of dynamic semantics. More recently, trivalence has come into its own
as a central player in theories of anaphora.

The trivalent approach that I developed in the last section is closely influenced by dynamic
semantics (especially Krahmer and Muskens (1995)’s bilateral system). It borrows from
dynamic semantics a central tool, namely, that of local contexts. Indeed, depending on
your preferred criterion for dynamicness, this may lead you to classify that system as it-
self dynamic. The system is obviously very different from standard dynamic semantics.
Nonetheless, it is worth asking whether a system like the one I have presented here can
be made more purely static, by eschewing entirely the apparatus of semantically specified
local contexts (e.g., by using the tools developed in Schlenker 2008). This is the focus of
exciting new work in Spector 2021.

A related question concerns whether trivalence is exactly the right tool for thinking about
the partiality involved in anaphora. As I mentioned at the outset, the trivalent system I
have developed here is based on a different system which I develop in Mandelkern 2022b.
That system is similar in spirit, but has a two-dimensional, bivalent semantics. The ‘main’
dimension is essentially classical, while the witness bound is a part of the second dimen-
sion of backgrounded constraints. We can think of two-dimensionality as a kind of four-
valuedness, so there is a parsimony consideration in favor of trivalence. On the other hand,
the four-valued picture has an appealing division of labor between the main dimension,
whose semantics—and hence logic—is classical, and the second dimension, where all the
dynamic action takes place.

Another consideration concerns a point raised by Benjamin Spector for the trivalent pic-
ture I have developed in this chapter, arising from stacked negated indefinites (p.c., citing
a related observation of Amir Anvari). Consider a sentence like ‘There is not a person that
didn’t dance with someone’, that is, ¬somex(¬somey(danced(x,y))). On the trivalent ap-
proach we’ve developed, this ends up being true at 〈c,g,w〉 only if everyone danced with
g(y). For J¬somex(¬somey(danced(x,y)))Kc,g,w= 1 iff Jsomex(¬somey(danced(x,y)))Kc,g,w=
0 iff ∀o : J¬somey(danced(x,y))Kc,g[x→o],w = 0 iff ∀o : Jsomey(danced(x,y))Kc,g[x→o],w = 1 iff
∀o : Jdanced(x,y)Kc,g[x→o],w = 1! That is a serious problem, and one that the two-dimensional
approach avoids. But different trivalent approaches have resources to deal with this case as
well: in particular, the trivalent approach of Spector 2021 avoids this problem by using
plural assignment functions. In addition to these points, the two-dimensional approach has
a nicer, and more perspicuous, logic than the trivalent approach I have developed.18 These

18The basic issue for the present system is that what variables quantifiers get to vary depends on context,
and the context changes over the course of the sentence, meaning there will be failures of the law of non-
contradiction and excluded middle, as in many dynamic systems (e.g., the following is consistent: ‘Everyone
has a donkeyy and somethingy is feline, and it’s not the case that (everyone has a donkeyy and somethingy is
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points lead me to favor a two-dimensional approach over a trivalent approach at present.

There is much more to explore here; what seems clear is that some notion of partiality will
play a, and perhaps the, central role in a successful theory of anaphora.
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Büring, D. (2004). Crossover situations. Natural Language Semantics, 12:23–62.
Champollion, L., Bumford, D., and Henderson, R. (2019). Donkeys under discussion.

Semantics & Pragmatics, 12(1):1–50.
Chatain, K. (2017). Local contexts and anaphora. Handout, MIT.
Chierchia, G. (1992). Anaphora and dynamic binding. Linguistics and Philosophy,

15(2):111–183.
Chierchia, G. (1995). Dynamics of Meaning: Anaphora, Presupposition, and the Theory of

Grammar. University of Chicago Press, Chicago, IL.
Cooper, R. (1979). The interpretation of pronouns. In Heny, F. and Schnelle, H. S., editors,

Syntax and Semantics, volume 10, pages 61–92. Academic Press.
Egli, U. (1979). The Stoic concept of anaphora. In Bäuerle, R., Egli, U., and von Stechow,
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namic semantics. In Schlöder, J. J., McHugh, D., and Roelofsen, F., editors,
Proceedings of the 22nd Amsterdam Colloquium, volume 22, pages 142–151.

Heim, I. (1982). The Semantics of Definite and Indefinite Noun Phrases. 2011 edition,
University of Massachusetts, Amherst.

feline)’. This might be separable from other parts of the system, for instance if we added a novelty presuppo-
sition to the indefinite, or if we treated donkey anaphora using functional pronouns, following Schlenker 2011;
Chatain 2017, rather than the more flexible kind of quantification we have introduced here.

29



Heim, I. (1983). On the projection problem for presuppositions. In Barlow, M., Flickinger,
D. P., and Wiegand, N., editors, The West Coast Conference on Formal Linguistics
(WCCFL), volume 2, pages 114–125. Stanford, Stanford University Press.

Heim, I. (1990). E-type pronouns and donkey anaphora. Linguistics and Philosophy,
13:137–177.

Kamp, H. (1981). A theory of truth and semantic representation. In et al., J. G., editor,
Formal Methods in the Study of Language. Mathematisch Centrum.

Kanazawa, M. (1994). Weak vs. strong readings of donkey sentences and monotonicity
inference in a dynamic setting. Linguistics and Philosophy, 17(2):109–158.

Karttunen, L. (1973). Presuppositions of compound sentences. Linguistic Inquiry,
4(2):167–193.

Karttunen, L. (1974). Presupposition and linguistic context. Theoretical Linguistics, 1(1-
3):181–194.

Karttunen, L. (1976). Discourse referents. In Syntax and semantics: Notes from the
linguistic underground, volume 7. Academic Press.

Krahmer, E. and Muskens, R. (1995). Negation and disjunction in discourse representation
theory. Journal of Semantics, 12:357–376.

Lewerentz, L. (2020). Situation pragmatics. Manuscript, Oxford.
Lewis, K. (2012). Discourse dynamics, pragmatics, and indefinites. Philosophical Studies,

158:313–342.
Lewis, K. S. (2019). Descriptions, pronouns, and uniqueness. MS, Columbia University.
Ludlow, P. (1994). Conditionals, events, and unbound pronouns. Lingua e Stile, 29:3–20.
Mandelkern, M. (2022a). Bounds. Manuscript, NYU.
Mandelkern, M. (2022b). Witnesses. Linguistics and Philosophy. 10.1007/s10988-021-

09343-w.
Mandelkern, M. and Rothschild, D. (2020). Definiteness projection. Natural Language

Semantics, 28:77–109.
Neale, S. (1990). Descriptions. MIT Press, Cambridge, MA.
Parsons, T. (1978). Pronouns as paraphrases. MS University of Massachusetts, Amherst.
Roberts, C. (1987). Modal Subordination, Anaphora and Distributivity. PhD thesis, Uni-

versity of Massachusetts Amherst.
Root, R. (1986). The Semantics of Anaphora in Discourse. PhD thesis, University of Texas

at Austin.
Rooth, M. (1987). Noun phrase interpretation in Montague Grammar, File Change Se-

mantics, and Situation Semantics. In Gärdenfors, P., editor, Generalized quantifiers:
Linguistic and Logical Approaches, pages 237–268. Dordrecht Reidel, Netherlands.

Rothschild, D. (2017). A trivalent approach to anaphora and presupposition. In Cremers,
A., van Gessel, T., and Roelofsen, F., editors, Amsterdam Colloquium, volume 21, pages
1–13.

Schlenker, P. (2008). Be articulate: a pragmatic theory of presupposition projection.
Theoretical Linguistics, 34(3):157–212.

Schlenker, P. (2011). On donkey anaphora. Handout of talk given at the Oxford-Paris

30



Workshop, All Souls College, Oxford.
Schubert, L. K. and Pelletier, F. J. (1989). Generically speaking, or, using discourse repre-

sentation theory to interpret generics. In Chierchia, G., Partee, B., and Turner, R., editors,
Properties, Types, and Meaning, Volume II: Semantic Issues 39, Studies in Linguistics
and Philosophy, pages 193–268. Kluwer, Dordrecht, Netherlands.

Soames, S. (1989). Presupposition. In Gabbay, D. and Guenthner, F., editors, Handbook of
Philosophical Logic, Volume IV: Topics in the Philosophy of Language, pages 553–616.
Kluwer Academic Publishers.

Spector, B. (2021). A non-dynamic approach to anaphora based on Trivalence and Trans-
parency. Manuscript, Ecole Normale Supérieure.

Stalnaker, R. (1974). Pragmatic presuppositions. In Munitz, M. K. and Unger, P., editors,
Semantics and Philosophy, pages 197–213. New York University Press, New York.

Stone, M. (1992). Or and anaphora. In Barker, C. and Dowty, D., editors, Semantics and
Linguistic Theory (SALT), volume 2, pages 367–385.

31


